1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * CPU support routines for DR 30 */ 31 32 #include <sys/note.h> 33 #include <sys/debug.h> 34 #include <sys/types.h> 35 #include <sys/errno.h> 36 #include <sys/cred.h> 37 #include <sys/dditypes.h> 38 #include <sys/devops.h> 39 #include <sys/modctl.h> 40 #include <sys/poll.h> 41 #include <sys/conf.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/sunndi.h> 45 #include <sys/ndi_impldefs.h> 46 #include <sys/stat.h> 47 #include <sys/kmem.h> 48 #include <sys/processor.h> 49 #include <sys/cpuvar.h> 50 #include <sys/mem_config.h> 51 #include <sys/promif.h> 52 #include <sys/x_call.h> 53 #include <sys/cpu_sgnblk_defs.h> 54 #include <sys/membar.h> 55 #include <sys/stack.h> 56 #include <sys/sysmacros.h> 57 #include <sys/machsystm.h> 58 #include <sys/spitregs.h> 59 60 #include <sys/archsystm.h> 61 #include <vm/hat_sfmmu.h> 62 #include <sys/pte.h> 63 #include <sys/mmu.h> 64 #include <sys/x_call.h> 65 #include <sys/cpu_module.h> 66 #include <sys/cpu_impl.h> 67 68 #include <sys/autoconf.h> 69 #include <sys/cmn_err.h> 70 71 #include <sys/dr.h> 72 #include <sys/dr_util.h> 73 74 #ifdef _STARFIRE 75 #include <sys/starfire.h> 76 extern struct cpu *SIGBCPU; 77 #else 78 /* for the DR*INTERNAL_ERROR macros. see sys/dr.h. */ 79 static char *dr_ie_fmt = "dr_cpu.c %d"; 80 #endif /* _STARFIRE */ 81 82 int 83 dr_cpu_unit_is_sane(dr_board_t *bp, dr_cpu_unit_t *cp) 84 { 85 #ifdef DEBUG 86 processorid_t cpuid; 87 88 /* 89 * cpuid and unit number should never be different 90 * than they were at discovery/connect time 91 */ 92 ASSERT(drmach_cpu_get_id(cp->sbc_cm.sbdev_id, &cpuid) == 0); 93 94 ASSERT(cp->sbc_cm.sbdev_bp == bp); 95 ASSERT(cp->sbc_cm.sbdev_type == SBD_COMP_CPU); 96 ASSERT(cp->sbc_cpu_id == cpuid); 97 #else 98 _NOTE(ARGUNUSED(bp)) 99 _NOTE(ARGUNUSED(cp)) 100 #endif 101 102 return (1); 103 } 104 105 static int 106 dr_errno2ecode(int error) 107 { 108 int rv; 109 110 switch (error) { 111 case EBUSY: 112 rv = ESBD_BUSY; 113 break; 114 case EINVAL: 115 rv = ESBD_INVAL; 116 break; 117 case EALREADY: 118 rv = ESBD_ALREADY; 119 break; 120 case ENODEV: 121 rv = ESBD_NODEV; 122 break; 123 case ENOMEM: 124 rv = ESBD_NOMEM; 125 break; 126 default: 127 rv = ESBD_INVAL; 128 } 129 130 return (rv); 131 } 132 133 static void 134 dr_cpu_set_prop(dr_cpu_unit_t *cp) 135 { 136 sbd_error_t *err; 137 dev_info_t *dip; 138 uint64_t clock_freq; 139 int ecache_size = 0; 140 char *cache_str = NULL; 141 142 err = drmach_get_dip(cp->sbc_cm.sbdev_id, &dip); 143 if (err) { 144 DRERR_SET_C(&cp->sbc_cm.sbdev_error, &err); 145 return; 146 } 147 148 if (dip == NULL) { 149 #ifndef _STARFIRE 150 /* 151 * Do not report an error on Starfire since 152 * the dip will not be created until after 153 * the CPU has been configured. 154 */ 155 DR_DEV_INTERNAL_ERROR(&cp->sbc_cm); 156 #endif /* !_STARFIRE */ 157 return; 158 } 159 160 /* read in the CPU speed */ 161 162 /* 163 * If the property is not found in the CPU node, it has to be 164 * kept in the core or cmp node so we just keep looking. 165 */ 166 clock_freq = (unsigned int)ddi_prop_get_int(DDI_DEV_T_ANY, 167 dip, 0, "clock-frequency", 0); 168 169 ASSERT(clock_freq != 0); 170 171 /* 172 * The ecache property string is not the same 173 * for all CPU implementations. 174 */ 175 176 switch (cp->sbc_cpu_impl) { 177 case BLACKBIRD_IMPL: 178 case CHEETAH_IMPL: 179 case CHEETAH_PLUS_IMPL: 180 cache_str = "ecache-size"; 181 break; 182 case JAGUAR_IMPL: 183 case OLYMPUS_C_IMPL: 184 cache_str = "l2-cache-size"; 185 break; 186 case PANTHER_IMPL: 187 cache_str = "l3-cache-size"; 188 break; 189 default: 190 cmn_err(CE_WARN, "Unknown cpu implementation=0x%x", 191 cp->sbc_cpu_impl); 192 ASSERT(0); 193 break; 194 } 195 196 if (cache_str != NULL) { 197 /* read in the ecache size */ 198 /* 199 * If the property is not found in the CPU node, 200 * it has to be kept in the core or cmp node so 201 * we just keep looking. 202 */ 203 204 ecache_size = ddi_prop_get_int(DDI_DEV_T_ANY, 205 dip, 0, cache_str, 0); 206 } 207 208 ASSERT(ecache_size != 0); 209 210 /* convert to the proper units */ 211 cp->sbc_speed = (clock_freq + 500000) / 1000000; 212 cp->sbc_ecache = ecache_size / (1024 * 1024); 213 } 214 215 void 216 dr_init_cpu_unit(dr_cpu_unit_t *cp) 217 { 218 sbd_error_t *err; 219 dr_state_t new_state; 220 int cpuid; 221 int impl; 222 223 if (DR_DEV_IS_ATTACHED(&cp->sbc_cm)) { 224 new_state = DR_STATE_CONFIGURED; 225 cp->sbc_cm.sbdev_cond = SBD_COND_OK; 226 } else if (DR_DEV_IS_PRESENT(&cp->sbc_cm)) { 227 new_state = DR_STATE_CONNECTED; 228 cp->sbc_cm.sbdev_cond = SBD_COND_OK; 229 } else { 230 new_state = DR_STATE_EMPTY; 231 cp->sbc_cm.sbdev_cond = SBD_COND_UNKNOWN; 232 } 233 234 if (DR_DEV_IS_PRESENT(&cp->sbc_cm)) { 235 err = drmach_cpu_get_id(cp->sbc_cm.sbdev_id, &cpuid); 236 if (err) { 237 DRERR_SET_C(&cp->sbc_cm.sbdev_error, &err); 238 new_state = DR_STATE_FATAL; 239 goto done; 240 } 241 242 err = drmach_cpu_get_impl(cp->sbc_cm.sbdev_id, &impl); 243 if (err) { 244 DRERR_SET_C(&cp->sbc_cm.sbdev_error, &err); 245 new_state = DR_STATE_FATAL; 246 goto done; 247 } 248 } else { 249 cp->sbc_cpu_id = -1; 250 cp->sbc_cpu_impl = -1; 251 goto done; 252 } 253 254 cp->sbc_cpu_id = cpuid; 255 cp->sbc_cpu_impl = impl; 256 257 /* if true at init time, it must always be true */ 258 ASSERT(dr_cpu_unit_is_sane(cp->sbc_cm.sbdev_bp, cp)); 259 260 mutex_enter(&cpu_lock); 261 if ((cpuid >= 0) && cpu[cpuid]) 262 cp->sbc_cpu_flags = cpu[cpuid]->cpu_flags; 263 else 264 cp->sbc_cpu_flags = P_OFFLINE | P_POWEROFF; 265 mutex_exit(&cpu_lock); 266 267 dr_cpu_set_prop(cp); 268 269 done: 270 /* delay transition until fully initialized */ 271 dr_device_transition(&cp->sbc_cm, new_state); 272 } 273 274 int 275 dr_pre_attach_cpu(dr_handle_t *hp, dr_common_unit_t **devlist, int devnum) 276 { 277 int i; 278 int curr_cpu; 279 int next_cpu; 280 static fn_t f = "dr_pre_attach_cpu"; 281 282 PR_CPU("%s...\n", f); 283 284 for (next_cpu = 0, i = 0; i < devnum; i++) { 285 dr_cpu_unit_t *up = (dr_cpu_unit_t *)devlist[i]; 286 287 ASSERT(dr_cpu_unit_is_sane(hp->h_bd, up)); 288 289 /* 290 * Print a console message for each attachment 291 * point. For CMP devices, this means that only 292 * one message should be printed, no matter how 293 * many cores are actually present. 294 */ 295 curr_cpu = DR_UNUM2SBD_UNUM(up->sbc_cm.sbdev_unum, 296 SBD_COMP_CPU); 297 if (curr_cpu >= next_cpu) { 298 cmn_err(CE_CONT, "OS configure %s", 299 up->sbc_cm.sbdev_path); 300 next_cpu = curr_cpu + 1; 301 } 302 303 if (up->sbc_cm.sbdev_state == DR_STATE_UNCONFIGURED) { 304 /* 305 * If we're coming from the UNCONFIGURED 306 * state then the cpu's sigblock will 307 * still be mapped in. Need to unmap it 308 * before continuing with attachment. 309 */ 310 PR_CPU("%s: unmapping sigblk for cpu %d\n", 311 f, up->sbc_cpu_id); 312 313 CPU_SGN_MAPOUT(up->sbc_cpu_id); 314 } 315 } 316 317 /* 318 * Block out status threads while creating 319 * devinfo tree branches 320 */ 321 dr_lock_status(hp->h_bd); 322 mutex_enter(&cpu_lock); 323 324 return (0); 325 } 326 327 /*ARGSUSED*/ 328 void 329 dr_attach_cpu(dr_handle_t *hp, dr_common_unit_t *cp) 330 { 331 sbd_error_t *err; 332 processorid_t cpuid; 333 int rv; 334 335 ASSERT(MUTEX_HELD(&cpu_lock)); 336 337 err = drmach_configure(cp->sbdev_id, 0); 338 if (err) { 339 DRERR_SET_C(&cp->sbdev_error, &err); 340 return; 341 } 342 343 err = drmach_cpu_get_id(cp->sbdev_id, &cpuid); 344 if (err) { 345 DRERR_SET_C(&cp->sbdev_error, &err); 346 347 err = drmach_unconfigure(cp->sbdev_id, DEVI_BRANCH_DESTROY); 348 if (err) 349 sbd_err_clear(&err); 350 } else if ((rv = cpu_configure(cpuid)) != 0) { 351 dr_dev_err(CE_WARN, cp, dr_errno2ecode(rv)); 352 err = drmach_unconfigure(cp->sbdev_id, DEVI_BRANCH_DESTROY); 353 if (err) 354 sbd_err_clear(&err); 355 } 356 } 357 358 /* 359 * dr_post_attach_cpu 360 * 361 * sbd error policy: Does not stop on error. Processes all units in list. 362 */ 363 int 364 dr_post_attach_cpu(dr_handle_t *hp, dr_common_unit_t **devlist, int devnum) 365 { 366 int i; 367 int errflag = 0; 368 static fn_t f = "dr_post_attach_cpu"; 369 370 PR_CPU("%s...\n", f); 371 hp->h_ndi = 0; 372 373 /* Startup and online newly-attached CPUs */ 374 for (i = 0; i < devnum; i++) { 375 dr_cpu_unit_t *up = (dr_cpu_unit_t *)devlist[i]; 376 struct cpu *cp; 377 378 ASSERT(dr_cpu_unit_is_sane(hp->h_bd, up)); 379 380 cp = cpu_get(up->sbc_cpu_id); 381 if (cp == NULL) { 382 cmn_err(CE_WARN, "%s: cpu_get failed for cpu %d", 383 f, up->sbc_cpu_id); 384 continue; 385 } 386 387 if (cpu_is_poweredoff(cp)) { 388 if (cpu_poweron(cp) != 0) { 389 dr_dev_err(CE_WARN, &up->sbc_cm, ESBD_CPUSTART); 390 errflag = 1; 391 } 392 PR_CPU("%s: cpu %d powered ON\n", f, up->sbc_cpu_id); 393 } 394 395 if (cpu_is_offline(cp)) { 396 PR_CPU("%s: onlining cpu %d...\n", f, up->sbc_cpu_id); 397 398 if (cpu_online(cp) != 0) { 399 dr_dev_err(CE_WARN, &up->sbc_cm, ESBD_ONLINE); 400 errflag = 1; 401 } 402 } 403 404 } 405 406 mutex_exit(&cpu_lock); 407 dr_unlock_status(hp->h_bd); 408 409 if (errflag) 410 return (-1); 411 else 412 return (0); 413 } 414 415 /* 416 * dr_pre_release_cpu 417 * 418 * sbd error policy: Stops on first error. 419 */ 420 int 421 dr_pre_release_cpu(dr_handle_t *hp, dr_common_unit_t **devlist, int devnum) 422 { 423 int c, cix, i, lastoffline = -1, rv = 0; 424 processorid_t cpuid; 425 struct cpu *cp; 426 dr_cpu_unit_t *up; 427 dr_devset_t devset; 428 sbd_dev_stat_t *ds; 429 static fn_t f = "dr_pre_release_cpu"; 430 int cpu_flags = 0; 431 432 devset = DR_DEVS_PRESENT(hp->h_bd); 433 434 /* allocate status struct storage. */ 435 ds = (sbd_dev_stat_t *) kmem_zalloc(sizeof (sbd_dev_stat_t) * 436 MAX_CPU_UNITS_PER_BOARD, KM_SLEEP); 437 438 cix = dr_cpu_status(hp, devset, ds); 439 440 mutex_enter(&cpu_lock); 441 442 for (i = 0; i < devnum; i++) { 443 up = (dr_cpu_unit_t *)devlist[i]; 444 ASSERT(dr_cpu_unit_is_sane(hp->h_bd, up)); 445 446 /* 447 * The STARCAT platform borrows cpus for use by POST in 448 * iocage testing. These cpus cannot be unconfigured 449 * while they are in use for the iocage. 450 * This check determines if a CPU is currently in use 451 * for iocage testing, and if so, returns a "Device busy" 452 * error. 453 */ 454 for (c = 0; c < cix; c++) { 455 if (ds[c].d_cpu.cs_unit == up->sbc_cm.sbdev_unum) { 456 if (ds[c].d_cpu.cs_busy) { 457 dr_dev_err(CE_WARN, 458 &up->sbc_cm, ESBD_BUSY); 459 rv = -1; 460 break; 461 } 462 } 463 } 464 if (c < cix) 465 break; 466 cpuid = up->sbc_cpu_id; 467 if ((cp = cpu_get(cpuid)) == NULL) { 468 dr_dev_err(CE_WARN, &up->sbc_cm, ESBD_OFFLINE); 469 rv = -1; 470 break; 471 } 472 473 /* used by dr_cancel_cpu during error flow */ 474 up->sbc_cpu_flags = cp->cpu_flags; 475 476 if (CPU_ACTIVE(cp)) { 477 if (dr_cmd_flags(hp) & SBD_FLAG_FORCE) 478 cpu_flags = CPU_FORCED; 479 480 PR_CPU("%s: offlining cpu %d\n", f, cpuid); 481 if (cpu_offline(cp, cpu_flags)) { 482 PR_CPU("%s: failed to offline cpu %d\n", 483 f, cpuid); 484 dr_dev_err(CE_WARN, &up->sbc_cm, ESBD_OFFLINE); 485 if (disp_bound_threads(cp, 0)) { 486 cmn_err(CE_WARN, "%s: thread(s) " 487 "bound to cpu %d", 488 f, cp->cpu_id); 489 } 490 rv = -1; 491 break; 492 } else 493 lastoffline = i; 494 } 495 496 if (!rv) { 497 sbd_error_t *err; 498 499 err = drmach_release(up->sbc_cm.sbdev_id); 500 if (err) { 501 DRERR_SET_C(&up->sbc_cm.sbdev_error, &err); 502 rv = -1; 503 break; 504 } 505 } 506 } 507 508 mutex_exit(&cpu_lock); 509 510 if (rv) { 511 /* 512 * Need to unwind others since at this level (pre-release) 513 * the device state has not yet transitioned and failures 514 * will prevent us from reaching the "post" release 515 * function where states are normally transitioned. 516 */ 517 for (i = lastoffline; i >= 0; i--) { 518 up = (dr_cpu_unit_t *)devlist[i]; 519 (void) dr_cancel_cpu(up); 520 } 521 } 522 523 kmem_free(ds, sizeof (sbd_dev_stat_t) * MAX_CPU_UNITS_PER_BOARD); 524 return (rv); 525 } 526 527 /* 528 * dr_pre_detach_cpu 529 * 530 * sbd error policy: Stops on first error. 531 */ 532 int 533 dr_pre_detach_cpu(dr_handle_t *hp, dr_common_unit_t **devlist, int devnum) 534 { 535 _NOTE(ARGUNUSED(hp)) 536 537 int i; 538 int curr_cpu; 539 int next_cpu; 540 int cpu_flags = 0; 541 static fn_t f = "dr_pre_detach_cpu"; 542 543 PR_CPU("%s...\n", f); 544 545 /* 546 * Block out status threads while destroying devinfo tree 547 * branches 548 */ 549 dr_lock_status(hp->h_bd); 550 mutex_enter(&cpu_lock); 551 552 for (next_cpu = 0, i = 0; i < devnum; i++) { 553 dr_cpu_unit_t *up = (dr_cpu_unit_t *)devlist[i]; 554 struct cpu *cp; 555 556 ASSERT(dr_cpu_unit_is_sane(hp->h_bd, up)); 557 558 cp = cpu_get(up->sbc_cpu_id); 559 if (cp == NULL) 560 continue; 561 562 /* 563 * Print a console message for each attachment 564 * point. For CMP devices, this means that only 565 * one message should be printed, no matter how 566 * many cores are actually present. 567 */ 568 curr_cpu = DR_UNUM2SBD_UNUM(up->sbc_cm.sbdev_unum, 569 SBD_COMP_CPU); 570 if (curr_cpu >= next_cpu) { 571 cmn_err(CE_CONT, "OS unconfigure %s\n", 572 up->sbc_cm.sbdev_path); 573 next_cpu = curr_cpu + 1; 574 } 575 576 /* 577 * CPUs were offlined during Release. 578 */ 579 if (cpu_is_poweredoff(cp)) { 580 PR_CPU("%s: cpu %d already powered OFF\n", 581 f, up->sbc_cpu_id); 582 continue; 583 } 584 585 if (!cpu_is_offline(cp)) { 586 if (dr_cmd_flags(hp) & SBD_FLAG_FORCE) 587 cpu_flags = CPU_FORCED; 588 /* cpu was onlined after release. Offline it again */ 589 PR_CPU("%s: offlining cpu %d\n", f, up->sbc_cpu_id); 590 if (cpu_offline(cp, cpu_flags)) { 591 PR_CPU("%s: failed to offline cpu %d\n", 592 f, up->sbc_cpu_id); 593 dr_dev_err(CE_WARN, &up->sbc_cm, ESBD_OFFLINE); 594 if (disp_bound_threads(cp, 0)) { 595 cmn_err(CE_WARN, "%s: thread(s) " 596 "bound to cpu %d", 597 f, cp->cpu_id); 598 } 599 goto err; 600 } 601 } 602 if (cpu_poweroff(cp) != 0) { 603 dr_dev_err(CE_WARN, &up->sbc_cm, ESBD_CPUSTOP); 604 goto err; 605 } else { 606 PR_CPU("%s: cpu %d powered OFF\n", f, up->sbc_cpu_id); 607 } 608 } 609 610 return (0); 611 612 err: 613 mutex_exit(&cpu_lock); 614 dr_unlock_status(hp->h_bd); 615 return (-1); 616 } 617 618 /*ARGSUSED*/ 619 void 620 dr_detach_cpu(dr_handle_t *hp, dr_common_unit_t *cp) 621 { 622 sbd_error_t *err; 623 processorid_t cpuid; 624 int rv; 625 626 ASSERT(MUTEX_HELD(&cpu_lock)); 627 628 err = drmach_cpu_get_id(cp->sbdev_id, &cpuid); 629 if (err) { 630 DRERR_SET_C(&cp->sbdev_error, &err); 631 } else if ((rv = cpu_unconfigure(cpuid)) != 0) { 632 dr_dev_err(CE_IGNORE, cp, dr_errno2ecode(rv)); 633 } else { 634 err = drmach_unconfigure(cp->sbdev_id, DEVI_BRANCH_DESTROY); 635 if (err) { 636 DRERR_SET_C(&cp->sbdev_error, &err); 637 } 638 } 639 } 640 641 /*ARGSUSED1*/ 642 int 643 dr_post_detach_cpu(dr_handle_t *hp, dr_common_unit_t **devlist, int devnum) 644 { 645 static fn_t f = "dr_post_detach_cpu"; 646 647 PR_CPU("%s...\n", f); 648 hp->h_ndi = 0; 649 650 mutex_exit(&cpu_lock); 651 dr_unlock_status(hp->h_bd); 652 653 return (0); 654 } 655 656 static void 657 dr_fill_cpu_stat(dr_cpu_unit_t *cp, drmach_status_t *pstat, sbd_cpu_stat_t *csp) 658 { 659 ASSERT(cp && pstat && csp); 660 661 /* Fill in the common status information */ 662 bzero((caddr_t)csp, sizeof (*csp)); 663 csp->cs_type = cp->sbc_cm.sbdev_type; 664 csp->cs_unit = cp->sbc_cm.sbdev_unum; 665 strncpy(csp->cs_name, pstat->type, sizeof (csp->cs_name)); 666 csp->cs_cond = cp->sbc_cm.sbdev_cond; 667 csp->cs_busy = cp->sbc_cm.sbdev_busy | pstat->busy; 668 csp->cs_time = cp->sbc_cm.sbdev_time; 669 csp->cs_ostate = cp->sbc_cm.sbdev_ostate; 670 csp->cs_suspend = 0; 671 672 /* CPU specific status data */ 673 csp->cs_cpuid = cp->sbc_cpu_id; 674 675 #ifdef _STARFIRE 676 csp->cs_isbootproc = (SIGBCPU->cpu_id == cp->sbc_cpu_id) ? 1 : 0; 677 #endif /* _STARFIRE */ 678 679 /* 680 * If the speed and ecache properties have not been 681 * cached yet, read them in from the device tree. 682 */ 683 if ((cp->sbc_speed == 0) || (cp->sbc_ecache == 0)) 684 dr_cpu_set_prop(cp); 685 686 /* use the cached speed and ecache values */ 687 csp->cs_speed = cp->sbc_speed; 688 csp->cs_ecache = cp->sbc_ecache; 689 690 mutex_enter(&cpu_lock); 691 if (!cpu_get(csp->cs_cpuid)) { 692 /* ostate must be UNCONFIGURED */ 693 csp->cs_cm.c_ostate = SBD_STAT_UNCONFIGURED; 694 } 695 mutex_exit(&cpu_lock); 696 } 697 698 static void 699 dr_fill_cmp_stat(sbd_cpu_stat_t *csp, int ncores, int impl, sbd_cmp_stat_t *psp) 700 { 701 int core; 702 703 ASSERT(csp && psp && (ncores >= 1)); 704 705 bzero((caddr_t)psp, sizeof (*psp)); 706 707 /* 708 * Fill in the common status information based 709 * on the data for the first core. 710 */ 711 psp->ps_type = SBD_COMP_CMP; 712 psp->ps_unit = DR_UNUM2SBD_UNUM(csp->cs_unit, SBD_COMP_CMP); 713 strncpy(psp->ps_name, csp->cs_name, sizeof (psp->ps_name)); 714 psp->ps_cond = csp->cs_cond; 715 psp->ps_busy = csp->cs_busy; 716 psp->ps_time = csp->cs_time; 717 psp->ps_ostate = csp->cs_ostate; 718 psp->ps_suspend = csp->cs_suspend; 719 720 /* CMP specific status data */ 721 *psp->ps_cpuid = csp->cs_cpuid; 722 psp->ps_ncores = 1; 723 psp->ps_speed = csp->cs_speed; 724 psp->ps_ecache = csp->cs_ecache; 725 726 /* 727 * Walk through the data for the remaining cores. 728 * Make any adjustments to the common status data, 729 * or the shared CMP specific data if necessary. 730 */ 731 for (core = 1; core < ncores; core++) { 732 733 /* 734 * The following properties should be the same 735 * for all the cores of the CMP. 736 */ 737 ASSERT(psp->ps_unit == DR_UNUM2SBD_UNUM( 738 csp[core].cs_unit, SBD_COMP_CMP)); 739 ASSERT(psp->ps_speed == csp[core].cs_speed); 740 741 psp->ps_cpuid[core] = csp[core].cs_cpuid; 742 psp->ps_ncores++; 743 744 /* 745 * Jaguar has a split ecache, so the ecache 746 * for each core must be added together to 747 * get the total ecache for the whole chip. 748 */ 749 if (IS_JAGUAR(impl)) { 750 psp->ps_ecache += csp[core].cs_ecache; 751 } 752 753 /* adjust time if necessary */ 754 if (csp[core].cs_time > psp->ps_time) { 755 psp->ps_time = csp[core].cs_time; 756 } 757 758 psp->ps_busy |= csp[core].cs_busy; 759 760 /* 761 * If any of the cores are configured, the 762 * entire CMP is marked as configured. 763 */ 764 if (csp[core].cs_ostate == SBD_STAT_CONFIGURED) { 765 psp->ps_ostate = csp[core].cs_ostate; 766 } 767 } 768 } 769 770 int 771 dr_cpu_status(dr_handle_t *hp, dr_devset_t devset, sbd_dev_stat_t *dsp) 772 { 773 int cmp; 774 int core; 775 int ncpu; 776 dr_board_t *bp; 777 sbd_cpu_stat_t cstat[MAX_CORES_PER_CMP]; 778 int impl; 779 780 bp = hp->h_bd; 781 ncpu = 0; 782 783 devset &= DR_DEVS_PRESENT(bp); 784 785 /* 786 * Treat every CPU as a CMP. In the case where the 787 * device is not a CMP, treat it as a CMP with only 788 * one core. 789 */ 790 for (cmp = 0; cmp < MAX_CMP_UNITS_PER_BOARD; cmp++) { 791 792 int ncores; 793 dr_cpu_unit_t *cp; 794 drmach_status_t pstat; 795 sbd_error_t *err; 796 sbd_cmp_stat_t *psp; 797 798 if ((devset & DEVSET(SBD_COMP_CMP, cmp)) == 0) { 799 continue; 800 } 801 802 ncores = 0; 803 804 for (core = 0; core < MAX_CORES_PER_CMP; core++) { 805 806 cp = dr_get_cpu_unit(bp, DR_CMP_CORE_UNUM(cmp, core)); 807 808 if (cp->sbc_cm.sbdev_state == DR_STATE_EMPTY) { 809 /* present, but not fully initialized */ 810 continue; 811 } 812 813 ASSERT(dr_cpu_unit_is_sane(hp->h_bd, cp)); 814 815 /* skip if not present */ 816 if (cp->sbc_cm.sbdev_id == (drmachid_t)0) { 817 continue; 818 } 819 820 /* fetch platform status */ 821 err = drmach_status(cp->sbc_cm.sbdev_id, &pstat); 822 if (err) { 823 DRERR_SET_C(&cp->sbc_cm.sbdev_error, &err); 824 continue; 825 } 826 827 dr_fill_cpu_stat(cp, &pstat, &cstat[ncores++]); 828 /* 829 * We should set impl here because the last core 830 * found might be EMPTY or not present. 831 */ 832 impl = cp->sbc_cpu_impl; 833 } 834 835 if (ncores == 0) { 836 continue; 837 } 838 839 /* 840 * Store the data to the outgoing array. If the 841 * device is a CMP, combine all the data for the 842 * cores into a single stat structure. 843 * 844 * The check for a CMP device uses the last core 845 * found, assuming that all cores will have the 846 * same implementation. 847 */ 848 849 if (CPU_IMPL_IS_CMP(impl)) { 850 psp = (sbd_cmp_stat_t *)dsp; 851 dr_fill_cmp_stat(cstat, ncores, impl, psp); 852 } else { 853 ASSERT(ncores == 1); 854 bcopy(cstat, dsp, sizeof (sbd_cpu_stat_t)); 855 } 856 857 dsp++; 858 ncpu++; 859 } 860 861 return (ncpu); 862 } 863 864 /* 865 * Cancel previous release operation for cpu. 866 * For cpus this means simply bringing cpus that 867 * were offline back online. Note that they had 868 * to have been online at the time there were 869 * released. 870 */ 871 int 872 dr_cancel_cpu(dr_cpu_unit_t *up) 873 { 874 int rv = 0; 875 static fn_t f = "dr_cancel_cpu"; 876 877 ASSERT(dr_cpu_unit_is_sane(up->sbc_cm.sbdev_bp, up)); 878 879 if (cpu_flagged_active(up->sbc_cpu_flags)) { 880 struct cpu *cp; 881 882 /* 883 * CPU had been online, go ahead 884 * bring it back online. 885 */ 886 PR_CPU("%s: bringing cpu %d back ONLINE\n", 887 f, up->sbc_cpu_id); 888 889 mutex_enter(&cpu_lock); 890 cp = cpu[up->sbc_cpu_id]; 891 892 if (cpu_is_poweredoff(cp)) { 893 if (cpu_poweron(cp)) { 894 cmn_err(CE_WARN, "%s: failed to power-on " 895 "cpu %d", f, up->sbc_cpu_id); 896 rv = -1; 897 } 898 } 899 900 if (cpu_is_offline(cp)) { 901 if (cpu_online(cp)) { 902 cmn_err(CE_WARN, "%s: failed to online cpu %d", 903 f, up->sbc_cpu_id); 904 rv = -1; 905 } 906 } 907 908 if (cpu_is_online(cp)) { 909 if (cpu_flagged_nointr(up->sbc_cpu_flags)) { 910 if (cpu_intr_disable(cp) != 0) { 911 cmn_err(CE_WARN, "%s: failed to " 912 "disable interrupts on cpu %d", 913 f, up->sbc_cpu_id); 914 } 915 } 916 } 917 918 mutex_exit(&cpu_lock); 919 } 920 921 return (rv); 922 } 923 924 int 925 dr_disconnect_cpu(dr_cpu_unit_t *up) 926 { 927 sbd_error_t *err; 928 static fn_t f = "dr_disconnect_cpu"; 929 930 PR_CPU("%s...\n", f); 931 932 ASSERT((up->sbc_cm.sbdev_state == DR_STATE_CONNECTED) || 933 (up->sbc_cm.sbdev_state == DR_STATE_UNCONFIGURED)); 934 935 ASSERT(dr_cpu_unit_is_sane(up->sbc_cm.sbdev_bp, up)); 936 937 if (up->sbc_cm.sbdev_state == DR_STATE_CONNECTED) { 938 /* 939 * Cpus were never brought in and so are still 940 * effectively disconnected, so nothing to do here. 941 */ 942 PR_CPU("%s: cpu %d never brought in\n", 943 f, up->sbc_cpu_id); 944 return (0); 945 } 946 947 err = drmach_cpu_disconnect(up->sbc_cm.sbdev_id); 948 if (err == NULL) 949 return (0); 950 else { 951 DRERR_SET_C(&up->sbc_cm.sbdev_error, &err); 952 return (-1); 953 } 954 /*NOTREACHED*/ 955 } 956