xref: /illumos-gate/usr/src/uts/sun4u/os/mach_startup.c (revision c0586b874d9179e81ca8a124fa6caf98fddb7696)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2019 Peter Tribble.
24  */
25 
26 #include <sys/machsystm.h>
27 #include <sys/archsystm.h>
28 #include <sys/vm.h>
29 #include <sys/cpu.h>
30 #include <sys/cpupart.h>
31 #include <sys/cmt.h>
32 #include <sys/bitset.h>
33 #include <sys/reboot.h>
34 #include <sys/kdi.h>
35 #include <sys/bootconf.h>
36 #include <sys/memlist_plat.h>
37 #include <sys/memlist_impl.h>
38 #include <sys/prom_plat.h>
39 #include <sys/prom_isa.h>
40 #include <sys/autoconf.h>
41 #include <sys/intreg.h>
42 #include <sys/ivintr.h>
43 #include <sys/fpu/fpusystm.h>
44 #include <sys/iommutsb.h>
45 #include <vm/vm_dep.h>
46 #include <vm/seg_kmem.h>
47 #include <vm/seg_kpm.h>
48 #include <vm/seg_map.h>
49 #include <vm/seg_kp.h>
50 #include <sys/sysconf.h>
51 #include <vm/hat_sfmmu.h>
52 #include <sys/kobj.h>
53 #include <sys/sun4asi.h>
54 #include <sys/clconf.h>
55 #include <sys/platform_module.h>
56 #include <sys/panic.h>
57 #include <sys/cpu_sgnblk_defs.h>
58 #include <sys/clock.h>
59 #include <sys/fpras_impl.h>
60 #include <sys/prom_debug.h>
61 #include <sys/traptrace.h>
62 #include <sys/memnode.h>
63 #include <sys/mem_cage.h>
64 
65 /*
66  * fpRAS implementation structures.
67  */
68 struct fpras_chkfn *fpras_chkfnaddrs[FPRAS_NCOPYOPS];
69 struct fpras_chkfngrp *fpras_chkfngrps;
70 struct fpras_chkfngrp *fpras_chkfngrps_base;
71 int fpras_frequency = -1;
72 int64_t fpras_interval = -1;
73 
74 /*
75  * Increase unix symbol table size as a work around for 6828121
76  */
77 int alloc_mem_bermuda_triangle;
78 
79 /*
80  * Halt idling cpus optimization
81  *
82  * This optimation is only enabled in platforms that have
83  * the CPU halt support. The cpu_halt_cpu() support is provided
84  * in the cpu module and it is referenced here with a pragma weak.
85  * The presence of this routine automatically enable the halt idling
86  * cpus functionality if the global switch enable_halt_idle_cpus
87  * is set (default is set).
88  *
89  */
90 #pragma weak	cpu_halt_cpu
91 extern void	cpu_halt_cpu();
92 
93 /*
94  * Defines for the idle_state_transition DTrace probe
95  *
96  * The probe fires when the CPU undergoes an idle state change (e.g. halting)
97  * The agument passed is the state to which the CPU is transitioning.
98  *
99  * The states are defined here.
100  */
101 #define	IDLE_STATE_NORMAL 0
102 #define	IDLE_STATE_HALTED 1
103 
104 int		enable_halt_idle_cpus = 1; /* global switch */
105 
106 uint_t cp_haltset_fanout = 3;
107 
108 void
109 setup_trap_table(void)
110 {
111 	intr_init(CPU);			/* init interrupt request free list */
112 	setwstate(WSTATE_KERN);
113 	prom_set_traptable(&trap_table);
114 }
115 
116 void
117 mach_fpras()
118 {
119 	if (fpras_implemented && !fpras_disable) {
120 		int i;
121 		struct fpras_chkfngrp *fcgp;
122 		size_t chkfngrpsallocsz;
123 
124 		/*
125 		 * Note that we size off of NCPU and setup for
126 		 * all those possibilities regardless of whether
127 		 * the cpu id is present or not.  We do this so that
128 		 * we don't have any construction or destruction
129 		 * activity to perform at DR time, and it's not
130 		 * costly in memory.  We require block alignment.
131 		 */
132 		chkfngrpsallocsz = NCPU * sizeof (struct fpras_chkfngrp);
133 		fpras_chkfngrps_base = kmem_alloc(chkfngrpsallocsz, KM_SLEEP);
134 		if (IS_P2ALIGNED((uintptr_t)fpras_chkfngrps_base, 64)) {
135 			fpras_chkfngrps = fpras_chkfngrps_base;
136 		} else {
137 			kmem_free(fpras_chkfngrps_base, chkfngrpsallocsz);
138 			chkfngrpsallocsz += 64;
139 			fpras_chkfngrps_base = kmem_alloc(chkfngrpsallocsz,
140 			    KM_SLEEP);
141 			fpras_chkfngrps = (struct fpras_chkfngrp *)
142 			    P2ROUNDUP((uintptr_t)fpras_chkfngrps_base, 64);
143 		}
144 
145 		/*
146 		 * Copy our check function into place for each copy operation
147 		 * and each cpu id.
148 		 */
149 		fcgp = &fpras_chkfngrps[0];
150 		for (i = 0; i < FPRAS_NCOPYOPS; ++i)
151 			bcopy((void *)fpras_chkfn_type1, &fcgp->fpras_fn[i],
152 			    sizeof (struct fpras_chkfn));
153 		for (i = 1; i < NCPU; ++i)
154 			*(&fpras_chkfngrps[i]) = *fcgp;
155 
156 		/*
157 		 * At definition fpras_frequency is set to -1, and it will
158 		 * still have that value unless changed in /etc/system (not
159 		 * strictly supported, but not preventable).  The following
160 		 * both sets the default and sanity checks anything from
161 		 * /etc/system.
162 		 */
163 		if (fpras_frequency < 0)
164 			fpras_frequency = FPRAS_DEFAULT_FREQUENCY;
165 
166 		/*
167 		 * Now calculate fpras_interval.  When fpras_interval
168 		 * becomes non-negative fpras checks will commence
169 		 * (copies before this point in boot will bypass fpras).
170 		 * Our stores of instructions must be visible; no need
171 		 * to flush as they're never been executed before.
172 		 */
173 		membar_producer();
174 		fpras_interval = (fpras_frequency == 0) ?
175 		    0 : sys_tick_freq / fpras_frequency;
176 	}
177 }
178 
179 void
180 mach_hw_copy_limit(void)
181 {
182 	if (!fpu_exists) {
183 		use_hw_bcopy = 0;
184 		hw_copy_limit_1 = 0;
185 		hw_copy_limit_2 = 0;
186 		hw_copy_limit_4 = 0;
187 		hw_copy_limit_8 = 0;
188 		use_hw_bzero = 0;
189 	}
190 }
191 
192 void
193 load_tod_module()
194 {
195 	/*
196 	 * Load tod driver module for the tod part found on this system.
197 	 * Recompute the cpu frequency/delays based on tod as tod part
198 	 * tends to keep time more accurately.
199 	 */
200 	if (tod_module_name == NULL || modload("tod", tod_module_name) == -1)
201 		halt("Can't load tod module");
202 }
203 
204 void
205 mach_memscrub(void)
206 {
207 	/*
208 	 * Startup memory scrubber, if not running fpu emulation code.
209 	 */
210 
211 #ifndef _HW_MEMSCRUB_SUPPORT
212 	if (fpu_exists) {
213 		if (memscrub_init()) {
214 			cmn_err(CE_WARN,
215 			    "Memory scrubber failed to initialize");
216 		}
217 	}
218 #endif /* _HW_MEMSCRUB_SUPPORT */
219 }
220 
221 /*
222  * Halt the present CPU until awoken via an interrupt.
223  * This routine should only be invoked if cpu_halt_cpu()
224  * exists and is supported, see mach_cpu_halt_idle()
225  */
226 void
227 cpu_halt(void)
228 {
229 	cpu_t *cpup = CPU;
230 	processorid_t cpu_sid = cpup->cpu_seqid;
231 	cpupart_t *cp = cpup->cpu_part;
232 	int hset_update = 1;
233 	volatile int *p = &cpup->cpu_disp->disp_nrunnable;
234 	uint_t s;
235 
236 	/*
237 	 * If this CPU is online then we should notate our halting
238 	 * by adding ourselves to the partition's halted CPU
239 	 * bitset. This allows other CPUs to find/awaken us when
240 	 * work becomes available.
241 	 */
242 	if (CPU->cpu_flags & CPU_OFFLINE)
243 		hset_update = 0;
244 
245 	/*
246 	 * Add ourselves to the partition's halted CPUs bitset
247 	 * and set our HALTED flag, if necessary.
248 	 *
249 	 * When a thread becomes runnable, it is placed on the queue
250 	 * and then the halted cpu bitset is checked to determine who
251 	 * (if anyone) should be awoken. We therefore need to first
252 	 * add ourselves to the halted bitset, and then check if there
253 	 * is any work available.  The order is important to prevent a race
254 	 * that can lead to work languishing on a run queue somewhere while
255 	 * this CPU remains halted.
256 	 *
257 	 * Either the producing CPU will see we're halted and will awaken us,
258 	 * or this CPU will see the work available in disp_anywork()
259 	 */
260 	if (hset_update) {
261 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
262 		membar_producer();
263 		bitset_atomic_add(&cp->cp_haltset, cpu_sid);
264 	}
265 
266 	/*
267 	 * Check to make sure there's really nothing to do.
268 	 * Work destined for this CPU may become available after
269 	 * this check. We'll be notified through the clearing of our
270 	 * bit in the halted CPU bitset, and a poke.
271 	 */
272 	if (disp_anywork()) {
273 		if (hset_update) {
274 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
275 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
276 		}
277 		return;
278 	}
279 
280 	/*
281 	 * We're on our way to being halted.  Wait until something becomes
282 	 * runnable locally or we are awaken (i.e. removed from the halt set).
283 	 * Note that the call to hv_cpu_yield() can return even if we have
284 	 * nothing to do.
285 	 *
286 	 * Disable interrupts now, so that we'll awaken immediately
287 	 * after halting if someone tries to poke us between now and
288 	 * the time we actually halt.
289 	 *
290 	 * We check for the presence of our bit after disabling interrupts.
291 	 * If it's cleared, we'll return. If the bit is cleared after
292 	 * we check then the poke will pop us out of the halted state.
293 	 * Also, if the offlined CPU has been brought back on-line, then
294 	 * we return as well.
295 	 *
296 	 * The ordering of the poke and the clearing of the bit by cpu_wakeup
297 	 * is important.
298 	 * cpu_wakeup() must clear, then poke.
299 	 * cpu_halt() must disable interrupts, then check for the bit.
300 	 *
301 	 * The check for anything locally runnable is here for performance
302 	 * and isn't needed for correctness. disp_nrunnable ought to be
303 	 * in our cache still, so it's inexpensive to check, and if there
304 	 * is anything runnable we won't have to wait for the poke.
305 	 *
306 	 * Any interrupt will awaken the cpu from halt. Looping here
307 	 * will filter spurious interrupts that wake us up, but don't
308 	 * represent a need for us to head back out to idle().  This
309 	 * will enable the idle loop to be more efficient and sleep in
310 	 * the processor pipeline for a larger percent of the time,
311 	 * which returns useful cycles to the peer hardware strand
312 	 * that shares the pipeline.
313 	 */
314 	s = disable_vec_intr();
315 	while (*p == 0 &&
316 	    ((hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid)) ||
317 	    (!hset_update && (CPU->cpu_flags & CPU_OFFLINE)))) {
318 
319 		DTRACE_PROBE1(idle__state__transition,
320 		    uint_t, IDLE_STATE_HALTED);
321 		(void) cpu_halt_cpu();
322 		DTRACE_PROBE1(idle__state__transition,
323 		    uint_t, IDLE_STATE_NORMAL);
324 
325 		enable_vec_intr(s);
326 		s = disable_vec_intr();
327 	}
328 
329 	/*
330 	 * We're no longer halted
331 	 */
332 	enable_vec_intr(s);
333 	if (hset_update) {
334 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
335 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
336 	}
337 }
338 
339 /*
340  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
341  * Otherwise, see if other CPUs in the cpu partition are halted and need to
342  * be woken up so that they can steal the thread we placed on this CPU.
343  * This function is only used on MP systems.
344  * This function should only be invoked if cpu_halt_cpu()
345  * exists and is supported, see mach_cpu_halt_idle()
346  */
347 static void
348 cpu_wakeup(cpu_t *cpu, int bound)
349 {
350 	uint_t		cpu_found;
351 	processorid_t	cpu_sid;
352 	cpupart_t	*cp;
353 
354 	cp = cpu->cpu_part;
355 	cpu_sid = cpu->cpu_seqid;
356 	if (bitset_in_set(&cp->cp_haltset, cpu_sid)) {
357 		/*
358 		 * Clear the halted bit for that CPU since it will be
359 		 * poked in a moment.
360 		 */
361 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
362 		/*
363 		 * We may find the current CPU present in the halted cpu bitset
364 		 * if we're in the context of an interrupt that occurred
365 		 * before we had a chance to clear our bit in cpu_halt().
366 		 * Poking ourself is obviously unnecessary, since if
367 		 * we're here, we're not halted.
368 		 */
369 		if (cpu != CPU)
370 			poke_cpu(cpu->cpu_id);
371 		return;
372 	} else {
373 		/*
374 		 * This cpu isn't halted, but it's idle or undergoing a
375 		 * context switch. No need to awaken anyone else.
376 		 */
377 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
378 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
379 			return;
380 	}
381 
382 	/*
383 	 * No need to wake up other CPUs if this is for a bound thread.
384 	 */
385 	if (bound)
386 		return;
387 
388 	/*
389 	 * The CPU specified for wakeup isn't currently halted, so check
390 	 * to see if there are any other halted CPUs in the partition,
391 	 * and if there are then awaken one.
392 	 *
393 	 * If possible, try to select a CPU close to the target, since this
394 	 * will likely trigger a migration.
395 	 */
396 	do {
397 		cpu_found = bitset_find(&cp->cp_haltset);
398 		if (cpu_found == (uint_t)-1)
399 			return;
400 	} while (bitset_atomic_test_and_del(&cp->cp_haltset, cpu_found) < 0);
401 
402 	if (cpu_found != CPU->cpu_seqid)
403 		poke_cpu(cpu_seq[cpu_found]->cpu_id);
404 }
405 
406 void
407 mach_cpu_halt_idle(void)
408 {
409 	if (enable_halt_idle_cpus) {
410 		if (&cpu_halt_cpu) {
411 			idle_cpu = cpu_halt;
412 			disp_enq_thread = cpu_wakeup;
413 		}
414 	}
415 }
416 
417 /*ARGSUSED*/
418 int
419 cpu_intrq_setup(struct cpu *cp)
420 {
421 	/* Interrupt mondo queues not applicable to sun4u */
422 	return (0);
423 }
424 
425 /*ARGSUSED*/
426 void
427 cpu_intrq_cleanup(struct cpu *cp)
428 {
429 	/* Interrupt mondo queues not applicable to sun4u */
430 }
431 
432 /*ARGSUSED*/
433 void
434 cpu_intrq_register(struct cpu *cp)
435 {
436 	/* Interrupt/error queues not applicable to sun4u */
437 }
438 
439 /*ARGSUSED*/
440 void
441 mach_htraptrace_setup(int cpuid)
442 {
443 	/* Setup hypervisor traptrace buffer, not applicable to sun4u */
444 }
445 
446 /*ARGSUSED*/
447 void
448 mach_htraptrace_configure(int cpuid)
449 {
450 	/* enable/ disable hypervisor traptracing, not applicable to sun4u */
451 }
452 
453 /*ARGSUSED*/
454 void
455 mach_htraptrace_cleanup(int cpuid)
456 {
457 	/* cleanup hypervisor traptrace buffer, not applicable to sun4u */
458 }
459 
460 void
461 mach_descrip_startup_init(void)
462 {
463 	/*
464 	 * Only for sun4v.
465 	 * Initialize Machine description framework during startup.
466 	 */
467 }
468 void
469 mach_descrip_startup_fini(void)
470 {
471 	/*
472 	 * Only for sun4v.
473 	 * Clean up Machine Description framework during startup.
474 	 */
475 }
476 
477 void
478 mach_descrip_init(void)
479 {
480 	/*
481 	 * Only for sun4v.
482 	 * Initialize Machine description framework.
483 	 */
484 }
485 
486 void
487 hsvc_setup(void)
488 {
489 	/* Setup hypervisor services, not applicable to sun4u */
490 }
491 
492 void
493 load_mach_drivers(void)
494 {
495 	/* Currently no machine class (sun4u) specific drivers to load */
496 }
497 
498 /*
499  * Find a physically contiguous area of twice the largest ecache size
500  * to be used while doing displacement flush of ecaches.
501  */
502 uint64_t
503 ecache_flush_address(void)
504 {
505 	struct memlist *pmem;
506 	uint64_t flush_size;
507 	uint64_t ret_val;
508 
509 	flush_size = ecache_size * 2;
510 	for (pmem = phys_install; pmem; pmem = pmem->ml_next) {
511 		ret_val = P2ROUNDUP(pmem->ml_address, ecache_size);
512 		if (ret_val + flush_size <= pmem->ml_address + pmem->ml_size)
513 			return (ret_val);
514 	}
515 	return ((uint64_t)-1);
516 }
517 
518 /*
519  * Called with the memlist lock held to say that phys_install has
520  * changed.
521  */
522 void
523 phys_install_has_changed(void)
524 {
525 	/*
526 	 * Get the new address into a temporary just in case panicking
527 	 * involves use of ecache_flushaddr.
528 	 */
529 	uint64_t new_addr;
530 
531 	new_addr = ecache_flush_address();
532 	if (new_addr == (uint64_t)-1) {
533 		cmn_err(CE_PANIC,
534 		    "ecache_flush_address(): failed, ecache_size=%x",
535 		    ecache_size);
536 		/*NOTREACHED*/
537 	}
538 	ecache_flushaddr = new_addr;
539 	membar_producer();
540 }
541