1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/cpuvar.h> 29 #include <sys/systm.h> 30 #include <sys/sysmacros.h> 31 #include <sys/promif.h> 32 #include <sys/platform_module.h> 33 #include <sys/cmn_err.h> 34 #include <sys/errno.h> 35 #include <sys/machsystm.h> 36 #include <sys/bootconf.h> 37 #include <sys/nvpair.h> 38 #include <sys/kobj.h> 39 #include <sys/mem_cage.h> 40 #include <sys/opl.h> 41 #include <sys/scfd/scfostoescf.h> 42 #include <sys/cpu_sgnblk_defs.h> 43 #include <sys/utsname.h> 44 #include <sys/ddi.h> 45 #include <sys/sunndi.h> 46 #include <sys/lgrp.h> 47 #include <sys/memnode.h> 48 #include <sys/sysmacros.h> 49 #include <vm/vm_dep.h> 50 51 int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *); 52 int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp); 53 int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp); 54 int (*opl_get_mem_addr)(char *unum, char *sid, 55 uint64_t offset, uint64_t *paddr); 56 57 /* Memory for fcode claims. 16k times # maximum possible IO units */ 58 #define EFCODE_SIZE (OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000) 59 int efcode_size = EFCODE_SIZE; 60 61 #define OPL_MC_MEMBOARD_SHIFT 38 /* Boards on 256BG boundary */ 62 63 /* Set the maximum number of boards for DR */ 64 int opl_boards = OPL_MAX_BOARDS; 65 66 void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t); 67 68 extern int tsb_lgrp_affinity; 69 70 int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) * 71 (OPL_MAX_TSBS_PER_PCICH); 72 73 pgcnt_t opl_startup_cage_size = 0; 74 75 static opl_model_info_t opl_models[] = { 76 { "FF1", OPL_MAX_BOARDS_FF1, FF1, STD_DISPATCH_TABLE }, 77 { "FF2", OPL_MAX_BOARDS_FF2, FF2, STD_DISPATCH_TABLE }, 78 { "DC1", OPL_MAX_BOARDS_DC1, DC1, STD_DISPATCH_TABLE }, 79 { "DC2", OPL_MAX_BOARDS_DC2, DC2, EXT_DISPATCH_TABLE }, 80 { "DC3", OPL_MAX_BOARDS_DC3, DC3, EXT_DISPATCH_TABLE }, 81 }; 82 static int opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t); 83 84 /* 85 * opl_cur_model 86 */ 87 static opl_model_info_t *opl_cur_model = NULL; 88 89 static struct memlist *opl_memlist_per_board(struct memlist *ml); 90 91 int 92 set_platform_max_ncpus(void) 93 { 94 return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS); 95 } 96 97 int 98 set_platform_tsb_spares(void) 99 { 100 return (MIN(opl_tsb_spares, MAX_UPA)); 101 } 102 103 static void 104 set_model_info() 105 { 106 extern int ts_dispatch_extended; 107 char name[MAXSYSNAME]; 108 int i; 109 110 /* 111 * Get model name from the root node. 112 * 113 * We are using the prom device tree since, at this point, 114 * the Solaris device tree is not yet setup. 115 */ 116 (void) prom_getprop(prom_rootnode(), "model", (caddr_t)name); 117 118 for (i = 0; i < opl_num_models; i++) { 119 if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) { 120 opl_cur_model = &opl_models[i]; 121 break; 122 } 123 } 124 125 if (i == opl_num_models) 126 halt("No valid OPL model is found!"); 127 128 if ((opl_cur_model->model_cmds & EXT_DISPATCH_TABLE) && 129 (ts_dispatch_extended == -1)) { 130 /* 131 * Based on a platform model, select a dispatch table. 132 * Only DC2 and DC3 systems uses the alternate/extended 133 * TS dispatch table. 134 * FF1, FF2 and DC1 systems used standard dispatch tables. 135 */ 136 ts_dispatch_extended = 1; 137 } 138 139 } 140 141 static void 142 set_max_mmu_ctxdoms() 143 { 144 extern uint_t max_mmu_ctxdoms; 145 int max_boards; 146 147 /* 148 * From the model, get the maximum number of boards 149 * supported and set the value accordingly. If the model 150 * could not be determined or recognized, we assume the max value. 151 */ 152 if (opl_cur_model == NULL) 153 max_boards = OPL_MAX_BOARDS; 154 else 155 max_boards = opl_cur_model->model_max_boards; 156 157 /* 158 * On OPL, cores and MMUs are one-to-one. 159 */ 160 max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards; 161 } 162 163 #pragma weak mmu_init_large_pages 164 165 void 166 set_platform_defaults(void) 167 { 168 extern char *tod_module_name; 169 extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int); 170 extern void mmu_init_large_pages(size_t); 171 172 /* Set the CPU signature function pointer */ 173 cpu_sgn_func = cpu_sgn_update; 174 175 /* Set appropriate tod module for OPL platform */ 176 ASSERT(tod_module_name == NULL); 177 tod_module_name = "todopl"; 178 179 if ((mmu_page_sizes == max_mmu_page_sizes) && 180 (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) { 181 if (&mmu_init_large_pages) 182 mmu_init_large_pages(mmu_ism_pagesize); 183 } 184 185 tsb_lgrp_affinity = 1; 186 187 set_max_mmu_ctxdoms(); 188 } 189 190 /* 191 * Convert logical a board number to a physical one. 192 */ 193 194 #define LSBPROP "board#" 195 #define PSBPROP "physical-board#" 196 197 int 198 opl_get_physical_board(int id) 199 { 200 dev_info_t *root_dip, *dip = NULL; 201 char *dname = NULL; 202 int circ; 203 204 pnode_t pnode; 205 char pname[MAXSYSNAME] = {0}; 206 207 int lsb_id; /* Logical System Board ID */ 208 int psb_id; /* Physical System Board ID */ 209 210 211 /* 212 * This function is called on early stage of bootup when the 213 * kernel device tree is not initialized yet, and also 214 * later on when the device tree is up. We want to try 215 * the fast track first. 216 */ 217 root_dip = ddi_root_node(); 218 if (root_dip) { 219 /* Get from devinfo node */ 220 ndi_devi_enter(root_dip, &circ); 221 for (dip = ddi_get_child(root_dip); dip; 222 dip = ddi_get_next_sibling(dip)) { 223 224 dname = ddi_node_name(dip); 225 if (strncmp(dname, "pseudo-mc", 9) != 0) 226 continue; 227 228 if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip, 229 DDI_PROP_DONTPASS, LSBPROP, -1)) == -1) 230 continue; 231 232 if (id == lsb_id) { 233 if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY, 234 dip, DDI_PROP_DONTPASS, PSBPROP, -1)) 235 == -1) { 236 ndi_devi_exit(root_dip, circ); 237 return (-1); 238 } else { 239 ndi_devi_exit(root_dip, circ); 240 return (psb_id); 241 } 242 } 243 } 244 ndi_devi_exit(root_dip, circ); 245 } 246 247 /* 248 * We do not have the kernel device tree, or we did not 249 * find the node for some reason (let's say the kernel 250 * device tree was modified), let's try the OBP tree. 251 */ 252 pnode = prom_rootnode(); 253 for (pnode = prom_childnode(pnode); pnode; 254 pnode = prom_nextnode(pnode)) { 255 256 if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) || 257 (strncmp(pname, "pseudo-mc", 9) != 0)) 258 continue; 259 260 if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1) 261 continue; 262 263 if (id == lsb_id) { 264 if (prom_getprop(pnode, PSBPROP, 265 (caddr_t)&psb_id) == -1) { 266 return (-1); 267 } else { 268 return (psb_id); 269 } 270 } 271 } 272 273 return (-1); 274 } 275 276 /* 277 * For OPL it's possible that memory from two or more successive boards 278 * will be contiguous across the boards, and therefore represented as a 279 * single chunk. 280 * This function splits such chunks down the board boundaries. 281 */ 282 static struct memlist * 283 opl_memlist_per_board(struct memlist *ml) 284 { 285 uint64_t ssize, low, high, boundary; 286 struct memlist *head, *tail, *new; 287 288 ssize = (1ull << OPL_MC_MEMBOARD_SHIFT); 289 290 head = tail = NULL; 291 292 for (; ml; ml = ml->next) { 293 low = (uint64_t)ml->address; 294 high = low+(uint64_t)(ml->size); 295 while (low < high) { 296 boundary = roundup(low+1, ssize); 297 boundary = MIN(high, boundary); 298 new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP); 299 new->address = low; 300 new->size = boundary - low; 301 if (head == NULL) 302 head = new; 303 if (tail) { 304 tail->next = new; 305 new->prev = tail; 306 } 307 tail = new; 308 low = boundary; 309 } 310 } 311 return (head); 312 } 313 314 void 315 set_platform_cage_params(void) 316 { 317 extern pgcnt_t total_pages; 318 extern struct memlist *phys_avail; 319 struct memlist *ml, *tml; 320 int ret; 321 322 if (kernel_cage_enable) { 323 pgcnt_t preferred_cage_size; 324 325 preferred_cage_size = 326 MAX(opl_startup_cage_size, total_pages / 256); 327 328 ml = opl_memlist_per_board(phys_avail); 329 330 kcage_range_lock(); 331 /* 332 * Note: we are assuming that post has load the 333 * whole show in to the high end of memory. Having 334 * taken this leap, we copy the whole of phys_avail 335 * the glist and arrange for the cage to grow 336 * downward (descending pfns). 337 */ 338 ret = kcage_range_init(ml, 1); 339 340 /* free the memlist */ 341 do { 342 tml = ml->next; 343 kmem_free(ml, sizeof (struct memlist)); 344 ml = tml; 345 } while (ml != NULL); 346 347 if (ret == 0) 348 kcage_init(preferred_cage_size); 349 kcage_range_unlock(); 350 } 351 352 if (kcage_on) 353 cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED"); 354 else 355 cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED"); 356 } 357 358 /*ARGSUSED*/ 359 int 360 plat_cpu_poweron(struct cpu *cp) 361 { 362 int (*opl_cpu_poweron)(struct cpu *) = NULL; 363 364 opl_cpu_poweron = 365 (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0); 366 367 if (opl_cpu_poweron == NULL) 368 return (ENOTSUP); 369 else 370 return ((opl_cpu_poweron)(cp)); 371 372 } 373 374 /*ARGSUSED*/ 375 int 376 plat_cpu_poweroff(struct cpu *cp) 377 { 378 int (*opl_cpu_poweroff)(struct cpu *) = NULL; 379 380 opl_cpu_poweroff = 381 (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0); 382 383 if (opl_cpu_poweroff == NULL) 384 return (ENOTSUP); 385 else 386 return ((opl_cpu_poweroff)(cp)); 387 388 } 389 390 int 391 plat_max_boards(void) 392 { 393 return (OPL_MAX_BOARDS); 394 } 395 396 int 397 plat_max_cpu_units_per_board(void) 398 { 399 return (OPL_MAX_CPU_PER_BOARD); 400 } 401 402 int 403 plat_max_mem_units_per_board(void) 404 { 405 return (OPL_MAX_MEM_UNITS_PER_BOARD); 406 } 407 408 int 409 plat_max_io_units_per_board(void) 410 { 411 return (OPL_MAX_IO_UNITS_PER_BOARD); 412 } 413 414 int 415 plat_max_cmp_units_per_board(void) 416 { 417 return (OPL_MAX_CMP_UNITS_PER_BOARD); 418 } 419 420 int 421 plat_max_core_units_per_board(void) 422 { 423 return (OPL_MAX_CORE_UNITS_PER_BOARD); 424 } 425 426 int 427 plat_pfn_to_mem_node(pfn_t pfn) 428 { 429 return (pfn >> mem_node_pfn_shift); 430 } 431 432 /* ARGSUSED */ 433 void 434 plat_build_mem_nodes(u_longlong_t *list, size_t nelems) 435 { 436 size_t elem; 437 pfn_t basepfn; 438 pgcnt_t npgs; 439 uint64_t boundary, ssize; 440 uint64_t low, high; 441 442 /* 443 * OPL mem slices are always aligned on a 256GB boundary. 444 */ 445 mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT; 446 mem_node_physalign = 0; 447 448 /* 449 * Boot install lists are arranged <addr, len>, <addr, len>, ... 450 */ 451 ssize = (1ull << OPL_MC_MEMBOARD_SHIFT); 452 for (elem = 0; elem < nelems; elem += 2) { 453 low = (uint64_t)list[elem]; 454 high = low+(uint64_t)(list[elem+1]); 455 while (low < high) { 456 boundary = roundup(low+1, ssize); 457 boundary = MIN(high, boundary); 458 basepfn = btop(low); 459 npgs = btop(boundary - low); 460 mem_node_add_slice(basepfn, basepfn + npgs - 1); 461 low = boundary; 462 } 463 } 464 } 465 466 /* 467 * Find the CPU associated with a slice at boot-time. 468 */ 469 void 470 plat_fill_mc(pnode_t nodeid) 471 { 472 int board; 473 int memnode; 474 struct { 475 uint64_t addr; 476 uint64_t size; 477 } mem_range; 478 479 if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) { 480 panic("Can not find board# property in mc node %x", nodeid); 481 } 482 if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) { 483 panic("Can not find sb-mem-ranges property in mc node %x", 484 nodeid); 485 } 486 memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT; 487 plat_assign_lgrphand_to_mem_node(board, memnode); 488 } 489 490 /* 491 * Return the platform handle for the lgroup containing the given CPU 492 * 493 * For OPL, lgroup platform handle == board #. 494 */ 495 496 extern int mpo_disabled; 497 extern lgrp_handle_t lgrp_default_handle; 498 499 lgrp_handle_t 500 plat_lgrp_cpu_to_hand(processorid_t id) 501 { 502 lgrp_handle_t plathand; 503 504 /* 505 * Return the real platform handle for the CPU until 506 * such time as we know that MPO should be disabled. 507 * At that point, we set the "mpo_disabled" flag to true, 508 * and from that point on, return the default handle. 509 * 510 * By the time we know that MPO should be disabled, the 511 * first CPU will have already been added to a leaf 512 * lgroup, but that's ok. The common lgroup code will 513 * double check that the boot CPU is in the correct place, 514 * and in the case where mpo should be disabled, will move 515 * it to the root if necessary. 516 */ 517 if (mpo_disabled) { 518 /* If MPO is disabled, return the default (UMA) handle */ 519 plathand = lgrp_default_handle; 520 } else 521 plathand = (lgrp_handle_t)LSB_ID(id); 522 return (plathand); 523 } 524 525 /* 526 * Platform specific lgroup initialization 527 */ 528 void 529 plat_lgrp_init(void) 530 { 531 extern uint32_t lgrp_expand_proc_thresh; 532 extern uint32_t lgrp_expand_proc_diff; 533 534 /* 535 * Set tuneables for the OPL architecture 536 * 537 * lgrp_expand_proc_thresh is the minimum load on the lgroups 538 * this process is currently running on before considering 539 * expanding threads to another lgroup. 540 * 541 * lgrp_expand_proc_diff determines how much less the remote lgroup 542 * must be loaded before expanding to it. 543 * 544 * Since remote latencies can be costly, attempt to keep 3 threads 545 * within the same lgroup before expanding to the next lgroup. 546 */ 547 lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3; 548 lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX; 549 } 550 551 /* 552 * Platform notification of lgroup (re)configuration changes 553 */ 554 /*ARGSUSED*/ 555 void 556 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg) 557 { 558 update_membounds_t *umb; 559 lgrp_config_mem_rename_t lmr; 560 int sbd, tbd; 561 lgrp_handle_t hand, shand, thand; 562 int mnode, snode, tnode; 563 pfn_t start, end; 564 565 if (mpo_disabled) 566 return; 567 568 switch (evt) { 569 570 case LGRP_CONFIG_MEM_ADD: 571 /* 572 * Establish the lgroup handle to memnode translation. 573 */ 574 umb = (update_membounds_t *)arg; 575 576 hand = umb->u_board; 577 mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT); 578 plat_assign_lgrphand_to_mem_node(hand, mnode); 579 580 break; 581 582 case LGRP_CONFIG_MEM_DEL: 583 /* 584 * Special handling for possible memory holes. 585 */ 586 umb = (update_membounds_t *)arg; 587 hand = umb->u_board; 588 if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) { 589 if (mem_node_config[mnode].exists) { 590 start = mem_node_config[mnode].physbase; 591 end = mem_node_config[mnode].physmax; 592 mem_node_pre_del_slice(start, end); 593 mem_node_post_del_slice(start, end, 0); 594 } 595 } 596 597 break; 598 599 case LGRP_CONFIG_MEM_RENAME: 600 /* 601 * During a DR copy-rename operation, all of the memory 602 * on one board is moved to another board -- but the 603 * addresses/pfns and memnodes don't change. This means 604 * the memory has changed locations without changing identity. 605 * 606 * Source is where we are copying from and target is where we 607 * are copying to. After source memnode is copied to target 608 * memnode, the physical addresses of the target memnode are 609 * renamed to match what the source memnode had. Then target 610 * memnode can be removed and source memnode can take its 611 * place. 612 * 613 * To do this, swap the lgroup handle to memnode mappings for 614 * the boards, so target lgroup will have source memnode and 615 * source lgroup will have empty target memnode which is where 616 * its memory will go (if any is added to it later). 617 * 618 * Then source memnode needs to be removed from its lgroup 619 * and added to the target lgroup where the memory was living 620 * but under a different name/memnode. The memory was in the 621 * target memnode and now lives in the source memnode with 622 * different physical addresses even though it is the same 623 * memory. 624 */ 625 sbd = arg & 0xffff; 626 tbd = (arg & 0xffff0000) >> 16; 627 shand = sbd; 628 thand = tbd; 629 snode = plat_lgrphand_to_mem_node(shand); 630 tnode = plat_lgrphand_to_mem_node(thand); 631 632 /* 633 * Special handling for possible memory holes. 634 */ 635 if (tnode != -1 && mem_node_config[tnode].exists) { 636 start = mem_node_config[tnode].physbase; 637 end = mem_node_config[tnode].physmax; 638 mem_node_pre_del_slice(start, end); 639 mem_node_post_del_slice(start, end, 0); 640 } 641 642 plat_assign_lgrphand_to_mem_node(thand, snode); 643 plat_assign_lgrphand_to_mem_node(shand, tnode); 644 645 lmr.lmem_rename_from = shand; 646 lmr.lmem_rename_to = thand; 647 648 /* 649 * Remove source memnode of copy rename from its lgroup 650 * and add it to its new target lgroup 651 */ 652 lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode, 653 (uintptr_t)&lmr); 654 655 break; 656 657 default: 658 break; 659 } 660 } 661 662 /* 663 * Return latency between "from" and "to" lgroups 664 * 665 * This latency number can only be used for relative comparison 666 * between lgroups on the running system, cannot be used across platforms, 667 * and may not reflect the actual latency. It is platform and implementation 668 * specific, so platform gets to decide its value. It would be nice if the 669 * number was at least proportional to make comparisons more meaningful though. 670 * NOTE: The numbers below are supposed to be load latencies for uncached 671 * memory divided by 10. 672 * 673 */ 674 int 675 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to) 676 { 677 /* 678 * Return min remote latency when there are more than two lgroups 679 * (root and child) and getting latency between two different lgroups 680 * or root is involved 681 */ 682 if (lgrp_optimizations() && (from != to || 683 from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)) 684 return (42); 685 else 686 return (35); 687 } 688 689 /* 690 * Return platform handle for root lgroup 691 */ 692 lgrp_handle_t 693 plat_lgrp_root_hand(void) 694 { 695 if (mpo_disabled) 696 return (lgrp_default_handle); 697 698 return (LGRP_DEFAULT_HANDLE); 699 } 700 701 /*ARGSUSED*/ 702 void 703 plat_freelist_process(int mnode) 704 { 705 } 706 707 void 708 load_platform_drivers(void) 709 { 710 (void) i_ddi_attach_pseudo_node("dr"); 711 } 712 713 /* 714 * No platform drivers on this platform 715 */ 716 char *platform_module_list[] = { 717 (char *)0 718 }; 719 720 /*ARGSUSED*/ 721 void 722 plat_tod_fault(enum tod_fault_type tod_bad) 723 { 724 } 725 726 /*ARGSUSED*/ 727 void 728 cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid) 729 { 730 static void (*scf_panic_callback)(int); 731 static void (*scf_shutdown_callback)(int); 732 733 /* 734 * This is for notifing system panic/shutdown to SCF. 735 * In case of shutdown and panic, SCF call back 736 * function should be called. 737 * <SCF call back functions> 738 * scf_panic_callb() : panicsys()->panic_quiesce_hw() 739 * scf_shutdown_callb(): halt() or power_down() or reboot_machine() 740 * cpuid should be -1 and state should be SIGST_EXIT. 741 */ 742 if (state == SIGST_EXIT && cpuid == -1) { 743 744 /* 745 * find the symbol for the SCF panic callback routine in driver 746 */ 747 if (scf_panic_callback == NULL) 748 scf_panic_callback = (void (*)(int)) 749 modgetsymvalue("scf_panic_callb", 0); 750 if (scf_shutdown_callback == NULL) 751 scf_shutdown_callback = (void (*)(int)) 752 modgetsymvalue("scf_shutdown_callb", 0); 753 754 switch (sub_state) { 755 case SIGSUBST_PANIC: 756 if (scf_panic_callback == NULL) { 757 cmn_err(CE_NOTE, "!cpu_sgn_update: " 758 "scf_panic_callb not found\n"); 759 return; 760 } 761 scf_panic_callback(SIGSUBST_PANIC); 762 break; 763 764 case SIGSUBST_HALT: 765 if (scf_shutdown_callback == NULL) { 766 cmn_err(CE_NOTE, "!cpu_sgn_update: " 767 "scf_shutdown_callb not found\n"); 768 return; 769 } 770 scf_shutdown_callback(SIGSUBST_HALT); 771 break; 772 773 case SIGSUBST_ENVIRON: 774 if (scf_shutdown_callback == NULL) { 775 cmn_err(CE_NOTE, "!cpu_sgn_update: " 776 "scf_shutdown_callb not found\n"); 777 return; 778 } 779 scf_shutdown_callback(SIGSUBST_ENVIRON); 780 break; 781 782 case SIGSUBST_REBOOT: 783 if (scf_shutdown_callback == NULL) { 784 cmn_err(CE_NOTE, "!cpu_sgn_update: " 785 "scf_shutdown_callb not found\n"); 786 return; 787 } 788 scf_shutdown_callback(SIGSUBST_REBOOT); 789 break; 790 } 791 } 792 } 793 794 /*ARGSUSED*/ 795 int 796 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id, 797 int flt_in_memory, ushort_t flt_status, 798 char *buf, int buflen, int *lenp) 799 { 800 /* 801 * check if it's a Memory error. 802 */ 803 if (flt_in_memory) { 804 if (opl_get_mem_unum != NULL) { 805 return (opl_get_mem_unum(synd_code, flt_addr, 806 buf, buflen, lenp)); 807 } else { 808 return (ENOTSUP); 809 } 810 } else { 811 return (ENOTSUP); 812 } 813 } 814 815 /*ARGSUSED*/ 816 int 817 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp) 818 { 819 int ret = 0; 820 uint_t sb; 821 int plen; 822 823 sb = opl_get_physical_board(LSB_ID(cpuid)); 824 if (sb == -1) { 825 return (ENXIO); 826 } 827 828 /* 829 * opl_cur_model is assigned here 830 */ 831 if (opl_cur_model == NULL) { 832 set_model_info(); 833 } 834 835 ASSERT((opl_cur_model - opl_models) == (opl_cur_model->model_type)); 836 837 switch (opl_cur_model->model_type) { 838 case FF1: 839 plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A", 840 CHIP_ID(cpuid) / 2); 841 break; 842 843 case FF2: 844 plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B", 845 (CHIP_ID(cpuid) / 2) + (sb * 2)); 846 break; 847 848 case DC1: 849 case DC2: 850 case DC3: 851 plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb, 852 CHIP_ID(cpuid)); 853 break; 854 855 default: 856 /* This should never happen */ 857 return (ENODEV); 858 } 859 860 if (plen >= buflen) { 861 ret = ENOSPC; 862 } else { 863 if (lenp) 864 *lenp = strlen(buf); 865 } 866 return (ret); 867 } 868 869 #define SCF_PUTINFO(f, s, p) \ 870 f(KEY_ESCF, 0x01, 0, s, p) 871 void 872 plat_nodename_set(void) 873 { 874 void *datap; 875 static int (*scf_service_function)(uint32_t, uint8_t, 876 uint32_t, uint32_t, void *); 877 int counter = 5; 878 879 /* 880 * find the symbol for the SCF put routine in driver 881 */ 882 if (scf_service_function == NULL) 883 scf_service_function = 884 (int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *)) 885 modgetsymvalue("scf_service_putinfo", 0); 886 887 /* 888 * If the symbol was found, call it. Otherwise, log a note (but not to 889 * the console). 890 */ 891 892 if (scf_service_function == NULL) { 893 cmn_err(CE_NOTE, 894 "!plat_nodename_set: scf_service_putinfo not found\n"); 895 return; 896 } 897 898 datap = 899 (struct utsname *)kmem_zalloc(sizeof (struct utsname), KM_SLEEP); 900 901 if (datap == NULL) { 902 return; 903 } 904 905 bcopy((struct utsname *)&utsname, 906 (struct utsname *)datap, sizeof (struct utsname)); 907 908 while ((SCF_PUTINFO(scf_service_function, 909 sizeof (struct utsname), datap) == EBUSY) && (counter-- > 0)) { 910 delay(10 * drv_usectohz(1000000)); 911 } 912 if (counter == 0) 913 cmn_err(CE_NOTE, 914 "!plat_nodename_set: " 915 "scf_service_putinfo not responding\n"); 916 917 kmem_free(datap, sizeof (struct utsname)); 918 } 919 920 caddr_t efcode_vaddr = NULL; 921 922 /* 923 * Preallocate enough memory for fcode claims. 924 */ 925 926 caddr_t 927 efcode_alloc(caddr_t alloc_base) 928 { 929 caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 930 MMU_PAGESIZE); 931 caddr_t vaddr; 932 933 /* 934 * allocate the physical memory for the Oberon fcode. 935 */ 936 if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base, 937 efcode_size, MMU_PAGESIZE)) == NULL) 938 cmn_err(CE_PANIC, "Cannot allocate Efcode Memory"); 939 940 efcode_vaddr = vaddr; 941 942 return (efcode_alloc_base + efcode_size); 943 } 944 945 caddr_t 946 plat_startup_memlist(caddr_t alloc_base) 947 { 948 caddr_t tmp_alloc_base; 949 950 tmp_alloc_base = efcode_alloc(alloc_base); 951 tmp_alloc_base = 952 (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize); 953 return (tmp_alloc_base); 954 } 955 956 void 957 startup_platform(void) 958 { 959 } 960 961 void 962 plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info) 963 { 964 int impl; 965 966 impl = cpunodes[cpuid].implementation; 967 if (IS_OLYMPUS_C(impl)) { 968 info->mmu_idx = MMU_ID(cpuid); 969 info->mmu_nctxs = 8192; 970 } else { 971 cmn_err(CE_PANIC, "Unknown processor %d", impl); 972 } 973 } 974 975 int 976 plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp) 977 { 978 if (opl_get_mem_sid == NULL) { 979 return (ENOTSUP); 980 } 981 return (opl_get_mem_sid(unum, buf, buflen, lenp)); 982 } 983 984 int 985 plat_get_mem_offset(uint64_t paddr, uint64_t *offp) 986 { 987 if (opl_get_mem_offset == NULL) { 988 return (ENOTSUP); 989 } 990 return (opl_get_mem_offset(paddr, offp)); 991 } 992 993 int 994 plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp) 995 { 996 if (opl_get_mem_addr == NULL) { 997 return (ENOTSUP); 998 } 999 return (opl_get_mem_addr(unum, sid, offset, addrp)); 1000 } 1001