xref: /illumos-gate/usr/src/uts/sun4v/io/vdc.c (revision 447a706e88931283df447457121eadad3fb9ebbe)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * LDoms virtual disk client (vdc) device driver
29  *
30  * This driver runs on a guest logical domain and communicates with the virtual
31  * disk server (vds) driver running on the service domain which is exporting
32  * virtualized "disks" to the guest logical domain.
33  *
34  * The driver can be divided into four sections:
35  *
36  * 1) generic device driver housekeeping
37  *	_init, _fini, attach, detach, ops structures, etc.
38  *
39  * 2) communication channel setup
40  *	Setup the communications link over the LDC channel that vdc uses to
41  *	talk to the vDisk server. Initialise the descriptor ring which
42  *	allows the LDC clients to transfer data via memory mappings.
43  *
44  * 3) Support exported to upper layers (filesystems, etc)
45  *	The upper layers call into vdc via strategy(9E) and DKIO(7I)
46  *	ioctl calls. vdc will copy the data to be written to the descriptor
47  *	ring or maps the buffer to store the data read by the vDisk
48  *	server into the descriptor ring. It then sends a message to the
49  *	vDisk server requesting it to complete the operation.
50  *
51  * 4) Handling responses from vDisk server.
52  *	The vDisk server will ACK some or all of the messages vdc sends to it
53  *	(this is configured during the handshake). Upon receipt of an ACK
54  *	vdc will check the descriptor ring and signal to the upper layer
55  *	code waiting on the IO.
56  */
57 
58 #include <sys/atomic.h>
59 #include <sys/conf.h>
60 #include <sys/disp.h>
61 #include <sys/ddi.h>
62 #include <sys/dkio.h>
63 #include <sys/efi_partition.h>
64 #include <sys/fcntl.h>
65 #include <sys/file.h>
66 #include <sys/kstat.h>
67 #include <sys/mach_descrip.h>
68 #include <sys/modctl.h>
69 #include <sys/mdeg.h>
70 #include <sys/note.h>
71 #include <sys/open.h>
72 #include <sys/sdt.h>
73 #include <sys/stat.h>
74 #include <sys/sunddi.h>
75 #include <sys/types.h>
76 #include <sys/promif.h>
77 #include <sys/var.h>
78 #include <sys/vtoc.h>
79 #include <sys/archsystm.h>
80 #include <sys/sysmacros.h>
81 
82 #include <sys/cdio.h>
83 #include <sys/dktp/fdisk.h>
84 #include <sys/dktp/dadkio.h>
85 #include <sys/mhd.h>
86 #include <sys/scsi/generic/sense.h>
87 #include <sys/scsi/impl/uscsi.h>
88 #include <sys/scsi/impl/services.h>
89 #include <sys/scsi/targets/sddef.h>
90 
91 #include <sys/ldoms.h>
92 #include <sys/ldc.h>
93 #include <sys/vio_common.h>
94 #include <sys/vio_mailbox.h>
95 #include <sys/vio_util.h>
96 #include <sys/vdsk_common.h>
97 #include <sys/vdsk_mailbox.h>
98 #include <sys/vdc.h>
99 
100 #define	VD_OLDVTOC_LIMIT	0x7fffffff
101 
102 /*
103  * function prototypes
104  */
105 
106 /* standard driver functions */
107 static int	vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred);
108 static int	vdc_close(dev_t dev, int flag, int otyp, cred_t *cred);
109 static int	vdc_strategy(struct buf *buf);
110 static int	vdc_print(dev_t dev, char *str);
111 static int	vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
112 static int	vdc_read(dev_t dev, struct uio *uio, cred_t *cred);
113 static int	vdc_write(dev_t dev, struct uio *uio, cred_t *cred);
114 static int	vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
115 			cred_t *credp, int *rvalp);
116 static int	vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred);
117 static int	vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred);
118 
119 static int	vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
120 			void *arg, void **resultp);
121 static int	vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
122 static int	vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
123 static int	vdc_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
124 		    int mod_flags, char *name, caddr_t valuep, int *lengthp);
125 
126 /* setup */
127 static void	vdc_min(struct buf *bufp);
128 static int	vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen);
129 static int	vdc_do_ldc_init(vdc_t *vdc, vdc_server_t *srvr);
130 static int	vdc_start_ldc_connection(vdc_t *vdc);
131 static int	vdc_create_device_nodes(vdc_t *vdc);
132 static int	vdc_create_device_nodes_efi(vdc_t *vdc);
133 static int	vdc_create_device_nodes_vtoc(vdc_t *vdc);
134 static void	vdc_create_io_kstats(vdc_t *vdc);
135 static void	vdc_create_err_kstats(vdc_t *vdc);
136 static void	vdc_set_err_kstats(vdc_t *vdc);
137 static int	vdc_get_md_node(dev_info_t *dip, md_t **mdpp,
138 		    mde_cookie_t *vd_nodep);
139 static int	vdc_init_ports(vdc_t *vdc, md_t *mdp, mde_cookie_t vd_nodep);
140 static void	vdc_fini_ports(vdc_t *vdc);
141 static void	vdc_switch_server(vdc_t *vdcp);
142 static int	vdc_do_ldc_up(vdc_t *vdc);
143 static void	vdc_terminate_ldc(vdc_t *vdc, vdc_server_t *srvr);
144 static int	vdc_init_descriptor_ring(vdc_t *vdc);
145 static void	vdc_destroy_descriptor_ring(vdc_t *vdc);
146 static int	vdc_setup_devid(vdc_t *vdc);
147 static void	vdc_store_label_efi(vdc_t *, efi_gpt_t *, efi_gpe_t *);
148 static void	vdc_store_label_vtoc(vdc_t *, struct dk_geom *,
149 		    struct extvtoc *);
150 static void	vdc_store_label_unk(vdc_t *vdc);
151 static boolean_t vdc_is_opened(vdc_t *vdc);
152 static void	vdc_update_size(vdc_t *vdc, size_t, size_t, size_t);
153 
154 /* handshake with vds */
155 static int		vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver);
156 static int		vdc_ver_negotiation(vdc_t *vdcp);
157 static int		vdc_init_attr_negotiation(vdc_t *vdc);
158 static int		vdc_attr_negotiation(vdc_t *vdcp);
159 static int		vdc_init_dring_negotiate(vdc_t *vdc);
160 static int		vdc_dring_negotiation(vdc_t *vdcp);
161 static int		vdc_send_rdx(vdc_t *vdcp);
162 static int		vdc_rdx_exchange(vdc_t *vdcp);
163 static boolean_t	vdc_is_supported_version(vio_ver_msg_t *ver_msg);
164 
165 /* processing incoming messages from vDisk server */
166 static void	vdc_process_msg_thread(vdc_t *vdc);
167 static int	vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp);
168 
169 static uint_t	vdc_handle_cb(uint64_t event, caddr_t arg);
170 static int	vdc_process_data_msg(vdc_t *vdc, vio_msg_t *msg);
171 static int	vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg);
172 static int	vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg);
173 static int	vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *msg);
174 static int 	vdc_send_request(vdc_t *vdcp, int operation,
175 		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
176 		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
177 static int	vdc_map_to_shared_dring(vdc_t *vdcp, int idx);
178 static int 	vdc_populate_descriptor(vdc_t *vdcp, int operation,
179 		    caddr_t addr, size_t nbytes, int slice, diskaddr_t offset,
180 		    int cb_type, void *cb_arg, vio_desc_direction_t dir);
181 static int 	vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr,
182 		    size_t nbytes, int slice, diskaddr_t offset, int cb_type,
183 		    void *cb_arg, vio_desc_direction_t dir, boolean_t);
184 
185 static int	vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp);
186 static int	vdc_drain_response(vdc_t *vdcp, struct buf *buf);
187 static int	vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx);
188 static int	vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep);
189 static int	vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg);
190 
191 /* dkio */
192 static int	vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode,
193 		    int *rvalp);
194 static int	vd_process_efi_ioctl(void *vdisk, int cmd, uintptr_t arg);
195 static void	vdc_create_fake_geometry(vdc_t *vdc);
196 static int	vdc_validate_geometry(vdc_t *vdc);
197 static void	vdc_validate(vdc_t *vdc);
198 static void	vdc_validate_task(void *arg);
199 static int	vdc_null_copy_func(vdc_t *vdc, void *from, void *to,
200 		    int mode, int dir);
201 static int	vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
202 		    int mode, int dir);
203 static int	vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
204 		    int mode, int dir);
205 static int	vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to,
206 		    int mode, int dir);
207 static int	vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to,
208 		    int mode, int dir);
209 static int	vdc_get_extvtoc_convert(vdc_t *vdc, void *from, void *to,
210 		    int mode, int dir);
211 static int	vdc_set_extvtoc_convert(vdc_t *vdc, void *from, void *to,
212 		    int mode, int dir);
213 static int	vdc_get_geom_convert(vdc_t *vdc, void *from, void *to,
214 		    int mode, int dir);
215 static int	vdc_set_geom_convert(vdc_t *vdc, void *from, void *to,
216 		    int mode, int dir);
217 static int	vdc_get_efi_convert(vdc_t *vdc, void *from, void *to,
218 		    int mode, int dir);
219 static int	vdc_set_efi_convert(vdc_t *vdc, void *from, void *to,
220 		    int mode, int dir);
221 
222 static void 	vdc_ownership_update(vdc_t *vdc, int ownership_flags);
223 static int	vdc_access_set(vdc_t *vdc, uint64_t flags, int mode);
224 static vdc_io_t	*vdc_failfast_io_queue(vdc_t *vdc, struct buf *buf);
225 static int	vdc_failfast_check_resv(vdc_t *vdc);
226 
227 /*
228  * Module variables
229  */
230 
231 /*
232  * Tunable variables to control how long vdc waits before timing out on
233  * various operations
234  */
235 static int	vdc_hshake_retries = 3;
236 
237 static int	vdc_timeout = 0; /* units: seconds */
238 static int 	vdc_ldcup_timeout = 1; /* units: seconds */
239 
240 static uint64_t vdc_hz_min_ldc_delay;
241 static uint64_t vdc_min_timeout_ldc = 1 * MILLISEC;
242 static uint64_t vdc_hz_max_ldc_delay;
243 static uint64_t vdc_max_timeout_ldc = 100 * MILLISEC;
244 
245 static uint64_t vdc_ldc_read_init_delay = 1 * MILLISEC;
246 static uint64_t vdc_ldc_read_max_delay = 100 * MILLISEC;
247 
248 /* values for dumping - need to run in a tighter loop */
249 static uint64_t	vdc_usec_timeout_dump = 100 * MILLISEC;	/* 0.1s units: ns */
250 static int	vdc_dump_retries = 100;
251 
252 static uint16_t	vdc_scsi_timeout = 60;	/* 60s units: seconds  */
253 
254 static uint64_t vdc_ownership_delay = 6 * MICROSEC; /* 6s units: usec */
255 
256 /* Count of the number of vdc instances attached */
257 static volatile uint32_t	vdc_instance_count = 0;
258 
259 /* Tunable to log all SCSI errors */
260 static boolean_t vdc_scsi_log_error = B_FALSE;
261 
262 /* Soft state pointer */
263 static void	*vdc_state;
264 
265 /*
266  * Controlling the verbosity of the error/debug messages
267  *
268  * vdc_msglevel - controls level of messages
269  * vdc_matchinst - 64-bit variable where each bit corresponds
270  *                 to the vdc instance the vdc_msglevel applies.
271  */
272 int		vdc_msglevel = 0x0;
273 uint64_t	vdc_matchinst = 0ull;
274 
275 /*
276  * Supported vDisk protocol version pairs.
277  *
278  * The first array entry is the latest and preferred version.
279  */
280 static const vio_ver_t	vdc_version[] = {{1, 1}};
281 
282 static struct cb_ops vdc_cb_ops = {
283 	vdc_open,	/* cb_open */
284 	vdc_close,	/* cb_close */
285 	vdc_strategy,	/* cb_strategy */
286 	vdc_print,	/* cb_print */
287 	vdc_dump,	/* cb_dump */
288 	vdc_read,	/* cb_read */
289 	vdc_write,	/* cb_write */
290 	vdc_ioctl,	/* cb_ioctl */
291 	nodev,		/* cb_devmap */
292 	nodev,		/* cb_mmap */
293 	nodev,		/* cb_segmap */
294 	nochpoll,	/* cb_chpoll */
295 	vdc_prop_op,	/* cb_prop_op */
296 	NULL,		/* cb_str */
297 	D_MP | D_64BIT,	/* cb_flag */
298 	CB_REV,		/* cb_rev */
299 	vdc_aread,	/* cb_aread */
300 	vdc_awrite	/* cb_awrite */
301 };
302 
303 static struct dev_ops vdc_ops = {
304 	DEVO_REV,	/* devo_rev */
305 	0,		/* devo_refcnt */
306 	vdc_getinfo,	/* devo_getinfo */
307 	nulldev,	/* devo_identify */
308 	nulldev,	/* devo_probe */
309 	vdc_attach,	/* devo_attach */
310 	vdc_detach,	/* devo_detach */
311 	nodev,		/* devo_reset */
312 	&vdc_cb_ops,	/* devo_cb_ops */
313 	NULL,		/* devo_bus_ops */
314 	nulldev		/* devo_power */
315 };
316 
317 static struct modldrv modldrv = {
318 	&mod_driverops,
319 	"virtual disk client",
320 	&vdc_ops,
321 };
322 
323 static struct modlinkage modlinkage = {
324 	MODREV_1,
325 	&modldrv,
326 	NULL
327 };
328 
329 /* -------------------------------------------------------------------------- */
330 
331 /*
332  * Device Driver housekeeping and setup
333  */
334 
335 int
336 _init(void)
337 {
338 	int	status;
339 
340 	if ((status = ddi_soft_state_init(&vdc_state, sizeof (vdc_t), 1)) != 0)
341 		return (status);
342 	if ((status = mod_install(&modlinkage)) != 0)
343 		ddi_soft_state_fini(&vdc_state);
344 	return (status);
345 }
346 
347 int
348 _info(struct modinfo *modinfop)
349 {
350 	return (mod_info(&modlinkage, modinfop));
351 }
352 
353 int
354 _fini(void)
355 {
356 	int	status;
357 
358 	if ((status = mod_remove(&modlinkage)) != 0)
359 		return (status);
360 	ddi_soft_state_fini(&vdc_state);
361 	return (0);
362 }
363 
364 static int
365 vdc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
366 {
367 	_NOTE(ARGUNUSED(dip))
368 
369 	int	instance = VDCUNIT((dev_t)arg);
370 	vdc_t	*vdc = NULL;
371 
372 	switch (cmd) {
373 	case DDI_INFO_DEVT2DEVINFO:
374 		if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
375 			*resultp = NULL;
376 			return (DDI_FAILURE);
377 		}
378 		*resultp = vdc->dip;
379 		return (DDI_SUCCESS);
380 	case DDI_INFO_DEVT2INSTANCE:
381 		*resultp = (void *)(uintptr_t)instance;
382 		return (DDI_SUCCESS);
383 	default:
384 		*resultp = NULL;
385 		return (DDI_FAILURE);
386 	}
387 }
388 
389 static int
390 vdc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
391 {
392 	kt_did_t failfast_tid, ownership_tid;
393 	int	instance;
394 	int	rv;
395 	vdc_server_t *srvr;
396 	vdc_t	*vdc = NULL;
397 
398 	switch (cmd) {
399 	case DDI_DETACH:
400 		/* the real work happens below */
401 		break;
402 	case DDI_SUSPEND:
403 		/* nothing to do for this non-device */
404 		return (DDI_SUCCESS);
405 	default:
406 		return (DDI_FAILURE);
407 	}
408 
409 	ASSERT(cmd == DDI_DETACH);
410 	instance = ddi_get_instance(dip);
411 	DMSGX(1, "[%d] Entered\n", instance);
412 
413 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
414 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
415 		return (DDI_FAILURE);
416 	}
417 
418 	/*
419 	 * This function is called when vdc is detached or if it has failed to
420 	 * attach. In that case, the attach may have fail before the vdisk type
421 	 * has been set so we can't call vdc_is_opened(). However as the attach
422 	 * has failed, we know that the vdisk is not opened and we can safely
423 	 * detach.
424 	 */
425 	if (vdc->vdisk_type != VD_DISK_TYPE_UNK && vdc_is_opened(vdc)) {
426 		DMSG(vdc, 0, "[%d] Cannot detach: device is open", instance);
427 		return (DDI_FAILURE);
428 	}
429 
430 	if (vdc->dkio_flush_pending) {
431 		DMSG(vdc, 0,
432 		    "[%d] Cannot detach: %d outstanding DKIO flushes\n",
433 		    instance, vdc->dkio_flush_pending);
434 		return (DDI_FAILURE);
435 	}
436 
437 	if (vdc->validate_pending) {
438 		DMSG(vdc, 0,
439 		    "[%d] Cannot detach: %d outstanding validate request\n",
440 		    instance, vdc->validate_pending);
441 		return (DDI_FAILURE);
442 	}
443 
444 	DMSG(vdc, 0, "[%d] proceeding...\n", instance);
445 
446 	/* If we took ownership, release ownership */
447 	mutex_enter(&vdc->ownership_lock);
448 	if (vdc->ownership & VDC_OWNERSHIP_GRANTED) {
449 		rv = vdc_access_set(vdc, VD_ACCESS_SET_CLEAR, FKIOCTL);
450 		if (rv == 0) {
451 			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
452 		}
453 	}
454 	mutex_exit(&vdc->ownership_lock);
455 
456 	/* mark instance as detaching */
457 	vdc->lifecycle	= VDC_LC_DETACHING;
458 
459 	/*
460 	 * Try and disable callbacks to prevent another handshake. We have to
461 	 * disable callbacks for all servers.
462 	 */
463 	for (srvr = vdc->server_list; srvr != NULL; srvr = srvr->next) {
464 		rv = ldc_set_cb_mode(srvr->ldc_handle, LDC_CB_DISABLE);
465 		DMSG(vdc, 0, "callback disabled (ldc=%lu, rv=%d)\n",
466 		    srvr->ldc_id, rv);
467 	}
468 
469 	if (vdc->initialized & VDC_THREAD) {
470 		mutex_enter(&vdc->read_lock);
471 		if ((vdc->read_state == VDC_READ_WAITING) ||
472 		    (vdc->read_state == VDC_READ_RESET)) {
473 			vdc->read_state = VDC_READ_RESET;
474 			cv_signal(&vdc->read_cv);
475 		}
476 
477 		mutex_exit(&vdc->read_lock);
478 
479 		/* wake up any thread waiting for connection to come online */
480 		mutex_enter(&vdc->lock);
481 		if (vdc->state == VDC_STATE_INIT_WAITING) {
482 			DMSG(vdc, 0,
483 			    "[%d] write reset - move to resetting state...\n",
484 			    instance);
485 			vdc->state = VDC_STATE_RESETTING;
486 			cv_signal(&vdc->initwait_cv);
487 		}
488 		mutex_exit(&vdc->lock);
489 
490 		/* now wait until state transitions to VDC_STATE_DETACH */
491 		thread_join(vdc->msg_proc_thr->t_did);
492 		ASSERT(vdc->state == VDC_STATE_DETACH);
493 		DMSG(vdc, 0, "[%d] Reset thread exit and join ..\n",
494 		    vdc->instance);
495 	}
496 
497 	mutex_enter(&vdc->lock);
498 
499 	if (vdc->initialized & VDC_DRING)
500 		vdc_destroy_descriptor_ring(vdc);
501 
502 	vdc_fini_ports(vdc);
503 
504 	if (vdc->failfast_thread) {
505 		failfast_tid = vdc->failfast_thread->t_did;
506 		vdc->failfast_interval = 0;
507 		cv_signal(&vdc->failfast_cv);
508 	} else {
509 		failfast_tid = 0;
510 	}
511 
512 	if (vdc->ownership & VDC_OWNERSHIP_WANTED) {
513 		ownership_tid = vdc->ownership_thread->t_did;
514 		vdc->ownership = VDC_OWNERSHIP_NONE;
515 		cv_signal(&vdc->ownership_cv);
516 	} else {
517 		ownership_tid = 0;
518 	}
519 
520 	mutex_exit(&vdc->lock);
521 
522 	if (failfast_tid != 0)
523 		thread_join(failfast_tid);
524 
525 	if (ownership_tid != 0)
526 		thread_join(ownership_tid);
527 
528 	if (vdc->initialized & VDC_MINOR)
529 		ddi_remove_minor_node(dip, NULL);
530 
531 	if (vdc->io_stats) {
532 		kstat_delete(vdc->io_stats);
533 		vdc->io_stats = NULL;
534 	}
535 
536 	if (vdc->err_stats) {
537 		kstat_delete(vdc->err_stats);
538 		vdc->err_stats = NULL;
539 	}
540 
541 	if (vdc->initialized & VDC_LOCKS) {
542 		mutex_destroy(&vdc->lock);
543 		mutex_destroy(&vdc->read_lock);
544 		mutex_destroy(&vdc->ownership_lock);
545 		cv_destroy(&vdc->initwait_cv);
546 		cv_destroy(&vdc->dring_free_cv);
547 		cv_destroy(&vdc->membind_cv);
548 		cv_destroy(&vdc->sync_pending_cv);
549 		cv_destroy(&vdc->sync_blocked_cv);
550 		cv_destroy(&vdc->read_cv);
551 		cv_destroy(&vdc->running_cv);
552 		cv_destroy(&vdc->ownership_cv);
553 		cv_destroy(&vdc->failfast_cv);
554 		cv_destroy(&vdc->failfast_io_cv);
555 	}
556 
557 	if (vdc->minfo)
558 		kmem_free(vdc->minfo, sizeof (struct dk_minfo));
559 
560 	if (vdc->cinfo)
561 		kmem_free(vdc->cinfo, sizeof (struct dk_cinfo));
562 
563 	if (vdc->vtoc)
564 		kmem_free(vdc->vtoc, sizeof (struct extvtoc));
565 
566 	if (vdc->geom)
567 		kmem_free(vdc->geom, sizeof (struct dk_geom));
568 
569 	if (vdc->devid) {
570 		ddi_devid_unregister(dip);
571 		ddi_devid_free(vdc->devid);
572 	}
573 
574 	if (vdc->initialized & VDC_SOFT_STATE)
575 		ddi_soft_state_free(vdc_state, instance);
576 
577 	DMSG(vdc, 0, "[%d] End %p\n", instance, (void *)vdc);
578 
579 	return (DDI_SUCCESS);
580 }
581 
582 
583 static int
584 vdc_do_attach(dev_info_t *dip)
585 {
586 	int		instance;
587 	vdc_t		*vdc = NULL;
588 	int		status;
589 	md_t		*mdp;
590 	mde_cookie_t	vd_node;
591 
592 	ASSERT(dip != NULL);
593 
594 	instance = ddi_get_instance(dip);
595 	if (ddi_soft_state_zalloc(vdc_state, instance) != DDI_SUCCESS) {
596 		cmn_err(CE_NOTE, "[%d] Couldn't alloc state structure",
597 		    instance);
598 		return (DDI_FAILURE);
599 	}
600 
601 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
602 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
603 		return (DDI_FAILURE);
604 	}
605 
606 	/*
607 	 * We assign the value to initialized in this case to zero out the
608 	 * variable and then set bits in it to indicate what has been done
609 	 */
610 	vdc->initialized = VDC_SOFT_STATE;
611 
612 	vdc_hz_min_ldc_delay = drv_usectohz(vdc_min_timeout_ldc);
613 	vdc_hz_max_ldc_delay = drv_usectohz(vdc_max_timeout_ldc);
614 
615 	vdc->dip	= dip;
616 	vdc->instance	= instance;
617 	vdc->vdisk_type	= VD_DISK_TYPE_UNK;
618 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
619 	vdc->state	= VDC_STATE_INIT;
620 	vdc->lifecycle	= VDC_LC_ATTACHING;
621 	vdc->session_id = 0;
622 	vdc->block_size = DEV_BSIZE;
623 	vdc->max_xfer_sz = maxphys / DEV_BSIZE;
624 
625 	/*
626 	 * We assume, for now, that the vDisk server will export 'read'
627 	 * operations to us at a minimum (this is needed because of checks
628 	 * in vdc for supported operations early in the handshake process).
629 	 * The vDisk server will return ENOTSUP if this is not the case.
630 	 * The value will be overwritten during the attribute exchange with
631 	 * the bitmask of operations exported by server.
632 	 */
633 	vdc->operations = VD_OP_MASK_READ;
634 
635 	vdc->vtoc = NULL;
636 	vdc->geom = NULL;
637 	vdc->cinfo = NULL;
638 	vdc->minfo = NULL;
639 
640 	mutex_init(&vdc->lock, NULL, MUTEX_DRIVER, NULL);
641 	cv_init(&vdc->initwait_cv, NULL, CV_DRIVER, NULL);
642 	cv_init(&vdc->dring_free_cv, NULL, CV_DRIVER, NULL);
643 	cv_init(&vdc->membind_cv, NULL, CV_DRIVER, NULL);
644 	cv_init(&vdc->running_cv, NULL, CV_DRIVER, NULL);
645 
646 	vdc->threads_pending = 0;
647 	vdc->sync_op_pending = B_FALSE;
648 	vdc->sync_op_blocked = B_FALSE;
649 	cv_init(&vdc->sync_pending_cv, NULL, CV_DRIVER, NULL);
650 	cv_init(&vdc->sync_blocked_cv, NULL, CV_DRIVER, NULL);
651 
652 	mutex_init(&vdc->ownership_lock, NULL, MUTEX_DRIVER, NULL);
653 	cv_init(&vdc->ownership_cv, NULL, CV_DRIVER, NULL);
654 	cv_init(&vdc->failfast_cv, NULL, CV_DRIVER, NULL);
655 	cv_init(&vdc->failfast_io_cv, NULL, CV_DRIVER, NULL);
656 
657 	/* init blocking msg read functionality */
658 	mutex_init(&vdc->read_lock, NULL, MUTEX_DRIVER, NULL);
659 	cv_init(&vdc->read_cv, NULL, CV_DRIVER, NULL);
660 	vdc->read_state = VDC_READ_IDLE;
661 
662 	vdc->initialized |= VDC_LOCKS;
663 
664 	/* get device and port MD node for this disk instance */
665 	if (vdc_get_md_node(dip, &mdp, &vd_node) != 0) {
666 		cmn_err(CE_NOTE, "[%d] Could not get machine description node",
667 		    instance);
668 		return (DDI_FAILURE);
669 	}
670 
671 	if (vdc_init_ports(vdc, mdp, vd_node) != 0) {
672 		cmn_err(CE_NOTE, "[%d] Error initialising ports", instance);
673 		return (DDI_FAILURE);
674 	}
675 
676 	(void) md_fini_handle(mdp);
677 
678 	/* Create the kstats for saving the I/O statistics used by iostat(1M) */
679 	vdc_create_io_kstats(vdc);
680 	vdc_create_err_kstats(vdc);
681 
682 	/* Initialize remaining structures before starting the msg thread */
683 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
684 	vdc->vtoc = kmem_zalloc(sizeof (struct extvtoc), KM_SLEEP);
685 	vdc->geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
686 	vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
687 
688 	/* initialize the thread responsible for managing state with server */
689 	vdc->msg_proc_thr = thread_create(NULL, 0, vdc_process_msg_thread,
690 	    vdc, 0, &p0, TS_RUN, minclsyspri);
691 	if (vdc->msg_proc_thr == NULL) {
692 		cmn_err(CE_NOTE, "[%d] Failed to create msg processing thread",
693 		    instance);
694 		return (DDI_FAILURE);
695 	}
696 
697 	vdc->initialized |= VDC_THREAD;
698 
699 	atomic_inc_32(&vdc_instance_count);
700 
701 	/*
702 	 * Check the disk label. This will send requests and do the handshake.
703 	 * We don't really care about the disk label now. What we really need is
704 	 * the handshake do be done so that we know the type of the disk (slice
705 	 * or full disk) and the appropriate device nodes can be created.
706 	 */
707 
708 	mutex_enter(&vdc->lock);
709 	(void) vdc_validate_geometry(vdc);
710 	mutex_exit(&vdc->lock);
711 
712 	/*
713 	 * Now that we have the device info we can create the device nodes
714 	 */
715 	status = vdc_create_device_nodes(vdc);
716 	if (status) {
717 		DMSG(vdc, 0, "[%d] Failed to create device nodes",
718 		    instance);
719 		goto return_status;
720 	}
721 
722 	/*
723 	 * Setup devid
724 	 */
725 	if (vdc_setup_devid(vdc)) {
726 		DMSG(vdc, 0, "[%d] No device id available\n", instance);
727 	}
728 
729 	/*
730 	 * Fill in the fields of the error statistics kstat that were not
731 	 * available when creating the kstat
732 	 */
733 	vdc_set_err_kstats(vdc);
734 
735 	ddi_report_dev(dip);
736 	vdc->lifecycle	= VDC_LC_ONLINE;
737 	DMSG(vdc, 0, "[%d] Attach tasks successful\n", instance);
738 
739 return_status:
740 	DMSG(vdc, 0, "[%d] Attach completed\n", instance);
741 	return (status);
742 }
743 
744 static int
745 vdc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
746 {
747 	int	status;
748 
749 	switch (cmd) {
750 	case DDI_ATTACH:
751 		if ((status = vdc_do_attach(dip)) != 0)
752 			(void) vdc_detach(dip, DDI_DETACH);
753 		return (status);
754 	case DDI_RESUME:
755 		/* nothing to do for this non-device */
756 		return (DDI_SUCCESS);
757 	default:
758 		return (DDI_FAILURE);
759 	}
760 }
761 
762 static int
763 vdc_do_ldc_init(vdc_t *vdc, vdc_server_t *srvr)
764 {
765 	int			status = 0;
766 	ldc_status_t		ldc_state;
767 	ldc_attr_t		ldc_attr;
768 
769 	ASSERT(vdc != NULL);
770 	ASSERT(srvr != NULL);
771 
772 	ldc_attr.devclass = LDC_DEV_BLK;
773 	ldc_attr.instance = vdc->instance;
774 	ldc_attr.mode = LDC_MODE_UNRELIABLE;	/* unreliable transport */
775 	ldc_attr.mtu = VD_LDC_MTU;
776 
777 	if ((srvr->state & VDC_LDC_INIT) == 0) {
778 		status = ldc_init(srvr->ldc_id, &ldc_attr,
779 		    &srvr->ldc_handle);
780 		if (status != 0) {
781 			DMSG(vdc, 0, "[%d] ldc_init(chan %ld) returned %d",
782 			    vdc->instance, srvr->ldc_id, status);
783 			return (status);
784 		}
785 		srvr->state |= VDC_LDC_INIT;
786 	}
787 	status = ldc_status(srvr->ldc_handle, &ldc_state);
788 	if (status != 0) {
789 		DMSG(vdc, 0, "[%d] Cannot discover LDC status [err=%d]",
790 		    vdc->instance, status);
791 		goto init_exit;
792 	}
793 	srvr->ldc_state = ldc_state;
794 
795 	if ((srvr->state & VDC_LDC_CB) == 0) {
796 		status = ldc_reg_callback(srvr->ldc_handle, vdc_handle_cb,
797 		    (caddr_t)srvr);
798 		if (status != 0) {
799 			DMSG(vdc, 0, "[%d] LDC callback reg. failed (%d)",
800 			    vdc->instance, status);
801 			goto init_exit;
802 		}
803 		srvr->state |= VDC_LDC_CB;
804 	}
805 
806 	/*
807 	 * At this stage we have initialised LDC, we will now try and open
808 	 * the connection.
809 	 */
810 	if (srvr->ldc_state == LDC_INIT) {
811 		status = ldc_open(srvr->ldc_handle);
812 		if (status != 0) {
813 			DMSG(vdc, 0, "[%d] ldc_open(chan %ld) returned %d",
814 			    vdc->instance, srvr->ldc_id, status);
815 			goto init_exit;
816 		}
817 		srvr->state |= VDC_LDC_OPEN;
818 	}
819 
820 init_exit:
821 	if (status) {
822 		vdc_terminate_ldc(vdc, srvr);
823 	}
824 
825 	return (status);
826 }
827 
828 static int
829 vdc_start_ldc_connection(vdc_t *vdc)
830 {
831 	int		status = 0;
832 
833 	ASSERT(vdc != NULL);
834 
835 	ASSERT(MUTEX_HELD(&vdc->lock));
836 
837 	status = vdc_do_ldc_up(vdc);
838 
839 	DMSG(vdc, 0, "[%d] Finished bringing up LDC\n", vdc->instance);
840 
841 	return (status);
842 }
843 
844 static int
845 vdc_stop_ldc_connection(vdc_t *vdcp)
846 {
847 	int	status;
848 
849 	ASSERT(vdcp != NULL);
850 
851 	ASSERT(MUTEX_HELD(&vdcp->lock));
852 
853 	DMSG(vdcp, 0, ": Resetting connection to vDisk server : state %d\n",
854 	    vdcp->state);
855 
856 	status = ldc_down(vdcp->curr_server->ldc_handle);
857 	DMSG(vdcp, 0, "ldc_down() = %d\n", status);
858 
859 	vdcp->initialized &= ~VDC_HANDSHAKE;
860 	DMSG(vdcp, 0, "initialized=%x\n", vdcp->initialized);
861 
862 	return (status);
863 }
864 
865 static void
866 vdc_create_io_kstats(vdc_t *vdc)
867 {
868 	if (vdc->io_stats != NULL) {
869 		DMSG(vdc, 0, "[%d] I/O kstat already exists\n", vdc->instance);
870 		return;
871 	}
872 
873 	vdc->io_stats = kstat_create(VDC_DRIVER_NAME, vdc->instance, NULL,
874 	    "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
875 	if (vdc->io_stats != NULL) {
876 		vdc->io_stats->ks_lock = &vdc->lock;
877 		kstat_install(vdc->io_stats);
878 	} else {
879 		cmn_err(CE_NOTE, "[%d] Failed to create kstat: I/O statistics"
880 		    " will not be gathered", vdc->instance);
881 	}
882 }
883 
884 static void
885 vdc_create_err_kstats(vdc_t *vdc)
886 {
887 	vd_err_stats_t	*stp;
888 	char	kstatmodule_err[KSTAT_STRLEN];
889 	char	kstatname[KSTAT_STRLEN];
890 	int	ndata = (sizeof (vd_err_stats_t) / sizeof (kstat_named_t));
891 	int	instance = vdc->instance;
892 
893 	if (vdc->err_stats != NULL) {
894 		DMSG(vdc, 0, "[%d] ERR kstat already exists\n", vdc->instance);
895 		return;
896 	}
897 
898 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
899 	    "%serr", VDC_DRIVER_NAME);
900 	(void) snprintf(kstatname, sizeof (kstatname),
901 	    "%s%d,err", VDC_DRIVER_NAME, instance);
902 
903 	vdc->err_stats = kstat_create(kstatmodule_err, instance, kstatname,
904 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
905 
906 	if (vdc->err_stats == NULL) {
907 		cmn_err(CE_NOTE, "[%d] Failed to create kstat: Error statistics"
908 		    " will not be gathered", instance);
909 		return;
910 	}
911 
912 	stp = (vd_err_stats_t *)vdc->err_stats->ks_data;
913 	kstat_named_init(&stp->vd_softerrs,	"Soft Errors",
914 	    KSTAT_DATA_UINT32);
915 	kstat_named_init(&stp->vd_transerrs,	"Transport Errors",
916 	    KSTAT_DATA_UINT32);
917 	kstat_named_init(&stp->vd_protoerrs,	"Protocol Errors",
918 	    KSTAT_DATA_UINT32);
919 	kstat_named_init(&stp->vd_vid,		"Vendor",
920 	    KSTAT_DATA_CHAR);
921 	kstat_named_init(&stp->vd_pid,		"Product",
922 	    KSTAT_DATA_CHAR);
923 	kstat_named_init(&stp->vd_capacity,	"Size",
924 	    KSTAT_DATA_ULONGLONG);
925 
926 	vdc->err_stats->ks_update  = nulldev;
927 
928 	kstat_install(vdc->err_stats);
929 }
930 
931 static void
932 vdc_set_err_kstats(vdc_t *vdc)
933 {
934 	vd_err_stats_t  *stp;
935 
936 	if (vdc->err_stats == NULL)
937 		return;
938 
939 	mutex_enter(&vdc->lock);
940 
941 	stp = (vd_err_stats_t *)vdc->err_stats->ks_data;
942 	ASSERT(stp != NULL);
943 
944 	stp->vd_capacity.value.ui64 = vdc->vdisk_size * vdc->block_size;
945 	(void) strcpy(stp->vd_vid.value.c, "SUN");
946 	(void) strcpy(stp->vd_pid.value.c, "VDSK");
947 
948 	mutex_exit(&vdc->lock);
949 }
950 
951 static int
952 vdc_create_device_nodes_efi(vdc_t *vdc)
953 {
954 	ddi_remove_minor_node(vdc->dip, "h");
955 	ddi_remove_minor_node(vdc->dip, "h,raw");
956 
957 	if (ddi_create_minor_node(vdc->dip, "wd", S_IFBLK,
958 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
959 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
960 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd'",
961 		    vdc->instance);
962 		return (EIO);
963 	}
964 
965 	/* if any device node is created we set this flag */
966 	vdc->initialized |= VDC_MINOR;
967 
968 	if (ddi_create_minor_node(vdc->dip, "wd,raw", S_IFCHR,
969 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
970 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
971 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'wd,raw'",
972 		    vdc->instance);
973 		return (EIO);
974 	}
975 
976 	return (0);
977 }
978 
979 static int
980 vdc_create_device_nodes_vtoc(vdc_t *vdc)
981 {
982 	ddi_remove_minor_node(vdc->dip, "wd");
983 	ddi_remove_minor_node(vdc->dip, "wd,raw");
984 
985 	if (ddi_create_minor_node(vdc->dip, "h", S_IFBLK,
986 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
987 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
988 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h'",
989 		    vdc->instance);
990 		return (EIO);
991 	}
992 
993 	/* if any device node is created we set this flag */
994 	vdc->initialized |= VDC_MINOR;
995 
996 	if (ddi_create_minor_node(vdc->dip, "h,raw", S_IFCHR,
997 	    VD_MAKE_DEV(vdc->instance, VD_EFI_WD_SLICE),
998 	    DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
999 		cmn_err(CE_NOTE, "[%d] Couldn't add block node 'h,raw'",
1000 		    vdc->instance);
1001 		return (EIO);
1002 	}
1003 
1004 	return (0);
1005 }
1006 
1007 /*
1008  * Function:
1009  *	vdc_create_device_nodes
1010  *
1011  * Description:
1012  *	This function creates the block and character device nodes under
1013  *	/devices. It is called as part of the attach(9E) of the instance
1014  *	during the handshake with vds after vds has sent the attributes
1015  *	to vdc.
1016  *
1017  *	If the device is of type VD_DISK_TYPE_SLICE then the minor node
1018  *	of 2 is used in keeping with the Solaris convention that slice 2
1019  *	refers to a whole disk. Slices start at 'a'
1020  *
1021  * Parameters:
1022  *	vdc 		- soft state pointer
1023  *
1024  * Return Values
1025  *	0		- Success
1026  *	EIO		- Failed to create node
1027  *	EINVAL		- Unknown type of disk exported
1028  */
1029 static int
1030 vdc_create_device_nodes(vdc_t *vdc)
1031 {
1032 	char		name[sizeof ("s,raw")];
1033 	dev_info_t	*dip = NULL;
1034 	int		instance, status;
1035 	int		num_slices = 1;
1036 	int		i;
1037 
1038 	ASSERT(vdc != NULL);
1039 
1040 	instance = vdc->instance;
1041 	dip = vdc->dip;
1042 
1043 	switch (vdc->vdisk_type) {
1044 	case VD_DISK_TYPE_DISK:
1045 		num_slices = V_NUMPAR;
1046 		break;
1047 	case VD_DISK_TYPE_SLICE:
1048 		num_slices = 1;
1049 		break;
1050 	case VD_DISK_TYPE_UNK:
1051 	default:
1052 		return (EINVAL);
1053 	}
1054 
1055 	/*
1056 	 * Minor nodes are different for EFI disks: EFI disks do not have
1057 	 * a minor node 'g' for the minor number corresponding to slice
1058 	 * VD_EFI_WD_SLICE (slice 7) instead they have a minor node 'wd'
1059 	 * representing the whole disk.
1060 	 */
1061 	for (i = 0; i < num_slices; i++) {
1062 
1063 		if (i == VD_EFI_WD_SLICE) {
1064 			if (vdc->vdisk_label == VD_DISK_LABEL_EFI)
1065 				status = vdc_create_device_nodes_efi(vdc);
1066 			else
1067 				status = vdc_create_device_nodes_vtoc(vdc);
1068 			if (status != 0)
1069 				return (status);
1070 			continue;
1071 		}
1072 
1073 		(void) snprintf(name, sizeof (name), "%c", 'a' + i);
1074 		if (ddi_create_minor_node(dip, name, S_IFBLK,
1075 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
1076 			cmn_err(CE_NOTE, "[%d] Couldn't add block node '%s'",
1077 			    instance, name);
1078 			return (EIO);
1079 		}
1080 
1081 		/* if any device node is created we set this flag */
1082 		vdc->initialized |= VDC_MINOR;
1083 
1084 		(void) snprintf(name, sizeof (name), "%c%s", 'a' + i, ",raw");
1085 
1086 		if (ddi_create_minor_node(dip, name, S_IFCHR,
1087 		    VD_MAKE_DEV(instance, i), DDI_NT_BLOCK, 0) != DDI_SUCCESS) {
1088 			cmn_err(CE_NOTE, "[%d] Couldn't add raw node '%s'",
1089 			    instance, name);
1090 			return (EIO);
1091 		}
1092 	}
1093 
1094 	return (0);
1095 }
1096 
1097 /*
1098  * Driver prop_op(9e) entry point function. Return the number of blocks for
1099  * the partition in question or forward the request to the property facilities.
1100  */
1101 static int
1102 vdc_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1103     char *name, caddr_t valuep, int *lengthp)
1104 {
1105 	int instance = ddi_get_instance(dip);
1106 	vdc_t *vdc;
1107 	uint64_t nblocks;
1108 	uint_t blksize;
1109 
1110 	vdc = ddi_get_soft_state(vdc_state, instance);
1111 
1112 	if (dev == DDI_DEV_T_ANY || vdc == NULL) {
1113 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1114 		    name, valuep, lengthp));
1115 	}
1116 
1117 	mutex_enter(&vdc->lock);
1118 	(void) vdc_validate_geometry(vdc);
1119 	if (vdc->vdisk_label == VD_DISK_LABEL_UNK) {
1120 		mutex_exit(&vdc->lock);
1121 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1122 		    name, valuep, lengthp));
1123 	}
1124 	nblocks = vdc->slice[VDCPART(dev)].nblocks;
1125 	blksize = vdc->block_size;
1126 	mutex_exit(&vdc->lock);
1127 
1128 	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags,
1129 	    name, valuep, lengthp, nblocks, blksize));
1130 }
1131 
1132 /*
1133  * Function:
1134  *	vdc_is_opened
1135  *
1136  * Description:
1137  *	This function checks if any slice of a given virtual disk is
1138  *	currently opened.
1139  *
1140  * Parameters:
1141  *	vdc 		- soft state pointer
1142  *
1143  * Return Values
1144  *	B_TRUE		- at least one slice is opened.
1145  *	B_FALSE		- no slice is opened.
1146  */
1147 static boolean_t
1148 vdc_is_opened(vdc_t *vdc)
1149 {
1150 	int i, nslices;
1151 
1152 	switch (vdc->vdisk_type) {
1153 	case VD_DISK_TYPE_DISK:
1154 		nslices = V_NUMPAR;
1155 		break;
1156 	case VD_DISK_TYPE_SLICE:
1157 		nslices = 1;
1158 		break;
1159 	case VD_DISK_TYPE_UNK:
1160 	default:
1161 		ASSERT(0);
1162 	}
1163 
1164 	/* check if there's any layered open */
1165 	for (i = 0; i < nslices; i++) {
1166 		if (vdc->open_lyr[i] > 0)
1167 			return (B_TRUE);
1168 	}
1169 
1170 	/* check if there is any other kind of open */
1171 	for (i = 0; i < OTYPCNT; i++) {
1172 		if (vdc->open[i] != 0)
1173 			return (B_TRUE);
1174 	}
1175 
1176 	return (B_FALSE);
1177 }
1178 
1179 static int
1180 vdc_mark_opened(vdc_t *vdc, int slice, int flag, int otyp)
1181 {
1182 	uint8_t slicemask;
1183 	int i;
1184 
1185 	ASSERT(otyp < OTYPCNT);
1186 	ASSERT(slice < V_NUMPAR);
1187 	ASSERT(MUTEX_HELD(&vdc->lock));
1188 
1189 	slicemask = 1 << slice;
1190 
1191 	/* check if slice is already exclusively opened */
1192 	if (vdc->open_excl & slicemask)
1193 		return (EBUSY);
1194 
1195 	/* if open exclusive, check if slice is already opened */
1196 	if (flag & FEXCL) {
1197 		if (vdc->open_lyr[slice] > 0)
1198 			return (EBUSY);
1199 		for (i = 0; i < OTYPCNT; i++) {
1200 			if (vdc->open[i] & slicemask)
1201 				return (EBUSY);
1202 		}
1203 		vdc->open_excl |= slicemask;
1204 	}
1205 
1206 	/* mark slice as opened */
1207 	if (otyp == OTYP_LYR) {
1208 		vdc->open_lyr[slice]++;
1209 	} else {
1210 		vdc->open[otyp] |= slicemask;
1211 	}
1212 
1213 	return (0);
1214 }
1215 
1216 static void
1217 vdc_mark_closed(vdc_t *vdc, int slice, int flag, int otyp)
1218 {
1219 	uint8_t slicemask;
1220 
1221 	ASSERT(otyp < OTYPCNT);
1222 	ASSERT(slice < V_NUMPAR);
1223 	ASSERT(MUTEX_HELD(&vdc->lock));
1224 
1225 	slicemask = 1 << slice;
1226 
1227 	if (otyp == OTYP_LYR) {
1228 		ASSERT(vdc->open_lyr[slice] > 0);
1229 		vdc->open_lyr[slice]--;
1230 	} else {
1231 		vdc->open[otyp] &= ~slicemask;
1232 	}
1233 
1234 	if (flag & FEXCL)
1235 		vdc->open_excl &= ~slicemask;
1236 }
1237 
1238 static int
1239 vdc_open(dev_t *dev, int flag, int otyp, cred_t *cred)
1240 {
1241 	_NOTE(ARGUNUSED(cred))
1242 
1243 	int	instance, nodelay;
1244 	int	slice, status = 0;
1245 	vdc_t	*vdc;
1246 
1247 	ASSERT(dev != NULL);
1248 	instance = VDCUNIT(*dev);
1249 
1250 	if (otyp >= OTYPCNT)
1251 		return (EINVAL);
1252 
1253 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1254 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1255 		return (ENXIO);
1256 	}
1257 
1258 	DMSG(vdc, 0, "minor = %d flag = %x, otyp = %x\n",
1259 	    getminor(*dev), flag, otyp);
1260 
1261 	slice = VDCPART(*dev);
1262 
1263 	nodelay = flag & (FNDELAY | FNONBLOCK);
1264 
1265 	if ((flag & FWRITE) && (!nodelay) &&
1266 	    !(VD_OP_SUPPORTED(vdc->operations, VD_OP_BWRITE))) {
1267 		return (EROFS);
1268 	}
1269 
1270 	mutex_enter(&vdc->lock);
1271 
1272 	status = vdc_mark_opened(vdc, slice, flag, otyp);
1273 
1274 	if (status != 0) {
1275 		mutex_exit(&vdc->lock);
1276 		return (status);
1277 	}
1278 
1279 	if (nodelay) {
1280 
1281 		/* don't resubmit a validate request if there's already one */
1282 		if (vdc->validate_pending > 0) {
1283 			mutex_exit(&vdc->lock);
1284 			return (0);
1285 		}
1286 
1287 		/* call vdc_validate() asynchronously to avoid blocking */
1288 		if (taskq_dispatch(system_taskq, vdc_validate_task,
1289 		    (void *)vdc, TQ_NOSLEEP) == NULL) {
1290 			vdc_mark_closed(vdc, slice, flag, otyp);
1291 			mutex_exit(&vdc->lock);
1292 			return (ENXIO);
1293 		}
1294 
1295 		vdc->validate_pending++;
1296 		mutex_exit(&vdc->lock);
1297 		return (0);
1298 	}
1299 
1300 	mutex_exit(&vdc->lock);
1301 
1302 	vdc_validate(vdc);
1303 
1304 	mutex_enter(&vdc->lock);
1305 
1306 	if (vdc->vdisk_label == VD_DISK_LABEL_UNK ||
1307 	    vdc->slice[slice].nblocks == 0) {
1308 		vdc_mark_closed(vdc, slice, flag, otyp);
1309 		status = EIO;
1310 	}
1311 
1312 	mutex_exit(&vdc->lock);
1313 
1314 	return (status);
1315 }
1316 
1317 static int
1318 vdc_close(dev_t dev, int flag, int otyp, cred_t *cred)
1319 {
1320 	_NOTE(ARGUNUSED(cred))
1321 
1322 	int	instance;
1323 	int	slice;
1324 	int	rv, rval;
1325 	vdc_t	*vdc;
1326 
1327 	instance = VDCUNIT(dev);
1328 
1329 	if (otyp >= OTYPCNT)
1330 		return (EINVAL);
1331 
1332 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1333 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1334 		return (ENXIO);
1335 	}
1336 
1337 	DMSG(vdc, 0, "[%d] flag = %x, otyp = %x\n", instance, flag, otyp);
1338 
1339 	slice = VDCPART(dev);
1340 
1341 	/*
1342 	 * Attempt to flush the W$ on a close operation. If this is
1343 	 * not a supported IOCTL command or the backing device is read-only
1344 	 * do not fail the close operation.
1345 	 */
1346 	rv = vd_process_ioctl(dev, DKIOCFLUSHWRITECACHE, NULL, FKIOCTL, &rval);
1347 
1348 	if (rv != 0 && rv != ENOTSUP && rv != ENOTTY && rv != EROFS) {
1349 		DMSG(vdc, 0, "[%d] flush failed with error %d on close\n",
1350 		    instance, rv);
1351 		return (EIO);
1352 	}
1353 
1354 	mutex_enter(&vdc->lock);
1355 	vdc_mark_closed(vdc, slice, flag, otyp);
1356 	mutex_exit(&vdc->lock);
1357 
1358 	return (0);
1359 }
1360 
1361 static int
1362 vdc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
1363 {
1364 	_NOTE(ARGUNUSED(credp))
1365 
1366 	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, mode, rvalp));
1367 }
1368 
1369 static int
1370 vdc_print(dev_t dev, char *str)
1371 {
1372 	cmn_err(CE_NOTE, "vdc%d:  %s", VDCUNIT(dev), str);
1373 	return (0);
1374 }
1375 
1376 static int
1377 vdc_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
1378 {
1379 	int	rv;
1380 	size_t	nbytes = nblk * DEV_BSIZE;
1381 	int	instance = VDCUNIT(dev);
1382 	vdc_t	*vdc = NULL;
1383 
1384 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1385 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1386 		return (ENXIO);
1387 	}
1388 
1389 	DMSG(vdc, 2, "[%d] dump %ld bytes at block 0x%lx : addr=0x%p\n",
1390 	    instance, nbytes, blkno, (void *)addr);
1391 	rv = vdc_send_request(vdc, VD_OP_BWRITE, addr, nbytes,
1392 	    VDCPART(dev), blkno, CB_STRATEGY, 0, VIO_write_dir);
1393 	if (rv) {
1394 		DMSG(vdc, 0, "Failed to do a disk dump (err=%d)\n", rv);
1395 		return (rv);
1396 	}
1397 
1398 	if (ddi_in_panic())
1399 		(void) vdc_drain_response(vdc, NULL);
1400 
1401 	DMSG(vdc, 0, "[%d] End\n", instance);
1402 
1403 	return (0);
1404 }
1405 
1406 /* -------------------------------------------------------------------------- */
1407 
1408 /*
1409  * Disk access routines
1410  *
1411  */
1412 
1413 /*
1414  * vdc_strategy()
1415  *
1416  * Return Value:
1417  *	0:	As per strategy(9E), the strategy() function must return 0
1418  *		[ bioerror(9f) sets b_flags to the proper error code ]
1419  */
1420 static int
1421 vdc_strategy(struct buf *buf)
1422 {
1423 	int	rv = -1;
1424 	vdc_t	*vdc = NULL;
1425 	int	instance = VDCUNIT(buf->b_edev);
1426 	int	op = (buf->b_flags & B_READ) ? VD_OP_BREAD : VD_OP_BWRITE;
1427 	int	slice;
1428 
1429 	if ((vdc = ddi_get_soft_state(vdc_state, instance)) == NULL) {
1430 		cmn_err(CE_NOTE, "[%d] Couldn't get state structure", instance);
1431 		bioerror(buf, ENXIO);
1432 		biodone(buf);
1433 		return (0);
1434 	}
1435 
1436 	DMSG(vdc, 2, "[%d] %s %ld bytes at block %llx : b_addr=0x%p\n",
1437 	    instance, (buf->b_flags & B_READ) ? "Read" : "Write",
1438 	    buf->b_bcount, buf->b_lblkno, (void *)buf->b_un.b_addr);
1439 
1440 	bp_mapin(buf);
1441 
1442 	if ((long)buf->b_private == VD_SLICE_NONE) {
1443 		/* I/O using an absolute disk offset */
1444 		slice = VD_SLICE_NONE;
1445 	} else {
1446 		slice = VDCPART(buf->b_edev);
1447 	}
1448 
1449 	rv = vdc_send_request(vdc, op, (caddr_t)buf->b_un.b_addr,
1450 	    buf->b_bcount, slice, buf->b_lblkno,
1451 	    CB_STRATEGY, buf, (op == VD_OP_BREAD) ? VIO_read_dir :
1452 	    VIO_write_dir);
1453 
1454 	/*
1455 	 * If the request was successfully sent, the strategy call returns and
1456 	 * the ACK handler calls the bioxxx functions when the vDisk server is
1457 	 * done otherwise we handle the error here.
1458 	 */
1459 	if (rv) {
1460 		DMSG(vdc, 0, "Failed to read/write (err=%d)\n", rv);
1461 		bioerror(buf, rv);
1462 		biodone(buf);
1463 	} else if (ddi_in_panic()) {
1464 		(void) vdc_drain_response(vdc, buf);
1465 	}
1466 
1467 	return (0);
1468 }
1469 
1470 /*
1471  * Function:
1472  *	vdc_min
1473  *
1474  * Description:
1475  *	Routine to limit the size of a data transfer. Used in
1476  *	conjunction with physio(9F).
1477  *
1478  * Arguments:
1479  *	bp - pointer to the indicated buf(9S) struct.
1480  *
1481  */
1482 static void
1483 vdc_min(struct buf *bufp)
1484 {
1485 	vdc_t	*vdc = NULL;
1486 	int	instance = VDCUNIT(bufp->b_edev);
1487 
1488 	vdc = ddi_get_soft_state(vdc_state, instance);
1489 	VERIFY(vdc != NULL);
1490 
1491 	if (bufp->b_bcount > (vdc->max_xfer_sz * vdc->block_size)) {
1492 		bufp->b_bcount = vdc->max_xfer_sz * vdc->block_size;
1493 	}
1494 }
1495 
1496 static int
1497 vdc_read(dev_t dev, struct uio *uio, cred_t *cred)
1498 {
1499 	_NOTE(ARGUNUSED(cred))
1500 
1501 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1502 	return (physio(vdc_strategy, NULL, dev, B_READ, vdc_min, uio));
1503 }
1504 
1505 static int
1506 vdc_write(dev_t dev, struct uio *uio, cred_t *cred)
1507 {
1508 	_NOTE(ARGUNUSED(cred))
1509 
1510 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1511 	return (physio(vdc_strategy, NULL, dev, B_WRITE, vdc_min, uio));
1512 }
1513 
1514 static int
1515 vdc_aread(dev_t dev, struct aio_req *aio, cred_t *cred)
1516 {
1517 	_NOTE(ARGUNUSED(cred))
1518 
1519 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1520 	return (aphysio(vdc_strategy, anocancel, dev, B_READ, vdc_min, aio));
1521 }
1522 
1523 static int
1524 vdc_awrite(dev_t dev, struct aio_req *aio, cred_t *cred)
1525 {
1526 	_NOTE(ARGUNUSED(cred))
1527 
1528 	DMSGX(1, "[%d] Entered", VDCUNIT(dev));
1529 	return (aphysio(vdc_strategy, anocancel, dev, B_WRITE, vdc_min, aio));
1530 }
1531 
1532 
1533 /* -------------------------------------------------------------------------- */
1534 
1535 /*
1536  * Handshake support
1537  */
1538 
1539 
1540 /*
1541  * Function:
1542  *	vdc_init_ver_negotiation()
1543  *
1544  * Description:
1545  *
1546  * Arguments:
1547  *	vdc	- soft state pointer for this instance of the device driver.
1548  *
1549  * Return Code:
1550  *	0	- Success
1551  */
1552 static int
1553 vdc_init_ver_negotiation(vdc_t *vdc, vio_ver_t ver)
1554 {
1555 	vio_ver_msg_t	pkt;
1556 	size_t		msglen = sizeof (pkt);
1557 	int		status = -1;
1558 
1559 	ASSERT(vdc != NULL);
1560 	ASSERT(mutex_owned(&vdc->lock));
1561 
1562 	DMSG(vdc, 0, "[%d] Entered.\n", vdc->instance);
1563 
1564 	/*
1565 	 * set the Session ID to a unique value
1566 	 * (the lower 32 bits of the clock tick)
1567 	 */
1568 	vdc->session_id = ((uint32_t)gettick() & 0xffffffff);
1569 	DMSG(vdc, 0, "[%d] Set SID to 0x%lx\n", vdc->instance, vdc->session_id);
1570 
1571 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1572 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1573 	pkt.tag.vio_subtype_env = VIO_VER_INFO;
1574 	pkt.tag.vio_sid = vdc->session_id;
1575 	pkt.dev_class = VDEV_DISK;
1576 	pkt.ver_major = ver.major;
1577 	pkt.ver_minor = ver.minor;
1578 
1579 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1580 	DMSG(vdc, 0, "[%d] Ver info sent (status = %d)\n",
1581 	    vdc->instance, status);
1582 	if ((status != 0) || (msglen != sizeof (vio_ver_msg_t))) {
1583 		DMSG(vdc, 0, "[%d] Failed to send Ver negotiation info: "
1584 		    "id(%lx) rv(%d) size(%ld)", vdc->instance,
1585 		    vdc->curr_server->ldc_handle, status, msglen);
1586 		if (msglen != sizeof (vio_ver_msg_t))
1587 			status = ENOMSG;
1588 	}
1589 
1590 	return (status);
1591 }
1592 
1593 /*
1594  * Function:
1595  *	vdc_ver_negotiation()
1596  *
1597  * Description:
1598  *
1599  * Arguments:
1600  *	vdcp	- soft state pointer for this instance of the device driver.
1601  *
1602  * Return Code:
1603  *	0	- Success
1604  */
1605 static int
1606 vdc_ver_negotiation(vdc_t *vdcp)
1607 {
1608 	vio_msg_t vio_msg;
1609 	int status;
1610 
1611 	if (status = vdc_init_ver_negotiation(vdcp, vdc_version[0]))
1612 		return (status);
1613 
1614 	/* release lock and wait for response */
1615 	mutex_exit(&vdcp->lock);
1616 	status = vdc_wait_for_response(vdcp, &vio_msg);
1617 	mutex_enter(&vdcp->lock);
1618 	if (status) {
1619 		DMSG(vdcp, 0,
1620 		    "[%d] Failed waiting for Ver negotiation response, rv(%d)",
1621 		    vdcp->instance, status);
1622 		return (status);
1623 	}
1624 
1625 	/* check type and sub_type ... */
1626 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1627 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1628 		DMSG(vdcp, 0, "[%d] Invalid ver negotiation response\n",
1629 		    vdcp->instance);
1630 		return (EPROTO);
1631 	}
1632 
1633 	return (vdc_handle_ver_msg(vdcp, (vio_ver_msg_t *)&vio_msg));
1634 }
1635 
1636 /*
1637  * Function:
1638  *	vdc_init_attr_negotiation()
1639  *
1640  * Description:
1641  *
1642  * Arguments:
1643  *	vdc	- soft state pointer for this instance of the device driver.
1644  *
1645  * Return Code:
1646  *	0	- Success
1647  */
1648 static int
1649 vdc_init_attr_negotiation(vdc_t *vdc)
1650 {
1651 	vd_attr_msg_t	pkt;
1652 	size_t		msglen = sizeof (pkt);
1653 	int		status;
1654 
1655 	ASSERT(vdc != NULL);
1656 	ASSERT(mutex_owned(&vdc->lock));
1657 
1658 	DMSG(vdc, 0, "[%d] entered\n", vdc->instance);
1659 
1660 	/* fill in tag */
1661 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1662 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1663 	pkt.tag.vio_subtype_env = VIO_ATTR_INFO;
1664 	pkt.tag.vio_sid = vdc->session_id;
1665 	/* fill in payload */
1666 	pkt.max_xfer_sz = vdc->max_xfer_sz;
1667 	pkt.vdisk_block_size = vdc->block_size;
1668 	pkt.xfer_mode = VIO_DRING_MODE_V1_0;
1669 	pkt.operations = 0;	/* server will set bits of valid operations */
1670 	pkt.vdisk_type = 0;	/* server will set to valid device type */
1671 	pkt.vdisk_media = 0;	/* server will set to valid media type */
1672 	pkt.vdisk_size = 0;	/* server will set to valid size */
1673 
1674 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1675 	DMSG(vdc, 0, "Attr info sent (status = %d)\n", status);
1676 
1677 	if ((status != 0) || (msglen != sizeof (vd_attr_msg_t))) {
1678 		DMSG(vdc, 0, "[%d] Failed to send Attr negotiation info: "
1679 		    "id(%lx) rv(%d) size(%ld)", vdc->instance,
1680 		    vdc->curr_server->ldc_handle, status, msglen);
1681 		if (msglen != sizeof (vd_attr_msg_t))
1682 			status = ENOMSG;
1683 	}
1684 
1685 	return (status);
1686 }
1687 
1688 /*
1689  * Function:
1690  *	vdc_attr_negotiation()
1691  *
1692  * Description:
1693  *
1694  * Arguments:
1695  *	vdc	- soft state pointer for this instance of the device driver.
1696  *
1697  * Return Code:
1698  *	0	- Success
1699  */
1700 static int
1701 vdc_attr_negotiation(vdc_t *vdcp)
1702 {
1703 	int status;
1704 	vio_msg_t vio_msg;
1705 
1706 	if (status = vdc_init_attr_negotiation(vdcp))
1707 		return (status);
1708 
1709 	/* release lock and wait for response */
1710 	mutex_exit(&vdcp->lock);
1711 	status = vdc_wait_for_response(vdcp, &vio_msg);
1712 	mutex_enter(&vdcp->lock);
1713 	if (status) {
1714 		DMSG(vdcp, 0,
1715 		    "[%d] Failed waiting for Attr negotiation response, rv(%d)",
1716 		    vdcp->instance, status);
1717 		return (status);
1718 	}
1719 
1720 	/* check type and sub_type ... */
1721 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1722 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1723 		DMSG(vdcp, 0, "[%d] Invalid attr negotiation response\n",
1724 		    vdcp->instance);
1725 		return (EPROTO);
1726 	}
1727 
1728 	return (vdc_handle_attr_msg(vdcp, (vd_attr_msg_t *)&vio_msg));
1729 }
1730 
1731 
1732 /*
1733  * Function:
1734  *	vdc_init_dring_negotiate()
1735  *
1736  * Description:
1737  *
1738  * Arguments:
1739  *	vdc	- soft state pointer for this instance of the device driver.
1740  *
1741  * Return Code:
1742  *	0	- Success
1743  */
1744 static int
1745 vdc_init_dring_negotiate(vdc_t *vdc)
1746 {
1747 	vio_dring_reg_msg_t	pkt;
1748 	size_t			msglen = sizeof (pkt);
1749 	int			status = -1;
1750 	int			retry;
1751 	int			nretries = 10;
1752 
1753 	ASSERT(vdc != NULL);
1754 	ASSERT(mutex_owned(&vdc->lock));
1755 
1756 	for (retry = 0; retry < nretries; retry++) {
1757 		status = vdc_init_descriptor_ring(vdc);
1758 		if (status != EAGAIN)
1759 			break;
1760 		drv_usecwait(vdc_min_timeout_ldc);
1761 	}
1762 
1763 	if (status != 0) {
1764 		DMSG(vdc, 0, "[%d] Failed to init DRing (status = %d)\n",
1765 		    vdc->instance, status);
1766 		return (status);
1767 	}
1768 
1769 	DMSG(vdc, 0, "[%d] Init of descriptor ring completed (status = %d)\n",
1770 	    vdc->instance, status);
1771 
1772 	/* fill in tag */
1773 	pkt.tag.vio_msgtype = VIO_TYPE_CTRL;
1774 	pkt.tag.vio_subtype = VIO_SUBTYPE_INFO;
1775 	pkt.tag.vio_subtype_env = VIO_DRING_REG;
1776 	pkt.tag.vio_sid = vdc->session_id;
1777 	/* fill in payload */
1778 	pkt.dring_ident = 0;
1779 	pkt.num_descriptors = vdc->dring_len;
1780 	pkt.descriptor_size = vdc->dring_entry_size;
1781 	pkt.options = (VIO_TX_DRING | VIO_RX_DRING);
1782 	pkt.ncookies = vdc->dring_cookie_count;
1783 	pkt.cookie[0] = vdc->dring_cookie[0];	/* for now just one cookie */
1784 
1785 	status = vdc_send(vdc, (caddr_t)&pkt, &msglen);
1786 	if (status != 0) {
1787 		DMSG(vdc, 0, "[%d] Failed to register DRing (err = %d)",
1788 		    vdc->instance, status);
1789 	}
1790 
1791 	return (status);
1792 }
1793 
1794 
1795 /*
1796  * Function:
1797  *	vdc_dring_negotiation()
1798  *
1799  * Description:
1800  *
1801  * Arguments:
1802  *	vdc	- soft state pointer for this instance of the device driver.
1803  *
1804  * Return Code:
1805  *	0	- Success
1806  */
1807 static int
1808 vdc_dring_negotiation(vdc_t *vdcp)
1809 {
1810 	int status;
1811 	vio_msg_t vio_msg;
1812 
1813 	if (status = vdc_init_dring_negotiate(vdcp))
1814 		return (status);
1815 
1816 	/* release lock and wait for response */
1817 	mutex_exit(&vdcp->lock);
1818 	status = vdc_wait_for_response(vdcp, &vio_msg);
1819 	mutex_enter(&vdcp->lock);
1820 	if (status) {
1821 		DMSG(vdcp, 0,
1822 		    "[%d] Failed waiting for Dring negotiation response,"
1823 		    " rv(%d)", vdcp->instance, status);
1824 		return (status);
1825 	}
1826 
1827 	/* check type and sub_type ... */
1828 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1829 	    vio_msg.tag.vio_subtype == VIO_SUBTYPE_INFO) {
1830 		DMSG(vdcp, 0, "[%d] Invalid Dring negotiation response\n",
1831 		    vdcp->instance);
1832 		return (EPROTO);
1833 	}
1834 
1835 	return (vdc_handle_dring_reg_msg(vdcp,
1836 	    (vio_dring_reg_msg_t *)&vio_msg));
1837 }
1838 
1839 
1840 /*
1841  * Function:
1842  *	vdc_send_rdx()
1843  *
1844  * Description:
1845  *
1846  * Arguments:
1847  *	vdc	- soft state pointer for this instance of the device driver.
1848  *
1849  * Return Code:
1850  *	0	- Success
1851  */
1852 static int
1853 vdc_send_rdx(vdc_t *vdcp)
1854 {
1855 	vio_msg_t	msg;
1856 	size_t		msglen = sizeof (vio_msg_t);
1857 	int		status;
1858 
1859 	/*
1860 	 * Send an RDX message to vds to indicate we are ready
1861 	 * to send data
1862 	 */
1863 	msg.tag.vio_msgtype = VIO_TYPE_CTRL;
1864 	msg.tag.vio_subtype = VIO_SUBTYPE_INFO;
1865 	msg.tag.vio_subtype_env = VIO_RDX;
1866 	msg.tag.vio_sid = vdcp->session_id;
1867 	status = vdc_send(vdcp, (caddr_t)&msg, &msglen);
1868 	if (status != 0) {
1869 		DMSG(vdcp, 0, "[%d] Failed to send RDX message (%d)",
1870 		    vdcp->instance, status);
1871 	}
1872 
1873 	return (status);
1874 }
1875 
1876 /*
1877  * Function:
1878  *	vdc_handle_rdx()
1879  *
1880  * Description:
1881  *
1882  * Arguments:
1883  *	vdc	- soft state pointer for this instance of the device driver.
1884  *	msgp	- received msg
1885  *
1886  * Return Code:
1887  *	0	- Success
1888  */
1889 static int
1890 vdc_handle_rdx(vdc_t *vdcp, vio_rdx_msg_t *msgp)
1891 {
1892 	_NOTE(ARGUNUSED(vdcp))
1893 	_NOTE(ARGUNUSED(msgp))
1894 
1895 	ASSERT(msgp->tag.vio_msgtype == VIO_TYPE_CTRL);
1896 	ASSERT(msgp->tag.vio_subtype == VIO_SUBTYPE_ACK);
1897 	ASSERT(msgp->tag.vio_subtype_env == VIO_RDX);
1898 
1899 	DMSG(vdcp, 1, "[%d] Got an RDX msg", vdcp->instance);
1900 
1901 	return (0);
1902 }
1903 
1904 /*
1905  * Function:
1906  *	vdc_rdx_exchange()
1907  *
1908  * Description:
1909  *
1910  * Arguments:
1911  *	vdc	- soft state pointer for this instance of the device driver.
1912  *
1913  * Return Code:
1914  *	0	- Success
1915  */
1916 static int
1917 vdc_rdx_exchange(vdc_t *vdcp)
1918 {
1919 	int status;
1920 	vio_msg_t vio_msg;
1921 
1922 	if (status = vdc_send_rdx(vdcp))
1923 		return (status);
1924 
1925 	/* release lock and wait for response */
1926 	mutex_exit(&vdcp->lock);
1927 	status = vdc_wait_for_response(vdcp, &vio_msg);
1928 	mutex_enter(&vdcp->lock);
1929 	if (status) {
1930 		DMSG(vdcp, 0, "[%d] Failed waiting for RDX response, rv(%d)",
1931 		    vdcp->instance, status);
1932 		return (status);
1933 	}
1934 
1935 	/* check type and sub_type ... */
1936 	if (vio_msg.tag.vio_msgtype != VIO_TYPE_CTRL ||
1937 	    vio_msg.tag.vio_subtype != VIO_SUBTYPE_ACK) {
1938 		DMSG(vdcp, 0, "[%d] Invalid RDX response\n", vdcp->instance);
1939 		return (EPROTO);
1940 	}
1941 
1942 	return (vdc_handle_rdx(vdcp, (vio_rdx_msg_t *)&vio_msg));
1943 }
1944 
1945 
1946 /* -------------------------------------------------------------------------- */
1947 
1948 /*
1949  * LDC helper routines
1950  */
1951 
1952 static int
1953 vdc_recv(vdc_t *vdc, vio_msg_t *msgp, size_t *nbytesp)
1954 {
1955 	int		status;
1956 	boolean_t	q_has_pkts = B_FALSE;
1957 	uint64_t	delay_time;
1958 	size_t		len;
1959 
1960 	mutex_enter(&vdc->read_lock);
1961 
1962 	if (vdc->read_state == VDC_READ_IDLE)
1963 		vdc->read_state = VDC_READ_WAITING;
1964 
1965 	while (vdc->read_state != VDC_READ_PENDING) {
1966 
1967 		/* detect if the connection has been reset */
1968 		if (vdc->read_state == VDC_READ_RESET) {
1969 			status = ECONNRESET;
1970 			goto done;
1971 		}
1972 
1973 		cv_wait(&vdc->read_cv, &vdc->read_lock);
1974 	}
1975 
1976 	/*
1977 	 * Until we get a blocking ldc read we have to retry
1978 	 * until the entire LDC message has arrived before
1979 	 * ldc_read() will succeed. Note we also bail out if
1980 	 * the channel is reset or goes away.
1981 	 */
1982 	delay_time = vdc_ldc_read_init_delay;
1983 loop:
1984 	len = *nbytesp;
1985 	status = ldc_read(vdc->curr_server->ldc_handle, (caddr_t)msgp, &len);
1986 	switch (status) {
1987 	case EAGAIN:
1988 		delay_time *= 2;
1989 		if (delay_time >= vdc_ldc_read_max_delay)
1990 			delay_time = vdc_ldc_read_max_delay;
1991 		delay(delay_time);
1992 		goto loop;
1993 
1994 	case 0:
1995 		if (len == 0) {
1996 			DMSG(vdc, 1, "[%d] ldc_read returned 0 bytes with "
1997 			    "no error!\n", vdc->instance);
1998 			goto loop;
1999 		}
2000 
2001 		*nbytesp = len;
2002 
2003 		/*
2004 		 * If there are pending messages, leave the
2005 		 * read state as pending. Otherwise, set the state
2006 		 * back to idle.
2007 		 */
2008 		status = ldc_chkq(vdc->curr_server->ldc_handle, &q_has_pkts);
2009 		if (status == 0 && !q_has_pkts)
2010 			vdc->read_state = VDC_READ_IDLE;
2011 
2012 		break;
2013 	default:
2014 		DMSG(vdc, 0, "ldc_read returned %d\n", status);
2015 		break;
2016 	}
2017 
2018 done:
2019 	mutex_exit(&vdc->read_lock);
2020 
2021 	return (status);
2022 }
2023 
2024 
2025 
2026 #ifdef DEBUG
2027 void
2028 vdc_decode_tag(vdc_t *vdcp, vio_msg_t *msg)
2029 {
2030 	char *ms, *ss, *ses;
2031 	switch (msg->tag.vio_msgtype) {
2032 #define	Q(_s)	case _s : ms = #_s; break;
2033 	Q(VIO_TYPE_CTRL)
2034 	Q(VIO_TYPE_DATA)
2035 	Q(VIO_TYPE_ERR)
2036 #undef Q
2037 	default: ms = "unknown"; break;
2038 	}
2039 
2040 	switch (msg->tag.vio_subtype) {
2041 #define	Q(_s)	case _s : ss = #_s; break;
2042 	Q(VIO_SUBTYPE_INFO)
2043 	Q(VIO_SUBTYPE_ACK)
2044 	Q(VIO_SUBTYPE_NACK)
2045 #undef Q
2046 	default: ss = "unknown"; break;
2047 	}
2048 
2049 	switch (msg->tag.vio_subtype_env) {
2050 #define	Q(_s)	case _s : ses = #_s; break;
2051 	Q(VIO_VER_INFO)
2052 	Q(VIO_ATTR_INFO)
2053 	Q(VIO_DRING_REG)
2054 	Q(VIO_DRING_UNREG)
2055 	Q(VIO_RDX)
2056 	Q(VIO_PKT_DATA)
2057 	Q(VIO_DESC_DATA)
2058 	Q(VIO_DRING_DATA)
2059 #undef Q
2060 	default: ses = "unknown"; break;
2061 	}
2062 
2063 	DMSG(vdcp, 3, "(%x/%x/%x) message : (%s/%s/%s)\n",
2064 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
2065 	    msg->tag.vio_subtype_env, ms, ss, ses);
2066 }
2067 #endif
2068 
2069 /*
2070  * Function:
2071  *	vdc_send()
2072  *
2073  * Description:
2074  *	The function encapsulates the call to write a message using LDC.
2075  *	If LDC indicates that the call failed due to the queue being full,
2076  *	we retry the ldc_write(), otherwise we return the error returned by LDC.
2077  *
2078  * Arguments:
2079  *	ldc_handle	- LDC handle for the channel this instance of vdc uses
2080  *	pkt		- address of LDC message to be sent
2081  *	msglen		- the size of the message being sent. When the function
2082  *			  returns, this contains the number of bytes written.
2083  *
2084  * Return Code:
2085  *	0		- Success.
2086  *	EINVAL		- pkt or msglen were NULL
2087  *	ECONNRESET	- The connection was not up.
2088  *	EWOULDBLOCK	- LDC queue is full
2089  *	xxx		- other error codes returned by ldc_write
2090  */
2091 static int
2092 vdc_send(vdc_t *vdc, caddr_t pkt, size_t *msglen)
2093 {
2094 	size_t	size = 0;
2095 	int	status = 0;
2096 	clock_t delay_ticks;
2097 
2098 	ASSERT(vdc != NULL);
2099 	ASSERT(mutex_owned(&vdc->lock));
2100 	ASSERT(msglen != NULL);
2101 	ASSERT(*msglen != 0);
2102 
2103 #ifdef DEBUG
2104 	vdc_decode_tag(vdc, (vio_msg_t *)(uintptr_t)pkt);
2105 #endif
2106 	/*
2107 	 * Wait indefinitely to send if channel
2108 	 * is busy, but bail out if we succeed or
2109 	 * if the channel closes or is reset.
2110 	 */
2111 	delay_ticks = vdc_hz_min_ldc_delay;
2112 	do {
2113 		size = *msglen;
2114 		status = ldc_write(vdc->curr_server->ldc_handle, pkt, &size);
2115 		if (status == EWOULDBLOCK) {
2116 			delay(delay_ticks);
2117 			/* geometric backoff */
2118 			delay_ticks *= 2;
2119 			if (delay_ticks > vdc_hz_max_ldc_delay)
2120 				delay_ticks = vdc_hz_max_ldc_delay;
2121 		}
2122 	} while (status == EWOULDBLOCK);
2123 
2124 	/* if LDC had serious issues --- reset vdc state */
2125 	if (status == EIO || status == ECONNRESET) {
2126 		/* LDC had serious issues --- reset vdc state */
2127 		mutex_enter(&vdc->read_lock);
2128 		if ((vdc->read_state == VDC_READ_WAITING) ||
2129 		    (vdc->read_state == VDC_READ_RESET))
2130 			cv_signal(&vdc->read_cv);
2131 		vdc->read_state = VDC_READ_RESET;
2132 		mutex_exit(&vdc->read_lock);
2133 
2134 		/* wake up any waiters in the reset thread */
2135 		if (vdc->state == VDC_STATE_INIT_WAITING) {
2136 			DMSG(vdc, 0, "[%d] write reset - "
2137 			    "vdc is resetting ..\n", vdc->instance);
2138 			vdc->state = VDC_STATE_RESETTING;
2139 			cv_signal(&vdc->initwait_cv);
2140 		}
2141 
2142 		return (ECONNRESET);
2143 	}
2144 
2145 	/* return the last size written */
2146 	*msglen = size;
2147 
2148 	return (status);
2149 }
2150 
2151 /*
2152  * Function:
2153  *	vdc_get_md_node
2154  *
2155  * Description:
2156  *	Get the MD, the device node for the given disk instance. The
2157  *	caller is responsible for cleaning up the reference to the
2158  *	returned MD (mdpp) by calling md_fini_handle().
2159  *
2160  * Arguments:
2161  *	dip	- dev info pointer for this instance of the device driver.
2162  *	mdpp	- the returned MD.
2163  *	vd_nodep - the returned device node.
2164  *
2165  * Return Code:
2166  *	0	- Success.
2167  *	ENOENT	- Expected node or property did not exist.
2168  *	ENXIO	- Unexpected error communicating with MD framework
2169  */
2170 static int
2171 vdc_get_md_node(dev_info_t *dip, md_t **mdpp, mde_cookie_t *vd_nodep)
2172 {
2173 	int		status = ENOENT;
2174 	char		*node_name = NULL;
2175 	md_t		*mdp = NULL;
2176 	int		num_nodes;
2177 	int		num_vdevs;
2178 	mde_cookie_t	rootnode;
2179 	mde_cookie_t	*listp = NULL;
2180 	boolean_t	found_inst = B_FALSE;
2181 	int		listsz;
2182 	int		idx;
2183 	uint64_t	md_inst;
2184 	int		obp_inst;
2185 	int		instance = ddi_get_instance(dip);
2186 
2187 	/*
2188 	 * Get the OBP instance number for comparison with the MD instance
2189 	 *
2190 	 * The "cfg-handle" property of a vdc node in an MD contains the MD's
2191 	 * notion of "instance", or unique identifier, for that node; OBP
2192 	 * stores the value of the "cfg-handle" MD property as the value of
2193 	 * the "reg" property on the node in the device tree it builds from
2194 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
2195 	 * "reg" property value to uniquely identify this device instance.
2196 	 * If the "reg" property cannot be found, the device tree state is
2197 	 * presumably so broken that there is no point in continuing.
2198 	 */
2199 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, OBP_REG)) {
2200 		cmn_err(CE_WARN, "'%s' property does not exist", OBP_REG);
2201 		return (ENOENT);
2202 	}
2203 	obp_inst = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2204 	    OBP_REG, -1);
2205 	DMSGX(1, "[%d] OBP inst=%d\n", instance, obp_inst);
2206 
2207 	/*
2208 	 * We now walk the MD nodes to find the node for this vdisk.
2209 	 */
2210 	if ((mdp = md_get_handle()) == NULL) {
2211 		cmn_err(CE_WARN, "unable to init machine description");
2212 		return (ENXIO);
2213 	}
2214 
2215 	num_nodes = md_node_count(mdp);
2216 	ASSERT(num_nodes > 0);
2217 
2218 	listsz = num_nodes * sizeof (mde_cookie_t);
2219 
2220 	/* allocate memory for nodes */
2221 	listp = kmem_zalloc(listsz, KM_SLEEP);
2222 
2223 	rootnode = md_root_node(mdp);
2224 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
2225 
2226 	/*
2227 	 * Search for all the virtual devices, we will then check to see which
2228 	 * ones are disk nodes.
2229 	 */
2230 	num_vdevs = md_scan_dag(mdp, rootnode,
2231 	    md_find_name(mdp, VDC_MD_VDEV_NAME),
2232 	    md_find_name(mdp, "fwd"), listp);
2233 
2234 	if (num_vdevs <= 0) {
2235 		cmn_err(CE_NOTE, "No '%s' node found", VDC_MD_VDEV_NAME);
2236 		status = ENOENT;
2237 		goto done;
2238 	}
2239 
2240 	DMSGX(1, "[%d] num_vdevs=%d\n", instance, num_vdevs);
2241 	for (idx = 0; idx < num_vdevs; idx++) {
2242 		status = md_get_prop_str(mdp, listp[idx], "name", &node_name);
2243 		if ((status != 0) || (node_name == NULL)) {
2244 			cmn_err(CE_NOTE, "Unable to get name of node type '%s'"
2245 			    ": err %d", VDC_MD_VDEV_NAME, status);
2246 			continue;
2247 		}
2248 
2249 		DMSGX(1, "[%d] Found node '%s'\n", instance, node_name);
2250 		if (strcmp(VDC_MD_DISK_NAME, node_name) == 0) {
2251 			status = md_get_prop_val(mdp, listp[idx],
2252 			    VDC_MD_CFG_HDL, &md_inst);
2253 			DMSGX(1, "[%d] vdc inst in MD=%lx\n",
2254 			    instance, md_inst);
2255 			if ((status == 0) && (md_inst == obp_inst)) {
2256 				found_inst = B_TRUE;
2257 				break;
2258 			}
2259 		}
2260 	}
2261 
2262 	if (!found_inst) {
2263 		DMSGX(0, "Unable to find correct '%s' node", VDC_MD_DISK_NAME);
2264 		status = ENOENT;
2265 		goto done;
2266 	}
2267 	DMSGX(0, "[%d] MD inst=%lx\n", instance, md_inst);
2268 
2269 	*vd_nodep = listp[idx];
2270 	*mdpp = mdp;
2271 done:
2272 	kmem_free(listp, listsz);
2273 	return (status);
2274 }
2275 
2276 /*
2277  * Function:
2278  *	vdc_init_ports
2279  *
2280  * Description:
2281  *	Initialize all the ports for this vdisk instance.
2282  *
2283  * Arguments:
2284  *	vdc	- soft state pointer for this instance of the device driver.
2285  *	mdp	- md pointer
2286  *	vd_nodep - device md node.
2287  *
2288  * Return Code:
2289  *	0	- Success.
2290  *	ENOENT	- Expected node or property did not exist.
2291  */
2292 static int
2293 vdc_init_ports(vdc_t *vdc, md_t *mdp, mde_cookie_t vd_nodep)
2294 {
2295 	int		status = 0;
2296 	int		idx;
2297 	int		num_nodes;
2298 	int		num_vports;
2299 	int		num_chans;
2300 	int		listsz;
2301 	mde_cookie_t	vd_port;
2302 	mde_cookie_t	*chanp = NULL;
2303 	mde_cookie_t	*portp = NULL;
2304 	vdc_server_t	*srvr;
2305 	vdc_server_t	*prev_srvr = NULL;
2306 
2307 	/*
2308 	 * We now walk the MD nodes to find the port nodes for this vdisk.
2309 	 */
2310 	num_nodes = md_node_count(mdp);
2311 	ASSERT(num_nodes > 0);
2312 
2313 	listsz = num_nodes * sizeof (mde_cookie_t);
2314 
2315 	/* allocate memory for nodes */
2316 	portp = kmem_zalloc(listsz, KM_SLEEP);
2317 	chanp = kmem_zalloc(listsz, KM_SLEEP);
2318 
2319 	num_vports = md_scan_dag(mdp, vd_nodep,
2320 	    md_find_name(mdp, VDC_MD_PORT_NAME),
2321 	    md_find_name(mdp, "fwd"), portp);
2322 	if (num_vports == 0) {
2323 		DMSGX(0, "Found no '%s' node for '%s' port\n",
2324 		    VDC_MD_PORT_NAME, VDC_MD_VDEV_NAME);
2325 		status = ENOENT;
2326 		goto done;
2327 	}
2328 
2329 	DMSGX(1, "Found %d '%s' node(s) for '%s' port\n",
2330 	    num_vports, VDC_MD_PORT_NAME, VDC_MD_VDEV_NAME);
2331 
2332 	vdc->num_servers = 0;
2333 	for (idx = 0; idx < num_vports; idx++) {
2334 
2335 		/* initialize this port */
2336 		vd_port = portp[idx];
2337 		srvr = kmem_zalloc(sizeof (vdc_server_t), KM_SLEEP);
2338 		srvr->vdcp = vdc;
2339 
2340 		/* get port id */
2341 		if (md_get_prop_val(mdp, vd_port, VDC_MD_ID, &srvr->id) != 0) {
2342 			cmn_err(CE_NOTE, "vDisk port '%s' property not found",
2343 			    VDC_MD_ID);
2344 			kmem_free(srvr, sizeof (vdc_server_t));
2345 			continue;
2346 		}
2347 
2348 		/* set the connection timeout */
2349 		if (md_get_prop_val(mdp, vd_port, VDC_MD_TIMEOUT,
2350 		    &srvr->ctimeout) != 0) {
2351 			srvr->ctimeout = 0;
2352 		}
2353 
2354 		/* get the ldc id */
2355 		num_chans = md_scan_dag(mdp, vd_port,
2356 		    md_find_name(mdp, VDC_MD_CHAN_NAME),
2357 		    md_find_name(mdp, "fwd"), chanp);
2358 
2359 		/* expecting at least one channel */
2360 		if (num_chans <= 0) {
2361 			cmn_err(CE_NOTE, "No '%s' node for '%s' port",
2362 			    VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME);
2363 			kmem_free(srvr, sizeof (vdc_server_t));
2364 			continue;
2365 		} else if (num_chans != 1) {
2366 			DMSGX(0, "Expected 1 '%s' node for '%s' port, "
2367 			    "found %d\n", VDC_MD_CHAN_NAME, VDC_MD_VDEV_NAME,
2368 			    num_chans);
2369 		}
2370 
2371 		/*
2372 		 * We use the first channel found (index 0), irrespective of how
2373 		 * many are there in total.
2374 		 */
2375 		if (md_get_prop_val(mdp, chanp[0], VDC_MD_ID,
2376 		    &srvr->ldc_id) != 0) {
2377 			cmn_err(CE_NOTE, "Channel '%s' property not found",
2378 			    VDC_MD_ID);
2379 			kmem_free(srvr, sizeof (vdc_server_t));
2380 			continue;
2381 		}
2382 
2383 		/*
2384 		 * now initialise LDC channel which will be used to
2385 		 * communicate with this server
2386 		 */
2387 		if (vdc_do_ldc_init(vdc, srvr) != 0) {
2388 			kmem_free(srvr, sizeof (vdc_server_t));
2389 			continue;
2390 		}
2391 
2392 		/* add server to list */
2393 		if (prev_srvr)
2394 			prev_srvr->next = srvr;
2395 		else
2396 			vdc->server_list = srvr;
2397 
2398 		prev_srvr = srvr;
2399 
2400 		/* inc numbers of servers */
2401 		vdc->num_servers++;
2402 	}
2403 
2404 	/*
2405 	 * Adjust the max number of handshake retries to match
2406 	 * the number of vdisk servers.
2407 	 */
2408 	if (vdc_hshake_retries < vdc->num_servers)
2409 		vdc_hshake_retries = vdc->num_servers;
2410 
2411 	/* pick first server as current server */
2412 	if (vdc->server_list != NULL) {
2413 		vdc->curr_server = vdc->server_list;
2414 		status = 0;
2415 	} else {
2416 		status = ENOENT;
2417 	}
2418 
2419 done:
2420 	kmem_free(chanp, listsz);
2421 	kmem_free(portp, listsz);
2422 	return (status);
2423 }
2424 
2425 
2426 /*
2427  * Function:
2428  *	vdc_do_ldc_up
2429  *
2430  * Description:
2431  *	Bring the channel for the current server up.
2432  *
2433  * Arguments:
2434  *	vdc	- soft state pointer for this instance of the device driver.
2435  *
2436  * Return Code:
2437  *	0		- Success.
2438  *	EINVAL		- Driver is detaching / LDC error
2439  *	ECONNREFUSED	- Other end is not listening
2440  */
2441 static int
2442 vdc_do_ldc_up(vdc_t *vdc)
2443 {
2444 	int		status;
2445 	ldc_status_t	ldc_state;
2446 
2447 	ASSERT(MUTEX_HELD(&vdc->lock));
2448 
2449 	DMSG(vdc, 0, "[%d] Bringing up channel %lx\n",
2450 	    vdc->instance, vdc->curr_server->ldc_id);
2451 
2452 	if (vdc->lifecycle == VDC_LC_DETACHING)
2453 		return (EINVAL);
2454 
2455 	if ((status = ldc_up(vdc->curr_server->ldc_handle)) != 0) {
2456 		switch (status) {
2457 		case ECONNREFUSED:	/* listener not ready at other end */
2458 			DMSG(vdc, 0, "[%d] ldc_up(%lx,...) return %d\n",
2459 			    vdc->instance, vdc->curr_server->ldc_id, status);
2460 			status = 0;
2461 			break;
2462 		default:
2463 			DMSG(vdc, 0, "[%d] Failed to bring up LDC: "
2464 			    "channel=%ld, err=%d", vdc->instance,
2465 			    vdc->curr_server->ldc_id, status);
2466 			break;
2467 		}
2468 	}
2469 
2470 	if (ldc_status(vdc->curr_server->ldc_handle, &ldc_state) == 0) {
2471 		vdc->curr_server->ldc_state = ldc_state;
2472 		if (ldc_state == LDC_UP) {
2473 			DMSG(vdc, 0, "[%d] LDC channel already up\n",
2474 			    vdc->instance);
2475 			vdc->seq_num = 1;
2476 			vdc->seq_num_reply = 0;
2477 		}
2478 	}
2479 
2480 	return (status);
2481 }
2482 
2483 /*
2484  * Function:
2485  *	vdc_terminate_ldc()
2486  *
2487  * Description:
2488  *
2489  * Arguments:
2490  *	vdc	- soft state pointer for this instance of the device driver.
2491  *	srvr	- vdc per-server info structure
2492  *
2493  * Return Code:
2494  *	None
2495  */
2496 static void
2497 vdc_terminate_ldc(vdc_t *vdc, vdc_server_t *srvr)
2498 {
2499 	int	instance = ddi_get_instance(vdc->dip);
2500 
2501 	if (srvr->state & VDC_LDC_OPEN) {
2502 		DMSG(vdc, 0, "[%d] ldc_close()\n", instance);
2503 		(void) ldc_close(srvr->ldc_handle);
2504 	}
2505 	if (srvr->state & VDC_LDC_CB) {
2506 		DMSG(vdc, 0, "[%d] ldc_unreg_callback()\n", instance);
2507 		(void) ldc_unreg_callback(srvr->ldc_handle);
2508 	}
2509 	if (srvr->state & VDC_LDC_INIT) {
2510 		DMSG(vdc, 0, "[%d] ldc_fini()\n", instance);
2511 		(void) ldc_fini(srvr->ldc_handle);
2512 		srvr->ldc_handle = NULL;
2513 	}
2514 
2515 	srvr->state &= ~(VDC_LDC_INIT | VDC_LDC_CB | VDC_LDC_OPEN);
2516 }
2517 
2518 /*
2519  * Function:
2520  *	vdc_fini_ports()
2521  *
2522  * Description:
2523  *	Finalize all ports by closing the channel associated with each
2524  *	port and also freeing the server structure.
2525  *
2526  * Arguments:
2527  *	vdc	- soft state pointer for this instance of the device driver.
2528  *
2529  * Return Code:
2530  *	None
2531  */
2532 static void
2533 vdc_fini_ports(vdc_t *vdc)
2534 {
2535 	int		instance = ddi_get_instance(vdc->dip);
2536 	vdc_server_t	*srvr, *prev_srvr;
2537 
2538 	ASSERT(vdc != NULL);
2539 	ASSERT(mutex_owned(&vdc->lock));
2540 
2541 	DMSG(vdc, 0, "[%d] initialized=%x\n", instance, vdc->initialized);
2542 
2543 	srvr = vdc->server_list;
2544 
2545 	while (srvr) {
2546 
2547 		vdc_terminate_ldc(vdc, srvr);
2548 
2549 		/* next server */
2550 		prev_srvr = srvr;
2551 		srvr = srvr->next;
2552 
2553 		/* free server */
2554 		kmem_free(prev_srvr, sizeof (vdc_server_t));
2555 	}
2556 
2557 	vdc->server_list = NULL;
2558 }
2559 
2560 /* -------------------------------------------------------------------------- */
2561 
2562 /*
2563  * Descriptor Ring helper routines
2564  */
2565 
2566 /*
2567  * Function:
2568  *	vdc_init_descriptor_ring()
2569  *
2570  * Description:
2571  *
2572  * Arguments:
2573  *	vdc	- soft state pointer for this instance of the device driver.
2574  *
2575  * Return Code:
2576  *	0	- Success
2577  */
2578 static int
2579 vdc_init_descriptor_ring(vdc_t *vdc)
2580 {
2581 	vd_dring_entry_t	*dep = NULL;	/* DRing Entry pointer */
2582 	int	status = 0;
2583 	int	i;
2584 
2585 	DMSG(vdc, 0, "[%d] initialized=%x\n", vdc->instance, vdc->initialized);
2586 
2587 	ASSERT(vdc != NULL);
2588 	ASSERT(mutex_owned(&vdc->lock));
2589 
2590 	/* ensure we have enough room to store max sized block */
2591 	ASSERT(maxphys <= VD_MAX_BLOCK_SIZE);
2592 
2593 	if ((vdc->initialized & VDC_DRING_INIT) == 0) {
2594 		DMSG(vdc, 0, "[%d] ldc_mem_dring_create\n", vdc->instance);
2595 		/*
2596 		 * Calculate the maximum block size we can transmit using one
2597 		 * Descriptor Ring entry from the attributes returned by the
2598 		 * vDisk server. This is subject to a minimum of 'maxphys'
2599 		 * as we do not have the capability to split requests over
2600 		 * multiple DRing entries.
2601 		 */
2602 		if ((vdc->max_xfer_sz * vdc->block_size) < maxphys) {
2603 			DMSG(vdc, 0, "[%d] using minimum DRing size\n",
2604 			    vdc->instance);
2605 			vdc->dring_max_cookies = maxphys / PAGESIZE;
2606 		} else {
2607 			vdc->dring_max_cookies =
2608 			    (vdc->max_xfer_sz * vdc->block_size) / PAGESIZE;
2609 		}
2610 		vdc->dring_entry_size = (sizeof (vd_dring_entry_t) +
2611 		    (sizeof (ldc_mem_cookie_t) *
2612 		    (vdc->dring_max_cookies - 1)));
2613 		vdc->dring_len = VD_DRING_LEN;
2614 
2615 		status = ldc_mem_dring_create(vdc->dring_len,
2616 		    vdc->dring_entry_size, &vdc->dring_hdl);
2617 		if ((vdc->dring_hdl == NULL) || (status != 0)) {
2618 			DMSG(vdc, 0, "[%d] Descriptor ring creation failed",
2619 			    vdc->instance);
2620 			return (status);
2621 		}
2622 		vdc->initialized |= VDC_DRING_INIT;
2623 	}
2624 
2625 	if ((vdc->initialized & VDC_DRING_BOUND) == 0) {
2626 		DMSG(vdc, 0, "[%d] ldc_mem_dring_bind\n", vdc->instance);
2627 		vdc->dring_cookie =
2628 		    kmem_zalloc(sizeof (ldc_mem_cookie_t), KM_SLEEP);
2629 
2630 		status = ldc_mem_dring_bind(vdc->curr_server->ldc_handle,
2631 		    vdc->dring_hdl,
2632 		    LDC_SHADOW_MAP|LDC_DIRECT_MAP, LDC_MEM_RW,
2633 		    &vdc->dring_cookie[0],
2634 		    &vdc->dring_cookie_count);
2635 		if (status != 0) {
2636 			DMSG(vdc, 0, "[%d] Failed to bind descriptor ring "
2637 			    "(%lx) to channel (%lx) status=%d\n",
2638 			    vdc->instance, vdc->dring_hdl,
2639 			    vdc->curr_server->ldc_handle, status);
2640 			return (status);
2641 		}
2642 		ASSERT(vdc->dring_cookie_count == 1);
2643 		vdc->initialized |= VDC_DRING_BOUND;
2644 	}
2645 
2646 	status = ldc_mem_dring_info(vdc->dring_hdl, &vdc->dring_mem_info);
2647 	if (status != 0) {
2648 		DMSG(vdc, 0,
2649 		    "[%d] Failed to get info for descriptor ring (%lx)\n",
2650 		    vdc->instance, vdc->dring_hdl);
2651 		return (status);
2652 	}
2653 
2654 	if ((vdc->initialized & VDC_DRING_LOCAL) == 0) {
2655 		DMSG(vdc, 0, "[%d] local dring\n", vdc->instance);
2656 
2657 		/* Allocate the local copy of this dring */
2658 		vdc->local_dring =
2659 		    kmem_zalloc(vdc->dring_len * sizeof (vdc_local_desc_t),
2660 		    KM_SLEEP);
2661 		vdc->initialized |= VDC_DRING_LOCAL;
2662 	}
2663 
2664 	/*
2665 	 * Mark all DRing entries as free and initialize the private
2666 	 * descriptor's memory handles. If any entry is initialized,
2667 	 * we need to free it later so we set the bit in 'initialized'
2668 	 * at the start.
2669 	 */
2670 	vdc->initialized |= VDC_DRING_ENTRY;
2671 	for (i = 0; i < vdc->dring_len; i++) {
2672 		dep = VDC_GET_DRING_ENTRY_PTR(vdc, i);
2673 		dep->hdr.dstate = VIO_DESC_FREE;
2674 
2675 		status = ldc_mem_alloc_handle(vdc->curr_server->ldc_handle,
2676 		    &vdc->local_dring[i].desc_mhdl);
2677 		if (status != 0) {
2678 			DMSG(vdc, 0, "![%d] Failed to alloc mem handle for"
2679 			    " descriptor %d", vdc->instance, i);
2680 			return (status);
2681 		}
2682 		vdc->local_dring[i].is_free = B_TRUE;
2683 		vdc->local_dring[i].dep = dep;
2684 	}
2685 
2686 	/* Initialize the starting index */
2687 	vdc->dring_curr_idx = 0;
2688 
2689 	return (status);
2690 }
2691 
2692 /*
2693  * Function:
2694  *	vdc_destroy_descriptor_ring()
2695  *
2696  * Description:
2697  *
2698  * Arguments:
2699  *	vdc	- soft state pointer for this instance of the device driver.
2700  *
2701  * Return Code:
2702  *	None
2703  */
2704 static void
2705 vdc_destroy_descriptor_ring(vdc_t *vdc)
2706 {
2707 	vdc_local_desc_t	*ldep = NULL;	/* Local Dring Entry Pointer */
2708 	ldc_mem_handle_t	mhdl = NULL;
2709 	ldc_mem_info_t		minfo;
2710 	int			status = -1;
2711 	int			i;	/* loop */
2712 
2713 	ASSERT(vdc != NULL);
2714 	ASSERT(mutex_owned(&vdc->lock));
2715 
2716 	DMSG(vdc, 0, "[%d] Entered\n", vdc->instance);
2717 
2718 	if (vdc->initialized & VDC_DRING_ENTRY) {
2719 		DMSG(vdc, 0,
2720 		    "[%d] Removing Local DRing entries\n", vdc->instance);
2721 		for (i = 0; i < vdc->dring_len; i++) {
2722 			ldep = &vdc->local_dring[i];
2723 			mhdl = ldep->desc_mhdl;
2724 
2725 			if (mhdl == NULL)
2726 				continue;
2727 
2728 			if ((status = ldc_mem_info(mhdl, &minfo)) != 0) {
2729 				DMSG(vdc, 0,
2730 				    "ldc_mem_info returned an error: %d\n",
2731 				    status);
2732 
2733 				/*
2734 				 * This must mean that the mem handle
2735 				 * is not valid. Clear it out so that
2736 				 * no one tries to use it.
2737 				 */
2738 				ldep->desc_mhdl = NULL;
2739 				continue;
2740 			}
2741 
2742 			if (minfo.status == LDC_BOUND) {
2743 				(void) ldc_mem_unbind_handle(mhdl);
2744 			}
2745 
2746 			(void) ldc_mem_free_handle(mhdl);
2747 
2748 			ldep->desc_mhdl = NULL;
2749 		}
2750 		vdc->initialized &= ~VDC_DRING_ENTRY;
2751 	}
2752 
2753 	if (vdc->initialized & VDC_DRING_LOCAL) {
2754 		DMSG(vdc, 0, "[%d] Freeing Local DRing\n", vdc->instance);
2755 		kmem_free(vdc->local_dring,
2756 		    vdc->dring_len * sizeof (vdc_local_desc_t));
2757 		vdc->initialized &= ~VDC_DRING_LOCAL;
2758 	}
2759 
2760 	if (vdc->initialized & VDC_DRING_BOUND) {
2761 		DMSG(vdc, 0, "[%d] Unbinding DRing\n", vdc->instance);
2762 		status = ldc_mem_dring_unbind(vdc->dring_hdl);
2763 		if (status == 0) {
2764 			vdc->initialized &= ~VDC_DRING_BOUND;
2765 		} else {
2766 			DMSG(vdc, 0, "[%d] Error %d unbinding DRing %lx",
2767 			    vdc->instance, status, vdc->dring_hdl);
2768 		}
2769 		kmem_free(vdc->dring_cookie, sizeof (ldc_mem_cookie_t));
2770 	}
2771 
2772 	if (vdc->initialized & VDC_DRING_INIT) {
2773 		DMSG(vdc, 0, "[%d] Destroying DRing\n", vdc->instance);
2774 		status = ldc_mem_dring_destroy(vdc->dring_hdl);
2775 		if (status == 0) {
2776 			vdc->dring_hdl = NULL;
2777 			bzero(&vdc->dring_mem_info, sizeof (ldc_mem_info_t));
2778 			vdc->initialized &= ~VDC_DRING_INIT;
2779 		} else {
2780 			DMSG(vdc, 0, "[%d] Error %d destroying DRing (%lx)",
2781 			    vdc->instance, status, vdc->dring_hdl);
2782 		}
2783 	}
2784 }
2785 
2786 /*
2787  * Function:
2788  *	vdc_map_to_shared_dring()
2789  *
2790  * Description:
2791  *	Copy contents of the local descriptor to the shared
2792  *	memory descriptor.
2793  *
2794  * Arguments:
2795  *	vdcp	- soft state pointer for this instance of the device driver.
2796  *	idx	- descriptor ring index
2797  *
2798  * Return Code:
2799  *	None
2800  */
2801 static int
2802 vdc_map_to_shared_dring(vdc_t *vdcp, int idx)
2803 {
2804 	vdc_local_desc_t	*ldep;
2805 	vd_dring_entry_t	*dep;
2806 	int			rv;
2807 
2808 	ldep = &(vdcp->local_dring[idx]);
2809 
2810 	/* for now leave in the old pop_mem_hdl stuff */
2811 	if (ldep->nbytes > 0) {
2812 		rv = vdc_populate_mem_hdl(vdcp, ldep);
2813 		if (rv) {
2814 			DMSG(vdcp, 0, "[%d] Cannot populate mem handle\n",
2815 			    vdcp->instance);
2816 			return (rv);
2817 		}
2818 	}
2819 
2820 	/*
2821 	 * fill in the data details into the DRing
2822 	 */
2823 	dep = ldep->dep;
2824 	ASSERT(dep != NULL);
2825 
2826 	dep->payload.req_id = VDC_GET_NEXT_REQ_ID(vdcp);
2827 	dep->payload.operation = ldep->operation;
2828 	dep->payload.addr = ldep->offset;
2829 	dep->payload.nbytes = ldep->nbytes;
2830 	dep->payload.status = (uint32_t)-1;	/* vds will set valid value */
2831 	dep->payload.slice = ldep->slice;
2832 	dep->hdr.dstate = VIO_DESC_READY;
2833 	dep->hdr.ack = 1;		/* request an ACK for every message */
2834 
2835 	return (0);
2836 }
2837 
2838 /*
2839  * Function:
2840  *	vdc_send_request
2841  *
2842  * Description:
2843  *	This routine writes the data to be transmitted to vds into the
2844  *	descriptor, notifies vds that the ring has been updated and
2845  *	then waits for the request to be processed.
2846  *
2847  * Arguments:
2848  *	vdcp	  - the soft state pointer
2849  *	operation - operation we want vds to perform (VD_OP_XXX)
2850  *	addr	  - address of data buf to be read/written.
2851  *	nbytes	  - number of bytes to read/write
2852  *	slice	  - the disk slice this request is for
2853  *	offset	  - relative disk offset
2854  *	cb_type   - type of call - STRATEGY or SYNC
2855  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2856  *			. mode for ioctl(9e)
2857  *			. LP64 diskaddr_t (block I/O)
2858  *	dir	  - direction of operation (READ/WRITE/BOTH)
2859  *
2860  * Return Codes:
2861  *	0
2862  *	ENXIO
2863  */
2864 static int
2865 vdc_send_request(vdc_t *vdcp, int operation, caddr_t addr,
2866     size_t nbytes, int slice, diskaddr_t offset, int cb_type,
2867     void *cb_arg, vio_desc_direction_t dir)
2868 {
2869 	int	rv = 0;
2870 
2871 	ASSERT(vdcp != NULL);
2872 	ASSERT(slice == VD_SLICE_NONE || slice < V_NUMPAR);
2873 
2874 	mutex_enter(&vdcp->lock);
2875 
2876 	/*
2877 	 * If this is a block read/write operation we update the I/O statistics
2878 	 * to indicate that the request is being put on the waitq to be
2879 	 * serviced.
2880 	 *
2881 	 * We do it here (a common routine for both synchronous and strategy
2882 	 * calls) for performance reasons - we are already holding vdc->lock
2883 	 * so there is no extra locking overhead. We would have to explicitly
2884 	 * grab the 'lock' mutex to update the stats if we were to do this
2885 	 * higher up the stack in vdc_strategy() et. al.
2886 	 */
2887 	if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) {
2888 		DTRACE_IO1(start, buf_t *, cb_arg);
2889 		VD_KSTAT_WAITQ_ENTER(vdcp);
2890 	}
2891 
2892 	do {
2893 		while (vdcp->state != VDC_STATE_RUNNING) {
2894 
2895 			/* return error if detaching */
2896 			if (vdcp->state == VDC_STATE_DETACH) {
2897 				rv = ENXIO;
2898 				goto done;
2899 			}
2900 
2901 			/* fail request if connection timeout is reached */
2902 			if (vdcp->ctimeout_reached) {
2903 				rv = EIO;
2904 				goto done;
2905 			}
2906 
2907 			/*
2908 			 * If we are panicking and the disk is not ready then
2909 			 * we can't send any request because we can't complete
2910 			 * the handshake now.
2911 			 */
2912 			if (ddi_in_panic()) {
2913 				rv = EIO;
2914 				goto done;
2915 			}
2916 
2917 			cv_wait(&vdcp->running_cv, &vdcp->lock);
2918 		}
2919 
2920 	} while (vdc_populate_descriptor(vdcp, operation, addr,
2921 	    nbytes, slice, offset, cb_type, cb_arg, dir));
2922 
2923 done:
2924 	/*
2925 	 * If this is a block read/write we update the I/O statistics kstat
2926 	 * to indicate that this request has been placed on the queue for
2927 	 * processing (i.e sent to the vDisk server) - iostat(1M) will
2928 	 * report the time waiting for the vDisk server under the %b column
2929 	 * In the case of an error we simply take it off the wait queue.
2930 	 */
2931 	if ((operation == VD_OP_BREAD) || (operation == VD_OP_BWRITE)) {
2932 		if (rv == 0) {
2933 			VD_KSTAT_WAITQ_TO_RUNQ(vdcp);
2934 			DTRACE_PROBE1(send, buf_t *, cb_arg);
2935 		} else {
2936 			VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
2937 			VD_KSTAT_WAITQ_EXIT(vdcp);
2938 			DTRACE_IO1(done, buf_t *, cb_arg);
2939 		}
2940 	}
2941 
2942 	mutex_exit(&vdcp->lock);
2943 
2944 	return (rv);
2945 }
2946 
2947 
2948 /*
2949  * Function:
2950  *	vdc_populate_descriptor
2951  *
2952  * Description:
2953  *	This routine writes the data to be transmitted to vds into the
2954  *	descriptor, notifies vds that the ring has been updated and
2955  *	then waits for the request to be processed.
2956  *
2957  * Arguments:
2958  *	vdcp	  - the soft state pointer
2959  *	operation - operation we want vds to perform (VD_OP_XXX)
2960  *	addr	  - address of data buf to be read/written.
2961  *	nbytes	  - number of bytes to read/write
2962  *	slice	  - the disk slice this request is for
2963  *	offset	  - relative disk offset
2964  *	cb_type   - type of call - STRATEGY or SYNC
2965  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
2966  *			. mode for ioctl(9e)
2967  *			. LP64 diskaddr_t (block I/O)
2968  *	dir	  - direction of operation (READ/WRITE/BOTH)
2969  *
2970  * Return Codes:
2971  *	0
2972  *	EAGAIN
2973  *	ECONNRESET
2974  *	ENXIO
2975  */
2976 static int
2977 vdc_populate_descriptor(vdc_t *vdcp, int operation, caddr_t addr,
2978     size_t nbytes, int slice, diskaddr_t offset, int cb_type,
2979     void *cb_arg, vio_desc_direction_t dir)
2980 {
2981 	vdc_local_desc_t	*local_dep = NULL; /* Local Dring Pointer */
2982 	int			idx;		/* Index of DRing entry used */
2983 	int			next_idx;
2984 	vio_dring_msg_t		dmsg;
2985 	size_t			msglen;
2986 	int			rv;
2987 
2988 	ASSERT(MUTEX_HELD(&vdcp->lock));
2989 	vdcp->threads_pending++;
2990 loop:
2991 	DMSG(vdcp, 2, ": dring_curr_idx = %d\n", vdcp->dring_curr_idx);
2992 
2993 	/* Get next available D-Ring entry */
2994 	idx = vdcp->dring_curr_idx;
2995 	local_dep = &(vdcp->local_dring[idx]);
2996 
2997 	if (!local_dep->is_free) {
2998 		DMSG(vdcp, 2, "[%d]: dring full - waiting for space\n",
2999 		    vdcp->instance);
3000 		cv_wait(&vdcp->dring_free_cv, &vdcp->lock);
3001 		if (vdcp->state == VDC_STATE_RUNNING ||
3002 		    vdcp->state == VDC_STATE_HANDLE_PENDING) {
3003 			goto loop;
3004 		}
3005 		vdcp->threads_pending--;
3006 		return (ECONNRESET);
3007 	}
3008 
3009 	next_idx = idx + 1;
3010 	if (next_idx >= vdcp->dring_len)
3011 		next_idx = 0;
3012 	vdcp->dring_curr_idx = next_idx;
3013 
3014 	ASSERT(local_dep->is_free);
3015 
3016 	local_dep->operation = operation;
3017 	local_dep->addr = addr;
3018 	local_dep->nbytes = nbytes;
3019 	local_dep->slice = slice;
3020 	local_dep->offset = offset;
3021 	local_dep->cb_type = cb_type;
3022 	local_dep->cb_arg = cb_arg;
3023 	local_dep->dir = dir;
3024 
3025 	local_dep->is_free = B_FALSE;
3026 
3027 	rv = vdc_map_to_shared_dring(vdcp, idx);
3028 	if (rv) {
3029 		DMSG(vdcp, 0, "[%d]: cannot bind memory - waiting ..\n",
3030 		    vdcp->instance);
3031 		/* free the descriptor */
3032 		local_dep->is_free = B_TRUE;
3033 		vdcp->dring_curr_idx = idx;
3034 		cv_wait(&vdcp->membind_cv, &vdcp->lock);
3035 		if (vdcp->state == VDC_STATE_RUNNING ||
3036 		    vdcp->state == VDC_STATE_HANDLE_PENDING) {
3037 			goto loop;
3038 		}
3039 		vdcp->threads_pending--;
3040 		return (ECONNRESET);
3041 	}
3042 
3043 	/*
3044 	 * Send a msg with the DRing details to vds
3045 	 */
3046 	VIO_INIT_DRING_DATA_TAG(dmsg);
3047 	VDC_INIT_DRING_DATA_MSG_IDS(dmsg, vdcp);
3048 	dmsg.dring_ident = vdcp->dring_ident;
3049 	dmsg.start_idx = idx;
3050 	dmsg.end_idx = idx;
3051 	vdcp->seq_num++;
3052 
3053 	DTRACE_PROBE2(populate, int, vdcp->instance,
3054 	    vdc_local_desc_t *, local_dep);
3055 	DMSG(vdcp, 2, "ident=0x%lx, st=%u, end=%u, seq=%ld\n",
3056 	    vdcp->dring_ident, dmsg.start_idx, dmsg.end_idx, dmsg.seq_num);
3057 
3058 	/*
3059 	 * note we're still holding the lock here to
3060 	 * make sure the message goes out in order !!!...
3061 	 */
3062 	msglen = sizeof (dmsg);
3063 	rv = vdc_send(vdcp, (caddr_t)&dmsg, &msglen);
3064 	switch (rv) {
3065 	case ECONNRESET:
3066 		/*
3067 		 * vdc_send initiates the reset on failure.
3068 		 * Since the transaction has already been put
3069 		 * on the local dring, it will automatically get
3070 		 * retried when the channel is reset. Given that,
3071 		 * it is ok to just return success even though the
3072 		 * send failed.
3073 		 */
3074 		rv = 0;
3075 		break;
3076 
3077 	case 0: /* EOK */
3078 		DMSG(vdcp, 1, "sent via LDC: rv=%d\n", rv);
3079 		break;
3080 
3081 	default:
3082 		goto cleanup_and_exit;
3083 	}
3084 
3085 	vdcp->threads_pending--;
3086 	return (rv);
3087 
3088 cleanup_and_exit:
3089 	DMSG(vdcp, 0, "unexpected error, rv=%d\n", rv);
3090 	return (ENXIO);
3091 }
3092 
3093 /*
3094  * Function:
3095  *	vdc_do_sync_op
3096  *
3097  * Description:
3098  * 	Wrapper around vdc_populate_descriptor that blocks until the
3099  * 	response to the message is available.
3100  *
3101  * Arguments:
3102  *	vdcp	  - the soft state pointer
3103  *	operation - operation we want vds to perform (VD_OP_XXX)
3104  *	addr	  - address of data buf to be read/written.
3105  *	nbytes	  - number of bytes to read/write
3106  *	slice	  - the disk slice this request is for
3107  *	offset	  - relative disk offset
3108  *	cb_type   - type of call - STRATEGY or SYNC
3109  *	cb_arg	  - parameter to be sent to server (depends on VD_OP_XXX type)
3110  *			. mode for ioctl(9e)
3111  *			. LP64 diskaddr_t (block I/O)
3112  *	dir	  - direction of operation (READ/WRITE/BOTH)
3113  *	rconflict - check for reservation conflict in case of failure
3114  *
3115  * rconflict should be set to B_TRUE by most callers. Callers invoking the
3116  * VD_OP_SCSICMD operation can set rconflict to B_FALSE if they check the
3117  * result of a successful operation with vd_scsi_status().
3118  *
3119  * Return Codes:
3120  *	0
3121  *	EAGAIN
3122  *	EFAULT
3123  *	ENXIO
3124  *	EIO
3125  */
3126 static int
3127 vdc_do_sync_op(vdc_t *vdcp, int operation, caddr_t addr, size_t nbytes,
3128     int slice, diskaddr_t offset, int cb_type, void *cb_arg,
3129     vio_desc_direction_t dir, boolean_t rconflict)
3130 {
3131 	int status;
3132 	vdc_io_t *vio;
3133 	boolean_t check_resv_conflict = B_FALSE;
3134 
3135 	ASSERT(cb_type == CB_SYNC);
3136 
3137 	/*
3138 	 * Grab the lock, if blocked wait until the server
3139 	 * response causes us to wake up again.
3140 	 */
3141 	mutex_enter(&vdcp->lock);
3142 	vdcp->sync_op_cnt++;
3143 	while (vdcp->sync_op_blocked && vdcp->state != VDC_STATE_DETACH)
3144 		cv_wait(&vdcp->sync_blocked_cv, &vdcp->lock);
3145 
3146 	if (vdcp->state == VDC_STATE_DETACH) {
3147 		cv_broadcast(&vdcp->sync_blocked_cv);
3148 		vdcp->sync_op_cnt--;
3149 		mutex_exit(&vdcp->lock);
3150 		return (ENXIO);
3151 	}
3152 
3153 	/* now block anyone other thread entering after us */
3154 	vdcp->sync_op_blocked = B_TRUE;
3155 	vdcp->sync_op_pending = B_TRUE;
3156 	mutex_exit(&vdcp->lock);
3157 
3158 	status = vdc_send_request(vdcp, operation, addr,
3159 	    nbytes, slice, offset, cb_type, cb_arg, dir);
3160 
3161 	mutex_enter(&vdcp->lock);
3162 
3163 	if (status != 0) {
3164 		vdcp->sync_op_pending = B_FALSE;
3165 	} else {
3166 		/*
3167 		 * block until our transaction completes.
3168 		 * Also anyone else waiting also gets to go next.
3169 		 */
3170 		while (vdcp->sync_op_pending && vdcp->state != VDC_STATE_DETACH)
3171 			cv_wait(&vdcp->sync_pending_cv, &vdcp->lock);
3172 
3173 		DMSG(vdcp, 2, ": operation returned %d\n",
3174 		    vdcp->sync_op_status);
3175 		if (vdcp->state == VDC_STATE_DETACH) {
3176 			vdcp->sync_op_pending = B_FALSE;
3177 			status = ENXIO;
3178 		} else {
3179 			status = vdcp->sync_op_status;
3180 			if (status != 0 && vdcp->failfast_interval != 0) {
3181 				/*
3182 				 * Operation has failed and failfast is enabled.
3183 				 * We need to check if the failure is due to a
3184 				 * reservation conflict if this was requested.
3185 				 */
3186 				check_resv_conflict = rconflict;
3187 			}
3188 
3189 		}
3190 	}
3191 
3192 	vdcp->sync_op_status = 0;
3193 	vdcp->sync_op_blocked = B_FALSE;
3194 	vdcp->sync_op_cnt--;
3195 
3196 	/* signal the next waiting thread */
3197 	cv_signal(&vdcp->sync_blocked_cv);
3198 
3199 	/*
3200 	 * We have to check for reservation conflict after unblocking sync
3201 	 * operations because some sync operations will be used to do this
3202 	 * check.
3203 	 */
3204 	if (check_resv_conflict) {
3205 		vio = vdc_failfast_io_queue(vdcp, NULL);
3206 		while (vio->vio_qtime != 0)
3207 			cv_wait(&vdcp->failfast_io_cv, &vdcp->lock);
3208 		kmem_free(vio, sizeof (vdc_io_t));
3209 	}
3210 
3211 	mutex_exit(&vdcp->lock);
3212 
3213 	return (status);
3214 }
3215 
3216 
3217 /*
3218  * Function:
3219  *	vdc_drain_response()
3220  *
3221  * Description:
3222  * 	When a guest is panicking, the completion of requests needs to be
3223  * 	handled differently because interrupts are disabled and vdc
3224  * 	will not get messages. We have to poll for the messages instead.
3225  *
3226  *	Note: since we are panicking we don't implement	the io:::done
3227  *	DTrace probe or update the I/O statistics kstats.
3228  *
3229  * Arguments:
3230  *	vdc	- soft state pointer for this instance of the device driver.
3231  *	buf	- if buf is NULL then we drain all responses, otherwise we
3232  *		  poll until we receive a ACK/NACK for the specific I/O
3233  *		  described by buf.
3234  *
3235  * Return Code:
3236  *	0	- Success
3237  */
3238 static int
3239 vdc_drain_response(vdc_t *vdc, struct buf *buf)
3240 {
3241 	int 			rv, idx, retries;
3242 	size_t			msglen;
3243 	vdc_local_desc_t 	*ldep = NULL;	/* Local Dring Entry Pointer */
3244 	vio_dring_msg_t		dmsg;
3245 	struct buf		*mbuf;
3246 
3247 	mutex_enter(&vdc->lock);
3248 
3249 	retries = 0;
3250 	for (;;) {
3251 		msglen = sizeof (dmsg);
3252 		rv = ldc_read(vdc->curr_server->ldc_handle, (caddr_t)&dmsg,
3253 		    &msglen);
3254 		if (rv) {
3255 			rv = EINVAL;
3256 			break;
3257 		}
3258 
3259 		/*
3260 		 * if there are no packets wait and check again
3261 		 */
3262 		if ((rv == 0) && (msglen == 0)) {
3263 			if (retries++ > vdc_dump_retries) {
3264 				rv = EAGAIN;
3265 				break;
3266 			}
3267 
3268 			drv_usecwait(vdc_usec_timeout_dump);
3269 			continue;
3270 		}
3271 
3272 		/*
3273 		 * Ignore all messages that are not ACKs/NACKs to
3274 		 * DRing requests.
3275 		 */
3276 		if ((dmsg.tag.vio_msgtype != VIO_TYPE_DATA) ||
3277 		    (dmsg.tag.vio_subtype_env != VIO_DRING_DATA)) {
3278 			DMSG(vdc, 0, "discard pkt: type=%d sub=%d env=%d\n",
3279 			    dmsg.tag.vio_msgtype,
3280 			    dmsg.tag.vio_subtype,
3281 			    dmsg.tag.vio_subtype_env);
3282 			continue;
3283 		}
3284 
3285 		/*
3286 		 * set the appropriate return value for the current request.
3287 		 */
3288 		switch (dmsg.tag.vio_subtype) {
3289 		case VIO_SUBTYPE_ACK:
3290 			rv = 0;
3291 			break;
3292 		case VIO_SUBTYPE_NACK:
3293 			rv = EAGAIN;
3294 			break;
3295 		default:
3296 			continue;
3297 		}
3298 
3299 		idx = dmsg.start_idx;
3300 		if (idx >= vdc->dring_len) {
3301 			DMSG(vdc, 0, "[%d] Bogus ack data : start %d\n",
3302 			    vdc->instance, idx);
3303 			continue;
3304 		}
3305 		ldep = &vdc->local_dring[idx];
3306 		if (ldep->dep->hdr.dstate != VIO_DESC_DONE) {
3307 			DMSG(vdc, 0, "[%d] Entry @ %d - state !DONE %d\n",
3308 			    vdc->instance, idx, ldep->dep->hdr.dstate);
3309 			continue;
3310 		}
3311 
3312 		if (buf != NULL && ldep->cb_type == CB_STRATEGY) {
3313 			mbuf = ldep->cb_arg;
3314 			mbuf->b_resid = mbuf->b_bcount -
3315 			    ldep->dep->payload.nbytes;
3316 			bioerror(mbuf, (rv == EAGAIN)? EIO:
3317 			    ldep->dep->payload.status);
3318 			biodone(mbuf);
3319 		} else {
3320 			mbuf = NULL;
3321 		}
3322 
3323 		DMSG(vdc, 1, "[%d] Depopulating idx=%d state=%d\n",
3324 		    vdc->instance, idx, ldep->dep->hdr.dstate);
3325 
3326 		rv = vdc_depopulate_descriptor(vdc, idx);
3327 		if (rv) {
3328 			DMSG(vdc, 0,
3329 			    "[%d] Entry @ %d - depopulate failed ..\n",
3330 			    vdc->instance, idx);
3331 		}
3332 
3333 		/* we have received an ACK/NACK for the specified buffer */
3334 		if (buf != NULL && buf == mbuf) {
3335 			rv = 0;
3336 			break;
3337 		}
3338 
3339 		/* if this is the last descriptor - break out of loop */
3340 		if ((idx + 1) % vdc->dring_len == vdc->dring_curr_idx) {
3341 			if (buf != NULL) {
3342 				/*
3343 				 * We never got a response for the specified
3344 				 * buffer so we fail the I/O.
3345 				 */
3346 				bioerror(buf, EIO);
3347 				biodone(buf);
3348 			}
3349 			break;
3350 		}
3351 	}
3352 
3353 	mutex_exit(&vdc->lock);
3354 	DMSG(vdc, 0, "End idx=%d\n", idx);
3355 
3356 	return (rv);
3357 }
3358 
3359 
3360 /*
3361  * Function:
3362  *	vdc_depopulate_descriptor()
3363  *
3364  * Description:
3365  *
3366  * Arguments:
3367  *	vdc	- soft state pointer for this instance of the device driver.
3368  *	idx	- Index of the Descriptor Ring entry being modified
3369  *
3370  * Return Code:
3371  *	0	- Success
3372  */
3373 static int
3374 vdc_depopulate_descriptor(vdc_t *vdc, uint_t idx)
3375 {
3376 	vd_dring_entry_t *dep = NULL;		/* Dring Entry Pointer */
3377 	vdc_local_desc_t *ldep = NULL;		/* Local Dring Entry Pointer */
3378 	int		status = ENXIO;
3379 	int		rv = 0;
3380 
3381 	ASSERT(vdc != NULL);
3382 	ASSERT(idx < vdc->dring_len);
3383 	ldep = &vdc->local_dring[idx];
3384 	ASSERT(ldep != NULL);
3385 	ASSERT(MUTEX_HELD(&vdc->lock));
3386 
3387 	DTRACE_PROBE2(depopulate, int, vdc->instance, vdc_local_desc_t *, ldep);
3388 	DMSG(vdc, 2, ": idx = %d\n", idx);
3389 
3390 	dep = ldep->dep;
3391 	ASSERT(dep != NULL);
3392 	ASSERT((dep->hdr.dstate == VIO_DESC_DONE) ||
3393 	    (dep->payload.status == ECANCELED));
3394 
3395 	VDC_MARK_DRING_ENTRY_FREE(vdc, idx);
3396 
3397 	ldep->is_free = B_TRUE;
3398 	status = dep->payload.status;
3399 	DMSG(vdc, 2, ": is_free = %d : status = %d\n", ldep->is_free, status);
3400 
3401 	/*
3402 	 * If no buffers were used to transfer information to the server when
3403 	 * populating the descriptor then no memory handles need to be unbound
3404 	 * and we can return now.
3405 	 */
3406 	if (ldep->nbytes == 0) {
3407 		cv_signal(&vdc->dring_free_cv);
3408 		return (status);
3409 	}
3410 
3411 	/*
3412 	 * If the upper layer passed in a misaligned address we copied the
3413 	 * data into an aligned buffer before sending it to LDC - we now
3414 	 * copy it back to the original buffer.
3415 	 */
3416 	if (ldep->align_addr) {
3417 		ASSERT(ldep->addr != NULL);
3418 
3419 		if (dep->payload.nbytes > 0)
3420 			bcopy(ldep->align_addr, ldep->addr,
3421 			    dep->payload.nbytes);
3422 		kmem_free(ldep->align_addr,
3423 		    sizeof (caddr_t) * P2ROUNDUP(ldep->nbytes, 8));
3424 		ldep->align_addr = NULL;
3425 	}
3426 
3427 	rv = ldc_mem_unbind_handle(ldep->desc_mhdl);
3428 	if (rv != 0) {
3429 		DMSG(vdc, 0, "?[%d] unbind mhdl 0x%lx @ idx %d failed (%d)",
3430 		    vdc->instance, ldep->desc_mhdl, idx, rv);
3431 		/*
3432 		 * The error returned by the vDisk server is more informative
3433 		 * and thus has a higher priority but if it isn't set we ensure
3434 		 * that this function returns an error.
3435 		 */
3436 		if (status == 0)
3437 			status = EINVAL;
3438 	}
3439 
3440 	cv_signal(&vdc->membind_cv);
3441 	cv_signal(&vdc->dring_free_cv);
3442 
3443 	return (status);
3444 }
3445 
3446 /*
3447  * Function:
3448  *	vdc_populate_mem_hdl()
3449  *
3450  * Description:
3451  *
3452  * Arguments:
3453  *	vdc	- soft state pointer for this instance of the device driver.
3454  *	idx	- Index of the Descriptor Ring entry being modified
3455  *	addr	- virtual address being mapped in
3456  *	nybtes	- number of bytes in 'addr'
3457  *	operation - the vDisk operation being performed (VD_OP_xxx)
3458  *
3459  * Return Code:
3460  *	0	- Success
3461  */
3462 static int
3463 vdc_populate_mem_hdl(vdc_t *vdcp, vdc_local_desc_t *ldep)
3464 {
3465 	vd_dring_entry_t	*dep = NULL;
3466 	ldc_mem_handle_t	mhdl;
3467 	caddr_t			vaddr;
3468 	size_t			nbytes;
3469 	uint8_t			perm = LDC_MEM_RW;
3470 	uint8_t			maptype;
3471 	int			rv = 0;
3472 	int			i;
3473 
3474 	ASSERT(vdcp != NULL);
3475 
3476 	dep = ldep->dep;
3477 	mhdl = ldep->desc_mhdl;
3478 
3479 	switch (ldep->dir) {
3480 	case VIO_read_dir:
3481 		perm = LDC_MEM_W;
3482 		break;
3483 
3484 	case VIO_write_dir:
3485 		perm = LDC_MEM_R;
3486 		break;
3487 
3488 	case VIO_both_dir:
3489 		perm = LDC_MEM_RW;
3490 		break;
3491 
3492 	default:
3493 		ASSERT(0);	/* catch bad programming in vdc */
3494 	}
3495 
3496 	/*
3497 	 * LDC expects any addresses passed in to be 8-byte aligned. We need
3498 	 * to copy the contents of any misaligned buffers to a newly allocated
3499 	 * buffer and bind it instead (and copy the the contents back to the
3500 	 * original buffer passed in when depopulating the descriptor)
3501 	 */
3502 	vaddr = ldep->addr;
3503 	nbytes = ldep->nbytes;
3504 	if (((uint64_t)vaddr & 0x7) != 0) {
3505 		ASSERT(ldep->align_addr == NULL);
3506 		ldep->align_addr =
3507 		    kmem_alloc(sizeof (caddr_t) *
3508 		    P2ROUNDUP(nbytes, 8), KM_SLEEP);
3509 		DMSG(vdcp, 0, "[%d] Misaligned address %p reallocating "
3510 		    "(buf=%p nb=%ld op=%d)\n",
3511 		    vdcp->instance, (void *)vaddr, (void *)ldep->align_addr,
3512 		    nbytes, ldep->operation);
3513 		if (perm != LDC_MEM_W)
3514 			bcopy(vaddr, ldep->align_addr, nbytes);
3515 		vaddr = ldep->align_addr;
3516 	}
3517 
3518 	maptype = LDC_IO_MAP|LDC_SHADOW_MAP|LDC_DIRECT_MAP;
3519 	rv = ldc_mem_bind_handle(mhdl, vaddr, P2ROUNDUP(nbytes, 8),
3520 	    maptype, perm, &dep->payload.cookie[0], &dep->payload.ncookies);
3521 	DMSG(vdcp, 2, "[%d] bound mem handle; ncookies=%d\n",
3522 	    vdcp->instance, dep->payload.ncookies);
3523 	if (rv != 0) {
3524 		DMSG(vdcp, 0, "[%d] Failed to bind LDC memory handle "
3525 		    "(mhdl=%p, buf=%p, err=%d)\n",
3526 		    vdcp->instance, (void *)mhdl, (void *)vaddr, rv);
3527 		if (ldep->align_addr) {
3528 			kmem_free(ldep->align_addr,
3529 			    sizeof (caddr_t) * P2ROUNDUP(nbytes, 8));
3530 			ldep->align_addr = NULL;
3531 		}
3532 		return (EAGAIN);
3533 	}
3534 
3535 	/*
3536 	 * Get the other cookies (if any).
3537 	 */
3538 	for (i = 1; i < dep->payload.ncookies; i++) {
3539 		rv = ldc_mem_nextcookie(mhdl, &dep->payload.cookie[i]);
3540 		if (rv != 0) {
3541 			(void) ldc_mem_unbind_handle(mhdl);
3542 			DMSG(vdcp, 0, "?[%d] Failed to get next cookie "
3543 			    "(mhdl=%lx cnum=%d), err=%d",
3544 			    vdcp->instance, mhdl, i, rv);
3545 			if (ldep->align_addr) {
3546 				kmem_free(ldep->align_addr,
3547 				    sizeof (caddr_t) * ldep->nbytes);
3548 				ldep->align_addr = NULL;
3549 			}
3550 			return (EAGAIN);
3551 		}
3552 	}
3553 
3554 	return (rv);
3555 }
3556 
3557 /*
3558  * Interrupt handlers for messages from LDC
3559  */
3560 
3561 /*
3562  * Function:
3563  *	vdc_handle_cb()
3564  *
3565  * Description:
3566  *
3567  * Arguments:
3568  *	event	- Type of event (LDC_EVT_xxx) that triggered the callback
3569  *	arg	- soft state pointer for this instance of the device driver.
3570  *
3571  * Return Code:
3572  *	0	- Success
3573  */
3574 static uint_t
3575 vdc_handle_cb(uint64_t event, caddr_t arg)
3576 {
3577 	ldc_status_t	ldc_state;
3578 	int		rv = 0;
3579 	vdc_server_t	*srvr = (vdc_server_t *)(void *)arg;
3580 	vdc_t		*vdc = srvr->vdcp;
3581 
3582 	ASSERT(vdc != NULL);
3583 
3584 	DMSG(vdc, 1, "evt=%lx seqID=%ld\n", event, vdc->seq_num);
3585 
3586 	/* If callback is not for the current server, ignore it */
3587 	mutex_enter(&vdc->lock);
3588 
3589 	if (vdc->curr_server != srvr) {
3590 		DMSG(vdc, 0, "[%d] Ignoring event 0x%lx for port@%ld\n",
3591 		    vdc->instance, event, srvr->id);
3592 		mutex_exit(&vdc->lock);
3593 		return (LDC_SUCCESS);
3594 	}
3595 
3596 	/*
3597 	 * Depending on the type of event that triggered this callback,
3598 	 * we modify the handshake state or read the data.
3599 	 *
3600 	 * NOTE: not done as a switch() as event could be triggered by
3601 	 * a state change and a read request. Also the ordering	of the
3602 	 * check for the event types is deliberate.
3603 	 */
3604 	if (event & LDC_EVT_UP) {
3605 		DMSG(vdc, 0, "[%d] Received LDC_EVT_UP\n", vdc->instance);
3606 
3607 		/* get LDC state */
3608 		rv = ldc_status(srvr->ldc_handle, &ldc_state);
3609 		if (rv != 0) {
3610 			DMSG(vdc, 0, "[%d] Couldn't get LDC status %d",
3611 			    vdc->instance, rv);
3612 			mutex_exit(&vdc->lock);
3613 			return (LDC_SUCCESS);
3614 		}
3615 		if (srvr->ldc_state != LDC_UP &&
3616 		    ldc_state == LDC_UP) {
3617 			/*
3618 			 * Reset the transaction sequence numbers when
3619 			 * LDC comes up. We then kick off the handshake
3620 			 * negotiation with the vDisk server.
3621 			 */
3622 			vdc->seq_num = 1;
3623 			vdc->seq_num_reply = 0;
3624 			srvr->ldc_state = ldc_state;
3625 			cv_signal(&vdc->initwait_cv);
3626 		}
3627 	}
3628 
3629 	if (event & LDC_EVT_READ) {
3630 		DMSG(vdc, 1, "[%d] Received LDC_EVT_READ\n", vdc->instance);
3631 		mutex_enter(&vdc->read_lock);
3632 		cv_signal(&vdc->read_cv);
3633 		vdc->read_state = VDC_READ_PENDING;
3634 		mutex_exit(&vdc->read_lock);
3635 		mutex_exit(&vdc->lock);
3636 
3637 		/* that's all we have to do - no need to handle DOWN/RESET */
3638 		return (LDC_SUCCESS);
3639 	}
3640 
3641 	if (event & (LDC_EVT_RESET|LDC_EVT_DOWN)) {
3642 
3643 		DMSG(vdc, 0, "[%d] Received LDC RESET event\n", vdc->instance);
3644 
3645 		/*
3646 		 * Need to wake up any readers so they will
3647 		 * detect that a reset has occurred.
3648 		 */
3649 		mutex_enter(&vdc->read_lock);
3650 		if ((vdc->read_state == VDC_READ_WAITING) ||
3651 		    (vdc->read_state == VDC_READ_RESET))
3652 			cv_signal(&vdc->read_cv);
3653 		vdc->read_state = VDC_READ_RESET;
3654 		mutex_exit(&vdc->read_lock);
3655 
3656 		/* wake up any threads waiting for connection to come up */
3657 		if (vdc->state == VDC_STATE_INIT_WAITING) {
3658 			vdc->state = VDC_STATE_RESETTING;
3659 			cv_signal(&vdc->initwait_cv);
3660 		}
3661 
3662 	}
3663 
3664 	mutex_exit(&vdc->lock);
3665 
3666 	if (event & ~(LDC_EVT_UP | LDC_EVT_RESET | LDC_EVT_DOWN | LDC_EVT_READ))
3667 		DMSG(vdc, 0, "![%d] Unexpected LDC event (%lx) received",
3668 		    vdc->instance, event);
3669 
3670 	return (LDC_SUCCESS);
3671 }
3672 
3673 /*
3674  * Function:
3675  *	vdc_wait_for_response()
3676  *
3677  * Description:
3678  *	Block waiting for a response from the server. If there is
3679  *	no data the thread block on the read_cv that is signalled
3680  *	by the callback when an EVT_READ occurs.
3681  *
3682  * Arguments:
3683  *	vdcp	- soft state pointer for this instance of the device driver.
3684  *
3685  * Return Code:
3686  *	0	- Success
3687  */
3688 static int
3689 vdc_wait_for_response(vdc_t *vdcp, vio_msg_t *msgp)
3690 {
3691 	size_t		nbytes = sizeof (*msgp);
3692 	int		status;
3693 
3694 	ASSERT(vdcp != NULL);
3695 
3696 	DMSG(vdcp, 1, "[%d] Entered\n", vdcp->instance);
3697 
3698 	status = vdc_recv(vdcp, msgp, &nbytes);
3699 	DMSG(vdcp, 3, "vdc_read() done.. status=0x%x size=0x%x\n",
3700 	    status, (int)nbytes);
3701 	if (status) {
3702 		DMSG(vdcp, 0, "?[%d] Error %d reading LDC msg\n",
3703 		    vdcp->instance, status);
3704 		return (status);
3705 	}
3706 
3707 	if (nbytes < sizeof (vio_msg_tag_t)) {
3708 		DMSG(vdcp, 0, "?[%d] Expect %lu bytes; recv'd %lu\n",
3709 		    vdcp->instance, sizeof (vio_msg_tag_t), nbytes);
3710 		return (ENOMSG);
3711 	}
3712 
3713 	DMSG(vdcp, 2, "[%d] (%x/%x/%x)\n", vdcp->instance,
3714 	    msgp->tag.vio_msgtype,
3715 	    msgp->tag.vio_subtype,
3716 	    msgp->tag.vio_subtype_env);
3717 
3718 	/*
3719 	 * Verify the Session ID of the message
3720 	 *
3721 	 * Every message after the Version has been negotiated should
3722 	 * have the correct session ID set.
3723 	 */
3724 	if ((msgp->tag.vio_sid != vdcp->session_id) &&
3725 	    (msgp->tag.vio_subtype_env != VIO_VER_INFO)) {
3726 		DMSG(vdcp, 0, "[%d] Invalid SID: received 0x%x, "
3727 		    "expected 0x%lx [seq num %lx @ %d]",
3728 		    vdcp->instance, msgp->tag.vio_sid,
3729 		    vdcp->session_id,
3730 		    ((vio_dring_msg_t *)msgp)->seq_num,
3731 		    ((vio_dring_msg_t *)msgp)->start_idx);
3732 		return (ENOMSG);
3733 	}
3734 	return (0);
3735 }
3736 
3737 
3738 /*
3739  * Function:
3740  *	vdc_resubmit_backup_dring()
3741  *
3742  * Description:
3743  *	Resubmit each descriptor in the backed up dring to
3744  * 	vDisk server. The Dring was backed up during connection
3745  *	reset.
3746  *
3747  * Arguments:
3748  *	vdcp	- soft state pointer for this instance of the device driver.
3749  *
3750  * Return Code:
3751  *	0	- Success
3752  */
3753 static int
3754 vdc_resubmit_backup_dring(vdc_t *vdcp)
3755 {
3756 	int		processed = 0;
3757 	int		count;
3758 	int		b_idx;
3759 	int		rv = 0;
3760 	int		dring_size;
3761 	int		op;
3762 	vio_msg_t	vio_msg;
3763 	vdc_local_desc_t	*curr_ldep;
3764 
3765 	ASSERT(MUTEX_NOT_HELD(&vdcp->lock));
3766 	ASSERT(vdcp->state == VDC_STATE_HANDLE_PENDING);
3767 
3768 	if (vdcp->local_dring_backup == NULL) {
3769 		/* the pending requests have already been processed */
3770 		return (0);
3771 	}
3772 
3773 	DMSG(vdcp, 1, "restoring pending dring entries (len=%d, tail=%d)\n",
3774 	    vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail);
3775 
3776 	/*
3777 	 * Walk the backup copy of the local descriptor ring and
3778 	 * resubmit all the outstanding transactions.
3779 	 */
3780 	b_idx = vdcp->local_dring_backup_tail;
3781 	for (count = 0; count < vdcp->local_dring_backup_len; count++) {
3782 
3783 		curr_ldep = &(vdcp->local_dring_backup[b_idx]);
3784 
3785 		/* only resubmit outstanding transactions */
3786 		if (!curr_ldep->is_free) {
3787 			/*
3788 			 * If we are retrying a block read/write operation we
3789 			 * need to update the I/O statistics to indicate that
3790 			 * the request is being put back on the waitq to be
3791 			 * serviced (it will have been taken off after the
3792 			 * error was reported).
3793 			 */
3794 			mutex_enter(&vdcp->lock);
3795 			op = curr_ldep->operation;
3796 			if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
3797 				DTRACE_IO1(start, buf_t *, curr_ldep->cb_arg);
3798 				VD_KSTAT_WAITQ_ENTER(vdcp);
3799 			}
3800 
3801 			DMSG(vdcp, 1, "resubmitting entry idx=%x\n", b_idx);
3802 			rv = vdc_populate_descriptor(vdcp, op,
3803 			    curr_ldep->addr, curr_ldep->nbytes,
3804 			    curr_ldep->slice, curr_ldep->offset,
3805 			    curr_ldep->cb_type, curr_ldep->cb_arg,
3806 			    curr_ldep->dir);
3807 
3808 			if (rv) {
3809 				if (op == VD_OP_BREAD || op == VD_OP_BWRITE) {
3810 					VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
3811 					VD_KSTAT_WAITQ_EXIT(vdcp);
3812 					DTRACE_IO1(done, buf_t *,
3813 					    curr_ldep->cb_arg);
3814 				}
3815 				DMSG(vdcp, 1, "[%d] cannot resubmit entry %d\n",
3816 				    vdcp->instance, b_idx);
3817 				mutex_exit(&vdcp->lock);
3818 				goto done;
3819 			}
3820 
3821 			/*
3822 			 * If this is a block read/write we update the I/O
3823 			 * statistics kstat to indicate that the request
3824 			 * has been sent back to the vDisk server and should
3825 			 * now be put on the run queue.
3826 			 */
3827 			if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
3828 				DTRACE_PROBE1(send, buf_t *, curr_ldep->cb_arg);
3829 				VD_KSTAT_WAITQ_TO_RUNQ(vdcp);
3830 			}
3831 			mutex_exit(&vdcp->lock);
3832 
3833 			/* Wait for the response message. */
3834 			DMSG(vdcp, 1, "waiting for response to idx=%x\n",
3835 			    b_idx);
3836 			rv = vdc_wait_for_response(vdcp, &vio_msg);
3837 			if (rv) {
3838 				/*
3839 				 * If this is a block read/write we update
3840 				 * the I/O statistics kstat to take it
3841 				 * off the run queue.
3842 				 */
3843 				mutex_enter(&vdcp->lock);
3844 				if (op == VD_OP_BREAD || op == VD_OP_BWRITE) {
3845 					VD_UPDATE_ERR_STATS(vdcp, vd_transerrs);
3846 					VD_KSTAT_RUNQ_EXIT(vdcp);
3847 					DTRACE_IO1(done, buf_t *,
3848 					    curr_ldep->cb_arg);
3849 				}
3850 				DMSG(vdcp, 1, "[%d] wait_for_response "
3851 				    "returned err=%d\n", vdcp->instance,
3852 				    rv);
3853 				mutex_exit(&vdcp->lock);
3854 				goto done;
3855 			}
3856 
3857 			DMSG(vdcp, 1, "processing msg for idx=%x\n", b_idx);
3858 			rv = vdc_process_data_msg(vdcp, &vio_msg);
3859 			if (rv) {
3860 				DMSG(vdcp, 1, "[%d] process_data_msg "
3861 				    "returned err=%d\n", vdcp->instance,
3862 				    rv);
3863 				goto done;
3864 			}
3865 			/*
3866 			 * Mark this entry as free so that we will not resubmit
3867 			 * this "done" request again, if we were to use the same
3868 			 * backup_dring again in future. This could happen when
3869 			 * a reset happens while processing the backup_dring.
3870 			 */
3871 			curr_ldep->is_free = B_TRUE;
3872 			processed++;
3873 		}
3874 
3875 		/* get the next element to submit */
3876 		if (++b_idx >= vdcp->local_dring_backup_len)
3877 			b_idx = 0;
3878 	}
3879 
3880 	/* all done - now clear up pending dring copy */
3881 	dring_size = vdcp->local_dring_backup_len *
3882 	    sizeof (vdcp->local_dring_backup[0]);
3883 
3884 	(void) kmem_free(vdcp->local_dring_backup, dring_size);
3885 
3886 	vdcp->local_dring_backup = NULL;
3887 
3888 done:
3889 	DTRACE_PROBE2(processed, int, processed, vdc_t *, vdcp);
3890 
3891 	return (rv);
3892 }
3893 
3894 /*
3895  * Function:
3896  *	vdc_cancel_backup_dring
3897  *
3898  * Description:
3899  *	Cancel each descriptor in the backed up dring to vDisk server.
3900  *	The Dring was backed up during connection reset.
3901  *
3902  * Arguments:
3903  *	vdcp	- soft state pointer for this instance of the device driver.
3904  *
3905  * Return Code:
3906  *	None
3907  */
3908 void
3909 vdc_cancel_backup_dring(vdc_t *vdcp)
3910 {
3911 	vdc_local_desc_t *ldep;
3912 	struct buf 	*bufp;
3913 	int		count;
3914 	int		b_idx;
3915 	int		dring_size;
3916 	int		cancelled = 0;
3917 
3918 	ASSERT(MUTEX_HELD(&vdcp->lock));
3919 	ASSERT(vdcp->state == VDC_STATE_INIT ||
3920 	    vdcp->state == VDC_STATE_INIT_WAITING ||
3921 	    vdcp->state == VDC_STATE_NEGOTIATE ||
3922 	    vdcp->state == VDC_STATE_RESETTING);
3923 
3924 	if (vdcp->local_dring_backup == NULL) {
3925 		/* the pending requests have already been processed */
3926 		return;
3927 	}
3928 
3929 	DMSG(vdcp, 1, "cancelling pending dring entries (len=%d, tail=%d)\n",
3930 	    vdcp->local_dring_backup_len, vdcp->local_dring_backup_tail);
3931 
3932 	/*
3933 	 * Walk the backup copy of the local descriptor ring and
3934 	 * cancel all the outstanding transactions.
3935 	 */
3936 	b_idx = vdcp->local_dring_backup_tail;
3937 	for (count = 0; count < vdcp->local_dring_backup_len; count++) {
3938 
3939 		ldep = &(vdcp->local_dring_backup[b_idx]);
3940 
3941 		/* only cancel outstanding transactions */
3942 		if (!ldep->is_free) {
3943 
3944 			DMSG(vdcp, 1, "cancelling entry idx=%x\n", b_idx);
3945 			cancelled++;
3946 
3947 			/*
3948 			 * All requests have already been cleared from the
3949 			 * local descriptor ring and the LDC channel has been
3950 			 * reset so we will never get any reply for these
3951 			 * requests. Now we just have to notify threads waiting
3952 			 * for replies that the request has failed.
3953 			 */
3954 			switch (ldep->cb_type) {
3955 			case CB_SYNC:
3956 				ASSERT(vdcp->sync_op_pending);
3957 				vdcp->sync_op_status = EIO;
3958 				vdcp->sync_op_pending = B_FALSE;
3959 				cv_signal(&vdcp->sync_pending_cv);
3960 				break;
3961 
3962 			case CB_STRATEGY:
3963 				bufp = ldep->cb_arg;
3964 				ASSERT(bufp != NULL);
3965 				bufp->b_resid = bufp->b_bcount;
3966 				VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
3967 				VD_KSTAT_RUNQ_EXIT(vdcp);
3968 				DTRACE_IO1(done, buf_t *, bufp);
3969 				bioerror(bufp, EIO);
3970 				biodone(bufp);
3971 				break;
3972 
3973 			default:
3974 				ASSERT(0);
3975 			}
3976 
3977 		}
3978 
3979 		/* get the next element to cancel */
3980 		if (++b_idx >= vdcp->local_dring_backup_len)
3981 			b_idx = 0;
3982 	}
3983 
3984 	/* all done - now clear up pending dring copy */
3985 	dring_size = vdcp->local_dring_backup_len *
3986 	    sizeof (vdcp->local_dring_backup[0]);
3987 
3988 	(void) kmem_free(vdcp->local_dring_backup, dring_size);
3989 
3990 	vdcp->local_dring_backup = NULL;
3991 
3992 	DTRACE_PROBE2(cancelled, int, cancelled, vdc_t *, vdcp);
3993 }
3994 
3995 /*
3996  * Function:
3997  *	vdc_connection_timeout
3998  *
3999  * Description:
4000  *	This function is invoked if the timeout set to establish the connection
4001  *	with vds expires. This will happen if we spend too much time in the
4002  *	VDC_STATE_INIT_WAITING or VDC_STATE_NEGOTIATE states. Then we will
4003  *	cancel any pending request and mark them as failed.
4004  *
4005  *	If the timeout does not expire, it will be cancelled when we reach the
4006  *	VDC_STATE_HANDLE_PENDING or VDC_STATE_RESETTING state. This function can
4007  *	be invoked while we are in the VDC_STATE_HANDLE_PENDING or
4008  *	VDC_STATE_RESETTING state in which case we do nothing because the
4009  *	timeout is being cancelled.
4010  *
4011  * Arguments:
4012  *	arg	- argument of the timeout function actually a soft state
4013  *		  pointer for the instance of the device driver.
4014  *
4015  * Return Code:
4016  *	None
4017  */
4018 void
4019 vdc_connection_timeout(void *arg)
4020 {
4021 	vdc_t 		*vdcp = (vdc_t *)arg;
4022 
4023 	mutex_enter(&vdcp->lock);
4024 
4025 	if (vdcp->state == VDC_STATE_HANDLE_PENDING ||
4026 	    vdcp->state == VDC_STATE_DETACH) {
4027 		/*
4028 		 * The connection has just been re-established or
4029 		 * we are detaching.
4030 		 */
4031 		vdcp->ctimeout_reached = B_FALSE;
4032 		mutex_exit(&vdcp->lock);
4033 		return;
4034 	}
4035 
4036 	vdcp->ctimeout_reached = B_TRUE;
4037 
4038 	/* notify requests waiting for sending */
4039 	cv_broadcast(&vdcp->running_cv);
4040 
4041 	/* cancel requests waiting for a result */
4042 	vdc_cancel_backup_dring(vdcp);
4043 
4044 	mutex_exit(&vdcp->lock);
4045 
4046 	cmn_err(CE_NOTE, "[%d] connection to service domain timeout",
4047 	    vdcp->instance);
4048 }
4049 
4050 /*
4051  * Function:
4052  *	vdc_backup_local_dring()
4053  *
4054  * Description:
4055  *	Backup the current dring in the event of a reset. The Dring
4056  *	transactions will be resubmitted to the server when the
4057  *	connection is restored.
4058  *
4059  * Arguments:
4060  *	vdcp	- soft state pointer for this instance of the device driver.
4061  *
4062  * Return Code:
4063  *	NONE
4064  */
4065 static void
4066 vdc_backup_local_dring(vdc_t *vdcp)
4067 {
4068 	int dring_size;
4069 
4070 	ASSERT(MUTEX_HELD(&vdcp->lock));
4071 	ASSERT(vdcp->state == VDC_STATE_RESETTING);
4072 
4073 	/*
4074 	 * If the backup dring is stil around, it means
4075 	 * that the last restore did not complete. However,
4076 	 * since we never got back into the running state,
4077 	 * the backup copy we have is still valid.
4078 	 */
4079 	if (vdcp->local_dring_backup != NULL) {
4080 		DMSG(vdcp, 1, "reusing local descriptor ring backup "
4081 		    "(len=%d, tail=%d)\n", vdcp->local_dring_backup_len,
4082 		    vdcp->local_dring_backup_tail);
4083 		return;
4084 	}
4085 
4086 	/*
4087 	 * The backup dring can be NULL and the local dring may not be
4088 	 * initialized. This can happen if we had a reset while establishing
4089 	 * a new connection but after the connection has timed out. In that
4090 	 * case the backup dring is NULL because the requests have been
4091 	 * cancelled and the request occured before the local dring is
4092 	 * initialized.
4093 	 */
4094 	if (!(vdcp->initialized & VDC_DRING_LOCAL))
4095 		return;
4096 
4097 	DMSG(vdcp, 1, "backing up the local descriptor ring (len=%d, "
4098 	    "tail=%d)\n", vdcp->dring_len, vdcp->dring_curr_idx);
4099 
4100 	dring_size = vdcp->dring_len * sizeof (vdcp->local_dring[0]);
4101 
4102 	vdcp->local_dring_backup = kmem_alloc(dring_size, KM_SLEEP);
4103 	bcopy(vdcp->local_dring, vdcp->local_dring_backup, dring_size);
4104 
4105 	vdcp->local_dring_backup_tail = vdcp->dring_curr_idx;
4106 	vdcp->local_dring_backup_len = vdcp->dring_len;
4107 }
4108 
4109 static void
4110 vdc_switch_server(vdc_t *vdcp)
4111 {
4112 	int		rv;
4113 	vdc_server_t 	*curr_server, *new_server;
4114 
4115 	ASSERT(MUTEX_HELD(&vdcp->lock));
4116 
4117 	/* if there is only one server return back */
4118 	if (vdcp->num_servers == 1) {
4119 		return;
4120 	}
4121 
4122 	/* Get current and next server */
4123 	curr_server = vdcp->curr_server;
4124 	new_server =
4125 	    (curr_server->next) ? curr_server->next : vdcp->server_list;
4126 	ASSERT(curr_server != new_server);
4127 
4128 	/* bring current server's channel down */
4129 	rv = ldc_down(curr_server->ldc_handle);
4130 	if (rv) {
4131 		DMSG(vdcp, 0, "[%d] Cannot bring channel down, port %ld\n",
4132 		    vdcp->instance, curr_server->id);
4133 		return;
4134 	}
4135 
4136 	/* switch the server */
4137 	vdcp->curr_server = new_server;
4138 
4139 	DMSG(vdcp, 0, "[%d] Switched to next vdisk server, port@%ld, ldc@%ld\n",
4140 	    vdcp->instance, vdcp->curr_server->id, vdcp->curr_server->ldc_id);
4141 }
4142 
4143 /* -------------------------------------------------------------------------- */
4144 
4145 /*
4146  * The following functions process the incoming messages from vds
4147  */
4148 
4149 /*
4150  * Function:
4151  *      vdc_process_msg_thread()
4152  *
4153  * Description:
4154  *
4155  *	Main VDC message processing thread. Each vDisk instance
4156  * 	consists of a copy of this thread. This thread triggers
4157  * 	all the handshakes and data exchange with the server. It
4158  * 	also handles all channel resets
4159  *
4160  * Arguments:
4161  *      vdc     - soft state pointer for this instance of the device driver.
4162  *
4163  * Return Code:
4164  *      None
4165  */
4166 static void
4167 vdc_process_msg_thread(vdc_t *vdcp)
4168 {
4169 	int		status;
4170 	int		ctimeout;
4171 	timeout_id_t	tmid = 0;
4172 	clock_t		ldcup_timeout = 0;
4173 
4174 	mutex_enter(&vdcp->lock);
4175 
4176 	for (;;) {
4177 
4178 #define	Q(_s)	(vdcp->state == _s) ? #_s :
4179 		DMSG(vdcp, 3, "state = %d (%s)\n", vdcp->state,
4180 		    Q(VDC_STATE_INIT)
4181 		    Q(VDC_STATE_INIT_WAITING)
4182 		    Q(VDC_STATE_NEGOTIATE)
4183 		    Q(VDC_STATE_HANDLE_PENDING)
4184 		    Q(VDC_STATE_RUNNING)
4185 		    Q(VDC_STATE_RESETTING)
4186 		    Q(VDC_STATE_DETACH)
4187 		    "UNKNOWN");
4188 
4189 		switch (vdcp->state) {
4190 		case VDC_STATE_INIT:
4191 
4192 			/*
4193 			 * If requested, start a timeout to check if the
4194 			 * connection with vds is established in the
4195 			 * specified delay. If the timeout expires, we
4196 			 * will cancel any pending request.
4197 			 *
4198 			 * If some reset have occurred while establishing
4199 			 * the connection, we already have a timeout armed
4200 			 * and in that case we don't need to arm a new one.
4201 			 *
4202 			 * The same rule applies when there are multiple vds'.
4203 			 * If either a connection cannot be established or
4204 			 * the handshake times out, the connection thread will
4205 			 * try another server. The 'ctimeout' will report
4206 			 * back an error after it expires irrespective of
4207 			 * whether the vdisk is trying to connect to just
4208 			 * one or multiple servers.
4209 			 */
4210 			ctimeout = (vdc_timeout != 0)?
4211 			    vdc_timeout : vdcp->curr_server->ctimeout;
4212 
4213 			if (ctimeout != 0 && tmid == 0) {
4214 				tmid = timeout(vdc_connection_timeout, vdcp,
4215 				    ctimeout * drv_usectohz(MICROSEC));
4216 			}
4217 
4218 			/* Check if we are re-initializing repeatedly */
4219 			if (vdcp->hshake_cnt > vdc_hshake_retries &&
4220 			    vdcp->lifecycle != VDC_LC_ONLINE) {
4221 
4222 				DMSG(vdcp, 0, "[%d] too many handshakes,cnt=%d",
4223 				    vdcp->instance, vdcp->hshake_cnt);
4224 				cmn_err(CE_NOTE, "[%d] disk access failed.\n",
4225 				    vdcp->instance);
4226 				vdcp->state = VDC_STATE_DETACH;
4227 				break;
4228 			}
4229 
4230 			/* Switch to STATE_DETACH if drv is detaching */
4231 			if (vdcp->lifecycle == VDC_LC_DETACHING) {
4232 				vdcp->state = VDC_STATE_DETACH;
4233 				break;
4234 			}
4235 
4236 			/* Switch server */
4237 			if (vdcp->hshake_cnt > 0)
4238 				vdc_switch_server(vdcp);
4239 			vdcp->hshake_cnt++;
4240 
4241 			/* Bring up connection with vds via LDC */
4242 			status = vdc_start_ldc_connection(vdcp);
4243 			if (status != EINVAL) {
4244 				vdcp->state = VDC_STATE_INIT_WAITING;
4245 			}
4246 			break;
4247 
4248 		case VDC_STATE_INIT_WAITING:
4249 
4250 			/* if channel is UP, start negotiation */
4251 			if (vdcp->curr_server->ldc_state == LDC_UP) {
4252 				vdcp->state = VDC_STATE_NEGOTIATE;
4253 				break;
4254 			}
4255 
4256 			/* check if only one server exists */
4257 			if (vdcp->num_servers == 1) {
4258 				cv_wait(&vdcp->initwait_cv, &vdcp->lock);
4259 			} else {
4260 				/*
4261 				 * wait for LDC_UP, if it times out, switch
4262 				 * to another server.
4263 				 */
4264 				ldcup_timeout = ddi_get_lbolt() +
4265 				    (vdc_ldcup_timeout *
4266 				    drv_usectohz(MICROSEC));
4267 				status = cv_timedwait(&vdcp->initwait_cv,
4268 				    &vdcp->lock, ldcup_timeout);
4269 				if (status == -1 &&
4270 				    vdcp->state == VDC_STATE_INIT_WAITING &&
4271 				    vdcp->curr_server->ldc_state != LDC_UP) {
4272 					/* timed out & still waiting */
4273 					vdcp->state = VDC_STATE_INIT;
4274 					break;
4275 				}
4276 			}
4277 
4278 			if (vdcp->state != VDC_STATE_INIT_WAITING) {
4279 				DMSG(vdcp, 0,
4280 				    "state moved to %d out from under us...\n",
4281 				    vdcp->state);
4282 			}
4283 			break;
4284 
4285 		case VDC_STATE_NEGOTIATE:
4286 			switch (status = vdc_ver_negotiation(vdcp)) {
4287 			case 0:
4288 				break;
4289 			default:
4290 				DMSG(vdcp, 0, "ver negotiate failed (%d)..\n",
4291 				    status);
4292 				goto reset;
4293 			}
4294 
4295 			switch (status = vdc_attr_negotiation(vdcp)) {
4296 			case 0:
4297 				break;
4298 			default:
4299 				DMSG(vdcp, 0, "attr negotiate failed (%d)..\n",
4300 				    status);
4301 				goto reset;
4302 			}
4303 
4304 			switch (status = vdc_dring_negotiation(vdcp)) {
4305 			case 0:
4306 				break;
4307 			default:
4308 				DMSG(vdcp, 0, "dring negotiate failed (%d)..\n",
4309 				    status);
4310 				goto reset;
4311 			}
4312 
4313 			switch (status = vdc_rdx_exchange(vdcp)) {
4314 			case 0:
4315 				vdcp->state = VDC_STATE_HANDLE_PENDING;
4316 				goto done;
4317 			default:
4318 				DMSG(vdcp, 0, "RDX xchg failed ..(%d)\n",
4319 				    status);
4320 				goto reset;
4321 			}
4322 reset:
4323 			DMSG(vdcp, 0, "negotiation failed: resetting (%d)\n",
4324 			    status);
4325 			vdcp->state = VDC_STATE_RESETTING;
4326 			vdcp->self_reset = B_TRUE;
4327 done:
4328 			DMSG(vdcp, 0, "negotiation complete (state=0x%x)...\n",
4329 			    vdcp->state);
4330 			break;
4331 
4332 		case VDC_STATE_HANDLE_PENDING:
4333 
4334 			if (vdcp->ctimeout_reached) {
4335 				/*
4336 				 * The connection timeout had been reached so
4337 				 * pending requests have been cancelled. Now
4338 				 * that the connection is back we can reset
4339 				 * the timeout.
4340 				 */
4341 				ASSERT(vdcp->local_dring_backup == NULL);
4342 				ASSERT(tmid != 0);
4343 				tmid = 0;
4344 				vdcp->ctimeout_reached = B_FALSE;
4345 				vdcp->state = VDC_STATE_RUNNING;
4346 				DMSG(vdcp, 0, "[%d] connection to service "
4347 				    "domain is up", vdcp->instance);
4348 				break;
4349 			}
4350 
4351 			mutex_exit(&vdcp->lock);
4352 			if (tmid != 0) {
4353 				(void) untimeout(tmid);
4354 				tmid = 0;
4355 			}
4356 			status = vdc_resubmit_backup_dring(vdcp);
4357 			mutex_enter(&vdcp->lock);
4358 
4359 			if (status)
4360 				vdcp->state = VDC_STATE_RESETTING;
4361 			else
4362 				vdcp->state = VDC_STATE_RUNNING;
4363 
4364 			break;
4365 
4366 		/* enter running state */
4367 		case VDC_STATE_RUNNING:
4368 			/*
4369 			 * Signal anyone waiting for the connection
4370 			 * to come on line.
4371 			 */
4372 			vdcp->hshake_cnt = 0;
4373 			cv_broadcast(&vdcp->running_cv);
4374 
4375 			/* failfast has to been checked after reset */
4376 			cv_signal(&vdcp->failfast_cv);
4377 
4378 			/* ownership is lost during reset */
4379 			if (vdcp->ownership & VDC_OWNERSHIP_WANTED)
4380 				vdcp->ownership |= VDC_OWNERSHIP_RESET;
4381 			cv_signal(&vdcp->ownership_cv);
4382 
4383 			cmn_err(CE_CONT, "?vdisk@%d is online using "
4384 			    "ldc@%ld,%ld\n", vdcp->instance,
4385 			    vdcp->curr_server->ldc_id, vdcp->curr_server->id);
4386 
4387 			mutex_exit(&vdcp->lock);
4388 
4389 			for (;;) {
4390 				vio_msg_t msg;
4391 				status = vdc_wait_for_response(vdcp, &msg);
4392 				if (status) break;
4393 
4394 				DMSG(vdcp, 1, "[%d] new pkt(s) available\n",
4395 				    vdcp->instance);
4396 				status = vdc_process_data_msg(vdcp, &msg);
4397 				if (status) {
4398 					DMSG(vdcp, 1, "[%d] process_data_msg "
4399 					    "returned err=%d\n", vdcp->instance,
4400 					    status);
4401 					break;
4402 				}
4403 
4404 			}
4405 
4406 			mutex_enter(&vdcp->lock);
4407 
4408 			cmn_err(CE_CONT, "?vdisk@%d is offline\n",
4409 			    vdcp->instance);
4410 
4411 			vdcp->state = VDC_STATE_RESETTING;
4412 			vdcp->self_reset = B_TRUE;
4413 			break;
4414 
4415 		case VDC_STATE_RESETTING:
4416 			/*
4417 			 * When we reach this state, we either come from the
4418 			 * VDC_STATE_RUNNING state and we can have pending
4419 			 * request but no timeout is armed; or we come from
4420 			 * the VDC_STATE_INIT_WAITING, VDC_NEGOTIATE or
4421 			 * VDC_HANDLE_PENDING state and there is no pending
4422 			 * request or pending requests have already been copied
4423 			 * into the backup dring. So we can safely keep the
4424 			 * connection timeout armed while we are in this state.
4425 			 */
4426 
4427 			DMSG(vdcp, 0, "Initiating channel reset "
4428 			    "(pending = %d)\n", (int)vdcp->threads_pending);
4429 
4430 			if (vdcp->self_reset) {
4431 				DMSG(vdcp, 0,
4432 				    "[%d] calling stop_ldc_connection.\n",
4433 				    vdcp->instance);
4434 				status = vdc_stop_ldc_connection(vdcp);
4435 				vdcp->self_reset = B_FALSE;
4436 			}
4437 
4438 			/*
4439 			 * Wait for all threads currently waiting
4440 			 * for a free dring entry to use.
4441 			 */
4442 			while (vdcp->threads_pending) {
4443 				cv_broadcast(&vdcp->membind_cv);
4444 				cv_broadcast(&vdcp->dring_free_cv);
4445 				mutex_exit(&vdcp->lock);
4446 				/* give the waiters enough time to wake up */
4447 				delay(vdc_hz_min_ldc_delay);
4448 				mutex_enter(&vdcp->lock);
4449 			}
4450 
4451 			ASSERT(vdcp->threads_pending == 0);
4452 
4453 			/* Sanity check that no thread is receiving */
4454 			ASSERT(vdcp->read_state != VDC_READ_WAITING);
4455 
4456 			vdcp->read_state = VDC_READ_IDLE;
4457 
4458 			vdc_backup_local_dring(vdcp);
4459 
4460 			/* cleanup the old d-ring */
4461 			vdc_destroy_descriptor_ring(vdcp);
4462 
4463 			/* go and start again */
4464 			vdcp->state = VDC_STATE_INIT;
4465 
4466 			break;
4467 
4468 		case VDC_STATE_DETACH:
4469 			DMSG(vdcp, 0, "[%d] Reset thread exit cleanup ..\n",
4470 			    vdcp->instance);
4471 
4472 			/* cancel any pending timeout */
4473 			mutex_exit(&vdcp->lock);
4474 			if (tmid != 0) {
4475 				(void) untimeout(tmid);
4476 				tmid = 0;
4477 			}
4478 			mutex_enter(&vdcp->lock);
4479 
4480 			/*
4481 			 * Signal anyone waiting for connection
4482 			 * to come online
4483 			 */
4484 			cv_broadcast(&vdcp->running_cv);
4485 
4486 			while (vdcp->sync_op_pending) {
4487 				cv_signal(&vdcp->sync_pending_cv);
4488 				cv_signal(&vdcp->sync_blocked_cv);
4489 				mutex_exit(&vdcp->lock);
4490 				/* give the waiters enough time to wake up */
4491 				delay(vdc_hz_min_ldc_delay);
4492 				mutex_enter(&vdcp->lock);
4493 			}
4494 
4495 			mutex_exit(&vdcp->lock);
4496 
4497 			DMSG(vdcp, 0, "[%d] Msg processing thread exiting ..\n",
4498 			    vdcp->instance);
4499 			thread_exit();
4500 			break;
4501 		}
4502 	}
4503 }
4504 
4505 
4506 /*
4507  * Function:
4508  *	vdc_process_data_msg()
4509  *
4510  * Description:
4511  *	This function is called by the message processing thread each time
4512  *	a message with a msgtype of VIO_TYPE_DATA is received. It will either
4513  *	be an ACK or NACK from vds[1] which vdc handles as follows.
4514  *		ACK	- wake up the waiting thread
4515  *		NACK	- resend any messages necessary
4516  *
4517  *	[1] Although the message format allows it, vds should not send a
4518  *	    VIO_SUBTYPE_INFO message to vdc asking it to read data; if for
4519  *	    some bizarre reason it does, vdc will reset the connection.
4520  *
4521  * Arguments:
4522  *	vdc	- soft state pointer for this instance of the device driver.
4523  *	msg	- the LDC message sent by vds
4524  *
4525  * Return Code:
4526  *	0	- Success.
4527  *	> 0	- error value returned by LDC
4528  */
4529 static int
4530 vdc_process_data_msg(vdc_t *vdcp, vio_msg_t *msg)
4531 {
4532 	int			status = 0;
4533 	vio_dring_msg_t		*dring_msg;
4534 	vdc_local_desc_t	*ldep = NULL;
4535 	int			start, end;
4536 	int			idx;
4537 	int			op;
4538 
4539 	dring_msg = (vio_dring_msg_t *)msg;
4540 
4541 	ASSERT(msg->tag.vio_msgtype == VIO_TYPE_DATA);
4542 	ASSERT(vdcp != NULL);
4543 
4544 	mutex_enter(&vdcp->lock);
4545 
4546 	/*
4547 	 * Check to see if the message has bogus data
4548 	 */
4549 	idx = start = dring_msg->start_idx;
4550 	end = dring_msg->end_idx;
4551 	if ((start >= vdcp->dring_len) ||
4552 	    (end >= vdcp->dring_len) || (end < -1)) {
4553 		/*
4554 		 * Update the I/O statistics to indicate that an error ocurred.
4555 		 * No need to update the wait/run queues as no specific read or
4556 		 * write request is being completed in response to this 'msg'.
4557 		 */
4558 		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4559 		DMSG(vdcp, 0, "[%d] Bogus ACK data : start %d, end %d\n",
4560 		    vdcp->instance, start, end);
4561 		mutex_exit(&vdcp->lock);
4562 		return (EINVAL);
4563 	}
4564 
4565 	/*
4566 	 * Verify that the sequence number is what vdc expects.
4567 	 */
4568 	switch (vdc_verify_seq_num(vdcp, dring_msg)) {
4569 	case VDC_SEQ_NUM_TODO:
4570 		break;	/* keep processing this message */
4571 	case VDC_SEQ_NUM_SKIP:
4572 		mutex_exit(&vdcp->lock);
4573 		return (0);
4574 	case VDC_SEQ_NUM_INVALID:
4575 		/*
4576 		 * Update the I/O statistics to indicate that an error ocurred.
4577 		 * No need to update the wait/run queues as no specific read or
4578 		 * write request is being completed in response to this 'msg'.
4579 		 */
4580 		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4581 		DMSG(vdcp, 0, "[%d] invalid seqno\n", vdcp->instance);
4582 		mutex_exit(&vdcp->lock);
4583 		return (ENXIO);
4584 	}
4585 
4586 	if (msg->tag.vio_subtype == VIO_SUBTYPE_NACK) {
4587 		/*
4588 		 * Update the I/O statistics to indicate that an error ocurred.
4589 		 *
4590 		 * We need to update the run queue if a read or write request
4591 		 * is being NACKed - otherwise there will appear to be an
4592 		 * indefinite outstanding request and statistics reported by
4593 		 * iostat(1M) will be incorrect. The transaction will be
4594 		 * resubmitted from the backup DRing following the reset
4595 		 * and the wait/run queues will be entered again.
4596 		 */
4597 		ldep = &vdcp->local_dring[idx];
4598 		op = ldep->operation;
4599 		if ((op == VD_OP_BREAD) || (op == VD_OP_BWRITE)) {
4600 			DTRACE_IO1(done, buf_t *, ldep->cb_arg);
4601 			VD_KSTAT_RUNQ_EXIT(vdcp);
4602 		}
4603 		VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4604 		VDC_DUMP_DRING_MSG(dring_msg);
4605 		DMSG(vdcp, 0, "[%d] DATA NACK\n", vdcp->instance);
4606 		mutex_exit(&vdcp->lock);
4607 		return (EIO);
4608 
4609 	} else if (msg->tag.vio_subtype == VIO_SUBTYPE_INFO) {
4610 		/*
4611 		 * Update the I/O statistics to indicate that an error occurred.
4612 		 * No need to update the wait/run queues as no specific read or
4613 		 * write request is being completed in response to this 'msg'.
4614 		 */
4615 		VD_UPDATE_ERR_STATS(vdcp, vd_protoerrs);
4616 		mutex_exit(&vdcp->lock);
4617 		return (EPROTO);
4618 	}
4619 
4620 	DMSG(vdcp, 1, ": start %d end %d\n", start, end);
4621 	ASSERT(start == end);
4622 
4623 	ldep = &vdcp->local_dring[idx];
4624 
4625 	DMSG(vdcp, 1, ": state 0x%x - cb_type 0x%x\n",
4626 	    ldep->dep->hdr.dstate, ldep->cb_type);
4627 
4628 	if (ldep->dep->hdr.dstate == VIO_DESC_DONE) {
4629 		struct buf *bufp;
4630 
4631 		switch (ldep->cb_type) {
4632 		case CB_SYNC:
4633 			ASSERT(vdcp->sync_op_pending);
4634 
4635 			status = vdc_depopulate_descriptor(vdcp, idx);
4636 			vdcp->sync_op_status = status;
4637 			vdcp->sync_op_pending = B_FALSE;
4638 			cv_signal(&vdcp->sync_pending_cv);
4639 			break;
4640 
4641 		case CB_STRATEGY:
4642 			bufp = ldep->cb_arg;
4643 			ASSERT(bufp != NULL);
4644 			bufp->b_resid =
4645 			    bufp->b_bcount - ldep->dep->payload.nbytes;
4646 			status = ldep->dep->payload.status; /* Future:ntoh */
4647 			if (status != 0) {
4648 				DMSG(vdcp, 1, "strategy status=%d\n", status);
4649 				VD_UPDATE_ERR_STATS(vdcp, vd_softerrs);
4650 				bioerror(bufp, status);
4651 			}
4652 
4653 			(void) vdc_depopulate_descriptor(vdcp, idx);
4654 
4655 			DMSG(vdcp, 1,
4656 			    "strategy complete req=%ld bytes resp=%ld bytes\n",
4657 			    bufp->b_bcount, ldep->dep->payload.nbytes);
4658 
4659 			if (status != 0 && vdcp->failfast_interval != 0) {
4660 				/*
4661 				 * The I/O has failed and failfast is enabled.
4662 				 * We need the failfast thread to check if the
4663 				 * failure is due to a reservation conflict.
4664 				 */
4665 				(void) vdc_failfast_io_queue(vdcp, bufp);
4666 			} else {
4667 				if (status == 0) {
4668 					op = (bufp->b_flags & B_READ) ?
4669 					    VD_OP_BREAD : VD_OP_BWRITE;
4670 					VD_UPDATE_IO_STATS(vdcp, op,
4671 					    ldep->dep->payload.nbytes);
4672 				}
4673 				VD_KSTAT_RUNQ_EXIT(vdcp);
4674 				DTRACE_IO1(done, buf_t *, bufp);
4675 				biodone(bufp);
4676 			}
4677 			break;
4678 
4679 		default:
4680 			ASSERT(0);
4681 		}
4682 	}
4683 
4684 	/* let the arrival signal propogate */
4685 	mutex_exit(&vdcp->lock);
4686 
4687 	/* probe gives the count of how many entries were processed */
4688 	DTRACE_PROBE2(processed, int, 1, vdc_t *, vdcp);
4689 
4690 	return (0);
4691 }
4692 
4693 
4694 /*
4695  * Function:
4696  *	vdc_handle_ver_msg()
4697  *
4698  * Description:
4699  *
4700  * Arguments:
4701  *	vdc	- soft state pointer for this instance of the device driver.
4702  *	ver_msg	- LDC message sent by vDisk server
4703  *
4704  * Return Code:
4705  *	0	- Success
4706  */
4707 static int
4708 vdc_handle_ver_msg(vdc_t *vdc, vio_ver_msg_t *ver_msg)
4709 {
4710 	int status = 0;
4711 
4712 	ASSERT(vdc != NULL);
4713 	ASSERT(mutex_owned(&vdc->lock));
4714 
4715 	if (ver_msg->tag.vio_subtype_env != VIO_VER_INFO) {
4716 		return (EPROTO);
4717 	}
4718 
4719 	if (ver_msg->dev_class != VDEV_DISK_SERVER) {
4720 		return (EINVAL);
4721 	}
4722 
4723 	switch (ver_msg->tag.vio_subtype) {
4724 	case VIO_SUBTYPE_ACK:
4725 		/*
4726 		 * We check to see if the version returned is indeed supported
4727 		 * (The server may have also adjusted the minor number downwards
4728 		 * and if so 'ver_msg' will contain the actual version agreed)
4729 		 */
4730 		if (vdc_is_supported_version(ver_msg)) {
4731 			vdc->ver.major = ver_msg->ver_major;
4732 			vdc->ver.minor = ver_msg->ver_minor;
4733 			ASSERT(vdc->ver.major > 0);
4734 		} else {
4735 			status = EPROTO;
4736 		}
4737 		break;
4738 
4739 	case VIO_SUBTYPE_NACK:
4740 		/*
4741 		 * call vdc_is_supported_version() which will return the next
4742 		 * supported version (if any) in 'ver_msg'
4743 		 */
4744 		(void) vdc_is_supported_version(ver_msg);
4745 		if (ver_msg->ver_major > 0) {
4746 			size_t len = sizeof (*ver_msg);
4747 
4748 			ASSERT(vdc->ver.major > 0);
4749 
4750 			/* reset the necessary fields and resend */
4751 			ver_msg->tag.vio_subtype = VIO_SUBTYPE_INFO;
4752 			ver_msg->dev_class = VDEV_DISK;
4753 
4754 			status = vdc_send(vdc, (caddr_t)ver_msg, &len);
4755 			DMSG(vdc, 0, "[%d] Resend VER info (LDC status = %d)\n",
4756 			    vdc->instance, status);
4757 			if (len != sizeof (*ver_msg))
4758 				status = EBADMSG;
4759 		} else {
4760 			DMSG(vdc, 0, "[%d] No common version with vDisk server",
4761 			    vdc->instance);
4762 			status = ENOTSUP;
4763 		}
4764 
4765 		break;
4766 	case VIO_SUBTYPE_INFO:
4767 		/*
4768 		 * Handle the case where vds starts handshake
4769 		 * (for now only vdc is the instigator)
4770 		 */
4771 		status = ENOTSUP;
4772 		break;
4773 
4774 	default:
4775 		status = EINVAL;
4776 		break;
4777 	}
4778 
4779 	return (status);
4780 }
4781 
4782 /*
4783  * Function:
4784  *	vdc_handle_attr_msg()
4785  *
4786  * Description:
4787  *
4788  * Arguments:
4789  *	vdc	- soft state pointer for this instance of the device driver.
4790  *	attr_msg	- LDC message sent by vDisk server
4791  *
4792  * Return Code:
4793  *	0	- Success
4794  */
4795 static int
4796 vdc_handle_attr_msg(vdc_t *vdc, vd_attr_msg_t *attr_msg)
4797 {
4798 	int status = 0;
4799 
4800 	ASSERT(vdc != NULL);
4801 	ASSERT(mutex_owned(&vdc->lock));
4802 
4803 	if (attr_msg->tag.vio_subtype_env != VIO_ATTR_INFO) {
4804 		return (EPROTO);
4805 	}
4806 
4807 	switch (attr_msg->tag.vio_subtype) {
4808 	case VIO_SUBTYPE_ACK:
4809 		/*
4810 		 * We now verify the attributes sent by vds.
4811 		 */
4812 		if (attr_msg->vdisk_size == 0) {
4813 			DMSG(vdc, 0, "[%d] Invalid disk size from vds",
4814 			    vdc->instance);
4815 			status = EINVAL;
4816 			break;
4817 		}
4818 
4819 		if (attr_msg->max_xfer_sz == 0) {
4820 			DMSG(vdc, 0, "[%d] Invalid transfer size from vds",
4821 			    vdc->instance);
4822 			status = EINVAL;
4823 			break;
4824 		}
4825 
4826 		if (attr_msg->vdisk_size == VD_SIZE_UNKNOWN) {
4827 			DMSG(vdc, 0, "[%d] Unknown disk size from vds",
4828 			    vdc->instance);
4829 			attr_msg->vdisk_size = 0;
4830 		}
4831 		/* update disk, block and transfer sizes */
4832 		vdc_update_size(vdc, attr_msg->vdisk_size,
4833 		    attr_msg->vdisk_block_size, attr_msg->max_xfer_sz);
4834 		vdc->vdisk_type = attr_msg->vdisk_type;
4835 		vdc->operations = attr_msg->operations;
4836 		if (vio_ver_is_supported(vdc->ver, 1, 1))
4837 			vdc->vdisk_media = attr_msg->vdisk_media;
4838 		else
4839 			vdc->vdisk_media = 0;
4840 
4841 		DMSG(vdc, 0, "[%d] max_xfer_sz: sent %lx acked %lx\n",
4842 		    vdc->instance, vdc->max_xfer_sz, attr_msg->max_xfer_sz);
4843 		DMSG(vdc, 0, "[%d] vdisk_block_size: sent %lx acked %x\n",
4844 		    vdc->instance, vdc->block_size,
4845 		    attr_msg->vdisk_block_size);
4846 
4847 		if ((attr_msg->xfer_mode != VIO_DRING_MODE_V1_0) ||
4848 		    (attr_msg->vdisk_size > INT64_MAX) ||
4849 		    (attr_msg->operations == 0) ||
4850 		    (attr_msg->vdisk_type > VD_DISK_TYPE_DISK)) {
4851 			DMSG(vdc, 0, "[%d] Invalid attributes from vds",
4852 			    vdc->instance);
4853 			status = EINVAL;
4854 			break;
4855 		}
4856 
4857 		/*
4858 		 * Now that we have received all attributes we can create a
4859 		 * fake geometry for the disk.
4860 		 */
4861 		vdc_create_fake_geometry(vdc);
4862 		break;
4863 
4864 	case VIO_SUBTYPE_NACK:
4865 		/*
4866 		 * vds could not handle the attributes we sent so we
4867 		 * stop negotiating.
4868 		 */
4869 		status = EPROTO;
4870 		break;
4871 
4872 	case VIO_SUBTYPE_INFO:
4873 		/*
4874 		 * Handle the case where vds starts the handshake
4875 		 * (for now; vdc is the only supported instigatior)
4876 		 */
4877 		status = ENOTSUP;
4878 		break;
4879 
4880 	default:
4881 		status = ENOTSUP;
4882 		break;
4883 	}
4884 
4885 	return (status);
4886 }
4887 
4888 /*
4889  * Function:
4890  *	vdc_handle_dring_reg_msg()
4891  *
4892  * Description:
4893  *
4894  * Arguments:
4895  *	vdc		- soft state pointer for this instance of the driver.
4896  *	dring_msg	- LDC message sent by vDisk server
4897  *
4898  * Return Code:
4899  *	0	- Success
4900  */
4901 static int
4902 vdc_handle_dring_reg_msg(vdc_t *vdc, vio_dring_reg_msg_t *dring_msg)
4903 {
4904 	int		status = 0;
4905 
4906 	ASSERT(vdc != NULL);
4907 	ASSERT(mutex_owned(&vdc->lock));
4908 
4909 	if (dring_msg->tag.vio_subtype_env != VIO_DRING_REG) {
4910 		return (EPROTO);
4911 	}
4912 
4913 	switch (dring_msg->tag.vio_subtype) {
4914 	case VIO_SUBTYPE_ACK:
4915 		/* save the received dring_ident */
4916 		vdc->dring_ident = dring_msg->dring_ident;
4917 		DMSG(vdc, 0, "[%d] Received dring ident=0x%lx\n",
4918 		    vdc->instance, vdc->dring_ident);
4919 		break;
4920 
4921 	case VIO_SUBTYPE_NACK:
4922 		/*
4923 		 * vds could not handle the DRing info we sent so we
4924 		 * stop negotiating.
4925 		 */
4926 		DMSG(vdc, 0, "[%d] server could not register DRing\n",
4927 		    vdc->instance);
4928 		status = EPROTO;
4929 		break;
4930 
4931 	case VIO_SUBTYPE_INFO:
4932 		/*
4933 		 * Handle the case where vds starts handshake
4934 		 * (for now only vdc is the instigatior)
4935 		 */
4936 		status = ENOTSUP;
4937 		break;
4938 	default:
4939 		status = ENOTSUP;
4940 	}
4941 
4942 	return (status);
4943 }
4944 
4945 /*
4946  * Function:
4947  *	vdc_verify_seq_num()
4948  *
4949  * Description:
4950  *	This functions verifies that the sequence number sent back by the vDisk
4951  *	server with the latest message is what is expected (i.e. it is greater
4952  *	than the last seq num sent by the vDisk server and less than or equal
4953  *	to the last seq num generated by vdc).
4954  *
4955  *	It then checks the request ID to see if any requests need processing
4956  *	in the DRing.
4957  *
4958  * Arguments:
4959  *	vdc		- soft state pointer for this instance of the driver.
4960  *	dring_msg	- pointer to the LDC message sent by vds
4961  *
4962  * Return Code:
4963  *	VDC_SEQ_NUM_TODO	- Message needs to be processed
4964  *	VDC_SEQ_NUM_SKIP	- Message has already been processed
4965  *	VDC_SEQ_NUM_INVALID	- The seq numbers are so out of sync,
4966  *				  vdc cannot deal with them
4967  */
4968 static int
4969 vdc_verify_seq_num(vdc_t *vdc, vio_dring_msg_t *dring_msg)
4970 {
4971 	ASSERT(vdc != NULL);
4972 	ASSERT(dring_msg != NULL);
4973 	ASSERT(mutex_owned(&vdc->lock));
4974 
4975 	/*
4976 	 * Check to see if the messages were responded to in the correct
4977 	 * order by vds.
4978 	 */
4979 	if ((dring_msg->seq_num <= vdc->seq_num_reply) ||
4980 	    (dring_msg->seq_num > vdc->seq_num)) {
4981 		DMSG(vdc, 0, "?[%d] Bogus sequence_number %lu: "
4982 		    "%lu > expected <= %lu (last proc req %lu sent %lu)\n",
4983 		    vdc->instance, dring_msg->seq_num,
4984 		    vdc->seq_num_reply, vdc->seq_num,
4985 		    vdc->req_id_proc, vdc->req_id);
4986 		return (VDC_SEQ_NUM_INVALID);
4987 	}
4988 	vdc->seq_num_reply = dring_msg->seq_num;
4989 
4990 	if (vdc->req_id_proc < vdc->req_id)
4991 		return (VDC_SEQ_NUM_TODO);
4992 	else
4993 		return (VDC_SEQ_NUM_SKIP);
4994 }
4995 
4996 
4997 /*
4998  * Function:
4999  *	vdc_is_supported_version()
5000  *
5001  * Description:
5002  *	This routine checks if the major/minor version numbers specified in
5003  *	'ver_msg' are supported. If not it finds the next version that is
5004  *	in the supported version list 'vdc_version[]' and sets the fields in
5005  *	'ver_msg' to those values
5006  *
5007  * Arguments:
5008  *	ver_msg	- LDC message sent by vDisk server
5009  *
5010  * Return Code:
5011  *	B_TRUE	- Success
5012  *	B_FALSE	- Version not supported
5013  */
5014 static boolean_t
5015 vdc_is_supported_version(vio_ver_msg_t *ver_msg)
5016 {
5017 	int vdc_num_versions = sizeof (vdc_version) / sizeof (vdc_version[0]);
5018 
5019 	for (int i = 0; i < vdc_num_versions; i++) {
5020 		ASSERT(vdc_version[i].major > 0);
5021 		ASSERT((i == 0) ||
5022 		    (vdc_version[i].major < vdc_version[i-1].major));
5023 
5024 		/*
5025 		 * If the major versions match, adjust the minor version, if
5026 		 * necessary, down to the highest value supported by this
5027 		 * client. The server should support all minor versions lower
5028 		 * than the value it sent
5029 		 */
5030 		if (ver_msg->ver_major == vdc_version[i].major) {
5031 			if (ver_msg->ver_minor > vdc_version[i].minor) {
5032 				DMSGX(0,
5033 				    "Adjusting minor version from %u to %u",
5034 				    ver_msg->ver_minor, vdc_version[i].minor);
5035 				ver_msg->ver_minor = vdc_version[i].minor;
5036 			}
5037 			return (B_TRUE);
5038 		}
5039 
5040 		/*
5041 		 * If the message contains a higher major version number, set
5042 		 * the message's major/minor versions to the current values
5043 		 * and return false, so this message will get resent with
5044 		 * these values, and the server will potentially try again
5045 		 * with the same or a lower version
5046 		 */
5047 		if (ver_msg->ver_major > vdc_version[i].major) {
5048 			ver_msg->ver_major = vdc_version[i].major;
5049 			ver_msg->ver_minor = vdc_version[i].minor;
5050 			DMSGX(0, "Suggesting major/minor (0x%x/0x%x)\n",
5051 			    ver_msg->ver_major, ver_msg->ver_minor);
5052 
5053 			return (B_FALSE);
5054 		}
5055 
5056 		/*
5057 		 * Otherwise, the message's major version is less than the
5058 		 * current major version, so continue the loop to the next
5059 		 * (lower) supported version
5060 		 */
5061 	}
5062 
5063 	/*
5064 	 * No common version was found; "ground" the version pair in the
5065 	 * message to terminate negotiation
5066 	 */
5067 	ver_msg->ver_major = 0;
5068 	ver_msg->ver_minor = 0;
5069 
5070 	return (B_FALSE);
5071 }
5072 /* -------------------------------------------------------------------------- */
5073 
5074 /*
5075  * DKIO(7) support
5076  */
5077 
5078 typedef struct vdc_dk_arg {
5079 	struct dk_callback	dkc;
5080 	int			mode;
5081 	dev_t			dev;
5082 	vdc_t			*vdc;
5083 } vdc_dk_arg_t;
5084 
5085 /*
5086  * Function:
5087  * 	vdc_dkio_flush_cb()
5088  *
5089  * Description:
5090  *	This routine is a callback for DKIOCFLUSHWRITECACHE which can be called
5091  *	by kernel code.
5092  *
5093  * Arguments:
5094  *	arg	- a pointer to a vdc_dk_arg_t structure.
5095  */
5096 void
5097 vdc_dkio_flush_cb(void *arg)
5098 {
5099 	struct vdc_dk_arg	*dk_arg = (struct vdc_dk_arg *)arg;
5100 	struct dk_callback	*dkc = NULL;
5101 	vdc_t			*vdc = NULL;
5102 	int			rv;
5103 
5104 	if (dk_arg == NULL) {
5105 		cmn_err(CE_NOTE, "?[Unk] DKIOCFLUSHWRITECACHE arg is NULL\n");
5106 		return;
5107 	}
5108 	dkc = &dk_arg->dkc;
5109 	vdc = dk_arg->vdc;
5110 	ASSERT(vdc != NULL);
5111 
5112 	rv = vdc_do_sync_op(vdc, VD_OP_FLUSH, NULL, 0,
5113 	    VDCPART(dk_arg->dev), 0, CB_SYNC, 0, VIO_both_dir, B_TRUE);
5114 	if (rv != 0) {
5115 		DMSG(vdc, 0, "[%d] DKIOCFLUSHWRITECACHE failed %d : model %x\n",
5116 		    vdc->instance, rv,
5117 		    ddi_model_convert_from(dk_arg->mode & FMODELS));
5118 	}
5119 
5120 	/*
5121 	 * Trigger the call back to notify the caller the the ioctl call has
5122 	 * been completed.
5123 	 */
5124 	if ((dk_arg->mode & FKIOCTL) &&
5125 	    (dkc != NULL) &&
5126 	    (dkc->dkc_callback != NULL)) {
5127 		ASSERT(dkc->dkc_cookie != NULL);
5128 		(*dkc->dkc_callback)(dkc->dkc_cookie, rv);
5129 	}
5130 
5131 	/* Indicate that one less DKIO write flush is outstanding */
5132 	mutex_enter(&vdc->lock);
5133 	vdc->dkio_flush_pending--;
5134 	ASSERT(vdc->dkio_flush_pending >= 0);
5135 	mutex_exit(&vdc->lock);
5136 
5137 	/* free the mem that was allocated when the callback was dispatched */
5138 	kmem_free(arg, sizeof (vdc_dk_arg_t));
5139 }
5140 
5141 /*
5142  * Function:
5143  * 	vdc_dkio_gapart()
5144  *
5145  * Description:
5146  *	This function implements the DKIOCGAPART ioctl.
5147  *
5148  * Arguments:
5149  *	vdc	- soft state pointer
5150  *	arg	- a pointer to a dk_map[NDKMAP] or dk_map32[NDKMAP] structure
5151  *	flag	- ioctl flags
5152  */
5153 static int
5154 vdc_dkio_gapart(vdc_t *vdc, caddr_t arg, int flag)
5155 {
5156 	struct dk_geom *geom;
5157 	struct extvtoc *vtoc;
5158 	union {
5159 		struct dk_map map[NDKMAP];
5160 		struct dk_map32 map32[NDKMAP];
5161 	} data;
5162 	int i, rv, size;
5163 
5164 	mutex_enter(&vdc->lock);
5165 
5166 	if ((rv = vdc_validate_geometry(vdc)) != 0) {
5167 		mutex_exit(&vdc->lock);
5168 		return (rv);
5169 	}
5170 
5171 	if (vdc->vdisk_size > VD_OLDVTOC_LIMIT) {
5172 		mutex_exit(&vdc->lock);
5173 		return (EOVERFLOW);
5174 	}
5175 
5176 	vtoc = vdc->vtoc;
5177 	geom = vdc->geom;
5178 
5179 	if (ddi_model_convert_from(flag & FMODELS) == DDI_MODEL_ILP32) {
5180 
5181 		for (i = 0; i < vtoc->v_nparts; i++) {
5182 			data.map32[i].dkl_cylno = vtoc->v_part[i].p_start /
5183 			    (geom->dkg_nhead * geom->dkg_nsect);
5184 			data.map32[i].dkl_nblk = vtoc->v_part[i].p_size;
5185 		}
5186 		size = NDKMAP * sizeof (struct dk_map32);
5187 
5188 	} else {
5189 
5190 		for (i = 0; i < vtoc->v_nparts; i++) {
5191 			data.map[i].dkl_cylno = vtoc->v_part[i].p_start /
5192 			    (geom->dkg_nhead * geom->dkg_nsect);
5193 			data.map[i].dkl_nblk = vtoc->v_part[i].p_size;
5194 		}
5195 		size = NDKMAP * sizeof (struct dk_map);
5196 
5197 	}
5198 
5199 	mutex_exit(&vdc->lock);
5200 
5201 	if (ddi_copyout(&data, arg, size, flag) != 0)
5202 		return (EFAULT);
5203 
5204 	return (0);
5205 }
5206 
5207 /*
5208  * Function:
5209  * 	vdc_dkio_partition()
5210  *
5211  * Description:
5212  *	This function implements the DKIOCPARTITION ioctl.
5213  *
5214  * Arguments:
5215  *	vdc	- soft state pointer
5216  *	arg	- a pointer to a struct partition64 structure
5217  *	flag	- ioctl flags
5218  */
5219 static int
5220 vdc_dkio_partition(vdc_t *vdc, caddr_t arg, int flag)
5221 {
5222 	struct partition64 p64;
5223 	efi_gpt_t *gpt;
5224 	efi_gpe_t *gpe;
5225 	vd_efi_dev_t edev;
5226 	uint_t partno;
5227 	int rv;
5228 
5229 	if (ddi_copyin(arg, &p64, sizeof (struct partition64), flag)) {
5230 		return (EFAULT);
5231 	}
5232 
5233 	VD_EFI_DEV_SET(edev, vdc, vd_process_efi_ioctl);
5234 
5235 	if ((rv = vd_efi_alloc_and_read(&edev, &gpt, &gpe)) != 0) {
5236 		return (rv);
5237 	}
5238 
5239 	partno = p64.p_partno;
5240 
5241 	if (partno >= gpt->efi_gpt_NumberOfPartitionEntries) {
5242 		vd_efi_free(&edev, gpt, gpe);
5243 		return (ESRCH);
5244 	}
5245 
5246 	bcopy(&gpe[partno].efi_gpe_PartitionTypeGUID, &p64.p_type,
5247 	    sizeof (struct uuid));
5248 	p64.p_start = gpe[partno].efi_gpe_StartingLBA;
5249 	p64.p_size = gpe[partno].efi_gpe_EndingLBA - p64.p_start + 1;
5250 
5251 	if (ddi_copyout(&p64, arg, sizeof (struct partition64), flag)) {
5252 		vd_efi_free(&edev, gpt, gpe);
5253 		return (EFAULT);
5254 	}
5255 
5256 	vd_efi_free(&edev, gpt, gpe);
5257 	return (0);
5258 }
5259 
5260 /*
5261  * Function:
5262  * 	vdc_dioctl_rwcmd()
5263  *
5264  * Description:
5265  *	This function implements the DIOCTL_RWCMD ioctl. This ioctl is used
5266  *	for DKC_DIRECT disks to read or write at an absolute disk offset.
5267  *
5268  * Arguments:
5269  *	dev	- device
5270  *	arg	- a pointer to a dadkio_rwcmd or dadkio_rwcmd32 structure
5271  *	flag	- ioctl flags
5272  */
5273 static int
5274 vdc_dioctl_rwcmd(dev_t dev, caddr_t arg, int flag)
5275 {
5276 	struct dadkio_rwcmd32 rwcmd32;
5277 	struct dadkio_rwcmd rwcmd;
5278 	struct iovec aiov;
5279 	struct uio auio;
5280 	int rw, status;
5281 	struct buf *buf;
5282 
5283 	if (ddi_model_convert_from(flag & FMODELS) == DDI_MODEL_ILP32) {
5284 		if (ddi_copyin((caddr_t)arg, (caddr_t)&rwcmd32,
5285 		    sizeof (struct dadkio_rwcmd32), flag)) {
5286 			return (EFAULT);
5287 		}
5288 		rwcmd.cmd = rwcmd32.cmd;
5289 		rwcmd.flags = rwcmd32.flags;
5290 		rwcmd.blkaddr = (daddr_t)rwcmd32.blkaddr;
5291 		rwcmd.buflen = rwcmd32.buflen;
5292 		rwcmd.bufaddr = (caddr_t)(uintptr_t)rwcmd32.bufaddr;
5293 	} else {
5294 		if (ddi_copyin((caddr_t)arg, (caddr_t)&rwcmd,
5295 		    sizeof (struct dadkio_rwcmd), flag)) {
5296 			return (EFAULT);
5297 		}
5298 	}
5299 
5300 	switch (rwcmd.cmd) {
5301 	case DADKIO_RWCMD_READ:
5302 		rw = B_READ;
5303 		break;
5304 	case DADKIO_RWCMD_WRITE:
5305 		rw = B_WRITE;
5306 		break;
5307 	default:
5308 		return (EINVAL);
5309 	}
5310 
5311 	bzero((caddr_t)&aiov, sizeof (struct iovec));
5312 	aiov.iov_base   = rwcmd.bufaddr;
5313 	aiov.iov_len    = rwcmd.buflen;
5314 
5315 	bzero((caddr_t)&auio, sizeof (struct uio));
5316 	auio.uio_iov    = &aiov;
5317 	auio.uio_iovcnt = 1;
5318 	auio.uio_loffset = rwcmd.blkaddr * DEV_BSIZE;
5319 	auio.uio_resid  = rwcmd.buflen;
5320 	auio.uio_segflg = flag & FKIOCTL ? UIO_SYSSPACE : UIO_USERSPACE;
5321 
5322 	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
5323 	bioinit(buf);
5324 	/*
5325 	 * We use the private field of buf to specify that this is an
5326 	 * I/O using an absolute offset.
5327 	 */
5328 	buf->b_private = (void *)VD_SLICE_NONE;
5329 
5330 	status = physio(vdc_strategy, buf, dev, rw, vdc_min, &auio);
5331 
5332 	biofini(buf);
5333 	kmem_free(buf, sizeof (buf_t));
5334 
5335 	return (status);
5336 }
5337 
5338 /*
5339  * Allocate a buffer for a VD_OP_SCSICMD operation. The size of the allocated
5340  * buffer is returned in alloc_len.
5341  */
5342 static vd_scsi_t *
5343 vdc_scsi_alloc(int cdb_len, int sense_len, int datain_len, int dataout_len,
5344     int *alloc_len)
5345 {
5346 	vd_scsi_t *vd_scsi;
5347 	int vd_scsi_len = VD_SCSI_SIZE;
5348 
5349 	vd_scsi_len += P2ROUNDUP(cdb_len, sizeof (uint64_t));
5350 	vd_scsi_len += P2ROUNDUP(sense_len, sizeof (uint64_t));
5351 	vd_scsi_len += P2ROUNDUP(datain_len, sizeof (uint64_t));
5352 	vd_scsi_len += P2ROUNDUP(dataout_len, sizeof (uint64_t));
5353 
5354 	ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
5355 
5356 	vd_scsi = kmem_zalloc(vd_scsi_len, KM_SLEEP);
5357 
5358 	vd_scsi->cdb_len = cdb_len;
5359 	vd_scsi->sense_len = sense_len;
5360 	vd_scsi->datain_len = datain_len;
5361 	vd_scsi->dataout_len = dataout_len;
5362 
5363 	*alloc_len = vd_scsi_len;
5364 
5365 	return (vd_scsi);
5366 }
5367 
5368 /*
5369  * Convert the status of a SCSI command to a Solaris return code.
5370  *
5371  * Arguments:
5372  *	vd_scsi		- The SCSI operation buffer.
5373  *	log_error	- indicate if an error message should be logged.
5374  *
5375  * Note that our SCSI error messages are rather primitive for the moment
5376  * and could be improved by decoding some data like the SCSI command and
5377  * the sense key.
5378  *
5379  * Return value:
5380  *	0		- Status is good.
5381  *	EACCES		- Status reports a reservation conflict.
5382  *	ENOTSUP		- Status reports a check condition and sense key
5383  *			  reports an illegal request.
5384  *	EIO		- Any other status.
5385  */
5386 static int
5387 vdc_scsi_status(vdc_t *vdc, vd_scsi_t *vd_scsi, boolean_t log_error)
5388 {
5389 	int rv;
5390 	char path_str[MAXPATHLEN];
5391 	char panic_str[VDC_RESV_CONFLICT_FMT_LEN + MAXPATHLEN];
5392 	union scsi_cdb *cdb;
5393 	struct scsi_extended_sense *sense;
5394 
5395 	if (vd_scsi->cmd_status == STATUS_GOOD)
5396 		/* no error */
5397 		return (0);
5398 
5399 	/* when the tunable vdc_scsi_log_error is true we log all errors */
5400 	if (vdc_scsi_log_error)
5401 		log_error = B_TRUE;
5402 
5403 	if (log_error) {
5404 		cmn_err(CE_WARN, "%s (vdc%d):\tError for Command: 0x%x)\n",
5405 		    ddi_pathname(vdc->dip, path_str), vdc->instance,
5406 		    GETCMD(VD_SCSI_DATA_CDB(vd_scsi)));
5407 	}
5408 
5409 	/* default returned value */
5410 	rv = EIO;
5411 
5412 	switch (vd_scsi->cmd_status) {
5413 
5414 	case STATUS_CHECK:
5415 	case STATUS_TERMINATED:
5416 		if (log_error)
5417 			cmn_err(CE_CONT, "\tCheck Condition Error\n");
5418 
5419 		/* check sense buffer */
5420 		if (vd_scsi->sense_len == 0 ||
5421 		    vd_scsi->sense_status != STATUS_GOOD) {
5422 			if (log_error)
5423 				cmn_err(CE_CONT, "\tNo Sense Data Available\n");
5424 			break;
5425 		}
5426 
5427 		sense = VD_SCSI_DATA_SENSE(vd_scsi);
5428 
5429 		if (log_error) {
5430 			cmn_err(CE_CONT, "\tSense Key:  0x%x\n"
5431 			    "\tASC: 0x%x, ASCQ: 0x%x\n",
5432 			    scsi_sense_key((uint8_t *)sense),
5433 			    scsi_sense_asc((uint8_t *)sense),
5434 			    scsi_sense_ascq((uint8_t *)sense));
5435 		}
5436 
5437 		if (scsi_sense_key((uint8_t *)sense) == KEY_ILLEGAL_REQUEST)
5438 			rv = ENOTSUP;
5439 		break;
5440 
5441 	case STATUS_BUSY:
5442 		if (log_error)
5443 			cmn_err(CE_NOTE, "\tDevice Busy\n");
5444 		break;
5445 
5446 	case STATUS_RESERVATION_CONFLICT:
5447 		/*
5448 		 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then
5449 		 * reservation conflict could be due to various reasons like
5450 		 * incorrect keys, not registered or not reserved etc. So,
5451 		 * we should not panic in that case.
5452 		 */
5453 		cdb = VD_SCSI_DATA_CDB(vd_scsi);
5454 		if (vdc->failfast_interval != 0 &&
5455 		    cdb->scc_cmd != SCMD_PERSISTENT_RESERVE_IN &&
5456 		    cdb->scc_cmd != SCMD_PERSISTENT_RESERVE_OUT) {
5457 			/* failfast is enabled so we have to panic */
5458 			(void) snprintf(panic_str, sizeof (panic_str),
5459 			    VDC_RESV_CONFLICT_FMT_STR "%s",
5460 			    ddi_pathname(vdc->dip, path_str));
5461 			panic(panic_str);
5462 		}
5463 		if (log_error)
5464 			cmn_err(CE_NOTE, "\tReservation Conflict\n");
5465 		rv = EACCES;
5466 		break;
5467 
5468 	case STATUS_QFULL:
5469 		if (log_error)
5470 			cmn_err(CE_NOTE, "\tQueue Full\n");
5471 		break;
5472 
5473 	case STATUS_MET:
5474 	case STATUS_INTERMEDIATE:
5475 	case STATUS_SCSI2:
5476 	case STATUS_INTERMEDIATE_MET:
5477 	case STATUS_ACA_ACTIVE:
5478 		if (log_error)
5479 			cmn_err(CE_CONT,
5480 			    "\tUnexpected SCSI status received: 0x%x\n",
5481 			    vd_scsi->cmd_status);
5482 		break;
5483 
5484 	default:
5485 		if (log_error)
5486 			cmn_err(CE_CONT,
5487 			    "\tInvalid SCSI status received: 0x%x\n",
5488 			    vd_scsi->cmd_status);
5489 		break;
5490 	}
5491 
5492 	return (rv);
5493 }
5494 
5495 /*
5496  * Implemented the USCSICMD uscsi(7I) ioctl. This ioctl is converted to
5497  * a VD_OP_SCSICMD operation which is sent to the vdisk server. If a SCSI
5498  * reset is requested (i.e. a flag USCSI_RESET* is set) then the ioctl is
5499  * converted to a VD_OP_RESET operation.
5500  */
5501 static int
5502 vdc_uscsi_cmd(vdc_t *vdc, caddr_t arg, int mode)
5503 {
5504 	struct uscsi_cmd 	uscsi;
5505 	struct uscsi_cmd32	uscsi32;
5506 	vd_scsi_t 		*vd_scsi;
5507 	int 			vd_scsi_len;
5508 	union scsi_cdb		*cdb;
5509 	struct scsi_extended_sense *sense;
5510 	char 			*datain, *dataout;
5511 	size_t			cdb_len, datain_len, dataout_len, sense_len;
5512 	int 			rv;
5513 
5514 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5515 		if (ddi_copyin(arg, &uscsi32, sizeof (struct uscsi_cmd32),
5516 		    mode) != 0)
5517 			return (EFAULT);
5518 		uscsi_cmd32touscsi_cmd((&uscsi32), (&uscsi));
5519 	} else {
5520 		if (ddi_copyin(arg, &uscsi, sizeof (struct uscsi_cmd),
5521 		    mode) != 0)
5522 			return (EFAULT);
5523 	}
5524 
5525 	/* a uscsi reset is converted to a VD_OP_RESET operation */
5526 	if (uscsi.uscsi_flags & (USCSI_RESET | USCSI_RESET_LUN |
5527 	    USCSI_RESET_ALL)) {
5528 		rv = vdc_do_sync_op(vdc, VD_OP_RESET, NULL, 0, 0, 0, CB_SYNC,
5529 		    (void *)(uint64_t)mode, VIO_both_dir, B_TRUE);
5530 		return (rv);
5531 	}
5532 
5533 	/* cdb buffer length */
5534 	cdb_len = uscsi.uscsi_cdblen;
5535 
5536 	/* data in and out buffers length */
5537 	if (uscsi.uscsi_flags & USCSI_READ) {
5538 		datain_len = uscsi.uscsi_buflen;
5539 		dataout_len = 0;
5540 	} else {
5541 		datain_len = 0;
5542 		dataout_len = uscsi.uscsi_buflen;
5543 	}
5544 
5545 	/* sense buffer length */
5546 	if (uscsi.uscsi_flags & USCSI_RQENABLE)
5547 		sense_len = uscsi.uscsi_rqlen;
5548 	else
5549 		sense_len = 0;
5550 
5551 	/* allocate buffer for the VD_SCSICMD_OP operation */
5552 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5553 	    &vd_scsi_len);
5554 
5555 	/*
5556 	 * The documentation of USCSI_ISOLATE and USCSI_DIAGNOSE is very vague,
5557 	 * but basically they prevent a SCSI command from being retried in case
5558 	 * of an error.
5559 	 */
5560 	if ((uscsi.uscsi_flags & USCSI_ISOLATE) ||
5561 	    (uscsi.uscsi_flags & USCSI_DIAGNOSE))
5562 		vd_scsi->options |= VD_SCSI_OPT_NORETRY;
5563 
5564 	/* set task attribute */
5565 	if (uscsi.uscsi_flags & USCSI_NOTAG) {
5566 		vd_scsi->task_attribute = 0;
5567 	} else {
5568 		if (uscsi.uscsi_flags & USCSI_HEAD)
5569 			vd_scsi->task_attribute = VD_SCSI_TASK_ACA;
5570 		else if (uscsi.uscsi_flags & USCSI_HTAG)
5571 			vd_scsi->task_attribute = VD_SCSI_TASK_HQUEUE;
5572 		else if (uscsi.uscsi_flags & USCSI_OTAG)
5573 			vd_scsi->task_attribute = VD_SCSI_TASK_ORDERED;
5574 		else
5575 			vd_scsi->task_attribute = 0;
5576 	}
5577 
5578 	/* set timeout */
5579 	vd_scsi->timeout = uscsi.uscsi_timeout;
5580 
5581 	/* copy-in cdb data */
5582 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5583 	if (ddi_copyin(uscsi.uscsi_cdb, cdb, cdb_len, mode) != 0) {
5584 		rv = EFAULT;
5585 		goto done;
5586 	}
5587 
5588 	/* keep a pointer to the sense buffer */
5589 	sense = VD_SCSI_DATA_SENSE(vd_scsi);
5590 
5591 	/* keep a pointer to the data-in buffer */
5592 	datain = (char *)VD_SCSI_DATA_IN(vd_scsi);
5593 
5594 	/* copy-in request data to the data-out buffer */
5595 	dataout = (char *)VD_SCSI_DATA_OUT(vd_scsi);
5596 	if (!(uscsi.uscsi_flags & USCSI_READ)) {
5597 		if (ddi_copyin(uscsi.uscsi_bufaddr, dataout, dataout_len,
5598 		    mode)) {
5599 			rv = EFAULT;
5600 			goto done;
5601 		}
5602 	}
5603 
5604 	/* submit the request */
5605 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5606 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5607 
5608 	if (rv != 0)
5609 		goto done;
5610 
5611 	/* update scsi status */
5612 	uscsi.uscsi_status = vd_scsi->cmd_status;
5613 
5614 	/* update sense data */
5615 	if ((uscsi.uscsi_flags & USCSI_RQENABLE) &&
5616 	    (uscsi.uscsi_status == STATUS_CHECK ||
5617 	    uscsi.uscsi_status == STATUS_TERMINATED)) {
5618 
5619 		uscsi.uscsi_rqstatus = vd_scsi->sense_status;
5620 
5621 		if (uscsi.uscsi_rqstatus == STATUS_GOOD) {
5622 			uscsi.uscsi_rqresid = uscsi.uscsi_rqlen -
5623 			    vd_scsi->sense_len;
5624 			if (ddi_copyout(sense, uscsi.uscsi_rqbuf,
5625 			    vd_scsi->sense_len, mode) != 0) {
5626 				rv = EFAULT;
5627 				goto done;
5628 			}
5629 		}
5630 	}
5631 
5632 	/* update request data */
5633 	if (uscsi.uscsi_status == STATUS_GOOD) {
5634 		if (uscsi.uscsi_flags & USCSI_READ) {
5635 			uscsi.uscsi_resid = uscsi.uscsi_buflen -
5636 			    vd_scsi->datain_len;
5637 			if (ddi_copyout(datain, uscsi.uscsi_bufaddr,
5638 			    vd_scsi->datain_len, mode) != 0) {
5639 				rv = EFAULT;
5640 				goto done;
5641 			}
5642 		} else {
5643 			uscsi.uscsi_resid = uscsi.uscsi_buflen -
5644 			    vd_scsi->dataout_len;
5645 		}
5646 	}
5647 
5648 	/* copy-out result */
5649 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5650 		uscsi_cmdtouscsi_cmd32((&uscsi), (&uscsi32));
5651 		if (ddi_copyout(&uscsi32, arg, sizeof (struct uscsi_cmd32),
5652 		    mode) != 0) {
5653 			rv = EFAULT;
5654 			goto done;
5655 		}
5656 	} else {
5657 		if (ddi_copyout(&uscsi, arg, sizeof (struct uscsi_cmd),
5658 		    mode) != 0) {
5659 			rv = EFAULT;
5660 			goto done;
5661 		}
5662 	}
5663 
5664 	/* get the return code from the SCSI command status */
5665 	rv = vdc_scsi_status(vdc, vd_scsi,
5666 	    !(uscsi.uscsi_flags & USCSI_SILENT));
5667 
5668 done:
5669 	kmem_free(vd_scsi, vd_scsi_len);
5670 	return (rv);
5671 }
5672 
5673 /*
5674  * Create a VD_OP_SCSICMD buffer for a SCSI PERSISTENT IN command.
5675  *
5676  * Arguments:
5677  *	cmd		- SCSI PERSISTENT IN command
5678  *	len		- length of the SCSI input buffer
5679  *	vd_scsi_len	- return the length of the allocated buffer
5680  *
5681  * Returned Value:
5682  *	a pointer to the allocated VD_OP_SCSICMD buffer.
5683  */
5684 static vd_scsi_t *
5685 vdc_scsi_alloc_persistent_in(uchar_t cmd, int len, int *vd_scsi_len)
5686 {
5687 	int cdb_len, sense_len, datain_len, dataout_len;
5688 	vd_scsi_t *vd_scsi;
5689 	union scsi_cdb *cdb;
5690 
5691 	cdb_len = CDB_GROUP1;
5692 	sense_len = sizeof (struct scsi_extended_sense);
5693 	datain_len = len;
5694 	dataout_len = 0;
5695 
5696 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5697 	    vd_scsi_len);
5698 
5699 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5700 
5701 	/* set cdb */
5702 	cdb->scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
5703 	cdb->cdb_opaque[1] = cmd;
5704 	FORMG1COUNT(cdb, datain_len);
5705 
5706 	vd_scsi->timeout = vdc_scsi_timeout;
5707 
5708 	return (vd_scsi);
5709 }
5710 
5711 /*
5712  * Create a VD_OP_SCSICMD buffer for a SCSI PERSISTENT OUT command.
5713  *
5714  * Arguments:
5715  *	cmd		- SCSI PERSISTENT OUT command
5716  *	len		- length of the SCSI output buffer
5717  *	vd_scsi_len	- return the length of the allocated buffer
5718  *
5719  * Returned Code:
5720  *	a pointer to the allocated VD_OP_SCSICMD buffer.
5721  */
5722 static vd_scsi_t *
5723 vdc_scsi_alloc_persistent_out(uchar_t cmd, int len, int *vd_scsi_len)
5724 {
5725 	int cdb_len, sense_len, datain_len, dataout_len;
5726 	vd_scsi_t *vd_scsi;
5727 	union scsi_cdb *cdb;
5728 
5729 	cdb_len = CDB_GROUP1;
5730 	sense_len = sizeof (struct scsi_extended_sense);
5731 	datain_len = 0;
5732 	dataout_len = len;
5733 
5734 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, datain_len, dataout_len,
5735 	    vd_scsi_len);
5736 
5737 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
5738 
5739 	/* set cdb */
5740 	cdb->scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
5741 	cdb->cdb_opaque[1] = cmd;
5742 	FORMG1COUNT(cdb, dataout_len);
5743 
5744 	vd_scsi->timeout = vdc_scsi_timeout;
5745 
5746 	return (vd_scsi);
5747 }
5748 
5749 /*
5750  * Implement the MHIOCGRP_INKEYS mhd(7i) ioctl. The ioctl is converted
5751  * to a SCSI PERSISTENT IN READ KEYS command which is sent to the vdisk
5752  * server with a VD_OP_SCSICMD operation.
5753  */
5754 static int
5755 vdc_mhd_inkeys(vdc_t *vdc, caddr_t arg, int mode)
5756 {
5757 	vd_scsi_t *vd_scsi;
5758 	mhioc_inkeys_t inkeys;
5759 	mhioc_key_list_t klist;
5760 	struct mhioc_inkeys32 inkeys32;
5761 	struct mhioc_key_list32 klist32;
5762 	sd_prin_readkeys_t *scsi_keys;
5763 	void *user_keys;
5764 	int vd_scsi_len;
5765 	int listsize, listlen, rv;
5766 
5767 	/* copyin arguments */
5768 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5769 		rv = ddi_copyin(arg, &inkeys32, sizeof (inkeys32), mode);
5770 		if (rv != 0)
5771 			return (EFAULT);
5772 
5773 		rv = ddi_copyin((caddr_t)(uintptr_t)inkeys32.li, &klist32,
5774 		    sizeof (klist32), mode);
5775 		if (rv != 0)
5776 			return (EFAULT);
5777 
5778 		listsize = klist32.listsize;
5779 	} else {
5780 		rv = ddi_copyin(arg, &inkeys, sizeof (inkeys), mode);
5781 		if (rv != 0)
5782 			return (EFAULT);
5783 
5784 		rv = ddi_copyin(inkeys.li, &klist, sizeof (klist), mode);
5785 		if (rv != 0)
5786 			return (EFAULT);
5787 
5788 		listsize = klist.listsize;
5789 	}
5790 
5791 	/* build SCSI VD_OP request */
5792 	vd_scsi = vdc_scsi_alloc_persistent_in(SD_READ_KEYS,
5793 	    sizeof (sd_prin_readkeys_t) - sizeof (caddr_t) +
5794 	    (sizeof (mhioc_resv_key_t) * listsize), &vd_scsi_len);
5795 
5796 	scsi_keys = (sd_prin_readkeys_t *)VD_SCSI_DATA_IN(vd_scsi);
5797 
5798 	/* submit the request */
5799 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5800 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5801 
5802 	if (rv != 0)
5803 		goto done;
5804 
5805 	listlen = scsi_keys->len / MHIOC_RESV_KEY_SIZE;
5806 
5807 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5808 		inkeys32.generation = scsi_keys->generation;
5809 		rv = ddi_copyout(&inkeys32, arg, sizeof (inkeys32), mode);
5810 		if (rv != 0) {
5811 			rv = EFAULT;
5812 			goto done;
5813 		}
5814 
5815 		klist32.listlen = listlen;
5816 		rv = ddi_copyout(&klist32, (caddr_t)(uintptr_t)inkeys32.li,
5817 		    sizeof (klist32), mode);
5818 		if (rv != 0) {
5819 			rv = EFAULT;
5820 			goto done;
5821 		}
5822 
5823 		user_keys = (caddr_t)(uintptr_t)klist32.list;
5824 	} else {
5825 		inkeys.generation = scsi_keys->generation;
5826 		rv = ddi_copyout(&inkeys, arg, sizeof (inkeys), mode);
5827 		if (rv != 0) {
5828 			rv = EFAULT;
5829 			goto done;
5830 		}
5831 
5832 		klist.listlen = listlen;
5833 		rv = ddi_copyout(&klist, inkeys.li, sizeof (klist), mode);
5834 		if (rv != 0) {
5835 			rv = EFAULT;
5836 			goto done;
5837 		}
5838 
5839 		user_keys = klist.list;
5840 	}
5841 
5842 	/* copy out keys */
5843 	if (listlen > 0 && listsize > 0) {
5844 		if (listsize < listlen)
5845 			listlen = listsize;
5846 		rv = ddi_copyout(&scsi_keys->keylist, user_keys,
5847 		    listlen * MHIOC_RESV_KEY_SIZE, mode);
5848 		if (rv != 0)
5849 			rv = EFAULT;
5850 	}
5851 
5852 	if (rv == 0)
5853 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
5854 
5855 done:
5856 	kmem_free(vd_scsi, vd_scsi_len);
5857 
5858 	return (rv);
5859 }
5860 
5861 /*
5862  * Implement the MHIOCGRP_INRESV mhd(7i) ioctl. The ioctl is converted
5863  * to a SCSI PERSISTENT IN READ RESERVATION command which is sent to
5864  * the vdisk server with a VD_OP_SCSICMD operation.
5865  */
5866 static int
5867 vdc_mhd_inresv(vdc_t *vdc, caddr_t arg, int mode)
5868 {
5869 	vd_scsi_t *vd_scsi;
5870 	mhioc_inresvs_t inresv;
5871 	mhioc_resv_desc_list_t rlist;
5872 	struct mhioc_inresvs32 inresv32;
5873 	struct mhioc_resv_desc_list32 rlist32;
5874 	mhioc_resv_desc_t mhd_resv;
5875 	sd_prin_readresv_t *scsi_resv;
5876 	sd_readresv_desc_t *resv;
5877 	mhioc_resv_desc_t *user_resv;
5878 	int vd_scsi_len;
5879 	int listsize, listlen, i, rv;
5880 
5881 	/* copyin arguments */
5882 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5883 		rv = ddi_copyin(arg, &inresv32, sizeof (inresv32), mode);
5884 		if (rv != 0)
5885 			return (EFAULT);
5886 
5887 		rv = ddi_copyin((caddr_t)(uintptr_t)inresv32.li, &rlist32,
5888 		    sizeof (rlist32), mode);
5889 		if (rv != 0)
5890 			return (EFAULT);
5891 
5892 		listsize = rlist32.listsize;
5893 	} else {
5894 		rv = ddi_copyin(arg, &inresv, sizeof (inresv), mode);
5895 		if (rv != 0)
5896 			return (EFAULT);
5897 
5898 		rv = ddi_copyin(inresv.li, &rlist, sizeof (rlist), mode);
5899 		if (rv != 0)
5900 			return (EFAULT);
5901 
5902 		listsize = rlist.listsize;
5903 	}
5904 
5905 	/* build SCSI VD_OP request */
5906 	vd_scsi = vdc_scsi_alloc_persistent_in(SD_READ_RESV,
5907 	    sizeof (sd_prin_readresv_t) - sizeof (caddr_t) +
5908 	    (SCSI3_RESV_DESC_LEN * listsize), &vd_scsi_len);
5909 
5910 	scsi_resv = (sd_prin_readresv_t *)VD_SCSI_DATA_IN(vd_scsi);
5911 
5912 	/* submit the request */
5913 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
5914 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
5915 
5916 	if (rv != 0)
5917 		goto done;
5918 
5919 	listlen = scsi_resv->len / SCSI3_RESV_DESC_LEN;
5920 
5921 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
5922 		inresv32.generation = scsi_resv->generation;
5923 		rv = ddi_copyout(&inresv32, arg, sizeof (inresv32), mode);
5924 		if (rv != 0) {
5925 			rv = EFAULT;
5926 			goto done;
5927 		}
5928 
5929 		rlist32.listlen = listlen;
5930 		rv = ddi_copyout(&rlist32, (caddr_t)(uintptr_t)inresv32.li,
5931 		    sizeof (rlist32), mode);
5932 		if (rv != 0) {
5933 			rv = EFAULT;
5934 			goto done;
5935 		}
5936 
5937 		user_resv = (mhioc_resv_desc_t *)(uintptr_t)rlist32.list;
5938 	} else {
5939 		inresv.generation = scsi_resv->generation;
5940 		rv = ddi_copyout(&inresv, arg, sizeof (inresv), mode);
5941 		if (rv != 0) {
5942 			rv = EFAULT;
5943 			goto done;
5944 		}
5945 
5946 		rlist.listlen = listlen;
5947 		rv = ddi_copyout(&rlist, inresv.li, sizeof (rlist), mode);
5948 		if (rv != 0) {
5949 			rv = EFAULT;
5950 			goto done;
5951 		}
5952 
5953 		user_resv = rlist.list;
5954 	}
5955 
5956 	/* copy out reservations */
5957 	if (listsize > 0 && listlen > 0) {
5958 		if (listsize < listlen)
5959 			listlen = listsize;
5960 		resv = (sd_readresv_desc_t *)&scsi_resv->readresv_desc;
5961 
5962 		for (i = 0; i < listlen; i++) {
5963 			mhd_resv.type = resv->type;
5964 			mhd_resv.scope = resv->scope;
5965 			mhd_resv.scope_specific_addr =
5966 			    BE_32(resv->scope_specific_addr);
5967 			bcopy(&resv->resvkey, &mhd_resv.key,
5968 			    MHIOC_RESV_KEY_SIZE);
5969 
5970 			rv = ddi_copyout(&mhd_resv, user_resv,
5971 			    sizeof (mhd_resv), mode);
5972 			if (rv != 0) {
5973 				rv = EFAULT;
5974 				goto done;
5975 			}
5976 			resv++;
5977 			user_resv++;
5978 		}
5979 	}
5980 
5981 	if (rv == 0)
5982 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
5983 
5984 done:
5985 	kmem_free(vd_scsi, vd_scsi_len);
5986 	return (rv);
5987 }
5988 
5989 /*
5990  * Implement the MHIOCGRP_REGISTER mhd(7i) ioctl. The ioctl is converted
5991  * to a SCSI PERSISTENT OUT REGISTER command which is sent to the vdisk
5992  * server with a VD_OP_SCSICMD operation.
5993  */
5994 static int
5995 vdc_mhd_register(vdc_t *vdc, caddr_t arg, int mode)
5996 {
5997 	vd_scsi_t *vd_scsi;
5998 	sd_prout_t *scsi_prout;
5999 	mhioc_register_t mhd_reg;
6000 	int vd_scsi_len, rv;
6001 
6002 	/* copyin arguments */
6003 	rv = ddi_copyin(arg, &mhd_reg, sizeof (mhd_reg), mode);
6004 	if (rv != 0)
6005 		return (EFAULT);
6006 
6007 	/* build SCSI VD_OP request */
6008 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_REGISTER,
6009 	    sizeof (sd_prout_t), &vd_scsi_len);
6010 
6011 	/* set parameters */
6012 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6013 	bcopy(mhd_reg.oldkey.key, scsi_prout->res_key, MHIOC_RESV_KEY_SIZE);
6014 	bcopy(mhd_reg.newkey.key, scsi_prout->service_key, MHIOC_RESV_KEY_SIZE);
6015 	scsi_prout->aptpl = (uchar_t)mhd_reg.aptpl;
6016 
6017 	/* submit the request */
6018 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6019 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6020 
6021 	if (rv == 0)
6022 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6023 
6024 	kmem_free(vd_scsi, vd_scsi_len);
6025 	return (rv);
6026 }
6027 
6028 /*
6029  * Implement the MHIOCGRP_RESERVE mhd(7i) ioctl. The ioctl is converted
6030  * to a SCSI PERSISTENT OUT RESERVE command which is sent to the vdisk
6031  * server with a VD_OP_SCSICMD operation.
6032  */
6033 static int
6034 vdc_mhd_reserve(vdc_t *vdc, caddr_t arg, int mode)
6035 {
6036 	union scsi_cdb *cdb;
6037 	vd_scsi_t *vd_scsi;
6038 	sd_prout_t *scsi_prout;
6039 	mhioc_resv_desc_t mhd_resv;
6040 	int vd_scsi_len, rv;
6041 
6042 	/* copyin arguments */
6043 	rv = ddi_copyin(arg, &mhd_resv, sizeof (mhd_resv), mode);
6044 	if (rv != 0)
6045 		return (EFAULT);
6046 
6047 	/* build SCSI VD_OP request */
6048 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_RESERVE,
6049 	    sizeof (sd_prout_t), &vd_scsi_len);
6050 
6051 	/* set parameters */
6052 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6053 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6054 	bcopy(mhd_resv.key.key, scsi_prout->res_key, MHIOC_RESV_KEY_SIZE);
6055 	scsi_prout->scope_address = mhd_resv.scope_specific_addr;
6056 	cdb->cdb_opaque[2] = mhd_resv.type;
6057 
6058 	/* submit the request */
6059 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6060 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6061 
6062 	if (rv == 0)
6063 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6064 
6065 	kmem_free(vd_scsi, vd_scsi_len);
6066 	return (rv);
6067 }
6068 
6069 /*
6070  * Implement the MHIOCGRP_PREEMPTANDABORT mhd(7i) ioctl. The ioctl is
6071  * converted to a SCSI PERSISTENT OUT PREEMPT AND ABORT command which
6072  * is sent to the vdisk server with a VD_OP_SCSICMD operation.
6073  */
6074 static int
6075 vdc_mhd_preemptabort(vdc_t *vdc, caddr_t arg, int mode)
6076 {
6077 	union scsi_cdb *cdb;
6078 	vd_scsi_t *vd_scsi;
6079 	sd_prout_t *scsi_prout;
6080 	mhioc_preemptandabort_t mhd_preempt;
6081 	int vd_scsi_len, rv;
6082 
6083 	/* copyin arguments */
6084 	rv = ddi_copyin(arg, &mhd_preempt, sizeof (mhd_preempt), mode);
6085 	if (rv != 0)
6086 		return (EFAULT);
6087 
6088 	/* build SCSI VD_OP request */
6089 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_PREEMPTANDABORT,
6090 	    sizeof (sd_prout_t), &vd_scsi_len);
6091 
6092 	/* set parameters */
6093 	vd_scsi->task_attribute = VD_SCSI_TASK_ACA;
6094 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6095 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6096 	bcopy(mhd_preempt.resvdesc.key.key, scsi_prout->res_key,
6097 	    MHIOC_RESV_KEY_SIZE);
6098 	bcopy(mhd_preempt.victim_key.key, scsi_prout->service_key,
6099 	    MHIOC_RESV_KEY_SIZE);
6100 	scsi_prout->scope_address = mhd_preempt.resvdesc.scope_specific_addr;
6101 	cdb->cdb_opaque[2] = mhd_preempt.resvdesc.type;
6102 
6103 	/* submit the request */
6104 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6105 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6106 
6107 	if (rv == 0)
6108 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6109 
6110 	kmem_free(vd_scsi, vd_scsi_len);
6111 	return (rv);
6112 }
6113 
6114 /*
6115  * Implement the MHIOCGRP_REGISTERANDIGNOREKEY mhd(7i) ioctl. The ioctl
6116  * is converted to a SCSI PERSISTENT OUT REGISTER AND IGNORE EXISTING KEY
6117  * command which is sent to the vdisk server with a VD_OP_SCSICMD operation.
6118  */
6119 static int
6120 vdc_mhd_registerignore(vdc_t *vdc, caddr_t arg, int mode)
6121 {
6122 	vd_scsi_t *vd_scsi;
6123 	sd_prout_t *scsi_prout;
6124 	mhioc_registerandignorekey_t mhd_regi;
6125 	int vd_scsi_len, rv;
6126 
6127 	/* copyin arguments */
6128 	rv = ddi_copyin(arg, &mhd_regi, sizeof (mhd_regi), mode);
6129 	if (rv != 0)
6130 		return (EFAULT);
6131 
6132 	/* build SCSI VD_OP request */
6133 	vd_scsi = vdc_scsi_alloc_persistent_out(SD_SCSI3_REGISTERANDIGNOREKEY,
6134 	    sizeof (sd_prout_t), &vd_scsi_len);
6135 
6136 	/* set parameters */
6137 	scsi_prout = (sd_prout_t *)VD_SCSI_DATA_OUT(vd_scsi);
6138 	bcopy(mhd_regi.newkey.key, scsi_prout->service_key,
6139 	    MHIOC_RESV_KEY_SIZE);
6140 	scsi_prout->aptpl = (uchar_t)mhd_regi.aptpl;
6141 
6142 	/* submit the request */
6143 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6144 	    0, 0, CB_SYNC, (void *)(uint64_t)mode, VIO_both_dir, B_FALSE);
6145 
6146 	if (rv == 0)
6147 		rv = vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6148 
6149 	kmem_free(vd_scsi, vd_scsi_len);
6150 	return (rv);
6151 }
6152 
6153 /*
6154  * This function is used by the failfast mechanism to send a SCSI command
6155  * to check for reservation conflict.
6156  */
6157 static int
6158 vdc_failfast_scsi_cmd(vdc_t *vdc, uchar_t scmd)
6159 {
6160 	int cdb_len, sense_len, vd_scsi_len;
6161 	vd_scsi_t *vd_scsi;
6162 	union scsi_cdb *cdb;
6163 	int rv;
6164 
6165 	ASSERT(scmd == SCMD_TEST_UNIT_READY || scmd == SCMD_WRITE_G1);
6166 
6167 	if (scmd == SCMD_WRITE_G1)
6168 		cdb_len = CDB_GROUP1;
6169 	else
6170 		cdb_len = CDB_GROUP0;
6171 
6172 	sense_len = sizeof (struct scsi_extended_sense);
6173 
6174 	vd_scsi = vdc_scsi_alloc(cdb_len, sense_len, 0, 0, &vd_scsi_len);
6175 
6176 	/* set cdb */
6177 	cdb = VD_SCSI_DATA_CDB(vd_scsi);
6178 	cdb->scc_cmd = scmd;
6179 
6180 	vd_scsi->timeout = vdc_scsi_timeout;
6181 
6182 	/*
6183 	 * Submit the request. The last argument has to be B_FALSE so that
6184 	 * vdc_do_sync_op does not loop checking for reservation conflict if
6185 	 * the operation returns an error.
6186 	 */
6187 	rv = vdc_do_sync_op(vdc, VD_OP_SCSICMD, (caddr_t)vd_scsi, vd_scsi_len,
6188 	    0, 0, CB_SYNC, (void *)(uint64_t)FKIOCTL, VIO_both_dir, B_FALSE);
6189 
6190 	if (rv == 0)
6191 		(void) vdc_scsi_status(vdc, vd_scsi, B_FALSE);
6192 
6193 	kmem_free(vd_scsi, vd_scsi_len);
6194 	return (rv);
6195 }
6196 
6197 /*
6198  * This function is used by the failfast mechanism to check for reservation
6199  * conflict. It sends some SCSI commands which will fail with a reservation
6200  * conflict error if the system does not have access to the disk and this
6201  * will panic the system.
6202  *
6203  * Returned Code:
6204  *	0	- disk is accessible without reservation conflict error
6205  *	!= 0	- unable to check if disk is accessible
6206  */
6207 int
6208 vdc_failfast_check_resv(vdc_t *vdc)
6209 {
6210 	int failure = 0;
6211 
6212 	/*
6213 	 * Send a TEST UNIT READY command. The command will panic
6214 	 * the system if it fails with a reservation conflict.
6215 	 */
6216 	if (vdc_failfast_scsi_cmd(vdc, SCMD_TEST_UNIT_READY) != 0)
6217 		failure++;
6218 
6219 	/*
6220 	 * With SPC-3 compliant devices TEST UNIT READY will succeed on
6221 	 * a reserved device, so we also do a WRITE(10) of zero byte in
6222 	 * order to provoke a Reservation Conflict status on those newer
6223 	 * devices.
6224 	 */
6225 	if (vdc_failfast_scsi_cmd(vdc, SCMD_WRITE_G1) != 0)
6226 		failure++;
6227 
6228 	return (failure);
6229 }
6230 
6231 /*
6232  * Add a pending I/O to the failfast I/O queue. An I/O is added to this
6233  * queue when it has failed and failfast is enabled. Then we have to check
6234  * if it has failed because of a reservation conflict in which case we have
6235  * to panic the system.
6236  *
6237  * Async I/O should be queued with their block I/O data transfer structure
6238  * (buf). Sync I/O should be queued with buf = NULL.
6239  */
6240 static vdc_io_t *
6241 vdc_failfast_io_queue(vdc_t *vdc, struct buf *buf)
6242 {
6243 	vdc_io_t *vio;
6244 
6245 	ASSERT(MUTEX_HELD(&vdc->lock));
6246 
6247 	vio = kmem_alloc(sizeof (vdc_io_t), KM_SLEEP);
6248 	vio->vio_next = vdc->failfast_io_queue;
6249 	vio->vio_buf = buf;
6250 	vio->vio_qtime = ddi_get_lbolt();
6251 
6252 	vdc->failfast_io_queue = vio;
6253 
6254 	/* notify the failfast thread that a new I/O is queued */
6255 	cv_signal(&vdc->failfast_cv);
6256 
6257 	return (vio);
6258 }
6259 
6260 /*
6261  * Remove and complete I/O in the failfast I/O queue which have been
6262  * added after the indicated deadline. A deadline of 0 means that all
6263  * I/O have to be unqueued and marked as completed.
6264  */
6265 static void
6266 vdc_failfast_io_unqueue(vdc_t *vdc, clock_t deadline)
6267 {
6268 	vdc_io_t *vio, *vio_tmp;
6269 
6270 	ASSERT(MUTEX_HELD(&vdc->lock));
6271 
6272 	vio_tmp = NULL;
6273 	vio = vdc->failfast_io_queue;
6274 
6275 	if (deadline != 0) {
6276 		/*
6277 		 * Skip any io queued after the deadline. The failfast
6278 		 * I/O queue is ordered starting with the last I/O added
6279 		 * to the queue.
6280 		 */
6281 		while (vio != NULL && vio->vio_qtime > deadline) {
6282 			vio_tmp = vio;
6283 			vio = vio->vio_next;
6284 		}
6285 	}
6286 
6287 	if (vio == NULL)
6288 		/* nothing to unqueue */
6289 		return;
6290 
6291 	/* update the queue */
6292 	if (vio_tmp == NULL)
6293 		vdc->failfast_io_queue = NULL;
6294 	else
6295 		vio_tmp->vio_next = NULL;
6296 
6297 	/*
6298 	 * Complete unqueued I/O. Async I/O have a block I/O data transfer
6299 	 * structure (buf) and they are completed by calling biodone(). Sync
6300 	 * I/O do not have a buf and they are completed by setting the
6301 	 * vio_qtime to zero and signaling failfast_io_cv. In that case, the
6302 	 * thread waiting for the I/O to complete is responsible for freeing
6303 	 * the vio structure.
6304 	 */
6305 	while (vio != NULL) {
6306 		vio_tmp = vio->vio_next;
6307 		if (vio->vio_buf != NULL) {
6308 			VD_KSTAT_RUNQ_EXIT(vdc);
6309 			DTRACE_IO1(done, buf_t *, vio->vio_buf);
6310 			biodone(vio->vio_buf);
6311 			kmem_free(vio, sizeof (vdc_io_t));
6312 		} else {
6313 			vio->vio_qtime = 0;
6314 		}
6315 		vio = vio_tmp;
6316 	}
6317 
6318 	cv_broadcast(&vdc->failfast_io_cv);
6319 }
6320 
6321 /*
6322  * Failfast Thread.
6323  *
6324  * While failfast is enabled, the failfast thread sends a TEST UNIT READY
6325  * and a zero size WRITE(10) SCSI commands on a regular basis to check that
6326  * we still have access to the disk. If a command fails with a RESERVATION
6327  * CONFLICT error then the system will immediatly panic.
6328  *
6329  * The failfast thread is also woken up when an I/O has failed. It then check
6330  * the access to the disk to ensure that the I/O failure was not due to a
6331  * reservation conflict.
6332  *
6333  * There is one failfast thread for each virtual disk for which failfast is
6334  * enabled. We could have only one thread sending requests for all disks but
6335  * this would need vdc to send asynchronous requests and to have callbacks to
6336  * process replies.
6337  */
6338 static void
6339 vdc_failfast_thread(void *arg)
6340 {
6341 	int status;
6342 	vdc_t *vdc = (vdc_t *)arg;
6343 	clock_t timeout, starttime;
6344 
6345 	mutex_enter(&vdc->lock);
6346 
6347 	while (vdc->failfast_interval != 0) {
6348 
6349 		starttime = ddi_get_lbolt();
6350 
6351 		mutex_exit(&vdc->lock);
6352 
6353 		/* check for reservation conflict */
6354 		status = vdc_failfast_check_resv(vdc);
6355 
6356 		mutex_enter(&vdc->lock);
6357 		/*
6358 		 * We have dropped the lock to send the SCSI command so we have
6359 		 * to check that failfast is still enabled.
6360 		 */
6361 		if (vdc->failfast_interval == 0)
6362 			break;
6363 
6364 		/*
6365 		 * If we have successfully check the disk access and there was
6366 		 * no reservation conflict then we can complete any I/O queued
6367 		 * before the last check.
6368 		 */
6369 		if (status == 0)
6370 			vdc_failfast_io_unqueue(vdc, starttime);
6371 
6372 		/* proceed again if some I/O are still in the queue */
6373 		if (vdc->failfast_io_queue != NULL)
6374 			continue;
6375 
6376 		timeout = ddi_get_lbolt() +
6377 		    drv_usectohz(vdc->failfast_interval);
6378 		(void) cv_timedwait(&vdc->failfast_cv, &vdc->lock, timeout);
6379 	}
6380 
6381 	/*
6382 	 * Failfast is being stop so we can complete any queued I/O.
6383 	 */
6384 	vdc_failfast_io_unqueue(vdc, 0);
6385 	vdc->failfast_thread = NULL;
6386 	mutex_exit(&vdc->lock);
6387 	thread_exit();
6388 }
6389 
6390 /*
6391  * Implement the MHIOCENFAILFAST mhd(7i) ioctl.
6392  */
6393 static int
6394 vdc_failfast(vdc_t *vdc, caddr_t arg, int mode)
6395 {
6396 	unsigned int mh_time;
6397 
6398 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), mode))
6399 		return (EFAULT);
6400 
6401 	mutex_enter(&vdc->lock);
6402 	if (mh_time != 0 && vdc->failfast_thread == NULL) {
6403 		vdc->failfast_thread = thread_create(NULL, 0,
6404 		    vdc_failfast_thread, vdc, 0, &p0, TS_RUN,
6405 		    v.v_maxsyspri - 2);
6406 	}
6407 
6408 	vdc->failfast_interval = mh_time * 1000;
6409 	cv_signal(&vdc->failfast_cv);
6410 	mutex_exit(&vdc->lock);
6411 
6412 	return (0);
6413 }
6414 
6415 /*
6416  * Implement the MHIOCTKOWN and MHIOCRELEASE mhd(7i) ioctls. These ioctls are
6417  * converted to VD_OP_SET_ACCESS operations.
6418  */
6419 static int
6420 vdc_access_set(vdc_t *vdc, uint64_t flags, int mode)
6421 {
6422 	int rv;
6423 
6424 	/* submit owership command request */
6425 	rv = vdc_do_sync_op(vdc, VD_OP_SET_ACCESS, (caddr_t)&flags,
6426 	    sizeof (uint64_t), 0, 0, CB_SYNC, (void *)(uint64_t)mode,
6427 	    VIO_both_dir, B_TRUE);
6428 
6429 	return (rv);
6430 }
6431 
6432 /*
6433  * Implement the MHIOCSTATUS mhd(7i) ioctl. This ioctl is converted to a
6434  * VD_OP_GET_ACCESS operation.
6435  */
6436 static int
6437 vdc_access_get(vdc_t *vdc, uint64_t *status, int mode)
6438 {
6439 	int rv;
6440 
6441 	/* submit owership command request */
6442 	rv = vdc_do_sync_op(vdc, VD_OP_GET_ACCESS, (caddr_t)status,
6443 	    sizeof (uint64_t), 0, 0, CB_SYNC, (void *)(uint64_t)mode,
6444 	    VIO_both_dir, B_TRUE);
6445 
6446 	return (rv);
6447 }
6448 
6449 /*
6450  * Disk Ownership Thread.
6451  *
6452  * When we have taken the ownership of a disk, this thread waits to be
6453  * notified when the LDC channel is reset so that it can recover the
6454  * ownership.
6455  *
6456  * Note that the thread handling the LDC reset (vdc_process_msg_thread())
6457  * can not be used to do the ownership recovery because it has to be
6458  * running to handle the reply message to the ownership operation.
6459  */
6460 static void
6461 vdc_ownership_thread(void *arg)
6462 {
6463 	vdc_t *vdc = (vdc_t *)arg;
6464 	clock_t timeout;
6465 	uint64_t status;
6466 
6467 	mutex_enter(&vdc->ownership_lock);
6468 	mutex_enter(&vdc->lock);
6469 
6470 	while (vdc->ownership & VDC_OWNERSHIP_WANTED) {
6471 
6472 		if ((vdc->ownership & VDC_OWNERSHIP_RESET) ||
6473 		    !(vdc->ownership & VDC_OWNERSHIP_GRANTED)) {
6474 			/*
6475 			 * There was a reset so the ownership has been lost,
6476 			 * try to recover. We do this without using the preempt
6477 			 * option so that we don't steal the ownership from
6478 			 * someone who has preempted us.
6479 			 */
6480 			DMSG(vdc, 0, "[%d] Ownership lost, recovering",
6481 			    vdc->instance);
6482 
6483 			vdc->ownership &= ~(VDC_OWNERSHIP_RESET |
6484 			    VDC_OWNERSHIP_GRANTED);
6485 
6486 			mutex_exit(&vdc->lock);
6487 
6488 			status = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE |
6489 			    VD_ACCESS_SET_PRESERVE, FKIOCTL);
6490 
6491 			mutex_enter(&vdc->lock);
6492 
6493 			if (status == 0) {
6494 				DMSG(vdc, 0, "[%d] Ownership recovered",
6495 				    vdc->instance);
6496 				vdc->ownership |= VDC_OWNERSHIP_GRANTED;
6497 			} else {
6498 				DMSG(vdc, 0, "[%d] Fail to recover ownership",
6499 				    vdc->instance);
6500 			}
6501 
6502 		}
6503 
6504 		/*
6505 		 * If we have the ownership then we just wait for an event
6506 		 * to happen (LDC reset), otherwise we will retry to recover
6507 		 * after a delay.
6508 		 */
6509 		if (vdc->ownership & VDC_OWNERSHIP_GRANTED)
6510 			timeout = 0;
6511 		else
6512 			timeout = ddi_get_lbolt() +
6513 			    drv_usectohz(vdc_ownership_delay);
6514 
6515 		/* Release the ownership_lock and wait on the vdc lock */
6516 		mutex_exit(&vdc->ownership_lock);
6517 
6518 		if (timeout == 0)
6519 			(void) cv_wait(&vdc->ownership_cv, &vdc->lock);
6520 		else
6521 			(void) cv_timedwait(&vdc->ownership_cv,
6522 			    &vdc->lock, timeout);
6523 
6524 		mutex_exit(&vdc->lock);
6525 
6526 		mutex_enter(&vdc->ownership_lock);
6527 		mutex_enter(&vdc->lock);
6528 	}
6529 
6530 	vdc->ownership_thread = NULL;
6531 	mutex_exit(&vdc->lock);
6532 	mutex_exit(&vdc->ownership_lock);
6533 
6534 	thread_exit();
6535 }
6536 
6537 static void
6538 vdc_ownership_update(vdc_t *vdc, int ownership_flags)
6539 {
6540 	ASSERT(MUTEX_HELD(&vdc->ownership_lock));
6541 
6542 	mutex_enter(&vdc->lock);
6543 	vdc->ownership = ownership_flags;
6544 	if ((vdc->ownership & VDC_OWNERSHIP_WANTED) &&
6545 	    vdc->ownership_thread == NULL) {
6546 		/* start ownership thread */
6547 		vdc->ownership_thread = thread_create(NULL, 0,
6548 		    vdc_ownership_thread, vdc, 0, &p0, TS_RUN,
6549 		    v.v_maxsyspri - 2);
6550 	} else {
6551 		/* notify the ownership thread */
6552 		cv_signal(&vdc->ownership_cv);
6553 	}
6554 	mutex_exit(&vdc->lock);
6555 }
6556 
6557 /*
6558  * Get the size and the block size of a virtual disk from the vdisk server.
6559  */
6560 static int
6561 vdc_get_capacity(vdc_t *vdc, size_t *dsk_size, size_t *blk_size)
6562 {
6563 	int rv = 0;
6564 	size_t alloc_len;
6565 	vd_capacity_t *vd_cap;
6566 
6567 	ASSERT(MUTEX_NOT_HELD(&vdc->lock));
6568 
6569 	alloc_len = P2ROUNDUP(sizeof (vd_capacity_t), sizeof (uint64_t));
6570 
6571 	vd_cap = kmem_zalloc(alloc_len, KM_SLEEP);
6572 
6573 	rv = vdc_do_sync_op(vdc, VD_OP_GET_CAPACITY, (caddr_t)vd_cap, alloc_len,
6574 	    0, 0, CB_SYNC, (void *)(uint64_t)FKIOCTL, VIO_both_dir, B_TRUE);
6575 
6576 	*dsk_size = vd_cap->vdisk_size;
6577 	*blk_size = vd_cap->vdisk_block_size;
6578 
6579 	kmem_free(vd_cap, alloc_len);
6580 	return (rv);
6581 }
6582 
6583 /*
6584  * Check the disk capacity. Disk size information is updated if size has
6585  * changed.
6586  *
6587  * Return 0 if the disk capacity is available, or non-zero if it is not.
6588  */
6589 static int
6590 vdc_check_capacity(vdc_t *vdc)
6591 {
6592 	size_t dsk_size, blk_size;
6593 	int rv;
6594 
6595 	if ((rv = vdc_get_capacity(vdc, &dsk_size, &blk_size)) != 0)
6596 		return (rv);
6597 
6598 	if (dsk_size == VD_SIZE_UNKNOWN || dsk_size == 0)
6599 		return (EINVAL);
6600 
6601 	mutex_enter(&vdc->lock);
6602 	vdc_update_size(vdc, dsk_size, blk_size, vdc->max_xfer_sz);
6603 	mutex_exit(&vdc->lock);
6604 
6605 	return (0);
6606 }
6607 
6608 /*
6609  * This structure is used in the DKIO(7I) array below.
6610  */
6611 typedef struct vdc_dk_ioctl {
6612 	uint8_t		op;		/* VD_OP_XXX value */
6613 	int		cmd;		/* Solaris ioctl operation number */
6614 	size_t		nbytes;		/* size of structure to be copied */
6615 
6616 	/* function to convert between vDisk and Solaris structure formats */
6617 	int	(*convert)(vdc_t *vdc, void *vd_buf, void *ioctl_arg,
6618 	    int mode, int dir);
6619 } vdc_dk_ioctl_t;
6620 
6621 /*
6622  * Subset of DKIO(7I) operations currently supported
6623  */
6624 static vdc_dk_ioctl_t	dk_ioctl[] = {
6625 	{VD_OP_FLUSH,		DKIOCFLUSHWRITECACHE,	0,
6626 		vdc_null_copy_func},
6627 	{VD_OP_GET_WCE,		DKIOCGETWCE,		sizeof (int),
6628 		vdc_get_wce_convert},
6629 	{VD_OP_SET_WCE,		DKIOCSETWCE,		sizeof (int),
6630 		vdc_set_wce_convert},
6631 	{VD_OP_GET_VTOC,	DKIOCGVTOC,		sizeof (vd_vtoc_t),
6632 		vdc_get_vtoc_convert},
6633 	{VD_OP_SET_VTOC,	DKIOCSVTOC,		sizeof (vd_vtoc_t),
6634 		vdc_set_vtoc_convert},
6635 	{VD_OP_GET_VTOC,	DKIOCGEXTVTOC,		sizeof (vd_vtoc_t),
6636 		vdc_get_extvtoc_convert},
6637 	{VD_OP_SET_VTOC,	DKIOCSEXTVTOC,		sizeof (vd_vtoc_t),
6638 		vdc_set_extvtoc_convert},
6639 	{VD_OP_GET_DISKGEOM,	DKIOCGGEOM,		sizeof (vd_geom_t),
6640 		vdc_get_geom_convert},
6641 	{VD_OP_GET_DISKGEOM,	DKIOCG_PHYGEOM,		sizeof (vd_geom_t),
6642 		vdc_get_geom_convert},
6643 	{VD_OP_GET_DISKGEOM, 	DKIOCG_VIRTGEOM,	sizeof (vd_geom_t),
6644 		vdc_get_geom_convert},
6645 	{VD_OP_SET_DISKGEOM,	DKIOCSGEOM,		sizeof (vd_geom_t),
6646 		vdc_set_geom_convert},
6647 	{VD_OP_GET_EFI,		DKIOCGETEFI,		0,
6648 		vdc_get_efi_convert},
6649 	{VD_OP_SET_EFI,		DKIOCSETEFI,		0,
6650 		vdc_set_efi_convert},
6651 
6652 	/* DIOCTL_RWCMD is converted to a read or a write */
6653 	{0, DIOCTL_RWCMD,  sizeof (struct dadkio_rwcmd), NULL},
6654 
6655 	/* mhd(7I) non-shared multihost disks ioctls */
6656 	{0, MHIOCTKOWN,				0, vdc_null_copy_func},
6657 	{0, MHIOCRELEASE,			0, vdc_null_copy_func},
6658 	{0, MHIOCSTATUS,			0, vdc_null_copy_func},
6659 	{0, MHIOCQRESERVE,			0, vdc_null_copy_func},
6660 
6661 	/* mhd(7I) shared multihost disks ioctls */
6662 	{0, MHIOCGRP_INKEYS,			0, vdc_null_copy_func},
6663 	{0, MHIOCGRP_INRESV,			0, vdc_null_copy_func},
6664 	{0, MHIOCGRP_REGISTER,			0, vdc_null_copy_func},
6665 	{0, MHIOCGRP_RESERVE, 			0, vdc_null_copy_func},
6666 	{0, MHIOCGRP_PREEMPTANDABORT,		0, vdc_null_copy_func},
6667 	{0, MHIOCGRP_REGISTERANDIGNOREKEY,	0, vdc_null_copy_func},
6668 
6669 	/* mhd(7I) failfast ioctl */
6670 	{0, MHIOCENFAILFAST,			0, vdc_null_copy_func},
6671 
6672 	/*
6673 	 * These particular ioctls are not sent to the server - vdc fakes up
6674 	 * the necessary info.
6675 	 */
6676 	{0, DKIOCINFO, sizeof (struct dk_cinfo), vdc_null_copy_func},
6677 	{0, DKIOCGMEDIAINFO, sizeof (struct dk_minfo), vdc_null_copy_func},
6678 	{0, USCSICMD,	sizeof (struct uscsi_cmd), vdc_null_copy_func},
6679 	{0, DKIOCPARTITION, 0, vdc_null_copy_func },
6680 	{0, DKIOCGAPART, 0, vdc_null_copy_func },
6681 	{0, DKIOCREMOVABLE, 0, vdc_null_copy_func},
6682 	{0, CDROMREADOFFSET, 0, vdc_null_copy_func}
6683 };
6684 
6685 /*
6686  * This function handles ioctl requests from the vd_efi_alloc_and_read()
6687  * function and forward them to the vdisk.
6688  */
6689 static int
6690 vd_process_efi_ioctl(void *vdisk, int cmd, uintptr_t arg)
6691 {
6692 	vdc_t *vdc = (vdc_t *)vdisk;
6693 	dev_t dev;
6694 	int rval;
6695 
6696 	dev = makedevice(ddi_driver_major(vdc->dip),
6697 	    VD_MAKE_DEV(vdc->instance, 0));
6698 
6699 	return (vd_process_ioctl(dev, cmd, (caddr_t)arg, FKIOCTL, &rval));
6700 }
6701 
6702 /*
6703  * Function:
6704  *	vd_process_ioctl()
6705  *
6706  * Description:
6707  *	This routine processes disk specific ioctl calls
6708  *
6709  * Arguments:
6710  *	dev	- the device number
6711  *	cmd	- the operation [dkio(7I)] to be processed
6712  *	arg	- pointer to user provided structure
6713  *		  (contains data to be set or reference parameter for get)
6714  *	mode	- bit flag, indicating open settings, 32/64 bit type, etc
6715  *	rvalp	- pointer to return value for calling process.
6716  *
6717  * Return Code:
6718  *	0
6719  *	EFAULT
6720  *	ENXIO
6721  *	EIO
6722  *	ENOTSUP
6723  */
6724 static int
6725 vd_process_ioctl(dev_t dev, int cmd, caddr_t arg, int mode, int *rvalp)
6726 {
6727 	int		instance = VDCUNIT(dev);
6728 	vdc_t		*vdc = NULL;
6729 	int		rv = -1;
6730 	int		idx = 0;		/* index into dk_ioctl[] */
6731 	size_t		len = 0;		/* #bytes to send to vds */
6732 	size_t		alloc_len = 0;		/* #bytes to allocate mem for */
6733 	caddr_t		mem_p = NULL;
6734 	size_t		nioctls = (sizeof (dk_ioctl)) / (sizeof (dk_ioctl[0]));
6735 	vdc_dk_ioctl_t	*iop;
6736 
6737 	vdc = ddi_get_soft_state(vdc_state, instance);
6738 	if (vdc == NULL) {
6739 		cmn_err(CE_NOTE, "![%d] Could not get soft state structure",
6740 		    instance);
6741 		return (ENXIO);
6742 	}
6743 
6744 	DMSG(vdc, 0, "[%d] Processing ioctl(%x) for dev %lx : model %x\n",
6745 	    instance, cmd, dev, ddi_model_convert_from(mode & FMODELS));
6746 
6747 	if (rvalp != NULL) {
6748 		/* the return value of the ioctl is 0 by default */
6749 		*rvalp = 0;
6750 	}
6751 
6752 	/*
6753 	 * Validate the ioctl operation to be performed.
6754 	 *
6755 	 * If we have looped through the array without finding a match then we
6756 	 * don't support this ioctl.
6757 	 */
6758 	for (idx = 0; idx < nioctls; idx++) {
6759 		if (cmd == dk_ioctl[idx].cmd)
6760 			break;
6761 	}
6762 
6763 	if (idx >= nioctls) {
6764 		DMSG(vdc, 0, "[%d] Unsupported ioctl (0x%x)\n",
6765 		    vdc->instance, cmd);
6766 		return (ENOTSUP);
6767 	}
6768 
6769 	iop = &(dk_ioctl[idx]);
6770 
6771 	if (cmd == DKIOCGETEFI || cmd == DKIOCSETEFI) {
6772 		/* size is not fixed for EFI ioctls, it depends on ioctl arg */
6773 		dk_efi_t	dk_efi;
6774 
6775 		rv = ddi_copyin(arg, &dk_efi, sizeof (dk_efi_t), mode);
6776 		if (rv != 0)
6777 			return (EFAULT);
6778 
6779 		len = sizeof (vd_efi_t) - 1 + dk_efi.dki_length;
6780 	} else {
6781 		len = iop->nbytes;
6782 	}
6783 
6784 	/* check if the ioctl is applicable */
6785 	switch (cmd) {
6786 	case CDROMREADOFFSET:
6787 	case DKIOCREMOVABLE:
6788 		return (ENOTTY);
6789 
6790 	case USCSICMD:
6791 	case MHIOCTKOWN:
6792 	case MHIOCSTATUS:
6793 	case MHIOCQRESERVE:
6794 	case MHIOCRELEASE:
6795 	case MHIOCGRP_INKEYS:
6796 	case MHIOCGRP_INRESV:
6797 	case MHIOCGRP_REGISTER:
6798 	case MHIOCGRP_RESERVE:
6799 	case MHIOCGRP_PREEMPTANDABORT:
6800 	case MHIOCGRP_REGISTERANDIGNOREKEY:
6801 	case MHIOCENFAILFAST:
6802 		if (vdc->cinfo == NULL)
6803 			return (ENXIO);
6804 		if (vdc->cinfo->dki_ctype != DKC_SCSI_CCS)
6805 			return (ENOTTY);
6806 		break;
6807 
6808 	case DIOCTL_RWCMD:
6809 		if (vdc->cinfo == NULL)
6810 			return (ENXIO);
6811 		if (vdc->cinfo->dki_ctype != DKC_DIRECT)
6812 			return (ENOTTY);
6813 		break;
6814 
6815 	case DKIOCINFO:
6816 		if (vdc->cinfo == NULL)
6817 			return (ENXIO);
6818 		break;
6819 
6820 	case DKIOCGMEDIAINFO:
6821 		if (vdc->minfo == NULL)
6822 			return (ENXIO);
6823 		if (vdc_check_capacity(vdc) != 0)
6824 			/* disk capacity is not available */
6825 			return (EIO);
6826 		break;
6827 	}
6828 
6829 	/*
6830 	 * Deal with ioctls which require a processing different than
6831 	 * converting ioctl arguments and sending a corresponding
6832 	 * VD operation.
6833 	 */
6834 	switch (cmd) {
6835 
6836 	case USCSICMD:
6837 	{
6838 		return (vdc_uscsi_cmd(vdc, arg, mode));
6839 	}
6840 
6841 	case MHIOCTKOWN:
6842 	{
6843 		mutex_enter(&vdc->ownership_lock);
6844 		/*
6845 		 * We have to set VDC_OWNERSHIP_WANTED now so that the ownership
6846 		 * can be flagged with VDC_OWNERSHIP_RESET if the LDC is reset
6847 		 * while we are processing the ioctl.
6848 		 */
6849 		vdc_ownership_update(vdc, VDC_OWNERSHIP_WANTED);
6850 
6851 		rv = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE |
6852 		    VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE, mode);
6853 		if (rv == 0) {
6854 			vdc_ownership_update(vdc, VDC_OWNERSHIP_WANTED |
6855 			    VDC_OWNERSHIP_GRANTED);
6856 		} else {
6857 			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
6858 		}
6859 		mutex_exit(&vdc->ownership_lock);
6860 		return (rv);
6861 	}
6862 
6863 	case MHIOCRELEASE:
6864 	{
6865 		mutex_enter(&vdc->ownership_lock);
6866 		rv = vdc_access_set(vdc, VD_ACCESS_SET_CLEAR, mode);
6867 		if (rv == 0) {
6868 			vdc_ownership_update(vdc, VDC_OWNERSHIP_NONE);
6869 		}
6870 		mutex_exit(&vdc->ownership_lock);
6871 		return (rv);
6872 	}
6873 
6874 	case MHIOCSTATUS:
6875 	{
6876 		uint64_t status;
6877 
6878 		rv = vdc_access_get(vdc, &status, mode);
6879 		if (rv == 0 && rvalp != NULL)
6880 			*rvalp = (status & VD_ACCESS_ALLOWED)? 0 : 1;
6881 		return (rv);
6882 	}
6883 
6884 	case MHIOCQRESERVE:
6885 	{
6886 		rv = vdc_access_set(vdc, VD_ACCESS_SET_EXCLUSIVE, mode);
6887 		return (rv);
6888 	}
6889 
6890 	case MHIOCGRP_INKEYS:
6891 	{
6892 		return (vdc_mhd_inkeys(vdc, arg, mode));
6893 	}
6894 
6895 	case MHIOCGRP_INRESV:
6896 	{
6897 		return (vdc_mhd_inresv(vdc, arg, mode));
6898 	}
6899 
6900 	case MHIOCGRP_REGISTER:
6901 	{
6902 		return (vdc_mhd_register(vdc, arg, mode));
6903 	}
6904 
6905 	case MHIOCGRP_RESERVE:
6906 	{
6907 		return (vdc_mhd_reserve(vdc, arg, mode));
6908 	}
6909 
6910 	case MHIOCGRP_PREEMPTANDABORT:
6911 	{
6912 		return (vdc_mhd_preemptabort(vdc, arg, mode));
6913 	}
6914 
6915 	case MHIOCGRP_REGISTERANDIGNOREKEY:
6916 	{
6917 		return (vdc_mhd_registerignore(vdc, arg, mode));
6918 	}
6919 
6920 	case MHIOCENFAILFAST:
6921 	{
6922 		rv = vdc_failfast(vdc, arg, mode);
6923 		return (rv);
6924 	}
6925 
6926 	case DIOCTL_RWCMD:
6927 	{
6928 		return (vdc_dioctl_rwcmd(dev, arg, mode));
6929 	}
6930 
6931 	case DKIOCGAPART:
6932 	{
6933 		return (vdc_dkio_gapart(vdc, arg, mode));
6934 	}
6935 
6936 	case DKIOCPARTITION:
6937 	{
6938 		return (vdc_dkio_partition(vdc, arg, mode));
6939 	}
6940 
6941 	case DKIOCINFO:
6942 	{
6943 		struct dk_cinfo	cinfo;
6944 
6945 		bcopy(vdc->cinfo, &cinfo, sizeof (struct dk_cinfo));
6946 		cinfo.dki_partition = VDCPART(dev);
6947 
6948 		rv = ddi_copyout(&cinfo, (void *)arg,
6949 		    sizeof (struct dk_cinfo), mode);
6950 		if (rv != 0)
6951 			return (EFAULT);
6952 
6953 		return (0);
6954 	}
6955 
6956 	case DKIOCGMEDIAINFO:
6957 	{
6958 		ASSERT(vdc->vdisk_size != 0);
6959 		ASSERT(vdc->minfo->dki_capacity != 0);
6960 		rv = ddi_copyout(vdc->minfo, (void *)arg,
6961 		    sizeof (struct dk_minfo), mode);
6962 		if (rv != 0)
6963 			return (EFAULT);
6964 
6965 		return (0);
6966 	}
6967 
6968 	case DKIOCFLUSHWRITECACHE:
6969 		{
6970 			struct dk_callback *dkc =
6971 			    (struct dk_callback *)(uintptr_t)arg;
6972 			vdc_dk_arg_t	*dkarg = NULL;
6973 
6974 			DMSG(vdc, 1, "[%d] Flush W$: mode %x\n",
6975 			    instance, mode);
6976 
6977 			/*
6978 			 * If arg is NULL, then there is no callback function
6979 			 * registered and the call operates synchronously; we
6980 			 * break and continue with the rest of the function and
6981 			 * wait for vds to return (i.e. after the request to
6982 			 * vds returns successfully, all writes completed prior
6983 			 * to the ioctl will have been flushed from the disk
6984 			 * write cache to persistent media.
6985 			 *
6986 			 * If a callback function is registered, we dispatch
6987 			 * the request on a task queue and return immediately.
6988 			 * The callback will deal with informing the calling
6989 			 * thread that the flush request is completed.
6990 			 */
6991 			if (dkc == NULL)
6992 				break;
6993 
6994 			/*
6995 			 * the asynchronous callback is only supported if
6996 			 * invoked from within the kernel
6997 			 */
6998 			if ((mode & FKIOCTL) == 0)
6999 				return (ENOTSUP);
7000 
7001 			dkarg = kmem_zalloc(sizeof (vdc_dk_arg_t), KM_SLEEP);
7002 
7003 			dkarg->mode = mode;
7004 			dkarg->dev = dev;
7005 			bcopy(dkc, &dkarg->dkc, sizeof (*dkc));
7006 
7007 			mutex_enter(&vdc->lock);
7008 			vdc->dkio_flush_pending++;
7009 			dkarg->vdc = vdc;
7010 			mutex_exit(&vdc->lock);
7011 
7012 			/* put the request on a task queue */
7013 			rv = taskq_dispatch(system_taskq, vdc_dkio_flush_cb,
7014 			    (void *)dkarg, DDI_SLEEP);
7015 			if (rv == NULL) {
7016 				/* clean up if dispatch fails */
7017 				mutex_enter(&vdc->lock);
7018 				vdc->dkio_flush_pending--;
7019 				mutex_exit(&vdc->lock);
7020 				kmem_free(dkarg, sizeof (vdc_dk_arg_t));
7021 			}
7022 
7023 			return (rv == NULL ? ENOMEM : 0);
7024 		}
7025 	}
7026 
7027 	/* catch programming error in vdc - should be a VD_OP_XXX ioctl */
7028 	ASSERT(iop->op != 0);
7029 
7030 	/* check if the vDisk server handles the operation for this vDisk */
7031 	if (VD_OP_SUPPORTED(vdc->operations, iop->op) == B_FALSE) {
7032 		DMSG(vdc, 0, "[%d] Unsupported VD_OP operation (0x%x)\n",
7033 		    vdc->instance, iop->op);
7034 		return (ENOTSUP);
7035 	}
7036 
7037 	/* LDC requires that the memory being mapped is 8-byte aligned */
7038 	alloc_len = P2ROUNDUP(len, sizeof (uint64_t));
7039 	DMSG(vdc, 1, "[%d] struct size %ld alloc %ld\n",
7040 	    instance, len, alloc_len);
7041 
7042 	if (alloc_len > 0)
7043 		mem_p = kmem_zalloc(alloc_len, KM_SLEEP);
7044 
7045 	/*
7046 	 * Call the conversion function for this ioctl which, if necessary,
7047 	 * converts from the Solaris format to the format ARC'ed
7048 	 * as part of the vDisk protocol (FWARC 2006/195)
7049 	 */
7050 	ASSERT(iop->convert != NULL);
7051 	rv = (iop->convert)(vdc, arg, mem_p, mode, VD_COPYIN);
7052 	if (rv != 0) {
7053 		DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n",
7054 		    instance, rv, cmd);
7055 		if (mem_p != NULL)
7056 			kmem_free(mem_p, alloc_len);
7057 		return (rv);
7058 	}
7059 
7060 	/*
7061 	 * send request to vds to service the ioctl.
7062 	 */
7063 	rv = vdc_do_sync_op(vdc, iop->op, mem_p, alloc_len,
7064 	    VDCPART(dev), 0, CB_SYNC, (void *)(uint64_t)mode,
7065 	    VIO_both_dir, B_TRUE);
7066 
7067 	if (rv != 0) {
7068 		/*
7069 		 * This is not necessarily an error. The ioctl could
7070 		 * be returning a value such as ENOTTY to indicate
7071 		 * that the ioctl is not applicable.
7072 		 */
7073 		DMSG(vdc, 0, "[%d] vds returned %d for ioctl 0x%x\n",
7074 		    instance, rv, cmd);
7075 		if (mem_p != NULL)
7076 			kmem_free(mem_p, alloc_len);
7077 
7078 		return (rv);
7079 	}
7080 
7081 	/*
7082 	 * Call the conversion function (if it exists) for this ioctl
7083 	 * which converts from the format ARC'ed as part of the vDisk
7084 	 * protocol (FWARC 2006/195) back to a format understood by
7085 	 * the rest of Solaris.
7086 	 */
7087 	rv = (iop->convert)(vdc, mem_p, arg, mode, VD_COPYOUT);
7088 	if (rv != 0) {
7089 		DMSG(vdc, 0, "[%d] convert func returned %d for ioctl 0x%x\n",
7090 		    instance, rv, cmd);
7091 		if (mem_p != NULL)
7092 			kmem_free(mem_p, alloc_len);
7093 		return (rv);
7094 	}
7095 
7096 	if (mem_p != NULL)
7097 		kmem_free(mem_p, alloc_len);
7098 
7099 	return (rv);
7100 }
7101 
7102 /*
7103  * Function:
7104  *
7105  * Description:
7106  *	This is an empty conversion function used by ioctl calls which
7107  *	do not need to convert the data being passed in/out to userland
7108  */
7109 static int
7110 vdc_null_copy_func(vdc_t *vdc, void *from, void *to, int mode, int dir)
7111 {
7112 	_NOTE(ARGUNUSED(vdc))
7113 	_NOTE(ARGUNUSED(from))
7114 	_NOTE(ARGUNUSED(to))
7115 	_NOTE(ARGUNUSED(mode))
7116 	_NOTE(ARGUNUSED(dir))
7117 
7118 	return (0);
7119 }
7120 
7121 static int
7122 vdc_get_wce_convert(vdc_t *vdc, void *from, void *to,
7123     int mode, int dir)
7124 {
7125 	_NOTE(ARGUNUSED(vdc))
7126 
7127 	if (dir == VD_COPYIN)
7128 		return (0);		/* nothing to do */
7129 
7130 	if (ddi_copyout(from, to, sizeof (int), mode) != 0)
7131 		return (EFAULT);
7132 
7133 	return (0);
7134 }
7135 
7136 static int
7137 vdc_set_wce_convert(vdc_t *vdc, void *from, void *to,
7138     int mode, int dir)
7139 {
7140 	_NOTE(ARGUNUSED(vdc))
7141 
7142 	if (dir == VD_COPYOUT)
7143 		return (0);		/* nothing to do */
7144 
7145 	if (ddi_copyin(from, to, sizeof (int), mode) != 0)
7146 		return (EFAULT);
7147 
7148 	return (0);
7149 }
7150 
7151 /*
7152  * Function:
7153  *	vdc_get_vtoc_convert()
7154  *
7155  * Description:
7156  *	This routine performs the necessary convertions from the DKIOCGVTOC
7157  *	Solaris structure to the format defined in FWARC 2006/195.
7158  *
7159  *	In the struct vtoc definition, the timestamp field is marked as not
7160  *	supported so it is not part of vDisk protocol (FWARC 2006/195).
7161  *	However SVM uses that field to check it can write into the VTOC,
7162  *	so we fake up the info of that field.
7163  *
7164  * Arguments:
7165  *	vdc	- the vDisk client
7166  *	from	- the buffer containing the data to be copied from
7167  *	to	- the buffer to be copied to
7168  *	mode	- flags passed to ioctl() call
7169  *	dir	- the "direction" of the copy - VD_COPYIN or VD_COPYOUT
7170  *
7171  * Return Code:
7172  *	0	- Success
7173  *	ENXIO	- incorrect buffer passed in.
7174  *	EFAULT	- ddi_copyout routine encountered an error.
7175  */
7176 static int
7177 vdc_get_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7178 {
7179 	int		i;
7180 	struct vtoc	vtoc;
7181 	struct vtoc32	vtoc32;
7182 	struct extvtoc	evtoc;
7183 	int		rv;
7184 
7185 	if (dir != VD_COPYOUT)
7186 		return (0);	/* nothing to do */
7187 
7188 	if ((from == NULL) || (to == NULL))
7189 		return (ENXIO);
7190 
7191 	if (vdc->vdisk_size > VD_OLDVTOC_LIMIT)
7192 		return (EOVERFLOW);
7193 
7194 	VD_VTOC2VTOC((vd_vtoc_t *)from, &evtoc);
7195 
7196 	/* fake the VTOC timestamp field */
7197 	for (i = 0; i < V_NUMPAR; i++) {
7198 		evtoc.timestamp[i] = vdc->vtoc->timestamp[i];
7199 	}
7200 
7201 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
7202 		/* LINTED E_ASSIGN_NARROW_CONV */
7203 		extvtoctovtoc32(evtoc, vtoc32);
7204 		rv = ddi_copyout(&vtoc32, to, sizeof (vtoc32), mode);
7205 		if (rv != 0)
7206 			rv = EFAULT;
7207 	} else {
7208 		extvtoctovtoc(evtoc, vtoc);
7209 		rv = ddi_copyout(&vtoc, to, sizeof (vtoc), mode);
7210 		if (rv != 0)
7211 			rv = EFAULT;
7212 	}
7213 
7214 	return (rv);
7215 }
7216 
7217 /*
7218  * Function:
7219  *	vdc_set_vtoc_convert()
7220  *
7221  * Description:
7222  *	This routine performs the necessary convertions from the DKIOCSVTOC
7223  *	Solaris structure to the format defined in FWARC 2006/195.
7224  *
7225  * Arguments:
7226  *	vdc	- the vDisk client
7227  *	from	- Buffer with data
7228  *	to	- Buffer where data is to be copied to
7229  *	mode	- flags passed to ioctl
7230  *	dir	- direction of copy (in or out)
7231  *
7232  * Return Code:
7233  *	0	- Success
7234  *	ENXIO	- Invalid buffer passed in
7235  *	EFAULT	- ddi_copyin of data failed
7236  */
7237 static int
7238 vdc_set_vtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7239 {
7240 	void		*uvtoc;
7241 	struct vtoc	vtoc;
7242 	struct vtoc32	vtoc32;
7243 	struct extvtoc	evtoc;
7244 	int		i, rv;
7245 
7246 	if ((from == NULL) || (to == NULL))
7247 		return (ENXIO);
7248 
7249 	if (vdc->vdisk_size > VD_OLDVTOC_LIMIT)
7250 		return (EOVERFLOW);
7251 
7252 	uvtoc = (dir == VD_COPYIN)? from : to;
7253 
7254 	if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
7255 		rv = ddi_copyin(uvtoc, &vtoc32, sizeof (vtoc32), mode);
7256 		if (rv != 0)
7257 			return (EFAULT);
7258 		vtoc32toextvtoc(vtoc32, evtoc);
7259 	} else {
7260 		rv = ddi_copyin(uvtoc, &vtoc, sizeof (vtoc), mode);
7261 		if (rv != 0)
7262 			return (EFAULT);
7263 		vtoctoextvtoc(vtoc, evtoc);
7264 	}
7265 
7266 	if (dir == VD_COPYOUT) {
7267 		/*
7268 		 * The disk label may have changed. Revalidate the disk
7269 		 * geometry. This will also update the device nodes.
7270 		 */
7271 		vdc_validate(vdc);
7272 
7273 		/*
7274 		 * We also need to keep track of the timestamp fields.
7275 		 */
7276 		for (i = 0; i < V_NUMPAR; i++) {
7277 			vdc->vtoc->timestamp[i] = evtoc.timestamp[i];
7278 		}
7279 
7280 	} else {
7281 		VTOC2VD_VTOC(&evtoc, (vd_vtoc_t *)to);
7282 	}
7283 
7284 	return (0);
7285 }
7286 
7287 static int
7288 vdc_get_extvtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7289 {
7290 	int		i, rv;
7291 	struct extvtoc	evtoc;
7292 
7293 	if (dir != VD_COPYOUT)
7294 		return (0);	/* nothing to do */
7295 
7296 	if ((from == NULL) || (to == NULL))
7297 		return (ENXIO);
7298 
7299 	VD_VTOC2VTOC((vd_vtoc_t *)from, &evtoc);
7300 
7301 	/* fake the VTOC timestamp field */
7302 	for (i = 0; i < V_NUMPAR; i++) {
7303 		evtoc.timestamp[i] = vdc->vtoc->timestamp[i];
7304 	}
7305 
7306 	rv = ddi_copyout(&evtoc, to, sizeof (struct extvtoc), mode);
7307 	if (rv != 0)
7308 		rv = EFAULT;
7309 
7310 	return (rv);
7311 }
7312 
7313 static int
7314 vdc_set_extvtoc_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7315 {
7316 	void		*uvtoc;
7317 	struct extvtoc	evtoc;
7318 	int		i, rv;
7319 
7320 	if ((from == NULL) || (to == NULL))
7321 		return (ENXIO);
7322 
7323 	uvtoc = (dir == VD_COPYIN)? from : to;
7324 
7325 	rv = ddi_copyin(uvtoc, &evtoc, sizeof (struct extvtoc), mode);
7326 	if (rv != 0)
7327 		return (EFAULT);
7328 
7329 	if (dir == VD_COPYOUT) {
7330 		/*
7331 		 * The disk label may have changed. Revalidate the disk
7332 		 * geometry. This will also update the device nodes.
7333 		 */
7334 		vdc_validate(vdc);
7335 
7336 		/*
7337 		 * We also need to keep track of the timestamp fields.
7338 		 */
7339 		for (i = 0; i < V_NUMPAR; i++) {
7340 			vdc->vtoc->timestamp[i] = evtoc.timestamp[i];
7341 		}
7342 
7343 	} else {
7344 		VTOC2VD_VTOC(&evtoc, (vd_vtoc_t *)to);
7345 	}
7346 
7347 	return (0);
7348 }
7349 
7350 /*
7351  * Function:
7352  *	vdc_get_geom_convert()
7353  *
7354  * Description:
7355  *	This routine performs the necessary convertions from the DKIOCGGEOM,
7356  *	DKIOCG_PHYSGEOM and DKIOG_VIRTGEOM Solaris structures to the format
7357  *	defined in FWARC 2006/195
7358  *
7359  * Arguments:
7360  *	vdc	- the vDisk client
7361  *	from	- Buffer with data
7362  *	to	- Buffer where data is to be copied to
7363  *	mode	- flags passed to ioctl
7364  *	dir	- direction of copy (in or out)
7365  *
7366  * Return Code:
7367  *	0	- Success
7368  *	ENXIO	- Invalid buffer passed in
7369  *	EFAULT	- ddi_copyout of data failed
7370  */
7371 static int
7372 vdc_get_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7373 {
7374 	_NOTE(ARGUNUSED(vdc))
7375 
7376 	struct dk_geom	geom;
7377 	int	copy_len = sizeof (struct dk_geom);
7378 	int	rv = 0;
7379 
7380 	if (dir != VD_COPYOUT)
7381 		return (0);	/* nothing to do */
7382 
7383 	if ((from == NULL) || (to == NULL))
7384 		return (ENXIO);
7385 
7386 	VD_GEOM2DK_GEOM((vd_geom_t *)from, &geom);
7387 	rv = ddi_copyout(&geom, to, copy_len, mode);
7388 	if (rv != 0)
7389 		rv = EFAULT;
7390 
7391 	return (rv);
7392 }
7393 
7394 /*
7395  * Function:
7396  *	vdc_set_geom_convert()
7397  *
7398  * Description:
7399  *	This routine performs the necessary convertions from the DKIOCSGEOM
7400  *	Solaris structure to the format defined in FWARC 2006/195.
7401  *
7402  * Arguments:
7403  *	vdc	- the vDisk client
7404  *	from	- Buffer with data
7405  *	to	- Buffer where data is to be copied to
7406  *	mode	- flags passed to ioctl
7407  *	dir	- direction of copy (in or out)
7408  *
7409  * Return Code:
7410  *	0	- Success
7411  *	ENXIO	- Invalid buffer passed in
7412  *	EFAULT	- ddi_copyin of data failed
7413  */
7414 static int
7415 vdc_set_geom_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7416 {
7417 	_NOTE(ARGUNUSED(vdc))
7418 
7419 	vd_geom_t	vdgeom;
7420 	void		*tmp_mem = NULL;
7421 	int		copy_len = sizeof (struct dk_geom);
7422 	int		rv = 0;
7423 
7424 	if (dir != VD_COPYIN)
7425 		return (0);	/* nothing to do */
7426 
7427 	if ((from == NULL) || (to == NULL))
7428 		return (ENXIO);
7429 
7430 	tmp_mem = kmem_alloc(copy_len, KM_SLEEP);
7431 
7432 	rv = ddi_copyin(from, tmp_mem, copy_len, mode);
7433 	if (rv != 0) {
7434 		kmem_free(tmp_mem, copy_len);
7435 		return (EFAULT);
7436 	}
7437 	DK_GEOM2VD_GEOM((struct dk_geom *)tmp_mem, &vdgeom);
7438 	bcopy(&vdgeom, to, sizeof (vdgeom));
7439 	kmem_free(tmp_mem, copy_len);
7440 
7441 	return (0);
7442 }
7443 
7444 static int
7445 vdc_get_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7446 {
7447 	_NOTE(ARGUNUSED(vdc))
7448 
7449 	vd_efi_t	*vd_efi;
7450 	dk_efi_t	dk_efi;
7451 	int		rv = 0;
7452 	void		*uaddr;
7453 
7454 	if ((from == NULL) || (to == NULL))
7455 		return (ENXIO);
7456 
7457 	if (dir == VD_COPYIN) {
7458 
7459 		vd_efi = (vd_efi_t *)to;
7460 
7461 		rv = ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode);
7462 		if (rv != 0)
7463 			return (EFAULT);
7464 
7465 		vd_efi->lba = dk_efi.dki_lba;
7466 		vd_efi->length = dk_efi.dki_length;
7467 		bzero(vd_efi->data, vd_efi->length);
7468 
7469 	} else {
7470 
7471 		rv = ddi_copyin(to, &dk_efi, sizeof (dk_efi_t), mode);
7472 		if (rv != 0)
7473 			return (EFAULT);
7474 
7475 		uaddr = dk_efi.dki_data;
7476 
7477 		dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
7478 
7479 		VD_EFI2DK_EFI((vd_efi_t *)from, &dk_efi);
7480 
7481 		rv = ddi_copyout(dk_efi.dki_data, uaddr, dk_efi.dki_length,
7482 		    mode);
7483 		if (rv != 0)
7484 			return (EFAULT);
7485 
7486 		kmem_free(dk_efi.dki_data, dk_efi.dki_length);
7487 	}
7488 
7489 	return (0);
7490 }
7491 
7492 static int
7493 vdc_set_efi_convert(vdc_t *vdc, void *from, void *to, int mode, int dir)
7494 {
7495 	_NOTE(ARGUNUSED(vdc))
7496 
7497 	dk_efi_t	dk_efi;
7498 	void		*uaddr;
7499 
7500 	if (dir == VD_COPYOUT) {
7501 		/*
7502 		 * The disk label may have changed. Revalidate the disk
7503 		 * geometry. This will also update the device nodes.
7504 		 */
7505 		vdc_validate(vdc);
7506 		return (0);
7507 	}
7508 
7509 	if ((from == NULL) || (to == NULL))
7510 		return (ENXIO);
7511 
7512 	if (ddi_copyin(from, &dk_efi, sizeof (dk_efi_t), mode) != 0)
7513 		return (EFAULT);
7514 
7515 	uaddr = dk_efi.dki_data;
7516 
7517 	dk_efi.dki_data = kmem_alloc(dk_efi.dki_length, KM_SLEEP);
7518 
7519 	if (ddi_copyin(uaddr, dk_efi.dki_data, dk_efi.dki_length, mode) != 0)
7520 		return (EFAULT);
7521 
7522 	DK_EFI2VD_EFI(&dk_efi, (vd_efi_t *)to);
7523 
7524 	kmem_free(dk_efi.dki_data, dk_efi.dki_length);
7525 
7526 	return (0);
7527 }
7528 
7529 
7530 /* -------------------------------------------------------------------------- */
7531 
7532 /*
7533  * Function:
7534  *	vdc_create_fake_geometry()
7535  *
7536  * Description:
7537  *	This routine fakes up the disk info needed for some DKIO ioctls such
7538  *	as DKIOCINFO and DKIOCGMEDIAINFO [just like lofi(7D) and ramdisk(7D) do]
7539  *
7540  *	Note: This function must not be called until the vDisk attributes have
7541  *	been exchanged as part of the handshake with the vDisk server.
7542  *
7543  * Arguments:
7544  *	vdc	- soft state pointer for this instance of the device driver.
7545  *
7546  * Return Code:
7547  *	none.
7548  */
7549 static void
7550 vdc_create_fake_geometry(vdc_t *vdc)
7551 {
7552 	ASSERT(vdc != NULL);
7553 	ASSERT(vdc->max_xfer_sz != 0);
7554 
7555 	/*
7556 	 * DKIOCINFO support
7557 	 */
7558 	if (vdc->cinfo == NULL)
7559 		vdc->cinfo = kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
7560 
7561 	(void) strcpy(vdc->cinfo->dki_cname, VDC_DRIVER_NAME);
7562 	(void) strcpy(vdc->cinfo->dki_dname, VDC_DRIVER_NAME);
7563 	/* max_xfer_sz is #blocks so we don't need to divide by DEV_BSIZE */
7564 	vdc->cinfo->dki_maxtransfer = vdc->max_xfer_sz;
7565 
7566 	/*
7567 	 * We set the controller type to DKC_SCSI_CCS only if the VD_OP_SCSICMD
7568 	 * operation is supported, otherwise the controller type is DKC_DIRECT.
7569 	 * Version 1.0 does not support the VD_OP_SCSICMD operation, so the
7570 	 * controller type is always DKC_DIRECT in that case.
7571 	 *
7572 	 * If the virtual disk is backed by a physical CD/DVD device or
7573 	 * an ISO image, modify the controller type to indicate this
7574 	 */
7575 	switch (vdc->vdisk_media) {
7576 	case VD_MEDIA_CD:
7577 	case VD_MEDIA_DVD:
7578 		vdc->cinfo->dki_ctype = DKC_CDROM;
7579 		break;
7580 	case VD_MEDIA_FIXED:
7581 		if (VD_OP_SUPPORTED(vdc->operations, VD_OP_SCSICMD))
7582 			vdc->cinfo->dki_ctype = DKC_SCSI_CCS;
7583 		else
7584 			vdc->cinfo->dki_ctype = DKC_DIRECT;
7585 		break;
7586 	default:
7587 		/* in the case of v1.0 we default to a fixed disk */
7588 		vdc->cinfo->dki_ctype = DKC_DIRECT;
7589 		break;
7590 	}
7591 	vdc->cinfo->dki_flags = DKI_FMTVOL;
7592 	vdc->cinfo->dki_cnum = 0;
7593 	vdc->cinfo->dki_addr = 0;
7594 	vdc->cinfo->dki_space = 0;
7595 	vdc->cinfo->dki_prio = 0;
7596 	vdc->cinfo->dki_vec = 0;
7597 	vdc->cinfo->dki_unit = vdc->instance;
7598 	vdc->cinfo->dki_slave = 0;
7599 	/*
7600 	 * The partition number will be created on the fly depending on the
7601 	 * actual slice (i.e. minor node) that is used to request the data.
7602 	 */
7603 	vdc->cinfo->dki_partition = 0;
7604 
7605 	/*
7606 	 * DKIOCGMEDIAINFO support
7607 	 */
7608 	if (vdc->minfo == NULL)
7609 		vdc->minfo = kmem_zalloc(sizeof (struct dk_minfo), KM_SLEEP);
7610 
7611 	if (vio_ver_is_supported(vdc->ver, 1, 1)) {
7612 		vdc->minfo->dki_media_type =
7613 		    VD_MEDIATYPE2DK_MEDIATYPE(vdc->vdisk_media);
7614 	} else {
7615 		vdc->minfo->dki_media_type = DK_FIXED_DISK;
7616 	}
7617 
7618 	vdc->minfo->dki_capacity = vdc->vdisk_size;
7619 	vdc->minfo->dki_lbsize = vdc->block_size;
7620 }
7621 
7622 static ushort_t
7623 vdc_lbl2cksum(struct dk_label *label)
7624 {
7625 	int	count;
7626 	ushort_t sum, *sp;
7627 
7628 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
7629 	sp = (ushort_t *)label;
7630 	sum = 0;
7631 	while (count--) {
7632 		sum ^= *sp++;
7633 	}
7634 
7635 	return (sum);
7636 }
7637 
7638 static void
7639 vdc_update_size(vdc_t *vdc, size_t dsk_size, size_t blk_size, size_t xfr_size)
7640 {
7641 	vd_err_stats_t  *stp;
7642 
7643 	ASSERT(MUTEX_HELD(&vdc->lock));
7644 	ASSERT(xfr_size != 0);
7645 
7646 	/*
7647 	 * If the disk size is unknown or sizes are unchanged then don't
7648 	 * update anything.
7649 	 */
7650 	if (dsk_size == VD_SIZE_UNKNOWN || dsk_size == 0 ||
7651 	    (blk_size == vdc->block_size && dsk_size == vdc->vdisk_size &&
7652 	    xfr_size == vdc->max_xfer_sz))
7653 		return;
7654 
7655 	/*
7656 	 * We don't know at compile time what the vDisk server will think
7657 	 * are good values but we apply a large (arbitrary) upper bound to
7658 	 * prevent memory exhaustion in vdc if it was allocating a DRing
7659 	 * based of huge values sent by the server. We probably will never
7660 	 * exceed this except if the message was garbage.
7661 	 */
7662 	if ((xfr_size * blk_size) > (PAGESIZE * DEV_BSIZE)) {
7663 		DMSG(vdc, 0, "[%d] vds block transfer size too big;"
7664 		    " using max supported by vdc", vdc->instance);
7665 		xfr_size = maxphys / DEV_BSIZE;
7666 		dsk_size = (dsk_size * blk_size) / DEV_BSIZE;
7667 		blk_size = DEV_BSIZE;
7668 	}
7669 
7670 	vdc->max_xfer_sz = xfr_size;
7671 	vdc->block_size = blk_size;
7672 	vdc->vdisk_size = dsk_size;
7673 
7674 	stp = (vd_err_stats_t *)vdc->err_stats->ks_data;
7675 	stp->vd_capacity.value.ui64 = dsk_size * blk_size;
7676 
7677 	vdc->minfo->dki_capacity = dsk_size;
7678 	vdc->minfo->dki_lbsize = (uint_t)blk_size;
7679 }
7680 
7681 /*
7682  * Function:
7683  *	vdc_validate_geometry
7684  *
7685  * Description:
7686  *	This routine discovers the label and geometry of the disk. It stores
7687  *	the disk label and related information in the vdc structure. If it
7688  *	fails to validate the geometry or to discover the disk label then
7689  *	the label is marked as unknown (VD_DISK_LABEL_UNK).
7690  *
7691  * Arguments:
7692  *	vdc	- soft state pointer for this instance of the device driver.
7693  *
7694  * Return Code:
7695  *	0	- success.
7696  *	EINVAL	- unknown disk label.
7697  *	ENOTSUP	- geometry not applicable (EFI label).
7698  *	EIO	- error accessing the disk.
7699  */
7700 static int
7701 vdc_validate_geometry(vdc_t *vdc)
7702 {
7703 	buf_t	*buf;	/* BREAD requests need to be in a buf_t structure */
7704 	dev_t	dev;
7705 	int	rv, rval;
7706 	struct dk_label label;
7707 	struct dk_geom geom;
7708 	struct extvtoc vtoc;
7709 	efi_gpt_t *gpt;
7710 	efi_gpe_t *gpe;
7711 	vd_efi_dev_t edev;
7712 
7713 	ASSERT(vdc != NULL);
7714 	ASSERT(vdc->vtoc != NULL && vdc->geom != NULL);
7715 	ASSERT(MUTEX_HELD(&vdc->lock));
7716 
7717 	mutex_exit(&vdc->lock);
7718 	/*
7719 	 * Check the disk capacity in case it has changed. If that fails then
7720 	 * we proceed and we will be using the disk size we currently have.
7721 	 */
7722 	(void) vdc_check_capacity(vdc);
7723 	dev = makedevice(ddi_driver_major(vdc->dip),
7724 	    VD_MAKE_DEV(vdc->instance, 0));
7725 
7726 	rv = vd_process_ioctl(dev, DKIOCGGEOM, (caddr_t)&geom, FKIOCTL, &rval);
7727 	if (rv == 0)
7728 		rv = vd_process_ioctl(dev, DKIOCGEXTVTOC, (caddr_t)&vtoc,
7729 		    FKIOCTL, &rval);
7730 
7731 	if (rv == ENOTSUP) {
7732 		/*
7733 		 * If the device does not support VTOC then we try
7734 		 * to read an EFI label.
7735 		 *
7736 		 * We need to know the block size and the disk size to
7737 		 * be able to read an EFI label.
7738 		 */
7739 		if (vdc->vdisk_size == 0) {
7740 			mutex_enter(&vdc->lock);
7741 			vdc_store_label_unk(vdc);
7742 			return (EIO);
7743 		}
7744 
7745 		VD_EFI_DEV_SET(edev, vdc, vd_process_efi_ioctl);
7746 
7747 		rv = vd_efi_alloc_and_read(&edev, &gpt, &gpe);
7748 
7749 		if (rv) {
7750 			DMSG(vdc, 0, "[%d] Failed to get EFI (err=%d)",
7751 			    vdc->instance, rv);
7752 			mutex_enter(&vdc->lock);
7753 			vdc_store_label_unk(vdc);
7754 			return (EIO);
7755 		}
7756 
7757 		mutex_enter(&vdc->lock);
7758 		vdc_store_label_efi(vdc, gpt, gpe);
7759 		vd_efi_free(&edev, gpt, gpe);
7760 		return (ENOTSUP);
7761 	}
7762 
7763 	if (rv != 0) {
7764 		DMSG(vdc, 0, "[%d] Failed to get VTOC (err=%d)",
7765 		    vdc->instance, rv);
7766 		mutex_enter(&vdc->lock);
7767 		vdc_store_label_unk(vdc);
7768 		if (rv != EINVAL)
7769 			rv = EIO;
7770 		return (rv);
7771 	}
7772 
7773 	/* check that geometry and vtoc are valid */
7774 	if (geom.dkg_nhead == 0 || geom.dkg_nsect == 0 ||
7775 	    vtoc.v_sanity != VTOC_SANE) {
7776 		mutex_enter(&vdc->lock);
7777 		vdc_store_label_unk(vdc);
7778 		return (EINVAL);
7779 	}
7780 
7781 	/*
7782 	 * We have a disk and a valid VTOC. However this does not mean
7783 	 * that the disk currently have a VTOC label. The returned VTOC may
7784 	 * be a default VTOC to be used for configuring the disk (this is
7785 	 * what is done for disk image). So we read the label from the
7786 	 * beginning of the disk to ensure we really have a VTOC label.
7787 	 *
7788 	 * FUTURE: This could be the default way for reading the VTOC
7789 	 * from the disk as opposed to sending the VD_OP_GET_VTOC
7790 	 * to the server. This will be the default if vdc is implemented
7791 	 * ontop of cmlb.
7792 	 */
7793 
7794 	/*
7795 	 * Single slice disk does not support read using an absolute disk
7796 	 * offset so we just rely on the DKIOCGVTOC ioctl in that case.
7797 	 */
7798 	if (vdc->vdisk_type == VD_DISK_TYPE_SLICE) {
7799 		mutex_enter(&vdc->lock);
7800 		if (vtoc.v_nparts != 1) {
7801 			vdc_store_label_unk(vdc);
7802 			return (EINVAL);
7803 		}
7804 		vdc_store_label_vtoc(vdc, &geom, &vtoc);
7805 		return (0);
7806 	}
7807 
7808 	if (vtoc.v_nparts != V_NUMPAR) {
7809 		mutex_enter(&vdc->lock);
7810 		vdc_store_label_unk(vdc);
7811 		return (EINVAL);
7812 	}
7813 
7814 	/*
7815 	 * Read disk label from start of disk
7816 	 */
7817 	buf = kmem_alloc(sizeof (buf_t), KM_SLEEP);
7818 	bioinit(buf);
7819 	buf->b_un.b_addr = (caddr_t)&label;
7820 	buf->b_bcount = DK_LABEL_SIZE;
7821 	buf->b_flags = B_BUSY | B_READ;
7822 	buf->b_dev = cmpdev(dev);
7823 	rv = vdc_send_request(vdc, VD_OP_BREAD, (caddr_t)&label,
7824 	    DK_LABEL_SIZE, VD_SLICE_NONE, 0, CB_STRATEGY, buf, VIO_read_dir);
7825 	if (rv) {
7826 		DMSG(vdc, 1, "[%d] Failed to read disk block 0\n",
7827 		    vdc->instance);
7828 	} else {
7829 		rv = biowait(buf);
7830 		biofini(buf);
7831 	}
7832 	kmem_free(buf, sizeof (buf_t));
7833 
7834 	if (rv != 0 || label.dkl_magic != DKL_MAGIC ||
7835 	    label.dkl_cksum != vdc_lbl2cksum(&label)) {
7836 		DMSG(vdc, 1, "[%d] Got VTOC with invalid label\n",
7837 		    vdc->instance);
7838 		mutex_enter(&vdc->lock);
7839 		vdc_store_label_unk(vdc);
7840 		return (EINVAL);
7841 	}
7842 
7843 	mutex_enter(&vdc->lock);
7844 	vdc_store_label_vtoc(vdc, &geom, &vtoc);
7845 	return (0);
7846 }
7847 
7848 /*
7849  * Function:
7850  *	vdc_validate
7851  *
7852  * Description:
7853  *	This routine discovers the label of the disk and create the
7854  *	appropriate device nodes if the label has changed.
7855  *
7856  * Arguments:
7857  *	vdc	- soft state pointer for this instance of the device driver.
7858  *
7859  * Return Code:
7860  *	none.
7861  */
7862 static void
7863 vdc_validate(vdc_t *vdc)
7864 {
7865 	vd_disk_label_t old_label;
7866 	vd_slice_t old_slice[V_NUMPAR];
7867 	int rv;
7868 
7869 	ASSERT(!MUTEX_HELD(&vdc->lock));
7870 
7871 	mutex_enter(&vdc->lock);
7872 
7873 	/* save the current label and vtoc */
7874 	old_label = vdc->vdisk_label;
7875 	bcopy(vdc->slice, &old_slice, sizeof (vd_slice_t) * V_NUMPAR);
7876 
7877 	/* check the geometry */
7878 	(void) vdc_validate_geometry(vdc);
7879 
7880 	/* if the disk label has changed, update device nodes */
7881 	if (vdc->vdisk_label != old_label) {
7882 
7883 		if (vdc->vdisk_label == VD_DISK_LABEL_EFI)
7884 			rv = vdc_create_device_nodes_efi(vdc);
7885 		else
7886 			rv = vdc_create_device_nodes_vtoc(vdc);
7887 
7888 		if (rv != 0) {
7889 			DMSG(vdc, 0, "![%d] Failed to update device nodes",
7890 			    vdc->instance);
7891 		}
7892 	}
7893 
7894 	mutex_exit(&vdc->lock);
7895 }
7896 
7897 static void
7898 vdc_validate_task(void *arg)
7899 {
7900 	vdc_t *vdc = (vdc_t *)arg;
7901 
7902 	vdc_validate(vdc);
7903 
7904 	mutex_enter(&vdc->lock);
7905 	ASSERT(vdc->validate_pending > 0);
7906 	vdc->validate_pending--;
7907 	mutex_exit(&vdc->lock);
7908 }
7909 
7910 /*
7911  * Function:
7912  *	vdc_setup_devid()
7913  *
7914  * Description:
7915  *	This routine discovers the devid of a vDisk. It requests the devid of
7916  *	the underlying device from the vDisk server, builds an encapsulated
7917  *	devid based on the retrieved devid and registers that new devid to
7918  *	the vDisk.
7919  *
7920  * Arguments:
7921  *	vdc	- soft state pointer for this instance of the device driver.
7922  *
7923  * Return Code:
7924  *	0	- A devid was succesfully registered for the vDisk
7925  */
7926 static int
7927 vdc_setup_devid(vdc_t *vdc)
7928 {
7929 	int rv;
7930 	vd_devid_t *vd_devid;
7931 	size_t bufsize, bufid_len;
7932 
7933 	/*
7934 	 * At first sight, we don't know the size of the devid that the
7935 	 * server will return but this size will be encoded into the
7936 	 * reply. So we do a first request using a default size then we
7937 	 * check if this size was large enough. If not then we do a second
7938 	 * request with the correct size returned by the server. Note that
7939 	 * ldc requires size to be 8-byte aligned.
7940 	 */
7941 	bufsize = P2ROUNDUP(VD_DEVID_SIZE(VD_DEVID_DEFAULT_LEN),
7942 	    sizeof (uint64_t));
7943 	vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
7944 	bufid_len = bufsize - sizeof (vd_efi_t) - 1;
7945 
7946 	rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID, (caddr_t)vd_devid,
7947 	    bufsize, 0, 0, CB_SYNC, 0, VIO_both_dir, B_TRUE);
7948 
7949 	DMSG(vdc, 2, "sync_op returned %d\n", rv);
7950 
7951 	if (rv) {
7952 		kmem_free(vd_devid, bufsize);
7953 		return (rv);
7954 	}
7955 
7956 	if (vd_devid->length > bufid_len) {
7957 		/*
7958 		 * The returned devid is larger than the buffer used. Try again
7959 		 * with a buffer with the right size.
7960 		 */
7961 		kmem_free(vd_devid, bufsize);
7962 		bufsize = P2ROUNDUP(VD_DEVID_SIZE(vd_devid->length),
7963 		    sizeof (uint64_t));
7964 		vd_devid = kmem_zalloc(bufsize, KM_SLEEP);
7965 		bufid_len = bufsize - sizeof (vd_efi_t) - 1;
7966 
7967 		rv = vdc_do_sync_op(vdc, VD_OP_GET_DEVID,
7968 		    (caddr_t)vd_devid, bufsize, 0, 0, CB_SYNC, 0,
7969 		    VIO_both_dir, B_TRUE);
7970 
7971 		if (rv) {
7972 			kmem_free(vd_devid, bufsize);
7973 			return (rv);
7974 		}
7975 	}
7976 
7977 	/*
7978 	 * The virtual disk should have the same device id as the one associated
7979 	 * with the physical disk it is mapped on, otherwise sharing a disk
7980 	 * between a LDom and a non-LDom may not work (for example for a shared
7981 	 * SVM disk set).
7982 	 *
7983 	 * The DDI framework does not allow creating a device id with any
7984 	 * type so we first create a device id of type DEVID_ENCAP and then
7985 	 * we restore the orignal type of the physical device.
7986 	 */
7987 
7988 	DMSG(vdc, 2, ": devid length = %d\n", vd_devid->length);
7989 
7990 	/* build an encapsulated devid based on the returned devid */
7991 	if (ddi_devid_init(vdc->dip, DEVID_ENCAP, vd_devid->length,
7992 	    vd_devid->id, &vdc->devid) != DDI_SUCCESS) {
7993 		DMSG(vdc, 1, "[%d] Fail to created devid\n", vdc->instance);
7994 		kmem_free(vd_devid, bufsize);
7995 		return (1);
7996 	}
7997 
7998 	DEVID_FORMTYPE((impl_devid_t *)vdc->devid, vd_devid->type);
7999 
8000 	ASSERT(ddi_devid_valid(vdc->devid) == DDI_SUCCESS);
8001 
8002 	kmem_free(vd_devid, bufsize);
8003 
8004 	if (ddi_devid_register(vdc->dip, vdc->devid) != DDI_SUCCESS) {
8005 		DMSG(vdc, 1, "[%d] Fail to register devid\n", vdc->instance);
8006 		return (1);
8007 	}
8008 
8009 	return (0);
8010 }
8011 
8012 static void
8013 vdc_store_label_efi(vdc_t *vdc, efi_gpt_t *gpt, efi_gpe_t *gpe)
8014 {
8015 	int i, nparts;
8016 
8017 	ASSERT(MUTEX_HELD(&vdc->lock));
8018 
8019 	vdc->vdisk_label = VD_DISK_LABEL_EFI;
8020 	bzero(vdc->vtoc, sizeof (struct extvtoc));
8021 	bzero(vdc->geom, sizeof (struct dk_geom));
8022 	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
8023 
8024 	nparts = gpt->efi_gpt_NumberOfPartitionEntries;
8025 
8026 	for (i = 0; i < nparts && i < VD_EFI_WD_SLICE; i++) {
8027 
8028 		if (gpe[i].efi_gpe_StartingLBA == 0 ||
8029 		    gpe[i].efi_gpe_EndingLBA == 0) {
8030 			continue;
8031 		}
8032 
8033 		vdc->slice[i].start = gpe[i].efi_gpe_StartingLBA;
8034 		vdc->slice[i].nblocks = gpe[i].efi_gpe_EndingLBA -
8035 		    gpe[i].efi_gpe_StartingLBA + 1;
8036 	}
8037 
8038 	ASSERT(vdc->vdisk_size != 0);
8039 	vdc->slice[VD_EFI_WD_SLICE].start = 0;
8040 	vdc->slice[VD_EFI_WD_SLICE].nblocks = vdc->vdisk_size;
8041 
8042 }
8043 
8044 static void
8045 vdc_store_label_vtoc(vdc_t *vdc, struct dk_geom *geom, struct extvtoc *vtoc)
8046 {
8047 	int i;
8048 
8049 	ASSERT(MUTEX_HELD(&vdc->lock));
8050 	ASSERT(vdc->block_size == vtoc->v_sectorsz);
8051 
8052 	vdc->vdisk_label = VD_DISK_LABEL_VTOC;
8053 	bcopy(vtoc, vdc->vtoc, sizeof (struct extvtoc));
8054 	bcopy(geom, vdc->geom, sizeof (struct dk_geom));
8055 	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
8056 
8057 	for (i = 0; i < vtoc->v_nparts; i++) {
8058 		vdc->slice[i].start = vtoc->v_part[i].p_start;
8059 		vdc->slice[i].nblocks = vtoc->v_part[i].p_size;
8060 	}
8061 }
8062 
8063 static void
8064 vdc_store_label_unk(vdc_t *vdc)
8065 {
8066 	ASSERT(MUTEX_HELD(&vdc->lock));
8067 
8068 	vdc->vdisk_label = VD_DISK_LABEL_UNK;
8069 	bzero(vdc->vtoc, sizeof (struct extvtoc));
8070 	bzero(vdc->geom, sizeof (struct dk_geom));
8071 	bzero(vdc->slice, sizeof (vd_slice_t) * V_NUMPAR);
8072 }
8073