xref: /illumos-gate/usr/src/uts/sun4v/cpu/niagara2.c (revision e9db39cef1f968a982994f50c05903cc988a3dd3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/systm.h>
28 #include <sys/archsystm.h>
29 #include <sys/machparam.h>
30 #include <sys/machsystm.h>
31 #include <sys/cpu.h>
32 #include <sys/elf_SPARC.h>
33 #include <vm/hat_sfmmu.h>
34 #include <vm/page.h>
35 #include <vm/vm_dep.h>
36 #include <sys/cpuvar.h>
37 #include <sys/async.h>
38 #include <sys/cmn_err.h>
39 #include <sys/debug.h>
40 #include <sys/dditypes.h>
41 #include <sys/sunddi.h>
42 #include <sys/cpu_module.h>
43 #include <sys/prom_debug.h>
44 #include <sys/vmsystm.h>
45 #include <sys/prom_plat.h>
46 #include <sys/sysmacros.h>
47 #include <sys/intreg.h>
48 #include <sys/machtrap.h>
49 #include <sys/ontrap.h>
50 #include <sys/ivintr.h>
51 #include <sys/atomic.h>
52 #include <sys/panic.h>
53 #include <sys/dtrace.h>
54 #include <sys/simulate.h>
55 #include <sys/fault.h>
56 #include <sys/niagara2regs.h>
57 #include <sys/hsvc.h>
58 #include <sys/trapstat.h>
59 #include <sys/mutex_impl.h>
60 
61 uint_t root_phys_addr_lo_mask = 0xffffffffU;
62 #if defined(NIAGARA2_IMPL)
63 char cpu_module_name[] = "SUNW,UltraSPARC-T2";
64 #elif defined(VFALLS_IMPL)
65 char cpu_module_name[] = "SUNW,UltraSPARC-T2+";
66 #elif defined(KT_IMPL)
67 char cpu_module_name[] = "SPARC-T3";
68 #endif
69 
70 /*
71  * Hypervisor services information for the NIAGARA2 and Victoria Falls
72  * CPU module
73  */
74 static boolean_t cpu_hsvc_available = B_TRUE;
75 static uint64_t cpu_sup_minor;		/* Supported minor number */
76 #if defined(NIAGARA2_IMPL)
77 static hsvc_info_t cpu_hsvc = {
78 	HSVC_REV_1, NULL, HSVC_GROUP_NIAGARA2_CPU, NIAGARA2_HSVC_MAJOR,
79 	NIAGARA2_HSVC_MINOR, cpu_module_name
80 };
81 #elif defined(VFALLS_IMPL)
82 static hsvc_info_t cpu_hsvc = {
83 	HSVC_REV_1, NULL, HSVC_GROUP_VFALLS_CPU, VFALLS_HSVC_MAJOR,
84 	VFALLS_HSVC_MINOR, cpu_module_name
85 };
86 #elif defined(KT_IMPL)
87 static hsvc_info_t cpu_hsvc = {
88 	HSVC_REV_1, NULL, HSVC_GROUP_KT_CPU, KT_HSVC_MAJOR,
89 	KT_HSVC_MINOR, cpu_module_name
90 };
91 #endif
92 
93 void
94 cpu_setup(void)
95 {
96 	extern int mmu_exported_pagesize_mask;
97 	extern int cpc_has_overflow_intr;
98 	extern size_t contig_mem_prealloc_base_size;
99 	int status;
100 
101 	/*
102 	 * Negotiate the API version for Niagara2 specific hypervisor
103 	 * services.
104 	 */
105 	status = hsvc_register(&cpu_hsvc, &cpu_sup_minor);
106 	if (status != 0) {
107 		cmn_err(CE_WARN, "%s: cannot negotiate hypervisor services "
108 		    "group: 0x%lx major: 0x%lx minor: 0x%lx errno: %d",
109 		    cpu_hsvc.hsvc_modname, cpu_hsvc.hsvc_group,
110 		    cpu_hsvc.hsvc_major, cpu_hsvc.hsvc_minor, status);
111 		cpu_hsvc_available = B_FALSE;
112 	}
113 
114 	/*
115 	 * The setup common to all CPU modules is done in cpu_setup_common
116 	 * routine.
117 	 */
118 	cpu_setup_common(NULL);
119 
120 	/*
121 	 * Initialize the cpu_hwcap_flags for N2 and VF if it is not already
122 	 * set in cpu_setup_common() by the hwcap MD info. Note that this MD
123 	 * info may not be available for N2/VF.
124 	 */
125 	if (cpu_hwcap_flags == 0) {
126 #ifdef KT_IMPL
127 		/*
128 		 * This should not happen since hwcap MD info is always
129 		 * available for KT platforms.
130 		 */
131 		ASSERT(cpu_hwcap_flags != 0);	/* panic in DEBUG mode */
132 		cpu_hwcap_flags |= AV_SPARC_VIS3 | AV_SPARC_HPC | AV_SPARC_FMAF;
133 #endif /* KT_IMPL */
134 		cpu_hwcap_flags |= AV_SPARC_VIS | AV_SPARC_VIS2 |
135 		    AV_SPARC_ASI_BLK_INIT | AV_SPARC_POPC;
136 	}
137 
138 	cache |= (CACHE_PTAG | CACHE_IOCOHERENT);
139 
140 	if ((mmu_exported_pagesize_mask &
141 	    DEFAULT_SUN4V_MMU_PAGESIZE_MASK) !=
142 	    DEFAULT_SUN4V_MMU_PAGESIZE_MASK)
143 		cmn_err(CE_PANIC, "machine description"
144 		    " does not have required sun4v page sizes"
145 		    " 8K, 64K and 4M: MD mask is 0x%x",
146 		    mmu_exported_pagesize_mask);
147 
148 	/*
149 	 * Niagara2 supports a 48-bit subset of the full 64-bit virtual
150 	 * address space. Virtual addresses between 0x0000800000000000
151 	 * and 0xffff.7fff.ffff.ffff inclusive lie within a "VA Hole"
152 	 * and must never be mapped. In addition, software must not use
153 	 * pages within 4GB of the VA hole as instruction pages to
154 	 * avoid problems with prefetching into the VA hole.
155 	 */
156 	hole_start = (caddr_t)((1ull << (va_bits - 1)) - (1ull << 32));
157 	hole_end = (caddr_t)((0ull - (1ull << (va_bits - 1))) + (1ull << 32));
158 
159 	/*
160 	 * Niagara2 has a performance counter overflow interrupt
161 	 */
162 	cpc_has_overflow_intr = 1;
163 
164 	/*
165 	 * Enable 4M pages for OOB.
166 	 */
167 	max_uheap_lpsize = MMU_PAGESIZE4M;
168 	max_ustack_lpsize = MMU_PAGESIZE4M;
169 	max_privmap_lpsize = MMU_PAGESIZE4M;
170 
171 #ifdef SUN4V_CONTIG_MEM_PREALLOC_SIZE_MB
172 	/*
173 	 * Use CPU Makefile specific compile time define (if exists)
174 	 * to add to the contig preallocation size.
175 	 */
176 	contig_mem_prealloc_base_size = MB(SUN4V_CONTIG_MEM_PREALLOC_SIZE_MB);
177 #endif
178 }
179 
180 /*
181  * Set the magic constants of the implementation.
182  */
183 void
184 cpu_fiximp(struct cpu_node *cpunode)
185 {
186 	/*
187 	 * The Cache node is optional in MD. Therefore in case "Cache"
188 	 * node does not exists in MD, set the default L2 cache associativity,
189 	 * size, linesize.
190 	 */
191 	if (cpunode->ecache_size == 0)
192 		cpunode->ecache_size = L2CACHE_SIZE;
193 	if (cpunode->ecache_linesize == 0)
194 		cpunode->ecache_linesize = L2CACHE_LINESIZE;
195 	if (cpunode->ecache_associativity == 0)
196 		cpunode->ecache_associativity = L2CACHE_ASSOCIATIVITY;
197 }
198 
199 void
200 cpu_map_exec_units(struct cpu *cp)
201 {
202 	ASSERT(MUTEX_HELD(&cpu_lock));
203 
204 	/*
205 	 * The cpu_ipipe and cpu_fpu fields are initialized based on
206 	 * the execution unit sharing information from the MD. They
207 	 * default to the CPU id in the absence of such information.
208 	 */
209 	cp->cpu_m.cpu_ipipe = cpunodes[cp->cpu_id].exec_unit_mapping;
210 	if (cp->cpu_m.cpu_ipipe == NO_EU_MAPPING_FOUND)
211 		cp->cpu_m.cpu_ipipe = (id_t)(cp->cpu_id);
212 
213 	cp->cpu_m.cpu_fpu = cpunodes[cp->cpu_id].fpu_mapping;
214 	if (cp->cpu_m.cpu_fpu == NO_EU_MAPPING_FOUND)
215 		cp->cpu_m.cpu_fpu = (id_t)(cp->cpu_id);
216 
217 	/*
218 	 * Niagara 2 defines the core to be at the FPU level
219 	 */
220 	cp->cpu_m.cpu_core = cp->cpu_m.cpu_fpu;
221 
222 	/*
223 	 * The cpu_chip field is initialized based on the information
224 	 * in the MD and assume that all cpus within a chip
225 	 * share the same L2 cache. If no such info is available, we
226 	 * set the cpu to belong to the defacto chip 0.
227 	 */
228 	cp->cpu_m.cpu_mpipe = cpunodes[cp->cpu_id].l2_cache_mapping;
229 	if (cp->cpu_m.cpu_mpipe == NO_L2_CACHE_MAPPING_FOUND)
230 		cp->cpu_m.cpu_mpipe = CPU_L2_CACHEID_INVALID;
231 
232 	cp->cpu_m.cpu_chip = cpunodes[cp->cpu_id].l2_cache_mapping;
233 	if (cp->cpu_m.cpu_chip == NO_L2_CACHE_MAPPING_FOUND)
234 		cp->cpu_m.cpu_chip = CPU_CHIPID_INVALID;
235 }
236 
237 static int cpucnt;
238 
239 void
240 cpu_init_private(struct cpu *cp)
241 {
242 	extern void niagara_kstat_init(void);
243 
244 	ASSERT(MUTEX_HELD(&cpu_lock));
245 
246 	cpu_map_exec_units(cp);
247 
248 	if ((cpucnt++ == 0) && (cpu_hsvc_available == B_TRUE))
249 		(void) niagara_kstat_init();
250 
251 	mutex_delay = rdccr_delay;
252 }
253 
254 /*ARGSUSED*/
255 void
256 cpu_uninit_private(struct cpu *cp)
257 {
258 	extern void niagara_kstat_fini(void);
259 
260 	ASSERT(MUTEX_HELD(&cpu_lock));
261 	if ((--cpucnt == 0) && (cpu_hsvc_available == B_TRUE))
262 		(void) niagara_kstat_fini();
263 }
264 
265 /*
266  * On Niagara2, any flush will cause all preceding stores to be
267  * synchronized wrt the i$, regardless of address or ASI.  In fact,
268  * the address is ignored, so we always flush address 0.
269  */
270 /*ARGSUSED*/
271 void
272 dtrace_flush_sec(uintptr_t addr)
273 {
274 	doflush(0);
275 }
276 
277 /*
278  * Trapstat support for Niagara2 processor
279  * The Niagara2 provides HWTW support for TSB lookup and with HWTW
280  * enabled no TSB hit information will be available. Therefore setting
281  * the time spent in TLB miss handler for TSB hits to 0.
282  */
283 int
284 cpu_trapstat_conf(int cmd)
285 {
286 	int status = 0;
287 
288 	switch (cmd) {
289 	case CPU_TSTATCONF_INIT:
290 	case CPU_TSTATCONF_FINI:
291 	case CPU_TSTATCONF_ENABLE:
292 	case CPU_TSTATCONF_DISABLE:
293 		break;
294 	default:
295 		status = EINVAL;
296 		break;
297 	}
298 	return (status);
299 }
300 
301 void
302 cpu_trapstat_data(void *buf, uint_t tstat_pgszs)
303 {
304 	tstat_pgszdata_t	*tstatp = (tstat_pgszdata_t *)buf;
305 	int	i;
306 
307 	for (i = 0; i < tstat_pgszs; i++, tstatp++) {
308 		tstatp->tpgsz_kernel.tmode_itlb.ttlb_tlb.tmiss_count = 0;
309 		tstatp->tpgsz_kernel.tmode_itlb.ttlb_tlb.tmiss_time = 0;
310 		tstatp->tpgsz_user.tmode_itlb.ttlb_tlb.tmiss_count = 0;
311 		tstatp->tpgsz_user.tmode_itlb.ttlb_tlb.tmiss_time = 0;
312 		tstatp->tpgsz_kernel.tmode_dtlb.ttlb_tlb.tmiss_count = 0;
313 		tstatp->tpgsz_kernel.tmode_dtlb.ttlb_tlb.tmiss_time = 0;
314 		tstatp->tpgsz_user.tmode_dtlb.ttlb_tlb.tmiss_count = 0;
315 		tstatp->tpgsz_user.tmode_dtlb.ttlb_tlb.tmiss_time = 0;
316 	}
317 }
318 
319 /*
320  * Page coloring support for hashed cache index mode
321  */
322 
323 /*
324  * Node id bits from machine description (MD).  Node id distinguishes
325  * local versus remote memory. Because of MPO, page allocation does
326  * not cross node boundaries. Therefore, remove the node id bits from
327  * the color, since they are fixed. Either bit 30, or 31:30 in
328  * Victoria Falls processors.
329  * The number of node id bits is always 0 in Niagara2.
330  */
331 typedef struct n2color {
332 	uchar_t nnbits;	/* number of node id bits */
333 	uchar_t nnmask; /* mask for node id bits */
334 	uchar_t	lomask;	/* mask for bits below node id */
335 	uchar_t lobits;	/* number of bits below node id */
336 } n2color_t;
337 
338 n2color_t n2color[MMU_PAGE_SIZES];
339 static uchar_t nhbits[] = {7, 7, 6, 5, 5, 5};
340 
341 /*
342  * Remove node id bits from color bits 32:28.
343  * This will reduce the number of colors.
344  * No change if number of node bits is zero.
345  */
346 static inline uint_t
347 n2_hash2color(uint_t color, uchar_t szc)
348 {
349 	n2color_t m = n2color[szc];
350 
351 	if (m.nnbits > 0) {
352 		color = ((color >> m.nnbits) & ~m.lomask) | (color & m.lomask);
353 		ASSERT((color & ~(hw_page_array[szc].hp_colors - 1)) == 0);
354 	}
355 
356 	return (color);
357 }
358 
359 /*
360  * Restore node id bits into page color.
361  * This will increase the number of colors to match N2.
362  * No change if number of node bits is zero.
363  */
364 static inline uint_t
365 n2_color2hash(uint_t color, uchar_t szc, uint_t node)
366 {
367 	n2color_t m = n2color[szc];
368 
369 	if (m.nnbits > 0) {
370 		color = ((color & ~m.lomask) << m.nnbits) | (color & m.lomask);
371 		color |= (node & m.nnmask) << m.lobits;
372 	}
373 
374 	return (color);
375 }
376 
377 /* NI2 L2$ index is pa[32:28]^pa[17:13].pa[19:18]^pa[12:11].pa[10:6] */
378 
379 /*
380  * iterator NULL means pfn is VA, do not adjust ra_to_pa
381  * iterator (-1) means pfn is RA, need to convert to PA
382  * iterator non-null means pfn is RA, use ra_to_pa
383  */
384 uint_t
385 page_pfn_2_color_cpu(pfn_t pfn, uchar_t szc, void *cookie)
386 {
387 	mem_node_iterator_t *it = cookie;
388 	uint_t color;
389 
390 	ASSERT(szc <= TTE256M);
391 
392 	if (it == ((mem_node_iterator_t *)(-1))) {
393 		pfn = plat_rapfn_to_papfn(pfn);
394 	} else if (it != NULL) {
395 		ASSERT(pfn >= it->mi_mblock_base && pfn <= it->mi_mblock_end);
396 		pfn = pfn + it->mi_ra_to_pa;
397 	}
398 	pfn = PFN_BASE(pfn, szc);
399 	color = ((pfn >> 15) ^ pfn) & 0x1f;
400 	if (szc < TTE4M) {
401 		/* 19:18 */
402 		color = (color << 2) | ((pfn >> 5) & 0x3);
403 		if (szc > TTE64K)
404 			color >>= 1;    /* 19 */
405 	}
406 	return (n2_hash2color(color, szc));
407 }
408 
409 static uint_t
410 page_papfn_2_color_cpu(pfn_t papfn, uchar_t szc)
411 {
412 	uint_t color;
413 
414 	ASSERT(szc <= TTE256M);
415 
416 	papfn = PFN_BASE(papfn, szc);
417 	color = ((papfn >> 15) ^ papfn) & 0x1f;
418 	if (szc < TTE4M) {
419 		/* 19:18 */
420 		color = (color << 2) | ((papfn >> 5) & 0x3);
421 		if (szc > TTE64K)
422 			color >>= 1;    /* 19 */
423 	}
424 	return (color);
425 }
426 
427 #if TTE256M != 5
428 #error TTE256M is not 5
429 #endif
430 
431 uint_t
432 page_get_nsz_color_mask_cpu(uchar_t szc, uint_t mask)
433 {
434 	static uint_t ni2_color_masks[5] = {0x63, 0x1e, 0x3e, 0x1f, 0x1f};
435 	ASSERT(szc < TTE256M);
436 	mask = n2_color2hash(mask, szc, 0);
437 	mask &= ni2_color_masks[szc];
438 	if (szc == TTE64K || szc == TTE512K)
439 		mask >>= 1;
440 	return (n2_hash2color(mask, szc + 1));
441 }
442 
443 uint_t
444 page_get_nsz_color_cpu(uchar_t szc, uint_t color)
445 {
446 	ASSERT(szc < TTE256M);
447 	color = n2_color2hash(color, szc, 0);
448 	if (szc == TTE64K || szc == TTE512K)
449 		color >>= 1;
450 	return (n2_hash2color(color, szc + 1));
451 }
452 
453 uint_t
454 page_get_color_shift_cpu(uchar_t szc, uchar_t nszc)
455 {
456 	uint_t s;
457 	ASSERT(nszc >= szc);
458 	ASSERT(nszc <= TTE256M);
459 
460 	s = nhbits[szc] - n2color[szc].nnbits;
461 	s -= nhbits[nszc] - n2color[nszc].nnbits;
462 
463 	return (s);
464 }
465 
466 uint_t
467 page_convert_color_cpu(uint_t ncolor, uchar_t szc, uchar_t nszc)
468 {
469 	uint_t color;
470 
471 	ASSERT(nszc > szc);
472 	ASSERT(nszc <= TTE256M);
473 	ncolor = n2_color2hash(ncolor, nszc, 0);
474 	color = ncolor << (nhbits[szc] - nhbits[nszc]);
475 	color = n2_hash2color(color, szc);
476 	return (color);
477 }
478 
479 #define	PAPFN_2_MNODE(pfn) \
480 	(((pfn) & it->mi_mnode_pfn_mask) >> it->mi_mnode_pfn_shift)
481 
482 /*ARGSUSED*/
483 pfn_t
484 page_next_pfn_for_color_cpu(pfn_t pfn, uchar_t szc, uint_t color,
485     uint_t ceq_mask, uint_t color_mask, void *cookie)
486 {
487 	mem_node_iterator_t *it = cookie;
488 	pfn_t pstep = PNUM_SIZE(szc);
489 	pfn_t npfn, pfn_ceq_mask, pfn_color;
490 	pfn_t tmpmask, mask = (pfn_t)-1;
491 	uint_t pfnmn;
492 
493 	ASSERT((color & ~ceq_mask) == 0);
494 	ASSERT(pfn >= it->mi_mblock_base && pfn <= it->mi_mblock_end);
495 
496 	/* convert RA to PA for accurate color calculation */
497 	if (it->mi_init) {
498 		/* first call after it, so cache these values */
499 		it->mi_hash_ceq_mask =
500 		    n2_color2hash(ceq_mask, szc, it->mi_mnode_mask);
501 		it->mi_hash_color =
502 		    n2_color2hash(color, szc, it->mi_mnode);
503 		it->mi_init = 0;
504 	} else {
505 		ASSERT(it->mi_hash_ceq_mask ==
506 		    n2_color2hash(ceq_mask, szc, it->mi_mnode_mask));
507 		ASSERT(it->mi_hash_color ==
508 		    n2_color2hash(color, szc, it->mi_mnode));
509 	}
510 	ceq_mask = it->mi_hash_ceq_mask;
511 	color = it->mi_hash_color;
512 	pfn += it->mi_ra_to_pa;
513 
514 	/* restart here when we switch memblocks */
515 next_mem_block:
516 	pfnmn = PAPFN_2_MNODE(pfn);
517 	if ((((page_papfn_2_color_cpu(pfn, szc) ^ color) & ceq_mask) == 0) &&
518 	    (pfnmn == it->mi_mnode)) {
519 
520 		/* we start from the page with correct color and mnode */
521 		if (szc >= TTE512K) {
522 			if (szc >= TTE4M) {
523 				/* page color is PA[32:28] */
524 				pfn_ceq_mask = ceq_mask << 15;
525 			} else {
526 				/* page color is PA[32:28].PA[19:19] */
527 				pfn_ceq_mask = ((ceq_mask & 1) << 6) |
528 				    ((ceq_mask >> 1) << 15);
529 			}
530 			/*
531 			 * Preserve mnode bits in case they are not part of the
532 			 * color mask (eg., 8GB interleave, mnode bits 34:33).
533 			 */
534 			pfn_ceq_mask |= it->mi_mnode_pfn_mask;
535 			npfn = ADD_MASKED(pfn, pstep, pfn_ceq_mask, mask);
536 			goto done;
537 		} else {
538 			/*
539 			 * We deal 64K or 8K page. Check if we could the
540 			 * satisfy the request without changing PA[32:28]
541 			 */
542 			pfn_ceq_mask = ((ceq_mask & 3) << 5) | (ceq_mask >> 2);
543 			pfn_ceq_mask |= it->mi_mnode_pfn_mask;
544 			npfn = ADD_MASKED(pfn, pstep, pfn_ceq_mask, mask);
545 
546 			if ((((npfn ^ pfn) >> 15) & 0x1f) == 0)
547 				goto done;
548 
549 			/*
550 			 * for next pfn we have to change bits PA[32:28]
551 			 * set PA[63:28] and PA[19:18] of the next pfn
552 			 */
553 			npfn = (pfn >> 15) << 15;
554 			npfn |= (ceq_mask & color & 3) << 5;
555 			pfn_ceq_mask = (szc == TTE8K) ? 0 :
556 			    (ceq_mask & 0x1c) << 13;
557 			pfn_ceq_mask |= it->mi_mnode_pfn_mask;
558 			npfn = ADD_MASKED(npfn, (1 << 15), pfn_ceq_mask, mask);
559 
560 			/*
561 			 * set bits PA[17:13] to match the color
562 			 */
563 			npfn |= ((npfn >> 15) ^ (color >> 2)) & (ceq_mask >> 2);
564 			goto done;
565 		}
566 	}
567 
568 	/*
569 	 * we start from the page with incorrect color - rare case
570 	 */
571 	if (szc >= TTE512K) {
572 		if (szc >= TTE4M) {
573 			/* page color is in bits PA[32:28] */
574 			npfn = ((pfn >> 20) << 20) | (color << 15);
575 			pfn_ceq_mask = (ceq_mask << 15) | 0x7fff;
576 		} else {
577 			/* try get the right color by changing bit PA[19:19] */
578 			npfn = pfn + pstep;
579 			pfnmn = PAPFN_2_MNODE(npfn);
580 			if ((((page_papfn_2_color_cpu(npfn, szc) ^ color) &
581 			    ceq_mask) == 0) && (pfnmn == it->mi_mnode))
582 				goto done;
583 
584 			/* page color is PA[32:28].PA[19:19] */
585 			pfn_ceq_mask = ((ceq_mask & 1) << 6) |
586 			    ((ceq_mask >> 1) << 15) | (0xff << 7);
587 			pfn_color = ((color & 1) << 6) | ((color >> 1) << 15);
588 			npfn = ((pfn >> 20) << 20) | pfn_color;
589 		}
590 
591 		/* Fix mnode if necessary */
592 		if ((pfnmn = PAPFN_2_MNODE(npfn)) != it->mi_mnode)
593 			npfn += ((it->mi_mnode - pfnmn) & it->mi_mnode_mask) <<
594 			    it->mi_mnode_pfn_shift;
595 
596 		/*
597 		 * Preserve mnode bits in case they are not part of the color
598 		 * mask eg 8GB interleave, mnode bits 34:33).
599 		 */
600 		pfn_ceq_mask |= it->mi_mnode_pfn_mask;
601 		while (npfn <= pfn) {
602 			npfn = ADD_MASKED(npfn, pstep, pfn_ceq_mask, mask);
603 		}
604 		goto done;
605 	}
606 
607 	/*
608 	 *  We deal 64K or 8K page of incorrect color.
609 	 * Try correcting color without changing PA[32:28]
610 	 */
611 	pfn_ceq_mask = ((ceq_mask & 3) << 5) | (ceq_mask >> 2);
612 	pfn_color = ((color & 3) << 5) | (color >> 2);
613 	if (pfnmn == it->mi_mnode) {
614 		npfn = (pfn & ~(pfn_t)0x7f);
615 		npfn |= (((pfn >> 15) & 0x1f) ^ pfn_color) & pfn_ceq_mask;
616 		npfn = (szc == TTE64K) ? (npfn & ~(pfn_t)0x7) : npfn;
617 
618 		if (((page_papfn_2_color_cpu(npfn, szc) ^ color) &
619 		    ceq_mask) == 0) {
620 			/* the color is fixed - find the next page */
621 			pfn_ceq_mask |= it->mi_mnode_pfn_mask;
622 			while (npfn <= pfn) {
623 				npfn = ADD_MASKED(npfn, pstep, pfn_ceq_mask,
624 				    mask);
625 			}
626 			if ((((npfn ^ pfn) >> 15) & 0x1f) == 0)
627 				goto done;
628 		}
629 	}
630 
631 	/* to fix the color need to touch PA[32:28] */
632 	npfn = (szc == TTE8K) ? ((pfn >> 15) << 15) :
633 	    (((pfn >> 18) << 18) | ((color & 0x1c) << 13));
634 
635 	/* fix mnode if input pfn is in the wrong mnode. */
636 	if ((pfnmn = PAPFN_2_MNODE(npfn)) != it->mi_mnode) {
637 		npfn += ((it->mi_mnode - pfnmn) & it->mi_mnode_mask) <<
638 		    it->mi_mnode_pfn_shift;
639 	}
640 
641 	tmpmask = (szc == TTE8K) ? 0 : (ceq_mask & 0x1c) << 13;
642 	tmpmask |= it->mi_mnode_pfn_mask;
643 
644 	while (npfn <= pfn) {
645 		npfn = ADD_MASKED(npfn, (1 << 15), tmpmask, mask);
646 	}
647 
648 	/* set bits PA[19:13] to match the color */
649 	npfn |= (((npfn >> 15) & 0x1f) ^ pfn_color) & pfn_ceq_mask;
650 	npfn = (szc == TTE64K) ? (npfn & ~(pfn_t)0x7) : npfn;
651 
652 done:
653 	ASSERT(((page_papfn_2_color_cpu(npfn, szc) ^ color) & ceq_mask) == 0);
654 	ASSERT(PAPFN_2_MNODE(npfn) == it->mi_mnode);
655 
656 	/* PA to RA */
657 	npfn -= it->mi_ra_to_pa;
658 
659 	/* check for possible memblock switch */
660 	if (npfn > it->mi_mblock_end) {
661 		pfn = plat_mem_node_iterator_init(npfn, it->mi_mnode, szc, it,
662 		    0);
663 		if (pfn == (pfn_t)-1)
664 			return (pfn);
665 		ASSERT(pfn >= it->mi_mblock_base && pfn <= it->mi_mblock_end);
666 		pfn += it->mi_ra_to_pa;
667 		goto next_mem_block;
668 	}
669 
670 	return (npfn);
671 }
672 
673 /*
674  * init page coloring
675  * VF encodes node_id for an L-group in either bit 30 or 31:30,
676  * which effectively reduces the number of colors available per mnode.
677  */
678 void
679 page_coloring_init_cpu()
680 {
681 	int i;
682 	uchar_t id;
683 	uchar_t lo;
684 	uchar_t hi;
685 	n2color_t m;
686 	mem_node_iterator_t it;
687 	static uchar_t idmask[] = {0, 0x7, 0x1f, 0x1f, 0x1f, 0x1f};
688 
689 	for (i = 0; i < max_mem_nodes; i++) {
690 		memset(&it, 0, sizeof (it));
691 		if (plat_mem_node_iterator_init(0, i, 0, &it, 1) != (pfn_t)-1)
692 			break;
693 	}
694 	ASSERT(i < max_mem_nodes);
695 	for (i = 0; i < mmu_page_sizes; i++) {
696 		(void) memset(&m, 0, sizeof (m));
697 		id = it.mi_mnode_pfn_mask >> 15;	/* node id mask */
698 		id &= idmask[i];
699 		lo = lowbit(id);
700 		if (lo > 0) {
701 			hi = highbit(id);
702 			m.nnbits = hi - lo + 1;
703 			m.nnmask = (1 << m.nnbits) - 1;
704 			lo += nhbits[i] - 5;
705 			m.lomask = (1 << (lo - 1)) - 1;
706 			m.lobits = lo - 1;
707 		}
708 		hw_page_array[i].hp_colors = 1 << (nhbits[i] - m.nnbits);
709 		n2color[i] = m;
710 	}
711 }
712 
713 /*
714  * group colorequiv colors on N2 by low order bits of the color first
715  */
716 void
717 page_set_colorequiv_arr_cpu(void)
718 {
719 	static uint_t nequiv_shades_log2[MMU_PAGE_SIZES] = {2, 5, 0, 0, 0, 0};
720 
721 	nequiv_shades_log2[1] -= n2color[1].nnbits;
722 	if (colorequiv > 1) {
723 		int i;
724 		uint_t sv_a = lowbit(colorequiv) - 1;
725 
726 		if (sv_a > 15)
727 			sv_a = 15;
728 
729 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
730 			uint_t colors;
731 			uint_t a = sv_a;
732 
733 			if ((colors = hw_page_array[i].hp_colors) <= 1)
734 				continue;
735 			while ((colors >> a) == 0)
736 				a--;
737 			if (a > (colorequivszc[i] & 0xf) +
738 			    (colorequivszc[i] >> 4)) {
739 				if (a <= nequiv_shades_log2[i]) {
740 					colorequivszc[i] = (uchar_t)a;
741 				} else {
742 					colorequivszc[i] =
743 					    ((a - nequiv_shades_log2[i]) << 4) |
744 					    nequiv_shades_log2[i];
745 				}
746 			}
747 		}
748 	}
749 }
750