1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * CMU-CH Interrupt Block 30 */ 31 32 #include <sys/types.h> 33 #include <sys/kmem.h> 34 #include <sys/async.h> 35 #include <sys/systm.h> 36 #include <sys/spl.h> 37 #include <sys/sunddi.h> 38 #include <sys/machsystm.h> 39 #include <sys/ddi_impldefs.h> 40 #include <sys/pcicmu/pcicmu.h> 41 42 /*LINTLIBRARY*/ 43 static uint_t pcmu_ib_intr_reset(void *arg); 44 45 extern uint64_t xc_tick_jump_limit; 46 47 void 48 pcmu_ib_create(pcmu_t *pcmu_p) 49 { 50 pcmu_ib_t *pib_p; 51 uintptr_t a; 52 int i; 53 54 /* 55 * Allocate interrupt block state structure and link it to 56 * the pci state structure. 57 */ 58 pib_p = kmem_zalloc(sizeof (pcmu_ib_t), KM_SLEEP); 59 pcmu_p->pcmu_ib_p = pib_p; 60 pib_p->pib_pcmu_p = pcmu_p; 61 62 a = pcmu_ib_setup(pib_p); 63 64 /* 65 * Determine virtual addresses of interrupt mapping, clear and diag 66 * registers that have common offsets. 67 */ 68 pib_p->pib_intr_retry_timer_reg = 69 (uint64_t *)(a + PCMU_IB_INTR_RETRY_TIMER_OFFSET); 70 pib_p->pib_obio_intr_state_diag_reg = 71 (uint64_t *)(a + PCMU_IB_OBIO_INTR_STATE_DIAG_REG); 72 73 PCMU_DBG2(PCMU_DBG_ATTACH, pcmu_p->pcmu_dip, 74 "pcmu_ib_create: obio_imr=%x, obio_cir=%x\n", 75 pib_p->pib_obio_intr_map_regs, pib_p->pib_obio_clear_intr_regs); 76 PCMU_DBG2(PCMU_DBG_ATTACH, pcmu_p->pcmu_dip, 77 "pcmu_ib_create: retry_timer=%x, obio_diag=%x\n", 78 pib_p->pib_intr_retry_timer_reg, 79 pib_p->pib_obio_intr_state_diag_reg); 80 81 pib_p->pib_ino_lst = (pcmu_ib_ino_info_t *)NULL; 82 mutex_init(&pib_p->pib_intr_lock, NULL, MUTEX_DRIVER, NULL); 83 mutex_init(&pib_p->pib_ino_lst_mutex, NULL, MUTEX_DRIVER, NULL); 84 85 PCMU_DBG1(PCMU_DBG_ATTACH, pcmu_p->pcmu_dip, 86 "pcmu_ib_create: numproxy=%x\n", pcmu_p->pcmu_numproxy); 87 for (i = 1; i <= pcmu_p->pcmu_numproxy; i++) { 88 set_intr_mapping_reg(pcmu_p->pcmu_id, 89 (uint64_t *)pib_p->pib_upa_imr[i - 1], i); 90 } 91 92 pcmu_ib_configure(pib_p); 93 bus_func_register(BF_TYPE_RESINTR, pcmu_ib_intr_reset, pib_p); 94 } 95 96 void 97 pcmu_ib_destroy(pcmu_t *pcmu_p) 98 { 99 pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p; 100 101 PCMU_DBG0(PCMU_DBG_IB, pcmu_p->pcmu_dip, "pcmu_ib_destroy\n"); 102 bus_func_unregister(BF_TYPE_RESINTR, pcmu_ib_intr_reset, pib_p); 103 104 intr_dist_rem_weighted(pcmu_ib_intr_dist_all, pib_p); 105 mutex_destroy(&pib_p->pib_ino_lst_mutex); 106 mutex_destroy(&pib_p->pib_intr_lock); 107 108 pcmu_ib_free_ino_all(pib_p); 109 110 kmem_free(pib_p, sizeof (pcmu_ib_t)); 111 pcmu_p->pcmu_ib_p = NULL; 112 } 113 114 void 115 pcmu_ib_configure(pcmu_ib_t *pib_p) 116 { 117 *pib_p->pib_intr_retry_timer_reg = pcmu_intr_retry_intv; 118 } 119 120 /* 121 * can only used for CMU-CH internal interrupts ue, pbm 122 */ 123 void 124 pcmu_ib_intr_enable(pcmu_t *pcmu_p, pcmu_ib_ino_t ino) 125 { 126 pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p; 127 pcmu_ib_mondo_t mondo = PCMU_IB_INO_TO_MONDO(pib_p, ino); 128 volatile uint64_t *imr_p = ib_intr_map_reg_addr(pib_p, ino); 129 uint_t cpu_id; 130 131 /* 132 * Determine the cpu for the interrupt. 133 */ 134 mutex_enter(&pib_p->pib_intr_lock); 135 cpu_id = intr_dist_cpuid(); 136 cpu_id = u2u_translate_tgtid(pcmu_p, cpu_id, imr_p); 137 PCMU_DBG2(PCMU_DBG_IB, pcmu_p->pcmu_dip, 138 "pcmu_ib_intr_enable: ino=%x cpu_id=%x\n", ino, cpu_id); 139 140 *imr_p = ib_get_map_reg(mondo, cpu_id); 141 PCMU_IB_INO_INTR_CLEAR(ib_clear_intr_reg_addr(pib_p, ino)); 142 mutex_exit(&pib_p->pib_intr_lock); 143 } 144 145 /* 146 * Disable the interrupt via its interrupt mapping register. 147 * Can only be used for internal interrupts: ue, pbm. 148 * If called under interrupt context, wait should be set to 0 149 */ 150 void 151 pcmu_ib_intr_disable(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino, int wait) 152 { 153 volatile uint64_t *imr_p = ib_intr_map_reg_addr(pib_p, ino); 154 volatile uint64_t *state_reg_p = PCMU_IB_INO_INTR_STATE_REG(pib_p, ino); 155 hrtime_t start_time; 156 hrtime_t prev, curr, interval, jump; 157 hrtime_t intr_timeout; 158 159 /* disable the interrupt */ 160 mutex_enter(&pib_p->pib_intr_lock); 161 PCMU_IB_INO_INTR_OFF(imr_p); 162 *imr_p; /* flush previous write */ 163 mutex_exit(&pib_p->pib_intr_lock); 164 165 if (!wait) 166 goto wait_done; 167 168 intr_timeout = pcmu_intrpend_timeout; 169 jump = TICK_TO_NSEC(xc_tick_jump_limit); 170 start_time = curr = gethrtime(); 171 /* busy wait if there is interrupt being processed */ 172 while (PCMU_IB_INO_INTR_PENDING(state_reg_p, ino) && !panicstr) { 173 /* 174 * If we have a really large jump in hrtime, it is most 175 * probably because we entered the debugger (or OBP, 176 * in general). So, we adjust the timeout accordingly 177 * to prevent declaring an interrupt timeout. The 178 * master-interrupt mechanism in OBP should deliver 179 * the interrupts properly. 180 */ 181 prev = curr; 182 curr = gethrtime(); 183 interval = curr - prev; 184 if (interval > jump) 185 intr_timeout += interval; 186 if (curr - start_time > intr_timeout) { 187 pcmu_pbm_t *pcbm_p = pib_p->pib_pcmu_p->pcmu_pcbm_p; 188 cmn_err(CE_WARN, 189 "%s:%s: pcmu_ib_intr_disable timeout %x", 190 pcbm_p->pcbm_nameinst_str, 191 pcbm_p->pcbm_nameaddr_str, ino); 192 break; 193 } 194 } 195 wait_done: 196 PCMU_IB_INO_INTR_PEND(ib_clear_intr_reg_addr(pib_p, ino)); 197 u2u_ittrans_cleanup((u2u_ittrans_data_t *) 198 (PCMU_IB2CB(pib_p)->pcb_ittrans_cookie), imr_p); 199 } 200 201 /* can only used for CMU-CH internal interrupts ue, pbm */ 202 void 203 pcmu_ib_nintr_clear(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino) 204 { 205 uint64_t *clr_reg = ib_clear_intr_reg_addr(pib_p, ino); 206 PCMU_IB_INO_INTR_CLEAR(clr_reg); 207 } 208 209 /* 210 * distribute PBM and UPA interrupts. ino is set to 0 by caller if we 211 * are dealing with UPA interrupts (without inos). 212 */ 213 void 214 pcmu_ib_intr_dist_nintr(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino, 215 volatile uint64_t *imr_p) 216 { 217 volatile uint64_t imr = *imr_p; 218 uint32_t cpu_id; 219 220 if (!PCMU_IB_INO_INTR_ISON(imr)) 221 return; 222 223 cpu_id = intr_dist_cpuid(); 224 225 if (ino) { 226 cpu_id = u2u_translate_tgtid(pib_p->pib_pcmu_p, cpu_id, imr_p); 227 } 228 229 if (ib_map_reg_get_cpu(*imr_p) == cpu_id) { 230 return; 231 } 232 *imr_p = ib_get_map_reg(PCMU_IB_IMR2MONDO(imr), cpu_id); 233 imr = *imr_p; /* flush previous write */ 234 } 235 236 static void 237 pcmu_ib_intr_dist(pcmu_ib_t *pib_p, pcmu_ib_ino_info_t *ino_p) 238 { 239 uint32_t cpu_id = ino_p->pino_cpuid; 240 pcmu_ib_ino_t ino = ino_p->pino_ino; 241 volatile uint64_t imr, *imr_p, *state_reg; 242 hrtime_t start_time; 243 hrtime_t prev, curr, interval, jump; 244 hrtime_t intr_timeout; 245 246 ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex)); 247 imr_p = ib_intr_map_reg_addr(pib_p, ino); 248 state_reg = PCMU_IB_INO_INTR_STATE_REG(pib_p, ino); 249 250 /* disable interrupt, this could disrupt devices sharing our slot */ 251 PCMU_IB_INO_INTR_OFF(imr_p); 252 imr = *imr_p; /* flush previous write */ 253 254 /* busy wait if there is interrupt being processed */ 255 intr_timeout = pcmu_intrpend_timeout; 256 jump = TICK_TO_NSEC(xc_tick_jump_limit); 257 start_time = curr = gethrtime(); 258 while (PCMU_IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) { 259 /* 260 * If we have a really large jump in hrtime, it is most 261 * probably because we entered the debugger (or OBP, 262 * in general). So, we adjust the timeout accordingly 263 * to prevent declaring an interrupt timeout. The 264 * master-interrupt mechanism in OBP should deliver 265 * the interrupts properly. 266 */ 267 prev = curr; 268 curr = gethrtime(); 269 interval = curr - prev; 270 if (interval > jump) 271 intr_timeout += interval; 272 if (curr - start_time > intr_timeout) { 273 pcmu_pbm_t *pcbm_p = pib_p->pib_pcmu_p->pcmu_pcbm_p; 274 cmn_err(CE_WARN, 275 "%s:%s: pcmu_ib_intr_dist(%p,%x) timeout", 276 pcbm_p->pcbm_nameinst_str, 277 pcbm_p->pcbm_nameaddr_str, 278 imr_p, PCMU_IB_INO_TO_MONDO(pib_p, ino)); 279 break; 280 } 281 } 282 cpu_id = u2u_translate_tgtid(pib_p->pib_pcmu_p, cpu_id, imr_p); 283 *imr_p = ib_get_map_reg(PCMU_IB_IMR2MONDO(imr), cpu_id); 284 imr = *imr_p; /* flush previous write */ 285 } 286 287 /* 288 * Redistribute interrupts of the specified weight. The first call has a weight 289 * of weight_max, which can be used to trigger initialization for 290 * redistribution. The inos with weight [weight_max, inf.) should be processed 291 * on the "weight == weight_max" call. This first call is followed by calls 292 * of decreasing weights, inos of that weight should be processed. The final 293 * call specifies a weight of zero, this can be used to trigger processing of 294 * stragglers. 295 */ 296 void 297 pcmu_ib_intr_dist_all(void *arg, int32_t weight_max, int32_t weight) 298 { 299 pcmu_ib_t *pib_p = (pcmu_ib_t *)arg; 300 pcmu_ib_ino_info_t *ino_p; 301 ih_t *ih_lst; 302 int32_t dweight; 303 int i; 304 305 mutex_enter(&pib_p->pib_ino_lst_mutex); 306 307 /* Perform special processing for first call of a redistribution. */ 308 if (weight == weight_max) { 309 for (ino_p = pib_p->pib_ino_lst; ino_p; 310 ino_p = ino_p->pino_next) { 311 312 /* 313 * Clear pino_established of each ino on first call. 314 * The pino_established field may be used by a pci 315 * nexus driver's pcmu_intr_dist_cpuid implementation 316 * when detection of established pci slot-cpu binding 317 * for multi function pci cards. 318 */ 319 ino_p->pino_established = 0; 320 321 /* 322 * recompute the pino_intr_weight based on the device 323 * weight of all devinfo nodes sharing the ino (this 324 * will allow us to pick up new weights established by 325 * i_ddi_set_intr_weight()). 326 */ 327 ino_p->pino_intr_weight = 0; 328 for (i = 0, ih_lst = ino_p->pino_ih_head; 329 i < ino_p->pino_ih_size; 330 i++, ih_lst = ih_lst->ih_next) { 331 dweight = i_ddi_get_intr_weight(ih_lst->ih_dip); 332 if (dweight > 0) 333 ino_p->pino_intr_weight += dweight; 334 } 335 } 336 } 337 338 for (ino_p = pib_p->pib_ino_lst; ino_p; ino_p = ino_p->pino_next) { 339 /* 340 * Get the weight of the ino and determine if we are going to 341 * process call. We wait until an pcmu_ib_intr_dist_all call of 342 * the proper weight occurs to support redistribution of all 343 * heavy weighted interrupts first (across all nexus driver 344 * instances). This is done to ensure optimal 345 * INTR_WEIGHTED_DIST behavior. 346 */ 347 if ((weight == ino_p->pino_intr_weight) || 348 ((weight >= weight_max) && 349 (ino_p->pino_intr_weight >= weight_max))) { 350 /* select cpuid to target and mark ino established */ 351 ino_p->pino_cpuid = pcmu_intr_dist_cpuid(pib_p, ino_p); 352 ino_p->pino_established = 1; 353 354 /* Add device weight of ino devinfos to targeted cpu. */ 355 for (i = 0, ih_lst = ino_p->pino_ih_head; 356 i < ino_p->pino_ih_size; 357 i++, ih_lst = ih_lst->ih_next) { 358 dweight = i_ddi_get_intr_weight(ih_lst->ih_dip); 359 intr_dist_cpuid_add_device_weight( 360 ino_p->pino_cpuid, ih_lst->ih_dip, dweight); 361 } 362 363 /* program the hardware */ 364 pcmu_ib_intr_dist(pib_p, ino_p); 365 } 366 } 367 mutex_exit(&pib_p->pib_ino_lst_mutex); 368 } 369 370 /* 371 * Reset interrupts to IDLE. This function is called during 372 * panic handling after redistributing interrupts; it's needed to 373 * support dumping to network devices after 'sync' from OBP. 374 * 375 * N.B. This routine runs in a context where all other threads 376 * are permanently suspended. 377 */ 378 static uint_t 379 pcmu_ib_intr_reset(void *arg) 380 { 381 pcmu_ib_t *pib_p = (pcmu_ib_t *)arg; 382 pcmu_ib_ino_t ino; 383 uint64_t *clr_reg; 384 385 /* 386 * Note that we only actually care about interrupts that are 387 * potentially from network devices. 388 */ 389 for (ino = 0; ino <= pib_p->pib_max_ino; ino++) { 390 clr_reg = ib_clear_intr_reg_addr(pib_p, ino); 391 PCMU_IB_INO_INTR_CLEAR(clr_reg); 392 } 393 return (BF_NONE); 394 } 395 396 void 397 pcmu_ib_suspend(pcmu_ib_t *pib_p) 398 { 399 pcmu_ib_ino_info_t *ip; 400 401 /* save ino_lst interrupts' mapping registers content */ 402 mutex_enter(&pib_p->pib_ino_lst_mutex); 403 for (ip = pib_p->pib_ino_lst; ip; ip = ip->pino_next) { 404 ip->pino_map_reg_save = *ip->pino_map_reg; 405 } 406 mutex_exit(&pib_p->pib_ino_lst_mutex); 407 } 408 409 void 410 pcmu_ib_resume(pcmu_ib_t *pib_p) 411 { 412 pcmu_ib_ino_info_t *ip; 413 414 /* restore ino_lst interrupts' mapping registers content */ 415 mutex_enter(&pib_p->pib_ino_lst_mutex); 416 for (ip = pib_p->pib_ino_lst; ip; ip = ip->pino_next) { 417 PCMU_IB_INO_INTR_CLEAR(ip->pino_clr_reg); /* set intr to idle */ 418 *ip->pino_map_reg = ip->pino_map_reg_save; /* restore IMR */ 419 } 420 mutex_exit(&pib_p->pib_ino_lst_mutex); 421 } 422 423 /* 424 * locate ino_info structure on pib_p->pib_ino_lst according to ino# 425 * returns NULL if not found. 426 */ 427 pcmu_ib_ino_info_t * 428 pcmu_ib_locate_ino(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino_num) 429 { 430 pcmu_ib_ino_info_t *ino_p = pib_p->pib_ino_lst; 431 ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex)); 432 433 for (; ino_p && ino_p->pino_ino != ino_num; ino_p = ino_p->pino_next); 434 return (ino_p); 435 } 436 437 #define PCMU_IB_INO_TO_SLOT(ino) \ 438 (PCMU_IB_IS_OBIO_INO(ino) ? 0xff : ((ino) & 0x1f) >> 2) 439 440 pcmu_ib_ino_info_t * 441 pcmu_ib_new_ino(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino_num, ih_t *ih_p) 442 { 443 pcmu_ib_ino_info_t *ino_p = kmem_alloc(sizeof (pcmu_ib_ino_info_t), 444 KM_SLEEP); 445 ino_p->pino_ino = ino_num; 446 ino_p->pino_slot_no = PCMU_IB_INO_TO_SLOT(ino_num); 447 ino_p->pino_ib_p = pib_p; 448 ino_p->pino_clr_reg = ib_clear_intr_reg_addr(pib_p, ino_num); 449 ino_p->pino_map_reg = ib_intr_map_reg_addr(pib_p, ino_num); 450 ino_p->pino_unclaimed = 0; 451 452 /* 453 * cannot disable interrupt since we might share slot 454 * PCMU_IB_INO_INTR_OFF(ino_p->pino_map_reg); 455 */ 456 457 ih_p->ih_next = ih_p; 458 ino_p->pino_ih_head = ih_p; 459 ino_p->pino_ih_tail = ih_p; 460 ino_p->pino_ih_start = ih_p; 461 ino_p->pino_ih_size = 1; 462 463 ino_p->pino_next = pib_p->pib_ino_lst; 464 pib_p->pib_ino_lst = ino_p; 465 return (ino_p); 466 } 467 468 /* the ino_p is retrieved by previous call to pcmu_ib_locate_ino() */ 469 void 470 pcmu_ib_delete_ino(pcmu_ib_t *pib_p, pcmu_ib_ino_info_t *ino_p) 471 { 472 pcmu_ib_ino_info_t *list = pib_p->pib_ino_lst; 473 ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex)); 474 if (list == ino_p) { 475 pib_p->pib_ino_lst = list->pino_next; 476 } else { 477 for (; list->pino_next != ino_p; list = list->pino_next); 478 list->pino_next = ino_p->pino_next; 479 } 480 } 481 482 /* free all ino when we are detaching */ 483 void 484 pcmu_ib_free_ino_all(pcmu_ib_t *pib_p) 485 { 486 pcmu_ib_ino_info_t *tmp = pib_p->pib_ino_lst; 487 pcmu_ib_ino_info_t *next = NULL; 488 while (tmp) { 489 next = tmp->pino_next; 490 kmem_free(tmp, sizeof (pcmu_ib_ino_info_t)); 491 tmp = next; 492 } 493 } 494 495 void 496 pcmu_ib_ino_add_intr(pcmu_t *pcmu_p, pcmu_ib_ino_info_t *ino_p, ih_t *ih_p) 497 { 498 pcmu_ib_ino_t ino = ino_p->pino_ino; 499 pcmu_ib_t *pib_p = ino_p->pino_ib_p; 500 volatile uint64_t *state_reg = PCMU_IB_INO_INTR_STATE_REG(pib_p, ino); 501 hrtime_t start_time; 502 hrtime_t prev, curr, interval, jump; 503 hrtime_t intr_timeout; 504 505 ASSERT(pib_p == pcmu_p->pcmu_ib_p); 506 ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex)); 507 508 /* disable interrupt, this could disrupt devices sharing our slot */ 509 PCMU_IB_INO_INTR_OFF(ino_p->pino_map_reg); 510 *ino_p->pino_map_reg; 511 512 /* do NOT modify the link list until after the busy wait */ 513 514 /* 515 * busy wait if there is interrupt being processed. 516 * either the pending state will be cleared by the interrupt wrapper 517 * or the interrupt will be marked as blocked indicating that it was 518 * jabbering. 519 */ 520 intr_timeout = pcmu_intrpend_timeout; 521 jump = TICK_TO_NSEC(xc_tick_jump_limit); 522 start_time = curr = gethrtime(); 523 while ((ino_p->pino_unclaimed <= pcmu_unclaimed_intr_max) && 524 PCMU_IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) { 525 /* 526 * If we have a really large jump in hrtime, it is most 527 * probably because we entered the debugger (or OBP, 528 * in general). So, we adjust the timeout accordingly 529 * to prevent declaring an interrupt timeout. The 530 * master-interrupt mechanism in OBP should deliver 531 * the interrupts properly. 532 */ 533 prev = curr; 534 curr = gethrtime(); 535 interval = curr - prev; 536 if (interval > jump) 537 intr_timeout += interval; 538 if (curr - start_time > intr_timeout) { 539 pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p; 540 cmn_err(CE_WARN, 541 "%s:%s: pcmu_ib_ino_add_intr %x timeout", 542 pcbm_p->pcbm_nameinst_str, 543 pcbm_p->pcbm_nameaddr_str, ino); 544 break; 545 } 546 } 547 548 /* link up pcmu_ispec_t portion of the ppd */ 549 ih_p->ih_next = ino_p->pino_ih_head; 550 ino_p->pino_ih_tail->ih_next = ih_p; 551 ino_p->pino_ih_tail = ih_p; 552 553 ino_p->pino_ih_start = ino_p->pino_ih_head; 554 ino_p->pino_ih_size++; 555 556 /* 557 * if the interrupt was previously blocked (left in pending state) 558 * because of jabber we need to clear the pending state in case the 559 * jabber has gone away. 560 */ 561 if (ino_p->pino_unclaimed > pcmu_unclaimed_intr_max) { 562 cmn_err(CE_WARN, 563 "%s%d: pcmu_ib_ino_add_intr: ino 0x%x has been unblocked", 564 ddi_driver_name(pcmu_p->pcmu_dip), 565 ddi_get_instance(pcmu_p->pcmu_dip), 566 ino_p->pino_ino); 567 ino_p->pino_unclaimed = 0; 568 PCMU_IB_INO_INTR_CLEAR(ino_p->pino_clr_reg); 569 } 570 571 /* re-enable interrupt */ 572 PCMU_IB_INO_INTR_ON(ino_p->pino_map_reg); 573 *ino_p->pino_map_reg; 574 } 575 576 /* 577 * removes pcmu_ispec_t from the ino's link list. 578 * uses hardware mutex to lock out interrupt threads. 579 * Side effects: interrupt belongs to that ino is turned off on return. 580 * if we are sharing PCI slot with other inos, the caller needs 581 * to turn it back on. 582 */ 583 void 584 pcmu_ib_ino_rem_intr(pcmu_t *pcmu_p, pcmu_ib_ino_info_t *ino_p, ih_t *ih_p) 585 { 586 int i; 587 pcmu_ib_ino_t ino = ino_p->pino_ino; 588 ih_t *ih_lst = ino_p->pino_ih_head; 589 volatile uint64_t *state_reg = 590 PCMU_IB_INO_INTR_STATE_REG(ino_p->pino_ib_p, ino); 591 hrtime_t start_time; 592 hrtime_t prev, curr, interval, jump; 593 hrtime_t intr_timeout; 594 595 ASSERT(MUTEX_HELD(&ino_p->pino_ib_p->pib_ino_lst_mutex)); 596 /* disable interrupt, this could disrupt devices sharing our slot */ 597 PCMU_IB_INO_INTR_OFF(ino_p->pino_map_reg); 598 *ino_p->pino_map_reg; 599 600 /* do NOT modify the link list until after the busy wait */ 601 602 /* 603 * busy wait if there is interrupt being processed. 604 * either the pending state will be cleared by the interrupt wrapper 605 * or the interrupt will be marked as blocked indicating that it was 606 * jabbering. 607 */ 608 intr_timeout = pcmu_intrpend_timeout; 609 jump = TICK_TO_NSEC(xc_tick_jump_limit); 610 start_time = curr = gethrtime(); 611 while ((ino_p->pino_unclaimed <= pcmu_unclaimed_intr_max) && 612 PCMU_IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) { 613 /* 614 * If we have a really large jump in hrtime, it is most 615 * probably because we entered the debugger (or OBP, 616 * in general). So, we adjust the timeout accordingly 617 * to prevent declaring an interrupt timeout. The 618 * master-interrupt mechanism in OBP should deliver 619 * the interrupts properly. 620 */ 621 prev = curr; 622 curr = gethrtime(); 623 interval = curr - prev; 624 if (interval > jump) 625 intr_timeout += interval; 626 if (curr - start_time > intr_timeout) { 627 pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p; 628 cmn_err(CE_WARN, 629 "%s:%s: pcmu_ib_ino_rem_intr %x timeout", 630 pcbm_p->pcbm_nameinst_str, 631 pcbm_p->pcbm_nameaddr_str, ino); 632 break; 633 } 634 } 635 636 if (ino_p->pino_ih_size == 1) { 637 if (ih_lst != ih_p) 638 goto not_found; 639 /* no need to set head/tail as ino_p will be freed */ 640 goto reset; 641 } 642 643 /* 644 * if the interrupt was previously blocked (left in pending state) 645 * because of jabber we need to clear the pending state in case the 646 * jabber has gone away. 647 */ 648 if (ino_p->pino_unclaimed > pcmu_unclaimed_intr_max) { 649 cmn_err(CE_WARN, 650 "%s%d: pcmu_ib_ino_rem_intr: ino 0x%x has been unblocked", 651 ddi_driver_name(pcmu_p->pcmu_dip), 652 ddi_get_instance(pcmu_p->pcmu_dip), 653 ino_p->pino_ino); 654 ino_p->pino_unclaimed = 0; 655 PCMU_IB_INO_INTR_CLEAR(ino_p->pino_clr_reg); 656 } 657 658 /* search the link list for ih_p */ 659 for (i = 0; (i < ino_p->pino_ih_size) && (ih_lst->ih_next != ih_p); 660 i++, ih_lst = ih_lst->ih_next); 661 if (ih_lst->ih_next != ih_p) { 662 goto not_found; 663 } 664 665 /* remove ih_p from the link list and maintain the head/tail */ 666 ih_lst->ih_next = ih_p->ih_next; 667 if (ino_p->pino_ih_head == ih_p) { 668 ino_p->pino_ih_head = ih_p->ih_next; 669 } 670 if (ino_p->pino_ih_tail == ih_p) { 671 ino_p->pino_ih_tail = ih_lst; 672 } 673 ino_p->pino_ih_start = ino_p->pino_ih_head; 674 reset: 675 if (ih_p->ih_config_handle) { 676 pci_config_teardown(&ih_p->ih_config_handle); 677 } 678 kmem_free(ih_p, sizeof (ih_t)); 679 ino_p->pino_ih_size--; 680 681 return; 682 not_found: 683 PCMU_DBG2(PCMU_DBG_R_INTX, ino_p->pino_ib_p->pib_pcmu_p->pcmu_dip, 684 "ino_p=%x does not have ih_p=%x\n", ino_p, ih_p); 685 } 686 687 ih_t * 688 pcmu_ib_ino_locate_intr(pcmu_ib_ino_info_t *ino_p, 689 dev_info_t *rdip, uint32_t inum) 690 { 691 ih_t *ih_lst = ino_p->pino_ih_head; 692 int i; 693 for (i = 0; i < ino_p->pino_ih_size; i++, ih_lst = ih_lst->ih_next) { 694 if (ih_lst->ih_dip == rdip && ih_lst->ih_inum == inum) { 695 return (ih_lst); 696 } 697 } 698 return ((ih_t *)NULL); 699 } 700 701 ih_t * 702 pcmu_ib_alloc_ih(dev_info_t *rdip, uint32_t inum, 703 uint_t (*int_handler)(caddr_t int_handler_arg1, caddr_t int_handler_arg2), 704 caddr_t int_handler_arg1, 705 caddr_t int_handler_arg2) 706 { 707 ih_t *ih_p; 708 709 ih_p = kmem_alloc(sizeof (ih_t), KM_SLEEP); 710 ih_p->ih_dip = rdip; 711 ih_p->ih_inum = inum; 712 ih_p->ih_intr_state = PCMU_INTR_STATE_DISABLE; 713 ih_p->ih_handler = int_handler; 714 ih_p->ih_handler_arg1 = int_handler_arg1; 715 ih_p->ih_handler_arg2 = int_handler_arg2; 716 ih_p->ih_config_handle = NULL; 717 return (ih_p); 718 } 719 720 int 721 pcmu_ib_update_intr_state(pcmu_t *pcmu_p, dev_info_t *rdip, 722 ddi_intr_handle_impl_t *hdlp, uint_t new_intr_state) 723 { 724 pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p; 725 pcmu_ib_ino_info_t *ino_p; 726 pcmu_ib_mondo_t mondo; 727 ih_t *ih_p; 728 int ret = DDI_FAILURE; 729 730 mutex_enter(&pib_p->pib_ino_lst_mutex); 731 732 if ((mondo = PCMU_IB_INO_TO_MONDO(pcmu_p->pcmu_ib_p, 733 PCMU_IB_MONDO_TO_INO((int32_t)hdlp->ih_vector))) == 0) { 734 mutex_exit(&pib_p->pib_ino_lst_mutex); 735 return (ret); 736 } 737 738 if (ino_p = pcmu_ib_locate_ino(pib_p, PCMU_IB_MONDO_TO_INO(mondo))) { 739 if (ih_p = pcmu_ib_ino_locate_intr(ino_p, 740 rdip, hdlp->ih_inum)) { 741 ih_p->ih_intr_state = new_intr_state; 742 ret = DDI_SUCCESS; 743 } 744 } 745 mutex_exit(&pib_p->pib_ino_lst_mutex); 746 return (ret); 747 } 748