1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * CMU-CH Interrupt Block 29 */ 30 31 #include <sys/types.h> 32 #include <sys/kmem.h> 33 #include <sys/async.h> 34 #include <sys/systm.h> 35 #include <sys/spl.h> 36 #include <sys/sunddi.h> 37 #include <sys/machsystm.h> 38 #include <sys/ddi_impldefs.h> 39 #include <sys/pcicmu/pcicmu.h> 40 41 static uint_t pcmu_ib_intr_reset(void *arg); 42 43 extern uint64_t xc_tick_jump_limit; 44 45 void 46 pcmu_ib_create(pcmu_t *pcmu_p) 47 { 48 pcmu_ib_t *pib_p; 49 uintptr_t a; 50 int i; 51 52 /* 53 * Allocate interrupt block state structure and link it to 54 * the pci state structure. 55 */ 56 pib_p = kmem_zalloc(sizeof (pcmu_ib_t), KM_SLEEP); 57 pcmu_p->pcmu_ib_p = pib_p; 58 pib_p->pib_pcmu_p = pcmu_p; 59 60 a = pcmu_ib_setup(pib_p); 61 62 /* 63 * Determine virtual addresses of interrupt mapping, clear and diag 64 * registers that have common offsets. 65 */ 66 pib_p->pib_intr_retry_timer_reg = 67 (uint64_t *)(a + PCMU_IB_INTR_RETRY_TIMER_OFFSET); 68 pib_p->pib_obio_intr_state_diag_reg = 69 (uint64_t *)(a + PCMU_IB_OBIO_INTR_STATE_DIAG_REG); 70 71 PCMU_DBG2(PCMU_DBG_ATTACH, pcmu_p->pcmu_dip, 72 "pcmu_ib_create: obio_imr=%x, obio_cir=%x\n", 73 pib_p->pib_obio_intr_map_regs, pib_p->pib_obio_clear_intr_regs); 74 PCMU_DBG2(PCMU_DBG_ATTACH, pcmu_p->pcmu_dip, 75 "pcmu_ib_create: retry_timer=%x, obio_diag=%x\n", 76 pib_p->pib_intr_retry_timer_reg, 77 pib_p->pib_obio_intr_state_diag_reg); 78 79 pib_p->pib_ino_lst = (pcmu_ib_ino_info_t *)NULL; 80 mutex_init(&pib_p->pib_intr_lock, NULL, MUTEX_DRIVER, NULL); 81 mutex_init(&pib_p->pib_ino_lst_mutex, NULL, MUTEX_DRIVER, NULL); 82 83 PCMU_DBG1(PCMU_DBG_ATTACH, pcmu_p->pcmu_dip, 84 "pcmu_ib_create: numproxy=%x\n", pcmu_p->pcmu_numproxy); 85 for (i = 1; i <= pcmu_p->pcmu_numproxy; i++) { 86 set_intr_mapping_reg(pcmu_p->pcmu_id, 87 (uint64_t *)pib_p->pib_upa_imr[i - 1], i); 88 } 89 90 pcmu_ib_configure(pib_p); 91 bus_func_register(BF_TYPE_RESINTR, pcmu_ib_intr_reset, pib_p); 92 } 93 94 void 95 pcmu_ib_destroy(pcmu_t *pcmu_p) 96 { 97 pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p; 98 99 PCMU_DBG0(PCMU_DBG_IB, pcmu_p->pcmu_dip, "pcmu_ib_destroy\n"); 100 bus_func_unregister(BF_TYPE_RESINTR, pcmu_ib_intr_reset, pib_p); 101 102 intr_dist_rem_weighted(pcmu_ib_intr_dist_all, pib_p); 103 mutex_destroy(&pib_p->pib_ino_lst_mutex); 104 mutex_destroy(&pib_p->pib_intr_lock); 105 106 pcmu_ib_free_ino_all(pib_p); 107 108 kmem_free(pib_p, sizeof (pcmu_ib_t)); 109 pcmu_p->pcmu_ib_p = NULL; 110 } 111 112 void 113 pcmu_ib_configure(pcmu_ib_t *pib_p) 114 { 115 *pib_p->pib_intr_retry_timer_reg = pcmu_intr_retry_intv; 116 } 117 118 /* 119 * can only used for CMU-CH internal interrupts ue, pbm 120 */ 121 void 122 pcmu_ib_intr_enable(pcmu_t *pcmu_p, pcmu_ib_ino_t ino) 123 { 124 pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p; 125 pcmu_ib_mondo_t mondo = PCMU_IB_INO_TO_MONDO(pib_p, ino); 126 volatile uint64_t *imr_p = ib_intr_map_reg_addr(pib_p, ino); 127 uint_t cpu_id; 128 129 /* 130 * Determine the cpu for the interrupt. 131 */ 132 mutex_enter(&pib_p->pib_intr_lock); 133 cpu_id = intr_dist_cpuid(); 134 cpu_id = u2u_translate_tgtid(pcmu_p, cpu_id, imr_p); 135 PCMU_DBG2(PCMU_DBG_IB, pcmu_p->pcmu_dip, 136 "pcmu_ib_intr_enable: ino=%x cpu_id=%x\n", ino, cpu_id); 137 138 *imr_p = ib_get_map_reg(mondo, cpu_id); 139 PCMU_IB_INO_INTR_CLEAR(ib_clear_intr_reg_addr(pib_p, ino)); 140 mutex_exit(&pib_p->pib_intr_lock); 141 } 142 143 /* 144 * Disable the interrupt via its interrupt mapping register. 145 * Can only be used for internal interrupts: ue, pbm. 146 * If called under interrupt context, wait should be set to 0 147 */ 148 void 149 pcmu_ib_intr_disable(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino, int wait) 150 { 151 volatile uint64_t *imr_p = ib_intr_map_reg_addr(pib_p, ino); 152 volatile uint64_t *state_reg_p = PCMU_IB_INO_INTR_STATE_REG(pib_p, ino); 153 hrtime_t start_time; 154 hrtime_t prev, curr, interval, jump; 155 hrtime_t intr_timeout; 156 157 /* disable the interrupt */ 158 mutex_enter(&pib_p->pib_intr_lock); 159 PCMU_IB_INO_INTR_OFF(imr_p); 160 *imr_p; /* flush previous write */ 161 mutex_exit(&pib_p->pib_intr_lock); 162 163 if (!wait) 164 goto wait_done; 165 166 intr_timeout = pcmu_intrpend_timeout; 167 jump = TICK_TO_NSEC(xc_tick_jump_limit); 168 start_time = curr = gethrtime(); 169 /* busy wait if there is interrupt being processed */ 170 while (PCMU_IB_INO_INTR_PENDING(state_reg_p, ino) && !panicstr) { 171 /* 172 * If we have a really large jump in hrtime, it is most 173 * probably because we entered the debugger (or OBP, 174 * in general). So, we adjust the timeout accordingly 175 * to prevent declaring an interrupt timeout. The 176 * master-interrupt mechanism in OBP should deliver 177 * the interrupts properly. 178 */ 179 prev = curr; 180 curr = gethrtime(); 181 interval = curr - prev; 182 if (interval > jump) 183 intr_timeout += interval; 184 if (curr - start_time > intr_timeout) { 185 pcmu_pbm_t *pcbm_p = pib_p->pib_pcmu_p->pcmu_pcbm_p; 186 cmn_err(CE_WARN, 187 "%s:%s: pcmu_ib_intr_disable timeout %x", 188 pcbm_p->pcbm_nameinst_str, 189 pcbm_p->pcbm_nameaddr_str, ino); 190 break; 191 } 192 } 193 wait_done: 194 PCMU_IB_INO_INTR_PEND(ib_clear_intr_reg_addr(pib_p, ino)); 195 u2u_ittrans_cleanup((u2u_ittrans_data_t *) 196 (PCMU_IB2CB(pib_p)->pcb_ittrans_cookie), imr_p); 197 } 198 199 /* can only used for CMU-CH internal interrupts ue, pbm */ 200 void 201 pcmu_ib_nintr_clear(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino) 202 { 203 uint64_t *clr_reg = ib_clear_intr_reg_addr(pib_p, ino); 204 PCMU_IB_INO_INTR_CLEAR(clr_reg); 205 } 206 207 /* 208 * distribute PBM and UPA interrupts. ino is set to 0 by caller if we 209 * are dealing with UPA interrupts (without inos). 210 */ 211 void 212 pcmu_ib_intr_dist_nintr(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino, 213 volatile uint64_t *imr_p) 214 { 215 volatile uint64_t imr = *imr_p; 216 uint32_t cpu_id; 217 218 if (!PCMU_IB_INO_INTR_ISON(imr)) 219 return; 220 221 cpu_id = intr_dist_cpuid(); 222 223 if (ino) { 224 cpu_id = u2u_translate_tgtid(pib_p->pib_pcmu_p, cpu_id, imr_p); 225 } 226 227 if (ib_map_reg_get_cpu(*imr_p) == cpu_id) { 228 return; 229 } 230 *imr_p = ib_get_map_reg(PCMU_IB_IMR2MONDO(imr), cpu_id); 231 imr = *imr_p; /* flush previous write */ 232 } 233 234 static void 235 pcmu_ib_intr_dist(pcmu_ib_t *pib_p, pcmu_ib_ino_info_t *ino_p) 236 { 237 uint32_t cpu_id = ino_p->pino_cpuid; 238 pcmu_ib_ino_t ino = ino_p->pino_ino; 239 volatile uint64_t imr, *imr_p, *state_reg; 240 hrtime_t start_time; 241 hrtime_t prev, curr, interval, jump; 242 hrtime_t intr_timeout; 243 244 ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex)); 245 imr_p = ib_intr_map_reg_addr(pib_p, ino); 246 state_reg = PCMU_IB_INO_INTR_STATE_REG(pib_p, ino); 247 248 /* disable interrupt, this could disrupt devices sharing our slot */ 249 PCMU_IB_INO_INTR_OFF(imr_p); 250 imr = *imr_p; /* flush previous write */ 251 252 /* busy wait if there is interrupt being processed */ 253 intr_timeout = pcmu_intrpend_timeout; 254 jump = TICK_TO_NSEC(xc_tick_jump_limit); 255 start_time = curr = gethrtime(); 256 while (PCMU_IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) { 257 /* 258 * If we have a really large jump in hrtime, it is most 259 * probably because we entered the debugger (or OBP, 260 * in general). So, we adjust the timeout accordingly 261 * to prevent declaring an interrupt timeout. The 262 * master-interrupt mechanism in OBP should deliver 263 * the interrupts properly. 264 */ 265 prev = curr; 266 curr = gethrtime(); 267 interval = curr - prev; 268 if (interval > jump) 269 intr_timeout += interval; 270 if (curr - start_time > intr_timeout) { 271 pcmu_pbm_t *pcbm_p = pib_p->pib_pcmu_p->pcmu_pcbm_p; 272 cmn_err(CE_WARN, 273 "%s:%s: pcmu_ib_intr_dist(%p,%x) timeout", 274 pcbm_p->pcbm_nameinst_str, 275 pcbm_p->pcbm_nameaddr_str, 276 (void *)imr_p, PCMU_IB_INO_TO_MONDO(pib_p, ino)); 277 break; 278 } 279 } 280 cpu_id = u2u_translate_tgtid(pib_p->pib_pcmu_p, cpu_id, imr_p); 281 *imr_p = ib_get_map_reg(PCMU_IB_IMR2MONDO(imr), cpu_id); 282 imr = *imr_p; /* flush previous write */ 283 } 284 285 /* 286 * Redistribute interrupts of the specified weight. The first call has a weight 287 * of weight_max, which can be used to trigger initialization for 288 * redistribution. The inos with weight [weight_max, inf.) should be processed 289 * on the "weight == weight_max" call. This first call is followed by calls 290 * of decreasing weights, inos of that weight should be processed. The final 291 * call specifies a weight of zero, this can be used to trigger processing of 292 * stragglers. 293 */ 294 void 295 pcmu_ib_intr_dist_all(void *arg, int32_t weight_max, int32_t weight) 296 { 297 pcmu_ib_t *pib_p = (pcmu_ib_t *)arg; 298 pcmu_ib_ino_info_t *ino_p; 299 ih_t *ih_lst; 300 int32_t dweight; 301 int i; 302 303 mutex_enter(&pib_p->pib_ino_lst_mutex); 304 305 /* Perform special processing for first call of a redistribution. */ 306 if (weight == weight_max) { 307 for (ino_p = pib_p->pib_ino_lst; ino_p; 308 ino_p = ino_p->pino_next) { 309 310 /* 311 * Clear pino_established of each ino on first call. 312 * The pino_established field may be used by a pci 313 * nexus driver's pcmu_intr_dist_cpuid implementation 314 * when detection of established pci slot-cpu binding 315 * for multi function pci cards. 316 */ 317 ino_p->pino_established = 0; 318 319 /* 320 * recompute the pino_intr_weight based on the device 321 * weight of all devinfo nodes sharing the ino (this 322 * will allow us to pick up new weights established by 323 * i_ddi_set_intr_weight()). 324 */ 325 ino_p->pino_intr_weight = 0; 326 for (i = 0, ih_lst = ino_p->pino_ih_head; 327 i < ino_p->pino_ih_size; 328 i++, ih_lst = ih_lst->ih_next) { 329 dweight = i_ddi_get_intr_weight(ih_lst->ih_dip); 330 if (dweight > 0) 331 ino_p->pino_intr_weight += dweight; 332 } 333 } 334 } 335 336 for (ino_p = pib_p->pib_ino_lst; ino_p; ino_p = ino_p->pino_next) { 337 /* 338 * Get the weight of the ino and determine if we are going to 339 * process call. We wait until an pcmu_ib_intr_dist_all call of 340 * the proper weight occurs to support redistribution of all 341 * heavy weighted interrupts first (across all nexus driver 342 * instances). This is done to ensure optimal 343 * INTR_WEIGHTED_DIST behavior. 344 */ 345 if ((weight == ino_p->pino_intr_weight) || 346 ((weight >= weight_max) && 347 (ino_p->pino_intr_weight >= weight_max))) { 348 /* select cpuid to target and mark ino established */ 349 ino_p->pino_cpuid = pcmu_intr_dist_cpuid(pib_p, ino_p); 350 ino_p->pino_established = 1; 351 352 /* Add device weight of ino devinfos to targeted cpu. */ 353 for (i = 0, ih_lst = ino_p->pino_ih_head; 354 i < ino_p->pino_ih_size; 355 i++, ih_lst = ih_lst->ih_next) { 356 dweight = i_ddi_get_intr_weight(ih_lst->ih_dip); 357 intr_dist_cpuid_add_device_weight( 358 ino_p->pino_cpuid, ih_lst->ih_dip, dweight); 359 } 360 361 /* program the hardware */ 362 pcmu_ib_intr_dist(pib_p, ino_p); 363 } 364 } 365 mutex_exit(&pib_p->pib_ino_lst_mutex); 366 } 367 368 /* 369 * Reset interrupts to IDLE. This function is called during 370 * panic handling after redistributing interrupts; it's needed to 371 * support dumping to network devices after 'sync' from OBP. 372 * 373 * N.B. This routine runs in a context where all other threads 374 * are permanently suspended. 375 */ 376 static uint_t 377 pcmu_ib_intr_reset(void *arg) 378 { 379 pcmu_ib_t *pib_p = (pcmu_ib_t *)arg; 380 pcmu_ib_ino_t ino; 381 uint64_t *clr_reg; 382 383 /* 384 * Note that we only actually care about interrupts that are 385 * potentially from network devices. 386 */ 387 for (ino = 0; ino <= pib_p->pib_max_ino; ino++) { 388 clr_reg = ib_clear_intr_reg_addr(pib_p, ino); 389 PCMU_IB_INO_INTR_CLEAR(clr_reg); 390 } 391 return (BF_NONE); 392 } 393 394 void 395 pcmu_ib_suspend(pcmu_ib_t *pib_p) 396 { 397 pcmu_ib_ino_info_t *ip; 398 399 /* save ino_lst interrupts' mapping registers content */ 400 mutex_enter(&pib_p->pib_ino_lst_mutex); 401 for (ip = pib_p->pib_ino_lst; ip; ip = ip->pino_next) { 402 ip->pino_map_reg_save = *ip->pino_map_reg; 403 } 404 mutex_exit(&pib_p->pib_ino_lst_mutex); 405 } 406 407 void 408 pcmu_ib_resume(pcmu_ib_t *pib_p) 409 { 410 pcmu_ib_ino_info_t *ip; 411 412 /* restore ino_lst interrupts' mapping registers content */ 413 mutex_enter(&pib_p->pib_ino_lst_mutex); 414 for (ip = pib_p->pib_ino_lst; ip; ip = ip->pino_next) { 415 PCMU_IB_INO_INTR_CLEAR(ip->pino_clr_reg); /* set intr to idle */ 416 *ip->pino_map_reg = ip->pino_map_reg_save; /* restore IMR */ 417 } 418 mutex_exit(&pib_p->pib_ino_lst_mutex); 419 } 420 421 /* 422 * locate ino_info structure on pib_p->pib_ino_lst according to ino# 423 * returns NULL if not found. 424 */ 425 pcmu_ib_ino_info_t * 426 pcmu_ib_locate_ino(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino_num) 427 { 428 pcmu_ib_ino_info_t *ino_p = pib_p->pib_ino_lst; 429 ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex)); 430 431 for (; ino_p && ino_p->pino_ino != ino_num; ino_p = ino_p->pino_next) 432 ; 433 return (ino_p); 434 } 435 436 #define PCMU_IB_INO_TO_SLOT(ino) \ 437 (PCMU_IB_IS_OBIO_INO(ino) ? 0xff : ((ino) & 0x1f) >> 2) 438 439 pcmu_ib_ino_info_t * 440 pcmu_ib_new_ino(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino_num, ih_t *ih_p) 441 { 442 pcmu_ib_ino_info_t *ino_p = kmem_alloc(sizeof (pcmu_ib_ino_info_t), 443 KM_SLEEP); 444 ino_p->pino_ino = ino_num; 445 ino_p->pino_slot_no = PCMU_IB_INO_TO_SLOT(ino_num); 446 ino_p->pino_ib_p = pib_p; 447 ino_p->pino_clr_reg = ib_clear_intr_reg_addr(pib_p, ino_num); 448 ino_p->pino_map_reg = ib_intr_map_reg_addr(pib_p, ino_num); 449 ino_p->pino_unclaimed = 0; 450 451 /* 452 * cannot disable interrupt since we might share slot 453 * PCMU_IB_INO_INTR_OFF(ino_p->pino_map_reg); 454 */ 455 456 ih_p->ih_next = ih_p; 457 ino_p->pino_ih_head = ih_p; 458 ino_p->pino_ih_tail = ih_p; 459 ino_p->pino_ih_start = ih_p; 460 ino_p->pino_ih_size = 1; 461 462 ino_p->pino_next = pib_p->pib_ino_lst; 463 pib_p->pib_ino_lst = ino_p; 464 return (ino_p); 465 } 466 467 /* the ino_p is retrieved by previous call to pcmu_ib_locate_ino() */ 468 void 469 pcmu_ib_delete_ino(pcmu_ib_t *pib_p, pcmu_ib_ino_info_t *ino_p) 470 { 471 pcmu_ib_ino_info_t *list = pib_p->pib_ino_lst; 472 ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex)); 473 if (list == ino_p) { 474 pib_p->pib_ino_lst = list->pino_next; 475 } else { 476 for (; list->pino_next != ino_p; list = list->pino_next) 477 ; 478 list->pino_next = ino_p->pino_next; 479 } 480 } 481 482 /* free all ino when we are detaching */ 483 void 484 pcmu_ib_free_ino_all(pcmu_ib_t *pib_p) 485 { 486 pcmu_ib_ino_info_t *tmp = pib_p->pib_ino_lst; 487 pcmu_ib_ino_info_t *next = NULL; 488 while (tmp) { 489 next = tmp->pino_next; 490 kmem_free(tmp, sizeof (pcmu_ib_ino_info_t)); 491 tmp = next; 492 } 493 } 494 495 void 496 pcmu_ib_ino_add_intr(pcmu_t *pcmu_p, pcmu_ib_ino_info_t *ino_p, ih_t *ih_p) 497 { 498 pcmu_ib_ino_t ino = ino_p->pino_ino; 499 pcmu_ib_t *pib_p = ino_p->pino_ib_p; 500 volatile uint64_t *state_reg = PCMU_IB_INO_INTR_STATE_REG(pib_p, ino); 501 hrtime_t start_time; 502 hrtime_t prev, curr, interval, jump; 503 hrtime_t intr_timeout; 504 505 ASSERT(pib_p == pcmu_p->pcmu_ib_p); 506 ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex)); 507 508 /* disable interrupt, this could disrupt devices sharing our slot */ 509 PCMU_IB_INO_INTR_OFF(ino_p->pino_map_reg); 510 *ino_p->pino_map_reg; 511 512 /* do NOT modify the link list until after the busy wait */ 513 514 /* 515 * busy wait if there is interrupt being processed. 516 * either the pending state will be cleared by the interrupt wrapper 517 * or the interrupt will be marked as blocked indicating that it was 518 * jabbering. 519 */ 520 intr_timeout = pcmu_intrpend_timeout; 521 jump = TICK_TO_NSEC(xc_tick_jump_limit); 522 start_time = curr = gethrtime(); 523 while ((ino_p->pino_unclaimed <= pcmu_unclaimed_intr_max) && 524 PCMU_IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) { 525 /* 526 * If we have a really large jump in hrtime, it is most 527 * probably because we entered the debugger (or OBP, 528 * in general). So, we adjust the timeout accordingly 529 * to prevent declaring an interrupt timeout. The 530 * master-interrupt mechanism in OBP should deliver 531 * the interrupts properly. 532 */ 533 prev = curr; 534 curr = gethrtime(); 535 interval = curr - prev; 536 if (interval > jump) 537 intr_timeout += interval; 538 if (curr - start_time > intr_timeout) { 539 pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p; 540 cmn_err(CE_WARN, 541 "%s:%s: pcmu_ib_ino_add_intr %x timeout", 542 pcbm_p->pcbm_nameinst_str, 543 pcbm_p->pcbm_nameaddr_str, ino); 544 break; 545 } 546 } 547 548 /* link up pcmu_ispec_t portion of the ppd */ 549 ih_p->ih_next = ino_p->pino_ih_head; 550 ino_p->pino_ih_tail->ih_next = ih_p; 551 ino_p->pino_ih_tail = ih_p; 552 553 ino_p->pino_ih_start = ino_p->pino_ih_head; 554 ino_p->pino_ih_size++; 555 556 /* 557 * if the interrupt was previously blocked (left in pending state) 558 * because of jabber we need to clear the pending state in case the 559 * jabber has gone away. 560 */ 561 if (ino_p->pino_unclaimed > pcmu_unclaimed_intr_max) { 562 cmn_err(CE_WARN, 563 "%s%d: pcmu_ib_ino_add_intr: ino 0x%x has been unblocked", 564 ddi_driver_name(pcmu_p->pcmu_dip), 565 ddi_get_instance(pcmu_p->pcmu_dip), 566 ino_p->pino_ino); 567 ino_p->pino_unclaimed = 0; 568 PCMU_IB_INO_INTR_CLEAR(ino_p->pino_clr_reg); 569 } 570 571 /* re-enable interrupt */ 572 PCMU_IB_INO_INTR_ON(ino_p->pino_map_reg); 573 *ino_p->pino_map_reg; 574 } 575 576 /* 577 * removes pcmu_ispec_t from the ino's link list. 578 * uses hardware mutex to lock out interrupt threads. 579 * Side effects: interrupt belongs to that ino is turned off on return. 580 * if we are sharing PCI slot with other inos, the caller needs 581 * to turn it back on. 582 */ 583 int 584 pcmu_ib_ino_rem_intr(pcmu_t *pcmu_p, pcmu_ib_ino_info_t *ino_p, ih_t *ih_p) 585 { 586 int i; 587 pcmu_ib_ino_t ino = ino_p->pino_ino; 588 ih_t *ih_lst = ino_p->pino_ih_head; 589 volatile uint64_t *state_reg = 590 PCMU_IB_INO_INTR_STATE_REG(ino_p->pino_ib_p, ino); 591 hrtime_t start_time; 592 hrtime_t prev, curr, interval, jump; 593 hrtime_t intr_timeout; 594 595 ASSERT(MUTEX_HELD(&ino_p->pino_ib_p->pib_ino_lst_mutex)); 596 /* disable interrupt, this could disrupt devices sharing our slot */ 597 PCMU_IB_INO_INTR_OFF(ino_p->pino_map_reg); 598 *ino_p->pino_map_reg; 599 600 /* do NOT modify the link list until after the busy wait */ 601 602 /* 603 * busy wait if there is interrupt being processed. 604 * either the pending state will be cleared by the interrupt wrapper 605 * or the interrupt will be marked as blocked indicating that it was 606 * jabbering. 607 */ 608 intr_timeout = pcmu_intrpend_timeout; 609 jump = TICK_TO_NSEC(xc_tick_jump_limit); 610 start_time = curr = gethrtime(); 611 while ((ino_p->pino_unclaimed <= pcmu_unclaimed_intr_max) && 612 PCMU_IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) { 613 /* 614 * If we have a really large jump in hrtime, it is most 615 * probably because we entered the debugger (or OBP, 616 * in general). So, we adjust the timeout accordingly 617 * to prevent declaring an interrupt timeout. The 618 * master-interrupt mechanism in OBP should deliver 619 * the interrupts properly. 620 */ 621 prev = curr; 622 curr = gethrtime(); 623 interval = curr - prev; 624 if (interval > jump) 625 intr_timeout += interval; 626 if (curr - start_time > intr_timeout) { 627 pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p; 628 cmn_err(CE_WARN, 629 "%s:%s: pcmu_ib_ino_rem_intr %x timeout", 630 pcbm_p->pcbm_nameinst_str, 631 pcbm_p->pcbm_nameaddr_str, ino); 632 PCMU_IB_INO_INTR_ON(ino_p->pino_map_reg); 633 *ino_p->pino_map_reg; 634 return (DDI_FAILURE); 635 } 636 } 637 638 if (ino_p->pino_ih_size == 1) { 639 if (ih_lst != ih_p) 640 goto not_found; 641 /* no need to set head/tail as ino_p will be freed */ 642 goto reset; 643 } 644 645 /* 646 * if the interrupt was previously blocked (left in pending state) 647 * because of jabber we need to clear the pending state in case the 648 * jabber has gone away. 649 */ 650 if (ino_p->pino_unclaimed > pcmu_unclaimed_intr_max) { 651 cmn_err(CE_WARN, 652 "%s%d: pcmu_ib_ino_rem_intr: ino 0x%x has been unblocked", 653 ddi_driver_name(pcmu_p->pcmu_dip), 654 ddi_get_instance(pcmu_p->pcmu_dip), 655 ino_p->pino_ino); 656 ino_p->pino_unclaimed = 0; 657 PCMU_IB_INO_INTR_CLEAR(ino_p->pino_clr_reg); 658 } 659 660 /* search the link list for ih_p */ 661 for (i = 0; (i < ino_p->pino_ih_size) && (ih_lst->ih_next != ih_p); 662 i++, ih_lst = ih_lst->ih_next) 663 ; 664 if (ih_lst->ih_next != ih_p) { 665 goto not_found; 666 } 667 668 /* remove ih_p from the link list and maintain the head/tail */ 669 ih_lst->ih_next = ih_p->ih_next; 670 if (ino_p->pino_ih_head == ih_p) { 671 ino_p->pino_ih_head = ih_p->ih_next; 672 } 673 if (ino_p->pino_ih_tail == ih_p) { 674 ino_p->pino_ih_tail = ih_lst; 675 } 676 ino_p->pino_ih_start = ino_p->pino_ih_head; 677 reset: 678 if (ih_p->ih_config_handle) { 679 pci_config_teardown(&ih_p->ih_config_handle); 680 } 681 kmem_free(ih_p, sizeof (ih_t)); 682 ino_p->pino_ih_size--; 683 684 return (DDI_SUCCESS); 685 not_found: 686 PCMU_DBG2(PCMU_DBG_R_INTX, ino_p->pino_ib_p->pib_pcmu_p->pcmu_dip, 687 "ino_p=%x does not have ih_p=%x\n", ino_p, ih_p); 688 return (DDI_SUCCESS); 689 } 690 691 ih_t * 692 pcmu_ib_ino_locate_intr(pcmu_ib_ino_info_t *ino_p, 693 dev_info_t *rdip, uint32_t inum) 694 { 695 ih_t *ih_lst = ino_p->pino_ih_head; 696 int i; 697 for (i = 0; i < ino_p->pino_ih_size; i++, ih_lst = ih_lst->ih_next) { 698 if (ih_lst->ih_dip == rdip && ih_lst->ih_inum == inum) { 699 return (ih_lst); 700 } 701 } 702 return ((ih_t *)NULL); 703 } 704 705 ih_t * 706 pcmu_ib_alloc_ih(dev_info_t *rdip, uint32_t inum, 707 uint_t (*int_handler)(caddr_t int_handler_arg1, caddr_t int_handler_arg2), 708 caddr_t int_handler_arg1, 709 caddr_t int_handler_arg2) 710 { 711 ih_t *ih_p; 712 713 ih_p = kmem_alloc(sizeof (ih_t), KM_SLEEP); 714 ih_p->ih_dip = rdip; 715 ih_p->ih_inum = inum; 716 ih_p->ih_intr_state = PCMU_INTR_STATE_DISABLE; 717 ih_p->ih_handler = int_handler; 718 ih_p->ih_handler_arg1 = int_handler_arg1; 719 ih_p->ih_handler_arg2 = int_handler_arg2; 720 ih_p->ih_config_handle = NULL; 721 return (ih_p); 722 } 723 724 int 725 pcmu_ib_update_intr_state(pcmu_t *pcmu_p, dev_info_t *rdip, 726 ddi_intr_handle_impl_t *hdlp, uint_t new_intr_state) 727 { 728 pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p; 729 pcmu_ib_ino_info_t *ino_p; 730 pcmu_ib_mondo_t mondo; 731 ih_t *ih_p; 732 int ret = DDI_FAILURE; 733 734 mutex_enter(&pib_p->pib_ino_lst_mutex); 735 736 if ((mondo = PCMU_IB_INO_TO_MONDO(pcmu_p->pcmu_ib_p, 737 PCMU_IB_MONDO_TO_INO((int32_t)hdlp->ih_vector))) == 0) { 738 mutex_exit(&pib_p->pib_ino_lst_mutex); 739 return (ret); 740 } 741 742 if (ino_p = pcmu_ib_locate_ino(pib_p, PCMU_IB_MONDO_TO_INO(mondo))) { 743 if (ih_p = pcmu_ib_ino_locate_intr(ino_p, 744 rdip, hdlp->ih_inum)) { 745 ih_p->ih_intr_state = new_intr_state; 746 ret = DDI_SUCCESS; 747 } 748 } 749 mutex_exit(&pib_p->pib_ino_lst_mutex); 750 return (ret); 751 } 752