xref: /illumos-gate/usr/src/uts/sun4u/opl/io/pcicmu/pcicmu.c (revision 1a220b56b93ff1dc80855691548503117af4cc10)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * OPL CMU-CH PCI nexus driver.
30  *
31  */
32 
33 #include <sys/types.h>
34 #include <sys/sysmacros.h>
35 #include <sys/systm.h>
36 #include <sys/intreg.h>
37 #include <sys/intr.h>
38 #include <sys/machsystm.h>
39 #include <sys/conf.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/async.h>
43 #include <sys/ivintr.h>
44 #include <sys/sunddi.h>
45 #include <sys/sunndi.h>
46 #include <sys/ndifm.h>
47 #include <sys/ontrap.h>
48 #include <sys/ddi_impldefs.h>
49 #include <sys/ddi_subrdefs.h>
50 #include <sys/epm.h>
51 #include <sys/spl.h>
52 #include <sys/fm/util.h>
53 #include <sys/fm/util.h>
54 #include <sys/fm/protocol.h>
55 #include <sys/fm/io/pci.h>
56 #include <sys/fm/io/sun4upci.h>
57 #include <sys/pcicmu/pcicmu.h>
58 
59 #include <sys/cmn_err.h>
60 #include <sys/time.h>
61 #include <sys/pci.h>
62 #include <sys/modctl.h>
63 #include <sys/open.h>
64 #include <sys/errno.h>
65 #include <sys/file.h>
66 
67 
68 uint32_t pcmu_spurintr_duration = 60000000; /* One minute */
69 
70 /*
71  * The variable controls the default setting of the command register
72  * for pci devices.  See pcmu_init_child() for details.
73  *
74  * This flags also controls the setting of bits in the bridge control
75  * register pci to pci bridges.  See pcmu_init_child() for details.
76  */
77 ushort_t pcmu_command_default = PCI_COMM_SERR_ENABLE |
78 				PCI_COMM_WAIT_CYC_ENAB |
79 				PCI_COMM_PARITY_DETECT |
80 				PCI_COMM_ME |
81 				PCI_COMM_MAE |
82 				PCI_COMM_IO;
83 /*
84  * The following driver parameters are defined as variables to allow
85  * patching for debugging and tuning.  Flags that can be set on a per
86  * PBM basis are bit fields where the PBM device instance number maps
87  * to the bit position.
88  */
89 #ifdef DEBUG
90 uint64_t pcmu_debug_flags = 0;
91 #endif
92 uint_t ecc_error_intr_enable = 1;
93 
94 uint_t pcmu_ecc_afsr_retries = 100;	/* XXX - what's a good value? */
95 
96 uint_t pcmu_intr_retry_intv = 5;	/* for interrupt retry reg */
97 uint_t pcmu_panic_on_fatal_errors = 1;	/* should be 1 at beta */
98 
99 hrtime_t pcmu_intrpend_timeout = 5ll * NANOSEC;	/* 5 seconds in nanoseconds */
100 
101 uint64_t pcmu_errtrig_pa = 0x0;
102 
103 
104 /*
105  * The following value is the number of consecutive unclaimed interrupts that
106  * will be tolerated for a particular ino_p before the interrupt is deemed to
107  * be jabbering and is blocked.
108  */
109 uint_t pcmu_unclaimed_intr_max = 20;
110 
111 /*
112  * function prototypes for dev ops routines:
113  */
114 static int pcmu_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
115 static int pcmu_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
116 static int pcmu_info(dev_info_t *dip, ddi_info_cmd_t infocmd,
117     void *arg, void **result);
118 static int pcmu_open(dev_t *devp, int flags, int otyp, cred_t *credp);
119 static int pcmu_close(dev_t dev, int flags, int otyp, cred_t *credp);
120 static int pcmu_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
121 						cred_t *credp, int *rvalp);
122 static int pcmu_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
123     int flags, char *name, caddr_t valuep, int *lengthp);
124 static int pcmu_ctlops_poke(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args);
125 static int pcmu_ctlops_peek(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args,
126     void *result);
127 
128 static int map_pcmu_registers(pcmu_t *, dev_info_t *);
129 static void unmap_pcmu_registers(pcmu_t *);
130 static void pcmu_pbm_clear_error(pcmu_pbm_t *);
131 
132 static int pcmu_ctlops(dev_info_t *, dev_info_t *, ddi_ctl_enum_t,
133     void *, void *);
134 static int pcmu_map(dev_info_t *, dev_info_t *, ddi_map_req_t *,
135     off_t, off_t, caddr_t *);
136 static int pcmu_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t,
137     ddi_intr_handle_impl_t *, void *);
138 
139 static uint32_t pcmu_identity_init(pcmu_t *pcmu_p);
140 static int pcmu_intr_setup(pcmu_t *pcmu_p);
141 static void pcmu_pbm_errstate_get(pcmu_t *pcmu_p,
142     pcmu_pbm_errstate_t *pbm_err_p);
143 static int pcmu_obj_setup(pcmu_t *pcmu_p);
144 static void pcmu_obj_destroy(pcmu_t *pcmu_p);
145 static void pcmu_obj_resume(pcmu_t *pcmu_p);
146 static void pcmu_obj_suspend(pcmu_t *pcmu_p);
147 
148 static void u2u_ittrans_init(pcmu_t *, u2u_ittrans_data_t **);
149 static void u2u_ittrans_resume(u2u_ittrans_data_t **);
150 static void u2u_ittrans_uninit(u2u_ittrans_data_t *);
151 
152 static pcmu_ksinfo_t	*pcmu_name_kstat;
153 
154 /*
155  * bus ops and dev ops structures:
156  */
157 static struct bus_ops pcmu_bus_ops = {
158 	BUSO_REV,
159 	pcmu_map,
160 	0,
161 	0,
162 	0,
163 	i_ddi_map_fault,
164 	0,
165 	0,
166 	0,
167 	0,
168 	0,
169 	0,
170 	0,
171 	0,
172 	pcmu_ctlops,
173 	ddi_bus_prop_op,
174 	ndi_busop_get_eventcookie,	/* (*bus_get_eventcookie)(); */
175 	ndi_busop_add_eventcall,	/* (*bus_add_eventcall)(); */
176 	ndi_busop_remove_eventcall,	/* (*bus_remove_eventcall)(); */
177 	ndi_post_event,			/* (*bus_post_event)(); */
178 	NULL,				/* (*bus_intr_ctl)(); */
179 	NULL,				/* (*bus_config)(); */
180 	NULL,				/* (*bus_unconfig)(); */
181 	NULL,				/* (*bus_fm_init)(); */
182 	NULL,				/* (*bus_fm_fini)(); */
183 	NULL,				/* (*bus_fm_access_enter)(); */
184 	NULL,				/* (*bus_fm_access_fini)(); */
185 	NULL,				/* (*bus_power)(); */
186 	pcmu_intr_ops			/* (*bus_intr_op)(); */
187 };
188 
189 struct cb_ops pcmu_cb_ops = {
190 	pcmu_open,			/* open */
191 	pcmu_close,			/* close */
192 	nodev,				/* strategy */
193 	nodev,				/* print */
194 	nodev,				/* dump */
195 	nodev,				/* read */
196 	nodev,				/* write */
197 	pcmu_ioctl,			/* ioctl */
198 	nodev,				/* devmap */
199 	nodev,				/* mmap */
200 	nodev,				/* segmap */
201 	nochpoll,			/* poll */
202 	pcmu_prop_op,			/* cb_prop_op */
203 	NULL,				/* streamtab */
204 	D_NEW | D_MP | D_HOTPLUG,	/* Driver compatibility flag */
205 	CB_REV,				/* rev */
206 	nodev,				/* int (*cb_aread)() */
207 	nodev				/* int (*cb_awrite)() */
208 };
209 
210 static struct dev_ops pcmu_ops = {
211 	DEVO_REV,
212 	0,
213 	pcmu_info,
214 	nulldev,
215 	0,
216 	pcmu_attach,
217 	pcmu_detach,
218 	nodev,
219 	&pcmu_cb_ops,
220 	&pcmu_bus_ops,
221 	0
222 };
223 
224 /*
225  * module definitions:
226  */
227 extern struct mod_ops mod_driverops;
228 
229 static struct modldrv modldrv = {
230 	&mod_driverops,				/* Type of module - driver */
231 	"OPL CMU-CH PCI Nexus driver %I%",	/* Name of module. */
232 	&pcmu_ops,				/* driver ops */
233 };
234 
235 static struct modlinkage modlinkage = {
236 	MODREV_1, (void *)&modldrv, NULL
237 };
238 
239 /*
240  * driver global data:
241  */
242 void *per_pcmu_state;			/* per-pbm soft state pointer */
243 kmutex_t pcmu_global_mutex;		/* attach/detach common struct lock */
244 errorq_t *pcmu_ecc_queue = NULL;	/* per-system ecc handling queue */
245 
246 extern void pcmu_child_cfg_save(dev_info_t *dip);
247 extern void pcmu_child_cfg_restore(dev_info_t *dip);
248 
249 int
250 _init(void)
251 {
252 	int e;
253 
254 	/*
255 	 * Initialize per-pci bus soft state pointer.
256 	 */
257 	e = ddi_soft_state_init(&per_pcmu_state, sizeof (pcmu_t), 1);
258 	if (e != 0)
259 		return (e);
260 
261 	/*
262 	 * Initialize global mutexes.
263 	 */
264 	mutex_init(&pcmu_global_mutex, NULL, MUTEX_DRIVER, NULL);
265 
266 	/*
267 	 * Create the performance kstats.
268 	 */
269 	pcmu_kstat_init();
270 
271 	/*
272 	 * Install the module.
273 	 */
274 	e = mod_install(&modlinkage);
275 	if (e != 0) {
276 		ddi_soft_state_fini(&per_pcmu_state);
277 		mutex_destroy(&pcmu_global_mutex);
278 	}
279 	return (e);
280 }
281 
282 int
283 _fini(void)
284 {
285 	int e;
286 
287 	/*
288 	 * Remove the module.
289 	 */
290 	e = mod_remove(&modlinkage);
291 	if (e != 0) {
292 		return (e);
293 	}
294 
295 	/*
296 	 * Destroy pcmu_ecc_queue, and set it to NULL.
297 	 */
298 	if (pcmu_ecc_queue) {
299 		errorq_destroy(pcmu_ecc_queue);
300 		pcmu_ecc_queue = NULL;
301 	}
302 
303 	/*
304 	 * Destroy the performance kstats.
305 	 */
306 	pcmu_kstat_fini();
307 
308 	/*
309 	 * Free the per-pci and per-CMU-CH soft state info and destroy
310 	 * mutex for per-CMU-CH soft state.
311 	 */
312 	ddi_soft_state_fini(&per_pcmu_state);
313 	mutex_destroy(&pcmu_global_mutex);
314 	return (e);
315 }
316 
317 int
318 _info(struct modinfo *modinfop)
319 {
320 	return (mod_info(&modlinkage, modinfop));
321 }
322 
323 /*ARGSUSED*/
324 static int
325 pcmu_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
326 {
327 	int	instance = getminor((dev_t)arg) >> 8;
328 	pcmu_t	*pcmu_p = get_pcmu_soft_state(instance);
329 
330 	switch (infocmd) {
331 	case DDI_INFO_DEVT2INSTANCE:
332 		*result = (void *)(uintptr_t)instance;
333 		return (DDI_SUCCESS);
334 
335 	case DDI_INFO_DEVT2DEVINFO:
336 		if (pcmu_p == NULL)
337 			return (DDI_FAILURE);
338 		*result = (void *)pcmu_p->pcmu_dip;
339 		return (DDI_SUCCESS);
340 
341 	default:
342 		return (DDI_FAILURE);
343 	}
344 }
345 
346 
347 /* device driver entry points */
348 /*
349  * attach entry point:
350  */
351 static int
352 pcmu_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
353 {
354 	pcmu_t *pcmu_p;
355 	int instance = ddi_get_instance(dip);
356 
357 	switch (cmd) {
358 	case DDI_ATTACH:
359 		PCMU_DBG0(PCMU_DBG_ATTACH, dip, "DDI_ATTACH\n");
360 
361 		/*
362 		 * Allocate and get the per-pci soft state structure.
363 		 */
364 		if (alloc_pcmu_soft_state(instance) != DDI_SUCCESS) {
365 			cmn_err(CE_WARN, "%s%d: can't allocate pci state",
366 			    ddi_driver_name(dip), instance);
367 			goto err_bad_pcmu_softstate;
368 		}
369 		pcmu_p = get_pcmu_soft_state(instance);
370 		pcmu_p->pcmu_dip = dip;
371 		mutex_init(&pcmu_p->pcmu_mutex, NULL, MUTEX_DRIVER, NULL);
372 		pcmu_p->pcmu_soft_state = PCMU_SOFT_STATE_CLOSED;
373 		pcmu_p->pcmu_open_count = 0;
374 
375 		/*
376 		 * Get key properties of the pci bridge node.
377 		 */
378 		if (get_pcmu_properties(pcmu_p, dip) == DDI_FAILURE) {
379 			goto err_bad_pcmu_prop;
380 		}
381 
382 		/*
383 		 * Map in the registers.
384 		 */
385 		if (map_pcmu_registers(pcmu_p, dip) == DDI_FAILURE) {
386 			goto err_bad_reg_prop;
387 		}
388 		if (pcmu_obj_setup(pcmu_p) != DDI_SUCCESS) {
389 			goto err_bad_objs;
390 		}
391 
392 		if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
393 		    (uint_t)instance<<8 | 0xff,
394 		    DDI_NT_NEXUS, 0) != DDI_SUCCESS) {
395 			goto err_bad_devctl_node;
396 		}
397 
398 		/*
399 		 * Due to unresolved hardware issues, disable PCIPM until
400 		 * the problem is fully understood.
401 		 *
402 		 * pcmu_pwr_setup(pcmu_p, dip);
403 		 */
404 
405 		ddi_report_dev(dip);
406 
407 		pcmu_p->pcmu_state = PCMU_ATTACHED;
408 		PCMU_DBG0(PCMU_DBG_ATTACH, dip, "attach success\n");
409 		break;
410 
411 err_bad_objs:
412 		ddi_remove_minor_node(dip, "devctl");
413 err_bad_devctl_node:
414 		unmap_pcmu_registers(pcmu_p);
415 err_bad_reg_prop:
416 		free_pcmu_properties(pcmu_p);
417 err_bad_pcmu_prop:
418 		mutex_destroy(&pcmu_p->pcmu_mutex);
419 		free_pcmu_soft_state(instance);
420 err_bad_pcmu_softstate:
421 		return (DDI_FAILURE);
422 
423 	case DDI_RESUME:
424 		PCMU_DBG0(PCMU_DBG_ATTACH, dip, "DDI_RESUME\n");
425 
426 		/*
427 		 * Make sure the CMU-CH control registers
428 		 * are configured properly.
429 		 */
430 		pcmu_p = get_pcmu_soft_state(instance);
431 		mutex_enter(&pcmu_p->pcmu_mutex);
432 
433 		/*
434 		 * Make sure this instance has been suspended.
435 		 */
436 		if (pcmu_p->pcmu_state != PCMU_SUSPENDED) {
437 			PCMU_DBG0(PCMU_DBG_ATTACH, dip,
438 			    "instance NOT suspended\n");
439 			mutex_exit(&pcmu_p->pcmu_mutex);
440 			return (DDI_FAILURE);
441 		}
442 		pcmu_obj_resume(pcmu_p);
443 		pcmu_p->pcmu_state = PCMU_ATTACHED;
444 
445 		pcmu_child_cfg_restore(dip);
446 
447 		mutex_exit(&pcmu_p->pcmu_mutex);
448 		break;
449 
450 	default:
451 		PCMU_DBG0(PCMU_DBG_ATTACH, dip, "unsupported attach op\n");
452 		return (DDI_FAILURE);
453 	}
454 
455 	return (DDI_SUCCESS);
456 }
457 
458 /*
459  * detach entry point:
460  */
461 static int
462 pcmu_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
463 {
464 	int instance = ddi_get_instance(dip);
465 	pcmu_t *pcmu_p = get_pcmu_soft_state(instance);
466 	int len;
467 
468 	/*
469 	 * Make sure we are currently attached
470 	 */
471 	if (pcmu_p->pcmu_state != PCMU_ATTACHED) {
472 		PCMU_DBG0(PCMU_DBG_ATTACH, dip,
473 		    "failed - instance not attached\n");
474 		return (DDI_FAILURE);
475 	}
476 
477 	mutex_enter(&pcmu_p->pcmu_mutex);
478 
479 	switch (cmd) {
480 	case DDI_DETACH:
481 		PCMU_DBG0(PCMU_DBG_DETACH, dip, "DDI_DETACH\n");
482 		pcmu_obj_destroy(pcmu_p);
483 
484 		/*
485 		 * Free the pci soft state structure and the rest of the
486 		 * resources it's using.
487 		 */
488 		free_pcmu_properties(pcmu_p);
489 		unmap_pcmu_registers(pcmu_p);
490 		mutex_exit(&pcmu_p->pcmu_mutex);
491 		mutex_destroy(&pcmu_p->pcmu_mutex);
492 		free_pcmu_soft_state(instance);
493 
494 		/* Free the interrupt-priorities prop if we created it. */
495 		if (ddi_getproplen(DDI_DEV_T_ANY, dip,
496 		    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
497 		    "interrupt-priorities", &len) == DDI_PROP_SUCCESS) {
498 			(void) ddi_prop_remove(DDI_DEV_T_NONE, dip,
499 			    "interrupt-priorities");
500 		}
501 		return (DDI_SUCCESS);
502 
503 	case DDI_SUSPEND:
504 		pcmu_child_cfg_save(dip);
505 		pcmu_obj_suspend(pcmu_p);
506 		pcmu_p->pcmu_state = PCMU_SUSPENDED;
507 
508 		mutex_exit(&pcmu_p->pcmu_mutex);
509 		return (DDI_SUCCESS);
510 
511 	default:
512 		PCMU_DBG0(PCMU_DBG_DETACH, dip, "unsupported detach op\n");
513 		mutex_exit(&pcmu_p->pcmu_mutex);
514 		return (DDI_FAILURE);
515 	}
516 }
517 
518 
519 /*LINTLIBRARY*/
520 
521 /* ARGSUSED3 */
522 static int
523 pcmu_open(dev_t *devp, int flags, int otyp, cred_t *credp)
524 {
525 	pcmu_t *pcmu_p;
526 
527 	if (otyp != OTYP_CHR) {
528 		return (EINVAL);
529 	}
530 
531 	/*
532 	 * Get the soft state structure for the device.
533 	 */
534 	pcmu_p = DEV_TO_SOFTSTATE(*devp);
535 	if (pcmu_p == NULL) {
536 		return (ENXIO);
537 	}
538 
539 	/*
540 	 * Handle the open by tracking the device state.
541 	 */
542 	PCMU_DBG2(PCMU_DBG_OPEN, pcmu_p->pcmu_dip,
543 	    "devp=%x: flags=%x\n", devp, flags);
544 	mutex_enter(&pcmu_p->pcmu_mutex);
545 	if (flags & FEXCL) {
546 		if (pcmu_p->pcmu_soft_state != PCMU_SOFT_STATE_CLOSED) {
547 			mutex_exit(&pcmu_p->pcmu_mutex);
548 			PCMU_DBG0(PCMU_DBG_OPEN, pcmu_p->pcmu_dip, "busy\n");
549 			return (EBUSY);
550 		}
551 		pcmu_p->pcmu_soft_state = PCMU_SOFT_STATE_OPEN_EXCL;
552 	} else {
553 		if (pcmu_p->pcmu_soft_state == PCMU_SOFT_STATE_OPEN_EXCL) {
554 			mutex_exit(&pcmu_p->pcmu_mutex);
555 			PCMU_DBG0(PCMU_DBG_OPEN, pcmu_p->pcmu_dip, "busy\n");
556 			return (EBUSY);
557 		}
558 		pcmu_p->pcmu_soft_state = PCMU_SOFT_STATE_OPEN;
559 	}
560 	pcmu_p->pcmu_open_count++;
561 	mutex_exit(&pcmu_p->pcmu_mutex);
562 	return (0);
563 }
564 
565 
566 /* ARGSUSED */
567 static int
568 pcmu_close(dev_t dev, int flags, int otyp, cred_t *credp)
569 {
570 	pcmu_t *pcmu_p;
571 
572 	if (otyp != OTYP_CHR) {
573 		return (EINVAL);
574 	}
575 
576 	pcmu_p = DEV_TO_SOFTSTATE(dev);
577 	if (pcmu_p == NULL) {
578 		return (ENXIO);
579 	}
580 
581 	PCMU_DBG2(PCMU_DBG_CLOSE, pcmu_p->pcmu_dip,
582 	    "dev=%x: flags=%x\n", dev, flags);
583 	mutex_enter(&pcmu_p->pcmu_mutex);
584 	pcmu_p->pcmu_soft_state = PCMU_SOFT_STATE_CLOSED;
585 	pcmu_p->pcmu_open_count = 0;
586 	mutex_exit(&pcmu_p->pcmu_mutex);
587 	return (0);
588 }
589 
590 /* ARGSUSED */
591 static int
592 pcmu_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
593     cred_t *credp, int *rvalp)
594 {
595 	pcmu_t *pcmu_p;
596 	dev_info_t *dip;
597 	struct devctl_iocdata *dcp;
598 	uint_t bus_state;
599 	int rv = 0;
600 
601 	pcmu_p = DEV_TO_SOFTSTATE(dev);
602 	if (pcmu_p == NULL) {
603 		return (ENXIO);
604 	}
605 
606 	dip = pcmu_p->pcmu_dip;
607 	PCMU_DBG2(PCMU_DBG_IOCTL, dip, "dev=%x: cmd=%x\n", dev, cmd);
608 
609 	/*
610 	 * We can use the generic implementation for these ioctls
611 	 */
612 	switch (cmd) {
613 	case DEVCTL_DEVICE_GETSTATE:
614 	case DEVCTL_DEVICE_ONLINE:
615 	case DEVCTL_DEVICE_OFFLINE:
616 	case DEVCTL_BUS_GETSTATE:
617 		return (ndi_devctl_ioctl(dip, cmd, arg, mode, 0));
618 	}
619 
620 	/*
621 	 * read devctl ioctl data
622 	 */
623 	if (ndi_dc_allochdl((void *)arg, &dcp) != NDI_SUCCESS)
624 		return (EFAULT);
625 
626 	switch (cmd) {
627 
628 	case DEVCTL_DEVICE_RESET:
629 		PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_DEVICE_RESET\n");
630 		rv = ENOTSUP;
631 		break;
632 
633 
634 	case DEVCTL_BUS_QUIESCE:
635 		PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_BUS_QUIESCE\n");
636 		if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS) {
637 			if (bus_state == BUS_QUIESCED) {
638 				break;
639 			}
640 		}
641 		(void) ndi_set_bus_state(dip, BUS_QUIESCED);
642 		break;
643 
644 	case DEVCTL_BUS_UNQUIESCE:
645 		PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_BUS_UNQUIESCE\n");
646 		if (ndi_get_bus_state(dip, &bus_state) == NDI_SUCCESS) {
647 			if (bus_state == BUS_ACTIVE) {
648 				break;
649 			}
650 		}
651 		(void) ndi_set_bus_state(dip, BUS_ACTIVE);
652 		break;
653 
654 	case DEVCTL_BUS_RESET:
655 		PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_BUS_RESET\n");
656 		rv = ENOTSUP;
657 		break;
658 
659 	case DEVCTL_BUS_RESETALL:
660 		PCMU_DBG0(PCMU_DBG_IOCTL, dip, "DEVCTL_BUS_RESETALL\n");
661 		rv = ENOTSUP;
662 		break;
663 
664 	default:
665 		rv = ENOTTY;
666 	}
667 
668 	ndi_dc_freehdl(dcp);
669 	return (rv);
670 }
671 
672 static int pcmu_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
673     int flags, char *name, caddr_t valuep, int *lengthp)
674 {
675 	return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp));
676 }
677 /* bus driver entry points */
678 
679 /*
680  * bus map entry point:
681  *
682  *	if map request is for an rnumber
683  *		get the corresponding regspec from device node
684  *	build a new regspec in our parent's format
685  *	build a new map_req with the new regspec
686  *	call up the tree to complete the mapping
687  */
688 static int
689 pcmu_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
690 	off_t off, off_t len, caddr_t *addrp)
691 {
692 	pcmu_t *pcmu_p = get_pcmu_soft_state(ddi_get_instance(dip));
693 	struct regspec p_regspec;
694 	ddi_map_req_t p_mapreq;
695 	int reglen, rval, r_no;
696 	pci_regspec_t reloc_reg, *rp = &reloc_reg;
697 
698 	PCMU_DBG2(PCMU_DBG_MAP, dip, "rdip=%s%d:",
699 	    ddi_driver_name(rdip), ddi_get_instance(rdip));
700 
701 	if (mp->map_flags & DDI_MF_USER_MAPPING) {
702 		return (DDI_ME_UNIMPLEMENTED);
703 	}
704 
705 	switch (mp->map_type) {
706 	case DDI_MT_REGSPEC:
707 		reloc_reg = *(pci_regspec_t *)mp->map_obj.rp;	/* dup whole */
708 		break;
709 
710 	case DDI_MT_RNUMBER:
711 		r_no = mp->map_obj.rnumber;
712 		PCMU_DBG1(PCMU_DBG_MAP | PCMU_DBG_CONT, dip, " r#=%x", r_no);
713 
714 		if (ddi_getlongprop(DDI_DEV_T_NONE, rdip, DDI_PROP_DONTPASS,
715 		    "reg", (caddr_t)&rp, &reglen) != DDI_SUCCESS) {
716 			return (DDI_ME_RNUMBER_RANGE);
717 		}
718 
719 		if (r_no < 0 || r_no >= reglen / sizeof (pci_regspec_t)) {
720 			kmem_free(rp, reglen);
721 			return (DDI_ME_RNUMBER_RANGE);
722 		}
723 		rp += r_no;
724 		break;
725 
726 	default:
727 		return (DDI_ME_INVAL);
728 	}
729 	PCMU_DBG0(PCMU_DBG_MAP | PCMU_DBG_CONT, dip, "\n");
730 
731 	/* use "assigned-addresses" to relocate regspec within pci space */
732 	if (rval = pcmu_reloc_reg(dip, rdip, pcmu_p, rp)) {
733 		goto done;
734 	}
735 
736 	/* adjust regspec according to mapping request */
737 	if (len) {
738 		rp->pci_size_low = (uint_t)len;
739 	}
740 	rp->pci_phys_low += off;
741 
742 	/* use "ranges" to translate relocated pci regspec into parent space */
743 	if (rval = pcmu_xlate_reg(pcmu_p, rp, &p_regspec)) {
744 		goto done;
745 	}
746 
747 	p_mapreq = *mp;		/* dup the whole structure */
748 	p_mapreq.map_type = DDI_MT_REGSPEC;
749 	p_mapreq.map_obj.rp = &p_regspec;
750 	rval = ddi_map(dip, &p_mapreq, 0, 0, addrp);
751 
752 done:
753 	if (mp->map_type == DDI_MT_RNUMBER) {
754 		kmem_free(rp - r_no, reglen);
755 	}
756 	return (rval);
757 }
758 
759 #ifdef  DEBUG
760 int	pcmu_peekfault_cnt = 0;
761 int	pcmu_pokefault_cnt = 0;
762 #endif  /* DEBUG */
763 
764 static int
765 pcmu_do_poke(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args)
766 {
767 	pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p;
768 	int err = DDI_SUCCESS;
769 	on_trap_data_t otd;
770 
771 	mutex_enter(&pcbm_p->pcbm_pokeflt_mutex);
772 	pcbm_p->pcbm_ontrap_data = &otd;
773 
774 	/* Set up protected environment. */
775 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
776 		uintptr_t tramp = otd.ot_trampoline;
777 
778 		otd.ot_trampoline = (uintptr_t)&poke_fault;
779 		err = do_poke(in_args->size, (void *)in_args->dev_addr,
780 		    (void *)in_args->host_addr);
781 		otd.ot_trampoline = tramp;
782 	} else {
783 		err = DDI_FAILURE;
784 	}
785 
786 	/*
787 	 * Read the async fault register for the PBM to see it sees
788 	 * a master-abort.
789 	 */
790 	pcmu_pbm_clear_error(pcbm_p);
791 
792 	if (otd.ot_trap & OT_DATA_ACCESS) {
793 		err = DDI_FAILURE;
794 	}
795 
796 	/* Take down protected environment. */
797 	no_trap();
798 
799 	pcbm_p->pcbm_ontrap_data = NULL;
800 	mutex_exit(&pcbm_p->pcbm_pokeflt_mutex);
801 
802 #ifdef  DEBUG
803 	if (err == DDI_FAILURE)
804 		pcmu_pokefault_cnt++;
805 #endif
806 	return (err);
807 }
808 
809 
810 static int
811 pcmu_ctlops_poke(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args)
812 {
813 	return (pcmu_do_poke(pcmu_p, in_args));
814 }
815 
816 /* ARGSUSED */
817 static int
818 pcmu_do_peek(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args)
819 {
820 	int err = DDI_SUCCESS;
821 	on_trap_data_t otd;
822 
823 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
824 		uintptr_t tramp = otd.ot_trampoline;
825 
826 		otd.ot_trampoline = (uintptr_t)&peek_fault;
827 		err = do_peek(in_args->size, (void *)in_args->dev_addr,
828 		    (void *)in_args->host_addr);
829 		otd.ot_trampoline = tramp;
830 	} else
831 		err = DDI_FAILURE;
832 
833 	no_trap();
834 
835 #ifdef  DEBUG
836 	if (err == DDI_FAILURE)
837 		pcmu_peekfault_cnt++;
838 #endif
839 	return (err);
840 }
841 
842 
843 static int
844 pcmu_ctlops_peek(pcmu_t *pcmu_p, peekpoke_ctlops_t *in_args, void *result)
845 {
846 	result = (void *)in_args->host_addr;
847 	return (pcmu_do_peek(pcmu_p, in_args));
848 }
849 
850 /*
851  * control ops entry point:
852  *
853  * Requests handled completely:
854  *	DDI_CTLOPS_INITCHILD	see pcmu_init_child() for details
855  *	DDI_CTLOPS_UNINITCHILD
856  *	DDI_CTLOPS_REPORTDEV	see report_dev() for details
857  *	DDI_CTLOPS_XLATE_INTRS	nothing to do
858  *	DDI_CTLOPS_IOMIN	cache line size if streaming otherwise 1
859  *	DDI_CTLOPS_REGSIZE
860  *	DDI_CTLOPS_NREGS
861  *	DDI_CTLOPS_NINTRS
862  *	DDI_CTLOPS_DVMAPAGESIZE
863  *	DDI_CTLOPS_POKE
864  *	DDI_CTLOPS_PEEK
865  *	DDI_CTLOPS_QUIESCE
866  *	DDI_CTLOPS_UNQUIESCE
867  *
868  * All others passed to parent.
869  */
870 static int
871 pcmu_ctlops(dev_info_t *dip, dev_info_t *rdip,
872 	ddi_ctl_enum_t op, void *arg, void *result)
873 {
874 	pcmu_t *pcmu_p = get_pcmu_soft_state(ddi_get_instance(dip));
875 
876 	switch (op) {
877 	case DDI_CTLOPS_INITCHILD:
878 		return (pcmu_init_child(pcmu_p, (dev_info_t *)arg));
879 
880 	case DDI_CTLOPS_UNINITCHILD:
881 		return (pcmu_uninit_child(pcmu_p, (dev_info_t *)arg));
882 
883 	case DDI_CTLOPS_REPORTDEV:
884 		return (pcmu_report_dev(rdip));
885 
886 	case DDI_CTLOPS_IOMIN:
887 		/*
888 		 * If we are using the streaming cache, align at
889 		 * least on a cache line boundary. Otherwise use
890 		 * whatever alignment is passed in.
891 		 */
892 		return (DDI_SUCCESS);
893 
894 	case DDI_CTLOPS_REGSIZE:
895 		*((off_t *)result) = pcmu_get_reg_set_size(rdip, *((int *)arg));
896 		return (DDI_SUCCESS);
897 
898 	case DDI_CTLOPS_NREGS:
899 		*((uint_t *)result) = pcmu_get_nreg_set(rdip);
900 		return (DDI_SUCCESS);
901 
902 	case DDI_CTLOPS_DVMAPAGESIZE:
903 		*((ulong_t *)result) = 0;
904 		return (DDI_SUCCESS);
905 
906 	case DDI_CTLOPS_POKE:
907 		return (pcmu_ctlops_poke(pcmu_p, (peekpoke_ctlops_t *)arg));
908 
909 	case DDI_CTLOPS_PEEK:
910 		return (pcmu_ctlops_peek(pcmu_p, (peekpoke_ctlops_t *)arg,
911 		    result));
912 
913 	case DDI_CTLOPS_AFFINITY:
914 		break;
915 
916 	case DDI_CTLOPS_QUIESCE:
917 		return (DDI_FAILURE);
918 
919 	case DDI_CTLOPS_UNQUIESCE:
920 		return (DDI_FAILURE);
921 
922 	default:
923 		break;
924 	}
925 
926 	/*
927 	 * Now pass the request up to our parent.
928 	 */
929 	PCMU_DBG2(PCMU_DBG_CTLOPS, dip,
930 	    "passing request to parent: rdip=%s%d\n",
931 	    ddi_driver_name(rdip), ddi_get_instance(rdip));
932 	return (ddi_ctlops(dip, rdip, op, arg, result));
933 }
934 
935 
936 /* ARGSUSED */
937 static int
938 pcmu_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op,
939     ddi_intr_handle_impl_t *hdlp, void *result)
940 {
941 	pcmu_t		*pcmu_p = get_pcmu_soft_state(ddi_get_instance(dip));
942 	int		ret = DDI_SUCCESS;
943 
944 	switch (intr_op) {
945 	case DDI_INTROP_GETCAP:
946 		/* GetCap will always fail for all non PCI devices */
947 		(void) pci_intx_get_cap(rdip, (int *)result);
948 		break;
949 	case DDI_INTROP_SETCAP:
950 		ret = DDI_ENOTSUP;
951 		break;
952 	case DDI_INTROP_ALLOC:
953 		*(int *)result = hdlp->ih_scratch1;
954 		break;
955 	case DDI_INTROP_FREE:
956 		break;
957 	case DDI_INTROP_GETPRI:
958 		*(int *)result = hdlp->ih_pri ? hdlp->ih_pri : 0;
959 		break;
960 	case DDI_INTROP_SETPRI:
961 		break;
962 	case DDI_INTROP_ADDISR:
963 		ret = pcmu_add_intr(dip, rdip, hdlp);
964 		break;
965 	case DDI_INTROP_REMISR:
966 		ret = pcmu_remove_intr(dip, rdip, hdlp);
967 		break;
968 	case DDI_INTROP_ENABLE:
969 		ret = pcmu_ib_update_intr_state(pcmu_p, rdip, hdlp,
970 		    PCMU_INTR_STATE_ENABLE);
971 		break;
972 	case DDI_INTROP_DISABLE:
973 		ret = pcmu_ib_update_intr_state(pcmu_p, rdip, hdlp,
974 		    PCMU_INTR_STATE_DISABLE);
975 		break;
976 	case DDI_INTROP_SETMASK:
977 		ret = pci_intx_set_mask(rdip);
978 		break;
979 	case DDI_INTROP_CLRMASK:
980 		ret = pci_intx_clr_mask(rdip);
981 		break;
982 	case DDI_INTROP_GETPENDING:
983 		ret = pci_intx_get_pending(rdip, (int *)result);
984 		break;
985 	case DDI_INTROP_NINTRS:
986 	case DDI_INTROP_NAVAIL:
987 		*(int *)result = i_ddi_get_nintrs(rdip);
988 		break;
989 	case DDI_INTROP_SUPPORTED_TYPES:
990 		/* PCI nexus driver supports only fixed interrupts */
991 		*(int *)result = i_ddi_get_nintrs(rdip) ?
992 		    DDI_INTR_TYPE_FIXED : 0;
993 		break;
994 	default:
995 		ret = DDI_ENOTSUP;
996 		break;
997 	}
998 
999 	return (ret);
1000 }
1001 
1002 /*
1003  * CMU-CH specifics implementation:
1004  *	interrupt mapping register
1005  *	PBM configuration
1006  *	ECC and PBM error handling
1007  */
1008 
1009 /* called by pcmu_attach() DDI_ATTACH to initialize pci objects */
1010 static int
1011 pcmu_obj_setup(pcmu_t *pcmu_p)
1012 {
1013 	int ret;
1014 
1015 	mutex_enter(&pcmu_global_mutex);
1016 	pcmu_p->pcmu_rev = ddi_prop_get_int(DDI_DEV_T_ANY, pcmu_p->pcmu_dip,
1017 	    DDI_PROP_DONTPASS, "module-revision#", 0);
1018 
1019 	pcmu_ib_create(pcmu_p);
1020 	pcmu_cb_create(pcmu_p);
1021 	pcmu_ecc_create(pcmu_p);
1022 	pcmu_pbm_create(pcmu_p);
1023 	pcmu_err_create(pcmu_p);
1024 	if ((ret = pcmu_intr_setup(pcmu_p)) != DDI_SUCCESS)
1025 		goto done;
1026 
1027 	pcmu_kstat_create(pcmu_p);
1028 done:
1029 	mutex_exit(&pcmu_global_mutex);
1030 	if (ret != DDI_SUCCESS) {
1031 		cmn_err(CE_NOTE, "Interrupt register failure, returning 0x%x\n",
1032 			ret);
1033 	}
1034 	return (ret);
1035 }
1036 
1037 /* called by pcmu_detach() DDI_DETACH to destroy pci objects */
1038 static void
1039 pcmu_obj_destroy(pcmu_t *pcmu_p)
1040 {
1041 	mutex_enter(&pcmu_global_mutex);
1042 
1043 	pcmu_kstat_destroy(pcmu_p);
1044 	pcmu_pbm_destroy(pcmu_p);
1045 	pcmu_err_destroy(pcmu_p);
1046 	pcmu_ecc_destroy(pcmu_p);
1047 	pcmu_cb_destroy(pcmu_p);
1048 	pcmu_ib_destroy(pcmu_p);
1049 	pcmu_intr_teardown(pcmu_p);
1050 
1051 	mutex_exit(&pcmu_global_mutex);
1052 }
1053 
1054 /* called by pcmu_attach() DDI_RESUME to (re)initialize pci objects */
1055 static void
1056 pcmu_obj_resume(pcmu_t *pcmu_p)
1057 {
1058 	mutex_enter(&pcmu_global_mutex);
1059 
1060 	pcmu_ib_configure(pcmu_p->pcmu_ib_p);
1061 	pcmu_ecc_configure(pcmu_p);
1062 	pcmu_ib_resume(pcmu_p->pcmu_ib_p);
1063 	u2u_ittrans_resume((u2u_ittrans_data_t **)
1064 	    &(pcmu_p->pcmu_cb_p->pcb_ittrans_cookie));
1065 
1066 	pcmu_pbm_configure(pcmu_p->pcmu_pcbm_p);
1067 
1068 	pcmu_cb_resume(pcmu_p->pcmu_cb_p);
1069 
1070 	pcmu_pbm_resume(pcmu_p->pcmu_pcbm_p);
1071 
1072 	mutex_exit(&pcmu_global_mutex);
1073 }
1074 
1075 /* called by pcmu_detach() DDI_SUSPEND to suspend pci objects */
1076 static void
1077 pcmu_obj_suspend(pcmu_t *pcmu_p)
1078 {
1079 	mutex_enter(&pcmu_global_mutex);
1080 
1081 	pcmu_pbm_suspend(pcmu_p->pcmu_pcbm_p);
1082 	pcmu_ib_suspend(pcmu_p->pcmu_ib_p);
1083 	pcmu_cb_suspend(pcmu_p->pcmu_cb_p);
1084 
1085 	mutex_exit(&pcmu_global_mutex);
1086 }
1087 
1088 static int
1089 pcmu_intr_setup(pcmu_t *pcmu_p)
1090 {
1091 	dev_info_t *dip = pcmu_p->pcmu_dip;
1092 	pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p;
1093 	pcmu_cb_t *pcb_p = pcmu_p->pcmu_cb_p;
1094 	int i, no_of_intrs;
1095 
1096 	/*
1097 	 * Get the interrupts property.
1098 	 */
1099 	if (ddi_getlongprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS,
1100 	    "interrupts", (caddr_t)&pcmu_p->pcmu_inos,
1101 	    &pcmu_p->pcmu_inos_len) != DDI_SUCCESS) {
1102 		cmn_err(CE_PANIC, "%s%d: no interrupts property\n",
1103 			ddi_driver_name(dip), ddi_get_instance(dip));
1104 	}
1105 
1106 	/*
1107 	 * figure out number of interrupts in the "interrupts" property
1108 	 * and convert them all into ino.
1109 	 */
1110 	i = ddi_getprop(DDI_DEV_T_ANY, dip, 0, "#interrupt-cells", 1);
1111 	i = CELLS_1275_TO_BYTES(i);
1112 	no_of_intrs = pcmu_p->pcmu_inos_len / i;
1113 	for (i = 0; i < no_of_intrs; i++) {
1114 		pcmu_p->pcmu_inos[i] =
1115 		    PCMU_IB_MONDO_TO_INO(pcmu_p->pcmu_inos[i]);
1116 	}
1117 
1118 	pcb_p->pcb_no_of_inos = no_of_intrs;
1119 	if (i = pcmu_ecc_register_intr(pcmu_p)) {
1120 		goto teardown;
1121 	}
1122 
1123 	intr_dist_add(pcmu_cb_intr_dist, pcb_p);
1124 	pcmu_ecc_enable_intr(pcmu_p);
1125 
1126 	if (i = pcmu_pbm_register_intr(pcbm_p)) {
1127 		intr_dist_rem(pcmu_cb_intr_dist, pcb_p);
1128 		goto teardown;
1129 	}
1130 	intr_dist_add(pcmu_pbm_intr_dist, pcbm_p);
1131 	pcmu_ib_intr_enable(pcmu_p, pcmu_p->pcmu_inos[CBNINTR_PBM]);
1132 
1133 	intr_dist_add_weighted(pcmu_ib_intr_dist_all, pcmu_p->pcmu_ib_p);
1134 	return (DDI_SUCCESS);
1135 teardown:
1136 	pcmu_intr_teardown(pcmu_p);
1137 	return (i);
1138 }
1139 
1140 /*
1141  * pcmu_fix_ranges - fixes the config space entry of the "ranges"
1142  *	property on CMU-CH platforms
1143  */
1144 void
1145 pcmu_fix_ranges(pcmu_ranges_t *rng_p, int rng_entries)
1146 {
1147 	int i;
1148 	for (i = 0; i < rng_entries; i++, rng_p++) {
1149 		if ((rng_p->child_high & PCI_REG_ADDR_M) == PCI_ADDR_CONFIG)
1150 			rng_p->parent_low |= rng_p->child_high;
1151 	}
1152 }
1153 
1154 /*
1155  * map_pcmu_registers
1156  *
1157  * This function is called from the attach routine to map the registers
1158  * accessed by this driver.
1159  *
1160  * used by: pcmu_attach()
1161  *
1162  * return value: DDI_FAILURE on failure
1163  */
1164 static int
1165 map_pcmu_registers(pcmu_t *pcmu_p, dev_info_t *dip)
1166 {
1167 	ddi_device_acc_attr_t attr;
1168 
1169 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
1170 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
1171 
1172 	attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
1173 	if (ddi_regs_map_setup(dip, 0, &pcmu_p->pcmu_address[0], 0, 0,
1174 	    &attr, &pcmu_p->pcmu_ac[0]) != DDI_SUCCESS) {
1175 		cmn_err(CE_WARN, "%s%d: unable to map reg entry 0\n",
1176 		    ddi_driver_name(dip), ddi_get_instance(dip));
1177 		return (DDI_FAILURE);
1178 	}
1179 
1180 	/*
1181 	 * We still use pcmu_address[2]
1182 	 */
1183 	if (ddi_regs_map_setup(dip, 2, &pcmu_p->pcmu_address[2], 0, 0,
1184 		&attr, &pcmu_p->pcmu_ac[2]) != DDI_SUCCESS) {
1185 		cmn_err(CE_WARN, "%s%d: unable to map reg entry 2\n",
1186 		    ddi_driver_name(dip), ddi_get_instance(dip));
1187 		ddi_regs_map_free(&pcmu_p->pcmu_ac[0]);
1188 		return (DDI_FAILURE);
1189 	}
1190 
1191 	/*
1192 	 * The second register set contains the bridge's configuration
1193 	 * header.  This header is at the very beginning of the bridge's
1194 	 * configuration space.  This space has litte-endian byte order.
1195 	 */
1196 	attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
1197 	if (ddi_regs_map_setup(dip, 1, &pcmu_p->pcmu_address[1], 0,
1198 	    PCI_CONF_HDR_SIZE, &attr, &pcmu_p->pcmu_ac[1]) != DDI_SUCCESS) {
1199 
1200 		cmn_err(CE_WARN, "%s%d: unable to map reg entry 1\n",
1201 		    ddi_driver_name(dip), ddi_get_instance(dip));
1202 		ddi_regs_map_free(&pcmu_p->pcmu_ac[0]);
1203 		return (DDI_FAILURE);
1204 	}
1205 	PCMU_DBG2(PCMU_DBG_ATTACH, dip, "address (%p,%p)\n",
1206 	    pcmu_p->pcmu_address[0], pcmu_p->pcmu_address[1]);
1207 	return (DDI_SUCCESS);
1208 }
1209 
1210 /*
1211  * unmap_pcmu_registers:
1212  *
1213  * This routine unmap the registers mapped by map_pcmu_registers.
1214  *
1215  * used by: pcmu_detach()
1216  *
1217  * return value: none
1218  */
1219 static void
1220 unmap_pcmu_registers(pcmu_t *pcmu_p)
1221 {
1222 	ddi_regs_map_free(&pcmu_p->pcmu_ac[0]);
1223 	ddi_regs_map_free(&pcmu_p->pcmu_ac[1]);
1224 	ddi_regs_map_free(&pcmu_p->pcmu_ac[2]);
1225 }
1226 
1227 /*
1228  * These convenience wrappers relies on map_pcmu_registers() to setup
1229  * pcmu_address[0-2] correctly at first.
1230  */
1231 static uintptr_t
1232 get_reg_base(pcmu_t *pcmu_p)
1233 {
1234 	return ((uintptr_t)pcmu_p->pcmu_address[2]);
1235 }
1236 
1237 /* The CMU-CH config reg base is always the 2nd reg entry */
1238 static uintptr_t
1239 get_config_reg_base(pcmu_t *pcmu_p)
1240 {
1241 	return ((uintptr_t)(pcmu_p->pcmu_address[1]));
1242 }
1243 
1244 uint64_t
1245 ib_get_map_reg(pcmu_ib_mondo_t mondo, uint32_t cpu_id)
1246 {
1247 	return ((mondo) | (cpu_id << PCMU_INTR_MAP_REG_TID_SHIFT) |
1248 	    PCMU_INTR_MAP_REG_VALID);
1249 
1250 }
1251 
1252 uint32_t
1253 ib_map_reg_get_cpu(volatile uint64_t reg)
1254 {
1255 	return ((reg & PCMU_INTR_MAP_REG_TID) >>
1256 	    PCMU_INTR_MAP_REG_TID_SHIFT);
1257 }
1258 
1259 uint64_t *
1260 ib_intr_map_reg_addr(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino)
1261 {
1262 	uint64_t *addr;
1263 
1264 	ASSERT(ino & 0x20);
1265 	addr = (uint64_t *)(pib_p->pib_obio_intr_map_regs +
1266 	    (((uint_t)ino & 0x1f) << 3));
1267 	return (addr);
1268 }
1269 
1270 uint64_t *
1271 ib_clear_intr_reg_addr(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino)
1272 {
1273 	uint64_t *addr;
1274 
1275 	ASSERT(ino & 0x20);
1276 	addr = (uint64_t *)(pib_p->pib_obio_clear_intr_regs +
1277 	    (((uint_t)ino & 0x1f) << 3));
1278 	return (addr);
1279 }
1280 
1281 uintptr_t
1282 pcmu_ib_setup(pcmu_ib_t *pib_p)
1283 {
1284 	pcmu_t *pcmu_p = pib_p->pib_pcmu_p;
1285 	uintptr_t a = get_reg_base(pcmu_p);
1286 
1287 	pib_p->pib_ign = PCMU_ID_TO_IGN(pcmu_p->pcmu_id);
1288 	pib_p->pib_max_ino = PCMU_MAX_INO;
1289 	pib_p->pib_obio_intr_map_regs = a + PCMU_IB_OBIO_INTR_MAP_REG_OFFSET;
1290 	pib_p->pib_obio_clear_intr_regs =
1291 		a + PCMU_IB_OBIO_CLEAR_INTR_REG_OFFSET;
1292 	return (a);
1293 }
1294 
1295 /*
1296  * Return the cpuid to to be used for an ino.
1297  *
1298  * On multi-function pci devices, functions have separate devinfo nodes and
1299  * interrupts.
1300  *
1301  * This function determines if there is already an established slot-oriented
1302  * interrupt-to-cpu binding established, if there is then it returns that
1303  * cpu.  Otherwise a new cpu is selected by intr_dist_cpuid().
1304  *
1305  * The devinfo node we are trying to associate a cpu with is
1306  * ino_p->pino_ih_head->ih_dip.
1307  */
1308 uint32_t
1309 pcmu_intr_dist_cpuid(pcmu_ib_t *pib_p, pcmu_ib_ino_info_t *ino_p)
1310 {
1311 	dev_info_t	*rdip = ino_p->pino_ih_head->ih_dip;
1312 	dev_info_t	*prdip = ddi_get_parent(rdip);
1313 	pcmu_ib_ino_info_t	*sino_p;
1314 	dev_info_t	*sdip;
1315 	dev_info_t	*psdip;
1316 	char		*buf1 = NULL, *buf2 = NULL;
1317 	char		*s1, *s2, *s3;
1318 	int		l2;
1319 	int		cpu_id;
1320 
1321 	/* must be CMU-CH driver parent (not ebus) */
1322 	if (strcmp(ddi_driver_name(prdip), "pcicmu") != 0)
1323 		goto newcpu;
1324 
1325 	/*
1326 	 * From PCI 1275 binding: 2.2.1.3 Unit Address representation:
1327 	 *   Since the "unit-number" is the address that appears in on Open
1328 	 *   Firmware 'device path', it follows that only the DD and DD,FF
1329 	 *   forms of the text representation can appear in a 'device path'.
1330 	 *
1331 	 * The rdip unit address is of the form "DD[,FF]".  Define two
1332 	 * unit address strings that represent same-slot use: "DD" and "DD,".
1333 	 * The first compare uses strcmp, the second uses strncmp.
1334 	 */
1335 	s1 = ddi_get_name_addr(rdip);
1336 	if (s1 == NULL) {
1337 		goto newcpu;
1338 	}
1339 
1340 	buf1 = kmem_alloc(MAXNAMELEN, KM_SLEEP);	/* strcmp */
1341 	buf2 = kmem_alloc(MAXNAMELEN, KM_SLEEP);	/* strncmp */
1342 	s1 = strcpy(buf1, s1);
1343 	s2 = strcpy(buf2, s1);
1344 
1345 	s1 = strrchr(s1, ',');
1346 	if (s1) {
1347 		*s1 = '\0';			/* have "DD,FF" */
1348 		s1 = buf1;			/* search via strcmp "DD" */
1349 
1350 		s2 = strrchr(s2, ',');
1351 		*(s2 + 1) = '\0';
1352 		s2 = buf2;
1353 		l2 = strlen(s2);		/* search via strncmp "DD," */
1354 	} else {
1355 		(void) strcat(s2, ",");		/* have "DD" */
1356 		l2 = strlen(s2);		/* search via strncmp "DD," */
1357 	}
1358 
1359 	/*
1360 	 * Search the established ino list for devinfo nodes bound
1361 	 * to an ino that matches one of the slot use strings.
1362 	 */
1363 	ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex));
1364 	for (sino_p = pib_p->pib_ino_lst; sino_p; sino_p = sino_p->pino_next) {
1365 		/* skip self and non-established */
1366 		if ((sino_p == ino_p) || (sino_p->pino_established == 0))
1367 			continue;
1368 
1369 		/* skip non-siblings */
1370 		sdip = sino_p->pino_ih_head->ih_dip;
1371 		psdip = ddi_get_parent(sdip);
1372 		if (psdip != prdip)
1373 			continue;
1374 
1375 		/* must be CMU-CH driver parent (not ebus) */
1376 		if (strcmp(ddi_driver_name(psdip), "pcicmu") != 0)
1377 			continue;
1378 
1379 		s3 = ddi_get_name_addr(sdip);
1380 		if ((s1 && (strcmp(s1, s3) == 0)) ||
1381 		    (strncmp(s2, s3, l2) == 0)) {
1382 			extern int intr_dist_debug;
1383 
1384 			if (intr_dist_debug) {
1385 				cmn_err(CE_CONT, "intr_dist: "
1386 				    "pcicmu`pcmu_intr_dist_cpuid "
1387 				    "%s#%d %s: cpu %d established "
1388 				    "by %s#%d %s\n", ddi_driver_name(rdip),
1389 				    ddi_get_instance(rdip),
1390 				    ddi_deviname(rdip, buf1),
1391 				    sino_p->pino_cpuid,
1392 				    ddi_driver_name(sdip),
1393 				    ddi_get_instance(sdip),
1394 				    ddi_deviname(sdip, buf2));
1395 			}
1396 			break;
1397 		}
1398 	}
1399 
1400 	/* If a slot use match is found then use established cpu */
1401 	if (sino_p) {
1402 		cpu_id = sino_p->pino_cpuid;	/* target established cpu */
1403 		goto out;
1404 	}
1405 
1406 newcpu:	cpu_id = intr_dist_cpuid();		/* target new cpu */
1407 
1408 out:	if (buf1)
1409 		kmem_free(buf1, MAXNAMELEN);
1410 	if (buf2)
1411 		kmem_free(buf2, MAXNAMELEN);
1412 	return (cpu_id);
1413 }
1414 
1415 void
1416 pcmu_cb_teardown(pcmu_t *pcmu_p)
1417 {
1418 	pcmu_cb_t	*pcb_p = pcmu_p->pcmu_cb_p;
1419 
1420 	u2u_ittrans_uninit((u2u_ittrans_data_t *)pcb_p->pcb_ittrans_cookie);
1421 }
1422 
1423 int
1424 pcmu_ecc_add_intr(pcmu_t *pcmu_p, int inum, pcmu_ecc_intr_info_t *eii_p)
1425 {
1426 	uint32_t mondo;
1427 
1428 	mondo = ((pcmu_p->pcmu_cb_p->pcb_ign << PCMU_INO_BITS) |
1429 	    pcmu_p->pcmu_inos[inum]);
1430 
1431 	VERIFY(add_ivintr(mondo, pcmu_pil[inum], pcmu_ecc_intr,
1432 	    (caddr_t)eii_p, NULL) == 0);
1433 	return (PCMU_ATTACH_RETCODE(PCMU_ECC_OBJ,
1434 	    PCMU_OBJ_INTR_ADD, DDI_SUCCESS));
1435 }
1436 
1437 /* ARGSUSED */
1438 void
1439 pcmu_ecc_rem_intr(pcmu_t *pcmu_p, int inum, pcmu_ecc_intr_info_t *eii_p)
1440 {
1441 	uint32_t mondo;
1442 
1443 	mondo = ((pcmu_p->pcmu_cb_p->pcb_ign << PCMU_INO_BITS) |
1444 	    pcmu_p->pcmu_inos[inum]);
1445 	rem_ivintr(mondo, NULL);
1446 }
1447 
1448 void
1449 pcmu_pbm_configure(pcmu_pbm_t *pcbm_p)
1450 {
1451 	pcmu_t *pcmu_p = pcbm_p->pcbm_pcmu_p;
1452 	dev_info_t *dip = pcmu_p->pcmu_dip;
1453 
1454 #define	pbm_err	((PCMU_PCI_AFSR_E_MASK << PCMU_PCI_AFSR_PE_SHIFT) |	\
1455 		(PCMU_PCI_AFSR_E_MASK << PCMU_PCI_AFSR_SE_SHIFT))
1456 #define	csr_err	(PCI_STAT_PERROR | PCI_STAT_S_PERROR |		\
1457 		PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB |	\
1458 		PCI_STAT_S_TARG_AB | PCI_STAT_S_PERROR)
1459 
1460 	/*
1461 	 * Clear any PBM errors.
1462 	 */
1463 	*pcbm_p->pcbm_async_flt_status_reg = pbm_err;
1464 
1465 	/*
1466 	 * Clear error bits in configuration status register.
1467 	 */
1468 	PCMU_DBG1(PCMU_DBG_ATTACH, dip,
1469 	    "pcmu_pbm_configure: conf status reg=%x\n", csr_err);
1470 
1471 	pcbm_p->pcbm_config_header->ch_status_reg = csr_err;
1472 
1473 	PCMU_DBG1(PCMU_DBG_ATTACH, dip,
1474 	    "pcmu_pbm_configure: conf status reg==%x\n",
1475 	    pcbm_p->pcbm_config_header->ch_status_reg);
1476 
1477 	(void) ndi_prop_update_int(DDI_DEV_T_ANY, dip, "latency-timer",
1478 		(int)pcbm_p->pcbm_config_header->ch_latency_timer_reg);
1479 #undef	pbm_err
1480 #undef	csr_err
1481 }
1482 
1483 uint_t
1484 pcmu_pbm_disable_errors(pcmu_pbm_t *pcbm_p)
1485 {
1486 	pcmu_t *pcmu_p = pcbm_p->pcbm_pcmu_p;
1487 	pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p;
1488 
1489 	/*
1490 	 * Disable error and streaming byte hole interrupts via the
1491 	 * PBM control register.
1492 	 */
1493 	*pcbm_p->pcbm_ctrl_reg &= ~PCMU_PCI_CTRL_ERR_INT_EN;
1494 
1495 	/*
1496 	 * Disable error interrupts via the interrupt mapping register.
1497 	 */
1498 	pcmu_ib_intr_disable(pib_p,
1499 	    pcmu_p->pcmu_inos[CBNINTR_PBM], PCMU_IB_INTR_NOWAIT);
1500 	return (BF_NONE);
1501 }
1502 
1503 void
1504 pcmu_cb_setup(pcmu_t *pcmu_p)
1505 {
1506 	uint64_t csr, csr_pa, pa;
1507 	pcmu_cb_t *pcb_p = pcmu_p->pcmu_cb_p;
1508 
1509 	pcb_p->pcb_ign = PCMU_ID_TO_IGN(pcmu_p->pcmu_id);
1510 	pa = (uint64_t)hat_getpfnum(kas.a_hat, pcmu_p->pcmu_address[0]);
1511 	pcb_p->pcb_base_pa  = pa = pa >> (32 - MMU_PAGESHIFT) << 32;
1512 	pcb_p->pcb_map_pa = pa + PCMU_IB_OBIO_INTR_MAP_REG_OFFSET;
1513 	pcb_p->pcb_clr_pa = pa + PCMU_IB_OBIO_CLEAR_INTR_REG_OFFSET;
1514 	pcb_p->pcb_obsta_pa = pa + PCMU_IB_OBIO_INTR_STATE_DIAG_REG;
1515 
1516 	csr_pa = pa + PCMU_CB_CONTROL_STATUS_REG_OFFSET;
1517 	csr = lddphysio(csr_pa);
1518 
1519 	/*
1520 	 * Clear any pending address parity errors.
1521 	 */
1522 	if (csr & PCMU_CB_CONTROL_STATUS_APERR) {
1523 		csr |= PCMU_CB_CONTROL_STATUS_APERR;
1524 		cmn_err(CE_WARN, "clearing UPA address parity error\n");
1525 	}
1526 	csr |= PCMU_CB_CONTROL_STATUS_APCKEN;
1527 	csr &= ~PCMU_CB_CONTROL_STATUS_IAP;
1528 	stdphysio(csr_pa, csr);
1529 
1530 	u2u_ittrans_init(pcmu_p,
1531 	    (u2u_ittrans_data_t **)&pcb_p->pcb_ittrans_cookie);
1532 }
1533 
1534 void
1535 pcmu_ecc_setup(pcmu_ecc_t *pecc_p)
1536 {
1537 	pecc_p->pecc_ue.pecc_errpndg_mask = 0;
1538 	pecc_p->pecc_ue.pecc_offset_mask = PCMU_ECC_UE_AFSR_DW_OFFSET;
1539 	pecc_p->pecc_ue.pecc_offset_shift = PCMU_ECC_UE_AFSR_DW_OFFSET_SHIFT;
1540 	pecc_p->pecc_ue.pecc_size_log2 = 3;
1541 }
1542 
1543 static uintptr_t
1544 get_pbm_reg_base(pcmu_t *pcmu_p)
1545 {
1546 	return ((uintptr_t)(pcmu_p->pcmu_address[0]));
1547 }
1548 
1549 void
1550 pcmu_pbm_setup(pcmu_pbm_t *pcbm_p)
1551 {
1552 	pcmu_t *pcmu_p = pcbm_p->pcbm_pcmu_p;
1553 
1554 	/*
1555 	 * Get the base virtual address for the PBM control block.
1556 	 */
1557 	uintptr_t a = get_pbm_reg_base(pcmu_p);
1558 
1559 	/*
1560 	 * Get the virtual address of the PCI configuration header.
1561 	 * This should be mapped little-endian.
1562 	 */
1563 	pcbm_p->pcbm_config_header =
1564 		(config_header_t *)get_config_reg_base(pcmu_p);
1565 
1566 	/*
1567 	 * Get the virtual addresses for control, error and diag
1568 	 * registers.
1569 	 */
1570 	pcbm_p->pcbm_ctrl_reg = (uint64_t *)(a + PCMU_PCI_CTRL_REG_OFFSET);
1571 	pcbm_p->pcbm_diag_reg = (uint64_t *)(a + PCMU_PCI_DIAG_REG_OFFSET);
1572 	pcbm_p->pcbm_async_flt_status_reg =
1573 	    (uint64_t *)(a + PCMU_PCI_ASYNC_FLT_STATUS_REG_OFFSET);
1574 	pcbm_p->pcbm_async_flt_addr_reg =
1575 	    (uint64_t *)(a + PCMU_PCI_ASYNC_FLT_ADDR_REG_OFFSET);
1576 }
1577 
1578 /*ARGSUSED*/
1579 void
1580 pcmu_pbm_teardown(pcmu_pbm_t *pcbm_p)
1581 {
1582 }
1583 
1584 int
1585 pcmu_get_numproxy(dev_info_t *dip)
1586 {
1587 	return (ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1588 		"#upa-interrupt-proxies", 1));
1589 }
1590 
1591 int
1592 pcmu_get_portid(dev_info_t *dip)
1593 {
1594 	return (ddi_getprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1595 	    "portid", -1));
1596 }
1597 
1598 /*
1599  * CMU-CH Performance Events.
1600  */
1601 static pcmu_kev_mask_t
1602 pcicmu_pcmu_events[] = {
1603 	{"pio_cycles_b", 0xf},		{"interrupts", 0x11},
1604 	{"upa_inter_nack", 0x12},	{"pio_reads", 0x13},
1605 	{"pio_writes", 0x14},
1606 	{"clear_pic", 0x1f}
1607 };
1608 
1609 /*
1610  * Create the picN kstat's.
1611  */
1612 void
1613 pcmu_kstat_init()
1614 {
1615 	pcmu_name_kstat = (pcmu_ksinfo_t *)kmem_alloc(sizeof (pcmu_ksinfo_t),
1616 		KM_NOSLEEP);
1617 
1618 	if (pcmu_name_kstat == NULL) {
1619 		cmn_err(CE_WARN, "pcicmu : no space for kstat\n");
1620 	} else {
1621 		pcmu_name_kstat->pic_no_evs =
1622 			sizeof (pcicmu_pcmu_events) / sizeof (pcmu_kev_mask_t);
1623 		pcmu_name_kstat->pic_shift[0] = PCMU_SHIFT_PIC0;
1624 		pcmu_name_kstat->pic_shift[1] = PCMU_SHIFT_PIC1;
1625 		pcmu_create_name_kstat("pcmup",
1626 			pcmu_name_kstat, pcicmu_pcmu_events);
1627 	}
1628 }
1629 
1630 /*
1631  * Called from _fini()
1632  */
1633 void
1634 pcmu_kstat_fini()
1635 {
1636 	if (pcmu_name_kstat != NULL) {
1637 		pcmu_delete_name_kstat(pcmu_name_kstat);
1638 		kmem_free(pcmu_name_kstat, sizeof (pcmu_ksinfo_t));
1639 		pcmu_name_kstat = NULL;
1640 	}
1641 }
1642 
1643 /*
1644  * Create the performance 'counters' kstat.
1645  */
1646 void
1647 pcmu_add_upstream_kstat(pcmu_t *pcmu_p)
1648 {
1649 	pcmu_cntr_pa_t	*cntr_pa_p = &pcmu_p->pcmu_uks_pa;
1650 	uint64_t regbase = va_to_pa((void *)get_reg_base(pcmu_p));
1651 
1652 	cntr_pa_p->pcr_pa = regbase + PCMU_PERF_PCR_OFFSET;
1653 	cntr_pa_p->pic_pa = regbase + PCMU_PERF_PIC_OFFSET;
1654 	pcmu_p->pcmu_uksp = pcmu_create_cntr_kstat(pcmu_p, "pcmup",
1655 		NUM_OF_PICS, pcmu_cntr_kstat_pa_update, cntr_pa_p);
1656 }
1657 
1658 /*
1659  * u2u_ittrans_init() is caled from in pci.c's pcmu_cb_setup() per CMU.
1660  * Second argument "ittrans_cookie" is address of pcb_ittrans_cookie in
1661  * pcb_p member. allocated interrupt block is returned in it.
1662  */
1663 static void
1664 u2u_ittrans_init(pcmu_t *pcmu_p, u2u_ittrans_data_t **ittrans_cookie)
1665 {
1666 
1667 	u2u_ittrans_data_t *u2u_trans_p;
1668 	ddi_device_acc_attr_t attr;
1669 	int ret;
1670 	int board;
1671 
1672 	/*
1673 	 * Allocate the data structure to support U2U's
1674 	 * interrupt target translations.
1675 	 */
1676 	u2u_trans_p = (u2u_ittrans_data_t *)
1677 	    kmem_zalloc(sizeof (u2u_ittrans_data_t), KM_SLEEP);
1678 
1679 	/*
1680 	 * Get other properties, "board#"
1681 	 */
1682 	board = ddi_getprop(DDI_DEV_T_ANY, pcmu_p->pcmu_dip,
1683 	    DDI_PROP_DONTPASS, "board#", -1);
1684 
1685 	u2u_trans_p->u2u_board = board;
1686 
1687 	if (board == -1) {
1688 		/* this cannot happen on production systems */
1689 		cmn_err(CE_PANIC, "u2u:Invalid property;board = %d", board);
1690 	}
1691 
1692 	/*
1693 	 * Initialize interrupt target translations mutex.
1694 	 */
1695 	mutex_init(&(u2u_trans_p->u2u_ittrans_lock), "u2u_ittrans_lock",
1696 	    MUTEX_DEFAULT, NULL);
1697 
1698 	/*
1699 	 * Get U2U's registers space by ddi_regs_map_setup(9F)
1700 	 */
1701 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
1702 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
1703 	attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
1704 
1705 	ret = ddi_regs_map_setup(pcmu_p->pcmu_dip,
1706 	    REGS_INDEX_OF_U2U, (caddr_t *)(&(u2u_trans_p->u2u_regs_base)),
1707 	    0, 0, &attr, &(u2u_trans_p->u2u_acc));
1708 
1709 	/*
1710 	 * check result of ddi_regs_map_setup().
1711 	 */
1712 	if (ret != DDI_SUCCESS) {
1713 		cmn_err(CE_PANIC, "u2u%d: registers map setup failed", board);
1714 	}
1715 
1716 	/*
1717 	 * Read Port-id(1 byte) in u2u
1718 	 */
1719 	u2u_trans_p->u2u_port_id = *(volatile int32_t *)
1720 	    (u2u_trans_p->u2u_regs_base + U2U_PID_REGISTER_OFFSET);
1721 
1722 	if (pcmu_p->pcmu_id != u2u_trans_p->u2u_port_id) {
1723 		cmn_err(CE_PANIC, "u2u%d: Invalid Port-ID", board);
1724 	}
1725 
1726 	*ittrans_cookie = u2u_trans_p;
1727 }
1728 
1729 /*
1730  * u2u_ittras_resume() is called from pcmu_obj_resume() at DDI_RESUME entry.
1731  */
1732 static void
1733 u2u_ittrans_resume(u2u_ittrans_data_t **ittrans_cookie)
1734 {
1735 
1736 	u2u_ittrans_data_t *u2u_trans_p;
1737 	u2u_ittrans_id_t *ittrans_id_p;
1738 	uintptr_t  data_reg_addr;
1739 	int ix;
1740 
1741 	u2u_trans_p = *ittrans_cookie;
1742 
1743 	/*
1744 	 * Set U2U Data Register
1745 	 */
1746 	for (ix = 0; ix < U2U_DATA_NUM; ix++) {
1747 		ittrans_id_p = &(u2u_trans_p->u2u_ittrans_id[ix]);
1748 		data_reg_addr = u2u_trans_p->u2u_regs_base +
1749 		    U2U_DATA_REGISTER_OFFSET + (ix * sizeof (uint64_t));
1750 		if (ittrans_id_p->u2u_ino_map_reg == NULL) {
1751 			/* This index was not set */
1752 			continue;
1753 		}
1754 		*(volatile uint32_t *) (data_reg_addr) =
1755 		    (uint32_t)ittrans_id_p->u2u_tgt_cpu_id;
1756 
1757 	}
1758 }
1759 
1760 /*
1761  * u2u_ittras_uninit() is called from ib_destroy() at detach,
1762  * or occuring error in attach.
1763  */
1764 static void
1765 u2u_ittrans_uninit(u2u_ittrans_data_t *ittrans_cookie)
1766 {
1767 
1768 	if (ittrans_cookie == NULL) {
1769 		return;	/* not support */
1770 	}
1771 
1772 	if (ittrans_cookie == (u2u_ittrans_data_t *)(-1)) {
1773 		return;	 /* illeagal case */
1774 	}
1775 
1776 	ddi_regs_map_free(&(ittrans_cookie->u2u_acc));
1777 	mutex_destroy(&(ittrans_cookie->u2u_ittrans_lock));
1778 	kmem_free((void *)ittrans_cookie, sizeof (u2u_ittrans_data_t));
1779 }
1780 
1781 /*
1782  * This routine,u2u_translate_tgtid(, , cpu_id, pino_map_reg),
1783  * searches index having same value of pino_map_reg, or empty.
1784  * Then, stores cpu_id in a U2U Data Register as this index,
1785  * and return this index.
1786  */
1787 int
1788 u2u_translate_tgtid(pcmu_t *pcmu_p, uint_t cpu_id,
1789     volatile uint64_t *pino_map_reg)
1790 {
1791 
1792 	int index = -1;
1793 	int ix;
1794 	int err_level;	/* severity level for cmn_err */
1795 	u2u_ittrans_id_t *ittrans_id_p;
1796 	uintptr_t  data_reg_addr;
1797 	u2u_ittrans_data_t *ittrans_cookie;
1798 
1799 	ittrans_cookie =
1800 		(u2u_ittrans_data_t *)(pcmu_p->pcmu_cb_p->pcb_ittrans_cookie);
1801 
1802 	if (ittrans_cookie == NULL) {
1803 		return (cpu_id);
1804 	}
1805 
1806 	if (ittrans_cookie == (u2u_ittrans_data_t *)(-1)) {
1807 		return (-1);	 /* illeagal case */
1808 	}
1809 
1810 	mutex_enter(&(ittrans_cookie->u2u_ittrans_lock));
1811 
1812 	/*
1813 	 * Decide index No. of U2U Data registers in either
1814 	 * already used by same pino_map_reg, or empty.
1815 	 */
1816 	for (ix = 0; ix < U2U_DATA_NUM; ix++) {
1817 		ittrans_id_p = &(ittrans_cookie->u2u_ittrans_id[ix]);
1818 		if (ittrans_id_p->u2u_ino_map_reg == pino_map_reg) {
1819 			/* already used this pino_map_reg */
1820 			index = ix;
1821 			break;
1822 		}
1823 		if (index == -1 &&
1824 			ittrans_id_p->u2u_ino_map_reg == NULL) {
1825 			index = ix;
1826 		}
1827 	}
1828 
1829 	if (index == -1) {
1830 		if (panicstr) {
1831 			err_level = CE_WARN;
1832 		} else {
1833 			err_level = CE_PANIC;
1834 		}
1835 		cmn_err(err_level, "u2u%d:No more U2U-Data regs!!",
1836 			ittrans_cookie->u2u_board);
1837 		return (cpu_id);
1838 	}
1839 
1840 	/*
1841 	 * For U2U
1842 	 * set cpu_id into u2u_data_reg by index.
1843 	 * ((uint64_t)(u2u_regs_base
1844 	 *	+ U2U_DATA_REGISTER_OFFSET))[index] = cpu_id;
1845 	 */
1846 
1847 	data_reg_addr = ittrans_cookie->u2u_regs_base
1848 			+ U2U_DATA_REGISTER_OFFSET
1849 			+ (index * sizeof (uint64_t));
1850 
1851 	/*
1852 	 * Set cpu_id into U2U Data register[index]
1853 	 */
1854 	*(volatile uint32_t *) (data_reg_addr) = (uint32_t)cpu_id;
1855 
1856 	/*
1857 	 * Setup for software, excepting at panicing.
1858 	 * and rebooting, etc...?
1859 	 */
1860 	if (!panicstr) {
1861 		ittrans_id_p = &(ittrans_cookie->u2u_ittrans_id[index]);
1862 		ittrans_id_p->u2u_tgt_cpu_id = cpu_id;
1863 		ittrans_id_p->u2u_ino_map_reg = pino_map_reg;
1864 	}
1865 
1866 	mutex_exit(&(ittrans_cookie->u2u_ittrans_lock));
1867 
1868 	return (index);
1869 }
1870 
1871 /*
1872  * u2u_ittrans_cleanup() is called from common_pcmu_ib_intr_disable()
1873  * after called intr_rem_cpu(mondo).
1874  */
1875 void
1876 u2u_ittrans_cleanup(u2u_ittrans_data_t *ittrans_cookie,
1877 			volatile uint64_t *pino_map_reg)
1878 {
1879 
1880 	int ix;
1881 	u2u_ittrans_id_t *ittrans_id_p;
1882 
1883 	if (ittrans_cookie == NULL) {
1884 		return;
1885 	}
1886 
1887 	if (ittrans_cookie == (u2u_ittrans_data_t *)(-1)) {
1888 		return;	 /* illeagal case */
1889 	}
1890 
1891 	mutex_enter(&(ittrans_cookie->u2u_ittrans_lock));
1892 
1893 	for (ix = 0; ix < U2U_DATA_NUM; ix++) {
1894 		ittrans_id_p = &(ittrans_cookie->u2u_ittrans_id[ix]);
1895 		if (ittrans_id_p->u2u_ino_map_reg == pino_map_reg) {
1896 			ittrans_id_p->u2u_ino_map_reg = NULL;
1897 			break;
1898 		}
1899 	}
1900 
1901 	mutex_exit(&(ittrans_cookie->u2u_ittrans_lock));
1902 }
1903 
1904 /*
1905  * pcmu_ecc_classify, called by ecc_handler to classify ecc errors
1906  * and determine if we should panic or not.
1907  */
1908 void
1909 pcmu_ecc_classify(uint64_t err, pcmu_ecc_errstate_t *ecc_err_p)
1910 {
1911 	struct async_flt *ecc = &ecc_err_p->ecc_aflt;
1912 	/* LINTED */
1913 	pcmu_t *pcmu_p = ecc_err_p->ecc_ii_p.pecc_p->pecc_pcmu_p;
1914 
1915 	ASSERT(MUTEX_HELD(&pcmu_p->pcmu_err_mutex));
1916 
1917 	ecc_err_p->ecc_bridge_type = PCI_OPLCMU;	/* RAGS */
1918 	/*
1919 	 * Get the parent bus id that caused the error.
1920 	 */
1921 	ecc_err_p->ecc_dev_id = (ecc_err_p->ecc_afsr & PCMU_ECC_UE_AFSR_ID)
1922 			>> PCMU_ECC_UE_AFSR_ID_SHIFT;
1923 	/*
1924 	 * Determine the doubleword offset of the error.
1925 	 */
1926 	ecc_err_p->ecc_dw_offset = (ecc_err_p->ecc_afsr &
1927 	    PCMU_ECC_UE_AFSR_DW_OFFSET) >> PCMU_ECC_UE_AFSR_DW_OFFSET_SHIFT;
1928 	/*
1929 	 * Determine the primary error type.
1930 	 */
1931 	switch (err) {
1932 	case PCMU_ECC_UE_AFSR_E_PIO:
1933 		if (ecc_err_p->pecc_pri) {
1934 			ecc->flt_erpt_class = PCI_ECC_PIO_UE;
1935 		} else {
1936 			ecc->flt_erpt_class = PCI_ECC_SEC_PIO_UE;
1937 		}
1938 		/* For CMU-CH, a UE is always fatal. */
1939 		ecc->flt_panic = 1;
1940 		break;
1941 
1942 	default:
1943 		return;
1944 	}
1945 }
1946 
1947 /*
1948  * pcmu_pbm_classify, called by pcmu_pbm_afsr_report to classify piow afsr.
1949  */
1950 int
1951 pcmu_pbm_classify(pcmu_pbm_errstate_t *pbm_err_p)
1952 {
1953 	uint32_t e;
1954 	int nerr = 0;
1955 	char **tmp_class;
1956 
1957 	if (pbm_err_p->pcbm_pri) {
1958 		tmp_class = &pbm_err_p->pcbm_pci.pcmu_err_class;
1959 		e = PBM_AFSR_TO_PRIERR(pbm_err_p->pbm_afsr);
1960 		pbm_err_p->pbm_log = FM_LOG_PCI;
1961 	} else {
1962 		tmp_class = &pbm_err_p->pbm_err_class;
1963 		e = PBM_AFSR_TO_SECERR(pbm_err_p->pbm_afsr);
1964 		pbm_err_p->pbm_log = FM_LOG_PBM;
1965 	}
1966 
1967 	if (e & PCMU_PCI_AFSR_E_MA) {
1968 		*tmp_class = pbm_err_p->pcbm_pri ? PCI_MA : PCI_SEC_MA;
1969 		nerr++;
1970 	}
1971 	return (nerr);
1972 }
1973 
1974 /*
1975  * Function used to clear PBM/PCI/IOMMU error state after error handling
1976  * is complete. Only clearing error bits which have been logged. Called by
1977  * pcmu_pbm_err_handler and pcmu_bus_exit.
1978  */
1979 static void
1980 pcmu_clear_error(pcmu_t *pcmu_p, pcmu_pbm_errstate_t *pbm_err_p)
1981 {
1982 	pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p;
1983 
1984 	ASSERT(MUTEX_HELD(&pcbm_p->pcbm_pcmu_p->pcmu_err_mutex));
1985 
1986 	*pcbm_p->pcbm_ctrl_reg = pbm_err_p->pbm_ctl_stat;
1987 	*pcbm_p->pcbm_async_flt_status_reg = pbm_err_p->pbm_afsr;
1988 	pcbm_p->pcbm_config_header->ch_status_reg =
1989 		pbm_err_p->pcbm_pci.pcmu_cfg_stat;
1990 }
1991 
1992 /*ARGSUSED*/
1993 int
1994 pcmu_pbm_err_handler(dev_info_t *dip, ddi_fm_error_t *derr,
1995 		const void *impl_data, int caller)
1996 {
1997 	int fatal = 0;
1998 	int nonfatal = 0;
1999 	int unknown = 0;
2000 	uint32_t prierr, secerr;
2001 	pcmu_pbm_errstate_t pbm_err;
2002 	pcmu_t *pcmu_p = (pcmu_t *)impl_data;
2003 	int ret = 0;
2004 
2005 	ASSERT(MUTEX_HELD(&pcmu_p->pcmu_err_mutex));
2006 	pcmu_pbm_errstate_get(pcmu_p, &pbm_err);
2007 
2008 	derr->fme_ena = derr->fme_ena ? derr->fme_ena :
2009 	    fm_ena_generate(0, FM_ENA_FMT1);
2010 
2011 	prierr = PBM_AFSR_TO_PRIERR(pbm_err.pbm_afsr);
2012 	secerr = PBM_AFSR_TO_SECERR(pbm_err.pbm_afsr);
2013 
2014 	if (derr->fme_flag == DDI_FM_ERR_PEEK) {
2015 		/*
2016 		 * For ddi_peek treat all events as nonfatal. We only
2017 		 * really call this function so that pcmu_clear_error()
2018 		 * and ndi_fm_handler_dispatch() will get called.
2019 		 */
2020 		nonfatal++;
2021 		goto done;
2022 	} else if (derr->fme_flag == DDI_FM_ERR_POKE) {
2023 		/*
2024 		 * For ddi_poke we can treat as nonfatal if the
2025 		 * following conditions are met :
2026 		 * 1. Make sure only primary error is MA/TA
2027 		 * 2. Make sure no secondary error
2028 		 * 3. check pci config header stat reg to see MA/TA is
2029 		 *    logged. We cannot verify only MA/TA is recorded
2030 		 *    since it gets much more complicated when a
2031 		 *    PCI-to-PCI bridge is present.
2032 		 */
2033 		if ((prierr == PCMU_PCI_AFSR_E_MA) && !secerr &&
2034 		    (pbm_err.pcbm_pci.pcmu_cfg_stat & PCI_STAT_R_MAST_AB)) {
2035 			nonfatal++;
2036 			goto done;
2037 		}
2038 	}
2039 
2040 	if (prierr || secerr) {
2041 		ret = pcmu_pbm_afsr_report(dip, derr->fme_ena, &pbm_err);
2042 		if (ret == DDI_FM_FATAL) {
2043 			fatal++;
2044 		} else {
2045 			nonfatal++;
2046 		}
2047 	}
2048 
2049 	ret = pcmu_cfg_report(dip, derr, &pbm_err.pcbm_pci, caller, prierr);
2050 	if (ret == DDI_FM_FATAL) {
2051 		fatal++;
2052 	} else if (ret == DDI_FM_NONFATAL) {
2053 		nonfatal++;
2054 	}
2055 
2056 done:
2057 	if (ret == DDI_FM_FATAL) {
2058 		fatal++;
2059 	} else if (ret == DDI_FM_NONFATAL) {
2060 		nonfatal++;
2061 	} else if (ret == DDI_FM_UNKNOWN) {
2062 		unknown++;
2063 	}
2064 
2065 	/* Cleanup and reset error bits */
2066 	pcmu_clear_error(pcmu_p, &pbm_err);
2067 
2068 	return (fatal ? DDI_FM_FATAL : (nonfatal ? DDI_FM_NONFATAL :
2069 	    (unknown ? DDI_FM_UNKNOWN : DDI_FM_OK)));
2070 }
2071 
2072 int
2073 pcmu_check_error(pcmu_t *pcmu_p)
2074 {
2075 	pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p;
2076 	uint16_t pcmu_cfg_stat;
2077 	uint64_t pbm_afsr;
2078 
2079 	ASSERT(MUTEX_HELD(&pcmu_p->pcmu_err_mutex));
2080 
2081 	pcmu_cfg_stat = pcbm_p->pcbm_config_header->ch_status_reg;
2082 	pbm_afsr = *pcbm_p->pcbm_async_flt_status_reg;
2083 
2084 	if ((pcmu_cfg_stat & (PCI_STAT_S_PERROR | PCI_STAT_S_TARG_AB |
2085 				PCI_STAT_R_TARG_AB | PCI_STAT_R_MAST_AB |
2086 				PCI_STAT_S_SYSERR | PCI_STAT_PERROR)) ||
2087 			(PBM_AFSR_TO_PRIERR(pbm_afsr))) {
2088 		return (1);
2089 	}
2090 	return (0);
2091 
2092 }
2093 
2094 /*
2095  * Function used to gather PBM/PCI error state for the
2096  * pcmu_pbm_err_handler. This function must be called while pcmu_err_mutex
2097  * is held.
2098  */
2099 static void
2100 pcmu_pbm_errstate_get(pcmu_t *pcmu_p, pcmu_pbm_errstate_t *pbm_err_p)
2101 {
2102 	pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p;
2103 
2104 	ASSERT(MUTEX_HELD(&pcmu_p->pcmu_err_mutex));
2105 	bzero(pbm_err_p, sizeof (pcmu_pbm_errstate_t));
2106 
2107 	/*
2108 	 * Capture all pbm error state for later logging
2109 	 */
2110 	pbm_err_p->pbm_bridge_type = PCI_OPLCMU;	/* RAGS */
2111 	pbm_err_p->pcbm_pci.pcmu_cfg_stat =
2112 	    pcbm_p->pcbm_config_header->ch_status_reg;
2113 	pbm_err_p->pbm_ctl_stat = *pcbm_p->pcbm_ctrl_reg;
2114 	pbm_err_p->pcbm_pci.pcmu_cfg_comm =
2115 	    pcbm_p->pcbm_config_header->ch_command_reg;
2116 	pbm_err_p->pbm_afsr = *pcbm_p->pcbm_async_flt_status_reg;
2117 	pbm_err_p->pbm_afar = *pcbm_p->pcbm_async_flt_addr_reg;
2118 	pbm_err_p->pcbm_pci.pcmu_pa = *pcbm_p->pcbm_async_flt_addr_reg;
2119 }
2120 
2121 static void
2122 pcmu_pbm_clear_error(pcmu_pbm_t *pcbm_p)
2123 {
2124 	uint64_t pbm_afsr;
2125 
2126 	/*
2127 	 * for poke() support - called from POKE_FLUSH. Spin waiting
2128 	 * for MA, TA or SERR to be cleared by a pcmu_pbm_error_intr().
2129 	 * We have to wait for SERR too in case the device is beyond
2130 	 * a pci-pci bridge.
2131 	 */
2132 	pbm_afsr = *pcbm_p->pcbm_async_flt_status_reg;
2133 	while (((pbm_afsr >> PCMU_PCI_AFSR_PE_SHIFT) &
2134 	    (PCMU_PCI_AFSR_E_MA | PCMU_PCI_AFSR_E_TA))) {
2135 		pbm_afsr = *pcbm_p->pcbm_async_flt_status_reg;
2136 	}
2137 }
2138 
2139 void
2140 pcmu_err_create(pcmu_t *pcmu_p)
2141 {
2142 	/*
2143 	 * PCI detected ECC errorq, to schedule async handling
2144 	 * of ECC errors and logging.
2145 	 * The errorq is created here but destroyed when _fini is called
2146 	 * for the pci module.
2147 	 */
2148 	if (pcmu_ecc_queue == NULL) {
2149 		pcmu_ecc_queue = errorq_create("pcmu_ecc_queue",
2150 				(errorq_func_t)pcmu_ecc_err_drain,
2151 				(void *)NULL,
2152 				ECC_MAX_ERRS, sizeof (pcmu_ecc_errstate_t),
2153 				PIL_2, ERRORQ_VITAL);
2154 		if (pcmu_ecc_queue == NULL)
2155 			panic("failed to create required system error queue");
2156 	}
2157 
2158 	/*
2159 	 * Initialize error handling mutex.
2160 	 */
2161 	mutex_init(&pcmu_p->pcmu_err_mutex, NULL, MUTEX_DRIVER,
2162 			(void *)pcmu_p->pcmu_fm_ibc);
2163 }
2164 
2165 void
2166 pcmu_err_destroy(pcmu_t *pcmu_p)
2167 {
2168 	mutex_destroy(&pcmu_p->pcmu_err_mutex);
2169 }
2170 
2171 /*
2172  * Function used to post PCI block module specific ereports.
2173  */
2174 void
2175 pcmu_pbm_ereport_post(dev_info_t *dip, uint64_t ena,
2176     pcmu_pbm_errstate_t *pbm_err)
2177 {
2178 	char *aux_msg;
2179 	uint32_t prierr, secerr;
2180 	pcmu_t *pcmu_p;
2181 	int instance = ddi_get_instance(dip);
2182 
2183 	ena = ena ? ena : fm_ena_generate(0, FM_ENA_FMT1);
2184 
2185 	pcmu_p = get_pcmu_soft_state(instance);
2186 	prierr = PBM_AFSR_TO_PRIERR(pbm_err->pbm_afsr);
2187 	secerr = PBM_AFSR_TO_SECERR(pbm_err->pbm_afsr);
2188 	if (prierr)
2189 		aux_msg = "PCI primary error: Master Abort";
2190 	else if (secerr)
2191 		aux_msg = "PCI secondary error: Master Abort";
2192 	else
2193 		aux_msg = "";
2194 	cmn_err(CE_WARN, "%s %s: %s %s=0x%lx, %s=0x%lx, %s=0x%lx %s=0x%x",
2195 		(pcmu_p->pcmu_pcbm_p)->pcbm_nameinst_str,
2196 		(pcmu_p->pcmu_pcbm_p)->pcbm_nameaddr_str,
2197 		aux_msg,
2198 		PCI_PBM_AFAR, pbm_err->pbm_afar,
2199 		PCI_PBM_AFSR, pbm_err->pbm_afsr,
2200 		PCI_PBM_CSR, pbm_err->pbm_ctl_stat,
2201 		"portid", pcmu_p->pcmu_id);
2202 }
2203