xref: /illumos-gate/usr/src/uts/sun4u/opl/io/pcicmu/pcmu_cb.c (revision 35a5a3587fd94b666239c157d3722745250ccbd7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * CMU-CH Control Block object
30  */
31 #include <sys/types.h>
32 #include <sys/kmem.h>
33 #include <sys/systm.h>
34 #include <sys/async.h>
35 #include <sys/sunddi.h>
36 #include <sys/ddi_impldefs.h>
37 #include <sys/pcicmu/pcicmu.h>
38 #include <sys/machsystm.h>
39 
40 extern uint64_t	xc_tick_jump_limit;
41 
42 void
43 pcmu_cb_create(pcmu_t *pcmu_p)
44 {
45 	pcmu_cb_t *pcb_p = (pcmu_cb_t *)
46 	    kmem_zalloc(sizeof (pcmu_cb_t), KM_SLEEP);
47 	mutex_init(&pcb_p->pcb_intr_lock, NULL, MUTEX_DRIVER, NULL);
48 	pcmu_p->pcmu_cb_p = pcb_p;
49 	pcb_p->pcb_pcmu_p = pcmu_p;
50 	pcmu_cb_setup(pcmu_p);
51 }
52 
53 void
54 pcmu_cb_destroy(pcmu_t *pcmu_p)
55 {
56 	pcmu_cb_t *pcb_p = pcmu_p->pcmu_cb_p;
57 
58 	intr_dist_rem(pcmu_cb_intr_dist, pcb_p);
59 	pcmu_cb_teardown(pcmu_p);
60 	pcmu_p->pcmu_cb_p = NULL;
61 	mutex_destroy(&pcb_p->pcb_intr_lock);
62 	kmem_free(pcb_p, sizeof (pcmu_cb_t));
63 }
64 
65 uint64_t
66 pcmu_cb_ino_to_map_pa(pcmu_cb_t *pcb_p, pcmu_ib_ino_t ino)
67 {
68 	return (pcb_p->pcb_map_pa + ((ino & 0x1f) << 3));
69 }
70 
71 uint64_t
72 pcmu_cb_ino_to_clr_pa(pcmu_cb_t *pcb_p, pcmu_ib_ino_t ino)
73 {
74 	return (pcb_p->pcb_clr_pa + ((ino & 0x1f) << 3));
75 }
76 
77 static void
78 pcmu_cb_set_nintr_reg(pcmu_cb_t *pcb_p, pcmu_ib_ino_t ino, uint64_t value)
79 {
80 	uint64_t pa = pcmu_cb_ino_to_clr_pa(pcb_p, ino);
81 
82 	PCMU_DBG3(PCMU_DBG_CB|PCMU_DBG_CONT, NULL,
83 		"pci-%x pcmu_cb_set_nintr_reg: ino=%x PA=%016llx\n",
84 		pcb_p->pcb_pcmu_p->pcmu_id, ino, pa);
85 
86 	stdphysio(pa, value);
87 	(void) lddphysio(pa);	/* flush the previous write */
88 }
89 
90 /*
91  * enable an internal interrupt source:
92  * if an interrupt is shared by both sides, record it in pcb_inos[] and
93  * cb will own its distribution.
94  */
95 void
96 pcmu_cb_enable_nintr(pcmu_t *pcmu_p, pcmu_cb_nintr_index_t idx)
97 {
98 	pcmu_cb_t *pcb_p = pcmu_p->pcmu_cb_p;
99 	pcmu_ib_ino_t ino = PCMU_IB_MONDO_TO_INO(pcmu_p->pcmu_inos[idx]);
100 	pcmu_ib_mondo_t mondo = PCMU_CB_INO_TO_MONDO(pcb_p, ino);
101 	uint32_t cpu_id;
102 	uint64_t reg, pa;
103 	pcmu_ib_t *pib_p = pcb_p->pcb_pcmu_p->pcmu_ib_p;
104 	volatile uint64_t *imr_p = ib_intr_map_reg_addr(pib_p, ino);
105 
106 	ASSERT(idx < CBNINTR_MAX);
107 	pa = pcmu_cb_ino_to_map_pa(pcb_p, ino);
108 
109 	mutex_enter(&pcb_p->pcb_intr_lock);
110 	cpu_id = intr_dist_cpuid();
111 
112 	cpu_id = u2u_translate_tgtid(pib_p->pib_pcmu_p, cpu_id, imr_p);
113 
114 	reg = ib_get_map_reg(mondo, cpu_id);
115 	stdphysio(pa, reg);
116 
117 	ASSERT(pcb_p->pcb_inos[idx] == 0);
118 	pcb_p->pcb_inos[idx] = ino;
119 
120 	pcmu_cb_set_nintr_reg(pcb_p, ino, PCMU_CLEAR_INTR_REG_IDLE);
121 	mutex_exit(&pcb_p->pcb_intr_lock);
122 
123 	PCMU_DBG3(PCMU_DBG_CB|PCMU_DBG_CONT, NULL,
124 	    "pci-%x pcmu_cb_enable_nintr: ino=%x cpu_id=%x\n",
125 	    pcmu_p->pcmu_id, ino, cpu_id);
126 	PCMU_DBG2(PCMU_DBG_CB|PCMU_DBG_CONT, NULL,
127 	    "\tPA=%016llx data=%016llx\n", pa, reg);
128 }
129 
130 static void
131 pcmu_cb_disable_nintr_reg(pcmu_cb_t *pcb_p, pcmu_ib_ino_t ino, int wait)
132 {
133 	uint64_t tmp, map_reg_pa = pcmu_cb_ino_to_map_pa(pcb_p, ino);
134 	ASSERT(MUTEX_HELD(&pcb_p->pcb_intr_lock));
135 
136 	/* mark interrupt invalid in mapping register */
137 	tmp = lddphysio(map_reg_pa) & ~PCMU_INTR_MAP_REG_VALID;
138 	stdphysio(map_reg_pa, tmp);
139 	(void) lddphysio(map_reg_pa);   /* flush previous write */
140 
141 	if (wait) {
142 		hrtime_t start_time;
143 		hrtime_t prev, curr, interval, jump;
144 		hrtime_t intr_timeout;
145 		uint64_t state_reg_pa = pcb_p->pcb_obsta_pa;
146 		uint_t shift = (ino & 0x1f) << 1;
147 
148 		/* busy wait if there is interrupt being processed */
149 		/* unless panic or timeout for interrupt pending is reached */
150 
151 		intr_timeout = pcmu_intrpend_timeout;
152 		jump = TICK_TO_NSEC(xc_tick_jump_limit);
153 		start_time = curr = gethrtime();
154 		while ((((lddphysio(state_reg_pa) >> shift) &
155 			PCMU_CLEAR_INTR_REG_MASK) ==
156 			PCMU_CLEAR_INTR_REG_PENDING) && !panicstr) {
157 			/*
158 			 * If we have a really large jump in hrtime, it is most
159 			 * probably because we entered the debugger (or OBP,
160 			 * in general). So, we adjust the timeout accordingly
161 			 * to prevent declaring an interrupt timeout. The
162 			 * master-interrupt mechanism in OBP should deliver
163 			 * the interrupts properly.
164 			 */
165 			prev = curr;
166 			curr = gethrtime();
167 			interval = curr - prev;
168 			if (interval > jump)
169 				intr_timeout += interval;
170 			if (curr - start_time > intr_timeout) {
171 				cmn_err(CE_WARN, "pcmu@%x "
172 				    "pcmu_cb_disable_nintr_reg(%lx,%x) timeout",
173 				    pcb_p->pcb_pcmu_p->pcmu_id, map_reg_pa,
174 				    PCMU_CB_INO_TO_MONDO(pcb_p, ino));
175 				break;
176 			}
177 		}
178 	}
179 }
180 
181 void
182 pcmu_cb_disable_nintr(pcmu_cb_t *pcb_p, pcmu_cb_nintr_index_t idx, int wait)
183 {
184 	pcmu_ib_t *pib_p = pcb_p->pcb_pcmu_p->pcmu_ib_p;
185 	volatile uint64_t *imr_p;
186 	pcmu_ib_ino_t ino = pcb_p->pcb_inos[idx];
187 	ASSERT(idx < CBNINTR_MAX);
188 	ASSERT(ino);
189 
190 	imr_p = ib_intr_map_reg_addr(pib_p, ino);
191 	mutex_enter(&pcb_p->pcb_intr_lock);
192 	pcmu_cb_disable_nintr_reg(pcb_p, ino, wait);
193 	pcmu_cb_set_nintr_reg(pcb_p, ino, PCMU_CLEAR_INTR_REG_PENDING);
194 	pcb_p->pcb_inos[idx] = 0;
195 	mutex_exit(&pcb_p->pcb_intr_lock);
196 	u2u_ittrans_cleanup((u2u_ittrans_data_t *)(pcb_p->pcb_ittrans_cookie),
197 			imr_p);
198 }
199 
200 void
201 pcmu_cb_clear_nintr(pcmu_cb_t *pcb_p, pcmu_cb_nintr_index_t idx)
202 {
203 	pcmu_ib_ino_t ino = pcb_p->pcb_inos[idx];
204 	ASSERT(idx < CBNINTR_MAX);
205 	ASSERT(ino);
206 	pcmu_cb_set_nintr_reg(pcb_p, ino, PCMU_CLEAR_INTR_REG_IDLE);
207 }
208 
209 void
210 pcmu_cb_intr_dist(void *arg)
211 {
212 	int i;
213 	pcmu_cb_t *pcb_p = (pcmu_cb_t *)arg;
214 
215 	mutex_enter(&pcb_p->pcb_intr_lock);
216 	for (i = 0; i < pcb_p->pcb_no_of_inos; i++) {
217 		uint64_t mr_pa;
218 		volatile uint64_t imr;
219 		pcmu_ib_mondo_t mondo;
220 		uint32_t cpu_id;
221 		pcmu_ib_t *pib_p = pcb_p->pcb_pcmu_p->pcmu_ib_p;
222 		volatile uint64_t *imr_p;
223 
224 		pcmu_ib_ino_t ino = pcb_p->pcb_inos[i];
225 		if (!ino)	/* skip non-shared interrupts */
226 			continue;
227 
228 		mr_pa = pcmu_cb_ino_to_map_pa(pcb_p, ino);
229 		imr = lddphysio(mr_pa);
230 		if (!PCMU_IB_INO_INTR_ISON(imr))
231 			continue;
232 
233 		mondo = PCMU_CB_INO_TO_MONDO(pcb_p, ino);
234 		cpu_id = intr_dist_cpuid();
235 		imr_p = ib_intr_map_reg_addr(pib_p, ino);
236 
237 		cpu_id = u2u_translate_tgtid(pib_p->pib_pcmu_p, cpu_id, imr_p);
238 
239 		pcmu_cb_disable_nintr_reg(pcb_p, ino, PCMU_IB_INTR_WAIT);
240 		stdphysio(mr_pa, ib_get_map_reg(mondo, cpu_id));
241 		(void) lddphysio(mr_pa);	/* flush previous write */
242 	}
243 	mutex_exit(&pcb_p->pcb_intr_lock);
244 }
245 
246 void
247 pcmu_cb_suspend(pcmu_cb_t *pcb_p)
248 {
249 	int i, inos = pcb_p->pcb_no_of_inos;
250 	ASSERT(!pcb_p->pcb_imr_save);
251 	pcb_p->pcb_imr_save = kmem_alloc(inos * sizeof (uint64_t), KM_SLEEP);
252 
253 	/*
254 	 * save the internal interrupts' mapping registers content
255 	 *
256 	 * The PBM IMR really doesn't need to be saved, as it is
257 	 * different per side and is handled by pcmu_pbm_suspend/resume.
258 	 * But it complicates the logic.
259 	 */
260 	for (i = 0; i < inos; i++) {
261 		uint64_t pa;
262 		pcmu_ib_ino_t ino = pcb_p->pcb_inos[i];
263 		if (!ino)
264 			continue;
265 		pa = pcmu_cb_ino_to_map_pa(pcb_p, ino);
266 		pcb_p->pcb_imr_save[i] = lddphysio(pa);
267 	}
268 }
269 
270 void
271 pcmu_cb_resume(pcmu_cb_t *pcb_p)
272 {
273 	int i;
274 	for (i = 0; i < pcb_p->pcb_no_of_inos; i++) {
275 		uint64_t pa;
276 		pcmu_ib_ino_t ino = pcb_p->pcb_inos[i];
277 		if (!ino)
278 			continue;
279 		pa = pcmu_cb_ino_to_map_pa(pcb_p, ino);
280 		pcmu_cb_set_nintr_reg(pcb_p, ino, PCMU_CLEAR_INTR_REG_IDLE);
281 		stdphysio(pa, pcb_p->pcb_imr_save[i]);	/* restore IMR */
282 	}
283 	kmem_free(pcb_p->pcb_imr_save,
284 	    pcb_p->pcb_no_of_inos * sizeof (uint64_t));
285 	pcb_p->pcb_imr_save = NULL;
286 }
287