xref: /illumos-gate/usr/src/uts/sun4v/io/vdc.c (revision 60405de4d8688d96dd05157c28db3ade5c9bc234)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * LDoms virtual disk client (vdc) device driver
31  *
32  * This driver runs on a guest logical domain and communicates with the virtual
33  * disk server (vds) driver running on the service domain which is exporting
34  * virtualized "disks" to the guest logical domain.
35  *
36  * The driver can be divided into four sections:
37  *
38  * 1) generic device driver housekeeping
39  *	_init, _fini, attach, detach, ops structures, etc.
40  *
41  * 2) communication channel setup
42  *	Setup the communications link over the LDC channel that vdc uses to
43  *	talk to the vDisk server. Initialise the descriptor ring which
44  *	allows the LDC clients to transfer data via memory mappings.
45  *
46  * 3) Support exported to upper layers (filesystems, etc)
47  *	The upper layers call into vdc via strategy(9E) and DKIO(7I)
48  *	ioctl calls. vdc will copy the data to be written to the descriptor
49  *	ring or maps the buffer to store the data read by the vDisk
50  *	server into the descriptor ring. It then sends a message to the
51  *	vDisk server requesting it to complete the operation.
52  *
53  * 4) Handling responses from vDisk server.
54  *	The vDisk server will ACK some or all of the messages vdc sends to it
55  *	(this is configured during the handshake). Upon receipt of an ACK
56  *	vdc will check the descriptor ring and signal to the upper layer
57  *	code waiting on the IO.
58  */
59 
60 #include <sys/atomic.h>
61 #include <sys/conf.h>
62 #include <sys/disp.h>
63 #include <sys/ddi.h>
64 #include <sys/dkio.h>
65 #include <sys/efi_partition.h>
66 #include <sys/fcntl.h>
67 #include <sys/file.h>
68 #include <sys/mach_descrip.h>
69 #include <sys/modctl.h>
70 #include <sys/mdeg.h>
71 #include <sys/note.h>
72 #include <sys/open.h>
73 #include <sys/sdt.h>
74 #include <sys/stat.h>
75 #include <sys/sunddi.h>
76 #include <sys/types.h>
77 #include <sys/promif.h>
78 #include <sys/vtoc.h>
79 #include <sys/archsystm.h>
80 #include <sys/sysmacros.h>
81 
82 #include <sys/cdio.h>
83 #include <sys/dktp/cm.h>
84 #include <sys/dktp/fdisk.h>
85 #include <sys/scsi/generic/sense.h>
86 #include <sys/scsi/impl/uscsi.h>	/* Needed for defn of USCSICMD ioctl */
87 #include <sys/scsi/targets/sddef.h>
88 
89 #include <sys/ldoms.h>
90 #include <sys/ldc.h>
91 #include <sys/vio_common.h>
92 #include <sys/vio_mailbox.h>
93 #include <sys/vdsk_common.h>
94 #include <sys/vdsk_mailbox.h>
95 #include <sys/vdc.h>
96 
97 /*
98  * function prototypes
99  */
100 
101 /* standard driver functions */
102 static int	vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred);
103 static int	vdc_close(dev_t dev, int flag, int otyp, cred_t *cred);
104 static int	vdc_strategy(struct buf *buf);
105 static int	vdc_print(dev_t dev, char *str);
106 static int	vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
107 static int	vdc_read(dev_t dev, struct uio *uio, cred_t *cred);
108 static int	vdc_write(dev_t dev, struct uio *uio, cred_t *cred);
109 static int	vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
110 			cred_t *credp, int *rvalp);
111 static int	vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred);
112 static int	vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred);
113 
114 static int	vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
115 			void *arg, void **resultp);
116 static int	vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
117 static int	vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
118 
119 /* setup */
120 static int	vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen);
121 static int	vdc_do_ldc_init(vdc_t *vdc);
122 static int	vdc_start_ldc_connection(vdc_t *vdc);
123 static int	vdc_create_device_nodes(vdc_t *vdc);
124 static int	vdc_create_device_nodes_efi(vdc_t *vdc);
125 static int	vdc_create_device_nodes_vtoc(vdc_t *vdc);
126 static int	vdc_create_device_nodes_props(vdc_t *vdc);
127 static int	vdc_get_ldc_id(dev_info_t *dip, uint64_t *ldc_id);
128 static int	vdc_do_ldc_up(vdc_t *vdc);
129 static void	vdc_terminate_ldc(vdc_t *vdc);
130 static int	vdc_init_descriptor_ring(vdc_t *vdc);
131 static void	vdc_destroy_descriptor_ring(vdc_t *vdc);
132 static int	vdc_setup_devid(vdc_t *vdc);
133 static void	vdc_store_efi(vdc_t *vdc, struct dk_gpt *efi);
134 
135 /* handshake with vds */
136 static int		vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver);
137 static int		vdc_ver_negotiation(vdc_t *vdcp);
138 static int		vdc_init_attr_negotiation(vdc_t *vdc);
139 static int		vdc_attr_negotiation(vdc_t *vdcp);
140 static int		vdc_init_dring_negotiate(vdc_t *vdc);
141 static int		vdc_dring_negotiation(vdc_t *vdcp);
142 static int		vdc_send_rdx(vdc_t *vdcp);
143 static int		vdc_rdx_exchange(vdc_t *vdcp);
144 static boolean_t	vdc_is_supported_version(vio_ver_msg_t *ver_msg);
145 
146 /* processing incoming messages from vDisk server */
147 static void	vdc_process_msg_thread(vdc_t *vdc);
148 static int	vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp);
149 
150 static uint_t	vdc_handle_cb(uint64_t event, caddr_t arg);
151 static int	vdc_process_data_msg(vdc_t *vdc, vio_msg_t *msg);
152 static int	vdc_process_err_msg(vdc_t *vdc, vio_msg_t msg);
153 static int	vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg);
154 static int	vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg);
155 static int	vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *msg);
156 static int 	vdc_send_request(vdc_t *vdcp, int operation,
157 		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
158 		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
159 static int	vdc_map_to_shared_dring(vdc_t *vdcp, int idx);
160 static int 	vdc_populate_descriptor(vdc_t *vdcp, int operation,
161 		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
162 		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
163 static int 	vdc_do_sync_op(vdc_t *vdcp, int operation,
164 		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
165 		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
166 
167 static int	vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp);
168 static int	vdc_drain_response(vdc_t *vdcp);
169 static int	vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx);
170 static int	vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep);
171 static int	vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg);
172 
173 /* dkio */
174 static int	vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode);
175 static int	vdc_create_fake_geometry(vdc_t *vdc);
176 static int	vdc_setup_disk_layout(vdc_t *vdc);
177 static int	vdc_null_copy_func(vdc_t *vdc, void *from, void *to,
178 		    int mode, int dir);
179 static int	vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
180 		    int mode, int dir);
181 static int	vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
182 		    int mode, int dir);
183 static int	vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to,
184 		    int mode, int dir);
185 static int	vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to,
186 		    int mode, int dir);
187 static int	vdc_get_geom_convert(vdc_t *vdc, void *from, void *to,
188 		    int mode, int dir);
189 static int	vdc_set_geom_convert(vdc_t *vdc, void *from, void *to,
190 		    int mode, int dir);
191 static int	vdc_uscsicmd_convert(vdc_t *vdc, void *from, void *to,
192 		    int mode, int dir);
193 static int	vdc_get_efi_convert(vdc_t *vdc, void *from, void *to,
194 		    int mode, int dir);
195 static int	vdc_set_efi_convert(vdc_t *vdc, void *from, void *to,
196 		    int mode, int dir);
197 
198 /*
199  * Module variables
200  */
201 
202 /*
203  * Tunable variables to control how long vdc waits before timing out on
204  * various operations
205  */
206 static int	vdc_retries = 10;
207 
208 /* calculated from 'vdc_usec_timeout' during attach */
209 static uint64_t	vdc_hz_timeout;				/* units: Hz */
210 static uint64_t	vdc_usec_timeout = 30 * MICROSEC;	/* 30s units: ns */
211 
212 static uint64_t vdc_hz_min_ldc_delay;
213 static uint64_t vdc_min_timeout_ldc = 1 * MILLISEC;
214 static uint64_t vdc_hz_max_ldc_delay;
215 static uint64_t vdc_max_timeout_ldc = 100 * MILLISEC;
216 
217 static uint64_t vdc_ldc_read_init_delay = 1 * MILLISEC;
218 static uint64_t vdc_ldc_read_max_delay = 100 * MILLISEC;
219 
220 /* values for dumping - need to run in a tighter loop */
221 static uint64_t	vdc_usec_timeout_dump = 100 * MILLISEC;	/* 0.1s units: ns */
222 static int	vdc_dump_retries = 100;
223 
224 /* Count of the number of vdc instances attached */
225 static volatile uint32_t	vdc_instance_count = 0;
226 
227 /* Soft state pointer */
228 static void	*vdc_state;
229 
230 /*
231  * Controlling the verbosity of the error/debug messages
232  *
233  * vdc_msglevel - controls level of messages
234  * vdc_matchinst - 64-bit variable where each bit corresponds
235  *                 to the vdc instance the vdc_msglevel applies.
236  */
237 int		vdc_msglevel = 0x0;
238 uint64_t	vdc_matchinst = 0ull;
239 
240 /*
241  * Supported vDisk protocol version pairs.
242  *
243  * The first array entry is the latest and preferred version.
244  */
245 static const vio_ver_t	vdc_version[] = {{1, 0}};
246 
247 static struct cb_ops vdc_cb_ops = {
248 	vdc_open,	/* cb_open */
249 	vdc_close,	/* cb_close */
250 	vdc_strategy,	/* cb_strategy */
251 	vdc_print,	/* cb_print */
252 	vdc_dump,	/* cb_dump */
253 	vdc_read,	/* cb_read */
254 	vdc_write,	/* cb_write */
255 	vdc_ioctl,	/* cb_ioctl */
256 	nodev,		/* cb_devmap */
257 	nodev,		/* cb_mmap */
258 	nodev,		/* cb_segmap */
259 	nochpoll,	/* cb_chpoll */
260 	ddi_prop_op,	/* cb_prop_op */
261 	NULL,		/* cb_str */
262 	D_MP | D_64BIT,	/* cb_flag */
263 	CB_REV,		/* cb_rev */
264 	vdc_aread,	/* cb_aread */
265 	vdc_awrite	/* cb_awrite */
266 };
267 
268 static struct dev_ops vdc_ops = {
269 	DEVO_REV,	/* devo_rev */
270 	0,		/* devo_refcnt */
271 	vdc_getinfo,	/* devo_getinfo */
272 	nulldev,	/* devo_identify */
273 	nulldev,	/* devo_probe */
274 	vdc_attach,	/* devo_attach */
275 	vdc_detach,	/* devo_detach */
276 	nodev,		/* devo_reset */
277 	&vdc_cb_ops,	/* devo_cb_ops */
278 	NULL,		/* devo_bus_ops */
279 	nulldev		/* devo_power */
280 };
281 
282 static struct modldrv modldrv = {
283 	&mod_driverops,
284 	"virtual disk client %I%",
285 	&vdc_ops,
286 };
287 
288 static struct modlinkage modlinkage = {
289 	MODREV_1,
290 	&modldrv,
291 	NULL
292 };
293 
294 /* -------------------------------------------------------------------------- */
295 
296 /*
297  * Device Driver housekeeping and setup
298  */
299 
300 int
301 _init(void)
302 {
303 	int	status;
304 
305 	if ((status = ddi_soft_state_init(&vdc_state, sizeof (vdc_t), 1)) != 0)
306 		return (status);
307 	if ((status = mod_install(&modlinkage)) != 0)
308 		ddi_soft_state_fini(&vdc_state);
309 	vdc_efi_init(vd_process_ioctl);
310 	return (status);
311 }
312 
313 int
314 _info(struct modinfo *modinfop)
315 {
316 	return (mod_info(&modlinkage, modinfop));
317 }
318 
319 int
320 _fini(void)
321 {
322 	int	status;
323 
324 	if ((status = mod_remove(&modlinkage)) != 0)
325 		return (status);
326 	vdc_efi_fini();
327 	ddi_soft_state_fini(&vdc_state);
328 	return (0);
329 }
330 
331 static int
332 vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
333 {
334 	_NOTE(ARGUNUSED(dip))
335 
336 	int	instance = SDUNIT((dev_t)arg);
337 	vdc_t	*vdc = NULL;
338 
339 	switch (cmd) {
340 	case DDI_INFO_DEVT2DEVINFO:
341 		if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
342 			*resultp = NULL;
343 			return (DDI_FAILURE);
344 		}
345 		*resultp = vdc->dip;
346 		return (DDI_SUCCESS);
347 	case DDI_INFO_DEVT2INSTANCE:
348 		*resultp = (void *)(uintptr_t)instance;
349 		return (DDI_SUCCESS);
350 	default:
351 		*resultp = NULL;
352 		return (DDI_FAILURE);
353 	}
354 }
355 
356 static int
357 vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
358 {
359 	int	instance;
360 	int	rv;
361 	vdc_t	*vdc = NULL;
362 
363 	switch (cmd) {
364 	case DDI_DETACH:
365 		/* the real work happens below */
366 		break;
367 	case DDI_SUSPEND:
368 		/* nothing to do for this non-device */
369 		return (DDI_SUCCESS);
370 	default:
371 		return (DDI_FAILURE);
372 	}
373 
374 	ASSERT(cmd == DDI_DETACH);
375 	instance = ddi_get_instance(dip);
376 	DMSGX(1, "[%d] Entered\n", instance);
377 
378 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
379 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
380 		return (DDI_FAILURE);
381 	}
382 
383 	if (vdc->open_count) {
384 		DMSG(vdc, 0, "[%d] Cannot detach: device is open", instance);
385 		return (DDI_FAILURE);
386 	}
387 
388 	DMSG(vdc, 0, "[%d] proceeding...\n", instance);
389 
390 	/* mark instance as detaching */
391 	vdc->lifecycle	= VDC_LC_DETACHING;
392 
393 	/*
394 	 * try and disable callbacks to prevent another handshake
395 	 */
396 	rv = ldc_set_cb_mode(vdc->ldc_handle, LDC_CB_DISABLE);
397 	DMSG(vdc, 0, "callback disabled (rv=%d)\n", rv);
398 
399 	if (vdc->initialized & VDC_THREAD) {
400 		mutex_enter(&vdc->read_lock);
401 		if ((vdc->read_state == VDC_READ_WAITING) ||
402 		    (vdc->read_state == VDC_READ_RESET)) {
403 			vdc->read_state = VDC_READ_RESET;
404 			cv_signal(&vdc->read_cv);
405 		}
406 
407 		mutex_exit(&vdc->read_lock);
408 
409 		/* wake up any thread waiting for connection to come online */
410 		mutex_enter(&vdc->lock);
411 		if (vdc->state == VDC_STATE_INIT_WAITING) {
412 			DMSG(vdc, 0,
413 			    "[%d] write reset - move to resetting state...\n",
414 			    instance);
415 			vdc->state = VDC_STATE_RESETTING;
416 			cv_signal(&vdc->initwait_cv);
417 		}
418 		mutex_exit(&vdc->lock);
419 
420 		/* now wait until state transitions to VDC_STATE_DETACH */
421 		thread_join(vdc->msg_proc_thr->t_did);
422 		ASSERT(vdc->state == VDC_STATE_DETACH);
423 		DMSG(vdc, 0, "[%d] Reset thread exit and join ..\n",
424 		    vdc->instance);
425 	}
426 
427 	mutex_enter(&vdc->lock);
428 
429 	if (vdc->initialized & VDC_DRING)
430 		vdc_destroy_descriptor_ring(vdc);
431 
432 	if (vdc->initialized & VDC_LDC)
433 		vdc_terminate_ldc(vdc);
434 
435 	mutex_exit(&vdc->lock);
436 
437 	if (vdc->initialized & VDC_MINOR) {
438 		ddi_prop_remove_all(dip);
439 		ddi_remove_minor_node(dip, NULL);
440 	}
441 
442 	if (vdc->initialized & VDC_LOCKS) {
443 		mutex_destroy(&vdc->lock);
444 		mutex_destroy(&vdc->read_lock);
445 		cv_destroy(&vdc->initwait_cv);
446 		cv_destroy(&vdc->dring_free_cv);
447 		cv_destroy(&vdc->membind_cv);
448 		cv_destroy(&vdc->sync_pending_cv);
449 		cv_destroy(&vdc->sync_blocked_cv);
450 		cv_destroy(&vdc->read_cv);
451 		cv_destroy(&vdc->running_cv);
452 	}
453 
454 	if (vdc->minfo)
455 		kmem_free(vdc->minfo, sizeof (struct dk_minfo));
456 
457 	if (vdc->cinfo)
458 		kmem_free(vdc->cinfo, sizeof (struct dk_cinfo));
459 
460 	if (vdc->vtoc)
461 		kmem_free(vdc->vtoc, sizeof (struct vtoc));
462 
463 	if (vdc->label)
464 		kmem_free(vdc->label, DK_LABEL_SIZE);
465 
466 	if (vdc->devid) {
467 		ddi_devid_unregister(dip);
468 		ddi_devid_free(vdc->devid);
469 	}
470 
471 	if (vdc->initialized & VDC_SOFT_STATE)
472 		ddi_soft_state_free(vdc_state, instance);
473 
474 	DMSG(vdc, 0, "[%d] End %p\n", instance, (void *)vdc);
475 
476 	return (DDI_SUCCESS);
477 }
478 
479 
480 static int
481 vdc_do_attach(dev_info_t *dip)
482 {
483 	int		instance;
484 	vdc_t		*vdc = NULL;
485 	int		status;
486 
487 	ASSERT(dip != NULL);
488 
489 	instance = ddi_get_instance(dip);
490 	if (ddi_soft_state_zalloc(vdc_state, instance) != DDI_SUCCESS) {
491 		cmn_err(CE_NOTE, "[%d] Couldn't alloc state structure",
492 		    instance);
493 		return (DDI_FAILURE);
494 	}
495 
496 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
497 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
498 		return (DDI_FAILURE);
499 	}
500 
501 	/*
502 	 * We assign the value to initialized in this case to zero out the
503 	 * variable and then set bits in it to indicate what has been done
504 	 */
505 	vdc->initialized = VDC_SOFT_STATE;
506 
507 	vdc_hz_timeout = drv_usectohz(vdc_usec_timeout);
508 
509 	vdc_hz_min_ldc_delay = drv_usectohz(vdc_min_timeout_ldc);
510 	vdc_hz_max_ldc_delay = drv_usectohz(vdc_max_timeout_ldc);
511 
512 	vdc->dip	= dip;
513 	vdc->instance	= instance;
514 	vdc->open_count	= 0;
515 	vdc->vdisk_type	= VD_DISK_TYPE_UNK;
516 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
517 	vdc->state	= VDC_STATE_INIT;
518 	vdc->lifecycle	= VDC_LC_ATTACHING;
519 	vdc->ldc_state	= 0;
520 	vdc->session_id = 0;
521 	vdc->block_size = DEV_BSIZE;
522 	vdc->max_xfer_sz = maxphys / DEV_BSIZE;
523 
524 	vdc->vtoc = NULL;
525 	vdc->cinfo = NULL;
526 	vdc->minfo = NULL;
527 
528 	mutex_init(&vdc->lock, NULL, MUTEX_DRIVER, NULL);
529 	cv_init(&vdc->initwait_cv, NULL, CV_DRIVER, NULL);
530 	cv_init(&vdc->dring_free_cv, NULL, CV_DRIVER, NULL);
531 	cv_init(&vdc->membind_cv, NULL, CV_DRIVER, NULL);
532 	cv_init(&vdc->running_cv, NULL, CV_DRIVER, NULL);
533 
534 	vdc->threads_pending = 0;
535 	vdc->sync_op_pending = B_FALSE;
536 	vdc->sync_op_blocked = B_FALSE;
537 	cv_init(&vdc->sync_pending_cv, NULL, CV_DRIVER, NULL);
538 	cv_init(&vdc->sync_blocked_cv, NULL, CV_DRIVER, NULL);
539 
540 	/* init blocking msg read functionality */
541 	mutex_init(&vdc->read_lock, NULL, MUTEX_DRIVER, NULL);
542 	cv_init(&vdc->read_cv, NULL, CV_DRIVER, NULL);
543 	vdc->read_state = VDC_READ_IDLE;
544 
545 	vdc->initialized |= VDC_LOCKS;
546 
547 	/* initialise LDC channel which will be used to communicate with vds */
548 	if ((status = vdc_do_ldc_init(vdc)) != 0) {
549 		cmn_err(CE_NOTE, "[%d] Couldn't initialize LDC", instance);
550 		goto return_status;
551 	}
552 
553 	/* initialize the thread responsible for managing state with server */
554 	vdc->msg_proc_thr = thread_create(NULL, 0, vdc_process_msg_thread,
555 	    vdc, 0, &p0, TS_RUN, minclsyspri);
556 	if (vdc->msg_proc_thr == NULL) {
557 		cmn_err(CE_NOTE, "[%d] Failed to create msg processing thread",
558 		    instance);
559 		return (DDI_FAILURE);
560 	}
561 
562 	vdc->initialized |= VDC_THREAD;
563 
564 	atomic_inc_32(&vdc_instance_count);
565 
566 	/*
567 	 * Once the handshake is complete, we can use the DRing to send
568 	 * requests to the vDisk server to calculate the geometry and
569 	 * VTOC of the "disk"
570 	 */
571 	status = vdc_setup_disk_layout(vdc);
572 	if (status != 0) {
573 		DMSG(vdc, 0, "[%d] Failed to discover disk layout (err%d)",
574 			vdc->instance, status);
575 		goto return_status;
576 	}
577 
578 	/*
579 	 * Now that we have the device info we can create the
580 	 * device nodes and properties
581 	 */
582 	status = vdc_create_device_nodes(vdc);
583 	if (status) {
584 		DMSG(vdc, 0, "[%d] Failed to create device nodes",
585 				instance);
586 		goto return_status;
587 	}
588 	status = vdc_create_device_nodes_props(vdc);
589 	if (status) {
590 		DMSG(vdc, 0, "[%d] Failed to create device nodes"
591 				" properties (%d)", instance, status);
592 		goto return_status;
593 	}
594 
595 	/*
596 	 * Setup devid
597 	 */
598 	if (vdc_setup_devid(vdc)) {
599 		DMSG(vdc, 0, "[%d] No device id available\n", instance);
600 	}
601 
602 	ddi_report_dev(dip);
603 	vdc->lifecycle	= VDC_LC_ONLINE;
604 	DMSG(vdc, 0, "[%d] Attach tasks successful\n", instance);
605 
606 return_status:
607 	DMSG(vdc, 0, "[%d] Attach completed\n", instance);
608 	return (status);
609 }
610 
611 static int
612 vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
613 {
614 	int	status;
615 
616 	switch (cmd) {
617 	case DDI_ATTACH:
618 		if ((status = vdc_do_attach(dip)) != 0)
619 			(void) vdc_detach(dip, DDI_DETACH);
620 		return (status);
621 	case DDI_RESUME:
622 		/* nothing to do for this non-device */
623 		return (DDI_SUCCESS);
624 	default:
625 		return (DDI_FAILURE);
626 	}
627 }
628 
629 static int
630 vdc_do_ldc_init(vdc_t *vdc)
631 {
632 	int			status = 0;
633 	ldc_status_t		ldc_state;
634 	ldc_attr_t		ldc_attr;
635 	uint64_t		ldc_id = 0;
636 	dev_info_t		*dip = NULL;
637 
638 	ASSERT(vdc != NULL);
639 
640 	dip = vdc->dip;
641 	vdc->initialized |= VDC_LDC;
642 
643 	if ((status = vdc_get_ldc_id(dip, &ldc_id)) != 0) {
644 		DMSG(vdc, 0, "[%d] Failed to get LDC channel ID property",
645 				vdc->instance);
646 		return (EIO);
647 	}
648 	vdc->ldc_id = ldc_id;
649 
650 	ldc_attr.devclass = LDC_DEV_BLK;
651 	ldc_attr.instance = vdc->instance;
652 	ldc_attr.mode = LDC_MODE_UNRELIABLE;	/* unreliable transport */
653 	ldc_attr.mtu = VD_LDC_MTU;
654 
655 	if ((vdc->initialized & VDC_LDC_INIT) == 0) {
656 		status = ldc_init(ldc_id, &ldc_attr, &vdc->ldc_handle);
657 		if (status != 0) {
658 			DMSG(vdc, 0, "[%d] ldc_init(chan %ld) returned %d",
659 					vdc->instance, ldc_id, status);
660 			return (status);
661 		}
662 		vdc->initialized |= VDC_LDC_INIT;
663 	}
664 	status = ldc_status(vdc->ldc_handle, &ldc_state);
665 	if (status != 0) {
666 		DMSG(vdc, 0, "[%d] Cannot discover LDC status [err=%d]",
667 				vdc->instance, status);
668 		return (status);
669 	}
670 	vdc->ldc_state = ldc_state;
671 
672 	if ((vdc->initialized & VDC_LDC_CB) == 0) {
673 		status = ldc_reg_callback(vdc->ldc_handle, vdc_handle_cb,
674 		    (caddr_t)vdc);
675 		if (status != 0) {
676 			DMSG(vdc, 0, "[%d] LDC callback reg. failed (%d)",
677 					vdc->instance, status);
678 			return (status);
679 		}
680 		vdc->initialized |= VDC_LDC_CB;
681 	}
682 
683 	vdc->initialized |= VDC_LDC;
684 
685 	/*
686 	 * At this stage we have initialised LDC, we will now try and open
687 	 * the connection.
688 	 */
689 	if (vdc->ldc_state == LDC_INIT) {
690 		status = ldc_open(vdc->ldc_handle);
691 		if (status != 0) {
692 			DMSG(vdc, 0, "[%d] ldc_open(chan %ld) returned %d",
693 					vdc->instance, vdc->ldc_id, status);
694 			return (status);
695 		}
696 		vdc->initialized |= VDC_LDC_OPEN;
697 	}
698 
699 	return (status);
700 }
701 
702 static int
703 vdc_start_ldc_connection(vdc_t *vdc)
704 {
705 	int		status = 0;
706 
707 	ASSERT(vdc != NULL);
708 
709 	ASSERT(MUTEX_HELD(&vdc->lock));
710 
711 	status = vdc_do_ldc_up(vdc);
712 
713 	DMSG(vdc, 0, "[%d] Finished bringing up LDC\n", vdc->instance);
714 
715 	return (status);
716 }
717 
718 static int
719 vdc_stop_ldc_connection(vdc_t *vdcp)
720 {
721 	int	status;
722 
723 	DMSG(vdcp, 0, ": Resetting connection to vDisk server : state %d\n",
724 		vdcp->state);
725 
726 	status = ldc_down(vdcp->ldc_handle);
727 	DMSG(vdcp, 0, "ldc_down() = %d\n", status);
728 
729 	vdcp->initialized &= ~VDC_HANDSHAKE;
730 	DMSG(vdcp, 0, "initialized=%x\n", vdcp->initialized);
731 
732 	return (status);
733 }
734 
735 static int
736 vdc_create_device_nodes_efi(vdc_t *vdc)
737 {
738 	ddi_remove_minor_node(vdc->dip, "h");
739 	ddi_remove_minor_node(vdc->dip, "h,raw");
740 
741 	if (ddi_create_minor_node(vdc->dip, "wd", S_IFBLK,
742 		VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
743 		DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
744 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd'",
745 		    vdc->instance);
746 		return (EIO);
747 	}
748 
749 	/* if any device node is created we set this flag */
750 	vdc->initialized |= VDC_MINOR;
751 
752 	if (ddi_create_minor_node(vdc->dip, "wd,raw", S_IFCHR,
753 		VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
754 		DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
755 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd,raw'",
756 		    vdc->instance);
757 		return (EIO);
758 	}
759 
760 	return (0);
761 }
762 
763 static int
764 vdc_create_device_nodes_vtoc(vdc_t *vdc)
765 {
766 	ddi_remove_minor_node(vdc->dip, "wd");
767 	ddi_remove_minor_node(vdc->dip, "wd,raw");
768 
769 	if (ddi_create_minor_node(vdc->dip, "h", S_IFBLK,
770 		VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
771 		DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
772 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h'",
773 		    vdc->instance);
774 		return (EIO);
775 	}
776 
777 	/* if any device node is created we set this flag */
778 	vdc->initialized |= VDC_MINOR;
779 
780 	if (ddi_create_minor_node(vdc->dip, "h,raw", S_IFCHR,
781 		VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
782 		DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
783 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h,raw'",
784 		    vdc->instance);
785 		return (EIO);
786 	}
787 
788 	return (0);
789 }
790 
791 /*
792  * Function:
793  *	vdc_create_device_nodes
794  *
795  * Description:
796  *	This function creates the block and character device nodes under
797  *	/devices along with the node properties. It is called as part of
798  *	the attach(9E) of the instance during the handshake with vds after
799  *	vds has sent the attributes to vdc.
800  *
801  *	If the device is of type VD_DISK_TYPE_SLICE then the minor node
802  *	of 2 is used in keeping with the Solaris convention that slice 2
803  *	refers to a whole disk. Slices start at 'a'
804  *
805  * Parameters:
806  *	vdc 		- soft state pointer
807  *
808  * Return Values
809  *	0		- Success
810  *	EIO		- Failed to create node
811  *	EINVAL		- Unknown type of disk exported
812  */
813 static int
814 vdc_create_device_nodes(vdc_t *vdc)
815 {
816 	char		name[sizeof ("s,raw")];
817 	dev_info_t	*dip = NULL;
818 	int		instance, status;
819 	int		num_slices = 1;
820 	int		i;
821 
822 	ASSERT(vdc != NULL);
823 
824 	instance = vdc->instance;
825 	dip = vdc->dip;
826 
827 	switch (vdc->vdisk_type) {
828 	case VD_DISK_TYPE_DISK:
829 		num_slices = V_NUMPAR;
830 		break;
831 	case VD_DISK_TYPE_SLICE:
832 		num_slices = 1;
833 		break;
834 	case VD_DISK_TYPE_UNK:
835 	default:
836 		return (EINVAL);
837 	}
838 
839 	/*
840 	 * Minor nodes are different for EFI disks: EFI disks do not have
841 	 * a minor node 'g' for the minor number corresponding to slice
842 	 * VD_EFI_WD_SLICE (slice 7) instead they have a minor node 'wd'
843 	 * representing the whole disk.
844 	 */
845 	for (i = 0; i < num_slices; i++) {
846 
847 		if (i == VD_EFI_WD_SLICE) {
848 			if (vdc->vdisk_label == VD_DISK_LABEL_EFI)
849 				status = vdc_create_device_nodes_efi(vdc);
850 			else
851 				status = vdc_create_device_nodes_vtoc(vdc);
852 			if (status != 0)
853 				return (status);
854 			continue;
855 		}
856 
857 		(void) snprintf(name, sizeof (name), "%c", 'a' + i);
858 		if (ddi_create_minor_node(dip, name, S_IFBLK,
859 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
860 			cmn_err(CE_NOTE, "[%d] Couldn't add block node '%s'",
861 				instance, name);
862 			return (EIO);
863 		}
864 
865 		/* if any device node is created we set this flag */
866 		vdc->initialized |= VDC_MINOR;
867 
868 		(void) snprintf(name, sizeof (name), "%c%s",
869 			'a' + i, ",raw");
870 		if (ddi_create_minor_node(dip, name, S_IFCHR,
871 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
872 			cmn_err(CE_NOTE, "[%d] Couldn't add raw node '%s'",
873 				instance, name);
874 			return (EIO);
875 		}
876 	}
877 
878 	return (0);
879 }
880 
881 /*
882  * Function:
883  *	vdc_create_device_nodes_props
884  *
885  * Description:
886  *	This function creates the block and character device nodes under
887  *	/devices along with the node properties. It is called as part of
888  *	the attach(9E) of the instance during the handshake with vds after
889  *	vds has sent the attributes to vdc.
890  *
891  * Parameters:
892  *	vdc 		- soft state pointer
893  *
894  * Return Values
895  *	0		- Success
896  *	EIO		- Failed to create device node property
897  *	EINVAL		- Unknown type of disk exported
898  */
899 static int
900 vdc_create_device_nodes_props(vdc_t *vdc)
901 {
902 	dev_info_t	*dip = NULL;
903 	int		instance;
904 	int		num_slices = 1;
905 	int64_t		size = 0;
906 	dev_t		dev;
907 	int		rv;
908 	int		i;
909 
910 	ASSERT(vdc != NULL);
911 
912 	instance = vdc->instance;
913 	dip = vdc->dip;
914 
915 	if ((vdc->vtoc == NULL) || (vdc->vtoc->v_sanity != VTOC_SANE)) {
916 		DMSG(vdc, 0, "![%d] Could not create device node property."
917 				" No VTOC available", instance);
918 		return (ENXIO);
919 	}
920 
921 	switch (vdc->vdisk_type) {
922 	case VD_DISK_TYPE_DISK:
923 		num_slices = V_NUMPAR;
924 		break;
925 	case VD_DISK_TYPE_SLICE:
926 		num_slices = 1;
927 		break;
928 	case VD_DISK_TYPE_UNK:
929 	default:
930 		return (EINVAL);
931 	}
932 
933 	for (i = 0; i < num_slices; i++) {
934 		dev = makedevice(ddi_driver_major(dip),
935 			VD_MAKE_DEV(instance, i));
936 
937 		size = vdc->vtoc->v_part[i].p_size * vdc->vtoc->v_sectorsz;
938 		DMSG(vdc, 0, "[%d] sz %ld (%ld Mb)  p_size %lx\n",
939 				instance, size, size / (1024 * 1024),
940 				vdc->vtoc->v_part[i].p_size);
941 
942 		rv = ddi_prop_update_int64(dev, dip, VDC_SIZE_PROP_NAME, size);
943 		if (rv != DDI_PROP_SUCCESS) {
944 			cmn_err(CE_NOTE, "[%d] Couldn't add '%s' prop of [%ld]",
945 				instance, VDC_SIZE_PROP_NAME, size);
946 			return (EIO);
947 		}
948 
949 		rv = ddi_prop_update_int64(dev, dip, VDC_NBLOCKS_PROP_NAME,
950 			lbtodb(size));
951 		if (rv != DDI_PROP_SUCCESS) {
952 			cmn_err(CE_NOTE, "[%d] Couldn't add '%s' prop [%llu]",
953 				instance, VDC_NBLOCKS_PROP_NAME, lbtodb(size));
954 			return (EIO);
955 		}
956 	}
957 
958 	return (0);
959 }
960 
961 static int
962 vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred)
963 {
964 	_NOTE(ARGUNUSED(cred))
965 
966 	int		instance;
967 	vdc_t		*vdc;
968 
969 	ASSERT(dev != NULL);
970 	instance = SDUNIT(*dev);
971 
972 	if ((otyp != OTYP_CHR) && (otyp != OTYP_BLK))
973 		return (EINVAL);
974 
975 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
976 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
977 		return (ENXIO);
978 	}
979 
980 	DMSG(vdc, 0, "minor = %d flag = %x, otyp = %x\n",
981 			getminor(*dev), flag, otyp);
982 
983 	mutex_enter(&vdc->lock);
984 	vdc->open_count++;
985 	mutex_exit(&vdc->lock);
986 
987 	return (0);
988 }
989 
990 static int
991 vdc_close(dev_t dev, int flag, int otyp, cred_t *cred)
992 {
993 	_NOTE(ARGUNUSED(cred))
994 
995 	int	instance;
996 	vdc_t	*vdc;
997 
998 	instance = SDUNIT(dev);
999 
1000 	if ((otyp != OTYP_CHR) && (otyp != OTYP_BLK))
1001 		return (EINVAL);
1002 
1003 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1004 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1005 		return (ENXIO);
1006 	}
1007 
1008 	DMSG(vdc, 0, "[%d] flag = %x, otyp = %x\n", instance, flag, otyp);
1009 	if (vdc->dkio_flush_pending) {
1010 		DMSG(vdc, 0,
1011 		    "[%d] Cannot detach: %d outstanding DKIO flushes\n",
1012 		    instance, vdc->dkio_flush_pending);
1013 		return (EBUSY);
1014 	}
1015 
1016 	/*
1017 	 * Should not need the mutex here, since the framework should protect
1018 	 * against more opens on this device, but just in case.
1019 	 */
1020 	mutex_enter(&vdc->lock);
1021 	vdc->open_count--;
1022 	mutex_exit(&vdc->lock);
1023 
1024 	return (0);
1025 }
1026 
1027 static int
1028 vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
1029 {
1030 	_NOTE(ARGUNUSED(credp))
1031 	_NOTE(ARGUNUSED(rvalp))
1032 
1033 	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, mode));
1034 }
1035 
1036 static int
1037 vdc_print(dev_t dev, char *str)
1038 {
1039 	cmn_err(CE_NOTE, "vdc%d:  %s", SDUNIT(dev), str);
1040 	return (0);
1041 }
1042 
1043 static int
1044 vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
1045 {
1046 	int	rv;
1047 	size_t	nbytes = nblk * DEV_BSIZE;
1048 	int	instance = SDUNIT(dev);
1049 	vdc_t	*vdc = NULL;
1050 
1051 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1052 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1053 		return (ENXIO);
1054 	}
1055 
1056 	DMSG(vdc, 2, "[%d] dump %ld bytes at block 0x%lx : addr=0x%p\n",
1057 	    instance, nbytes, blkno, (void *)addr);
1058 	rv = vdc_send_request(vdc, VD_OP_BWRITE, addr, nbytes,
1059 	    SDPART(dev), blkno, CB_STRATEGY, 0, VIO_write_dir);
1060 	if (rv) {
1061 		DMSG(vdc, 0, "Failed to do a disk dump (err=%d)\n", rv);
1062 		return (rv);
1063 	}
1064 
1065 	if (ddi_in_panic())
1066 		(void) vdc_drain_response(vdc);
1067 
1068 	DMSG(vdc, 0, "[%d] End\n", instance);
1069 
1070 	return (0);
1071 }
1072 
1073 /* -------------------------------------------------------------------------- */
1074 
1075 /*
1076  * Disk access routines
1077  *
1078  */
1079 
1080 /*
1081  * vdc_strategy()
1082  *
1083  * Return Value:
1084  *	0:	As per strategy(9E), the strategy() function must return 0
1085  *		[ bioerror(9f) sets b_flags to the proper error code ]
1086  */
1087 static int
1088 vdc_strategy(struct buf *buf)
1089 {
1090 	int	rv = -1;
1091 	vdc_t	*vdc = NULL;
1092 	int	instance = SDUNIT(buf->b_edev);
1093 	int	op = (buf->b_flags & B_READ) ? VD_OP_BREAD : VD_OP_BWRITE;
1094 
1095 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1096 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1097 		bioerror(buf, ENXIO);
1098 		biodone(buf);
1099 		return (0);
1100 	}
1101 
1102 	DMSG(vdc, 2, "[%d] %s %ld bytes at block %llx : b_addr=0x%p\n",
1103 	    instance, (buf->b_flags & B_READ) ? "Read" : "Write",
1104 	    buf->b_bcount, buf->b_lblkno, (void *)buf->b_un.b_addr);
1105 	DTRACE_IO2(vstart, buf_t *, buf, vdc_t *, vdc);
1106 
1107 	bp_mapin(buf);
1108 
1109 	rv = vdc_send_request(vdc, op, (caddr_t)buf->b_un.b_addr,
1110 	    buf->b_bcount, SDPART(buf->b_edev), buf->b_lblkno,
1111 	    CB_STRATEGY, buf, (op == VD_OP_BREAD) ? VIO_read_dir :
1112 	    VIO_write_dir);
1113 
1114 	ASSERT(rv == 0 || rv == EINVAL);
1115 
1116 	/*
1117 	 * If the request was successfully sent, the strategy call returns and
1118 	 * the ACK handler calls the bioxxx functions when the vDisk server is
1119 	 * done.
1120 	 */
1121 	if (rv) {
1122 		DMSG(vdc, 0, "Failed to read/write (err=%d)\n", rv);
1123 		bioerror(buf, rv);
1124 		biodone(buf);
1125 	}
1126 
1127 	return (0);
1128 }
1129 
1130 
1131 static int
1132 vdc_read(dev_t dev, struct uio *uio, cred_t *cred)
1133 {
1134 	_NOTE(ARGUNUSED(cred))
1135 
1136 	DMSGX(1, "[%d] Entered", SDUNIT(dev));
1137 	return (physio(vdc_strategy, NULL, dev, B_READ, minphys, uio));
1138 }
1139 
1140 static int
1141 vdc_write(dev_t dev, struct uio *uio, cred_t *cred)
1142 {
1143 	_NOTE(ARGUNUSED(cred))
1144 
1145 	DMSGX(1, "[%d] Entered", SDUNIT(dev));
1146 	return (physio(vdc_strategy, NULL, dev, B_WRITE, minphys, uio));
1147 }
1148 
1149 static int
1150 vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred)
1151 {
1152 	_NOTE(ARGUNUSED(cred))
1153 
1154 	DMSGX(1, "[%d] Entered", SDUNIT(dev));
1155 	return (aphysio(vdc_strategy, anocancel, dev, B_READ, minphys, aio));
1156 }
1157 
1158 static int
1159 vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred)
1160 {
1161 	_NOTE(ARGUNUSED(cred))
1162 
1163 	DMSGX(1, "[%d] Entered", SDUNIT(dev));
1164 	return (aphysio(vdc_strategy, anocancel, dev, B_WRITE, minphys, aio));
1165 }
1166 
1167 
1168 /* -------------------------------------------------------------------------- */
1169 
1170 /*
1171  * Handshake support
1172  */
1173 
1174 
1175 /*
1176  * Function:
1177  *	vdc_init_ver_negotiation()
1178  *
1179  * Description:
1180  *
1181  * Arguments:
1182  *	vdc	- soft state pointer for this instance of the device driver.
1183  *
1184  * Return Code:
1185  *	0	- Success
1186  */
1187 static int
1188 vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver)
1189 {
1190 	vio_ver_msg_t	pkt;
1191 	size_t		msglen = sizeof (pkt);
1192 	int		status = -1;
1193 
1194 	ASSERT(vdc != NULL);
1195 	ASSERT(mutex_owned(&vdc->lock));
1196 
1197 	DMSG(vdc, 0, "[%d] Entered.\n", vdc->instance);
1198 
1199 	/*
1200 	 * set the Session ID to a unique value
1201 	 * (the lower 32 bits of the clock tick)
1202 	 */
1203 	vdc->session_id = ((uint32_t)gettick() & 0xffffffff);
1204 	DMSG(vdc, 0, "[%d] Set SID to 0x%lx\n", vdc->instance, vdc->session_id);
1205 
1206 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1207 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1208 	pkt.tag.vio_subtype_env = VIO_VER_INFO;
1209 	pkt.tag.vio_sid = vdc->session_id;
1210 	pkt.dev_class = VDEV_DISK;
1211 	pkt.ver_major = ver.major;
1212 	pkt.ver_minor = ver.minor;
1213 
1214 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1215 	DMSG(vdc, 0, "[%d] Ver info sent (status = %d)\n",
1216 	    vdc->instance, status);
1217 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1218 		DMSG(vdc, 0, "[%d] Failed to send Ver negotiation info: "
1219 				"id(%lx) rv(%d) size(%ld)",
1220 				vdc->instance, vdc->ldc_handle,
1221 				status, msglen);
1222 		if (msglen != sizeof (vio_ver_msg_t))
1223 			status = ENOMSG;
1224 	}
1225 
1226 	return (status);
1227 }
1228 
1229 /*
1230  * Function:
1231  *	vdc_ver_negotiation()
1232  *
1233  * Description:
1234  *
1235  * Arguments:
1236  *	vdcp	- soft state pointer for this instance of the device driver.
1237  *
1238  * Return Code:
1239  *	0	- Success
1240  */
1241 static int
1242 vdc_ver_negotiation(vdc_t *vdcp)
1243 {
1244 	vio_msg_t vio_msg;
1245 	int status;
1246 
1247 	if (status = vdc_init_ver_negotiation(vdcp, vdc_version[0]))
1248 		return (status);
1249 
1250 	/* release lock and wait for response */
1251 	mutex_exit(&vdcp->lock);
1252 	status = vdc_wait_for_response(vdcp, &vio_msg);
1253 	mutex_enter(&vdcp->lock);
1254 	if (status) {
1255 		DMSG(vdcp, 0,
1256 		    "[%d] Failed waiting for Ver negotiation response, rv(%d)",
1257 		    vdcp->instance, status);
1258 		return (status);
1259 	}
1260 
1261 	/* check type and sub_type ... */
1262 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1263 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1264 		DMSG(vdcp, 0, "[%d] Invalid ver negotiation response\n",
1265 				vdcp->instance);
1266 		return (EPROTO);
1267 	}
1268 
1269 	return (vdc_handle_ver_msg(vdcp, (vio_ver_msg_t *)&vio_msg));
1270 }
1271 
1272 /*
1273  * Function:
1274  *	vdc_init_attr_negotiation()
1275  *
1276  * Description:
1277  *
1278  * Arguments:
1279  *	vdc	- soft state pointer for this instance of the device driver.
1280  *
1281  * Return Code:
1282  *	0	- Success
1283  */
1284 static int
1285 vdc_init_attr_negotiation(vdc_t *vdc)
1286 {
1287 	vd_attr_msg_t	pkt;
1288 	size_t		msglen = sizeof (pkt);
1289 	int		status;
1290 
1291 	ASSERT(vdc != NULL);
1292 	ASSERT(mutex_owned(&vdc->lock));
1293 
1294 	DMSG(vdc, 0, "[%d] entered\n", vdc->instance);
1295 
1296 	/* fill in tag */
1297 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1298 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1299 	pkt.tag.vio_subtype_env = VIO_ATTR_INFO;
1300 	pkt.tag.vio_sid = vdc->session_id;
1301 	/* fill in payload */
1302 	pkt.max_xfer_sz = vdc->max_xfer_sz;
1303 	pkt.vdisk_block_size = vdc->block_size;
1304 	pkt.xfer_mode = VIO_DRING_MODE;
1305 	pkt.operations = 0;	/* server will set bits of valid operations */
1306 	pkt.vdisk_type = 0;	/* server will set to valid device type */
1307 	pkt.vdisk_size = 0;	/* server will set to valid size */
1308 
1309 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1310 	DMSG(vdc, 0, "Attr info sent (status = %d)\n", status);
1311 
1312 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1313 		DMSG(vdc, 0, "[%d] Failed to send Attr negotiation info: "
1314 				"id(%lx) rv(%d) size(%ld)",
1315 				vdc->instance, vdc->ldc_handle,
1316 				status, msglen);
1317 		if (msglen != sizeof (vio_ver_msg_t))
1318 			status = ENOMSG;
1319 	}
1320 
1321 	return (status);
1322 }
1323 
1324 /*
1325  * Function:
1326  *	vdc_attr_negotiation()
1327  *
1328  * Description:
1329  *
1330  * Arguments:
1331  *	vdc	- soft state pointer for this instance of the device driver.
1332  *
1333  * Return Code:
1334  *	0	- Success
1335  */
1336 static int
1337 vdc_attr_negotiation(vdc_t *vdcp)
1338 {
1339 	int status;
1340 	vio_msg_t vio_msg;
1341 
1342 	if (status = vdc_init_attr_negotiation(vdcp))
1343 		return (status);
1344 
1345 	/* release lock and wait for response */
1346 	mutex_exit(&vdcp->lock);
1347 	status = vdc_wait_for_response(vdcp, &vio_msg);
1348 	mutex_enter(&vdcp->lock);
1349 	if (status) {
1350 		DMSG(vdcp, 0,
1351 		    "[%d] Failed waiting for Attr negotiation response, rv(%d)",
1352 		    vdcp->instance, status);
1353 		return (status);
1354 	}
1355 
1356 	/* check type and sub_type ... */
1357 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1358 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1359 		DMSG(vdcp, 0, "[%d] Invalid attr negotiation response\n",
1360 				vdcp->instance);
1361 		return (EPROTO);
1362 	}
1363 
1364 	return (vdc_handle_attr_msg(vdcp, (vd_attr_msg_t *)&vio_msg));
1365 }
1366 
1367 
1368 /*
1369  * Function:
1370  *	vdc_init_dring_negotiate()
1371  *
1372  * Description:
1373  *
1374  * Arguments:
1375  *	vdc	- soft state pointer for this instance of the device driver.
1376  *
1377  * Return Code:
1378  *	0	- Success
1379  */
1380 static int
1381 vdc_init_dring_negotiate(vdc_t *vdc)
1382 {
1383 	vio_dring_reg_msg_t	pkt;
1384 	size_t			msglen = sizeof (pkt);
1385 	int			status = -1;
1386 	int			retry;
1387 	int			nretries = 10;
1388 
1389 	ASSERT(vdc != NULL);
1390 	ASSERT(mutex_owned(&vdc->lock));
1391 
1392 	for (retry = 0; retry < nretries; retry++) {
1393 		status = vdc_init_descriptor_ring(vdc);
1394 		if (status != EAGAIN)
1395 			break;
1396 		drv_usecwait(vdc_min_timeout_ldc);
1397 	}
1398 
1399 	if (status != 0) {
1400 		DMSG(vdc, 0, "[%d] Failed to init DRing (status = %d)\n",
1401 				vdc->instance, status);
1402 		return (status);
1403 	}
1404 
1405 	DMSG(vdc, 0, "[%d] Init of descriptor ring completed (status = %d)\n",
1406 			vdc->instance, status);
1407 
1408 	/* fill in tag */
1409 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1410 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1411 	pkt.tag.vio_subtype_env = VIO_DRING_REG;
1412 	pkt.tag.vio_sid = vdc->session_id;
1413 	/* fill in payload */
1414 	pkt.dring_ident = 0;
1415 	pkt.num_descriptors = vdc->dring_len;
1416 	pkt.descriptor_size = vdc->dring_entry_size;
1417 	pkt.options = (VIO_TX_DRING | VIO_RX_DRING);
1418 	pkt.ncookies = vdc->dring_cookie_count;
1419 	pkt.cookie[0] = vdc->dring_cookie[0];	/* for now just one cookie */
1420 
1421 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1422 	if (status != 0) {
1423 		DMSG(vdc, 0, "[%d] Failed to register DRing (err = %d)",
1424 				vdc->instance, status);
1425 	}
1426 
1427 	return (status);
1428 }
1429 
1430 
1431 /*
1432  * Function:
1433  *	vdc_dring_negotiation()
1434  *
1435  * Description:
1436  *
1437  * Arguments:
1438  *	vdc	- soft state pointer for this instance of the device driver.
1439  *
1440  * Return Code:
1441  *	0	- Success
1442  */
1443 static int
1444 vdc_dring_negotiation(vdc_t *vdcp)
1445 {
1446 	int status;
1447 	vio_msg_t vio_msg;
1448 
1449 	if (status = vdc_init_dring_negotiate(vdcp))
1450 		return (status);
1451 
1452 	/* release lock and wait for response */
1453 	mutex_exit(&vdcp->lock);
1454 	status = vdc_wait_for_response(vdcp, &vio_msg);
1455 	mutex_enter(&vdcp->lock);
1456 	if (status) {
1457 		DMSG(vdcp, 0,
1458 		    "[%d] Failed waiting for Dring negotiation response,"
1459 		    " rv(%d)", vdcp->instance, status);
1460 		return (status);
1461 	}
1462 
1463 	/* check type and sub_type ... */
1464 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1465 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1466 		DMSG(vdcp, 0, "[%d] Invalid Dring negotiation response\n",
1467 				vdcp->instance);
1468 		return (EPROTO);
1469 	}
1470 
1471 	return (vdc_handle_dring_reg_msg(vdcp,
1472 		    (vio_dring_reg_msg_t *)&vio_msg));
1473 }
1474 
1475 
1476 /*
1477  * Function:
1478  *	vdc_send_rdx()
1479  *
1480  * Description:
1481  *
1482  * Arguments:
1483  *	vdc	- soft state pointer for this instance of the device driver.
1484  *
1485  * Return Code:
1486  *	0	- Success
1487  */
1488 static int
1489 vdc_send_rdx(vdc_t *vdcp)
1490 {
1491 	vio_msg_t	msg;
1492 	size_t		msglen = sizeof (vio_msg_t);
1493 	int		status;
1494 
1495 	/*
1496 	 * Send an RDX message to vds to indicate we are ready
1497 	 * to send data
1498 	 */
1499 	msg.tag.vio_msgtype = VIO_TYPE_CTRL;
1500 	msg.tag.vio_subtype = VIO_SUBTYPE_INFO;
1501 	msg.tag.vio_subtype_env = VIO_RDX;
1502 	msg.tag.vio_sid = vdcp->session_id;
1503 	status = vdc_send(vdcp, (caddr_t)&msg, &msglen);
1504 	if (status != 0) {
1505 		DMSG(vdcp, 0, "[%d] Failed to send RDX message (%d)",
1506 		    vdcp->instance, status);
1507 	}
1508 
1509 	return (status);
1510 }
1511 
1512 /*
1513  * Function:
1514  *	vdc_handle_rdx()
1515  *
1516  * Description:
1517  *
1518  * Arguments:
1519  *	vdc	- soft state pointer for this instance of the device driver.
1520  *	msgp	- received msg
1521  *
1522  * Return Code:
1523  *	0	- Success
1524  */
1525 static int
1526 vdc_handle_rdx(vdc_t *vdcp, vio_rdx_msg_t *msgp)
1527 {
1528 	_NOTE(ARGUNUSED(vdcp))
1529 	_NOTE(ARGUNUSED(msgp))
1530 
1531 	ASSERT(msgp->tag.vio_msgtype == VIO_TYPE_CTRL);
1532 	ASSERT(msgp->tag.vio_subtype == VIO_SUBTYPE_ACK);
1533 	ASSERT(msgp->tag.vio_subtype_env == VIO_RDX);
1534 
1535 	DMSG(vdcp, 1, "[%d] Got an RDX msg", vdcp->instance);
1536 
1537 	return (0);
1538 }
1539 
1540 /*
1541  * Function:
1542  *	vdc_rdx_exchange()
1543  *
1544  * Description:
1545  *
1546  * Arguments:
1547  *	vdc	- soft state pointer for this instance of the device driver.
1548  *
1549  * Return Code:
1550  *	0	- Success
1551  */
1552 static int
1553 vdc_rdx_exchange(vdc_t *vdcp)
1554 {
1555 	int status;
1556 	vio_msg_t vio_msg;
1557 
1558 	if (status = vdc_send_rdx(vdcp))
1559 		return (status);
1560 
1561 	/* release lock and wait for response */
1562 	mutex_exit(&vdcp->lock);
1563 	status = vdc_wait_for_response(vdcp, &vio_msg);
1564 	mutex_enter(&vdcp->lock);
1565 	if (status) {
1566 		DMSG(vdcp, 0,
1567 		    "[%d] Failed waiting for RDX response,"
1568 		    " rv(%d)", vdcp->instance, status);
1569 		return (status);
1570 	}
1571 
1572 	/* check type and sub_type ... */
1573 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1574 	    vio_msg.tag.vio_subtype != VIO_SUBTYPE_ACK) {
1575 		DMSG(vdcp, 0, "[%d] Invalid RDX response\n",
1576 				vdcp->instance);
1577 		return (EPROTO);
1578 	}
1579 
1580 	return (vdc_handle_rdx(vdcp, (vio_rdx_msg_t *)&vio_msg));
1581 }
1582 
1583 
1584 /* -------------------------------------------------------------------------- */
1585 
1586 /*
1587  * LDC helper routines
1588  */
1589 
1590 static int
1591 vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp)
1592 {
1593 	int		status;
1594 	boolean_t	q_has_pkts = B_FALSE;
1595 	int		delay_time;
1596 	size_t		len;
1597 
1598 	mutex_enter(&vdc->read_lock);
1599 
1600 	if (vdc->read_state == VDC_READ_IDLE)
1601 		vdc->read_state = VDC_READ_WAITING;
1602 
1603 	while (vdc->read_state != VDC_READ_PENDING) {
1604 
1605 		/* detect if the connection has been reset */
1606 		if (vdc->read_state == VDC_READ_RESET) {
1607 			status = ECONNRESET;
1608 			goto done;
1609 		}
1610 
1611 		cv_wait(&vdc->read_cv, &vdc->read_lock);
1612 	}
1613 
1614 	/*
1615 	 * Until we get a blocking ldc read we have to retry
1616 	 * until the entire LDC message has arrived before
1617 	 * ldc_read() will succeed. Note we also bail out if
1618 	 * the chanel is reset or goes away.
1619 	 */
1620 	delay_time = vdc_ldc_read_init_delay;
1621 loop:
1622 	len = *nbytesp;
1623 	status = ldc_read(vdc->ldc_handle, (caddr_t)msgp, &len);
1624 	switch (status) {
1625 	case EAGAIN:
1626 		delay_time *= 2;
1627 		if (delay_time >= vdc_ldc_read_max_delay)
1628 			delay_time = vdc_ldc_read_max_delay;
1629 		delay(delay_time);
1630 		goto loop;
1631 
1632 	case 0:
1633 		if (len == 0) {
1634 			DMSG(vdc, 0, "[%d] ldc_read returned 0 bytes with "
1635 				"no error!\n", vdc->instance);
1636 			goto loop;
1637 		}
1638 
1639 		*nbytesp = len;
1640 
1641 		/*
1642 		 * If there are pending messages, leave the
1643 		 * read state as pending. Otherwise, set the state
1644 		 * back to idle.
1645 		 */
1646 		status = ldc_chkq(vdc->ldc_handle, &q_has_pkts);
1647 		if (status == 0 && !q_has_pkts)
1648 			vdc->read_state = VDC_READ_IDLE;
1649 
1650 		break;
1651 	default:
1652 		DMSG(vdc, 0, "ldc_read returned %d\n", status);
1653 		break;
1654 	}
1655 
1656 done:
1657 	mutex_exit(&vdc->read_lock);
1658 
1659 	return (status);
1660 }
1661 
1662 
1663 
1664 #ifdef DEBUG
1665 void
1666 vdc_decode_tag(vdc_t *vdcp, vio_msg_t *msg)
1667 {
1668 	char *ms, *ss, *ses;
1669 	switch (msg->tag.vio_msgtype) {
1670 #define	Q(_s)	case _s : ms = #_s; break;
1671 	Q(VIO_TYPE_CTRL)
1672 	Q(VIO_TYPE_DATA)
1673 	Q(VIO_TYPE_ERR)
1674 #undef Q
1675 	default: ms = "unknown"; break;
1676 	}
1677 
1678 	switch (msg->tag.vio_subtype) {
1679 #define	Q(_s)	case _s : ss = #_s; break;
1680 	Q(VIO_SUBTYPE_INFO)
1681 	Q(VIO_SUBTYPE_ACK)
1682 	Q(VIO_SUBTYPE_NACK)
1683 #undef Q
1684 	default: ss = "unknown"; break;
1685 	}
1686 
1687 	switch (msg->tag.vio_subtype_env) {
1688 #define	Q(_s)	case _s : ses = #_s; break;
1689 	Q(VIO_VER_INFO)
1690 	Q(VIO_ATTR_INFO)
1691 	Q(VIO_DRING_REG)
1692 	Q(VIO_DRING_UNREG)
1693 	Q(VIO_RDX)
1694 	Q(VIO_PKT_DATA)
1695 	Q(VIO_DESC_DATA)
1696 	Q(VIO_DRING_DATA)
1697 #undef Q
1698 	default: ses = "unknown"; break;
1699 	}
1700 
1701 	DMSG(vdcp, 3, "(%x/%x/%x) message : (%s/%s/%s)\n",
1702 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
1703 	    msg->tag.vio_subtype_env, ms, ss, ses);
1704 }
1705 #endif
1706 
1707 /*
1708  * Function:
1709  *	vdc_send()
1710  *
1711  * Description:
1712  *	The function encapsulates the call to write a message using LDC.
1713  *	If LDC indicates that the call failed due to the queue being full,
1714  *	we retry the ldc_write() [ up to 'vdc_retries' time ], otherwise
1715  *	we return the error returned by LDC.
1716  *
1717  * Arguments:
1718  *	ldc_handle	- LDC handle for the channel this instance of vdc uses
1719  *	pkt		- address of LDC message to be sent
1720  *	msglen		- the size of the message being sent. When the function
1721  *			  returns, this contains the number of bytes written.
1722  *
1723  * Return Code:
1724  *	0		- Success.
1725  *	EINVAL		- pkt or msglen were NULL
1726  *	ECONNRESET	- The connection was not up.
1727  *	EWOULDBLOCK	- LDC queue is full
1728  *	xxx		- other error codes returned by ldc_write
1729  */
1730 static int
1731 vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen)
1732 {
1733 	size_t	size = 0;
1734 	int	status = 0;
1735 	clock_t delay_ticks;
1736 
1737 	ASSERT(vdc != NULL);
1738 	ASSERT(mutex_owned(&vdc->lock));
1739 	ASSERT(msglen != NULL);
1740 	ASSERT(*msglen != 0);
1741 
1742 #ifdef DEBUG
1743 	vdc_decode_tag(vdc, (vio_msg_t *)pkt);
1744 #endif
1745 	/*
1746 	 * Wait indefinitely to send if channel
1747 	 * is busy, but bail out if we succeed or
1748 	 * if the channel closes or is reset.
1749 	 */
1750 	delay_ticks = vdc_hz_min_ldc_delay;
1751 	do {
1752 		size = *msglen;
1753 		status = ldc_write(vdc->ldc_handle, pkt, &size);
1754 		if (status == EWOULDBLOCK) {
1755 			delay(delay_ticks);
1756 			/* geometric backoff */
1757 			delay_ticks *= 2;
1758 			if (delay_ticks > vdc_hz_max_ldc_delay)
1759 				delay_ticks = vdc_hz_max_ldc_delay;
1760 		}
1761 	} while (status == EWOULDBLOCK);
1762 
1763 	/* if LDC had serious issues --- reset vdc state */
1764 	if (status == EIO || status == ECONNRESET) {
1765 		/* LDC had serious issues --- reset vdc state */
1766 		mutex_enter(&vdc->read_lock);
1767 		if ((vdc->read_state == VDC_READ_WAITING) ||
1768 		    (vdc->read_state == VDC_READ_RESET))
1769 			cv_signal(&vdc->read_cv);
1770 		vdc->read_state = VDC_READ_RESET;
1771 		mutex_exit(&vdc->read_lock);
1772 
1773 		/* wake up any waiters in the reset thread */
1774 		if (vdc->state == VDC_STATE_INIT_WAITING) {
1775 			DMSG(vdc, 0, "[%d] write reset - "
1776 			    "vdc is resetting ..\n", vdc->instance);
1777 			vdc->state = VDC_STATE_RESETTING;
1778 			cv_signal(&vdc->initwait_cv);
1779 		}
1780 
1781 		return (ECONNRESET);
1782 	}
1783 
1784 	/* return the last size written */
1785 	*msglen = size;
1786 
1787 	return (status);
1788 }
1789 
1790 /*
1791  * Function:
1792  *	vdc_get_ldc_id()
1793  *
1794  * Description:
1795  *	This function gets the 'ldc-id' for this particular instance of vdc.
1796  *	The id returned is the guest domain channel endpoint LDC uses for
1797  *	communication with vds.
1798  *
1799  * Arguments:
1800  *	dip	- dev info pointer for this instance of the device driver.
1801  *	ldc_id	- pointer to variable used to return the 'ldc-id' found.
1802  *
1803  * Return Code:
1804  *	0	- Success.
1805  *	ENOENT	- Expected node or property did not exist.
1806  *	ENXIO	- Unexpected error communicating with MD framework
1807  */
1808 static int
1809 vdc_get_ldc_id(dev_info_t *dip, uint64_t *ldc_id)
1810 {
1811 	int		status = ENOENT;
1812 	char		*node_name = NULL;
1813 	md_t		*mdp = NULL;
1814 	int		num_nodes;
1815 	int		num_vdevs;
1816 	int		num_chans;
1817 	mde_cookie_t	rootnode;
1818 	mde_cookie_t	*listp = NULL;
1819 	mde_cookie_t	*chanp = NULL;
1820 	boolean_t	found_inst = B_FALSE;
1821 	int		listsz;
1822 	int		idx;
1823 	uint64_t	md_inst;
1824 	int		obp_inst;
1825 	int		instance = ddi_get_instance(dip);
1826 
1827 	ASSERT(ldc_id != NULL);
1828 	*ldc_id = 0;
1829 
1830 	/*
1831 	 * Get the OBP instance number for comparison with the MD instance
1832 	 *
1833 	 * The "cfg-handle" property of a vdc node in an MD contains the MD's
1834 	 * notion of "instance", or unique identifier, for that node; OBP
1835 	 * stores the value of the "cfg-handle" MD property as the value of
1836 	 * the "reg" property on the node in the device tree it builds from
1837 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
1838 	 * "reg" property value to uniquely identify this device instance.
1839 	 * If the "reg" property cannot be found, the device tree state is
1840 	 * presumably so broken that there is no point in continuing.
1841 	 */
1842 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, OBP_REG)) {
1843 		cmn_err(CE_WARN, "'%s' property does not exist", OBP_REG);
1844 		return (ENOENT);
1845 	}
1846 	obp_inst = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1847 			OBP_REG, -1);
1848 	DMSGX(1, "[%d] OBP inst=%d\n", instance, obp_inst);
1849 
1850 	/*
1851 	 * We now walk the MD nodes and if an instance of a vdc node matches
1852 	 * the instance got from OBP we get the ldc-id property.
1853 	 */
1854 	if ((mdp = md_get_handle()) == NULL) {
1855 		cmn_err(CE_WARN, "unable to init machine description");
1856 		return (ENXIO);
1857 	}
1858 
1859 	num_nodes = md_node_count(mdp);
1860 	ASSERT(num_nodes > 0);
1861 
1862 	listsz = num_nodes * sizeof (mde_cookie_t);
1863 
1864 	/* allocate memory for nodes */
1865 	listp = kmem_zalloc(listsz, KM_SLEEP);
1866 	chanp = kmem_zalloc(listsz, KM_SLEEP);
1867 
1868 	rootnode = md_root_node(mdp);
1869 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
1870 
1871 	/*
1872 	 * Search for all the virtual devices, we will then check to see which
1873 	 * ones are disk nodes.
1874 	 */
1875 	num_vdevs = md_scan_dag(mdp, rootnode,
1876 			md_find_name(mdp, VDC_MD_VDEV_NAME),
1877 			md_find_name(mdp, "fwd"), listp);
1878 
1879 	if (num_vdevs <= 0) {
1880 		cmn_err(CE_NOTE, "No '%s' node found", VDC_MD_VDEV_NAME);
1881 		status = ENOENT;
1882 		goto done;
1883 	}
1884 
1885 	DMSGX(1, "[%d] num_vdevs=%d\n", instance, num_vdevs);
1886 	for (idx = 0; idx < num_vdevs; idx++) {
1887 		status = md_get_prop_str(mdp, listp[idx], "name", &node_name);
1888 		if ((status != 0) || (node_name == NULL)) {
1889 			cmn_err(CE_NOTE, "Unable to get name of node type '%s'"
1890 					": err %d", VDC_MD_VDEV_NAME, status);
1891 			continue;
1892 		}
1893 
1894 		DMSGX(1, "[%d] Found node '%s'\n", instance, node_name);
1895 		if (strcmp(VDC_MD_DISK_NAME, node_name) == 0) {
1896 			status = md_get_prop_val(mdp, listp[idx],
1897 					VDC_MD_CFG_HDL, &md_inst);
1898 			DMSGX(1, "[%d] vdc inst in MD=%lx\n",
1899 			    instance, md_inst);
1900 			if ((status == 0) && (md_inst == obp_inst)) {
1901 				found_inst = B_TRUE;
1902 				break;
1903 			}
1904 		}
1905 	}
1906 
1907 	if (!found_inst) {
1908 		DMSGX(0, "Unable to find correct '%s' node", VDC_MD_DISK_NAME);
1909 		status = ENOENT;
1910 		goto done;
1911 	}
1912 	DMSGX(0, "[%d] MD inst=%lx\n", instance, md_inst);
1913 
1914 	/* get the channels for this node */
1915 	num_chans = md_scan_dag(mdp, listp[idx],
1916 			md_find_name(mdp, VDC_MD_CHAN_NAME),
1917 			md_find_name(mdp, "fwd"), chanp);
1918 
1919 	/* expecting at least one channel */
1920 	if (num_chans <= 0) {
1921 		cmn_err(CE_NOTE, "No '%s' node for '%s' port",
1922 				VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME);
1923 		status = ENOENT;
1924 		goto done;
1925 
1926 	} else if (num_chans != 1) {
1927 		DMSGX(0, "[%d] Expected 1 '%s' node for '%s' port, found %d\n",
1928 			instance, VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME,
1929 			num_chans);
1930 	}
1931 
1932 	/*
1933 	 * We use the first channel found (index 0), irrespective of how
1934 	 * many are there in total.
1935 	 */
1936 	if (md_get_prop_val(mdp, chanp[0], VDC_ID_PROP, ldc_id) != 0) {
1937 		cmn_err(CE_NOTE, "Channel '%s' property not found",
1938 				VDC_ID_PROP);
1939 		status = ENOENT;
1940 	}
1941 
1942 	DMSGX(0, "[%d] LDC id is 0x%lx\n", instance, *ldc_id);
1943 
1944 done:
1945 	if (chanp)
1946 		kmem_free(chanp, listsz);
1947 	if (listp)
1948 		kmem_free(listp, listsz);
1949 
1950 	(void) md_fini_handle(mdp);
1951 
1952 	return (status);
1953 }
1954 
1955 static int
1956 vdc_do_ldc_up(vdc_t *vdc)
1957 {
1958 	int		status;
1959 	ldc_status_t	ldc_state;
1960 
1961 	DMSG(vdc, 0, "[%d] Bringing up channel %lx\n",
1962 	    vdc->instance, vdc->ldc_id);
1963 
1964 	if (vdc->lifecycle == VDC_LC_DETACHING)
1965 		return (EINVAL);
1966 
1967 	if ((status = ldc_up(vdc->ldc_handle)) != 0) {
1968 		switch (status) {
1969 		case ECONNREFUSED:	/* listener not ready at other end */
1970 			DMSG(vdc, 0, "[%d] ldc_up(%lx,...) return %d\n",
1971 					vdc->instance, vdc->ldc_id, status);
1972 			status = 0;
1973 			break;
1974 		default:
1975 			DMSG(vdc, 0, "[%d] Failed to bring up LDC: "
1976 			    "channel=%ld, err=%d", vdc->instance, vdc->ldc_id,
1977 			    status);
1978 			break;
1979 		}
1980 	}
1981 
1982 	if (ldc_status(vdc->ldc_handle, &ldc_state) == 0) {
1983 		vdc->ldc_state = ldc_state;
1984 		if (ldc_state == LDC_UP) {
1985 			DMSG(vdc, 0, "[%d] LDC channel already up\n",
1986 			    vdc->instance);
1987 			vdc->seq_num = 1;
1988 			vdc->seq_num_reply = 0;
1989 		}
1990 	}
1991 
1992 	return (status);
1993 }
1994 
1995 /*
1996  * Function:
1997  *	vdc_terminate_ldc()
1998  *
1999  * Description:
2000  *
2001  * Arguments:
2002  *	vdc	- soft state pointer for this instance of the device driver.
2003  *
2004  * Return Code:
2005  *	None
2006  */
2007 static void
2008 vdc_terminate_ldc(vdc_t *vdc)
2009 {
2010 	int	instance = ddi_get_instance(vdc->dip);
2011 
2012 	ASSERT(vdc != NULL);
2013 	ASSERT(mutex_owned(&vdc->lock));
2014 
2015 	DMSG(vdc, 0, "[%d] initialized=%x\n", instance, vdc->initialized);
2016 
2017 	if (vdc->initialized & VDC_LDC_OPEN) {
2018 		DMSG(vdc, 0, "[%d] ldc_close()\n", instance);
2019 		(void) ldc_close(vdc->ldc_handle);
2020 	}
2021 	if (vdc->initialized & VDC_LDC_CB) {
2022 		DMSG(vdc, 0, "[%d] ldc_unreg_callback()\n", instance);
2023 		(void) ldc_unreg_callback(vdc->ldc_handle);
2024 	}
2025 	if (vdc->initialized & VDC_LDC) {
2026 		DMSG(vdc, 0, "[%d] ldc_fini()\n", instance);
2027 		(void) ldc_fini(vdc->ldc_handle);
2028 		vdc->ldc_handle = NULL;
2029 	}
2030 
2031 	vdc->initialized &= ~(VDC_LDC | VDC_LDC_CB | VDC_LDC_OPEN);
2032 }
2033 
2034 /* -------------------------------------------------------------------------- */
2035 
2036 /*
2037  * Descriptor Ring helper routines
2038  */
2039 
2040 /*
2041  * Function:
2042  *	vdc_init_descriptor_ring()
2043  *
2044  * Description:
2045  *
2046  * Arguments:
2047  *	vdc	- soft state pointer for this instance of the device driver.
2048  *
2049  * Return Code:
2050  *	0	- Success
2051  */
2052 static int
2053 vdc_init_descriptor_ring(vdc_t *vdc)
2054 {
2055 	vd_dring_entry_t	*dep = NULL;	/* DRing Entry pointer */
2056 	int	status = 0;
2057 	int	i;
2058 
2059 	DMSG(vdc, 0, "[%d] initialized=%x\n", vdc->instance, vdc->initialized);
2060 
2061 	ASSERT(vdc != NULL);
2062 	ASSERT(mutex_owned(&vdc->lock));
2063 	ASSERT(vdc->ldc_handle != NULL);
2064 
2065 	/* ensure we have enough room to store max sized block */
2066 	ASSERT(maxphys <= VD_MAX_BLOCK_SIZE);
2067 
2068 	if ((vdc->initialized & VDC_DRING_INIT) == 0) {
2069 		DMSG(vdc, 0, "[%d] ldc_mem_dring_create\n", vdc->instance);
2070 		/*
2071 		 * Calculate the maximum block size we can transmit using one
2072 		 * Descriptor Ring entry from the attributes returned by the
2073 		 * vDisk server. This is subject to a minimum of 'maxphys'
2074 		 * as we do not have the capability to split requests over
2075 		 * multiple DRing entries.
2076 		 */
2077 		if ((vdc->max_xfer_sz * vdc->block_size) < maxphys) {
2078 			DMSG(vdc, 0, "[%d] using minimum DRing size\n",
2079 					vdc->instance);
2080 			vdc->dring_max_cookies = maxphys / PAGESIZE;
2081 		} else {
2082 			vdc->dring_max_cookies =
2083 				(vdc->max_xfer_sz * vdc->block_size) / PAGESIZE;
2084 		}
2085 		vdc->dring_entry_size = (sizeof (vd_dring_entry_t) +
2086 				(sizeof (ldc_mem_cookie_t) *
2087 					(vdc->dring_max_cookies - 1)));
2088 		vdc->dring_len = VD_DRING_LEN;
2089 
2090 		status = ldc_mem_dring_create(vdc->dring_len,
2091 				vdc->dring_entry_size, &vdc->ldc_dring_hdl);
2092 		if ((vdc->ldc_dring_hdl == NULL) || (status != 0)) {
2093 			DMSG(vdc, 0, "[%d] Descriptor ring creation failed",
2094 					vdc->instance);
2095 			return (status);
2096 		}
2097 		vdc->initialized |= VDC_DRING_INIT;
2098 	}
2099 
2100 	if ((vdc->initialized & VDC_DRING_BOUND) == 0) {
2101 		DMSG(vdc, 0, "[%d] ldc_mem_dring_bind\n", vdc->instance);
2102 		vdc->dring_cookie =
2103 			kmem_zalloc(sizeof (ldc_mem_cookie_t), KM_SLEEP);
2104 
2105 		status = ldc_mem_dring_bind(vdc->ldc_handle, vdc->ldc_dring_hdl,
2106 				LDC_SHADOW_MAP|LDC_DIRECT_MAP, LDC_MEM_RW,
2107 				&vdc->dring_cookie[0],
2108 				&vdc->dring_cookie_count);
2109 		if (status != 0) {
2110 			DMSG(vdc, 0, "[%d] Failed to bind descriptor ring "
2111 				"(%lx) to channel (%lx) status=%d\n",
2112 				vdc->instance, vdc->ldc_dring_hdl,
2113 				vdc->ldc_handle, status);
2114 			return (status);
2115 		}
2116 		ASSERT(vdc->dring_cookie_count == 1);
2117 		vdc->initialized |= VDC_DRING_BOUND;
2118 	}
2119 
2120 	status = ldc_mem_dring_info(vdc->ldc_dring_hdl, &vdc->dring_mem_info);
2121 	if (status != 0) {
2122 		DMSG(vdc, 0,
2123 		    "[%d] Failed to get info for descriptor ring (%lx)\n",
2124 		    vdc->instance, vdc->ldc_dring_hdl);
2125 		return (status);
2126 	}
2127 
2128 	if ((vdc->initialized & VDC_DRING_LOCAL) == 0) {
2129 		DMSG(vdc, 0, "[%d] local dring\n", vdc->instance);
2130 
2131 		/* Allocate the local copy of this dring */
2132 		vdc->local_dring =
2133 			kmem_zalloc(vdc->dring_len * sizeof (vdc_local_desc_t),
2134 						KM_SLEEP);
2135 		vdc->initialized |= VDC_DRING_LOCAL;
2136 	}
2137 
2138 	/*
2139 	 * Mark all DRing entries as free and initialize the private
2140 	 * descriptor's memory handles. If any entry is initialized,
2141 	 * we need to free it later so we set the bit in 'initialized'
2142 	 * at the start.
2143 	 */
2144 	vdc->initialized |= VDC_DRING_ENTRY;
2145 	for (i = 0; i < vdc->dring_len; i++) {
2146 		dep = VDC_GET_DRING_ENTRY_PTR(vdc, i);
2147 		dep->hdr.dstate = VIO_DESC_FREE;
2148 
2149 		status = ldc_mem_alloc_handle(vdc->ldc_handle,
2150 				&vdc->local_dring[i].desc_mhdl);
2151 		if (status != 0) {
2152 			DMSG(vdc, 0, "![%d] Failed to alloc mem handle for"
2153 					" descriptor %d", vdc->instance, i);
2154 			return (status);
2155 		}
2156 		vdc->local_dring[i].is_free = B_TRUE;
2157 		vdc->local_dring[i].dep = dep;
2158 	}
2159 
2160 	/* Initialize the starting index */
2161 	vdc->dring_curr_idx = 0;
2162 
2163 	return (status);
2164 }
2165 
2166 /*
2167  * Function:
2168  *	vdc_destroy_descriptor_ring()
2169  *
2170  * Description:
2171  *
2172  * Arguments:
2173  *	vdc	- soft state pointer for this instance of the device driver.
2174  *
2175  * Return Code:
2176  *	None
2177  */
2178 static void
2179 vdc_destroy_descriptor_ring(vdc_t *vdc)
2180 {
2181 	vdc_local_desc_t	*ldep = NULL;	/* Local Dring Entry Pointer */
2182 	ldc_mem_handle_t	mhdl = NULL;
2183 	ldc_mem_info_t		minfo;
2184 	int			status = -1;
2185 	int			i;	/* loop */
2186 
2187 	ASSERT(vdc != NULL);
2188 	ASSERT(mutex_owned(&vdc->lock));
2189 
2190 	DMSG(vdc, 0, "[%d] Entered\n", vdc->instance);
2191 
2192 	if (vdc->initialized & VDC_DRING_ENTRY) {
2193 		DMSG(vdc, 0,
2194 		    "[%d] Removing Local DRing entries\n", vdc->instance);
2195 		for (i = 0; i < vdc->dring_len; i++) {
2196 			ldep = &vdc->local_dring[i];
2197 			mhdl = ldep->desc_mhdl;
2198 
2199 			if (mhdl == NULL)
2200 				continue;
2201 
2202 			if ((status = ldc_mem_info(mhdl, &minfo)) != 0) {
2203 				DMSG(vdc, 0,
2204 				    "ldc_mem_info returned an error: %d\n",
2205 				    status);
2206 
2207 				/*
2208 				 * This must mean that the mem handle
2209 				 * is not valid. Clear it out so that
2210 				 * no one tries to use it.
2211 				 */
2212 				ldep->desc_mhdl = NULL;
2213 				continue;
2214 			}
2215 
2216 			if (minfo.status == LDC_BOUND) {
2217 				(void) ldc_mem_unbind_handle(mhdl);
2218 			}
2219 
2220 			(void) ldc_mem_free_handle(mhdl);
2221 
2222 			ldep->desc_mhdl = NULL;
2223 		}
2224 		vdc->initialized &= ~VDC_DRING_ENTRY;
2225 	}
2226 
2227 	if (vdc->initialized & VDC_DRING_LOCAL) {
2228 		DMSG(vdc, 0, "[%d] Freeing Local DRing\n", vdc->instance);
2229 		kmem_free(vdc->local_dring,
2230 				vdc->dring_len * sizeof (vdc_local_desc_t));
2231 		vdc->initialized &= ~VDC_DRING_LOCAL;
2232 	}
2233 
2234 	if (vdc->initialized & VDC_DRING_BOUND) {
2235 		DMSG(vdc, 0, "[%d] Unbinding DRing\n", vdc->instance);
2236 		status = ldc_mem_dring_unbind(vdc->ldc_dring_hdl);
2237 		if (status == 0) {
2238 			vdc->initialized &= ~VDC_DRING_BOUND;
2239 		} else {
2240 			DMSG(vdc, 0, "[%d] Error %d unbinding DRing %lx",
2241 				vdc->instance, status, vdc->ldc_dring_hdl);
2242 		}
2243 		kmem_free(vdc->dring_cookie, sizeof (ldc_mem_cookie_t));
2244 	}
2245 
2246 	if (vdc->initialized & VDC_DRING_INIT) {
2247 		DMSG(vdc, 0, "[%d] Destroying DRing\n", vdc->instance);
2248 		status = ldc_mem_dring_destroy(vdc->ldc_dring_hdl);
2249 		if (status == 0) {
2250 			vdc->ldc_dring_hdl = NULL;
2251 			bzero(&vdc->dring_mem_info, sizeof (ldc_mem_info_t));
2252 			vdc->initialized &= ~VDC_DRING_INIT;
2253 		} else {
2254 			DMSG(vdc, 0, "[%d] Error %d destroying DRing (%lx)",
2255 				vdc->instance, status, vdc->ldc_dring_hdl);
2256 		}
2257 	}
2258 }
2259 
2260 /*
2261  * Function:
2262  *	vdc_map_to_shared_ring()
2263  *
2264  * Description:
2265  *	Copy contents of the local descriptor to the shared
2266  *	memory descriptor.
2267  *
2268  * Arguments:
2269  *	vdcp	- soft state pointer for this instance of the device driver.
2270  *	idx	- descriptor ring index
2271  *
2272  * Return Code:
2273  *	None
2274  */
2275 static int
2276 vdc_map_to_shared_dring(vdc_t *vdcp, int idx)
2277 {
2278 	vdc_local_desc_t	*ldep;
2279 	vd_dring_entry_t	*dep;
2280 	int			rv;
2281 
2282 	ldep = &(vdcp->local_dring[idx]);
2283 
2284 	/* for now leave in the old pop_mem_hdl stuff */
2285 	if (ldep->nbytes > 0) {
2286 		rv = vdc_populate_mem_hdl(vdcp, ldep);
2287 		if (rv) {
2288 			DMSG(vdcp, 0, "[%d] Cannot populate mem handle\n",
2289 			    vdcp->instance);
2290 			return (rv);
2291 		}
2292 	}
2293 
2294 	/*
2295 	 * fill in the data details into the DRing
2296 	 */
2297 	dep = ldep->dep;
2298 	ASSERT(dep != NULL);
2299 
2300 	dep->payload.req_id = VDC_GET_NEXT_REQ_ID(vdcp);
2301 	dep->payload.operation = ldep->operation;
2302 	dep->payload.addr = ldep->offset;
2303 	dep->payload.nbytes = ldep->nbytes;
2304 	dep->payload.status = -1;	/* vds will set valid value */
2305 	dep->payload.slice = ldep->slice;
2306 	dep->hdr.dstate = VIO_DESC_READY;
2307 	dep->hdr.ack = 1;		/* request an ACK for every message */
2308 
2309 	return (0);
2310 }
2311 
2312 /*
2313  * Function:
2314  *	vdc_send_request
2315  *
2316  * Description:
2317  *	This routine writes the data to be transmitted to vds into the
2318  *	descriptor, notifies vds that the ring has been updated and
2319  *	then waits for the request to be processed.
2320  *
2321  * Arguments:
2322  *	vdcp	  - the soft state pointer
2323  *	operation - operation we want vds to perform (VD_OP_XXX)
2324  *	addr	  - address of data buf to be read/written.
2325  *	nbytes	  - number of bytes to read/write
2326  *	slice	  - the disk slice this request is for
2327  *	offset	  - relative disk offset
2328  *	cb_type   - type of call - STRATEGY or SYNC
2329  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2330  *			. mode for ioctl(9e)
2331  *			. LP64 diskaddr_t (block I/O)
2332  *	dir	  - direction of operation (READ/WRITE/BOTH)
2333  *
2334  * Return Codes:
2335  *	0
2336  *	EAGAIN
2337  *		EFAULT
2338  *		ENXIO
2339  *		EIO
2340  */
2341 static int
2342 vdc_send_request(vdc_t *vdcp, int operation, caddr_t addr,
2343     size_t nbytes, int slice, diskaddr_t offset, int cb_type,
2344     void *cb_arg, vio_desc_direction_t dir)
2345 {
2346 	ASSERT(vdcp != NULL);
2347 	ASSERT(slice < V_NUMPAR);
2348 
2349 	mutex_enter(&vdcp->lock);
2350 
2351 	do {
2352 		while (vdcp->state != VDC_STATE_RUNNING)
2353 			cv_wait(&vdcp->running_cv, &vdcp->lock);
2354 
2355 	} while (vdc_populate_descriptor(vdcp, operation, addr,
2356 	    nbytes, slice, offset, cb_type, cb_arg, dir));
2357 
2358 	mutex_exit(&vdcp->lock);
2359 	return (0);
2360 }
2361 
2362 
2363 /*
2364  * Function:
2365  *	vdc_populate_descriptor
2366  *
2367  * Description:
2368  *	This routine writes the data to be transmitted to vds into the
2369  *	descriptor, notifies vds that the ring has been updated and
2370  *	then waits for the request to be processed.
2371  *
2372  * Arguments:
2373  *	vdcp	  - the soft state pointer
2374  *	operation - operation we want vds to perform (VD_OP_XXX)
2375  *	addr	  - address of data buf to be read/written.
2376  *	nbytes	  - number of bytes to read/write
2377  *	slice	  - the disk slice this request is for
2378  *	offset	  - relative disk offset
2379  *	cb_type   - type of call - STRATEGY or SYNC
2380  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2381  *			. mode for ioctl(9e)
2382  *			. LP64 diskaddr_t (block I/O)
2383  *	dir	  - direction of operation (READ/WRITE/BOTH)
2384  *
2385  * Return Codes:
2386  *	0
2387  *	EAGAIN
2388  *		EFAULT
2389  *		ENXIO
2390  *		EIO
2391  */
2392 static int
2393 vdc_populate_descriptor(vdc_t *vdcp, int operation, caddr_t addr,
2394     size_t nbytes, int slice, diskaddr_t offset, int cb_type,
2395     void *cb_arg, vio_desc_direction_t dir)
2396 {
2397 	vdc_local_desc_t	*local_dep = NULL; /* Local Dring Pointer */
2398 	int			idx;		/* Index of DRing entry used */
2399 	int			next_idx;
2400 	vio_dring_msg_t		dmsg;
2401 	size_t			msglen;
2402 	int			rv;
2403 
2404 	ASSERT(MUTEX_HELD(&vdcp->lock));
2405 	vdcp->threads_pending++;
2406 loop:
2407 	DMSG(vdcp, 2, ": dring_curr_idx = %d\n", vdcp->dring_curr_idx);
2408 
2409 	/* Get next available D-Ring entry */
2410 	idx = vdcp->dring_curr_idx;
2411 	local_dep = &(vdcp->local_dring[idx]);
2412 
2413 	if (!local_dep->is_free) {
2414 		DMSG(vdcp, 2, "[%d]: dring full - waiting for space\n",
2415 		    vdcp->instance);
2416 		cv_wait(&vdcp->dring_free_cv, &vdcp->lock);
2417 		if (vdcp->state == VDC_STATE_RUNNING ||
2418 		    vdcp->state == VDC_STATE_HANDLE_PENDING) {
2419 			goto loop;
2420 		}
2421 		vdcp->threads_pending--;
2422 		return (ECONNRESET);
2423 	}
2424 
2425 	next_idx = idx + 1;
2426 	if (next_idx >= vdcp->dring_len)
2427 		next_idx = 0;
2428 	vdcp->dring_curr_idx = next_idx;
2429 
2430 	ASSERT(local_dep->is_free);
2431 
2432 	local_dep->operation = operation;
2433 	local_dep->addr = addr;
2434 	local_dep->nbytes = nbytes;
2435 	local_dep->slice = slice;
2436 	local_dep->offset = offset;
2437 	local_dep->cb_type = cb_type;
2438 	local_dep->cb_arg = cb_arg;
2439 	local_dep->dir = dir;
2440 
2441 	local_dep->is_free = B_FALSE;
2442 
2443 	rv = vdc_map_to_shared_dring(vdcp, idx);
2444 	if (rv) {
2445 		DMSG(vdcp, 0, "[%d]: cannot bind memory - waiting ..\n",
2446 		    vdcp->instance);
2447 		/* free the descriptor */
2448 		local_dep->is_free = B_TRUE;
2449 		vdcp->dring_curr_idx = idx;
2450 		cv_wait(&vdcp->membind_cv, &vdcp->lock);
2451 		if (vdcp->state == VDC_STATE_RUNNING ||
2452 		    vdcp->state == VDC_STATE_HANDLE_PENDING) {
2453 			goto loop;
2454 		}
2455 		vdcp->threads_pending--;
2456 		return (ECONNRESET);
2457 	}
2458 
2459 	/*
2460 	 * Send a msg with the DRing details to vds
2461 	 */
2462 	VIO_INIT_DRING_DATA_TAG(dmsg);
2463 	VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdcp);
2464 	dmsg.dring_ident = vdcp->dring_ident;
2465 	dmsg.start_idx = idx;
2466 	dmsg.end_idx = idx;
2467 	vdcp->seq_num++;
2468 
2469 	DTRACE_IO2(send, vio_dring_msg_t *, &dmsg, vdc_t *, vdcp);
2470 
2471 	DMSG(vdcp, 2, "ident=0x%lx, st=%u, end=%u, seq=%ld\n",
2472 	    vdcp->dring_ident, dmsg.start_idx, dmsg.end_idx, dmsg.seq_num);
2473 
2474 	/*
2475 	 * note we're still holding the lock here to
2476 	 * make sure the message goes out in order !!!...
2477 	 */
2478 	msglen = sizeof (dmsg);
2479 	rv = vdc_send(vdcp, (caddr_t)&dmsg, &msglen);
2480 	switch (rv) {
2481 	case ECONNRESET:
2482 		/*
2483 		 * vdc_send initiates the reset on failure.
2484 		 * Since the transaction has already been put
2485 		 * on the local dring, it will automatically get
2486 		 * retried when the channel is reset. Given that,
2487 		 * it is ok to just return success even though the
2488 		 * send failed.
2489 		 */
2490 		rv = 0;
2491 		break;
2492 
2493 	case 0: /* EOK */
2494 		DMSG(vdcp, 1, "sent via LDC: rv=%d\n", rv);
2495 		break;
2496 
2497 	default:
2498 		goto cleanup_and_exit;
2499 	}
2500 
2501 	vdcp->threads_pending--;
2502 	return (rv);
2503 
2504 cleanup_and_exit:
2505 	DMSG(vdcp, 0, "unexpected error, rv=%d\n", rv);
2506 	return (ENXIO);
2507 }
2508 
2509 /*
2510  * Function:
2511  *	vdc_do_sync_op
2512  *
2513  * Description:
2514  * 	Wrapper around vdc_populate_descriptor that blocks until the
2515  * 	response to the message is available.
2516  *
2517  * Arguments:
2518  *	vdcp	  - the soft state pointer
2519  *	operation - operation we want vds to perform (VD_OP_XXX)
2520  *	addr	  - address of data buf to be read/written.
2521  *	nbytes	  - number of bytes to read/write
2522  *	slice	  - the disk slice this request is for
2523  *	offset	  - relative disk offset
2524  *	cb_type   - type of call - STRATEGY or SYNC
2525  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2526  *			. mode for ioctl(9e)
2527  *			. LP64 diskaddr_t (block I/O)
2528  *	dir	  - direction of operation (READ/WRITE/BOTH)
2529  *
2530  * Return Codes:
2531  *	0
2532  *	EAGAIN
2533  *		EFAULT
2534  *		ENXIO
2535  *		EIO
2536  */
2537 static int
2538 vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr, size_t nbytes,
2539     int slice, diskaddr_t offset, int cb_type, void *cb_arg,
2540     vio_desc_direction_t dir)
2541 {
2542 	int status;
2543 
2544 	ASSERT(cb_type == CB_SYNC);
2545 
2546 	/*
2547 	 * Grab the lock, if blocked wait until the server
2548 	 * response causes us to wake up again.
2549 	 */
2550 	mutex_enter(&vdcp->lock);
2551 	vdcp->sync_op_cnt++;
2552 	while (vdcp->sync_op_blocked && vdcp->state != VDC_STATE_DETACH)
2553 		cv_wait(&vdcp->sync_blocked_cv, &vdcp->lock);
2554 
2555 	if (vdcp->state == VDC_STATE_DETACH) {
2556 		cv_broadcast(&vdcp->sync_blocked_cv);
2557 		vdcp->sync_op_cnt--;
2558 		mutex_exit(&vdcp->lock);
2559 		return (ENXIO);
2560 	}
2561 
2562 	/* now block anyone other thread entering after us */
2563 	vdcp->sync_op_blocked = B_TRUE;
2564 	vdcp->sync_op_pending = B_TRUE;
2565 	mutex_exit(&vdcp->lock);
2566 
2567 	/*
2568 	 * No need to check return value - will return error only
2569 	 * in the DETACH case and we can fall through
2570 	 */
2571 	(void) vdc_send_request(vdcp, operation, addr,
2572 	    nbytes, slice, offset, cb_type, cb_arg, dir);
2573 
2574 	/*
2575 	 * block until our transaction completes.
2576 	 * Also anyone else waiting also gets to go next.
2577 	 */
2578 	mutex_enter(&vdcp->lock);
2579 	while (vdcp->sync_op_pending && vdcp->state != VDC_STATE_DETACH)
2580 		cv_wait(&vdcp->sync_pending_cv, &vdcp->lock);
2581 
2582 	DMSG(vdcp, 2, ": operation returned %d\n", vdcp->sync_op_status);
2583 	if (vdcp->state == VDC_STATE_DETACH)
2584 		status = ENXIO;
2585 	else
2586 		status = vdcp->sync_op_status;
2587 	vdcp->sync_op_status = 0;
2588 	vdcp->sync_op_blocked = B_FALSE;
2589 	vdcp->sync_op_cnt--;
2590 
2591 	/* signal the next waiting thread */
2592 	cv_signal(&vdcp->sync_blocked_cv);
2593 	mutex_exit(&vdcp->lock);
2594 
2595 	return (status);
2596 }
2597 
2598 
2599 /*
2600  * Function:
2601  *	vdc_drain_response()
2602  *
2603  * Description:
2604  * 	When a guest is panicking, the completion of requests needs to be
2605  * 	handled differently because interrupts are disabled and vdc
2606  * 	will not get messages. We have to poll for the messages instead.
2607  *
2608  * Arguments:
2609  *	vdc	- soft state pointer for this instance of the device driver.
2610  *
2611  * Return Code:
2612  *	0	- Success
2613  */
2614 static int
2615 vdc_drain_response(vdc_t *vdc)
2616 {
2617 	int 			rv, idx, retries;
2618 	size_t			msglen;
2619 	vdc_local_desc_t 	*ldep = NULL;	/* Local Dring Entry Pointer */
2620 	vio_dring_msg_t		dmsg;
2621 
2622 	mutex_enter(&vdc->lock);
2623 
2624 	retries = 0;
2625 	for (;;) {
2626 		msglen = sizeof (dmsg);
2627 		rv = ldc_read(vdc->ldc_handle, (caddr_t)&dmsg, &msglen);
2628 		if (rv) {
2629 			rv = EINVAL;
2630 			break;
2631 		}
2632 
2633 		/*
2634 		 * if there are no packets wait and check again
2635 		 */
2636 		if ((rv == 0) && (msglen == 0)) {
2637 			if (retries++ > vdc_dump_retries) {
2638 				rv = EAGAIN;
2639 				break;
2640 			}
2641 
2642 			drv_usecwait(vdc_usec_timeout_dump);
2643 			continue;
2644 		}
2645 
2646 		/*
2647 		 * Ignore all messages that are not ACKs/NACKs to
2648 		 * DRing requests.
2649 		 */
2650 		if ((dmsg.tag.vio_msgtype != VIO_TYPE_DATA) ||
2651 		    (dmsg.tag.vio_subtype_env != VIO_DRING_DATA)) {
2652 			DMSG(vdc, 0, "discard pkt: type=%d sub=%d env=%d\n",
2653 			    dmsg.tag.vio_msgtype,
2654 			    dmsg.tag.vio_subtype,
2655 			    dmsg.tag.vio_subtype_env);
2656 			continue;
2657 		}
2658 
2659 		/*
2660 		 * set the appropriate return value for the current request.
2661 		 */
2662 		switch (dmsg.tag.vio_subtype) {
2663 		case VIO_SUBTYPE_ACK:
2664 			rv = 0;
2665 			break;
2666 		case VIO_SUBTYPE_NACK:
2667 			rv = EAGAIN;
2668 			break;
2669 		default:
2670 			continue;
2671 		}
2672 
2673 		idx = dmsg.start_idx;
2674 		if (idx >= vdc->dring_len) {
2675 			DMSG(vdc, 0, "[%d] Bogus ack data : start %d\n",
2676 			    vdc->instance, idx);
2677 			continue;
2678 		}
2679 		ldep = &vdc->local_dring[idx];
2680 		if (ldep->dep->hdr.dstate != VIO_DESC_DONE) {
2681 			DMSG(vdc, 0, "[%d] Entry @ %d - state !DONE %d\n",
2682 			    vdc->instance, idx, ldep->dep->hdr.dstate);
2683 			continue;
2684 		}
2685 
2686 		DMSG(vdc, 1, "[%d] Depopulating idx=%d state=%d\n",
2687 		    vdc->instance, idx, ldep->dep->hdr.dstate);
2688 		rv = vdc_depopulate_descriptor(vdc, idx);
2689 		if (rv) {
2690 			DMSG(vdc, 0,
2691 			    "[%d] Entry @ %d - depopulate failed ..\n",
2692 			    vdc->instance, idx);
2693 		}
2694 
2695 		/* if this is the last descriptor - break out of loop */
2696 		if ((idx + 1) % vdc->dring_len == vdc->dring_curr_idx)
2697 			break;
2698 	}
2699 
2700 	mutex_exit(&vdc->lock);
2701 	DMSG(vdc, 0, "End idx=%d\n", idx);
2702 
2703 	return (rv);
2704 }
2705 
2706 
2707 /*
2708  * Function:
2709  *	vdc_depopulate_descriptor()
2710  *
2711  * Description:
2712  *
2713  * Arguments:
2714  *	vdc	- soft state pointer for this instance of the device driver.
2715  *	idx	- Index of the Descriptor Ring entry being modified
2716  *
2717  * Return Code:
2718  *	0	- Success
2719  */
2720 static int
2721 vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx)
2722 {
2723 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
2724 	vdc_local_desc_t *ldep = NULL;		/* Local Dring Entry Pointer */
2725 	int		status = ENXIO;
2726 	int		operation;
2727 	int		rv = 0;
2728 
2729 	ASSERT(vdc != NULL);
2730 	ASSERT(idx < vdc->dring_len);
2731 	ldep = &vdc->local_dring[idx];
2732 	ASSERT(ldep != NULL);
2733 	ASSERT(MUTEX_HELD(&vdc->lock));
2734 
2735 	DMSG(vdc, 2, ": idx = %d\n", idx);
2736 	dep = ldep->dep;
2737 	ASSERT(dep != NULL);
2738 	ASSERT((dep->hdr.dstate == VIO_DESC_DONE) ||
2739 			(dep->payload.status == ECANCELED));
2740 
2741 	VDC_MARK_DRING_ENTRY_FREE(vdc, idx);
2742 
2743 	ldep->is_free = B_TRUE;
2744 	DMSG(vdc, 2, ": is_free = %d\n", ldep->is_free);
2745 	status = dep->payload.status;
2746 	operation = dep->payload.operation;
2747 
2748 	/* the DKIO FLUSH operation never bind handles so we can return now */
2749 	if (operation == VD_OP_FLUSH)
2750 		return (status);
2751 
2752 	/*
2753 	 * If the upper layer passed in a misaligned address we copied the
2754 	 * data into an aligned buffer before sending it to LDC - we now
2755 	 * copy it back to the original buffer.
2756 	 */
2757 	if (ldep->align_addr) {
2758 		ASSERT(ldep->addr != NULL);
2759 		ASSERT(dep->payload.nbytes > 0);
2760 
2761 		bcopy(ldep->align_addr, ldep->addr, dep->payload.nbytes);
2762 		kmem_free(ldep->align_addr,
2763 			sizeof (caddr_t) * P2ROUNDUP(dep->payload.nbytes, 8));
2764 		ldep->align_addr = NULL;
2765 	}
2766 
2767 	rv = ldc_mem_unbind_handle(ldep->desc_mhdl);
2768 	if (rv != 0) {
2769 		DMSG(vdc, 0, "?[%d] unbind mhdl 0x%lx @ idx %d failed (%d)",
2770 				vdc->instance, ldep->desc_mhdl, idx, rv);
2771 		/*
2772 		 * The error returned by the vDisk server is more informative
2773 		 * and thus has a higher priority but if it isn't set we ensure
2774 		 * that this function returns an error.
2775 		 */
2776 		if (status == 0)
2777 			status = EINVAL;
2778 	}
2779 
2780 	cv_signal(&vdc->membind_cv);
2781 	cv_signal(&vdc->dring_free_cv);
2782 
2783 	return (status);
2784 }
2785 
2786 /*
2787  * Function:
2788  *	vdc_populate_mem_hdl()
2789  *
2790  * Description:
2791  *
2792  * Arguments:
2793  *	vdc	- soft state pointer for this instance of the device driver.
2794  *	idx	- Index of the Descriptor Ring entry being modified
2795  *	addr	- virtual address being mapped in
2796  *	nybtes	- number of bytes in 'addr'
2797  *	operation - the vDisk operation being performed (VD_OP_xxx)
2798  *
2799  * Return Code:
2800  *	0	- Success
2801  */
2802 static int
2803 vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep)
2804 {
2805 	vd_dring_entry_t	*dep = NULL;
2806 	ldc_mem_handle_t	mhdl;
2807 	caddr_t			vaddr;
2808 	size_t			nbytes;
2809 	uint8_t			perm = LDC_MEM_RW;
2810 	uint8_t			maptype;
2811 	int			rv = 0;
2812 	int			i;
2813 
2814 	ASSERT(vdcp != NULL);
2815 
2816 	dep = ldep->dep;
2817 	mhdl = ldep->desc_mhdl;
2818 
2819 	switch (ldep->dir) {
2820 	case VIO_read_dir:
2821 		perm = LDC_MEM_W;
2822 		break;
2823 
2824 	case VIO_write_dir:
2825 		perm = LDC_MEM_R;
2826 		break;
2827 
2828 	case VIO_both_dir:
2829 		perm = LDC_MEM_RW;
2830 		break;
2831 
2832 	default:
2833 		ASSERT(0);	/* catch bad programming in vdc */
2834 	}
2835 
2836 	/*
2837 	 * LDC expects any addresses passed in to be 8-byte aligned. We need
2838 	 * to copy the contents of any misaligned buffers to a newly allocated
2839 	 * buffer and bind it instead (and copy the the contents back to the
2840 	 * original buffer passed in when depopulating the descriptor)
2841 	 */
2842 	vaddr = ldep->addr;
2843 	nbytes = ldep->nbytes;
2844 	if (((uint64_t)vaddr & 0x7) != 0) {
2845 		ASSERT(ldep->align_addr == NULL);
2846 		ldep->align_addr =
2847 			kmem_alloc(sizeof (caddr_t) *
2848 				P2ROUNDUP(nbytes, 8), KM_SLEEP);
2849 		DMSG(vdcp, 0, "[%d] Misaligned address %p reallocating "
2850 		    "(buf=%p nb=%ld op=%d)\n",
2851 		    vdcp->instance, (void *)vaddr, (void *)ldep->align_addr,
2852 		    nbytes, ldep->operation);
2853 		if (perm != LDC_MEM_W)
2854 			bcopy(vaddr, ldep->align_addr, nbytes);
2855 		vaddr = ldep->align_addr;
2856 	}
2857 
2858 	maptype = LDC_IO_MAP|LDC_SHADOW_MAP|LDC_DIRECT_MAP;
2859 	rv = ldc_mem_bind_handle(mhdl, vaddr, P2ROUNDUP(nbytes, 8),
2860 		maptype, perm, &dep->payload.cookie[0],
2861 		&dep->payload.ncookies);
2862 	DMSG(vdcp, 2, "[%d] bound mem handle; ncookies=%d\n",
2863 			vdcp->instance, dep->payload.ncookies);
2864 	if (rv != 0) {
2865 		DMSG(vdcp, 0, "[%d] Failed to bind LDC memory handle "
2866 		    "(mhdl=%p, buf=%p, err=%d)\n",
2867 		    vdcp->instance, (void *)mhdl, (void *)vaddr, rv);
2868 		if (ldep->align_addr) {
2869 			kmem_free(ldep->align_addr,
2870 				sizeof (caddr_t) * P2ROUNDUP(nbytes, 8));
2871 			ldep->align_addr = NULL;
2872 		}
2873 		return (EAGAIN);
2874 	}
2875 
2876 	/*
2877 	 * Get the other cookies (if any).
2878 	 */
2879 	for (i = 1; i < dep->payload.ncookies; i++) {
2880 		rv = ldc_mem_nextcookie(mhdl, &dep->payload.cookie[i]);
2881 		if (rv != 0) {
2882 			(void) ldc_mem_unbind_handle(mhdl);
2883 			DMSG(vdcp, 0, "?[%d] Failed to get next cookie "
2884 					"(mhdl=%lx cnum=%d), err=%d",
2885 					vdcp->instance, mhdl, i, rv);
2886 			if (ldep->align_addr) {
2887 				kmem_free(ldep->align_addr,
2888 					sizeof (caddr_t) * dep->payload.nbytes);
2889 				ldep->align_addr = NULL;
2890 			}
2891 			return (EAGAIN);
2892 		}
2893 	}
2894 
2895 	return (rv);
2896 }
2897 
2898 /*
2899  * Interrupt handlers for messages from LDC
2900  */
2901 
2902 /*
2903  * Function:
2904  *	vdc_handle_cb()
2905  *
2906  * Description:
2907  *
2908  * Arguments:
2909  *	event	- Type of event (LDC_EVT_xxx) that triggered the callback
2910  *	arg	- soft state pointer for this instance of the device driver.
2911  *
2912  * Return Code:
2913  *	0	- Success
2914  */
2915 static uint_t
2916 vdc_handle_cb(uint64_t event, caddr_t arg)
2917 {
2918 	ldc_status_t	ldc_state;
2919 	int		rv = 0;
2920 
2921 	vdc_t	*vdc = (vdc_t *)(void *)arg;
2922 
2923 	ASSERT(vdc != NULL);
2924 
2925 	DMSG(vdc, 1, "evt=%lx seqID=%ld\n", event, vdc->seq_num);
2926 
2927 	/*
2928 	 * Depending on the type of event that triggered this callback,
2929 	 * we modify the handshake state or read the data.
2930 	 *
2931 	 * NOTE: not done as a switch() as event could be triggered by
2932 	 * a state change and a read request. Also the ordering	of the
2933 	 * check for the event types is deliberate.
2934 	 */
2935 	if (event & LDC_EVT_UP) {
2936 		DMSG(vdc, 0, "[%d] Received LDC_EVT_UP\n", vdc->instance);
2937 
2938 		mutex_enter(&vdc->lock);
2939 
2940 		/* get LDC state */
2941 		rv = ldc_status(vdc->ldc_handle, &ldc_state);
2942 		if (rv != 0) {
2943 			DMSG(vdc, 0, "[%d] Couldn't get LDC status %d",
2944 			    vdc->instance, rv);
2945 			return (LDC_SUCCESS);
2946 		}
2947 		if (vdc->ldc_state != LDC_UP && ldc_state == LDC_UP) {
2948 			/*
2949 			 * Reset the transaction sequence numbers when
2950 			 * LDC comes up. We then kick off the handshake
2951 			 * negotiation with the vDisk server.
2952 			 */
2953 			vdc->seq_num = 1;
2954 			vdc->seq_num_reply = 0;
2955 			vdc->ldc_state = ldc_state;
2956 			cv_signal(&vdc->initwait_cv);
2957 		}
2958 
2959 		mutex_exit(&vdc->lock);
2960 	}
2961 
2962 	if (event & LDC_EVT_READ) {
2963 		DMSG(vdc, 0, "[%d] Received LDC_EVT_READ\n", vdc->instance);
2964 		mutex_enter(&vdc->read_lock);
2965 		cv_signal(&vdc->read_cv);
2966 		vdc->read_state = VDC_READ_PENDING;
2967 		mutex_exit(&vdc->read_lock);
2968 
2969 		/* that's all we have to do - no need to handle DOWN/RESET */
2970 		return (LDC_SUCCESS);
2971 	}
2972 
2973 	if (event & (LDC_EVT_RESET|LDC_EVT_DOWN)) {
2974 
2975 		DMSG(vdc, 0, "[%d] Received LDC RESET event\n", vdc->instance);
2976 
2977 		mutex_enter(&vdc->lock);
2978 		/*
2979 		 * Need to wake up any readers so they will
2980 		 * detect that a reset has occurred.
2981 		 */
2982 		mutex_enter(&vdc->read_lock);
2983 		if ((vdc->read_state == VDC_READ_WAITING) ||
2984 		    (vdc->read_state == VDC_READ_RESET))
2985 			cv_signal(&vdc->read_cv);
2986 		vdc->read_state = VDC_READ_RESET;
2987 		mutex_exit(&vdc->read_lock);
2988 
2989 		/* wake up any threads waiting for connection to come up */
2990 		if (vdc->state == VDC_STATE_INIT_WAITING) {
2991 			vdc->state = VDC_STATE_RESETTING;
2992 			cv_signal(&vdc->initwait_cv);
2993 		}
2994 
2995 		mutex_exit(&vdc->lock);
2996 	}
2997 
2998 	if (event & ~(LDC_EVT_UP | LDC_EVT_RESET | LDC_EVT_DOWN | LDC_EVT_READ))
2999 		DMSG(vdc, 0, "![%d] Unexpected LDC event (%lx) received",
3000 				vdc->instance, event);
3001 
3002 	return (LDC_SUCCESS);
3003 }
3004 
3005 /*
3006  * Function:
3007  *	vdc_wait_for_response()
3008  *
3009  * Description:
3010  *	Block waiting for a response from the server. If there is
3011  *	no data the thread block on the read_cv that is signalled
3012  *	by the callback when an EVT_READ occurs.
3013  *
3014  * Arguments:
3015  *	vdcp	- soft state pointer for this instance of the device driver.
3016  *
3017  * Return Code:
3018  *	0	- Success
3019  */
3020 static int
3021 vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp)
3022 {
3023 	size_t		nbytes = sizeof (*msgp);
3024 	int		status;
3025 
3026 	ASSERT(vdcp != NULL);
3027 
3028 	DMSG(vdcp, 1, "[%d] Entered\n", vdcp->instance);
3029 
3030 	status = vdc_recv(vdcp, msgp, &nbytes);
3031 	DMSG(vdcp, 3, "vdc_read() done.. status=0x%x size=0x%x\n",
3032 		status, (int)nbytes);
3033 	if (status) {
3034 		DMSG(vdcp, 0, "?[%d] Error %d reading LDC msg\n",
3035 				vdcp->instance, status);
3036 		return (status);
3037 	}
3038 
3039 	if (nbytes < sizeof (vio_msg_tag_t)) {
3040 		DMSG(vdcp, 0, "?[%d] Expect %lu bytes; recv'd %lu\n",
3041 			vdcp->instance, sizeof (vio_msg_tag_t), nbytes);
3042 		return (ENOMSG);
3043 	}
3044 
3045 	DMSG(vdcp, 2, "[%d] (%x/%x/%x)\n", vdcp->instance,
3046 	    msgp->tag.vio_msgtype,
3047 	    msgp->tag.vio_subtype,
3048 	    msgp->tag.vio_subtype_env);
3049 
3050 	/*
3051 	 * Verify the Session ID of the message
3052 	 *
3053 	 * Every message after the Version has been negotiated should
3054 	 * have the correct session ID set.
3055 	 */
3056 	if ((msgp->tag.vio_sid != vdcp->session_id) &&
3057 	    (msgp->tag.vio_subtype_env != VIO_VER_INFO)) {
3058 		DMSG(vdcp, 0, "[%d] Invalid SID: received 0x%x, "
3059 				"expected 0x%lx [seq num %lx @ %d]",
3060 			vdcp->instance, msgp->tag.vio_sid,
3061 			vdcp->session_id,
3062 			((vio_dring_msg_t *)msgp)->seq_num,
3063 			((vio_dring_msg_t *)msgp)->start_idx);
3064 		return (ENOMSG);
3065 	}
3066 	return (0);
3067 }
3068 
3069 
3070 /*
3071  * Function:
3072  *	vdc_resubmit_backup_dring()
3073  *
3074  * Description:
3075  *	Resubmit each descriptor in the backed up dring to
3076  * 	vDisk server. The Dring was backed up during connection
3077  *	reset.
3078  *
3079  * Arguments:
3080  *	vdcp	- soft state pointer for this instance of the device driver.
3081  *
3082  * Return Code:
3083  *	0	- Success
3084  */
3085 static int
3086 vdc_resubmit_backup_dring(vdc_t *vdcp)
3087 {
3088 	int		count;
3089 	int		b_idx;
3090 	int		rv;
3091 	int		dring_size;
3092 	int		status;
3093 	vio_msg_t	vio_msg;
3094 	vdc_local_desc_t	*curr_ldep;
3095 
3096 	ASSERT(MUTEX_NOT_HELD(&vdcp->lock));
3097 	ASSERT(vdcp->state == VDC_STATE_HANDLE_PENDING);
3098 
3099 	DMSG(vdcp, 1, "restoring pending dring entries (len=%d, tail=%d)\n",
3100 	    vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail);
3101 
3102 	/*
3103 	 * Walk the backup copy of the local descriptor ring and
3104 	 * resubmit all the outstanding transactions.
3105 	 */
3106 	b_idx = vdcp->local_dring_backup_tail;
3107 	for (count = 0; count < vdcp->local_dring_backup_len; count++) {
3108 
3109 		curr_ldep = &(vdcp->local_dring_backup[b_idx]);
3110 
3111 		/* only resubmit oustanding transactions */
3112 		if (!curr_ldep->is_free) {
3113 
3114 			DMSG(vdcp, 1, "resubmitting entry idx=%x\n", b_idx);
3115 			mutex_enter(&vdcp->lock);
3116 			rv = vdc_populate_descriptor(vdcp, curr_ldep->operation,
3117 			    curr_ldep->addr, curr_ldep->nbytes,
3118 			    curr_ldep->slice, curr_ldep->offset,
3119 			    curr_ldep->cb_type, curr_ldep->cb_arg,
3120 			    curr_ldep->dir);
3121 			mutex_exit(&vdcp->lock);
3122 			if (rv) {
3123 				DMSG(vdcp, 1, "[%d] cannot resubmit entry %d\n",
3124 				    vdcp->instance, b_idx);
3125 				return (rv);
3126 			}
3127 
3128 			/* Wait for the response message. */
3129 			DMSG(vdcp, 1, "waiting for response to idx=%x\n",
3130 			    b_idx);
3131 			status = vdc_wait_for_response(vdcp, &vio_msg);
3132 			if (status) {
3133 				DMSG(vdcp, 1, "[%d] wait_for_response "
3134 				    "returned err=%d\n", vdcp->instance,
3135 				    status);
3136 				return (status);
3137 			}
3138 
3139 			DMSG(vdcp, 1, "processing msg for idx=%x\n", b_idx);
3140 			status = vdc_process_data_msg(vdcp, &vio_msg);
3141 			if (status) {
3142 				DMSG(vdcp, 1, "[%d] process_data_msg "
3143 				    "returned err=%d\n", vdcp->instance,
3144 				    status);
3145 				return (status);
3146 			}
3147 		}
3148 
3149 		/* get the next element to submit */
3150 		if (++b_idx >= vdcp->local_dring_backup_len)
3151 			b_idx = 0;
3152 	}
3153 
3154 	/* all done - now clear up pending dring copy */
3155 	dring_size = vdcp->local_dring_backup_len *
3156 		sizeof (vdcp->local_dring_backup[0]);
3157 
3158 	(void) kmem_free(vdcp->local_dring_backup, dring_size);
3159 
3160 	vdcp->local_dring_backup = NULL;
3161 
3162 	return (0);
3163 }
3164 
3165 /*
3166  * Function:
3167  *	vdc_backup_local_dring()
3168  *
3169  * Description:
3170  *	Backup the current dring in the event of a reset. The Dring
3171  *	transactions will be resubmitted to the server when the
3172  *	connection is restored.
3173  *
3174  * Arguments:
3175  *	vdcp	- soft state pointer for this instance of the device driver.
3176  *
3177  * Return Code:
3178  *	NONE
3179  */
3180 static void
3181 vdc_backup_local_dring(vdc_t *vdcp)
3182 {
3183 	int dring_size;
3184 
3185 	ASSERT(vdcp->state == VDC_STATE_RESETTING);
3186 
3187 	/*
3188 	 * If the backup dring is stil around, it means
3189 	 * that the last restore did not complete. However,
3190 	 * since we never got back into the running state,
3191 	 * the backup copy we have is still valid.
3192 	 */
3193 	if (vdcp->local_dring_backup != NULL) {
3194 		DMSG(vdcp, 1, "reusing local descriptor ring backup "
3195 		    "(len=%d, tail=%d)\n", vdcp->local_dring_backup_len,
3196 		    vdcp->local_dring_backup_tail);
3197 		return;
3198 	}
3199 
3200 	DMSG(vdcp, 1, "backing up the local descriptor ring (len=%d, "
3201 	    "tail=%d)\n", vdcp->dring_len, vdcp->dring_curr_idx);
3202 
3203 	dring_size = vdcp->dring_len * sizeof (vdcp->local_dring[0]);
3204 
3205 	vdcp->local_dring_backup = kmem_alloc(dring_size, KM_SLEEP);
3206 	bcopy(vdcp->local_dring, vdcp->local_dring_backup, dring_size);
3207 
3208 	vdcp->local_dring_backup_tail = vdcp->dring_curr_idx;
3209 	vdcp->local_dring_backup_len = vdcp->dring_len;
3210 }
3211 
3212 /* -------------------------------------------------------------------------- */
3213 
3214 /*
3215  * The following functions process the incoming messages from vds
3216  */
3217 
3218 /*
3219  * Function:
3220  *      vdc_process_msg_thread()
3221  *
3222  * Description:
3223  *
3224  *	Main VDC message processing thread. Each vDisk instance
3225  * 	consists of a copy of this thread. This thread triggers
3226  * 	all the handshakes and data exchange with the server. It
3227  * 	also handles all channel resets
3228  *
3229  * Arguments:
3230  *      vdc     - soft state pointer for this instance of the device driver.
3231  *
3232  * Return Code:
3233  *      None
3234  */
3235 static void
3236 vdc_process_msg_thread(vdc_t *vdcp)
3237 {
3238 	int	status;
3239 
3240 	mutex_enter(&vdcp->lock);
3241 
3242 	for (;;) {
3243 
3244 #define	Q(_s)	(vdcp->state == _s) ? #_s :
3245 		DMSG(vdcp, 3, "state = %d (%s)\n", vdcp->state,
3246 		Q(VDC_STATE_INIT)
3247 		Q(VDC_STATE_INIT_WAITING)
3248 		Q(VDC_STATE_NEGOTIATE)
3249 		Q(VDC_STATE_HANDLE_PENDING)
3250 		Q(VDC_STATE_RUNNING)
3251 		Q(VDC_STATE_RESETTING)
3252 		Q(VDC_STATE_DETACH)
3253 		"UNKNOWN");
3254 
3255 		switch (vdcp->state) {
3256 		case VDC_STATE_INIT:
3257 
3258 			/* Check if have re-initializing repeatedly */
3259 			if (vdcp->hshake_cnt++ > VDC_RETRIES) {
3260 				vdcp->state = VDC_STATE_DETACH;
3261 				break;
3262 			}
3263 
3264 			/* Bring up connection with vds via LDC */
3265 			status = vdc_start_ldc_connection(vdcp);
3266 			switch (status) {
3267 			case EINVAL:
3268 				DMSG(vdcp, 0, "[%d] Could not start LDC",
3269 				    vdcp->instance);
3270 				vdcp->state = VDC_STATE_DETACH;
3271 				break;
3272 			case 0:
3273 				vdcp->state = VDC_STATE_INIT_WAITING;
3274 				break;
3275 			default:
3276 				vdcp->state = VDC_STATE_INIT_WAITING;
3277 				break;
3278 			}
3279 			break;
3280 
3281 		case VDC_STATE_INIT_WAITING:
3282 
3283 			/*
3284 			 * Let the callback event move us on
3285 			 * when channel is open to server
3286 			 */
3287 			while (vdcp->ldc_state != LDC_UP) {
3288 				cv_wait(&vdcp->initwait_cv, &vdcp->lock);
3289 				if (vdcp->state != VDC_STATE_INIT_WAITING) {
3290 					DMSG(vdcp, 0,
3291 				"state moved to %d out from under us...\n",
3292 					    vdcp->state);
3293 
3294 					break;
3295 				}
3296 			}
3297 			if (vdcp->state == VDC_STATE_INIT_WAITING &&
3298 			    vdcp->ldc_state == LDC_UP) {
3299 				vdcp->state = VDC_STATE_NEGOTIATE;
3300 			}
3301 			break;
3302 
3303 		case VDC_STATE_NEGOTIATE:
3304 			switch (status = vdc_ver_negotiation(vdcp)) {
3305 			case 0:
3306 				break;
3307 			default:
3308 				DMSG(vdcp, 0, "ver negotiate failed (%d)..\n",
3309 				    status);
3310 				goto reset;
3311 			}
3312 
3313 			switch (status = vdc_attr_negotiation(vdcp)) {
3314 			case 0:
3315 				break;
3316 			default:
3317 				DMSG(vdcp, 0, "attr negotiate failed (%d)..\n",
3318 				    status);
3319 				goto reset;
3320 			}
3321 
3322 			switch (status = vdc_dring_negotiation(vdcp)) {
3323 			case 0:
3324 				break;
3325 			default:
3326 				DMSG(vdcp, 0, "dring negotiate failed (%d)..\n",
3327 				    status);
3328 				goto reset;
3329 			}
3330 
3331 			switch (status = vdc_rdx_exchange(vdcp)) {
3332 			case 0:
3333 				vdcp->state = VDC_STATE_HANDLE_PENDING;
3334 				goto done;
3335 			default:
3336 				DMSG(vdcp, 0, "RDX xchg failed ..(%d)\n",
3337 				    status);
3338 				goto reset;
3339 			}
3340 reset:
3341 			DMSG(vdcp, 0, "negotiation failed: resetting (%d)\n",
3342 			    status);
3343 			vdcp->state = VDC_STATE_RESETTING;
3344 done:
3345 			DMSG(vdcp, 0, "negotiation complete (state=0x%x)...\n",
3346 			    vdcp->state);
3347 			break;
3348 
3349 		case VDC_STATE_HANDLE_PENDING:
3350 
3351 			mutex_exit(&vdcp->lock);
3352 			status = vdc_resubmit_backup_dring(vdcp);
3353 			mutex_enter(&vdcp->lock);
3354 
3355 			if (status)
3356 				vdcp->state = VDC_STATE_RESETTING;
3357 			else
3358 				vdcp->state = VDC_STATE_RUNNING;
3359 
3360 			break;
3361 
3362 		/* enter running state */
3363 		case VDC_STATE_RUNNING:
3364 			/*
3365 			 * Signal anyone waiting for the connection
3366 			 * to come on line.
3367 			 */
3368 			vdcp->hshake_cnt = 0;
3369 			cv_broadcast(&vdcp->running_cv);
3370 			mutex_exit(&vdcp->lock);
3371 
3372 			for (;;) {
3373 				vio_msg_t msg;
3374 				status = vdc_wait_for_response(vdcp, &msg);
3375 				if (status) break;
3376 
3377 				DMSG(vdcp, 1, "[%d] new pkt(s) available\n",
3378 					vdcp->instance);
3379 				status = vdc_process_data_msg(vdcp, &msg);
3380 				if (status) {
3381 					DMSG(vdcp, 1, "[%d] process_data_msg "
3382 					    "returned err=%d\n", vdcp->instance,
3383 					    status);
3384 					break;
3385 				}
3386 
3387 			}
3388 
3389 			mutex_enter(&vdcp->lock);
3390 
3391 			vdcp->state = VDC_STATE_RESETTING;
3392 			break;
3393 
3394 		case VDC_STATE_RESETTING:
3395 			DMSG(vdcp, 0, "Initiating channel reset "
3396 			    "(pending = %d)\n", (int)vdcp->threads_pending);
3397 
3398 			if (vdcp->self_reset) {
3399 				DMSG(vdcp, 0,
3400 				    "[%d] calling stop_ldc_connection.\n",
3401 				    vdcp->instance);
3402 				status = vdc_stop_ldc_connection(vdcp);
3403 				vdcp->self_reset = B_FALSE;
3404 			}
3405 
3406 			/*
3407 			 * Wait for all threads currently waiting
3408 			 * for a free dring entry to use.
3409 			 */
3410 			while (vdcp->threads_pending) {
3411 				cv_broadcast(&vdcp->membind_cv);
3412 				cv_broadcast(&vdcp->dring_free_cv);
3413 				mutex_exit(&vdcp->lock);
3414 				/* let them wake up */
3415 				drv_usecwait(vdc_min_timeout_ldc);
3416 				mutex_enter(&vdcp->lock);
3417 			}
3418 
3419 			ASSERT(vdcp->threads_pending == 0);
3420 
3421 			/* Sanity check that no thread is receiving */
3422 			ASSERT(vdcp->read_state != VDC_READ_WAITING);
3423 
3424 			vdcp->read_state = VDC_READ_IDLE;
3425 
3426 			vdc_backup_local_dring(vdcp);
3427 
3428 			/* cleanup the old d-ring */
3429 			vdc_destroy_descriptor_ring(vdcp);
3430 
3431 			/* go and start again */
3432 			vdcp->state = VDC_STATE_INIT;
3433 
3434 			break;
3435 
3436 		case VDC_STATE_DETACH:
3437 			DMSG(vdcp, 0, "[%d] Reset thread exit cleanup ..\n",
3438 			    vdcp->instance);
3439 
3440 			while (vdcp->sync_op_pending) {
3441 				cv_signal(&vdcp->sync_pending_cv);
3442 				cv_signal(&vdcp->sync_blocked_cv);
3443 				mutex_exit(&vdcp->lock);
3444 				drv_usecwait(vdc_min_timeout_ldc);
3445 				mutex_enter(&vdcp->lock);
3446 			}
3447 
3448 			cv_signal(&vdcp->running_cv);
3449 			mutex_exit(&vdcp->lock);
3450 
3451 			DMSG(vdcp, 0, "[%d] Msg processing thread exiting ..\n",
3452 				vdcp->instance);
3453 			thread_exit();
3454 			break;
3455 		}
3456 	}
3457 }
3458 
3459 
3460 /*
3461  * Function:
3462  *	vdc_process_data_msg()
3463  *
3464  * Description:
3465  *	This function is called by the message processing thread each time
3466  *	a message with a msgtype of VIO_TYPE_DATA is received. It will either
3467  *	be an ACK or NACK from vds[1] which vdc handles as follows.
3468  *		ACK	- wake up the waiting thread
3469  *		NACK	- resend any messages necessary
3470  *
3471  *	[1] Although the message format allows it, vds should not send a
3472  *	    VIO_SUBTYPE_INFO message to vdc asking it to read data; if for
3473  *	    some bizarre reason it does, vdc will reset the connection.
3474  *
3475  * Arguments:
3476  *	vdc	- soft state pointer for this instance of the device driver.
3477  *	msg	- the LDC message sent by vds
3478  *
3479  * Return Code:
3480  *	0	- Success.
3481  *	> 0	- error value returned by LDC
3482  */
3483 static int
3484 vdc_process_data_msg(vdc_t *vdcp, vio_msg_t *msg)
3485 {
3486 	int			status = 0;
3487 	vio_dring_msg_t		*dring_msg;
3488 	vdc_local_desc_t	*ldep = NULL;
3489 	int			start, end;
3490 	int			idx;
3491 
3492 	dring_msg = (vio_dring_msg_t *)msg;
3493 
3494 	ASSERT(msg->tag.vio_msgtype == VIO_TYPE_DATA);
3495 	ASSERT(vdcp != NULL);
3496 
3497 	mutex_enter(&vdcp->lock);
3498 
3499 	/*
3500 	 * Check to see if the message has bogus data
3501 	 */
3502 	idx = start = dring_msg->start_idx;
3503 	end = dring_msg->end_idx;
3504 	if ((start >= vdcp->dring_len) ||
3505 	    (end >= vdcp->dring_len) || (end < -1)) {
3506 		DMSG(vdcp, 0, "[%d] Bogus ACK data : start %d, end %d\n",
3507 			vdcp->instance, start, end);
3508 		mutex_exit(&vdcp->lock);
3509 		return (EINVAL);
3510 	}
3511 
3512 	/*
3513 	 * Verify that the sequence number is what vdc expects.
3514 	 */
3515 	switch (vdc_verify_seq_num(vdcp, dring_msg)) {
3516 	case VDC_SEQ_NUM_TODO:
3517 		break;	/* keep processing this message */
3518 	case VDC_SEQ_NUM_SKIP:
3519 		mutex_exit(&vdcp->lock);
3520 		return (0);
3521 	case VDC_SEQ_NUM_INVALID:
3522 		mutex_exit(&vdcp->lock);
3523 		DMSG(vdcp, 0, "[%d] invalid seqno\n", vdcp->instance);
3524 		return (ENXIO);
3525 	}
3526 
3527 	if (msg->tag.vio_subtype == VIO_SUBTYPE_NACK) {
3528 		DMSG(vdcp, 0, "[%d] DATA NACK\n", vdcp->instance);
3529 		VDC_DUMP_DRING_MSG(dring_msg);
3530 		mutex_exit(&vdcp->lock);
3531 		return (EIO);
3532 
3533 	} else if (msg->tag.vio_subtype == VIO_SUBTYPE_INFO) {
3534 		mutex_exit(&vdcp->lock);
3535 		return (EPROTO);
3536 	}
3537 
3538 	DTRACE_IO2(recv, vio_dring_msg_t, dring_msg, vdc_t *, vdcp);
3539 	DMSG(vdcp, 1, ": start %d end %d\n", start, end);
3540 	ASSERT(start == end);
3541 
3542 	ldep = &vdcp->local_dring[idx];
3543 
3544 	DMSG(vdcp, 1, ": state 0x%x - cb_type 0x%x\n",
3545 		ldep->dep->hdr.dstate, ldep->cb_type);
3546 
3547 	if (ldep->dep->hdr.dstate == VIO_DESC_DONE) {
3548 		struct buf *bufp;
3549 
3550 		switch (ldep->cb_type) {
3551 		case CB_SYNC:
3552 			ASSERT(vdcp->sync_op_pending);
3553 
3554 			status = vdc_depopulate_descriptor(vdcp, idx);
3555 			vdcp->sync_op_status = status;
3556 			vdcp->sync_op_pending = B_FALSE;
3557 			cv_signal(&vdcp->sync_pending_cv);
3558 			break;
3559 
3560 		case CB_STRATEGY:
3561 			bufp = ldep->cb_arg;
3562 			ASSERT(bufp != NULL);
3563 			status = ldep->dep->payload.status; /* Future:ntoh */
3564 			if (status != 0) {
3565 				DMSG(vdcp, 1, "strategy status=%d\n", status);
3566 				bioerror(bufp, status);
3567 			}
3568 			status = vdc_depopulate_descriptor(vdcp, idx);
3569 			biodone(bufp);
3570 			break;
3571 
3572 		default:
3573 			ASSERT(0);
3574 		}
3575 	}
3576 
3577 	/* let the arrival signal propogate */
3578 	mutex_exit(&vdcp->lock);
3579 
3580 	/* probe gives the count of how many entries were processed */
3581 	DTRACE_IO2(processed, int, 1, vdc_t *, vdcp);
3582 
3583 	return (0);
3584 }
3585 
3586 /*
3587  * Function:
3588  *	vdc_process_err_msg()
3589  *
3590  * NOTE: No error messages are used as part of the vDisk protocol
3591  */
3592 static int
3593 vdc_process_err_msg(vdc_t *vdc, vio_msg_t msg)
3594 {
3595 	_NOTE(ARGUNUSED(vdc))
3596 	_NOTE(ARGUNUSED(msg))
3597 
3598 	ASSERT(msg.tag.vio_msgtype == VIO_TYPE_ERR);
3599 	DMSG(vdc, 1, "[%d] Got an ERR msg", vdc->instance);
3600 
3601 	return (ENOTSUP);
3602 }
3603 
3604 /*
3605  * Function:
3606  *	vdc_handle_ver_msg()
3607  *
3608  * Description:
3609  *
3610  * Arguments:
3611  *	vdc	- soft state pointer for this instance of the device driver.
3612  *	ver_msg	- LDC message sent by vDisk server
3613  *
3614  * Return Code:
3615  *	0	- Success
3616  */
3617 static int
3618 vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg)
3619 {
3620 	int status = 0;
3621 
3622 	ASSERT(vdc != NULL);
3623 	ASSERT(mutex_owned(&vdc->lock));
3624 
3625 	if (ver_msg->tag.vio_subtype_env != VIO_VER_INFO) {
3626 		return (EPROTO);
3627 	}
3628 
3629 	if (ver_msg->dev_class != VDEV_DISK_SERVER) {
3630 		return (EINVAL);
3631 	}
3632 
3633 	switch (ver_msg->tag.vio_subtype) {
3634 	case VIO_SUBTYPE_ACK:
3635 		/*
3636 		 * We check to see if the version returned is indeed supported
3637 		 * (The server may have also adjusted the minor number downwards
3638 		 * and if so 'ver_msg' will contain the actual version agreed)
3639 		 */
3640 		if (vdc_is_supported_version(ver_msg)) {
3641 			vdc->ver.major = ver_msg->ver_major;
3642 			vdc->ver.minor = ver_msg->ver_minor;
3643 			ASSERT(vdc->ver.major > 0);
3644 		} else {
3645 			status = EPROTO;
3646 		}
3647 		break;
3648 
3649 	case VIO_SUBTYPE_NACK:
3650 		/*
3651 		 * call vdc_is_supported_version() which will return the next
3652 		 * supported version (if any) in 'ver_msg'
3653 		 */
3654 		(void) vdc_is_supported_version(ver_msg);
3655 		if (ver_msg->ver_major > 0) {
3656 			size_t len = sizeof (*ver_msg);
3657 
3658 			ASSERT(vdc->ver.major > 0);
3659 
3660 			/* reset the necessary fields and resend */
3661 			ver_msg->tag.vio_subtype = VIO_SUBTYPE_INFO;
3662 			ver_msg->dev_class = VDEV_DISK;
3663 
3664 			status = vdc_send(vdc, (caddr_t)ver_msg, &len);
3665 			DMSG(vdc, 0, "[%d] Resend VER info (LDC status = %d)\n",
3666 					vdc->instance, status);
3667 			if (len != sizeof (*ver_msg))
3668 				status = EBADMSG;
3669 		} else {
3670 			DMSG(vdc, 0, "[%d] No common version with "
3671 					"vDisk server", vdc->instance);
3672 			status = ENOTSUP;
3673 		}
3674 
3675 		break;
3676 	case VIO_SUBTYPE_INFO:
3677 		/*
3678 		 * Handle the case where vds starts handshake
3679 		 * (for now only vdc is the instigatior)
3680 		 */
3681 		status = ENOTSUP;
3682 		break;
3683 
3684 	default:
3685 		status = EINVAL;
3686 		break;
3687 	}
3688 
3689 	return (status);
3690 }
3691 
3692 /*
3693  * Function:
3694  *	vdc_handle_attr_msg()
3695  *
3696  * Description:
3697  *
3698  * Arguments:
3699  *	vdc	- soft state pointer for this instance of the device driver.
3700  *	attr_msg	- LDC message sent by vDisk server
3701  *
3702  * Return Code:
3703  *	0	- Success
3704  */
3705 static int
3706 vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg)
3707 {
3708 	int status = 0;
3709 
3710 	ASSERT(vdc != NULL);
3711 	ASSERT(mutex_owned(&vdc->lock));
3712 
3713 	if (attr_msg->tag.vio_subtype_env != VIO_ATTR_INFO) {
3714 		return (EPROTO);
3715 	}
3716 
3717 	switch (attr_msg->tag.vio_subtype) {
3718 	case VIO_SUBTYPE_ACK:
3719 		/*
3720 		 * We now verify the attributes sent by vds.
3721 		 */
3722 		vdc->vdisk_size = attr_msg->vdisk_size;
3723 		vdc->vdisk_type = attr_msg->vdisk_type;
3724 
3725 		DMSG(vdc, 0, "[%d] max_xfer_sz: sent %lx acked %lx\n",
3726 			vdc->instance, vdc->max_xfer_sz, attr_msg->max_xfer_sz);
3727 		DMSG(vdc, 0, "[%d] vdisk_block_size: sent %lx acked %x\n",
3728 			vdc->instance, vdc->block_size,
3729 			attr_msg->vdisk_block_size);
3730 
3731 		/*
3732 		 * We don't know at compile time what the vDisk server will
3733 		 * think are good values but we apply an large (arbitrary)
3734 		 * upper bound to prevent memory exhaustion in vdc if it was
3735 		 * allocating a DRing based of huge values sent by the server.
3736 		 * We probably will never exceed this except if the message
3737 		 * was garbage.
3738 		 */
3739 		if ((attr_msg->max_xfer_sz * attr_msg->vdisk_block_size) <=
3740 				(PAGESIZE * DEV_BSIZE)) {
3741 			vdc->max_xfer_sz = attr_msg->max_xfer_sz;
3742 			vdc->block_size = attr_msg->vdisk_block_size;
3743 		} else {
3744 			DMSG(vdc, 0, "[%d] vds block transfer size too big;"
3745 				" using max supported by vdc", vdc->instance);
3746 		}
3747 
3748 		if ((attr_msg->xfer_mode != VIO_DRING_MODE) ||
3749 		    (attr_msg->vdisk_size > INT64_MAX) ||
3750 		    (attr_msg->vdisk_type > VD_DISK_TYPE_DISK)) {
3751 			DMSG(vdc, 0, "[%d] Invalid attributes from vds",
3752 					vdc->instance);
3753 			status = EINVAL;
3754 			break;
3755 		}
3756 
3757 		break;
3758 
3759 	case VIO_SUBTYPE_NACK:
3760 		/*
3761 		 * vds could not handle the attributes we sent so we
3762 		 * stop negotiating.
3763 		 */
3764 		status = EPROTO;
3765 		break;
3766 
3767 	case VIO_SUBTYPE_INFO:
3768 		/*
3769 		 * Handle the case where vds starts the handshake
3770 		 * (for now; vdc is the only supported instigatior)
3771 		 */
3772 		status = ENOTSUP;
3773 		break;
3774 
3775 	default:
3776 		status = ENOTSUP;
3777 		break;
3778 	}
3779 
3780 	return (status);
3781 }
3782 
3783 /*
3784  * Function:
3785  *	vdc_handle_dring_reg_msg()
3786  *
3787  * Description:
3788  *
3789  * Arguments:
3790  *	vdc		- soft state pointer for this instance of the driver.
3791  *	dring_msg	- LDC message sent by vDisk server
3792  *
3793  * Return Code:
3794  *	0	- Success
3795  */
3796 static int
3797 vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *dring_msg)
3798 {
3799 	int		status = 0;
3800 
3801 	ASSERT(vdc != NULL);
3802 	ASSERT(mutex_owned(&vdc->lock));
3803 
3804 	if (dring_msg->tag.vio_subtype_env != VIO_DRING_REG) {
3805 		return (EPROTO);
3806 	}
3807 
3808 	switch (dring_msg->tag.vio_subtype) {
3809 	case VIO_SUBTYPE_ACK:
3810 		/* save the received dring_ident */
3811 		vdc->dring_ident = dring_msg->dring_ident;
3812 		DMSG(vdc, 0, "[%d] Received dring ident=0x%lx\n",
3813 			vdc->instance, vdc->dring_ident);
3814 		break;
3815 
3816 	case VIO_SUBTYPE_NACK:
3817 		/*
3818 		 * vds could not handle the DRing info we sent so we
3819 		 * stop negotiating.
3820 		 */
3821 		DMSG(vdc, 0, "[%d] server could not register DRing\n",
3822 		    vdc->instance);
3823 		status = EPROTO;
3824 		break;
3825 
3826 	case VIO_SUBTYPE_INFO:
3827 		/*
3828 		 * Handle the case where vds starts handshake
3829 		 * (for now only vdc is the instigatior)
3830 		 */
3831 		status = ENOTSUP;
3832 		break;
3833 	default:
3834 		status = ENOTSUP;
3835 	}
3836 
3837 	return (status);
3838 }
3839 
3840 /*
3841  * Function:
3842  *	vdc_verify_seq_num()
3843  *
3844  * Description:
3845  *	This functions verifies that the sequence number sent back by the vDisk
3846  *	server with the latest message is what is expected (i.e. it is greater
3847  *	than the last seq num sent by the vDisk server and less than or equal
3848  *	to the last seq num generated by vdc).
3849  *
3850  *	It then checks the request ID to see if any requests need processing
3851  *	in the DRing.
3852  *
3853  * Arguments:
3854  *	vdc		- soft state pointer for this instance of the driver.
3855  *	dring_msg	- pointer to the LDC message sent by vds
3856  *
3857  * Return Code:
3858  *	VDC_SEQ_NUM_TODO	- Message needs to be processed
3859  *	VDC_SEQ_NUM_SKIP	- Message has already been processed
3860  *	VDC_SEQ_NUM_INVALID	- The seq numbers are so out of sync,
3861  *				  vdc cannot deal with them
3862  */
3863 static int
3864 vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg)
3865 {
3866 	ASSERT(vdc != NULL);
3867 	ASSERT(dring_msg != NULL);
3868 	ASSERT(mutex_owned(&vdc->lock));
3869 
3870 	/*
3871 	 * Check to see if the messages were responded to in the correct
3872 	 * order by vds.
3873 	 */
3874 	if ((dring_msg->seq_num <= vdc->seq_num_reply) ||
3875 	    (dring_msg->seq_num > vdc->seq_num)) {
3876 		DMSG(vdc, 0, "?[%d] Bogus sequence_number %lu: "
3877 			"%lu > expected <= %lu (last proc req %lu sent %lu)\n",
3878 				vdc->instance, dring_msg->seq_num,
3879 				vdc->seq_num_reply, vdc->seq_num,
3880 				vdc->req_id_proc, vdc->req_id);
3881 		return (VDC_SEQ_NUM_INVALID);
3882 	}
3883 	vdc->seq_num_reply = dring_msg->seq_num;
3884 
3885 	if (vdc->req_id_proc < vdc->req_id)
3886 		return (VDC_SEQ_NUM_TODO);
3887 	else
3888 		return (VDC_SEQ_NUM_SKIP);
3889 }
3890 
3891 
3892 /*
3893  * Function:
3894  *	vdc_is_supported_version()
3895  *
3896  * Description:
3897  *	This routine checks if the major/minor version numbers specified in
3898  *	'ver_msg' are supported. If not it finds the next version that is
3899  *	in the supported version list 'vdc_version[]' and sets the fields in
3900  *	'ver_msg' to those values
3901  *
3902  * Arguments:
3903  *	ver_msg	- LDC message sent by vDisk server
3904  *
3905  * Return Code:
3906  *	B_TRUE	- Success
3907  *	B_FALSE	- Version not supported
3908  */
3909 static boolean_t
3910 vdc_is_supported_version(vio_ver_msg_t *ver_msg)
3911 {
3912 	int vdc_num_versions = sizeof (vdc_version) / sizeof (vdc_version[0]);
3913 
3914 	for (int i = 0; i < vdc_num_versions; i++) {
3915 		ASSERT(vdc_version[i].major > 0);
3916 		ASSERT((i == 0) ||
3917 		    (vdc_version[i].major < vdc_version[i-1].major));
3918 
3919 		/*
3920 		 * If the major versions match, adjust the minor version, if
3921 		 * necessary, down to the highest value supported by this
3922 		 * client. The server should support all minor versions lower
3923 		 * than the value it sent
3924 		 */
3925 		if (ver_msg->ver_major == vdc_version[i].major) {
3926 			if (ver_msg->ver_minor > vdc_version[i].minor) {
3927 				DMSGX(0,
3928 				    "Adjusting minor version from %u to %u",
3929 				    ver_msg->ver_minor, vdc_version[i].minor);
3930 				ver_msg->ver_minor = vdc_version[i].minor;
3931 			}
3932 			return (B_TRUE);
3933 		}
3934 
3935 		/*
3936 		 * If the message contains a higher major version number, set
3937 		 * the message's major/minor versions to the current values
3938 		 * and return false, so this message will get resent with
3939 		 * these values, and the server will potentially try again
3940 		 * with the same or a lower version
3941 		 */
3942 		if (ver_msg->ver_major > vdc_version[i].major) {
3943 			ver_msg->ver_major = vdc_version[i].major;
3944 			ver_msg->ver_minor = vdc_version[i].minor;
3945 			DMSGX(0, "Suggesting major/minor (0x%x/0x%x)\n",
3946 				ver_msg->ver_major, ver_msg->ver_minor);
3947 
3948 			return (B_FALSE);
3949 		}
3950 
3951 		/*
3952 		 * Otherwise, the message's major version is less than the
3953 		 * current major version, so continue the loop to the next
3954 		 * (lower) supported version
3955 		 */
3956 	}
3957 
3958 	/*
3959 	 * No common version was found; "ground" the version pair in the
3960 	 * message to terminate negotiation
3961 	 */
3962 	ver_msg->ver_major = 0;
3963 	ver_msg->ver_minor = 0;
3964 
3965 	return (B_FALSE);
3966 }
3967 /* -------------------------------------------------------------------------- */
3968 
3969 /*
3970  * DKIO(7) support
3971  */
3972 
3973 typedef struct vdc_dk_arg {
3974 	struct dk_callback	dkc;
3975 	int			mode;
3976 	dev_t			dev;
3977 	vdc_t			*vdc;
3978 } vdc_dk_arg_t;
3979 
3980 /*
3981  * Function:
3982  * 	vdc_dkio_flush_cb()
3983  *
3984  * Description:
3985  *	This routine is a callback for DKIOCFLUSHWRITECACHE which can be called
3986  *	by kernel code.
3987  *
3988  * Arguments:
3989  *	arg	- a pointer to a vdc_dk_arg_t structure.
3990  */
3991 void
3992 vdc_dkio_flush_cb(void *arg)
3993 {
3994 	struct vdc_dk_arg	*dk_arg = (struct vdc_dk_arg *)arg;
3995 	struct dk_callback	*dkc = NULL;
3996 	vdc_t			*vdc = NULL;
3997 	int			rv;
3998 
3999 	if (dk_arg == NULL) {
4000 		cmn_err(CE_NOTE, "?[Unk] DKIOCFLUSHWRITECACHE arg is NULL\n");
4001 		return;
4002 	}
4003 	dkc = &dk_arg->dkc;
4004 	vdc = dk_arg->vdc;
4005 	ASSERT(vdc != NULL);
4006 
4007 	rv = vdc_do_sync_op(vdc, VD_OP_FLUSH, NULL, 0,
4008 	    SDPART(dk_arg->dev), 0, CB_SYNC, 0, VIO_both_dir);
4009 	if (rv != 0) {
4010 		DMSG(vdc, 0, "[%d] DKIOCFLUSHWRITECACHE failed %d : model %x\n",
4011 			vdc->instance, rv,
4012 			ddi_model_convert_from(dk_arg->mode & FMODELS));
4013 	}
4014 
4015 	/*
4016 	 * Trigger the call back to notify the caller the the ioctl call has
4017 	 * been completed.
4018 	 */
4019 	if ((dk_arg->mode & FKIOCTL) &&
4020 	    (dkc != NULL) &&
4021 	    (dkc->dkc_callback != NULL)) {
4022 		ASSERT(dkc->dkc_cookie != NULL);
4023 		(*dkc->dkc_callback)(dkc->dkc_cookie, rv);
4024 	}
4025 
4026 	/* Indicate that one less DKIO write flush is outstanding */
4027 	mutex_enter(&vdc->lock);
4028 	vdc->dkio_flush_pending--;
4029 	ASSERT(vdc->dkio_flush_pending >= 0);
4030 	mutex_exit(&vdc->lock);
4031 
4032 	/* free the mem that was allocated when the callback was dispatched */
4033 	kmem_free(arg, sizeof (vdc_dk_arg_t));
4034 }
4035 
4036 /*
4037  * This structure is used in the DKIO(7I) array below.
4038  */
4039 typedef struct vdc_dk_ioctl {
4040 	uint8_t		op;		/* VD_OP_XXX value */
4041 	int		cmd;		/* Solaris ioctl operation number */
4042 	size_t		nbytes;		/* size of structure to be copied */
4043 
4044 	/* function to convert between vDisk and Solaris structure formats */
4045 	int	(*convert)(vdc_t *vdc, void *vd_buf, void *ioctl_arg,
4046 	    int mode, int dir);
4047 } vdc_dk_ioctl_t;
4048 
4049 /*
4050  * Subset of DKIO(7I) operations currently supported
4051  */
4052 static vdc_dk_ioctl_t	dk_ioctl[] = {
4053 	{VD_OP_FLUSH,		DKIOCFLUSHWRITECACHE,	sizeof (int),
4054 		vdc_null_copy_func},
4055 	{VD_OP_GET_WCE,		DKIOCGETWCE,		sizeof (int),
4056 		vdc_get_wce_convert},
4057 	{VD_OP_SET_WCE,		DKIOCSETWCE,		sizeof (int),
4058 		vdc_set_wce_convert},
4059 	{VD_OP_GET_VTOC,	DKIOCGVTOC,		sizeof (vd_vtoc_t),
4060 		vdc_get_vtoc_convert},
4061 	{VD_OP_SET_VTOC,	DKIOCSVTOC,		sizeof (vd_vtoc_t),
4062 		vdc_set_vtoc_convert},
4063 	{VD_OP_GET_DISKGEOM,	DKIOCGGEOM,		sizeof (vd_geom_t),
4064 		vdc_get_geom_convert},
4065 	{VD_OP_GET_DISKGEOM,	DKIOCG_PHYGEOM,		sizeof (vd_geom_t),
4066 		vdc_get_geom_convert},
4067 	{VD_OP_GET_DISKGEOM, 	DKIOCG_VIRTGEOM,	sizeof (vd_geom_t),
4068 		vdc_get_geom_convert},
4069 	{VD_OP_SET_DISKGEOM,	DKIOCSGEOM,		sizeof (vd_geom_t),
4070 		vdc_set_geom_convert},
4071 	{VD_OP_GET_EFI,		DKIOCGETEFI,		0,
4072 		vdc_get_efi_convert},
4073 	{VD_OP_SET_EFI,		DKIOCSETEFI,		0,
4074 		vdc_set_efi_convert},
4075 
4076 	/*
4077 	 * These particular ioctls are not sent to the server - vdc fakes up
4078 	 * the necessary info.
4079 	 */
4080 	{0, DKIOCINFO, sizeof (struct dk_cinfo), vdc_null_copy_func},
4081 	{0, DKIOCGMEDIAINFO, sizeof (struct dk_minfo), vdc_null_copy_func},
4082 	{0, USCSICMD,	sizeof (struct uscsi_cmd), vdc_null_copy_func},
4083 	{0, DKIOCREMOVABLE, 0, vdc_null_copy_func},
4084 	{0, CDROMREADOFFSET, 0, vdc_null_copy_func}
4085 };
4086 
4087 /*
4088  * Function:
4089  *	vd_process_ioctl()
4090  *
4091  * Description:
4092  *	This routine processes disk specific ioctl calls
4093  *
4094  * Arguments:
4095  *	dev	- the device number
4096  *	cmd	- the operation [dkio(7I)] to be processed
4097  *	arg	- pointer to user provided structure
4098  *		  (contains data to be set or reference parameter for get)
4099  *	mode	- bit flag, indicating open settings, 32/64 bit type, etc
4100  *
4101  * Return Code:
4102  *	0
4103  *	EFAULT
4104  *	ENXIO
4105  *	EIO
4106  *	ENOTSUP
4107  */
4108 static int
4109 vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode)
4110 {
4111 	int		instance = SDUNIT(dev);
4112 	vdc_t		*vdc = NULL;
4113 	int		rv = -1;
4114 	int		idx = 0;		/* index into dk_ioctl[] */
4115 	size_t		len = 0;		/* #bytes to send to vds */
4116 	size_t		alloc_len = 0;		/* #bytes to allocate mem for */
4117 	caddr_t		mem_p = NULL;
4118 	size_t		nioctls = (sizeof (dk_ioctl)) / (sizeof (dk_ioctl[0]));
4119 	struct vtoc	vtoc_saved;
4120 	vdc_dk_ioctl_t	*iop;
4121 
4122 	vdc = ddi_get_soft_state(vdc_state, instance);
4123 	if (vdc == NULL) {
4124 		cmn_err(CE_NOTE, "![%d] Could not get soft state structure",
4125 		    instance);
4126 		return (ENXIO);
4127 	}
4128 
4129 	DMSG(vdc, 0, "[%d] Processing ioctl(%x) for dev %lx : model %x\n",
4130 		instance, cmd, dev, ddi_model_convert_from(mode & FMODELS));
4131 
4132 	/*
4133 	 * Validate the ioctl operation to be performed.
4134 	 *
4135 	 * If we have looped through the array without finding a match then we
4136 	 * don't support this ioctl.
4137 	 */
4138 	for (idx = 0; idx < nioctls; idx++) {
4139 		if (cmd == dk_ioctl[idx].cmd)
4140 			break;
4141 	}
4142 
4143 	if (idx >= nioctls) {
4144 		DMSG(vdc, 0, "[%d] Unsupported ioctl (0x%x)\n",
4145 		    vdc->instance, cmd);
4146 		return (ENOTSUP);
4147 	}
4148 
4149 	iop = &(dk_ioctl[idx]);
4150 
4151 	if (cmd == DKIOCGETEFI || cmd == DKIOCSETEFI) {
4152 		/* size is not fixed for EFI ioctls, it depends on ioctl arg */
4153 		dk_efi_t	dk_efi;
4154 
4155 		rv = ddi_copyin(arg, &dk_efi, sizeof (dk_efi_t), mode);
4156 		if (rv != 0)
4157 			return (EFAULT);
4158 
4159 		len = sizeof (vd_efi_t) - 1 + dk_efi.dki_length;
4160 	} else {
4161 		len = iop->nbytes;
4162 	}
4163 
4164 	/*
4165 	 * Deal with the ioctls which the server does not provide. vdc can
4166 	 * fake these up and return immediately
4167 	 */
4168 	switch (cmd) {
4169 	case CDROMREADOFFSET:
4170 	case DKIOCREMOVABLE:
4171 	case USCSICMD:
4172 		return (ENOTTY);
4173 
4174 	case DKIOCINFO:
4175 		{
4176 			struct dk_cinfo	cinfo;
4177 			if (vdc->cinfo == NULL)
4178 				return (ENXIO);
4179 
4180 			bcopy(vdc->cinfo, &cinfo, sizeof (struct dk_cinfo));
4181 			cinfo.dki_partition = SDPART(dev);
4182 
4183 			rv = ddi_copyout(&cinfo, (void *)arg,
4184 					sizeof (struct dk_cinfo), mode);
4185 			if (rv != 0)
4186 				return (EFAULT);
4187 
4188 			return (0);
4189 		}
4190 
4191 	case DKIOCGMEDIAINFO:
4192 		{
4193 			if (vdc->minfo == NULL)
4194 				return (ENXIO);
4195 
4196 			rv = ddi_copyout(vdc->minfo, (void *)arg,
4197 					sizeof (struct dk_minfo), mode);
4198 			if (rv != 0)
4199 				return (EFAULT);
4200 
4201 			return (0);
4202 		}
4203 
4204 	case DKIOCFLUSHWRITECACHE:
4205 		{
4206 			struct dk_callback *dkc = (struct dk_callback *)arg;
4207 			vdc_dk_arg_t	*dkarg = NULL;
4208 
4209 			DMSG(vdc, 1, "[%d] Flush W$: mode %x\n",
4210 			    instance, mode);
4211 
4212 			/*
4213 			 * If the backing device is not a 'real' disk then the
4214 			 * W$ operation request to the vDisk server will fail
4215 			 * so we might as well save the cycles and return now.
4216 			 */
4217 			if (vdc->vdisk_type != VD_DISK_TYPE_DISK)
4218 				return (ENOTTY);
4219 
4220 			/*
4221 			 * If arg is NULL, then there is no callback function
4222 			 * registered and the call operates synchronously; we
4223 			 * break and continue with the rest of the function and
4224 			 * wait for vds to return (i.e. after the request to
4225 			 * vds returns successfully, all writes completed prior
4226 			 * to the ioctl will have been flushed from the disk
4227 			 * write cache to persistent media.
4228 			 *
4229 			 * If a callback function is registered, we dispatch
4230 			 * the request on a task queue and return immediately.
4231 			 * The callback will deal with informing the calling
4232 			 * thread that the flush request is completed.
4233 			 */
4234 			if (dkc == NULL)
4235 				break;
4236 
4237 			dkarg = kmem_zalloc(sizeof (vdc_dk_arg_t), KM_SLEEP);
4238 
4239 			dkarg->mode = mode;
4240 			dkarg->dev = dev;
4241 			bcopy(dkc, &dkarg->dkc, sizeof (*dkc));
4242 
4243 			mutex_enter(&vdc->lock);
4244 			vdc->dkio_flush_pending++;
4245 			dkarg->vdc = vdc;
4246 			mutex_exit(&vdc->lock);
4247 
4248 			/* put the request on a task queue */
4249 			rv = taskq_dispatch(system_taskq, vdc_dkio_flush_cb,
4250 				(void *)dkarg, DDI_SLEEP);
4251 			if (rv == NULL) {
4252 				/* clean up if dispatch fails */
4253 				mutex_enter(&vdc->lock);
4254 				vdc->dkio_flush_pending--;
4255 				kmem_free(dkarg, sizeof (vdc_dk_arg_t));
4256 			}
4257 
4258 			return (rv == NULL ? ENOMEM : 0);
4259 		}
4260 	}
4261 
4262 	/* catch programming error in vdc - should be a VD_OP_XXX ioctl */
4263 	ASSERT(iop->op != 0);
4264 
4265 	/* LDC requires that the memory being mapped is 8-byte aligned */
4266 	alloc_len = P2ROUNDUP(len, sizeof (uint64_t));
4267 	DMSG(vdc, 1, "[%d] struct size %ld alloc %ld\n",
4268 	    instance, len, alloc_len);
4269 
4270 	ASSERT(alloc_len != 0);	/* sanity check */
4271 	mem_p = kmem_zalloc(alloc_len, KM_SLEEP);
4272 
4273 	if (cmd == DKIOCSVTOC) {
4274 		/*
4275 		 * Save a copy of the current VTOC so that we can roll back
4276 		 * if the setting of the new VTOC fails.
4277 		 */
4278 		bcopy(vdc->vtoc, &vtoc_saved, sizeof (struct vtoc));
4279 	}
4280 
4281 	/*
4282 	 * Call the conversion function for this ioctl whhich if necessary
4283 	 * converts from the Solaris format to the format ARC'ed
4284 	 * as part of the vDisk protocol (FWARC 2006/195)
4285 	 */
4286 	ASSERT(iop->convert != NULL);
4287 	rv = (iop->convert)(vdc, arg, mem_p, mode, VD_COPYIN);
4288 	if (rv != 0) {
4289 		DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n",
4290 				instance, rv, cmd);
4291 		if (mem_p != NULL)
4292 			kmem_free(mem_p, alloc_len);
4293 		return (rv);
4294 	}
4295 
4296 	/*
4297 	 * send request to vds to service the ioctl.
4298 	 */
4299 	rv = vdc_do_sync_op(vdc, iop->op, mem_p, alloc_len,
4300 	    SDPART(dev), 0, CB_SYNC, (void*)(uint64_t)mode,
4301 	    VIO_both_dir);
4302 
4303 	if (rv != 0) {
4304 		/*
4305 		 * This is not necessarily an error. The ioctl could
4306 		 * be returning a value such as ENOTTY to indicate
4307 		 * that the ioctl is not applicable.
4308 		 */
4309 		DMSG(vdc, 0, "[%d] vds returned %d for ioctl 0x%x\n",
4310 			instance, rv, cmd);
4311 		if (mem_p != NULL)
4312 			kmem_free(mem_p, alloc_len);
4313 
4314 		if (cmd == DKIOCSVTOC) {
4315 			/* update of the VTOC has failed, roll back */
4316 			bcopy(&vtoc_saved, vdc->vtoc, sizeof (struct vtoc));
4317 		}
4318 
4319 		return (rv);
4320 	}
4321 
4322 	if (cmd == DKIOCSVTOC) {
4323 		/*
4324 		 * The VTOC has been changed. We need to update the device
4325 		 * nodes to handle the case where an EFI label has been
4326 		 * changed to a VTOC label. We also try and update the device
4327 		 * node properties. Failing to set the properties should
4328 		 * not cause an error to be return the caller though.
4329 		 */
4330 		vdc->vdisk_label = VD_DISK_LABEL_VTOC;
4331 		(void) vdc_create_device_nodes_vtoc(vdc);
4332 
4333 		if (vdc_create_device_nodes_props(vdc)) {
4334 			DMSG(vdc, 0, "![%d] Failed to update device nodes"
4335 			    " properties", vdc->instance);
4336 		}
4337 
4338 	} else if (cmd == DKIOCSETEFI) {
4339 		/*
4340 		 * The EFI has been changed. We need to update the device
4341 		 * nodes to handle the case where a VTOC label has been
4342 		 * changed to an EFI label. We also try and update the device
4343 		 * node properties. Failing to set the properties should
4344 		 * not cause an error to be return the caller though.
4345 		 */
4346 		struct dk_gpt *efi;
4347 		size_t efi_len;
4348 
4349 		vdc->vdisk_label = VD_DISK_LABEL_EFI;
4350 		(void) vdc_create_device_nodes_efi(vdc);
4351 
4352 		rv = vdc_efi_alloc_and_read(dev, &efi, &efi_len);
4353 
4354 		if (rv == 0) {
4355 			vdc_store_efi(vdc, efi);
4356 			rv = vdc_create_device_nodes_props(vdc);
4357 			vd_efi_free(efi, efi_len);
4358 		}
4359 
4360 		if (rv) {
4361 			DMSG(vdc, 0, "![%d] Failed to update device nodes"
4362 			    " properties", vdc->instance);
4363 		}
4364 	}
4365 
4366 	/*
4367 	 * Call the conversion function (if it exists) for this ioctl
4368 	 * which converts from the format ARC'ed as part of the vDisk
4369 	 * protocol (FWARC 2006/195) back to a format understood by
4370 	 * the rest of Solaris.
4371 	 */
4372 	rv = (iop->convert)(vdc, mem_p, arg, mode, VD_COPYOUT);
4373 	if (rv != 0) {
4374 		DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n",
4375 				instance, rv, cmd);
4376 		if (mem_p != NULL)
4377 			kmem_free(mem_p, alloc_len);
4378 		return (rv);
4379 	}
4380 
4381 	if (mem_p != NULL)
4382 		kmem_free(mem_p, alloc_len);
4383 
4384 	return (rv);
4385 }
4386 
4387 /*
4388  * Function:
4389  *
4390  * Description:
4391  *	This is an empty conversion function used by ioctl calls which
4392  *	do not need to convert the data being passed in/out to userland
4393  */
4394 static int
4395 vdc_null_copy_func(vdc_t *vdc, void *from, void *to, int mode, int dir)
4396 {
4397 	_NOTE(ARGUNUSED(vdc))
4398 	_NOTE(ARGUNUSED(from))
4399 	_NOTE(ARGUNUSED(to))
4400 	_NOTE(ARGUNUSED(mode))
4401 	_NOTE(ARGUNUSED(dir))
4402 
4403 	return (0);
4404 }
4405 
4406 static int
4407 vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
4408     int mode, int dir)
4409 {
4410 	_NOTE(ARGUNUSED(vdc))
4411 
4412 	if (dir == VD_COPYIN)
4413 		return (0);		/* nothing to do */
4414 
4415 	if (ddi_copyout(from, to, sizeof (int), mode) != 0)
4416 		return (EFAULT);
4417 
4418 	return (0);
4419 }
4420 
4421 static int
4422 vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
4423     int mode, int dir)
4424 {
4425 	_NOTE(ARGUNUSED(vdc))
4426 
4427 	if (dir == VD_COPYOUT)
4428 		return (0);		/* nothing to do */
4429 
4430 	if (ddi_copyin(from, to, sizeof (int), mode) != 0)
4431 		return (EFAULT);
4432 
4433 	return (0);
4434 }
4435 
4436 /*
4437  * Function:
4438  *	vdc_get_vtoc_convert()
4439  *
4440  * Description:
4441  *	This routine performs the necessary convertions from the DKIOCGVTOC
4442  *	Solaris structure to the format defined in FWARC 2006/195.
4443  *
4444  *	In the struct vtoc definition, the timestamp field is marked as not
4445  *	supported so it is not part of vDisk protocol (FWARC 2006/195).
4446  *	However SVM uses that field to check it can write into the VTOC,
4447  *	so we fake up the info of that field.
4448  *
4449  * Arguments:
4450  *	vdc	- the vDisk client
4451  *	from	- the buffer containing the data to be copied from
4452  *	to	- the buffer to be copied to
4453  *	mode	- flags passed to ioctl() call
4454  *	dir	- the "direction" of the copy - VD_COPYIN or VD_COPYOUT
4455  *
4456  * Return Code:
4457  *	0	- Success
4458  *	ENXIO	- incorrect buffer passed in.
4459  *	EFAULT	- ddi_copyout routine encountered an error.
4460  */
4461 static int
4462 vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4463 {
4464 	int		i;
4465 	void		*tmp_mem = NULL;
4466 	void		*tmp_memp;
4467 	struct vtoc	vt;
4468 	struct vtoc32	vt32;
4469 	int		copy_len = 0;
4470 	int		rv = 0;
4471 
4472 	if (dir != VD_COPYOUT)
4473 		return (0);	/* nothing to do */
4474 
4475 	if ((from == NULL) || (to == NULL))
4476 		return (ENXIO);
4477 
4478 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
4479 		copy_len = sizeof (struct vtoc32);
4480 	else
4481 		copy_len = sizeof (struct vtoc);
4482 
4483 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
4484 
4485 	VD_VTOC2VTOC((vd_vtoc_t *)from, &vt);
4486 
4487 	/* fake the VTOC timestamp field */
4488 	for (i = 0; i < V_NUMPAR; i++) {
4489 		vt.timestamp[i] = vdc->vtoc->timestamp[i];
4490 	}
4491 
4492 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
4493 		vtoctovtoc32(vt, vt32);
4494 		tmp_memp = &vt32;
4495 	} else {
4496 		tmp_memp = &vt;
4497 	}
4498 	rv = ddi_copyout(tmp_memp, to, copy_len, mode);
4499 	if (rv != 0)
4500 		rv = EFAULT;
4501 
4502 	kmem_free(tmp_mem, copy_len);
4503 	return (rv);
4504 }
4505 
4506 /*
4507  * Function:
4508  *	vdc_set_vtoc_convert()
4509  *
4510  * Description:
4511  *	This routine performs the necessary convertions from the DKIOCSVTOC
4512  *	Solaris structure to the format defined in FWARC 2006/195.
4513  *
4514  * Arguments:
4515  *	vdc	- the vDisk client
4516  *	from	- Buffer with data
4517  *	to	- Buffer where data is to be copied to
4518  *	mode	- flags passed to ioctl
4519  *	dir	- direction of copy (in or out)
4520  *
4521  * Return Code:
4522  *	0	- Success
4523  *	ENXIO	- Invalid buffer passed in
4524  *	EFAULT	- ddi_copyin of data failed
4525  */
4526 static int
4527 vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4528 {
4529 	void		*tmp_mem = NULL;
4530 	struct vtoc	vt;
4531 	struct vtoc	*vtp = &vt;
4532 	vd_vtoc_t	vtvd;
4533 	int		copy_len = 0;
4534 	int		rv = 0;
4535 
4536 	if (dir != VD_COPYIN)
4537 		return (0);	/* nothing to do */
4538 
4539 	if ((from == NULL) || (to == NULL))
4540 		return (ENXIO);
4541 
4542 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32)
4543 		copy_len = sizeof (struct vtoc32);
4544 	else
4545 		copy_len = sizeof (struct vtoc);
4546 
4547 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
4548 
4549 	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
4550 	if (rv != 0) {
4551 		kmem_free(tmp_mem, copy_len);
4552 		return (EFAULT);
4553 	}
4554 
4555 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
4556 		vtoc32tovtoc((*(struct vtoc32 *)tmp_mem), vt);
4557 	} else {
4558 		vtp = tmp_mem;
4559 	}
4560 
4561 	/*
4562 	 * The VTOC is being changed, then vdc needs to update the copy
4563 	 * it saved in the soft state structure.
4564 	 */
4565 	bcopy(vtp, vdc->vtoc, sizeof (struct vtoc));
4566 
4567 	VTOC2VD_VTOC(vtp, &vtvd);
4568 	bcopy(&vtvd, to, sizeof (vd_vtoc_t));
4569 	kmem_free(tmp_mem, copy_len);
4570 
4571 	return (0);
4572 }
4573 
4574 /*
4575  * Function:
4576  *	vdc_get_geom_convert()
4577  *
4578  * Description:
4579  *	This routine performs the necessary convertions from the DKIOCGGEOM,
4580  *	DKIOCG_PHYSGEOM and DKIOG_VIRTGEOM Solaris structures to the format
4581  *	defined in FWARC 2006/195
4582  *
4583  * Arguments:
4584  *	vdc	- the vDisk client
4585  *	from	- Buffer with data
4586  *	to	- Buffer where data is to be copied to
4587  *	mode	- flags passed to ioctl
4588  *	dir	- direction of copy (in or out)
4589  *
4590  * Return Code:
4591  *	0	- Success
4592  *	ENXIO	- Invalid buffer passed in
4593  *	EFAULT	- ddi_copyout of data failed
4594  */
4595 static int
4596 vdc_get_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4597 {
4598 	_NOTE(ARGUNUSED(vdc))
4599 
4600 	struct dk_geom	geom;
4601 	int	copy_len = sizeof (struct dk_geom);
4602 	int	rv = 0;
4603 
4604 	if (dir != VD_COPYOUT)
4605 		return (0);	/* nothing to do */
4606 
4607 	if ((from == NULL) || (to == NULL))
4608 		return (ENXIO);
4609 
4610 	VD_GEOM2DK_GEOM((vd_geom_t *)from, &geom);
4611 	rv = ddi_copyout(&geom, to, copy_len, mode);
4612 	if (rv != 0)
4613 		rv = EFAULT;
4614 
4615 	return (rv);
4616 }
4617 
4618 /*
4619  * Function:
4620  *	vdc_set_geom_convert()
4621  *
4622  * Description:
4623  *	This routine performs the necessary convertions from the DKIOCSGEOM
4624  *	Solaris structure to the format defined in FWARC 2006/195.
4625  *
4626  * Arguments:
4627  *	vdc	- the vDisk client
4628  *	from	- Buffer with data
4629  *	to	- Buffer where data is to be copied to
4630  *	mode	- flags passed to ioctl
4631  *	dir	- direction of copy (in or out)
4632  *
4633  * Return Code:
4634  *	0	- Success
4635  *	ENXIO	- Invalid buffer passed in
4636  *	EFAULT	- ddi_copyin of data failed
4637  */
4638 static int
4639 vdc_set_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4640 {
4641 	_NOTE(ARGUNUSED(vdc))
4642 
4643 	vd_geom_t	vdgeom;
4644 	void		*tmp_mem = NULL;
4645 	int		copy_len = sizeof (struct dk_geom);
4646 	int		rv = 0;
4647 
4648 	if (dir != VD_COPYIN)
4649 		return (0);	/* nothing to do */
4650 
4651 	if ((from == NULL) || (to == NULL))
4652 		return (ENXIO);
4653 
4654 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
4655 
4656 	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
4657 	if (rv != 0) {
4658 		kmem_free(tmp_mem, copy_len);
4659 		return (EFAULT);
4660 	}
4661 	DK_GEOM2VD_GEOM((struct dk_geom *)tmp_mem, &vdgeom);
4662 	bcopy(&vdgeom, to, sizeof (vdgeom));
4663 	kmem_free(tmp_mem, copy_len);
4664 
4665 	return (0);
4666 }
4667 
4668 static int
4669 vdc_get_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4670 {
4671 	_NOTE(ARGUNUSED(vdc))
4672 
4673 	vd_efi_t	*vd_efi;
4674 	dk_efi_t	dk_efi;
4675 	int		rv = 0;
4676 	void		*uaddr;
4677 
4678 	if ((from == NULL) || (to == NULL))
4679 		return (ENXIO);
4680 
4681 	if (dir == VD_COPYIN) {
4682 
4683 		vd_efi = (vd_efi_t *)to;
4684 
4685 		rv = ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode);
4686 		if (rv != 0)
4687 			return (EFAULT);
4688 
4689 		vd_efi->lba = dk_efi.dki_lba;
4690 		vd_efi->length = dk_efi.dki_length;
4691 		bzero(vd_efi->data, vd_efi->length);
4692 
4693 	} else {
4694 
4695 		rv = ddi_copyin(to, &dk_efi, sizeof (dk_efi_t), mode);
4696 		if (rv != 0)
4697 			return (EFAULT);
4698 
4699 		uaddr = dk_efi.dki_data;
4700 
4701 		dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
4702 
4703 		VD_EFI2DK_EFI((vd_efi_t *)from, &dk_efi);
4704 
4705 		rv = ddi_copyout(dk_efi.dki_data, uaddr, dk_efi.dki_length,
4706 		    mode);
4707 		if (rv != 0)
4708 			return (EFAULT);
4709 
4710 		kmem_free(dk_efi.dki_data, dk_efi.dki_length);
4711 	}
4712 
4713 	return (0);
4714 }
4715 
4716 static int
4717 vdc_set_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
4718 {
4719 	_NOTE(ARGUNUSED(vdc))
4720 
4721 	dk_efi_t	dk_efi;
4722 	void		*uaddr;
4723 
4724 	if (dir == VD_COPYOUT)
4725 		return (0);	/* nothing to do */
4726 
4727 	if ((from == NULL) || (to == NULL))
4728 		return (ENXIO);
4729 
4730 	if (ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode) != 0)
4731 		return (EFAULT);
4732 
4733 	uaddr = dk_efi.dki_data;
4734 
4735 	dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
4736 
4737 	if (ddi_copyin(uaddr, dk_efi.dki_data, dk_efi.dki_length, mode) != 0)
4738 		return (EFAULT);
4739 
4740 	DK_EFI2VD_EFI(&dk_efi, (vd_efi_t *)to);
4741 
4742 	kmem_free(dk_efi.dki_data, dk_efi.dki_length);
4743 
4744 	return (0);
4745 }
4746 
4747 /*
4748  * Function:
4749  *	vdc_create_fake_geometry()
4750  *
4751  * Description:
4752  *	This routine fakes up the disk info needed for some DKIO ioctls.
4753  *		- DKIOCINFO
4754  *		- DKIOCGMEDIAINFO
4755  *
4756  *	[ just like lofi(7D) and ramdisk(7D) ]
4757  *
4758  * Arguments:
4759  *	vdc	- soft state pointer for this instance of the device driver.
4760  *
4761  * Return Code:
4762  *	0	- Success
4763  */
4764 static int
4765 vdc_create_fake_geometry(vdc_t *vdc)
4766 {
4767 	int	rv = 0;
4768 
4769 	ASSERT(vdc != NULL);
4770 
4771 	/*
4772 	 * DKIOCINFO support
4773 	 */
4774 	vdc->cinfo = kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
4775 
4776 	(void) strcpy(vdc->cinfo->dki_cname, VDC_DRIVER_NAME);
4777 	(void) strcpy(vdc->cinfo->dki_dname, VDC_DRIVER_NAME);
4778 	/* max_xfer_sz is #blocks so we don't need to divide by DEV_BSIZE */
4779 	vdc->cinfo->dki_maxtransfer = vdc->max_xfer_sz;
4780 	vdc->cinfo->dki_ctype = DKC_SCSI_CCS;
4781 	vdc->cinfo->dki_flags = DKI_FMTVOL;
4782 	vdc->cinfo->dki_cnum = 0;
4783 	vdc->cinfo->dki_addr = 0;
4784 	vdc->cinfo->dki_space = 0;
4785 	vdc->cinfo->dki_prio = 0;
4786 	vdc->cinfo->dki_vec = 0;
4787 	vdc->cinfo->dki_unit = vdc->instance;
4788 	vdc->cinfo->dki_slave = 0;
4789 	/*
4790 	 * The partition number will be created on the fly depending on the
4791 	 * actual slice (i.e. minor node) that is used to request the data.
4792 	 */
4793 	vdc->cinfo->dki_partition = 0;
4794 
4795 	/*
4796 	 * DKIOCGMEDIAINFO support
4797 	 */
4798 	if (vdc->minfo == NULL)
4799 		vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
4800 	vdc->minfo->dki_media_type = DK_FIXED_DISK;
4801 	vdc->minfo->dki_capacity = vdc->vdisk_size;
4802 	vdc->minfo->dki_lbsize = DEV_BSIZE;
4803 
4804 	return (rv);
4805 }
4806 
4807 /*
4808  * Function:
4809  *	vdc_setup_disk_layout()
4810  *
4811  * Description:
4812  *	This routine discovers all the necessary details about the "disk"
4813  *	by requesting the data that is available from the vDisk server and by
4814  *	faking up the rest of the data.
4815  *
4816  * Arguments:
4817  *	vdc	- soft state pointer for this instance of the device driver.
4818  *
4819  * Return Code:
4820  *	0	- Success
4821  */
4822 static int
4823 vdc_setup_disk_layout(vdc_t *vdc)
4824 {
4825 	buf_t	*buf;	/* BREAD requests need to be in a buf_t structure */
4826 	dev_t	dev;
4827 	int	slice = 0;
4828 	int	rv;
4829 
4830 	ASSERT(vdc != NULL);
4831 
4832 	rv = vdc_create_fake_geometry(vdc);
4833 	if (rv != 0) {
4834 		DMSG(vdc, 0, "[%d] Failed to create disk geometry (err%d)",
4835 				vdc->instance, rv);
4836 	}
4837 
4838 	if (vdc->vtoc == NULL)
4839 		vdc->vtoc = kmem_zalloc(sizeof (struct vtoc), KM_SLEEP);
4840 
4841 	dev = makedevice(ddi_driver_major(vdc->dip),
4842 				VD_MAKE_DEV(vdc->instance, 0));
4843 	rv = vd_process_ioctl(dev, DKIOCGVTOC, (caddr_t)vdc->vtoc, FKIOCTL);
4844 
4845 	if (rv && rv != ENOTSUP) {
4846 		DMSG(vdc, 0, "[%d] Failed to get VTOC (err=%d)",
4847 				vdc->instance, rv);
4848 		return (rv);
4849 	}
4850 
4851 	if (rv == ENOTSUP) {
4852 		/*
4853 		 * If the device does not support VTOC then we try
4854 		 * to read an EFI label.
4855 		 */
4856 		struct dk_gpt *efi;
4857 		size_t efi_len;
4858 
4859 		rv = vdc_efi_alloc_and_read(dev, &efi, &efi_len);
4860 
4861 		if (rv) {
4862 			DMSG(vdc, 0, "[%d] Failed to get EFI (err=%d)",
4863 			    vdc->instance, rv);
4864 			return (rv);
4865 		}
4866 
4867 		vdc->vdisk_label = VD_DISK_LABEL_EFI;
4868 		vdc_store_efi(vdc, efi);
4869 		vd_efi_free(efi, efi_len);
4870 
4871 		return (0);
4872 	}
4873 
4874 	vdc->vdisk_label = VD_DISK_LABEL_VTOC;
4875 
4876 	/*
4877 	 * FUTURE: This could be default way for reading the VTOC
4878 	 * from the disk as supposed to sending the VD_OP_GET_VTOC
4879 	 * to the server. Currently this is a sanity check.
4880 	 *
4881 	 * find the slice that represents the entire "disk" and use that to
4882 	 * read the disk label. The convention in Solaris is that slice 2
4883 	 * represents the whole disk so we check that it is, otherwise we
4884 	 * default to slice 0
4885 	 */
4886 	if ((vdc->vdisk_type == VD_DISK_TYPE_DISK) &&
4887 	    (vdc->vtoc->v_part[2].p_tag == V_BACKUP)) {
4888 		slice = 2;
4889 	} else {
4890 		slice = 0;
4891 	}
4892 
4893 	/*
4894 	 * Read disk label from start of disk
4895 	 */
4896 	vdc->label = kmem_zalloc(DK_LABEL_SIZE, KM_SLEEP);
4897 	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
4898 	bioinit(buf);
4899 	buf->b_un.b_addr = (caddr_t)vdc->label;
4900 	buf->b_bcount = DK_LABEL_SIZE;
4901 	buf->b_flags = B_BUSY | B_READ;
4902 	buf->b_dev = dev;
4903 	rv = vdc_send_request(vdc, VD_OP_BREAD, (caddr_t)vdc->label,
4904 	    DK_LABEL_SIZE, slice, 0, CB_STRATEGY, buf, VIO_read_dir);
4905 	if (rv) {
4906 		DMSG(vdc, 1, "[%d] Failed to read disk block 0\n",
4907 		    vdc->instance);
4908 		kmem_free(buf, sizeof (buf_t));
4909 		return (rv);
4910 	}
4911 	rv = biowait(buf);
4912 	biofini(buf);
4913 	kmem_free(buf, sizeof (buf_t));
4914 
4915 	return (rv);
4916 }
4917 
4918 /*
4919  * Function:
4920  *	vdc_setup_devid()
4921  *
4922  * Description:
4923  *	This routine discovers the devid of a vDisk. It requests the devid of
4924  *	the underlying device from the vDisk server, builds an encapsulated
4925  *	devid based on the retrieved devid and registers that new devid to
4926  *	the vDisk.
4927  *
4928  * Arguments:
4929  *	vdc	- soft state pointer for this instance of the device driver.
4930  *
4931  * Return Code:
4932  *	0	- A devid was succesfully registered for the vDisk
4933  */
4934 static int
4935 vdc_setup_devid(vdc_t *vdc)
4936 {
4937 	int rv;
4938 	vd_devid_t *vd_devid;
4939 	size_t bufsize, bufid_len;
4940 
4941 	/*
4942 	 * At first sight, we don't know the size of the devid that the
4943 	 * server will return but this size will be encoded into the
4944 	 * reply. So we do a first request using a default size then we
4945 	 * check if this size was large enough. If not then we do a second
4946 	 * request with the correct size returned by the server. Note that
4947 	 * ldc requires size to be 8-byte aligned.
4948 	 */
4949 	bufsize = P2ROUNDUP(VD_DEVID_SIZE(VD_DEVID_DEFAULT_LEN),
4950 	    sizeof (uint64_t));
4951 	vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
4952 	bufid_len = bufsize - sizeof (vd_efi_t) - 1;
4953 
4954 	rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID, (caddr_t)vd_devid,
4955 	    bufsize, 0, 0, CB_SYNC, 0, VIO_both_dir);
4956 
4957 	DMSG(vdc, 2, "sync_op returned %d\n", rv);
4958 
4959 	if (rv) {
4960 		kmem_free(vd_devid, bufsize);
4961 		return (rv);
4962 	}
4963 
4964 	if (vd_devid->length > bufid_len) {
4965 		/*
4966 		 * The returned devid is larger than the buffer used. Try again
4967 		 * with a buffer with the right size.
4968 		 */
4969 		kmem_free(vd_devid, bufsize);
4970 		bufsize = P2ROUNDUP(VD_DEVID_SIZE(vd_devid->length),
4971 		    sizeof (uint64_t));
4972 		vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
4973 		bufid_len = bufsize - sizeof (vd_efi_t) - 1;
4974 
4975 		rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID,
4976 		    (caddr_t)vd_devid, bufsize, 0, 0, CB_SYNC, 0,
4977 		    VIO_both_dir);
4978 
4979 		if (rv) {
4980 			kmem_free(vd_devid, bufsize);
4981 			return (rv);
4982 		}
4983 	}
4984 
4985 	/*
4986 	 * The virtual disk should have the same device id as the one associated
4987 	 * with the physical disk it is mapped on, otherwise sharing a disk
4988 	 * between a LDom and a non-LDom may not work (for example for a shared
4989 	 * SVM disk set).
4990 	 *
4991 	 * The DDI framework does not allow creating a device id with any
4992 	 * type so we first create a device id of type DEVID_ENCAP and then
4993 	 * we restore the orignal type of the physical device.
4994 	 */
4995 
4996 	DMSG(vdc, 2, ": devid length = %d\n", vd_devid->length);
4997 
4998 	/* build an encapsulated devid based on the returned devid */
4999 	if (ddi_devid_init(vdc->dip, DEVID_ENCAP, vd_devid->length,
5000 		vd_devid->id, &vdc->devid) != DDI_SUCCESS) {
5001 		DMSG(vdc, 1, "[%d] Fail to created devid\n", vdc->instance);
5002 		kmem_free(vd_devid, bufsize);
5003 		return (1);
5004 	}
5005 
5006 	DEVID_FORMTYPE((impl_devid_t *)vdc->devid, vd_devid->type);
5007 
5008 	ASSERT(ddi_devid_valid(vdc->devid) == DDI_SUCCESS);
5009 
5010 	kmem_free(vd_devid, bufsize);
5011 
5012 	if (ddi_devid_register(vdc->dip, vdc->devid) != DDI_SUCCESS) {
5013 		DMSG(vdc, 1, "[%d] Fail to register devid\n", vdc->instance);
5014 		return (1);
5015 	}
5016 
5017 	return (0);
5018 }
5019 
5020 static void
5021 vdc_store_efi(vdc_t *vdc, struct dk_gpt *efi)
5022 {
5023 	struct vtoc *vtoc = vdc->vtoc;
5024 
5025 	vd_efi_to_vtoc(efi, vtoc);
5026 	if (vdc->vdisk_type == VD_DISK_TYPE_SLICE) {
5027 		/*
5028 		 * vd_efi_to_vtoc() will store information about the EFI Sun
5029 		 * reserved partition (representing the entire disk) into
5030 		 * partition 7. However single-slice device will only have
5031 		 * that single partition and the vdc driver expects to find
5032 		 * information about that partition in slice 0. So we need
5033 		 * to copy information from slice 7 to slice 0.
5034 		 */
5035 		vtoc->v_part[0].p_tag = vtoc->v_part[VD_EFI_WD_SLICE].p_tag;
5036 		vtoc->v_part[0].p_flag = vtoc->v_part[VD_EFI_WD_SLICE].p_flag;
5037 		vtoc->v_part[0].p_start = vtoc->v_part[VD_EFI_WD_SLICE].p_start;
5038 		vtoc->v_part[0].p_size =  vtoc->v_part[VD_EFI_WD_SLICE].p_size;
5039 	}
5040 }
5041