xref: /illumos-gate/usr/src/uts/sun4u/opl/io/pcicmu/pcicmu.c (revision 2983dda76a6d296fdb560c88114fe41caad1b84f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 
27 /*
28  * OPL CMU-CH PCI nexus driver.
29  *
30  */
31 
32 #include <sys/types.h>
33 #include <sys/sysmacros.h>
34 #include <sys/systm.h>
35 #include <sys/intreg.h>
36 #include <sys/intr.h>
37 #include <sys/machsystm.h>
38 #include <sys/conf.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/async.h>
42 #include <sys/ivintr.h>
43 #include <sys/sunddi.h>
44 #include <sys/sunndi.h>
45 #include <sys/ndifm.h>
46 #include <sys/ontrap.h>
47 #include <sys/ddi_impldefs.h>
48 #include <sys/ddi_subrdefs.h>
49 #include <sys/epm.h>
50 #include <sys/spl.h>
51 #include <sys/fm/util.h>
52 #include <sys/fm/util.h>
53 #include <sys/fm/protocol.h>
54 #include <sys/fm/io/pci.h>
55 #include <sys/fm/io/sun4upci.h>
56 #include <sys/pcicmu/pcicmu.h>
57 
58 #include <sys/cmn_err.h>
59 #include <sys/time.h>
60 #include <sys/pci.h>
61 #include <sys/modctl.h>
62 #include <sys/open.h>
63 #include <sys/errno.h>
64 #include <sys/file.h>
65 
66 
67 uint32_t pcmu_spurintr_duration = 60000000; /* One minute */
68 
69 /*
70  * The variable controls the default setting of the command register
71  * for pci devices.  See pcmu_init_child() for details.
72  *
73  * This flags also controls the setting of bits in the bridge control
74  * register pci to pci bridges.  See pcmu_init_child() for details.
75  */
76 ushort_t pcmu_command_default = PCI_COMM_SERR_ENABLE |
77 				PCI_COMM_WAIT_CYC_ENAB |
78 				PCI_COMM_PARITY_DETECT |
79 				PCI_COMM_ME |
80 				PCI_COMM_MAE |
81 				PCI_COMM_IO;
82 /*
83  * The following driver parameters are defined as variables to allow
84  * patching for debugging and tuning.  Flags that can be set on a per
85  * PBM basis are bit fields where the PBM device instance number maps
86  * to the bit position.
87  */
88 #ifdef DEBUG
89 uint64_t pcmu_debug_flags = 0;
90 #endif
91 uint_t ecc_error_intr_enable = 1;
92 
93 uint_t pcmu_ecc_afsr_retries = 100;	/* XXX - what's a good value? */
94 
95 uint_t pcmu_intr_retry_intv = 5;	/* for interrupt retry reg */
96 uint_t pcmu_panic_on_fatal_errors = 1;	/* should be 1 at beta */
97 
98 hrtime_t pcmu_intrpend_timeout = 5ll * NANOSEC;	/* 5 seconds in nanoseconds */
99 
100 uint64_t pcmu_errtrig_pa = 0x0;
101 
102 
103 /*
104  * The following value is the number of consecutive unclaimed interrupts that
105  * will be tolerated for a particular ino_p before the interrupt is deemed to
106  * be jabbering and is blocked.
107  */
108 uint_t pcmu_unclaimed_intr_max = 20;
109 
110 /*
111  * function prototypes for dev ops routines:
112  */
113 static int pcmu_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
114 static int pcmu_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
115 static int pcmu_info(dev_info_t *dip, ddi_info_cmd_t infocmd,
116     void *arg, void **result);
117 static int pcmu_open(dev_t *devp, int flags, int otyp, cred_t *credp);
118 static int pcmu_close(dev_t dev, int flags, int otyp, cred_t *credp);
119 static int pcmu_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
120 						cred_t *credp, int *rvalp);
121 static int pcmu_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
122     int flags, char *name, caddr_t valuep, int *lengthp);
123 static int pcmu_ctlops_poke(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args);
124 static int pcmu_ctlops_peek(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args,
125     void *result);
126 
127 static int map_pcmu_registers(pcmu_t *, dev_info_t *);
128 static void unmap_pcmu_registers(pcmu_t *);
129 static void pcmu_pbm_clear_error(pcmu_pbm_t *);
130 
131 static int pcmu_ctlops(dev_info_t *, dev_info_t *, ddi_ctl_enum_t,
132     void *, void *);
133 static int pcmu_map(dev_info_t *, dev_info_t *, ddi_map_req_t *,
134     off_t, off_t, caddr_t *);
135 static int pcmu_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t,
136     ddi_intr_handle_impl_t *, void *);
137 
138 static uint32_t pcmu_identity_init(pcmu_t *pcmu_p);
139 static int pcmu_intr_setup(pcmu_t *pcmu_p);
140 static void pcmu_pbm_errstate_get(pcmu_t *pcmu_p,
141     pcmu_pbm_errstate_t *pbm_err_p);
142 static int pcmu_obj_setup(pcmu_t *pcmu_p);
143 static void pcmu_obj_destroy(pcmu_t *pcmu_p);
144 static void pcmu_obj_resume(pcmu_t *pcmu_p);
145 static void pcmu_obj_suspend(pcmu_t *pcmu_p);
146 
147 static void u2u_ittrans_init(pcmu_t *, u2u_ittrans_data_t **);
148 static void u2u_ittrans_resume(u2u_ittrans_data_t **);
149 static void u2u_ittrans_uninit(u2u_ittrans_data_t *);
150 
151 static pcmu_ksinfo_t	*pcmu_name_kstat;
152 
153 /*
154  * bus ops and dev ops structures:
155  */
156 static struct bus_ops pcmu_bus_ops = {
157 	BUSO_REV,
158 	pcmu_map,
159 	0,
160 	0,
161 	0,
162 	i_ddi_map_fault,
163 	0,
164 	0,
165 	0,
166 	0,
167 	0,
168 	0,
169 	0,
170 	0,
171 	pcmu_ctlops,
172 	ddi_bus_prop_op,
173 	ndi_busop_get_eventcookie,	/* (*bus_get_eventcookie)(); */
174 	ndi_busop_add_eventcall,	/* (*bus_add_eventcall)(); */
175 	ndi_busop_remove_eventcall,	/* (*bus_remove_eventcall)(); */
176 	ndi_post_event,			/* (*bus_post_event)(); */
177 	NULL,				/* (*bus_intr_ctl)(); */
178 	NULL,				/* (*bus_config)(); */
179 	NULL,				/* (*bus_unconfig)(); */
180 	NULL,				/* (*bus_fm_init)(); */
181 	NULL,				/* (*bus_fm_fini)(); */
182 	NULL,				/* (*bus_fm_access_enter)(); */
183 	NULL,				/* (*bus_fm_access_fini)(); */
184 	NULL,				/* (*bus_power)(); */
185 	pcmu_intr_ops			/* (*bus_intr_op)(); */
186 };
187 
188 struct cb_ops pcmu_cb_ops = {
189 	pcmu_open,			/* open */
190 	pcmu_close,			/* close */
191 	nodev,				/* strategy */
192 	nodev,				/* print */
193 	nodev,				/* dump */
194 	nodev,				/* read */
195 	nodev,				/* write */
196 	pcmu_ioctl,			/* ioctl */
197 	nodev,				/* devmap */
198 	nodev,				/* mmap */
199 	nodev,				/* segmap */
200 	nochpoll,			/* poll */
201 	pcmu_prop_op,			/* cb_prop_op */
202 	NULL,				/* streamtab */
203 	D_NEW | D_MP | D_HOTPLUG,	/* Driver compatibility flag */
204 	CB_REV,				/* rev */
205 	nodev,				/* int (*cb_aread)() */
206 	nodev				/* int (*cb_awrite)() */
207 };
208 
209 static struct dev_ops pcmu_ops = {
210 	DEVO_REV,
211 	0,
212 	pcmu_info,
213 	nulldev,
214 	0,
215 	pcmu_attach,
216 	pcmu_detach,
217 	nodev,
218 	&pcmu_cb_ops,
219 	&pcmu_bus_ops,
220 	0,
221 	ddi_quiesce_not_needed,		/* quiesce */
222 
223 };
224 
225 /*
226  * module definitions:
227  */
228 extern struct mod_ops mod_driverops;
229 
230 static struct modldrv modldrv = {
231 	&mod_driverops,				/* Type of module - driver */
232 	"OPL CMU-CH PCI Nexus driver",	/* Name of module. */
233 	&pcmu_ops,				/* driver ops */
234 };
235 
236 static struct modlinkage modlinkage = {
237 	MODREV_1, (void *)&modldrv, NULL
238 };
239 
240 /*
241  * driver global data:
242  */
243 void *per_pcmu_state;			/* per-pbm soft state pointer */
244 kmutex_t pcmu_global_mutex;		/* attach/detach common struct lock */
245 errorq_t *pcmu_ecc_queue = NULL;	/* per-system ecc handling queue */
246 
247 extern void pcmu_child_cfg_save(dev_info_t *dip);
248 extern void pcmu_child_cfg_restore(dev_info_t *dip);
249 
250 int
251 _init(void)
252 {
253 	int e;
254 
255 	/*
256 	 * Initialize per-pci bus soft state pointer.
257 	 */
258 	e = ddi_soft_state_init(&per_pcmu_state, sizeof (pcmu_t), 1);
259 	if (e != 0)
260 		return (e);
261 
262 	/*
263 	 * Initialize global mutexes.
264 	 */
265 	mutex_init(&pcmu_global_mutex, NULL, MUTEX_DRIVER, NULL);
266 
267 	/*
268 	 * Create the performance kstats.
269 	 */
270 	pcmu_kstat_init();
271 
272 	/*
273 	 * Install the module.
274 	 */
275 	e = mod_install(&modlinkage);
276 	if (e != 0) {
277 		ddi_soft_state_fini(&per_pcmu_state);
278 		mutex_destroy(&pcmu_global_mutex);
279 	}
280 	return (e);
281 }
282 
283 int
284 _fini(void)
285 {
286 	int e;
287 
288 	/*
289 	 * Remove the module.
290 	 */
291 	e = mod_remove(&modlinkage);
292 	if (e != 0) {
293 		return (e);
294 	}
295 
296 	/*
297 	 * Destroy pcmu_ecc_queue, and set it to NULL.
298 	 */
299 	if (pcmu_ecc_queue) {
300 		errorq_destroy(pcmu_ecc_queue);
301 		pcmu_ecc_queue = NULL;
302 	}
303 
304 	/*
305 	 * Destroy the performance kstats.
306 	 */
307 	pcmu_kstat_fini();
308 
309 	/*
310 	 * Free the per-pci and per-CMU-CH soft state info and destroy
311 	 * mutex for per-CMU-CH soft state.
312 	 */
313 	ddi_soft_state_fini(&per_pcmu_state);
314 	mutex_destroy(&pcmu_global_mutex);
315 	return (e);
316 }
317 
318 int
319 _info(struct modinfo *modinfop)
320 {
321 	return (mod_info(&modlinkage, modinfop));
322 }
323 
324 /*ARGSUSED*/
325 static int
326 pcmu_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
327 {
328 	int	instance = getminor((dev_t)arg) >> 8;
329 	pcmu_t	*pcmu_p = get_pcmu_soft_state(instance);
330 
331 	switch (infocmd) {
332 	case DDI_INFO_DEVT2INSTANCE:
333 		*result = (void *)(uintptr_t)instance;
334 		return (DDI_SUCCESS);
335 
336 	case DDI_INFO_DEVT2DEVINFO:
337 		if (pcmu_p == NULL)
338 			return (DDI_FAILURE);
339 		*result = (void *)pcmu_p->pcmu_dip;
340 		return (DDI_SUCCESS);
341 
342 	default:
343 		return (DDI_FAILURE);
344 	}
345 }
346 
347 
348 /* device driver entry points */
349 /*
350  * attach entry point:
351  */
352 static int
353 pcmu_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
354 {
355 	pcmu_t *pcmu_p;
356 	int instance = ddi_get_instance(dip);
357 
358 	switch (cmd) {
359 	case DDI_ATTACH:
360 		PCMU_DBG0(PCMU_DBG_ATTACH, dip, "DDI_ATTACH\n");
361 
362 		/*
363 		 * Allocate and get the per-pci soft state structure.
364 		 */
365 		if (alloc_pcmu_soft_state(instance) != DDI_SUCCESS) {
366 			cmn_err(CE_WARN, "%s%d: can't allocate pci state",
367 			    ddi_driver_name(dip), instance);
368 			goto err_bad_pcmu_softstate;
369 		}
370 		pcmu_p = get_pcmu_soft_state(instance);
371 		pcmu_p->pcmu_dip = dip;
372 		mutex_init(&pcmu_p->pcmu_mutex, NULL, MUTEX_DRIVER, NULL);
373 		pcmu_p->pcmu_soft_state = PCMU_SOFT_STATE_CLOSED;
374 		pcmu_p->pcmu_open_count = 0;
375 
376 		/*
377 		 * Get key properties of the pci bridge node.
378 		 */
379 		if (get_pcmu_properties(pcmu_p, dip) == DDI_FAILURE) {
380 			goto err_bad_pcmu_prop;
381 		}
382 
383 		/*
384 		 * Map in the registers.
385 		 */
386 		if (map_pcmu_registers(pcmu_p, dip) == DDI_FAILURE) {
387 			goto err_bad_reg_prop;
388 		}
389 		if (pcmu_obj_setup(pcmu_p) != DDI_SUCCESS) {
390 			goto err_bad_objs;
391 		}
392 
393 		if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
394 		    (uint_t)instance<<8 | 0xff,
395 		    DDI_NT_NEXUS, 0) != DDI_SUCCESS) {
396 			goto err_bad_devctl_node;
397 		}
398 
399 		/*
400 		 * Due to unresolved hardware issues, disable PCIPM until
401 		 * the problem is fully understood.
402 		 *
403 		 * pcmu_pwr_setup(pcmu_p, dip);
404 		 */
405 
406 		ddi_report_dev(dip);
407 
408 		pcmu_p->pcmu_state = PCMU_ATTACHED;
409 		PCMU_DBG0(PCMU_DBG_ATTACH, dip, "attach success\n");
410 		break;
411 
412 err_bad_objs:
413 		ddi_remove_minor_node(dip, "devctl");
414 err_bad_devctl_node:
415 		unmap_pcmu_registers(pcmu_p);
416 err_bad_reg_prop:
417 		free_pcmu_properties(pcmu_p);
418 err_bad_pcmu_prop:
419 		mutex_destroy(&pcmu_p->pcmu_mutex);
420 		free_pcmu_soft_state(instance);
421 err_bad_pcmu_softstate:
422 		return (DDI_FAILURE);
423 
424 	case DDI_RESUME:
425 		PCMU_DBG0(PCMU_DBG_ATTACH, dip, "DDI_RESUME\n");
426 
427 		/*
428 		 * Make sure the CMU-CH control registers
429 		 * are configured properly.
430 		 */
431 		pcmu_p = get_pcmu_soft_state(instance);
432 		mutex_enter(&pcmu_p->pcmu_mutex);
433 
434 		/*
435 		 * Make sure this instance has been suspended.
436 		 */
437 		if (pcmu_p->pcmu_state != PCMU_SUSPENDED) {
438 			PCMU_DBG0(PCMU_DBG_ATTACH, dip,
439 			    "instance NOT suspended\n");
440 			mutex_exit(&pcmu_p->pcmu_mutex);
441 			return (DDI_FAILURE);
442 		}
443 		pcmu_obj_resume(pcmu_p);
444 		pcmu_p->pcmu_state = PCMU_ATTACHED;
445 
446 		pcmu_child_cfg_restore(dip);
447 
448 		mutex_exit(&pcmu_p->pcmu_mutex);
449 		break;
450 
451 	default:
452 		PCMU_DBG0(PCMU_DBG_ATTACH, dip, "unsupported attach op\n");
453 		return (DDI_FAILURE);
454 	}
455 
456 	return (DDI_SUCCESS);
457 }
458 
459 /*
460  * detach entry point:
461  */
462 static int
463 pcmu_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
464 {
465 	int instance = ddi_get_instance(dip);
466 	pcmu_t *pcmu_p = get_pcmu_soft_state(instance);
467 	int len;
468 
469 	/*
470 	 * Make sure we are currently attached
471 	 */
472 	if (pcmu_p->pcmu_state != PCMU_ATTACHED) {
473 		PCMU_DBG0(PCMU_DBG_ATTACH, dip,
474 		    "failed - instance not attached\n");
475 		return (DDI_FAILURE);
476 	}
477 
478 	mutex_enter(&pcmu_p->pcmu_mutex);
479 
480 	switch (cmd) {
481 	case DDI_DETACH:
482 		PCMU_DBG0(PCMU_DBG_DETACH, dip, "DDI_DETACH\n");
483 		pcmu_obj_destroy(pcmu_p);
484 
485 		/*
486 		 * Free the pci soft state structure and the rest of the
487 		 * resources it's using.
488 		 */
489 		free_pcmu_properties(pcmu_p);
490 		unmap_pcmu_registers(pcmu_p);
491 		mutex_exit(&pcmu_p->pcmu_mutex);
492 		mutex_destroy(&pcmu_p->pcmu_mutex);
493 		free_pcmu_soft_state(instance);
494 
495 		/* Free the interrupt-priorities prop if we created it. */
496 		if (ddi_getproplen(DDI_DEV_T_ANY, dip,
497 		    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
498 		    "interrupt-priorities", &len) == DDI_PROP_SUCCESS) {
499 			(void) ddi_prop_remove(DDI_DEV_T_NONE, dip,
500 			    "interrupt-priorities");
501 		}
502 		return (DDI_SUCCESS);
503 
504 	case DDI_SUSPEND:
505 		pcmu_child_cfg_save(dip);
506 		pcmu_obj_suspend(pcmu_p);
507 		pcmu_p->pcmu_state = PCMU_SUSPENDED;
508 
509 		mutex_exit(&pcmu_p->pcmu_mutex);
510 		return (DDI_SUCCESS);
511 
512 	default:
513 		PCMU_DBG0(PCMU_DBG_DETACH, dip, "unsupported detach op\n");
514 		mutex_exit(&pcmu_p->pcmu_mutex);
515 		return (DDI_FAILURE);
516 	}
517 }
518 
519 /* ARGSUSED3 */
520 static int
521 pcmu_open(dev_t *devp, int flags, int otyp, cred_t *credp)
522 {
523 	pcmu_t *pcmu_p;
524 
525 	if (otyp != OTYP_CHR) {
526 		return (EINVAL);
527 	}
528 
529 	/*
530 	 * Get the soft state structure for the device.
531 	 */
532 	pcmu_p = DEV_TO_SOFTSTATE(*devp);
533 	if (pcmu_p == NULL) {
534 		return (ENXIO);
535 	}
536 
537 	/*
538 	 * Handle the open by tracking the device state.
539 	 */
540 	PCMU_DBG2(PCMU_DBG_OPEN, pcmu_p->pcmu_dip,
541 	    "devp=%x: flags=%x\n", devp, flags);
542 	mutex_enter(&pcmu_p->pcmu_mutex);
543 	if (flags & FEXCL) {
544 		if (pcmu_p->pcmu_soft_state != PCMU_SOFT_STATE_CLOSED) {
545 			mutex_exit(&pcmu_p->pcmu_mutex);
546 			PCMU_DBG0(PCMU_DBG_OPEN, pcmu_p->pcmu_dip, "busy\n");
547 			return (EBUSY);
548 		}
549 		pcmu_p->pcmu_soft_state = PCMU_SOFT_STATE_OPEN_EXCL;
550 	} else {
551 		if (pcmu_p->pcmu_soft_state == PCMU_SOFT_STATE_OPEN_EXCL) {
552 			mutex_exit(&pcmu_p->pcmu_mutex);
553 			PCMU_DBG0(PCMU_DBG_OPEN, pcmu_p->pcmu_dip, "busy\n");
554 			return (EBUSY);
555 		}
556 		pcmu_p->pcmu_soft_state = PCMU_SOFT_STATE_OPEN;
557 	}
558 	pcmu_p->pcmu_open_count++;
559 	mutex_exit(&pcmu_p->pcmu_mutex);
560 	return (0);
561 }
562 
563 
564 /* ARGSUSED */
565 static int
566 pcmu_close(dev_t dev, int flags, int otyp, cred_t *credp)
567 {
568 	pcmu_t *pcmu_p;
569 
570 	if (otyp != OTYP_CHR) {
571 		return (EINVAL);
572 	}
573 
574 	pcmu_p = DEV_TO_SOFTSTATE(dev);
575 	if (pcmu_p == NULL) {
576 		return (ENXIO);
577 	}
578 
579 	PCMU_DBG2(PCMU_DBG_CLOSE, pcmu_p->pcmu_dip,
580 	    "dev=%x: flags=%x\n", dev, flags);
581 	mutex_enter(&pcmu_p->pcmu_mutex);
582 	pcmu_p->pcmu_soft_state = PCMU_SOFT_STATE_CLOSED;
583 	pcmu_p->pcmu_open_count = 0;
584 	mutex_exit(&pcmu_p->pcmu_mutex);
585 	return (0);
586 }
587 
588 /* ARGSUSED */
589 static int
590 pcmu_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
591     cred_t *credp, int *rvalp)
592 {
593 	pcmu_t *pcmu_p;
594 	dev_info_t *dip;
595 	struct devctl_iocdata *dcp;
596 	uint_t bus_state;
597 	int rv = 0;
598 
599 	pcmu_p = DEV_TO_SOFTSTATE(dev);
600 	if (pcmu_p == NULL) {
601 		return (ENXIO);
602 	}
603 
604 	dip = pcmu_p->pcmu_dip;
605 	PCMU_DBG2(PCMU_DBG_IOCTL, dip, "dev=%x: cmd=%x\n", dev, cmd);
606 
607 	/*
608 	 * We can use the generic implementation for these ioctls
609 	 */
610 	switch (cmd) {
611 	case DEVCTL_DEVICE_GETSTATE:
612 	case DEVCTL_DEVICE_ONLINE:
613 	case DEVCTL_DEVICE_OFFLINE:
614 	case DEVCTL_BUS_GETSTATE:
615 		return (ndi_devctl_ioctl(dip, cmd, arg, mode, 0));
616 	}
617 
618 	/*
619 	 * read devctl ioctl data
620 	 */
621 	if (ndi_dc_allochdl((void *)arg, &dcp) != NDI_SUCCESS)
622 		return (EFAULT);
623 
624 	switch (cmd) {
625 
626 	case DEVCTL_DEVICE_RESET:
627 		PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_DEVICE_RESET\n");
628 		rv = ENOTSUP;
629 		break;
630 
631 
632 	case DEVCTL_BUS_QUIESCE:
633 		PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_BUS_QUIESCE\n");
634 		if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS) {
635 			if (bus_state == BUS_QUIESCED) {
636 				break;
637 			}
638 		}
639 		(void) ndi_set_bus_state(dip, BUS_QUIESCED);
640 		break;
641 
642 	case DEVCTL_BUS_UNQUIESCE:
643 		PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_BUS_UNQUIESCE\n");
644 		if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS) {
645 			if (bus_state == BUS_ACTIVE) {
646 				break;
647 			}
648 		}
649 		(void) ndi_set_bus_state(dip, BUS_ACTIVE);
650 		break;
651 
652 	case DEVCTL_BUS_RESET:
653 		PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_BUS_RESET\n");
654 		rv = ENOTSUP;
655 		break;
656 
657 	case DEVCTL_BUS_RESETALL:
658 		PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_BUS_RESETALL\n");
659 		rv = ENOTSUP;
660 		break;
661 
662 	default:
663 		rv = ENOTTY;
664 	}
665 
666 	ndi_dc_freehdl(dcp);
667 	return (rv);
668 }
669 
670 static int pcmu_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
671     int flags, char *name, caddr_t valuep, int *lengthp)
672 {
673 	return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp));
674 }
675 /* bus driver entry points */
676 
677 /*
678  * bus map entry point:
679  *
680  *	if map request is for an rnumber
681  *		get the corresponding regspec from device node
682  *	build a new regspec in our parent's format
683  *	build a new map_req with the new regspec
684  *	call up the tree to complete the mapping
685  */
686 static int
687 pcmu_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
688 	off_t off, off_t len, caddr_t *addrp)
689 {
690 	pcmu_t *pcmu_p = get_pcmu_soft_state(ddi_get_instance(dip));
691 	struct regspec p_regspec;
692 	ddi_map_req_t p_mapreq;
693 	int reglen, rval, r_no;
694 	pci_regspec_t reloc_reg, *rp = &reloc_reg;
695 
696 	PCMU_DBG2(PCMU_DBG_MAP, dip, "rdip=%s%d:",
697 	    ddi_driver_name(rdip), ddi_get_instance(rdip));
698 
699 	if (mp->map_flags & DDI_MF_USER_MAPPING) {
700 		return (DDI_ME_UNIMPLEMENTED);
701 	}
702 
703 	switch (mp->map_type) {
704 	case DDI_MT_REGSPEC:
705 		reloc_reg = *(pci_regspec_t *)mp->map_obj.rp;	/* dup whole */
706 		break;
707 
708 	case DDI_MT_RNUMBER:
709 		r_no = mp->map_obj.rnumber;
710 		PCMU_DBG1(PCMU_DBG_MAP | PCMU_DBG_CONT, dip, " r#=%x", r_no);
711 
712 		if (ddi_getlongprop(DDI_DEV_T_NONE, rdip, DDI_PROP_DONTPASS,
713 		    "reg", (caddr_t)&rp, &reglen) != DDI_SUCCESS) {
714 			return (DDI_ME_RNUMBER_RANGE);
715 		}
716 
717 		if (r_no < 0 || r_no >= reglen / sizeof (pci_regspec_t)) {
718 			kmem_free(rp, reglen);
719 			return (DDI_ME_RNUMBER_RANGE);
720 		}
721 		rp += r_no;
722 		break;
723 
724 	default:
725 		return (DDI_ME_INVAL);
726 	}
727 	PCMU_DBG0(PCMU_DBG_MAP | PCMU_DBG_CONT, dip, "\n");
728 
729 	/* use "assigned-addresses" to relocate regspec within pci space */
730 	if (rval = pcmu_reloc_reg(dip, rdip, pcmu_p, rp)) {
731 		goto done;
732 	}
733 
734 	/* adjust regspec according to mapping request */
735 	if (len) {
736 		rp->pci_size_low = (uint_t)len;
737 	}
738 	rp->pci_phys_low += off;
739 
740 	/* use "ranges" to translate relocated pci regspec into parent space */
741 	if (rval = pcmu_xlate_reg(pcmu_p, rp, &p_regspec)) {
742 		goto done;
743 	}
744 
745 	p_mapreq = *mp;		/* dup the whole structure */
746 	p_mapreq.map_type = DDI_MT_REGSPEC;
747 	p_mapreq.map_obj.rp = &p_regspec;
748 	rval = ddi_map(dip, &p_mapreq, 0, 0, addrp);
749 
750 done:
751 	if (mp->map_type == DDI_MT_RNUMBER) {
752 		kmem_free(rp - r_no, reglen);
753 	}
754 	return (rval);
755 }
756 
757 #ifdef  DEBUG
758 int	pcmu_peekfault_cnt = 0;
759 int	pcmu_pokefault_cnt = 0;
760 #endif  /* DEBUG */
761 
762 static int
763 pcmu_do_poke(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args)
764 {
765 	pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p;
766 	int err = DDI_SUCCESS;
767 	on_trap_data_t otd;
768 
769 	mutex_enter(&pcbm_p->pcbm_pokeflt_mutex);
770 	pcbm_p->pcbm_ontrap_data = &otd;
771 
772 	/* Set up protected environment. */
773 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
774 		uintptr_t tramp = otd.ot_trampoline;
775 
776 		otd.ot_trampoline = (uintptr_t)&poke_fault;
777 		err = do_poke(in_args->size, (void *)in_args->dev_addr,
778 		    (void *)in_args->host_addr);
779 		otd.ot_trampoline = tramp;
780 	} else {
781 		err = DDI_FAILURE;
782 	}
783 
784 	/*
785 	 * Read the async fault register for the PBM to see it sees
786 	 * a master-abort.
787 	 */
788 	pcmu_pbm_clear_error(pcbm_p);
789 
790 	if (otd.ot_trap & OT_DATA_ACCESS) {
791 		err = DDI_FAILURE;
792 	}
793 
794 	/* Take down protected environment. */
795 	no_trap();
796 
797 	pcbm_p->pcbm_ontrap_data = NULL;
798 	mutex_exit(&pcbm_p->pcbm_pokeflt_mutex);
799 
800 #ifdef  DEBUG
801 	if (err == DDI_FAILURE)
802 		pcmu_pokefault_cnt++;
803 #endif
804 	return (err);
805 }
806 
807 
808 static int
809 pcmu_ctlops_poke(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args)
810 {
811 	return (pcmu_do_poke(pcmu_p, in_args));
812 }
813 
814 /* ARGSUSED */
815 static int
816 pcmu_do_peek(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args)
817 {
818 	int err = DDI_SUCCESS;
819 	on_trap_data_t otd;
820 
821 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
822 		uintptr_t tramp = otd.ot_trampoline;
823 
824 		otd.ot_trampoline = (uintptr_t)&peek_fault;
825 		err = do_peek(in_args->size, (void *)in_args->dev_addr,
826 		    (void *)in_args->host_addr);
827 		otd.ot_trampoline = tramp;
828 	} else
829 		err = DDI_FAILURE;
830 
831 	no_trap();
832 
833 #ifdef  DEBUG
834 	if (err == DDI_FAILURE)
835 		pcmu_peekfault_cnt++;
836 #endif
837 	return (err);
838 }
839 
840 
841 static int
842 pcmu_ctlops_peek(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args, void *result)
843 {
844 	result = (void *)in_args->host_addr;
845 	return (pcmu_do_peek(pcmu_p, in_args));
846 }
847 
848 /*
849  * control ops entry point:
850  *
851  * Requests handled completely:
852  *	DDI_CTLOPS_INITCHILD	see pcmu_init_child() for details
853  *	DDI_CTLOPS_UNINITCHILD
854  *	DDI_CTLOPS_REPORTDEV	see report_dev() for details
855  *	DDI_CTLOPS_XLATE_INTRS	nothing to do
856  *	DDI_CTLOPS_IOMIN	cache line size if streaming otherwise 1
857  *	DDI_CTLOPS_REGSIZE
858  *	DDI_CTLOPS_NREGS
859  *	DDI_CTLOPS_NINTRS
860  *	DDI_CTLOPS_DVMAPAGESIZE
861  *	DDI_CTLOPS_POKE
862  *	DDI_CTLOPS_PEEK
863  *	DDI_CTLOPS_QUIESCE
864  *	DDI_CTLOPS_UNQUIESCE
865  *
866  * All others passed to parent.
867  */
868 static int
869 pcmu_ctlops(dev_info_t *dip, dev_info_t *rdip,
870 	ddi_ctl_enum_t op, void *arg, void *result)
871 {
872 	pcmu_t *pcmu_p = get_pcmu_soft_state(ddi_get_instance(dip));
873 
874 	switch (op) {
875 	case DDI_CTLOPS_INITCHILD:
876 		return (pcmu_init_child(pcmu_p, (dev_info_t *)arg));
877 
878 	case DDI_CTLOPS_UNINITCHILD:
879 		return (pcmu_uninit_child(pcmu_p, (dev_info_t *)arg));
880 
881 	case DDI_CTLOPS_REPORTDEV:
882 		return (pcmu_report_dev(rdip));
883 
884 	case DDI_CTLOPS_IOMIN:
885 		/*
886 		 * If we are using the streaming cache, align at
887 		 * least on a cache line boundary. Otherwise use
888 		 * whatever alignment is passed in.
889 		 */
890 		return (DDI_SUCCESS);
891 
892 	case DDI_CTLOPS_REGSIZE:
893 		*((off_t *)result) = pcmu_get_reg_set_size(rdip, *((int *)arg));
894 		return (DDI_SUCCESS);
895 
896 	case DDI_CTLOPS_NREGS:
897 		*((uint_t *)result) = pcmu_get_nreg_set(rdip);
898 		return (DDI_SUCCESS);
899 
900 	case DDI_CTLOPS_DVMAPAGESIZE:
901 		*((ulong_t *)result) = 0;
902 		return (DDI_SUCCESS);
903 
904 	case DDI_CTLOPS_POKE:
905 		return (pcmu_ctlops_poke(pcmu_p, (peekpoke_ctlops_t *)arg));
906 
907 	case DDI_CTLOPS_PEEK:
908 		return (pcmu_ctlops_peek(pcmu_p, (peekpoke_ctlops_t *)arg,
909 		    result));
910 
911 	case DDI_CTLOPS_AFFINITY:
912 		break;
913 
914 	case DDI_CTLOPS_QUIESCE:
915 		return (DDI_FAILURE);
916 
917 	case DDI_CTLOPS_UNQUIESCE:
918 		return (DDI_FAILURE);
919 
920 	default:
921 		break;
922 	}
923 
924 	/*
925 	 * Now pass the request up to our parent.
926 	 */
927 	PCMU_DBG2(PCMU_DBG_CTLOPS, dip,
928 	    "passing request to parent: rdip=%s%d\n",
929 	    ddi_driver_name(rdip), ddi_get_instance(rdip));
930 	return (ddi_ctlops(dip, rdip, op, arg, result));
931 }
932 
933 
934 /* ARGSUSED */
935 static int
936 pcmu_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op,
937     ddi_intr_handle_impl_t *hdlp, void *result)
938 {
939 	pcmu_t		*pcmu_p = get_pcmu_soft_state(ddi_get_instance(dip));
940 	int		ret = DDI_SUCCESS;
941 
942 	switch (intr_op) {
943 	case DDI_INTROP_GETCAP:
944 		/* GetCap will always fail for all non PCI devices */
945 		(void) pci_intx_get_cap(rdip, (int *)result);
946 		break;
947 	case DDI_INTROP_SETCAP:
948 		ret = DDI_ENOTSUP;
949 		break;
950 	case DDI_INTROP_ALLOC:
951 		*(int *)result = hdlp->ih_scratch1;
952 		break;
953 	case DDI_INTROP_FREE:
954 		break;
955 	case DDI_INTROP_GETPRI:
956 		*(int *)result = hdlp->ih_pri ? hdlp->ih_pri : 0;
957 		break;
958 	case DDI_INTROP_SETPRI:
959 		break;
960 	case DDI_INTROP_ADDISR:
961 		ret = pcmu_add_intr(dip, rdip, hdlp);
962 		break;
963 	case DDI_INTROP_REMISR:
964 		ret = pcmu_remove_intr(dip, rdip, hdlp);
965 		break;
966 	case DDI_INTROP_ENABLE:
967 		ret = pcmu_ib_update_intr_state(pcmu_p, rdip, hdlp,
968 		    PCMU_INTR_STATE_ENABLE);
969 		break;
970 	case DDI_INTROP_DISABLE:
971 		ret = pcmu_ib_update_intr_state(pcmu_p, rdip, hdlp,
972 		    PCMU_INTR_STATE_DISABLE);
973 		break;
974 	case DDI_INTROP_SETMASK:
975 		ret = pci_intx_set_mask(rdip);
976 		break;
977 	case DDI_INTROP_CLRMASK:
978 		ret = pci_intx_clr_mask(rdip);
979 		break;
980 	case DDI_INTROP_GETPENDING:
981 		ret = pci_intx_get_pending(rdip, (int *)result);
982 		break;
983 	case DDI_INTROP_NINTRS:
984 	case DDI_INTROP_NAVAIL:
985 		*(int *)result = i_ddi_get_intx_nintrs(rdip);
986 		break;
987 	case DDI_INTROP_SUPPORTED_TYPES:
988 		/* PCI nexus driver supports only fixed interrupts */
989 		*(int *)result = i_ddi_get_intx_nintrs(rdip) ?
990 		    DDI_INTR_TYPE_FIXED : 0;
991 		break;
992 	default:
993 		ret = DDI_ENOTSUP;
994 		break;
995 	}
996 
997 	return (ret);
998 }
999 
1000 /*
1001  * CMU-CH specifics implementation:
1002  *	interrupt mapping register
1003  *	PBM configuration
1004  *	ECC and PBM error handling
1005  */
1006 
1007 /* called by pcmu_attach() DDI_ATTACH to initialize pci objects */
1008 static int
1009 pcmu_obj_setup(pcmu_t *pcmu_p)
1010 {
1011 	int ret;
1012 
1013 	mutex_enter(&pcmu_global_mutex);
1014 	pcmu_p->pcmu_rev = ddi_prop_get_int(DDI_DEV_T_ANY, pcmu_p->pcmu_dip,
1015 	    DDI_PROP_DONTPASS, "module-revision#", 0);
1016 
1017 	pcmu_ib_create(pcmu_p);
1018 	pcmu_cb_create(pcmu_p);
1019 	pcmu_ecc_create(pcmu_p);
1020 	pcmu_pbm_create(pcmu_p);
1021 	pcmu_err_create(pcmu_p);
1022 	if ((ret = pcmu_intr_setup(pcmu_p)) != DDI_SUCCESS)
1023 		goto done;
1024 
1025 	/*
1026 	 * Due to a hardware bug, do not create kstat for DC systems
1027 	 * with PCI hw revision less than 5.
1028 	 */
1029 	if ((strncmp(ddi_binding_name(pcmu_p->pcmu_dip),
1030 	    PCICMU_OPL_DC_BINDING_NAME, strlen(PCICMU_OPL_DC_BINDING_NAME))
1031 	    != 0) || (pcmu_p->pcmu_rev > 4)) {
1032 		pcmu_kstat_create(pcmu_p);
1033 	}
1034 done:
1035 	mutex_exit(&pcmu_global_mutex);
1036 	if (ret != DDI_SUCCESS) {
1037 		cmn_err(CE_NOTE, "Interrupt register failure, returning 0x%x\n",
1038 		    ret);
1039 	}
1040 	return (ret);
1041 }
1042 
1043 /* called by pcmu_detach() DDI_DETACH to destroy pci objects */
1044 static void
1045 pcmu_obj_destroy(pcmu_t *pcmu_p)
1046 {
1047 	mutex_enter(&pcmu_global_mutex);
1048 
1049 	pcmu_kstat_destroy(pcmu_p);
1050 	pcmu_pbm_destroy(pcmu_p);
1051 	pcmu_err_destroy(pcmu_p);
1052 	pcmu_ecc_destroy(pcmu_p);
1053 	pcmu_cb_destroy(pcmu_p);
1054 	pcmu_ib_destroy(pcmu_p);
1055 	pcmu_intr_teardown(pcmu_p);
1056 
1057 	mutex_exit(&pcmu_global_mutex);
1058 }
1059 
1060 /* called by pcmu_attach() DDI_RESUME to (re)initialize pci objects */
1061 static void
1062 pcmu_obj_resume(pcmu_t *pcmu_p)
1063 {
1064 	mutex_enter(&pcmu_global_mutex);
1065 
1066 	pcmu_ib_configure(pcmu_p->pcmu_ib_p);
1067 	pcmu_ecc_configure(pcmu_p);
1068 	pcmu_ib_resume(pcmu_p->pcmu_ib_p);
1069 	u2u_ittrans_resume((u2u_ittrans_data_t **)
1070 	    &(pcmu_p->pcmu_cb_p->pcb_ittrans_cookie));
1071 
1072 	pcmu_pbm_configure(pcmu_p->pcmu_pcbm_p);
1073 
1074 	pcmu_cb_resume(pcmu_p->pcmu_cb_p);
1075 
1076 	pcmu_pbm_resume(pcmu_p->pcmu_pcbm_p);
1077 
1078 	mutex_exit(&pcmu_global_mutex);
1079 }
1080 
1081 /* called by pcmu_detach() DDI_SUSPEND to suspend pci objects */
1082 static void
1083 pcmu_obj_suspend(pcmu_t *pcmu_p)
1084 {
1085 	mutex_enter(&pcmu_global_mutex);
1086 
1087 	pcmu_pbm_suspend(pcmu_p->pcmu_pcbm_p);
1088 	pcmu_ib_suspend(pcmu_p->pcmu_ib_p);
1089 	pcmu_cb_suspend(pcmu_p->pcmu_cb_p);
1090 
1091 	mutex_exit(&pcmu_global_mutex);
1092 }
1093 
1094 static int
1095 pcmu_intr_setup(pcmu_t *pcmu_p)
1096 {
1097 	dev_info_t *dip = pcmu_p->pcmu_dip;
1098 	pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p;
1099 	pcmu_cb_t *pcb_p = pcmu_p->pcmu_cb_p;
1100 	int i, no_of_intrs;
1101 
1102 	/*
1103 	 * Get the interrupts property.
1104 	 */
1105 	if (ddi_getlongprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS,
1106 	    "interrupts", (caddr_t)&pcmu_p->pcmu_inos,
1107 	    &pcmu_p->pcmu_inos_len) != DDI_SUCCESS) {
1108 		cmn_err(CE_PANIC, "%s%d: no interrupts property\n",
1109 		    ddi_driver_name(dip), ddi_get_instance(dip));
1110 	}
1111 
1112 	/*
1113 	 * figure out number of interrupts in the "interrupts" property
1114 	 * and convert them all into ino.
1115 	 */
1116 	i = ddi_getprop(DDI_DEV_T_ANY, dip, 0, "#interrupt-cells", 1);
1117 	i = CELLS_1275_TO_BYTES(i);
1118 	no_of_intrs = pcmu_p->pcmu_inos_len / i;
1119 	for (i = 0; i < no_of_intrs; i++) {
1120 		pcmu_p->pcmu_inos[i] =
1121 		    PCMU_IB_MONDO_TO_INO(pcmu_p->pcmu_inos[i]);
1122 	}
1123 
1124 	pcb_p->pcb_no_of_inos = no_of_intrs;
1125 	if (i = pcmu_ecc_register_intr(pcmu_p)) {
1126 		goto teardown;
1127 	}
1128 
1129 	intr_dist_add(pcmu_cb_intr_dist, pcb_p);
1130 	pcmu_ecc_enable_intr(pcmu_p);
1131 
1132 	if (i = pcmu_pbm_register_intr(pcbm_p)) {
1133 		intr_dist_rem(pcmu_cb_intr_dist, pcb_p);
1134 		goto teardown;
1135 	}
1136 	intr_dist_add(pcmu_pbm_intr_dist, pcbm_p);
1137 	pcmu_ib_intr_enable(pcmu_p, pcmu_p->pcmu_inos[CBNINTR_PBM]);
1138 
1139 	intr_dist_add_weighted(pcmu_ib_intr_dist_all, pcmu_p->pcmu_ib_p);
1140 	return (DDI_SUCCESS);
1141 teardown:
1142 	pcmu_intr_teardown(pcmu_p);
1143 	return (i);
1144 }
1145 
1146 /*
1147  * pcmu_fix_ranges - fixes the config space entry of the "ranges"
1148  *	property on CMU-CH platforms
1149  */
1150 void
1151 pcmu_fix_ranges(pcmu_ranges_t *rng_p, int rng_entries)
1152 {
1153 	int i;
1154 	for (i = 0; i < rng_entries; i++, rng_p++) {
1155 		if ((rng_p->child_high & PCI_REG_ADDR_M) == PCI_ADDR_CONFIG)
1156 			rng_p->parent_low |= rng_p->child_high;
1157 	}
1158 }
1159 
1160 /*
1161  * map_pcmu_registers
1162  *
1163  * This function is called from the attach routine to map the registers
1164  * accessed by this driver.
1165  *
1166  * used by: pcmu_attach()
1167  *
1168  * return value: DDI_FAILURE on failure
1169  */
1170 static int
1171 map_pcmu_registers(pcmu_t *pcmu_p, dev_info_t *dip)
1172 {
1173 	ddi_device_acc_attr_t attr;
1174 
1175 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
1176 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
1177 
1178 	attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
1179 	if (ddi_regs_map_setup(dip, 0, &pcmu_p->pcmu_address[0], 0, 0,
1180 	    &attr, &pcmu_p->pcmu_ac[0]) != DDI_SUCCESS) {
1181 		cmn_err(CE_WARN, "%s%d: unable to map reg entry 0\n",
1182 		    ddi_driver_name(dip), ddi_get_instance(dip));
1183 		return (DDI_FAILURE);
1184 	}
1185 
1186 	/*
1187 	 * We still use pcmu_address[2]
1188 	 */
1189 	if (ddi_regs_map_setup(dip, 2, &pcmu_p->pcmu_address[2], 0, 0,
1190 	    &attr, &pcmu_p->pcmu_ac[2]) != DDI_SUCCESS) {
1191 		cmn_err(CE_WARN, "%s%d: unable to map reg entry 2\n",
1192 		    ddi_driver_name(dip), ddi_get_instance(dip));
1193 		ddi_regs_map_free(&pcmu_p->pcmu_ac[0]);
1194 		return (DDI_FAILURE);
1195 	}
1196 
1197 	/*
1198 	 * The second register set contains the bridge's configuration
1199 	 * header.  This header is at the very beginning of the bridge's
1200 	 * configuration space.  This space has litte-endian byte order.
1201 	 */
1202 	attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
1203 	if (ddi_regs_map_setup(dip, 1, &pcmu_p->pcmu_address[1], 0,
1204 	    PCI_CONF_HDR_SIZE, &attr, &pcmu_p->pcmu_ac[1]) != DDI_SUCCESS) {
1205 
1206 		cmn_err(CE_WARN, "%s%d: unable to map reg entry 1\n",
1207 		    ddi_driver_name(dip), ddi_get_instance(dip));
1208 		ddi_regs_map_free(&pcmu_p->pcmu_ac[0]);
1209 		return (DDI_FAILURE);
1210 	}
1211 	PCMU_DBG2(PCMU_DBG_ATTACH, dip, "address (%p,%p)\n",
1212 	    pcmu_p->pcmu_address[0], pcmu_p->pcmu_address[1]);
1213 	return (DDI_SUCCESS);
1214 }
1215 
1216 /*
1217  * unmap_pcmu_registers:
1218  *
1219  * This routine unmap the registers mapped by map_pcmu_registers.
1220  *
1221  * used by: pcmu_detach()
1222  *
1223  * return value: none
1224  */
1225 static void
1226 unmap_pcmu_registers(pcmu_t *pcmu_p)
1227 {
1228 	ddi_regs_map_free(&pcmu_p->pcmu_ac[0]);
1229 	ddi_regs_map_free(&pcmu_p->pcmu_ac[1]);
1230 	ddi_regs_map_free(&pcmu_p->pcmu_ac[2]);
1231 }
1232 
1233 /*
1234  * These convenience wrappers relies on map_pcmu_registers() to setup
1235  * pcmu_address[0-2] correctly at first.
1236  */
1237 static uintptr_t
1238 get_reg_base(pcmu_t *pcmu_p)
1239 {
1240 	return ((uintptr_t)pcmu_p->pcmu_address[2]);
1241 }
1242 
1243 /* The CMU-CH config reg base is always the 2nd reg entry */
1244 static uintptr_t
1245 get_config_reg_base(pcmu_t *pcmu_p)
1246 {
1247 	return ((uintptr_t)(pcmu_p->pcmu_address[1]));
1248 }
1249 
1250 uint64_t
1251 ib_get_map_reg(pcmu_ib_mondo_t mondo, uint32_t cpu_id)
1252 {
1253 	return ((mondo) | (cpu_id << PCMU_INTR_MAP_REG_TID_SHIFT) |
1254 	    PCMU_INTR_MAP_REG_VALID);
1255 
1256 }
1257 
1258 uint32_t
1259 ib_map_reg_get_cpu(volatile uint64_t reg)
1260 {
1261 	return ((reg & PCMU_INTR_MAP_REG_TID) >>
1262 	    PCMU_INTR_MAP_REG_TID_SHIFT);
1263 }
1264 
1265 uint64_t *
1266 ib_intr_map_reg_addr(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino)
1267 {
1268 	uint64_t *addr;
1269 
1270 	ASSERT(ino & 0x20);
1271 	addr = (uint64_t *)(pib_p->pib_obio_intr_map_regs +
1272 	    (((uint_t)ino & 0x1f) << 3));
1273 	return (addr);
1274 }
1275 
1276 uint64_t *
1277 ib_clear_intr_reg_addr(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino)
1278 {
1279 	uint64_t *addr;
1280 
1281 	ASSERT(ino & 0x20);
1282 	addr = (uint64_t *)(pib_p->pib_obio_clear_intr_regs +
1283 	    (((uint_t)ino & 0x1f) << 3));
1284 	return (addr);
1285 }
1286 
1287 uintptr_t
1288 pcmu_ib_setup(pcmu_ib_t *pib_p)
1289 {
1290 	pcmu_t *pcmu_p = pib_p->pib_pcmu_p;
1291 	uintptr_t a = get_reg_base(pcmu_p);
1292 
1293 	pib_p->pib_ign = PCMU_ID_TO_IGN(pcmu_p->pcmu_id);
1294 	pib_p->pib_max_ino = PCMU_MAX_INO;
1295 	pib_p->pib_obio_intr_map_regs = a + PCMU_IB_OBIO_INTR_MAP_REG_OFFSET;
1296 	pib_p->pib_obio_clear_intr_regs =
1297 	    a + PCMU_IB_OBIO_CLEAR_INTR_REG_OFFSET;
1298 	return (a);
1299 }
1300 
1301 /*
1302  * Return the cpuid to to be used for an ino.
1303  *
1304  * On multi-function pci devices, functions have separate devinfo nodes and
1305  * interrupts.
1306  *
1307  * This function determines if there is already an established slot-oriented
1308  * interrupt-to-cpu binding established, if there is then it returns that
1309  * cpu.  Otherwise a new cpu is selected by intr_dist_cpuid().
1310  *
1311  * The devinfo node we are trying to associate a cpu with is
1312  * ino_p->pino_ih_head->ih_dip.
1313  */
1314 uint32_t
1315 pcmu_intr_dist_cpuid(pcmu_ib_t *pib_p, pcmu_ib_ino_info_t *ino_p)
1316 {
1317 	dev_info_t	*rdip = ino_p->pino_ih_head->ih_dip;
1318 	dev_info_t	*prdip = ddi_get_parent(rdip);
1319 	pcmu_ib_ino_info_t	*sino_p;
1320 	dev_info_t	*sdip;
1321 	dev_info_t	*psdip;
1322 	char		*buf1 = NULL, *buf2 = NULL;
1323 	char		*s1, *s2, *s3;
1324 	int		l2;
1325 	int		cpu_id;
1326 
1327 	/* must be CMU-CH driver parent (not ebus) */
1328 	if (strcmp(ddi_driver_name(prdip), "pcicmu") != 0)
1329 		goto newcpu;
1330 
1331 	/*
1332 	 * From PCI 1275 binding: 2.2.1.3 Unit Address representation:
1333 	 *   Since the "unit-number" is the address that appears in on Open
1334 	 *   Firmware 'device path', it follows that only the DD and DD,FF
1335 	 *   forms of the text representation can appear in a 'device path'.
1336 	 *
1337 	 * The rdip unit address is of the form "DD[,FF]".  Define two
1338 	 * unit address strings that represent same-slot use: "DD" and "DD,".
1339 	 * The first compare uses strcmp, the second uses strncmp.
1340 	 */
1341 	s1 = ddi_get_name_addr(rdip);
1342 	if (s1 == NULL) {
1343 		goto newcpu;
1344 	}
1345 
1346 	buf1 = kmem_alloc(MAXNAMELEN, KM_SLEEP);	/* strcmp */
1347 	buf2 = kmem_alloc(MAXNAMELEN, KM_SLEEP);	/* strncmp */
1348 	s1 = strcpy(buf1, s1);
1349 	s2 = strcpy(buf2, s1);
1350 
1351 	s1 = strrchr(s1, ',');
1352 	if (s1) {
1353 		*s1 = '\0';			/* have "DD,FF" */
1354 		s1 = buf1;			/* search via strcmp "DD" */
1355 
1356 		s2 = strrchr(s2, ',');
1357 		*(s2 + 1) = '\0';
1358 		s2 = buf2;
1359 		l2 = strlen(s2);		/* search via strncmp "DD," */
1360 	} else {
1361 		(void) strcat(s2, ",");		/* have "DD" */
1362 		l2 = strlen(s2);		/* search via strncmp "DD," */
1363 	}
1364 
1365 	/*
1366 	 * Search the established ino list for devinfo nodes bound
1367 	 * to an ino that matches one of the slot use strings.
1368 	 */
1369 	ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex));
1370 	for (sino_p = pib_p->pib_ino_lst; sino_p; sino_p = sino_p->pino_next) {
1371 		/* skip self and non-established */
1372 		if ((sino_p == ino_p) || (sino_p->pino_established == 0))
1373 			continue;
1374 
1375 		/* skip non-siblings */
1376 		sdip = sino_p->pino_ih_head->ih_dip;
1377 		psdip = ddi_get_parent(sdip);
1378 		if (psdip != prdip)
1379 			continue;
1380 
1381 		/* must be CMU-CH driver parent (not ebus) */
1382 		if (strcmp(ddi_driver_name(psdip), "pcicmu") != 0)
1383 			continue;
1384 
1385 		s3 = ddi_get_name_addr(sdip);
1386 		if ((s1 && (strcmp(s1, s3) == 0)) ||
1387 		    (strncmp(s2, s3, l2) == 0)) {
1388 			extern int intr_dist_debug;
1389 
1390 			if (intr_dist_debug) {
1391 				cmn_err(CE_CONT, "intr_dist: "
1392 				    "pcicmu`pcmu_intr_dist_cpuid "
1393 				    "%s#%d %s: cpu %d established "
1394 				    "by %s#%d %s\n", ddi_driver_name(rdip),
1395 				    ddi_get_instance(rdip),
1396 				    ddi_deviname(rdip, buf1),
1397 				    sino_p->pino_cpuid,
1398 				    ddi_driver_name(sdip),
1399 				    ddi_get_instance(sdip),
1400 				    ddi_deviname(sdip, buf2));
1401 			}
1402 			break;
1403 		}
1404 	}
1405 
1406 	/* If a slot use match is found then use established cpu */
1407 	if (sino_p) {
1408 		cpu_id = sino_p->pino_cpuid;	/* target established cpu */
1409 		goto out;
1410 	}
1411 
1412 newcpu:	cpu_id = intr_dist_cpuid();		/* target new cpu */
1413 
1414 out:	if (buf1)
1415 		kmem_free(buf1, MAXNAMELEN);
1416 	if (buf2)
1417 		kmem_free(buf2, MAXNAMELEN);
1418 	return (cpu_id);
1419 }
1420 
1421 void
1422 pcmu_cb_teardown(pcmu_t *pcmu_p)
1423 {
1424 	pcmu_cb_t	*pcb_p = pcmu_p->pcmu_cb_p;
1425 
1426 	u2u_ittrans_uninit((u2u_ittrans_data_t *)pcb_p->pcb_ittrans_cookie);
1427 }
1428 
1429 int
1430 pcmu_ecc_add_intr(pcmu_t *pcmu_p, int inum, pcmu_ecc_intr_info_t *eii_p)
1431 {
1432 	uint32_t mondo;
1433 
1434 	mondo = ((pcmu_p->pcmu_cb_p->pcb_ign << PCMU_INO_BITS) |
1435 	    pcmu_p->pcmu_inos[inum]);
1436 
1437 	VERIFY(add_ivintr(mondo, pcmu_pil[inum], (intrfunc)pcmu_ecc_intr,
1438 	    (caddr_t)eii_p, NULL, NULL) == 0);
1439 
1440 	return (PCMU_ATTACH_RETCODE(PCMU_ECC_OBJ,
1441 	    PCMU_OBJ_INTR_ADD, DDI_SUCCESS));
1442 }
1443 
1444 /* ARGSUSED */
1445 void
1446 pcmu_ecc_rem_intr(pcmu_t *pcmu_p, int inum, pcmu_ecc_intr_info_t *eii_p)
1447 {
1448 	uint32_t mondo;
1449 
1450 	mondo = ((pcmu_p->pcmu_cb_p->pcb_ign << PCMU_INO_BITS) |
1451 	    pcmu_p->pcmu_inos[inum]);
1452 
1453 	VERIFY(rem_ivintr(mondo, pcmu_pil[inum]) == 0);
1454 }
1455 
1456 void
1457 pcmu_pbm_configure(pcmu_pbm_t *pcbm_p)
1458 {
1459 	pcmu_t *pcmu_p = pcbm_p->pcbm_pcmu_p;
1460 	dev_info_t *dip = pcmu_p->pcmu_dip;
1461 
1462 #define	pbm_err	((PCMU_PCI_AFSR_E_MASK << PCMU_PCI_AFSR_PE_SHIFT) |	\
1463 		(PCMU_PCI_AFSR_E_MASK << PCMU_PCI_AFSR_SE_SHIFT))
1464 #define	csr_err	(PCI_STAT_PERROR | PCI_STAT_S_PERROR |		\
1465 		PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB |	\
1466 		PCI_STAT_S_TARG_AB | PCI_STAT_S_PERROR)
1467 
1468 	/*
1469 	 * Clear any PBM errors.
1470 	 */
1471 	*pcbm_p->pcbm_async_flt_status_reg = pbm_err;
1472 
1473 	/*
1474 	 * Clear error bits in configuration status register.
1475 	 */
1476 	PCMU_DBG1(PCMU_DBG_ATTACH, dip,
1477 	    "pcmu_pbm_configure: conf status reg=%x\n", csr_err);
1478 
1479 	pcbm_p->pcbm_config_header->ch_status_reg = csr_err;
1480 
1481 	PCMU_DBG1(PCMU_DBG_ATTACH, dip,
1482 	    "pcmu_pbm_configure: conf status reg==%x\n",
1483 	    pcbm_p->pcbm_config_header->ch_status_reg);
1484 
1485 	(void) ndi_prop_update_int(DDI_DEV_T_ANY, dip, "latency-timer",
1486 	    (int)pcbm_p->pcbm_config_header->ch_latency_timer_reg);
1487 #undef	pbm_err
1488 #undef	csr_err
1489 }
1490 
1491 uint_t
1492 pcmu_pbm_disable_errors(pcmu_pbm_t *pcbm_p)
1493 {
1494 	pcmu_t *pcmu_p = pcbm_p->pcbm_pcmu_p;
1495 	pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p;
1496 
1497 	/*
1498 	 * Disable error and streaming byte hole interrupts via the
1499 	 * PBM control register.
1500 	 */
1501 	*pcbm_p->pcbm_ctrl_reg &= ~PCMU_PCI_CTRL_ERR_INT_EN;
1502 
1503 	/*
1504 	 * Disable error interrupts via the interrupt mapping register.
1505 	 */
1506 	pcmu_ib_intr_disable(pib_p,
1507 	    pcmu_p->pcmu_inos[CBNINTR_PBM], PCMU_IB_INTR_NOWAIT);
1508 	return (BF_NONE);
1509 }
1510 
1511 void
1512 pcmu_cb_setup(pcmu_t *pcmu_p)
1513 {
1514 	uint64_t csr, csr_pa, pa;
1515 	pcmu_cb_t *pcb_p = pcmu_p->pcmu_cb_p;
1516 
1517 	pcb_p->pcb_ign = PCMU_ID_TO_IGN(pcmu_p->pcmu_id);
1518 	pa = (uint64_t)hat_getpfnum(kas.a_hat, pcmu_p->pcmu_address[0]);
1519 	pcb_p->pcb_base_pa  = pa = pa >> (32 - MMU_PAGESHIFT) << 32;
1520 	pcb_p->pcb_map_pa = pa + PCMU_IB_OBIO_INTR_MAP_REG_OFFSET;
1521 	pcb_p->pcb_clr_pa = pa + PCMU_IB_OBIO_CLEAR_INTR_REG_OFFSET;
1522 	pcb_p->pcb_obsta_pa = pa + PCMU_IB_OBIO_INTR_STATE_DIAG_REG;
1523 
1524 	csr_pa = pa + PCMU_CB_CONTROL_STATUS_REG_OFFSET;
1525 	csr = lddphysio(csr_pa);
1526 
1527 	/*
1528 	 * Clear any pending address parity errors.
1529 	 */
1530 	if (csr & PCMU_CB_CONTROL_STATUS_APERR) {
1531 		csr |= PCMU_CB_CONTROL_STATUS_APERR;
1532 		cmn_err(CE_WARN, "clearing UPA address parity error\n");
1533 	}
1534 	csr |= PCMU_CB_CONTROL_STATUS_APCKEN;
1535 	csr &= ~PCMU_CB_CONTROL_STATUS_IAP;
1536 	stdphysio(csr_pa, csr);
1537 
1538 	u2u_ittrans_init(pcmu_p,
1539 	    (u2u_ittrans_data_t **)&pcb_p->pcb_ittrans_cookie);
1540 }
1541 
1542 void
1543 pcmu_ecc_setup(pcmu_ecc_t *pecc_p)
1544 {
1545 	pecc_p->pecc_ue.pecc_errpndg_mask = 0;
1546 	pecc_p->pecc_ue.pecc_offset_mask = PCMU_ECC_UE_AFSR_DW_OFFSET;
1547 	pecc_p->pecc_ue.pecc_offset_shift = PCMU_ECC_UE_AFSR_DW_OFFSET_SHIFT;
1548 	pecc_p->pecc_ue.pecc_size_log2 = 3;
1549 }
1550 
1551 static uintptr_t
1552 get_pbm_reg_base(pcmu_t *pcmu_p)
1553 {
1554 	return ((uintptr_t)(pcmu_p->pcmu_address[0]));
1555 }
1556 
1557 void
1558 pcmu_pbm_setup(pcmu_pbm_t *pcbm_p)
1559 {
1560 	pcmu_t *pcmu_p = pcbm_p->pcbm_pcmu_p;
1561 
1562 	/*
1563 	 * Get the base virtual address for the PBM control block.
1564 	 */
1565 	uintptr_t a = get_pbm_reg_base(pcmu_p);
1566 
1567 	/*
1568 	 * Get the virtual address of the PCI configuration header.
1569 	 * This should be mapped little-endian.
1570 	 */
1571 	pcbm_p->pcbm_config_header =
1572 	    (config_header_t *)get_config_reg_base(pcmu_p);
1573 
1574 	/*
1575 	 * Get the virtual addresses for control, error and diag
1576 	 * registers.
1577 	 */
1578 	pcbm_p->pcbm_ctrl_reg = (uint64_t *)(a + PCMU_PCI_CTRL_REG_OFFSET);
1579 	pcbm_p->pcbm_diag_reg = (uint64_t *)(a + PCMU_PCI_DIAG_REG_OFFSET);
1580 	pcbm_p->pcbm_async_flt_status_reg =
1581 	    (uint64_t *)(a + PCMU_PCI_ASYNC_FLT_STATUS_REG_OFFSET);
1582 	pcbm_p->pcbm_async_flt_addr_reg =
1583 	    (uint64_t *)(a + PCMU_PCI_ASYNC_FLT_ADDR_REG_OFFSET);
1584 }
1585 
1586 /*ARGSUSED*/
1587 void
1588 pcmu_pbm_teardown(pcmu_pbm_t *pcbm_p)
1589 {
1590 }
1591 
1592 int
1593 pcmu_get_numproxy(dev_info_t *dip)
1594 {
1595 	return (ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1596 	    "#upa-interrupt-proxies", 1));
1597 }
1598 
1599 int
1600 pcmu_get_portid(dev_info_t *dip)
1601 {
1602 	return (ddi_getprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1603 	    "portid", -1));
1604 }
1605 
1606 /*
1607  * CMU-CH Performance Events.
1608  */
1609 static pcmu_kev_mask_t
1610 pcicmu_pcmu_events[] = {
1611 	{"pio_cycles_b", 0xf},		{"interrupts", 0x11},
1612 	{"upa_inter_nack", 0x12},	{"pio_reads", 0x13},
1613 	{"pio_writes", 0x14},
1614 	{"clear_pic", 0x1f}
1615 };
1616 
1617 /*
1618  * Create the picN kstat's.
1619  */
1620 void
1621 pcmu_kstat_init()
1622 {
1623 	pcmu_name_kstat = (pcmu_ksinfo_t *)kmem_alloc(sizeof (pcmu_ksinfo_t),
1624 	    KM_NOSLEEP);
1625 
1626 	if (pcmu_name_kstat == NULL) {
1627 		cmn_err(CE_WARN, "pcicmu : no space for kstat\n");
1628 	} else {
1629 		pcmu_name_kstat->pic_no_evs =
1630 		    sizeof (pcicmu_pcmu_events) / sizeof (pcmu_kev_mask_t);
1631 		pcmu_name_kstat->pic_shift[0] = PCMU_SHIFT_PIC0;
1632 		pcmu_name_kstat->pic_shift[1] = PCMU_SHIFT_PIC1;
1633 		pcmu_create_name_kstat("pcmup",
1634 		    pcmu_name_kstat, pcicmu_pcmu_events);
1635 	}
1636 }
1637 
1638 /*
1639  * Called from _fini()
1640  */
1641 void
1642 pcmu_kstat_fini()
1643 {
1644 	if (pcmu_name_kstat != NULL) {
1645 		pcmu_delete_name_kstat(pcmu_name_kstat);
1646 		kmem_free(pcmu_name_kstat, sizeof (pcmu_ksinfo_t));
1647 		pcmu_name_kstat = NULL;
1648 	}
1649 }
1650 
1651 /*
1652  * Create the performance 'counters' kstat.
1653  */
1654 void
1655 pcmu_add_upstream_kstat(pcmu_t *pcmu_p)
1656 {
1657 	pcmu_cntr_pa_t	*cntr_pa_p = &pcmu_p->pcmu_uks_pa;
1658 	uint64_t regbase = va_to_pa((void *)get_reg_base(pcmu_p));
1659 
1660 	cntr_pa_p->pcr_pa = regbase + PCMU_PERF_PCR_OFFSET;
1661 	cntr_pa_p->pic_pa = regbase + PCMU_PERF_PIC_OFFSET;
1662 	pcmu_p->pcmu_uksp = pcmu_create_cntr_kstat(pcmu_p, "pcmup",
1663 	    NUM_OF_PICS, pcmu_cntr_kstat_pa_update, cntr_pa_p);
1664 }
1665 
1666 /*
1667  * u2u_ittrans_init() is caled from in pci.c's pcmu_cb_setup() per CMU.
1668  * Second argument "ittrans_cookie" is address of pcb_ittrans_cookie in
1669  * pcb_p member. allocated interrupt block is returned in it.
1670  */
1671 static void
1672 u2u_ittrans_init(pcmu_t *pcmu_p, u2u_ittrans_data_t **ittrans_cookie)
1673 {
1674 
1675 	u2u_ittrans_data_t *u2u_trans_p;
1676 	ddi_device_acc_attr_t attr;
1677 	int ret;
1678 	int board;
1679 
1680 	/*
1681 	 * Allocate the data structure to support U2U's
1682 	 * interrupt target translations.
1683 	 */
1684 	u2u_trans_p = (u2u_ittrans_data_t *)
1685 	    kmem_zalloc(sizeof (u2u_ittrans_data_t), KM_SLEEP);
1686 
1687 	/*
1688 	 * Get other properties, "board#"
1689 	 */
1690 	board = ddi_getprop(DDI_DEV_T_ANY, pcmu_p->pcmu_dip,
1691 	    DDI_PROP_DONTPASS, "board#", -1);
1692 
1693 	u2u_trans_p->u2u_board = board;
1694 
1695 	if (board == -1) {
1696 		/* this cannot happen on production systems */
1697 		cmn_err(CE_PANIC, "u2u:Invalid property;board = %d", board);
1698 	}
1699 
1700 	/*
1701 	 * Initialize interrupt target translations mutex.
1702 	 */
1703 	mutex_init(&(u2u_trans_p->u2u_ittrans_lock), "u2u_ittrans_lock",
1704 	    MUTEX_DEFAULT, NULL);
1705 
1706 	/*
1707 	 * Get U2U's registers space by ddi_regs_map_setup(9F)
1708 	 */
1709 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
1710 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
1711 	attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
1712 
1713 	ret = ddi_regs_map_setup(pcmu_p->pcmu_dip,
1714 	    REGS_INDEX_OF_U2U, (caddr_t *)(&(u2u_trans_p->u2u_regs_base)),
1715 	    0, 0, &attr, &(u2u_trans_p->u2u_acc));
1716 
1717 	/*
1718 	 * check result of ddi_regs_map_setup().
1719 	 */
1720 	if (ret != DDI_SUCCESS) {
1721 		cmn_err(CE_PANIC, "u2u%d: registers map setup failed", board);
1722 	}
1723 
1724 	/*
1725 	 * Read Port-id(1 byte) in u2u
1726 	 */
1727 	u2u_trans_p->u2u_port_id = *(volatile int32_t *)
1728 	    (u2u_trans_p->u2u_regs_base + U2U_PID_REGISTER_OFFSET);
1729 
1730 	if (pcmu_p->pcmu_id != u2u_trans_p->u2u_port_id) {
1731 		cmn_err(CE_PANIC, "u2u%d: Invalid Port-ID", board);
1732 	}
1733 
1734 	*ittrans_cookie = u2u_trans_p;
1735 }
1736 
1737 /*
1738  * u2u_ittras_resume() is called from pcmu_obj_resume() at DDI_RESUME entry.
1739  */
1740 static void
1741 u2u_ittrans_resume(u2u_ittrans_data_t **ittrans_cookie)
1742 {
1743 
1744 	u2u_ittrans_data_t *u2u_trans_p;
1745 	u2u_ittrans_id_t *ittrans_id_p;
1746 	uintptr_t  data_reg_addr;
1747 	int ix;
1748 
1749 	u2u_trans_p = *ittrans_cookie;
1750 
1751 	/*
1752 	 * Set U2U Data Register
1753 	 */
1754 	for (ix = 0; ix < U2U_DATA_NUM; ix++) {
1755 		ittrans_id_p = &(u2u_trans_p->u2u_ittrans_id[ix]);
1756 		data_reg_addr = u2u_trans_p->u2u_regs_base +
1757 		    U2U_DATA_REGISTER_OFFSET + (ix * sizeof (uint64_t));
1758 		if (ittrans_id_p->u2u_ino_map_reg == NULL) {
1759 			/* This index was not set */
1760 			continue;
1761 		}
1762 		*(volatile uint32_t *) (data_reg_addr) =
1763 		    (uint32_t)ittrans_id_p->u2u_tgt_cpu_id;
1764 
1765 	}
1766 }
1767 
1768 /*
1769  * u2u_ittras_uninit() is called from ib_destroy() at detach,
1770  * or occuring error in attach.
1771  */
1772 static void
1773 u2u_ittrans_uninit(u2u_ittrans_data_t *ittrans_cookie)
1774 {
1775 
1776 	if (ittrans_cookie == NULL) {
1777 		return;	/* not support */
1778 	}
1779 
1780 	if (ittrans_cookie == (u2u_ittrans_data_t *)(-1)) {
1781 		return;	 /* illeagal case */
1782 	}
1783 
1784 	ddi_regs_map_free(&(ittrans_cookie->u2u_acc));
1785 	mutex_destroy(&(ittrans_cookie->u2u_ittrans_lock));
1786 	kmem_free((void *)ittrans_cookie, sizeof (u2u_ittrans_data_t));
1787 }
1788 
1789 /*
1790  * This routine,u2u_translate_tgtid(, , cpu_id, pino_map_reg),
1791  * searches index having same value of pino_map_reg, or empty.
1792  * Then, stores cpu_id in a U2U Data Register as this index,
1793  * and return this index.
1794  */
1795 int
1796 u2u_translate_tgtid(pcmu_t *pcmu_p, uint_t cpu_id,
1797     volatile uint64_t *pino_map_reg)
1798 {
1799 
1800 	int index = -1;
1801 	int ix;
1802 	int err_level;	/* severity level for cmn_err */
1803 	u2u_ittrans_id_t *ittrans_id_p;
1804 	uintptr_t  data_reg_addr;
1805 	u2u_ittrans_data_t *ittrans_cookie;
1806 
1807 	ittrans_cookie =
1808 	    (u2u_ittrans_data_t *)(pcmu_p->pcmu_cb_p->pcb_ittrans_cookie);
1809 
1810 	if (ittrans_cookie == NULL) {
1811 		return (cpu_id);
1812 	}
1813 
1814 	if (ittrans_cookie == (u2u_ittrans_data_t *)(-1)) {
1815 		return (-1);	 /* illeagal case */
1816 	}
1817 
1818 	mutex_enter(&(ittrans_cookie->u2u_ittrans_lock));
1819 
1820 	/*
1821 	 * Decide index No. of U2U Data registers in either
1822 	 * already used by same pino_map_reg, or empty.
1823 	 */
1824 	for (ix = 0; ix < U2U_DATA_NUM; ix++) {
1825 		ittrans_id_p = &(ittrans_cookie->u2u_ittrans_id[ix]);
1826 		if (ittrans_id_p->u2u_ino_map_reg == pino_map_reg) {
1827 			/* already used this pino_map_reg */
1828 			index = ix;
1829 			break;
1830 		}
1831 		if (index == -1 &&
1832 		    ittrans_id_p->u2u_ino_map_reg == NULL) {
1833 			index = ix;
1834 		}
1835 	}
1836 
1837 	if (index == -1) {
1838 		if (panicstr) {
1839 			err_level = CE_WARN;
1840 		} else {
1841 			err_level = CE_PANIC;
1842 		}
1843 		cmn_err(err_level, "u2u%d:No more U2U-Data regs!!",
1844 		    ittrans_cookie->u2u_board);
1845 		return (cpu_id);
1846 	}
1847 
1848 	/*
1849 	 * For U2U
1850 	 * set cpu_id into u2u_data_reg by index.
1851 	 * ((uint64_t)(u2u_regs_base
1852 	 *	+ U2U_DATA_REGISTER_OFFSET))[index] = cpu_id;
1853 	 */
1854 
1855 	data_reg_addr = ittrans_cookie->u2u_regs_base
1856 	    + U2U_DATA_REGISTER_OFFSET
1857 	    + (index * sizeof (uint64_t));
1858 
1859 	/*
1860 	 * Set cpu_id into U2U Data register[index]
1861 	 */
1862 	*(volatile uint32_t *) (data_reg_addr) = (uint32_t)cpu_id;
1863 
1864 	/*
1865 	 * Setup for software, excepting at panicing.
1866 	 * and rebooting, etc...?
1867 	 */
1868 	if (!panicstr) {
1869 		ittrans_id_p = &(ittrans_cookie->u2u_ittrans_id[index]);
1870 		ittrans_id_p->u2u_tgt_cpu_id = cpu_id;
1871 		ittrans_id_p->u2u_ino_map_reg = pino_map_reg;
1872 	}
1873 
1874 	mutex_exit(&(ittrans_cookie->u2u_ittrans_lock));
1875 
1876 	return (index);
1877 }
1878 
1879 /*
1880  * u2u_ittrans_cleanup() is called from common_pcmu_ib_intr_disable()
1881  * after called intr_rem_cpu(mondo).
1882  */
1883 void
1884 u2u_ittrans_cleanup(u2u_ittrans_data_t *ittrans_cookie,
1885 			volatile uint64_t *pino_map_reg)
1886 {
1887 
1888 	int ix;
1889 	u2u_ittrans_id_t *ittrans_id_p;
1890 
1891 	if (ittrans_cookie == NULL) {
1892 		return;
1893 	}
1894 
1895 	if (ittrans_cookie == (u2u_ittrans_data_t *)(-1)) {
1896 		return;	 /* illeagal case */
1897 	}
1898 
1899 	mutex_enter(&(ittrans_cookie->u2u_ittrans_lock));
1900 
1901 	for (ix = 0; ix < U2U_DATA_NUM; ix++) {
1902 		ittrans_id_p = &(ittrans_cookie->u2u_ittrans_id[ix]);
1903 		if (ittrans_id_p->u2u_ino_map_reg == pino_map_reg) {
1904 			ittrans_id_p->u2u_ino_map_reg = NULL;
1905 			break;
1906 		}
1907 	}
1908 
1909 	mutex_exit(&(ittrans_cookie->u2u_ittrans_lock));
1910 }
1911 
1912 /*
1913  * pcmu_ecc_classify, called by ecc_handler to classify ecc errors
1914  * and determine if we should panic or not.
1915  */
1916 void
1917 pcmu_ecc_classify(uint64_t err, pcmu_ecc_errstate_t *ecc_err_p)
1918 {
1919 	struct async_flt *ecc = &ecc_err_p->ecc_aflt;
1920 	/* LINTED */
1921 	pcmu_t *pcmu_p = ecc_err_p->ecc_ii_p.pecc_p->pecc_pcmu_p;
1922 
1923 	ASSERT(MUTEX_HELD(&pcmu_p->pcmu_err_mutex));
1924 
1925 	ecc_err_p->ecc_bridge_type = PCI_OPLCMU;	/* RAGS */
1926 	/*
1927 	 * Get the parent bus id that caused the error.
1928 	 */
1929 	ecc_err_p->ecc_dev_id = (ecc_err_p->ecc_afsr & PCMU_ECC_UE_AFSR_ID)
1930 	    >> PCMU_ECC_UE_AFSR_ID_SHIFT;
1931 	/*
1932 	 * Determine the doubleword offset of the error.
1933 	 */
1934 	ecc_err_p->ecc_dw_offset = (ecc_err_p->ecc_afsr &
1935 	    PCMU_ECC_UE_AFSR_DW_OFFSET) >> PCMU_ECC_UE_AFSR_DW_OFFSET_SHIFT;
1936 	/*
1937 	 * Determine the primary error type.
1938 	 */
1939 	switch (err) {
1940 	case PCMU_ECC_UE_AFSR_E_PIO:
1941 		if (ecc_err_p->pecc_pri) {
1942 			ecc->flt_erpt_class = PCI_ECC_PIO_UE;
1943 		} else {
1944 			ecc->flt_erpt_class = PCI_ECC_SEC_PIO_UE;
1945 		}
1946 		/* For CMU-CH, a UE is always fatal. */
1947 		ecc->flt_panic = 1;
1948 		break;
1949 
1950 	default:
1951 		return;
1952 	}
1953 }
1954 
1955 /*
1956  * pcmu_pbm_classify, called by pcmu_pbm_afsr_report to classify piow afsr.
1957  */
1958 int
1959 pcmu_pbm_classify(pcmu_pbm_errstate_t *pbm_err_p)
1960 {
1961 	uint32_t e;
1962 	int nerr = 0;
1963 	char **tmp_class;
1964 
1965 	if (pbm_err_p->pcbm_pri) {
1966 		tmp_class = &pbm_err_p->pcbm_pci.pcmu_err_class;
1967 		e = PBM_AFSR_TO_PRIERR(pbm_err_p->pbm_afsr);
1968 		pbm_err_p->pbm_log = FM_LOG_PCI;
1969 	} else {
1970 		tmp_class = &pbm_err_p->pbm_err_class;
1971 		e = PBM_AFSR_TO_SECERR(pbm_err_p->pbm_afsr);
1972 		pbm_err_p->pbm_log = FM_LOG_PBM;
1973 	}
1974 
1975 	if (e & PCMU_PCI_AFSR_E_MA) {
1976 		*tmp_class = pbm_err_p->pcbm_pri ? PCI_MA : PCI_SEC_MA;
1977 		nerr++;
1978 	}
1979 	return (nerr);
1980 }
1981 
1982 /*
1983  * Function used to clear PBM/PCI/IOMMU error state after error handling
1984  * is complete. Only clearing error bits which have been logged. Called by
1985  * pcmu_pbm_err_handler and pcmu_bus_exit.
1986  */
1987 static void
1988 pcmu_clear_error(pcmu_t *pcmu_p, pcmu_pbm_errstate_t *pbm_err_p)
1989 {
1990 	pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p;
1991 
1992 	ASSERT(MUTEX_HELD(&pcbm_p->pcbm_pcmu_p->pcmu_err_mutex));
1993 
1994 	*pcbm_p->pcbm_ctrl_reg = pbm_err_p->pbm_ctl_stat;
1995 	*pcbm_p->pcbm_async_flt_status_reg = pbm_err_p->pbm_afsr;
1996 	pcbm_p->pcbm_config_header->ch_status_reg =
1997 	    pbm_err_p->pcbm_pci.pcmu_cfg_stat;
1998 }
1999 
2000 /*ARGSUSED*/
2001 int
2002 pcmu_pbm_err_handler(dev_info_t *dip, ddi_fm_error_t *derr,
2003 		const void *impl_data, int caller)
2004 {
2005 	int fatal = 0;
2006 	int nonfatal = 0;
2007 	int unknown = 0;
2008 	uint32_t prierr, secerr;
2009 	pcmu_pbm_errstate_t pbm_err;
2010 	pcmu_t *pcmu_p = (pcmu_t *)impl_data;
2011 	int ret = 0;
2012 
2013 	ASSERT(MUTEX_HELD(&pcmu_p->pcmu_err_mutex));
2014 	pcmu_pbm_errstate_get(pcmu_p, &pbm_err);
2015 
2016 	derr->fme_ena = derr->fme_ena ? derr->fme_ena :
2017 	    fm_ena_generate(0, FM_ENA_FMT1);
2018 
2019 	prierr = PBM_AFSR_TO_PRIERR(pbm_err.pbm_afsr);
2020 	secerr = PBM_AFSR_TO_SECERR(pbm_err.pbm_afsr);
2021 
2022 	if (derr->fme_flag == DDI_FM_ERR_PEEK) {
2023 		/*
2024 		 * For ddi_peek treat all events as nonfatal. We only
2025 		 * really call this function so that pcmu_clear_error()
2026 		 * and ndi_fm_handler_dispatch() will get called.
2027 		 */
2028 		nonfatal++;
2029 		goto done;
2030 	} else if (derr->fme_flag == DDI_FM_ERR_POKE) {
2031 		/*
2032 		 * For ddi_poke we can treat as nonfatal if the
2033 		 * following conditions are met :
2034 		 * 1. Make sure only primary error is MA/TA
2035 		 * 2. Make sure no secondary error
2036 		 * 3. check pci config header stat reg to see MA/TA is
2037 		 *    logged. We cannot verify only MA/TA is recorded
2038 		 *    since it gets much more complicated when a
2039 		 *    PCI-to-PCI bridge is present.
2040 		 */
2041 		if ((prierr == PCMU_PCI_AFSR_E_MA) && !secerr &&
2042 		    (pbm_err.pcbm_pci.pcmu_cfg_stat & PCI_STAT_R_MAST_AB)) {
2043 			nonfatal++;
2044 			goto done;
2045 		}
2046 	}
2047 
2048 	if (prierr || secerr) {
2049 		ret = pcmu_pbm_afsr_report(dip, derr->fme_ena, &pbm_err);
2050 		if (ret == DDI_FM_FATAL) {
2051 			fatal++;
2052 		} else {
2053 			nonfatal++;
2054 		}
2055 	}
2056 
2057 	ret = pcmu_cfg_report(dip, derr, &pbm_err.pcbm_pci, caller, prierr);
2058 	if (ret == DDI_FM_FATAL) {
2059 		fatal++;
2060 	} else if (ret == DDI_FM_NONFATAL) {
2061 		nonfatal++;
2062 	}
2063 
2064 done:
2065 	if (ret == DDI_FM_FATAL) {
2066 		fatal++;
2067 	} else if (ret == DDI_FM_NONFATAL) {
2068 		nonfatal++;
2069 	} else if (ret == DDI_FM_UNKNOWN) {
2070 		unknown++;
2071 	}
2072 
2073 	/* Cleanup and reset error bits */
2074 	pcmu_clear_error(pcmu_p, &pbm_err);
2075 
2076 	return (fatal ? DDI_FM_FATAL : (nonfatal ? DDI_FM_NONFATAL :
2077 	    (unknown ? DDI_FM_UNKNOWN : DDI_FM_OK)));
2078 }
2079 
2080 int
2081 pcmu_check_error(pcmu_t *pcmu_p)
2082 {
2083 	pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p;
2084 	uint16_t pcmu_cfg_stat;
2085 	uint64_t pbm_afsr;
2086 
2087 	ASSERT(MUTEX_HELD(&pcmu_p->pcmu_err_mutex));
2088 
2089 	pcmu_cfg_stat = pcbm_p->pcbm_config_header->ch_status_reg;
2090 	pbm_afsr = *pcbm_p->pcbm_async_flt_status_reg;
2091 
2092 	if ((pcmu_cfg_stat & (PCI_STAT_S_PERROR | PCI_STAT_S_TARG_AB |
2093 	    PCI_STAT_R_TARG_AB | PCI_STAT_R_MAST_AB |
2094 	    PCI_STAT_S_SYSERR | PCI_STAT_PERROR)) ||
2095 	    (PBM_AFSR_TO_PRIERR(pbm_afsr))) {
2096 		return (1);
2097 	}
2098 	return (0);
2099 
2100 }
2101 
2102 /*
2103  * Function used to gather PBM/PCI error state for the
2104  * pcmu_pbm_err_handler. This function must be called while pcmu_err_mutex
2105  * is held.
2106  */
2107 static void
2108 pcmu_pbm_errstate_get(pcmu_t *pcmu_p, pcmu_pbm_errstate_t *pbm_err_p)
2109 {
2110 	pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p;
2111 
2112 	ASSERT(MUTEX_HELD(&pcmu_p->pcmu_err_mutex));
2113 	bzero(pbm_err_p, sizeof (pcmu_pbm_errstate_t));
2114 
2115 	/*
2116 	 * Capture all pbm error state for later logging
2117 	 */
2118 	pbm_err_p->pbm_bridge_type = PCI_OPLCMU;	/* RAGS */
2119 	pbm_err_p->pcbm_pci.pcmu_cfg_stat =
2120 	    pcbm_p->pcbm_config_header->ch_status_reg;
2121 	pbm_err_p->pbm_ctl_stat = *pcbm_p->pcbm_ctrl_reg;
2122 	pbm_err_p->pcbm_pci.pcmu_cfg_comm =
2123 	    pcbm_p->pcbm_config_header->ch_command_reg;
2124 	pbm_err_p->pbm_afsr = *pcbm_p->pcbm_async_flt_status_reg;
2125 	pbm_err_p->pbm_afar = *pcbm_p->pcbm_async_flt_addr_reg;
2126 	pbm_err_p->pcbm_pci.pcmu_pa = *pcbm_p->pcbm_async_flt_addr_reg;
2127 }
2128 
2129 static void
2130 pcmu_pbm_clear_error(pcmu_pbm_t *pcbm_p)
2131 {
2132 	uint64_t pbm_afsr;
2133 
2134 	/*
2135 	 * for poke() support - called from POKE_FLUSH. Spin waiting
2136 	 * for MA, TA or SERR to be cleared by a pcmu_pbm_error_intr().
2137 	 * We have to wait for SERR too in case the device is beyond
2138 	 * a pci-pci bridge.
2139 	 */
2140 	pbm_afsr = *pcbm_p->pcbm_async_flt_status_reg;
2141 	while (((pbm_afsr >> PCMU_PCI_AFSR_PE_SHIFT) &
2142 	    (PCMU_PCI_AFSR_E_MA | PCMU_PCI_AFSR_E_TA))) {
2143 		pbm_afsr = *pcbm_p->pcbm_async_flt_status_reg;
2144 	}
2145 }
2146 
2147 void
2148 pcmu_err_create(pcmu_t *pcmu_p)
2149 {
2150 	/*
2151 	 * PCI detected ECC errorq, to schedule async handling
2152 	 * of ECC errors and logging.
2153 	 * The errorq is created here but destroyed when _fini is called
2154 	 * for the pci module.
2155 	 */
2156 	if (pcmu_ecc_queue == NULL) {
2157 		pcmu_ecc_queue = errorq_create("pcmu_ecc_queue",
2158 		    (errorq_func_t)pcmu_ecc_err_drain,
2159 		    (void *)NULL,
2160 		    ECC_MAX_ERRS, sizeof (pcmu_ecc_errstate_t),
2161 		    PIL_2, ERRORQ_VITAL);
2162 		if (pcmu_ecc_queue == NULL)
2163 			panic("failed to create required system error queue");
2164 	}
2165 
2166 	/*
2167 	 * Initialize error handling mutex.
2168 	 */
2169 	mutex_init(&pcmu_p->pcmu_err_mutex, NULL, MUTEX_DRIVER,
2170 	    (void *)pcmu_p->pcmu_fm_ibc);
2171 }
2172 
2173 void
2174 pcmu_err_destroy(pcmu_t *pcmu_p)
2175 {
2176 	mutex_destroy(&pcmu_p->pcmu_err_mutex);
2177 }
2178 
2179 /*
2180  * Function used to post PCI block module specific ereports.
2181  */
2182 void
2183 pcmu_pbm_ereport_post(dev_info_t *dip, uint64_t ena,
2184     pcmu_pbm_errstate_t *pbm_err)
2185 {
2186 	char *aux_msg;
2187 	uint32_t prierr, secerr;
2188 	pcmu_t *pcmu_p;
2189 	int instance = ddi_get_instance(dip);
2190 
2191 	ena = ena ? ena : fm_ena_generate(0, FM_ENA_FMT1);
2192 
2193 	pcmu_p = get_pcmu_soft_state(instance);
2194 	prierr = PBM_AFSR_TO_PRIERR(pbm_err->pbm_afsr);
2195 	secerr = PBM_AFSR_TO_SECERR(pbm_err->pbm_afsr);
2196 	if (prierr)
2197 		aux_msg = "PCI primary error: Master Abort";
2198 	else if (secerr)
2199 		aux_msg = "PCI secondary error: Master Abort";
2200 	else
2201 		aux_msg = "";
2202 	cmn_err(CE_WARN, "%s %s: %s %s=0x%lx, %s=0x%lx, %s=0x%lx %s=0x%x",
2203 	    (pcmu_p->pcmu_pcbm_p)->pcbm_nameinst_str,
2204 	    (pcmu_p->pcmu_pcbm_p)->pcbm_nameaddr_str,
2205 	    aux_msg,
2206 	    PCI_PBM_AFAR, pbm_err->pbm_afar,
2207 	    PCI_PBM_AFSR, pbm_err->pbm_afsr,
2208 	    PCI_PBM_CSR, pbm_err->pbm_ctl_stat,
2209 	    "portid", pcmu_p->pcmu_id);
2210 }
2211