1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/cpuvar.h> 27 #include <sys/systm.h> 28 #include <sys/sysmacros.h> 29 #include <sys/promif.h> 30 #include <sys/platform_module.h> 31 #include <sys/cmn_err.h> 32 #include <sys/errno.h> 33 #include <sys/machsystm.h> 34 #include <sys/bootconf.h> 35 #include <sys/nvpair.h> 36 #include <sys/kobj.h> 37 #include <sys/mem_cage.h> 38 #include <sys/opl.h> 39 #include <sys/scfd/scfostoescf.h> 40 #include <sys/cpu_sgnblk_defs.h> 41 #include <sys/utsname.h> 42 #include <sys/ddi.h> 43 #include <sys/sunndi.h> 44 #include <sys/lgrp.h> 45 #include <sys/memnode.h> 46 #include <sys/sysmacros.h> 47 #include <sys/time.h> 48 #include <sys/cpu.h> 49 #include <vm/vm_dep.h> 50 51 int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *); 52 int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp); 53 int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp); 54 int (*opl_get_mem_addr)(char *unum, char *sid, 55 uint64_t offset, uint64_t *paddr); 56 57 /* Memory for fcode claims. 16k times # maximum possible IO units */ 58 #define EFCODE_SIZE (OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000) 59 int efcode_size = EFCODE_SIZE; 60 61 #define OPL_MC_MEMBOARD_SHIFT 38 /* Boards on 256BG boundary */ 62 63 /* Set the maximum number of boards for DR */ 64 int opl_boards = OPL_MAX_BOARDS; 65 66 void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t); 67 68 extern int tsb_lgrp_affinity; 69 70 int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) * 71 (OPL_MAX_TSBS_PER_PCICH); 72 73 pgcnt_t opl_startup_cage_size = 0; 74 75 /* 76 * The length of the delay in seconds in communication with XSCF after 77 * which the warning message will be logged. 78 */ 79 uint_t xscf_connect_delay = 60 * 15; 80 81 static opl_model_info_t opl_models[] = { 82 { "FF1", OPL_MAX_BOARDS_FF1, FF1, STD_DISPATCH_TABLE }, 83 { "FF2", OPL_MAX_BOARDS_FF2, FF2, STD_DISPATCH_TABLE }, 84 { "DC1", OPL_MAX_BOARDS_DC1, DC1, STD_DISPATCH_TABLE }, 85 { "DC2", OPL_MAX_BOARDS_DC2, DC2, EXT_DISPATCH_TABLE }, 86 { "DC3", OPL_MAX_BOARDS_DC3, DC3, EXT_DISPATCH_TABLE }, 87 { "IKKAKU", OPL_MAX_BOARDS_IKKAKU, IKKAKU, STD_DISPATCH_TABLE }, 88 }; 89 static int opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t); 90 91 /* 92 * opl_cur_model 93 */ 94 static opl_model_info_t *opl_cur_model = NULL; 95 96 static struct memlist *opl_memlist_per_board(struct memlist *ml); 97 static void post_xscf_msg(char *, int); 98 static void pass2xscf_thread(); 99 100 /* 101 * Note FF/DC out-of-order instruction engine takes only a 102 * single cycle to execute each spin loop 103 * for comparison, Panther takes 6 cycles for same loop 104 * OPL_BOFF_SPIN = base spin loop, roughly one memory reference time 105 * OPL_BOFF_TM = approx nsec for OPL sleep instruction (1600 for OPL-C) 106 * OPL_BOFF_SLEEP = approx number of SPIN iterations to equal one sleep 107 * OPL_BOFF_MAX_SCALE - scaling factor for max backoff based on active cpus 108 * Listed values tuned for 2.15GHz to 2.64GHz systems 109 * Value may change for future systems 110 */ 111 #define OPL_BOFF_SPIN 7 112 #define OPL_BOFF_SLEEP 4 113 #define OPL_BOFF_TM 1600 114 #define OPL_BOFF_MAX_SCALE 8 115 116 #define OPL_CLOCK_TICK_THRESHOLD 128 117 #define OPL_CLOCK_TICK_NCPUS 64 118 119 extern int clock_tick_threshold; 120 extern int clock_tick_ncpus; 121 122 int 123 set_platform_max_ncpus(void) 124 { 125 return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS); 126 } 127 128 int 129 set_platform_tsb_spares(void) 130 { 131 return (MIN(opl_tsb_spares, MAX_UPA)); 132 } 133 134 static void 135 set_model_info() 136 { 137 extern int ts_dispatch_extended; 138 char name[MAXSYSNAME]; 139 int i; 140 141 /* 142 * Get model name from the root node. 143 * 144 * We are using the prom device tree since, at this point, 145 * the Solaris device tree is not yet setup. 146 */ 147 (void) prom_getprop(prom_rootnode(), "model", (caddr_t)name); 148 149 for (i = 0; i < opl_num_models; i++) { 150 if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) { 151 opl_cur_model = &opl_models[i]; 152 break; 153 } 154 } 155 156 /* 157 * If model not matched, it's an unknown model. 158 * Just return. It will default to standard dispatch tables. 159 */ 160 if (i == opl_num_models) 161 return; 162 163 if ((opl_cur_model->model_cmds & EXT_DISPATCH_TABLE) && 164 (ts_dispatch_extended == -1)) { 165 /* 166 * Based on a platform model, select a dispatch table. 167 * Only DC2 and DC3 systems uses the alternate/extended 168 * TS dispatch table. 169 * IKKAKU, FF1, FF2 and DC1 systems use standard dispatch 170 * tables. 171 */ 172 ts_dispatch_extended = 1; 173 } 174 175 } 176 177 static void 178 set_max_mmu_ctxdoms() 179 { 180 extern uint_t max_mmu_ctxdoms; 181 int max_boards; 182 183 /* 184 * From the model, get the maximum number of boards 185 * supported and set the value accordingly. If the model 186 * could not be determined or recognized, we assume the max value. 187 */ 188 if (opl_cur_model == NULL) 189 max_boards = OPL_MAX_BOARDS; 190 else 191 max_boards = opl_cur_model->model_max_boards; 192 193 /* 194 * On OPL, cores and MMUs are one-to-one. 195 */ 196 max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards; 197 } 198 199 #pragma weak mmu_init_large_pages 200 201 void 202 set_platform_defaults(void) 203 { 204 extern char *tod_module_name; 205 extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int); 206 extern void mmu_init_large_pages(size_t); 207 208 /* Set the CPU signature function pointer */ 209 cpu_sgn_func = cpu_sgn_update; 210 211 /* Set appropriate tod module for OPL platform */ 212 ASSERT(tod_module_name == NULL); 213 tod_module_name = "todopl"; 214 215 if ((mmu_page_sizes == max_mmu_page_sizes) && 216 (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) { 217 if (&mmu_init_large_pages) 218 mmu_init_large_pages(mmu_ism_pagesize); 219 } 220 221 tsb_lgrp_affinity = 1; 222 223 set_max_mmu_ctxdoms(); 224 } 225 226 /* 227 * Convert logical a board number to a physical one. 228 */ 229 230 #define LSBPROP "board#" 231 #define PSBPROP "physical-board#" 232 233 int 234 opl_get_physical_board(int id) 235 { 236 dev_info_t *root_dip, *dip = NULL; 237 char *dname = NULL; 238 int circ; 239 240 pnode_t pnode; 241 char pname[MAXSYSNAME] = {0}; 242 243 int lsb_id; /* Logical System Board ID */ 244 int psb_id; /* Physical System Board ID */ 245 246 247 /* 248 * This function is called on early stage of bootup when the 249 * kernel device tree is not initialized yet, and also 250 * later on when the device tree is up. We want to try 251 * the fast track first. 252 */ 253 root_dip = ddi_root_node(); 254 if (root_dip) { 255 /* Get from devinfo node */ 256 ndi_devi_enter(root_dip, &circ); 257 for (dip = ddi_get_child(root_dip); dip; 258 dip = ddi_get_next_sibling(dip)) { 259 260 dname = ddi_node_name(dip); 261 if (strncmp(dname, "pseudo-mc", 9) != 0) 262 continue; 263 264 if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip, 265 DDI_PROP_DONTPASS, LSBPROP, -1)) == -1) 266 continue; 267 268 if (id == lsb_id) { 269 if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY, 270 dip, DDI_PROP_DONTPASS, PSBPROP, -1)) 271 == -1) { 272 ndi_devi_exit(root_dip, circ); 273 return (-1); 274 } else { 275 ndi_devi_exit(root_dip, circ); 276 return (psb_id); 277 } 278 } 279 } 280 ndi_devi_exit(root_dip, circ); 281 } 282 283 /* 284 * We do not have the kernel device tree, or we did not 285 * find the node for some reason (let's say the kernel 286 * device tree was modified), let's try the OBP tree. 287 */ 288 pnode = prom_rootnode(); 289 for (pnode = prom_childnode(pnode); pnode; 290 pnode = prom_nextnode(pnode)) { 291 292 if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) || 293 (strncmp(pname, "pseudo-mc", 9) != 0)) 294 continue; 295 296 if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1) 297 continue; 298 299 if (id == lsb_id) { 300 if (prom_getprop(pnode, PSBPROP, 301 (caddr_t)&psb_id) == -1) { 302 return (-1); 303 } else { 304 return (psb_id); 305 } 306 } 307 } 308 309 return (-1); 310 } 311 312 /* 313 * For OPL it's possible that memory from two or more successive boards 314 * will be contiguous across the boards, and therefore represented as a 315 * single chunk. 316 * This function splits such chunks down the board boundaries. 317 */ 318 static struct memlist * 319 opl_memlist_per_board(struct memlist *ml) 320 { 321 uint64_t ssize, low, high, boundary; 322 struct memlist *head, *tail, *new; 323 324 ssize = (1ull << OPL_MC_MEMBOARD_SHIFT); 325 326 head = tail = NULL; 327 328 for (; ml; ml = ml->next) { 329 low = (uint64_t)ml->address; 330 high = low+(uint64_t)(ml->size); 331 while (low < high) { 332 boundary = roundup(low+1, ssize); 333 boundary = MIN(high, boundary); 334 new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP); 335 new->address = low; 336 new->size = boundary - low; 337 if (head == NULL) 338 head = new; 339 if (tail) { 340 tail->next = new; 341 new->prev = tail; 342 } 343 tail = new; 344 low = boundary; 345 } 346 } 347 return (head); 348 } 349 350 void 351 set_platform_cage_params(void) 352 { 353 extern pgcnt_t total_pages; 354 extern struct memlist *phys_avail; 355 struct memlist *ml, *tml; 356 357 if (kernel_cage_enable) { 358 pgcnt_t preferred_cage_size; 359 360 preferred_cage_size = MAX(opl_startup_cage_size, 361 total_pages / 256); 362 363 ml = opl_memlist_per_board(phys_avail); 364 365 /* 366 * Note: we are assuming that post has load the 367 * whole show in to the high end of memory. Having 368 * taken this leap, we copy the whole of phys_avail 369 * the glist and arrange for the cage to grow 370 * downward (descending pfns). 371 */ 372 kcage_range_init(ml, KCAGE_DOWN, preferred_cage_size); 373 374 /* free the memlist */ 375 do { 376 tml = ml->next; 377 kmem_free(ml, sizeof (struct memlist)); 378 ml = tml; 379 } while (ml != NULL); 380 } 381 382 if (kcage_on) 383 cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED"); 384 else 385 cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED"); 386 } 387 388 /*ARGSUSED*/ 389 int 390 plat_cpu_poweron(struct cpu *cp) 391 { 392 int (*opl_cpu_poweron)(struct cpu *) = NULL; 393 394 opl_cpu_poweron = 395 (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0); 396 397 if (opl_cpu_poweron == NULL) 398 return (ENOTSUP); 399 else 400 return ((opl_cpu_poweron)(cp)); 401 402 } 403 404 /*ARGSUSED*/ 405 int 406 plat_cpu_poweroff(struct cpu *cp) 407 { 408 int (*opl_cpu_poweroff)(struct cpu *) = NULL; 409 410 opl_cpu_poweroff = 411 (int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0); 412 413 if (opl_cpu_poweroff == NULL) 414 return (ENOTSUP); 415 else 416 return ((opl_cpu_poweroff)(cp)); 417 418 } 419 420 int 421 plat_max_boards(void) 422 { 423 /* 424 * If the model cannot be determined, default to the max value. 425 * Otherwise, Ikkaku model only supports 1 system board. 426 */ 427 if ((opl_cur_model != NULL) && (opl_cur_model->model_type == IKKAKU)) 428 return (OPL_MAX_BOARDS_IKKAKU); 429 else 430 return (OPL_MAX_BOARDS); 431 } 432 433 int 434 plat_max_cpu_units_per_board(void) 435 { 436 return (OPL_MAX_CPU_PER_BOARD); 437 } 438 439 int 440 plat_max_mem_units_per_board(void) 441 { 442 return (OPL_MAX_MEM_UNITS_PER_BOARD); 443 } 444 445 int 446 plat_max_io_units_per_board(void) 447 { 448 return (OPL_MAX_IO_UNITS_PER_BOARD); 449 } 450 451 int 452 plat_max_cmp_units_per_board(void) 453 { 454 return (OPL_MAX_CMP_UNITS_PER_BOARD); 455 } 456 457 int 458 plat_max_core_units_per_board(void) 459 { 460 return (OPL_MAX_CORE_UNITS_PER_BOARD); 461 } 462 463 int 464 plat_pfn_to_mem_node(pfn_t pfn) 465 { 466 return (pfn >> mem_node_pfn_shift); 467 } 468 469 /* ARGSUSED */ 470 void 471 plat_build_mem_nodes(prom_memlist_t *list, size_t nelems) 472 { 473 size_t elem; 474 pfn_t basepfn; 475 pgcnt_t npgs; 476 uint64_t boundary, ssize; 477 uint64_t low, high; 478 479 /* 480 * OPL mem slices are always aligned on a 256GB boundary. 481 */ 482 mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT; 483 mem_node_physalign = 0; 484 485 /* 486 * Boot install lists are arranged <addr, len>, <addr, len>, ... 487 */ 488 ssize = (1ull << OPL_MC_MEMBOARD_SHIFT); 489 for (elem = 0; elem < nelems; list++, elem++) { 490 low = list->addr; 491 high = low + list->size; 492 while (low < high) { 493 boundary = roundup(low+1, ssize); 494 boundary = MIN(high, boundary); 495 basepfn = btop(low); 496 npgs = btop(boundary - low); 497 mem_node_add_slice(basepfn, basepfn + npgs - 1); 498 low = boundary; 499 } 500 } 501 } 502 503 /* 504 * Find the CPU associated with a slice at boot-time. 505 */ 506 void 507 plat_fill_mc(pnode_t nodeid) 508 { 509 int board; 510 int memnode; 511 struct { 512 uint64_t addr; 513 uint64_t size; 514 } mem_range; 515 516 if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) { 517 panic("Can not find board# property in mc node %x", nodeid); 518 } 519 if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) { 520 panic("Can not find sb-mem-ranges property in mc node %x", 521 nodeid); 522 } 523 memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT; 524 plat_assign_lgrphand_to_mem_node(board, memnode); 525 } 526 527 /* 528 * Return the platform handle for the lgroup containing the given CPU 529 * 530 * For OPL, lgroup platform handle == board #. 531 */ 532 533 extern int mpo_disabled; 534 extern lgrp_handle_t lgrp_default_handle; 535 536 lgrp_handle_t 537 plat_lgrp_cpu_to_hand(processorid_t id) 538 { 539 lgrp_handle_t plathand; 540 541 /* 542 * Return the real platform handle for the CPU until 543 * such time as we know that MPO should be disabled. 544 * At that point, we set the "mpo_disabled" flag to true, 545 * and from that point on, return the default handle. 546 * 547 * By the time we know that MPO should be disabled, the 548 * first CPU will have already been added to a leaf 549 * lgroup, but that's ok. The common lgroup code will 550 * double check that the boot CPU is in the correct place, 551 * and in the case where mpo should be disabled, will move 552 * it to the root if necessary. 553 */ 554 if (mpo_disabled) { 555 /* If MPO is disabled, return the default (UMA) handle */ 556 plathand = lgrp_default_handle; 557 } else 558 plathand = (lgrp_handle_t)LSB_ID(id); 559 return (plathand); 560 } 561 562 /* 563 * Platform specific lgroup initialization 564 */ 565 void 566 plat_lgrp_init(void) 567 { 568 extern uint32_t lgrp_expand_proc_thresh; 569 extern uint32_t lgrp_expand_proc_diff; 570 const uint_t m = LGRP_LOADAVG_THREAD_MAX; 571 572 /* 573 * Set tuneables for the OPL architecture 574 * 575 * lgrp_expand_proc_thresh is the threshold load on the set of 576 * lgroups a process is currently using on before considering 577 * adding another lgroup to the set. For Oly-C and Jupiter 578 * systems, there are four sockets per lgroup. Setting 579 * lgrp_expand_proc_thresh to add lgroups when the load reaches 580 * four threads will spread the load when it exceeds one thread 581 * per socket, optimizing memory bandwidth and L2 cache space. 582 * 583 * lgrp_expand_proc_diff determines how much less another lgroup 584 * must be loaded before shifting the start location of a thread 585 * to it. 586 * 587 * lgrp_loadavg_tolerance is the threshold where two lgroups are 588 * considered to have different loads. It is set to be less than 589 * 1% so that even a small residual load will be considered different 590 * from no residual load. 591 * 592 * We note loadavg values are not precise. 593 * Every 1/10 of a second loadavg values are reduced by 5%. 594 * This adjustment can come in the middle of the lgroup selection 595 * process, and for larger parallel apps with many threads can 596 * frequently occur between the start of the second thread 597 * placement and the finish of the last thread placement. 598 * We also must be careful to not use too small of a threshold 599 * since the cumulative decay for 1 second idle time is 40%. 600 * That is, the residual load from completed threads will still 601 * be 60% one second after the proc goes idle or 8% after 5 seconds. 602 * 603 * To allow for lag time in loadavg calculations 604 * remote thresh = 3.75 * LGRP_LOADAVG_THREAD_MAX 605 * local thresh = 0.75 * LGRP_LOADAVG_THREAD_MAX 606 * tolerance = 0.0078 * LGRP_LOADAVG_THREAD_MAX 607 * 608 * The load placement algorithms consider LGRP_LOADAVG_THREAD_MAX 609 * as the equivalent of a load of 1. To make the code more compact, 610 * we set m = LGRP_LOADAVG_THREAD_MAX. 611 */ 612 lgrp_expand_proc_thresh = (m * 3) + (m >> 1) + (m >> 2); 613 lgrp_expand_proc_diff = (m >> 1) + (m >> 2); 614 lgrp_loadavg_tolerance = (m >> 7); 615 } 616 617 /* 618 * Platform notification of lgroup (re)configuration changes 619 */ 620 /*ARGSUSED*/ 621 void 622 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg) 623 { 624 update_membounds_t *umb; 625 lgrp_config_mem_rename_t lmr; 626 int sbd, tbd; 627 lgrp_handle_t hand, shand, thand; 628 int mnode, snode, tnode; 629 pfn_t start, end; 630 631 if (mpo_disabled) 632 return; 633 634 switch (evt) { 635 636 case LGRP_CONFIG_MEM_ADD: 637 /* 638 * Establish the lgroup handle to memnode translation. 639 */ 640 umb = (update_membounds_t *)arg; 641 642 hand = umb->u_board; 643 mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT); 644 plat_assign_lgrphand_to_mem_node(hand, mnode); 645 646 break; 647 648 case LGRP_CONFIG_MEM_DEL: 649 /* 650 * Special handling for possible memory holes. 651 */ 652 umb = (update_membounds_t *)arg; 653 hand = umb->u_board; 654 if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) { 655 if (mem_node_config[mnode].exists) { 656 start = mem_node_config[mnode].physbase; 657 end = mem_node_config[mnode].physmax; 658 mem_node_del_slice(start, end); 659 } 660 } 661 662 break; 663 664 case LGRP_CONFIG_MEM_RENAME: 665 /* 666 * During a DR copy-rename operation, all of the memory 667 * on one board is moved to another board -- but the 668 * addresses/pfns and memnodes don't change. This means 669 * the memory has changed locations without changing identity. 670 * 671 * Source is where we are copying from and target is where we 672 * are copying to. After source memnode is copied to target 673 * memnode, the physical addresses of the target memnode are 674 * renamed to match what the source memnode had. Then target 675 * memnode can be removed and source memnode can take its 676 * place. 677 * 678 * To do this, swap the lgroup handle to memnode mappings for 679 * the boards, so target lgroup will have source memnode and 680 * source lgroup will have empty target memnode which is where 681 * its memory will go (if any is added to it later). 682 * 683 * Then source memnode needs to be removed from its lgroup 684 * and added to the target lgroup where the memory was living 685 * but under a different name/memnode. The memory was in the 686 * target memnode and now lives in the source memnode with 687 * different physical addresses even though it is the same 688 * memory. 689 */ 690 sbd = arg & 0xffff; 691 tbd = (arg & 0xffff0000) >> 16; 692 shand = sbd; 693 thand = tbd; 694 snode = plat_lgrphand_to_mem_node(shand); 695 tnode = plat_lgrphand_to_mem_node(thand); 696 697 /* 698 * Special handling for possible memory holes. 699 */ 700 if (tnode != -1 && mem_node_config[tnode].exists) { 701 start = mem_node_config[tnode].physbase; 702 end = mem_node_config[tnode].physmax; 703 mem_node_del_slice(start, end); 704 } 705 706 plat_assign_lgrphand_to_mem_node(thand, snode); 707 plat_assign_lgrphand_to_mem_node(shand, tnode); 708 709 lmr.lmem_rename_from = shand; 710 lmr.lmem_rename_to = thand; 711 712 /* 713 * Remove source memnode of copy rename from its lgroup 714 * and add it to its new target lgroup 715 */ 716 lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode, 717 (uintptr_t)&lmr); 718 719 break; 720 721 default: 722 break; 723 } 724 } 725 726 /* 727 * Return latency between "from" and "to" lgroups 728 * 729 * This latency number can only be used for relative comparison 730 * between lgroups on the running system, cannot be used across platforms, 731 * and may not reflect the actual latency. It is platform and implementation 732 * specific, so platform gets to decide its value. It would be nice if the 733 * number was at least proportional to make comparisons more meaningful though. 734 * NOTE: The numbers below are supposed to be load latencies for uncached 735 * memory divided by 10. 736 * 737 */ 738 int 739 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to) 740 { 741 /* 742 * Return min remote latency when there are more than two lgroups 743 * (root and child) and getting latency between two different lgroups 744 * or root is involved 745 */ 746 if (lgrp_optimizations() && (from != to || 747 from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)) 748 return (42); 749 else 750 return (35); 751 } 752 753 /* 754 * Return platform handle for root lgroup 755 */ 756 lgrp_handle_t 757 plat_lgrp_root_hand(void) 758 { 759 if (mpo_disabled) 760 return (lgrp_default_handle); 761 762 return (LGRP_DEFAULT_HANDLE); 763 } 764 765 /*ARGSUSED*/ 766 void 767 plat_freelist_process(int mnode) 768 { 769 } 770 771 void 772 load_platform_drivers(void) 773 { 774 (void) i_ddi_attach_pseudo_node("dr"); 775 } 776 777 /* 778 * No platform drivers on this platform 779 */ 780 char *platform_module_list[] = { 781 (char *)0 782 }; 783 784 /*ARGSUSED*/ 785 void 786 plat_tod_fault(enum tod_fault_type tod_bad) 787 { 788 } 789 790 /*ARGSUSED*/ 791 void 792 cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid) 793 { 794 static void (*scf_panic_callback)(int); 795 static void (*scf_shutdown_callback)(int); 796 797 /* 798 * This is for notifing system panic/shutdown to SCF. 799 * In case of shutdown and panic, SCF call back 800 * function should be called. 801 * <SCF call back functions> 802 * scf_panic_callb() : panicsys()->panic_quiesce_hw() 803 * scf_shutdown_callb(): halt() or power_down() or reboot_machine() 804 * cpuid should be -1 and state should be SIGST_EXIT. 805 */ 806 if (state == SIGST_EXIT && cpuid == -1) { 807 808 /* 809 * find the symbol for the SCF panic callback routine in driver 810 */ 811 if (scf_panic_callback == NULL) 812 scf_panic_callback = (void (*)(int)) 813 modgetsymvalue("scf_panic_callb", 0); 814 if (scf_shutdown_callback == NULL) 815 scf_shutdown_callback = (void (*)(int)) 816 modgetsymvalue("scf_shutdown_callb", 0); 817 818 switch (sub_state) { 819 case SIGSUBST_PANIC: 820 if (scf_panic_callback == NULL) { 821 cmn_err(CE_NOTE, "!cpu_sgn_update: " 822 "scf_panic_callb not found\n"); 823 return; 824 } 825 scf_panic_callback(SIGSUBST_PANIC); 826 break; 827 828 case SIGSUBST_HALT: 829 if (scf_shutdown_callback == NULL) { 830 cmn_err(CE_NOTE, "!cpu_sgn_update: " 831 "scf_shutdown_callb not found\n"); 832 return; 833 } 834 scf_shutdown_callback(SIGSUBST_HALT); 835 break; 836 837 case SIGSUBST_ENVIRON: 838 if (scf_shutdown_callback == NULL) { 839 cmn_err(CE_NOTE, "!cpu_sgn_update: " 840 "scf_shutdown_callb not found\n"); 841 return; 842 } 843 scf_shutdown_callback(SIGSUBST_ENVIRON); 844 break; 845 846 case SIGSUBST_REBOOT: 847 if (scf_shutdown_callback == NULL) { 848 cmn_err(CE_NOTE, "!cpu_sgn_update: " 849 "scf_shutdown_callb not found\n"); 850 return; 851 } 852 scf_shutdown_callback(SIGSUBST_REBOOT); 853 break; 854 } 855 } 856 } 857 858 /*ARGSUSED*/ 859 int 860 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id, 861 int flt_in_memory, ushort_t flt_status, 862 char *buf, int buflen, int *lenp) 863 { 864 /* 865 * check if it's a Memory error. 866 */ 867 if (flt_in_memory) { 868 if (opl_get_mem_unum != NULL) { 869 return (opl_get_mem_unum(synd_code, flt_addr, buf, 870 buflen, lenp)); 871 } else { 872 return (ENOTSUP); 873 } 874 } else { 875 return (ENOTSUP); 876 } 877 } 878 879 /*ARGSUSED*/ 880 int 881 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp) 882 { 883 int ret = 0; 884 int sb; 885 int plen; 886 887 sb = opl_get_physical_board(LSB_ID(cpuid)); 888 if (sb == -1) { 889 return (ENXIO); 890 } 891 892 /* 893 * opl_cur_model is assigned here 894 */ 895 if (opl_cur_model == NULL) { 896 set_model_info(); 897 898 /* 899 * if not matched, return 900 */ 901 if (opl_cur_model == NULL) 902 return (ENODEV); 903 } 904 905 ASSERT((opl_cur_model - opl_models) == (opl_cur_model->model_type)); 906 907 switch (opl_cur_model->model_type) { 908 case FF1: 909 plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A", 910 CHIP_ID(cpuid) / 2); 911 break; 912 913 case FF2: 914 plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B", 915 (CHIP_ID(cpuid) / 2) + (sb * 2)); 916 break; 917 918 case DC1: 919 case DC2: 920 case DC3: 921 plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb, 922 CHIP_ID(cpuid)); 923 break; 924 925 case IKKAKU: 926 plen = snprintf(buf, buflen, "/%s", "MBU_A"); 927 break; 928 929 default: 930 /* This should never happen */ 931 return (ENODEV); 932 } 933 934 if (plen >= buflen) { 935 ret = ENOSPC; 936 } else { 937 if (lenp) 938 *lenp = strlen(buf); 939 } 940 return (ret); 941 } 942 943 void 944 plat_nodename_set(void) 945 { 946 post_xscf_msg((char *)&utsname, sizeof (struct utsname)); 947 } 948 949 caddr_t efcode_vaddr = NULL; 950 951 /* 952 * Preallocate enough memory for fcode claims. 953 */ 954 955 caddr_t 956 efcode_alloc(caddr_t alloc_base) 957 { 958 caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 959 MMU_PAGESIZE); 960 caddr_t vaddr; 961 962 /* 963 * allocate the physical memory for the Oberon fcode. 964 */ 965 if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base, 966 efcode_size, MMU_PAGESIZE)) == NULL) 967 cmn_err(CE_PANIC, "Cannot allocate Efcode Memory"); 968 969 efcode_vaddr = vaddr; 970 971 return (efcode_alloc_base + efcode_size); 972 } 973 974 caddr_t 975 plat_startup_memlist(caddr_t alloc_base) 976 { 977 caddr_t tmp_alloc_base; 978 979 tmp_alloc_base = efcode_alloc(alloc_base); 980 tmp_alloc_base = 981 (caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize); 982 return (tmp_alloc_base); 983 } 984 985 /* need to forward declare these */ 986 static void plat_lock_delay(uint_t); 987 988 void 989 startup_platform(void) 990 { 991 if (clock_tick_threshold == 0) 992 clock_tick_threshold = OPL_CLOCK_TICK_THRESHOLD; 993 if (clock_tick_ncpus == 0) 994 clock_tick_ncpus = OPL_CLOCK_TICK_NCPUS; 995 mutex_lock_delay = plat_lock_delay; 996 mutex_cap_factor = OPL_BOFF_MAX_SCALE; 997 } 998 999 static uint_t 1000 get_mmu_id(processorid_t cpuid) 1001 { 1002 int pb = opl_get_physical_board(LSB_ID(cpuid)); 1003 1004 if (pb == -1) { 1005 cmn_err(CE_PANIC, 1006 "opl_get_physical_board failed (cpu %d LSB %u)", 1007 cpuid, LSB_ID(cpuid)); 1008 } 1009 return (pb * OPL_MAX_COREID_PER_BOARD) + (CHIP_ID(cpuid) * 1010 OPL_MAX_COREID_PER_CMP) + CORE_ID(cpuid); 1011 } 1012 1013 void 1014 plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info) 1015 { 1016 int impl; 1017 1018 impl = cpunodes[cpuid].implementation; 1019 if (IS_OLYMPUS_C(impl) || IS_JUPITER(impl)) { 1020 info->mmu_idx = get_mmu_id(cpuid); 1021 info->mmu_nctxs = 8192; 1022 } else { 1023 cmn_err(CE_PANIC, "Unknown processor %d", impl); 1024 } 1025 } 1026 1027 int 1028 plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp) 1029 { 1030 if (opl_get_mem_sid == NULL) { 1031 return (ENOTSUP); 1032 } 1033 return (opl_get_mem_sid(unum, buf, buflen, lenp)); 1034 } 1035 1036 int 1037 plat_get_mem_offset(uint64_t paddr, uint64_t *offp) 1038 { 1039 if (opl_get_mem_offset == NULL) { 1040 return (ENOTSUP); 1041 } 1042 return (opl_get_mem_offset(paddr, offp)); 1043 } 1044 1045 int 1046 plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp) 1047 { 1048 if (opl_get_mem_addr == NULL) { 1049 return (ENOTSUP); 1050 } 1051 return (opl_get_mem_addr(unum, sid, offset, addrp)); 1052 } 1053 1054 void 1055 plat_lock_delay(uint_t backoff) 1056 { 1057 int i; 1058 uint_t cnt, remcnt; 1059 int ctr; 1060 hrtime_t delay_start, rem_delay; 1061 /* 1062 * Platform specific lock delay code for OPL 1063 * 1064 * Using staged linear increases in the delay. 1065 * The sleep instruction is the preferred method of delay, 1066 * but is too large of granularity for the initial backoff. 1067 */ 1068 1069 if (backoff < 100) { 1070 /* 1071 * If desired backoff is long enough, 1072 * use sleep for most of it 1073 */ 1074 for (cnt = backoff; 1075 cnt >= OPL_BOFF_SLEEP; 1076 cnt -= OPL_BOFF_SLEEP) { 1077 cpu_smt_pause(); 1078 } 1079 /* 1080 * spin for small remainder of backoff 1081 */ 1082 for (ctr = cnt * OPL_BOFF_SPIN; ctr; ctr--) { 1083 mutex_delay_default(); 1084 } 1085 } else { 1086 /* backoff is large. Fill it by sleeping */ 1087 delay_start = gethrtime_waitfree(); 1088 cnt = backoff / OPL_BOFF_SLEEP; 1089 /* 1090 * use sleep instructions for delay 1091 */ 1092 for (i = 0; i < cnt; i++) { 1093 cpu_smt_pause(); 1094 } 1095 1096 /* 1097 * Note: if the other strand executes a sleep instruction, 1098 * then the sleep ends immediately with a minimum time of 1099 * 42 clocks. We check gethrtime to insure we have 1100 * waited long enough. And we include both a short 1101 * spin loop and a sleep for repeated delay times. 1102 */ 1103 1104 rem_delay = gethrtime_waitfree() - delay_start; 1105 while (rem_delay < cnt * OPL_BOFF_TM) { 1106 remcnt = cnt - (rem_delay / OPL_BOFF_TM); 1107 for (i = 0; i < remcnt; i++) { 1108 cpu_smt_pause(); 1109 for (ctr = OPL_BOFF_SPIN; ctr; ctr--) { 1110 mutex_delay_default(); 1111 } 1112 } 1113 rem_delay = gethrtime_waitfree() - delay_start; 1114 } 1115 } 1116 } 1117 1118 /* 1119 * The following code implements asynchronous call to XSCF to setup the 1120 * domain node name. 1121 */ 1122 1123 #define FREE_MSG(m) kmem_free((m), NM_LEN((m)->len)) 1124 1125 /* 1126 * The following three macros define the all operations on the request 1127 * list we are using here, and hide the details of the list 1128 * implementation from the code. 1129 */ 1130 #define PUSH(m) \ 1131 { \ 1132 (m)->next = ctl_msg.head; \ 1133 (m)->prev = NULL; \ 1134 if ((m)->next != NULL) \ 1135 (m)->next->prev = (m); \ 1136 ctl_msg.head = (m); \ 1137 } 1138 1139 #define REMOVE(m) \ 1140 { \ 1141 if ((m)->prev != NULL) \ 1142 (m)->prev->next = (m)->next; \ 1143 else \ 1144 ctl_msg.head = (m)->next; \ 1145 if ((m)->next != NULL) \ 1146 (m)->next->prev = (m)->prev; \ 1147 } 1148 1149 #define FREE_THE_TAIL(head) \ 1150 { \ 1151 nm_msg_t *n_msg, *m; \ 1152 m = (head)->next; \ 1153 (head)->next = NULL; \ 1154 while (m != NULL) { \ 1155 n_msg = m->next; \ 1156 FREE_MSG(m); \ 1157 m = n_msg; \ 1158 } \ 1159 } 1160 1161 #define SCF_PUTINFO(f, s, p) \ 1162 f(KEY_ESCF, 0x01, 0, s, p) 1163 1164 #define PASS2XSCF(m, r) ((r = SCF_PUTINFO(ctl_msg.scf_service_function, \ 1165 (m)->len, (m)->data)) == 0) 1166 1167 /* 1168 * The value of the following macro loosely depends on the 1169 * value of the "device busy" timeout used in the SCF driver. 1170 * (See pass2xscf_thread()). 1171 */ 1172 #define SCF_DEVBUSY_DELAY 10 1173 1174 /* 1175 * The default number of attempts to contact the scf driver 1176 * if we cannot fetch any information about the timeout value 1177 * it uses. 1178 */ 1179 1180 #define REPEATS 4 1181 1182 typedef struct nm_msg { 1183 struct nm_msg *next; 1184 struct nm_msg *prev; 1185 int len; 1186 char data[1]; 1187 } nm_msg_t; 1188 1189 #define NM_LEN(len) (sizeof (nm_msg_t) + (len) - 1) 1190 1191 static struct ctlmsg { 1192 nm_msg_t *head; 1193 nm_msg_t *now_serving; 1194 kmutex_t nm_lock; 1195 kthread_t *nmt; 1196 int cnt; 1197 int (*scf_service_function)(uint32_t, uint8_t, 1198 uint32_t, uint32_t, void *); 1199 } ctl_msg; 1200 1201 static void 1202 post_xscf_msg(char *dp, int len) 1203 { 1204 nm_msg_t *msg; 1205 1206 msg = (nm_msg_t *)kmem_zalloc(NM_LEN(len), KM_SLEEP); 1207 1208 bcopy(dp, msg->data, len); 1209 msg->len = len; 1210 1211 mutex_enter(&ctl_msg.nm_lock); 1212 if (ctl_msg.nmt == NULL) { 1213 ctl_msg.nmt = thread_create(NULL, 0, pass2xscf_thread, 1214 NULL, 0, &p0, TS_RUN, minclsyspri); 1215 } 1216 1217 PUSH(msg); 1218 ctl_msg.cnt++; 1219 mutex_exit(&ctl_msg.nm_lock); 1220 } 1221 1222 static void 1223 pass2xscf_thread() 1224 { 1225 nm_msg_t *msg; 1226 int ret; 1227 uint_t i, msg_sent, xscf_driver_delay; 1228 static uint_t repeat_cnt; 1229 uint_t *scf_wait_cnt; 1230 1231 mutex_enter(&ctl_msg.nm_lock); 1232 1233 /* 1234 * Find the address of the SCF put routine if it's not done yet. 1235 */ 1236 if (ctl_msg.scf_service_function == NULL) { 1237 if ((ctl_msg.scf_service_function = 1238 (int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *)) 1239 modgetsymvalue("scf_service_putinfo", 0)) == NULL) { 1240 cmn_err(CE_NOTE, "pass2xscf_thread: " 1241 "scf_service_putinfo not found\n"); 1242 ctl_msg.nmt = NULL; 1243 mutex_exit(&ctl_msg.nm_lock); 1244 return; 1245 } 1246 } 1247 1248 /* 1249 * Calculate the number of attempts to connect XSCF based on the 1250 * scf driver delay (which is 1251 * SCF_DEVBUSY_DELAY*scf_online_wait_rcnt seconds) and the value 1252 * of xscf_connect_delay (the total number of seconds to wait 1253 * till xscf get ready.) 1254 */ 1255 if (repeat_cnt == 0) { 1256 if ((scf_wait_cnt = 1257 (uint_t *) 1258 modgetsymvalue("scf_online_wait_rcnt", 0)) == NULL) { 1259 repeat_cnt = REPEATS; 1260 } else { 1261 1262 xscf_driver_delay = *scf_wait_cnt * 1263 SCF_DEVBUSY_DELAY; 1264 repeat_cnt = (xscf_connect_delay/xscf_driver_delay) + 1; 1265 } 1266 } 1267 1268 while (ctl_msg.cnt != 0) { 1269 1270 /* 1271 * Take the very last request from the queue, 1272 */ 1273 ctl_msg.now_serving = ctl_msg.head; 1274 ASSERT(ctl_msg.now_serving != NULL); 1275 1276 /* 1277 * and discard all the others if any. 1278 */ 1279 FREE_THE_TAIL(ctl_msg.now_serving); 1280 ctl_msg.cnt = 1; 1281 mutex_exit(&ctl_msg.nm_lock); 1282 1283 /* 1284 * Pass the name to XSCF. Note please, we do not hold the 1285 * mutex while we are doing this. 1286 */ 1287 msg_sent = 0; 1288 for (i = 0; i < repeat_cnt; i++) { 1289 if (PASS2XSCF(ctl_msg.now_serving, ret)) { 1290 msg_sent = 1; 1291 break; 1292 } else { 1293 if (ret != EBUSY) { 1294 cmn_err(CE_NOTE, "pass2xscf_thread:" 1295 " unexpected return code" 1296 " from scf_service_putinfo():" 1297 " %d\n", ret); 1298 } 1299 } 1300 } 1301 1302 if (msg_sent) { 1303 1304 /* 1305 * Remove the request from the list 1306 */ 1307 mutex_enter(&ctl_msg.nm_lock); 1308 msg = ctl_msg.now_serving; 1309 ctl_msg.now_serving = NULL; 1310 REMOVE(msg); 1311 ctl_msg.cnt--; 1312 mutex_exit(&ctl_msg.nm_lock); 1313 FREE_MSG(msg); 1314 } else { 1315 1316 /* 1317 * If while we have tried to communicate with 1318 * XSCF there were any other requests we are 1319 * going to drop this one and take the latest 1320 * one. Otherwise we will try to pass this one 1321 * again. 1322 */ 1323 cmn_err(CE_NOTE, 1324 "pass2xscf_thread: " 1325 "scf_service_putinfo " 1326 "not responding\n"); 1327 } 1328 mutex_enter(&ctl_msg.nm_lock); 1329 } 1330 1331 /* 1332 * The request queue is empty, exit. 1333 */ 1334 ctl_msg.nmt = NULL; 1335 mutex_exit(&ctl_msg.nm_lock); 1336 } 1337