1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/machsystm.h> 27 #include <sys/archsystm.h> 28 #include <sys/vm.h> 29 #include <sys/cpu.h> 30 #include <sys/cpupart.h> 31 #include <sys/cmt.h> 32 #include <sys/bitset.h> 33 #include <sys/reboot.h> 34 #include <sys/kdi.h> 35 #include <sys/bootconf.h> 36 #include <sys/memlist_plat.h> 37 #include <sys/memlist_impl.h> 38 #include <sys/prom_plat.h> 39 #include <sys/prom_isa.h> 40 #include <sys/autoconf.h> 41 #include <sys/intreg.h> 42 #include <sys/ivintr.h> 43 #include <sys/fpu/fpusystm.h> 44 #include <sys/iommutsb.h> 45 #include <vm/vm_dep.h> 46 #include <vm/seg_kmem.h> 47 #include <vm/seg_kpm.h> 48 #include <vm/seg_map.h> 49 #include <vm/seg_kp.h> 50 #include <sys/sysconf.h> 51 #include <vm/hat_sfmmu.h> 52 #include <sys/kobj.h> 53 #include <sys/sun4asi.h> 54 #include <sys/clconf.h> 55 #include <sys/platform_module.h> 56 #include <sys/panic.h> 57 #include <sys/cpu_sgnblk_defs.h> 58 #include <sys/clock.h> 59 #include <sys/fpras_impl.h> 60 #include <sys/prom_debug.h> 61 #include <sys/traptrace.h> 62 #include <sys/memnode.h> 63 #include <sys/mem_cage.h> 64 65 /* 66 * fpRAS implementation structures. 67 */ 68 struct fpras_chkfn *fpras_chkfnaddrs[FPRAS_NCOPYOPS]; 69 struct fpras_chkfngrp *fpras_chkfngrps; 70 struct fpras_chkfngrp *fpras_chkfngrps_base; 71 int fpras_frequency = -1; 72 int64_t fpras_interval = -1; 73 74 /* 75 * Halt idling cpus optimization 76 * 77 * This optimation is only enabled in platforms that have 78 * the CPU halt support. The cpu_halt_cpu() support is provided 79 * in the cpu module and it is referenced here with a pragma weak. 80 * The presence of this routine automatically enable the halt idling 81 * cpus functionality if the global switch enable_halt_idle_cpus 82 * is set (default is set). 83 * 84 */ 85 #pragma weak cpu_halt_cpu 86 extern void cpu_halt_cpu(); 87 88 /* 89 * Defines for the idle_state_transition DTrace probe 90 * 91 * The probe fires when the CPU undergoes an idle state change (e.g. halting) 92 * The agument passed is the state to which the CPU is transitioning. 93 * 94 * The states are defined here. 95 */ 96 #define IDLE_STATE_NORMAL 0 97 #define IDLE_STATE_HALTED 1 98 99 int enable_halt_idle_cpus = 1; /* global switch */ 100 101 void 102 setup_trap_table(void) 103 { 104 intr_init(CPU); /* init interrupt request free list */ 105 setwstate(WSTATE_KERN); 106 prom_set_traptable(&trap_table); 107 } 108 109 void 110 mach_fpras() 111 { 112 if (fpras_implemented && !fpras_disable) { 113 int i; 114 struct fpras_chkfngrp *fcgp; 115 size_t chkfngrpsallocsz; 116 117 /* 118 * Note that we size off of NCPU and setup for 119 * all those possibilities regardless of whether 120 * the cpu id is present or not. We do this so that 121 * we don't have any construction or destruction 122 * activity to perform at DR time, and it's not 123 * costly in memory. We require block alignment. 124 */ 125 chkfngrpsallocsz = NCPU * sizeof (struct fpras_chkfngrp); 126 fpras_chkfngrps_base = kmem_alloc(chkfngrpsallocsz, KM_SLEEP); 127 if (IS_P2ALIGNED((uintptr_t)fpras_chkfngrps_base, 64)) { 128 fpras_chkfngrps = fpras_chkfngrps_base; 129 } else { 130 kmem_free(fpras_chkfngrps_base, chkfngrpsallocsz); 131 chkfngrpsallocsz += 64; 132 fpras_chkfngrps_base = kmem_alloc(chkfngrpsallocsz, 133 KM_SLEEP); 134 fpras_chkfngrps = (struct fpras_chkfngrp *) 135 P2ROUNDUP((uintptr_t)fpras_chkfngrps_base, 64); 136 } 137 138 /* 139 * Copy our check function into place for each copy operation 140 * and each cpu id. 141 */ 142 fcgp = &fpras_chkfngrps[0]; 143 for (i = 0; i < FPRAS_NCOPYOPS; ++i) 144 bcopy((void *)fpras_chkfn_type1, &fcgp->fpras_fn[i], 145 sizeof (struct fpras_chkfn)); 146 for (i = 1; i < NCPU; ++i) 147 *(&fpras_chkfngrps[i]) = *fcgp; 148 149 /* 150 * At definition fpras_frequency is set to -1, and it will 151 * still have that value unless changed in /etc/system (not 152 * strictly supported, but not preventable). The following 153 * both sets the default and sanity checks anything from 154 * /etc/system. 155 */ 156 if (fpras_frequency < 0) 157 fpras_frequency = FPRAS_DEFAULT_FREQUENCY; 158 159 /* 160 * Now calculate fpras_interval. When fpras_interval 161 * becomes non-negative fpras checks will commence 162 * (copies before this point in boot will bypass fpras). 163 * Our stores of instructions must be visible; no need 164 * to flush as they're never been executed before. 165 */ 166 membar_producer(); 167 fpras_interval = (fpras_frequency == 0) ? 168 0 : sys_tick_freq / fpras_frequency; 169 } 170 } 171 172 void 173 mach_hw_copy_limit(void) 174 { 175 if (!fpu_exists) { 176 use_hw_bcopy = 0; 177 hw_copy_limit_1 = 0; 178 hw_copy_limit_2 = 0; 179 hw_copy_limit_4 = 0; 180 hw_copy_limit_8 = 0; 181 use_hw_bzero = 0; 182 } 183 } 184 185 void 186 load_tod_module() 187 { 188 /* 189 * Load tod driver module for the tod part found on this system. 190 * Recompute the cpu frequency/delays based on tod as tod part 191 * tends to keep time more accurately. 192 */ 193 if (tod_module_name == NULL || modload("tod", tod_module_name) == -1) 194 halt("Can't load tod module"); 195 } 196 197 void 198 mach_memscrub(void) 199 { 200 /* 201 * Startup memory scrubber, if not running fpu emulation code. 202 */ 203 204 #ifndef _HW_MEMSCRUB_SUPPORT 205 if (fpu_exists) { 206 if (memscrub_init()) { 207 cmn_err(CE_WARN, 208 "Memory scrubber failed to initialize"); 209 } 210 } 211 #endif /* _HW_MEMSCRUB_SUPPORT */ 212 } 213 214 /* 215 * Halt the calling CPU until awoken via an interrupt 216 * This routine should only be invoked if cpu_halt_cpu() 217 * exists and is supported, see mach_cpu_halt_idle() 218 */ 219 static void 220 cpu_halt(void) 221 { 222 cpu_t *cpup = CPU; 223 processorid_t cpu_sid = cpup->cpu_seqid; 224 cpupart_t *cp = cpup->cpu_part; 225 int hset_update = 1; 226 uint_t pstate; 227 extern uint_t getpstate(void); 228 extern void setpstate(uint_t); 229 230 /* 231 * If this CPU is online, and there's multiple CPUs 232 * in the system, then we should notate our halting 233 * by adding ourselves to the partition's halted CPU 234 * bitset. This allows other CPUs to find/awaken us when 235 * work becomes available. 236 */ 237 if (CPU->cpu_flags & CPU_OFFLINE || ncpus == 1) 238 hset_update = 0; 239 240 /* 241 * Add ourselves to the partition's halted CPU bitset 242 * and set our HALTED flag, if necessary. 243 * 244 * When a thread becomes runnable, it is placed on the queue 245 * and then the halted cpu bitset is checked to determine who 246 * (if anyone) should be awoken. We therefore need to first 247 * add ourselves to the halted cpu bitset, and then check if there 248 * is any work available. The order is important to prevent a race 249 * that can lead to work languishing on a run queue somewhere while 250 * this CPU remains halted. 251 * 252 * Either the producing CPU will see we're halted and will awaken us, 253 * or this CPU will see the work available in disp_anywork() 254 */ 255 if (hset_update) { 256 cpup->cpu_disp_flags |= CPU_DISP_HALTED; 257 membar_producer(); 258 bitset_atomic_add(&cp->cp_haltset, cpu_sid); 259 } 260 261 /* 262 * Check to make sure there's really nothing to do. 263 * Work destined for this CPU may become available after 264 * this check. We'll be notified through the clearing of our 265 * bit in the halted CPU bitset, and a poke. 266 */ 267 if (disp_anywork()) { 268 if (hset_update) { 269 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 270 bitset_atomic_del(&cp->cp_haltset, cpu_sid); 271 } 272 return; 273 } 274 275 /* 276 * We're on our way to being halted. 277 * 278 * Disable interrupts now, so that we'll awaken immediately 279 * after halting if someone tries to poke us between now and 280 * the time we actually halt. 281 * 282 * We check for the presence of our bit after disabling interrupts. 283 * If it's cleared, we'll return. If the bit is cleared after 284 * we check then the poke will pop us out of the halted state. 285 * 286 * The ordering of the poke and the clearing of the bit by cpu_wakeup 287 * is important. 288 * cpu_wakeup() must clear, then poke. 289 * cpu_halt() must disable interrupts, then check for the bit. 290 */ 291 pstate = getpstate(); 292 setpstate(pstate & ~PSTATE_IE); 293 294 if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) { 295 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 296 setpstate(pstate); 297 return; 298 } 299 300 /* 301 * The check for anything locally runnable is here for performance 302 * and isn't needed for correctness. disp_nrunnable ought to be 303 * in our cache still, so it's inexpensive to check, and if there 304 * is anything runnable we won't have to wait for the poke. 305 */ 306 if (cpup->cpu_disp->disp_nrunnable != 0) { 307 if (hset_update) { 308 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 309 bitset_atomic_del(&cp->cp_haltset, cpu_sid); 310 } 311 setpstate(pstate); 312 return; 313 } 314 315 /* 316 * Halt the strand. 317 */ 318 if (&cpu_halt_cpu) { 319 DTRACE_PROBE1(idle__state__transition, 320 uint_t, IDLE_STATE_HALTED); 321 322 cpu_halt_cpu(); 323 324 DTRACE_PROBE1(idle__state__transition, 325 uint_t, IDLE_STATE_NORMAL); 326 } 327 328 /* 329 * We're no longer halted 330 */ 331 setpstate(pstate); 332 if (hset_update) { 333 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 334 bitset_atomic_del(&cp->cp_haltset, cpu_sid); 335 } 336 } 337 338 /* 339 * If "cpu" is halted, then wake it up clearing its halted bit in advance. 340 * Otherwise, see if other CPUs in the cpu partition are halted and need to 341 * be woken up so that they can steal the thread we placed on this CPU. 342 * This function is only used on MP systems. 343 * This function should only be invoked if cpu_halt_cpu() 344 * exists and is supported, see mach_cpu_halt_idle() 345 */ 346 static void 347 cpu_wakeup(cpu_t *cpu, int bound) 348 { 349 uint_t cpu_found; 350 processorid_t cpu_sid; 351 cpupart_t *cp; 352 353 cp = cpu->cpu_part; 354 cpu_sid = cpu->cpu_seqid; 355 if (bitset_in_set(&cp->cp_haltset, cpu_sid)) { 356 /* 357 * Clear the halted bit for that CPU since it will be 358 * poked in a moment. 359 */ 360 bitset_atomic_del(&cp->cp_haltset, cpu_sid); 361 /* 362 * We may find the current CPU present in the halted cpu bitset 363 * if we're in the context of an interrupt that occurred 364 * before we had a chance to clear our bit in cpu_halt(). 365 * Poking ourself is obviously unnecessary, since if 366 * we're here, we're not halted. 367 */ 368 if (cpu != CPU) 369 poke_cpu(cpu->cpu_id); 370 return; 371 } else { 372 /* 373 * This cpu isn't halted, but it's idle or undergoing a 374 * context switch. No need to awaken anyone else. 375 */ 376 if (cpu->cpu_thread == cpu->cpu_idle_thread || 377 cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL) 378 return; 379 } 380 381 /* 382 * No need to wake up other CPUs if this is for a bound thread. 383 */ 384 if (bound) 385 return; 386 387 /* 388 * The CPU specified for wakeup isn't currently halted, so check 389 * to see if there are any other halted CPUs in the partition, 390 * and if there are then awaken one. 391 * 392 * If possible, try to select a CPU close to the target, since this 393 * will likely trigger a migration. 394 */ 395 do { 396 cpu_found = bitset_find(&cp->cp_haltset); 397 if (cpu_found == (uint_t)-1) 398 return; 399 } while (bitset_atomic_test_and_del(&cp->cp_haltset, cpu_found) < 0); 400 401 if (cpu_found != CPU->cpu_seqid) 402 poke_cpu(cpu_seq[cpu_found]->cpu_id); 403 } 404 405 void 406 mach_cpu_halt_idle(void) 407 { 408 if (enable_halt_idle_cpus) { 409 if (&cpu_halt_cpu) { 410 idle_cpu = cpu_halt; 411 disp_enq_thread = cpu_wakeup; 412 } 413 } 414 } 415 416 /*ARGSUSED*/ 417 int 418 cpu_intrq_setup(struct cpu *cp) 419 { 420 /* Interrupt mondo queues not applicable to sun4u */ 421 return (0); 422 } 423 424 /*ARGSUSED*/ 425 void 426 cpu_intrq_cleanup(struct cpu *cp) 427 { 428 /* Interrupt mondo queues not applicable to sun4u */ 429 } 430 431 /*ARGSUSED*/ 432 void 433 cpu_intrq_register(struct cpu *cp) 434 { 435 /* Interrupt/error queues not applicable to sun4u */ 436 } 437 438 /*ARGSUSED*/ 439 void 440 mach_htraptrace_setup(int cpuid) 441 { 442 /* Setup hypervisor traptrace buffer, not applicable to sun4u */ 443 } 444 445 /*ARGSUSED*/ 446 void 447 mach_htraptrace_configure(int cpuid) 448 { 449 /* enable/ disable hypervisor traptracing, not applicable to sun4u */ 450 } 451 452 /*ARGSUSED*/ 453 void 454 mach_htraptrace_cleanup(int cpuid) 455 { 456 /* cleanup hypervisor traptrace buffer, not applicable to sun4u */ 457 } 458 459 void 460 mach_descrip_startup_init(void) 461 { 462 /* 463 * Only for sun4v. 464 * Initialize Machine description framework during startup. 465 */ 466 } 467 void 468 mach_descrip_startup_fini(void) 469 { 470 /* 471 * Only for sun4v. 472 * Clean up Machine Description framework during startup. 473 */ 474 } 475 476 void 477 mach_descrip_init(void) 478 { 479 /* 480 * Only for sun4v. 481 * Initialize Machine description framework. 482 */ 483 } 484 485 void 486 hsvc_setup(void) 487 { 488 /* Setup hypervisor services, not applicable to sun4u */ 489 } 490 491 void 492 load_mach_drivers(void) 493 { 494 /* Currently no machine class (sun4u) specific drivers to load */ 495 } 496 497 /* 498 * Return true if the machine we're running on is a Positron. 499 * (Positron is an unsupported developers platform.) 500 */ 501 int 502 iam_positron(void) 503 { 504 char model[32]; 505 const char proto_model[] = "SUNW,501-2732"; 506 pnode_t root = prom_rootnode(); 507 508 if (prom_getproplen(root, "model") != sizeof (proto_model)) 509 return (0); 510 511 (void) prom_getprop(root, "model", model); 512 if (strcmp(model, proto_model) == 0) 513 return (1); 514 return (0); 515 } 516 517 /* 518 * Find a physically contiguous area of twice the largest ecache size 519 * to be used while doing displacement flush of ecaches. 520 */ 521 uint64_t 522 ecache_flush_address(void) 523 { 524 struct memlist *pmem; 525 uint64_t flush_size; 526 uint64_t ret_val; 527 528 flush_size = ecache_size * 2; 529 for (pmem = phys_install; pmem; pmem = pmem->next) { 530 ret_val = P2ROUNDUP(pmem->address, ecache_size); 531 if (ret_val + flush_size <= pmem->address + pmem->size) 532 return (ret_val); 533 } 534 return ((uint64_t)-1); 535 } 536 537 /* 538 * Called with the memlist lock held to say that phys_install has 539 * changed. 540 */ 541 void 542 phys_install_has_changed(void) 543 { 544 /* 545 * Get the new address into a temporary just in case panicking 546 * involves use of ecache_flushaddr. 547 */ 548 uint64_t new_addr; 549 550 new_addr = ecache_flush_address(); 551 if (new_addr == (uint64_t)-1) { 552 cmn_err(CE_PANIC, 553 "ecache_flush_address(): failed, ecache_size=%x", 554 ecache_size); 555 /*NOTREACHED*/ 556 } 557 ecache_flushaddr = new_addr; 558 membar_producer(); 559 } 560