xref: /illumos-gate/usr/src/uts/sun4u/lw8/os/lw8_platmod.c (revision 13b136d3061155363c62c9f6568d25b8b27da8f6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/time.h>
28 #include <sys/cpuvar.h>
29 #include <sys/dditypes.h>
30 #include <sys/ddipropdefs.h>
31 #include <sys/ddi_impldefs.h>
32 #include <sys/sunddi.h>
33 #include <sys/esunddi.h>
34 #include <sys/sunndi.h>
35 #include <sys/platform_module.h>
36 #include <sys/errno.h>
37 #include <sys/conf.h>
38 #include <sys/modctl.h>
39 #include <sys/promif.h>
40 #include <sys/promimpl.h>
41 #include <sys/prom_plat.h>
42 #include <sys/cmn_err.h>
43 #include <sys/sysmacros.h>
44 #include <sys/mem_cage.h>
45 #include <sys/kobj.h>
46 #include <sys/utsname.h>
47 #include <sys/cpu_sgnblk_defs.h>
48 #include <sys/atomic.h>
49 #include <sys/kdi_impl.h>
50 
51 #include <sys/sgsbbc.h>
52 #include <sys/sgsbbc_iosram.h>
53 #include <sys/sgsbbc_iosram_priv.h>
54 #include <sys/sgsbbc_mailbox.h>
55 #include <sys/sgsgn.h>
56 #include <sys/serengeti.h>
57 #include <sys/sgfrutypes.h>
58 #include <sys/machsystm.h>
59 #include <sys/sbd_ioctl.h>
60 #include <sys/sbd.h>
61 #include <sys/sbdp_mem.h>
62 #include <sys/sgcn.h>
63 
64 #include <sys/memnode.h>
65 #include <vm/vm_dep.h>
66 #include <vm/page.h>
67 
68 #include <sys/cheetahregs.h>
69 #include <sys/plat_ecc_unum.h>
70 #include <sys/plat_ecc_dimm.h>
71 
72 #include <sys/lgrp.h>
73 #include <sys/clock_impl.h>
74 
75 static int sg_debug = 0;
76 
77 #ifdef DEBUG
78 #define	DCMNERR if (sg_debug) cmn_err
79 #else
80 #define	DCMNERR
81 #endif
82 
83 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
84 
85 /* local functions */
86 static void cpu_sgn_update(ushort_t sgn, uchar_t state,
87     uchar_t sub_state, int cpuid);
88 
89 
90 /*
91  * Local data.
92  *
93  * iosram_write_ptr is a pointer to iosram_write().  Because of
94  * kernel dynamic linking, we can't get to the function by name,
95  * but we can look up its address, and store it in this variable
96  * instead.
97  *
98  * We include the extern for iosram_write() here not because we call
99  * it, but to force compilation errors if its prototype doesn't
100  * match the prototype of iosram_write_ptr.
101  *
102  * The same issues apply to iosram_read() and iosram_read_ptr.
103  */
104 /*CSTYLED*/
105 extern int   iosram_write     (int, uint32_t, caddr_t, uint32_t);
106 static int (*iosram_write_ptr)(int, uint32_t, caddr_t, uint32_t) = NULL;
107 /*CSTYLED*/
108 extern int   iosram_read     (int, uint32_t, caddr_t, uint32_t);
109 static int (*iosram_read_ptr)(int, uint32_t, caddr_t, uint32_t) = NULL;
110 
111 
112 /*
113  * Variable to indicate if the date should be obtained from the SC or not.
114  */
115 int todsg_use_sc = FALSE;	/* set the false at the beginning */
116 
117 /*
118  * Preallocation of spare tsb's for DR
119  *
120  * We don't allocate spares for Wildcat since TSBs should come
121  * out of memory local to the node.
122  */
123 #define	IOMMU_PER_SCHIZO	2
124 int serengeti_tsb_spares = (SG_MAX_IO_BDS * SG_SCHIZO_PER_IO_BD *
125 	IOMMU_PER_SCHIZO);
126 
127 /*
128  * sg_max_ncpus is the maximum number of CPUs supported on lw8.
129  * sg_max_ncpus is set to be smaller than NCPU to reduce the amount of
130  * memory the logs take up until we have a dynamic log memory allocation
131  * solution.
132  */
133 int sg_max_ncpus = (12 * 2);    /* (max # of processors * # of cores/proc) */
134 
135 /*
136  * variables to control mailbox message timeouts.
137  * These can be patched via /etc/system or mdb.
138  */
139 int	sbbc_mbox_default_timeout = MBOX_DEFAULT_TIMEOUT;
140 int	sbbc_mbox_min_timeout = MBOX_MIN_TIMEOUT;
141 
142 /* cached 'chosen' node_id */
143 pnode_t chosen_nodeid = (pnode_t)0;
144 
145 /*
146  * Table that maps memory slices to a specific memnode.
147  */
148 int slice_to_memnode[SG_MAX_SLICE];
149 
150 /*
151  * We define and use LW8_MAX_CPU_BDS here instead of SG_MAX_CPU_BDS
152  * since a LW8 machine will never have a CPU/Mem board #5 (SB5).
153  * A LW8 machine can only have a maximum of three CPU/Mem boards, but
154  * the board numbers assigned are 0, 2, and 4.  LW8_MAX_CPU_BDS is
155  * defined to be 5 since the entries in the domain_dimm_sids array
156  * are keyed by board number.  Not perfect but some wasted space
157  * is avoided.
158  */
159 #define	LW8_MAX_CPU_BDS		5
160 
161 plat_dimm_sid_board_t	domain_dimm_sids[LW8_MAX_CPU_BDS];
162 
163 int
164 set_platform_tsb_spares()
165 {
166 	return (MIN(serengeti_tsb_spares, MAX_UPA));
167 }
168 
169 #pragma weak mmu_init_large_pages
170 
171 void
172 set_platform_defaults(void)
173 {
174 	extern int watchdog_enable;
175 	extern uint64_t xc_tick_limit_scale;
176 	extern void mmu_init_large_pages(size_t);
177 
178 #ifdef DEBUG
179 	char *todsg_name = "todsg";
180 	ce_verbose_memory = 2;
181 	ce_verbose_other = 2;
182 #endif /* DEBUG */
183 
184 	watchdog_enable = TRUE;
185 	watchdog_available = TRUE;
186 
187 	cpu_sgn_func = cpu_sgn_update;
188 
189 #ifdef DEBUG
190 	/* tod_module_name should be set to "todsg" from OBP property */
191 	if (tod_module_name && (strcmp(tod_module_name, todsg_name) == 0))
192 		prom_printf("Using todsg driver\n");
193 	else {
194 		prom_printf("Force using todsg driver\n");
195 		tod_module_name = todsg_name;
196 	}
197 #endif /* DEBUG */
198 
199 	/* lw8 does not support forthdebug */
200 	forthdebug_supported = 0;
201 
202 
203 	/*
204 	 * Some DR operations require the system to be sync paused.
205 	 * Sync pause on Serengeti could potentially take up to 4
206 	 * seconds to complete depending on the load on the SC.  To
207 	 * avoid send_mond panics during such operations, we need to
208 	 * increase xc_tick_limit to a larger value on Serengeti by
209 	 * setting xc_tick_limit_scale to 5.
210 	 */
211 	xc_tick_limit_scale = 5;
212 
213 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
214 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
215 		if (&mmu_init_large_pages)
216 			mmu_init_large_pages(mmu_ism_pagesize);
217 	}
218 }
219 
220 void
221 load_platform_modules(void)
222 {
223 	if (modload("misc", "pcihp") < 0) {
224 		cmn_err(CE_NOTE, "pcihp driver failed to load");
225 	}
226 }
227 
228 /*ARGSUSED*/
229 int
230 plat_cpu_poweron(struct cpu *cp)
231 {
232 	int (*serengeti_cpu_poweron)(struct cpu *) = NULL;
233 
234 	serengeti_cpu_poweron =
235 	    (int (*)(struct cpu *))modgetsymvalue("sbdp_cpu_poweron", 0);
236 
237 	if (serengeti_cpu_poweron == NULL)
238 		return (ENOTSUP);
239 	else
240 		return ((serengeti_cpu_poweron)(cp));
241 }
242 
243 /*ARGSUSED*/
244 int
245 plat_cpu_poweroff(struct cpu *cp)
246 {
247 	int (*serengeti_cpu_poweroff)(struct cpu *) = NULL;
248 
249 	serengeti_cpu_poweroff =
250 	    (int (*)(struct cpu *))modgetsymvalue("sbdp_cpu_poweroff", 0);
251 
252 	if (serengeti_cpu_poweroff == NULL)
253 		return (ENOTSUP);
254 	else
255 		return ((serengeti_cpu_poweroff)(cp));
256 }
257 
258 #ifdef DEBUG
259 pgcnt_t serengeti_cage_size_limit;
260 #endif
261 
262 /* Preferred minimum cage size (expressed in pages)... for DR */
263 pgcnt_t serengeti_minimum_cage_size = 0;
264 
265 void
266 set_platform_cage_params(void)
267 {
268 	extern pgcnt_t total_pages;
269 	extern struct memlist *phys_avail;
270 
271 	if (kernel_cage_enable) {
272 		pgcnt_t preferred_cage_size;
273 
274 		preferred_cage_size =
275 		    MAX(serengeti_minimum_cage_size, total_pages / 256);
276 #ifdef DEBUG
277 		if (serengeti_cage_size_limit)
278 			preferred_cage_size = serengeti_cage_size_limit;
279 #endif
280 		/*
281 		 * Post copies obp into the lowest slice.  This requires the
282 		 * cage to grow upwards
283 		 */
284 		kcage_range_init(phys_avail, KCAGE_UP, preferred_cage_size);
285 	}
286 
287 	kcage_startup_dir = KCAGE_UP;
288 
289 	/* Only note when the cage is off since it should always be on. */
290 	if (!kcage_on)
291 		cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
292 }
293 
294 #define	ALIGN(x, a)	((a) == 0 ? (uint64_t)(x) : \
295 	(((uint64_t)(x) + (uint64_t)(a) - 1l) & ~((uint64_t)(a) - 1l)))
296 
297 void
298 update_mem_bounds(int brd, uint64_t base, uint64_t sz)
299 {
300 	uint64_t	end;
301 	int		mnode;
302 
303 	end = base + sz - 1;
304 
305 	/*
306 	 * First see if this board already has a memnode associated
307 	 * with it.  If not, see if this slice has a memnode.  This
308 	 * covers the cases where a single slice covers multiple
309 	 * boards (cross-board interleaving) and where a single
310 	 * board has multiple slices (1+GB DIMMs).
311 	 */
312 	if ((mnode = plat_lgrphand_to_mem_node(brd)) == -1) {
313 		if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1)
314 			mnode = mem_node_alloc();
315 		plat_assign_lgrphand_to_mem_node(brd, mnode);
316 	}
317 
318 	/*
319 	 * Align base at 16GB boundary
320 	 */
321 	base = ALIGN(base, (1ul << PA_SLICE_SHIFT));
322 
323 	while (base < end) {
324 		slice_to_memnode[PA_2_SLICE(base)] = mnode;
325 		base += (1ul << PA_SLICE_SHIFT);
326 	}
327 }
328 
329 /*
330  * Dynamically detect memory slices in the system by decoding
331  * the cpu memory decoder registers at boot time.
332  */
333 void
334 plat_fill_mc(pnode_t nodeid)
335 {
336 	uint64_t	mc_addr, mask;
337 	uint64_t	mc_decode[SG_MAX_BANKS_PER_MC];
338 	uint64_t	base, size;
339 	uint32_t	regs[4];
340 	int		len;
341 	int		local_mc;
342 	int		portid;
343 	int		boardid;
344 	int		i;
345 
346 	if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
347 	    (portid == -1))
348 		return;
349 
350 	/*
351 	 * Decode the board number from the MC portid
352 	 */
353 	boardid = SG_PORTID_TO_BOARD_NUM(portid);
354 
355 	/*
356 	 * The "reg" property returns 4 32-bit values. The first two are
357 	 * combined to form a 64-bit address.  The second two are for a
358 	 * 64-bit size, but we don't actually need to look at that value.
359 	 */
360 	len = prom_getproplen(nodeid, "reg");
361 	if (len != (sizeof (uint32_t) * 4)) {
362 		prom_printf("Warning: malformed 'reg' property\n");
363 		return;
364 	}
365 	if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
366 		return;
367 	mc_addr = ((uint64_t)regs[0]) << 32;
368 	mc_addr |= (uint64_t)regs[1];
369 
370 	/*
371 	 * Figure out whether the memory controller we are examining
372 	 * belongs to this CPU or a different one.
373 	 */
374 	if (portid == cpunodes[CPU->cpu_id].portid)
375 		local_mc = 1;
376 	else
377 		local_mc = 0;
378 
379 	for (i = 0; i < SG_MAX_BANKS_PER_MC; i++) {
380 		mask = SG_REG_2_OFFSET(i);
381 
382 		/*
383 		 * If the memory controller is local to this CPU, we use
384 		 * the special ASI to read the decode registers.
385 		 * Otherwise, we load the values from a magic address in
386 		 * I/O space.
387 		 */
388 		if (local_mc)
389 			mc_decode[i] = lddmcdecode(mask & MC_OFFSET_MASK);
390 		else
391 			mc_decode[i] = lddphysio((mc_addr | mask));
392 
393 		if (mc_decode[i] >> MC_VALID_SHIFT) {
394 			/*
395 			 * The memory decode register is a bitmask field,
396 			 * so we can decode that into both a base and
397 			 * a span.
398 			 */
399 			base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
400 			size = MC_UK2SPAN(mc_decode[i]);
401 			update_mem_bounds(boardid, base, size);
402 		}
403 	}
404 }
405 
406 /*
407  * This routine is run midway through the boot process.  By the time we get
408  * here, we know about all the active CPU boards in the system, and we have
409  * extracted information about each board's memory from the memory
410  * controllers.  We have also figured out which ranges of memory will be
411  * assigned to which memnodes, so we walk the slice table to build the table
412  * of memnodes.
413  */
414 /* ARGSUSED */
415 void
416 plat_build_mem_nodes(prom_memlist_t *list, size_t  nelems)
417 {
418 	int	slice;
419 	pfn_t	basepfn;
420 	pgcnt_t	npgs;
421 
422 	mem_node_pfn_shift = PFN_SLICE_SHIFT;
423 	mem_node_physalign = (1ull << PA_SLICE_SHIFT);
424 
425 	for (slice = 0; slice < SG_MAX_SLICE; slice++) {
426 		if (slice_to_memnode[slice] == -1)
427 			continue;
428 		basepfn = (uint64_t)slice << PFN_SLICE_SHIFT;
429 		npgs = 1ull << PFN_SLICE_SHIFT;
430 		mem_node_add_slice(basepfn, basepfn + npgs - 1);
431 	}
432 }
433 
434 int
435 plat_pfn_to_mem_node(pfn_t pfn)
436 {
437 	int node;
438 
439 	node = slice_to_memnode[PFN_2_SLICE(pfn)];
440 
441 	return (node);
442 }
443 
444 /*
445  * Serengeti support for lgroups.
446  *
447  * On Serengeti, an lgroup platform handle == board number.
448  *
449  * Mappings between lgroup handles and memnodes are managed
450  * in addition to mappings between memory slices and memnodes
451  * to support cross-board interleaving as well as multiple
452  * slices per board (e.g. >1GB DIMMs). The initial mapping
453  * of memnodes to lgroup handles is determined at boot time.
454  * A DR addition of memory adds a new mapping. A DR copy-rename
455  * swaps mappings.
456  */
457 
458 /*
459  * Macro for extracting the board number from the CPU id
460  */
461 #define	CPUID_TO_BOARD(id)	(((id) >> 2) & 0x7)
462 
463 /*
464  * Return the platform handle for the lgroup containing the given CPU
465  *
466  * For Serengeti, lgroup platform handle == board number
467  */
468 lgrp_handle_t
469 plat_lgrp_cpu_to_hand(processorid_t id)
470 {
471 	return (CPUID_TO_BOARD(id));
472 }
473 
474 /*
475  * Platform specific lgroup initialization
476  */
477 void
478 plat_lgrp_init(void)
479 {
480 	int i;
481 	extern uint32_t lgrp_expand_proc_thresh;
482 	extern uint32_t lgrp_expand_proc_diff;
483 
484 	/*
485 	 * Initialize lookup tables to invalid values so we catch
486 	 * any illegal use of them.
487 	 */
488 	for (i = 0; i < SG_MAX_SLICE; i++) {
489 		slice_to_memnode[i] = -1;
490 	}
491 
492 	/*
493 	 * Set tuneables for Serengeti architecture
494 	 *
495 	 * lgrp_expand_proc_thresh is the minimum load on the lgroups
496 	 * this process is currently running on before considering
497 	 * expanding threads to another lgroup.
498 	 *
499 	 * lgrp_expand_proc_diff determines how much less the remote lgroup
500 	 * must be loaded before expanding to it.
501 	 *
502 	 * Bandwidth is maximized on Serengeti by spreading load across
503 	 * the machine. The impact to inter-thread communication isn't
504 	 * too costly since remote latencies are relatively low.  These
505 	 * values equate to one CPU's load and so attempt to spread the
506 	 * load out across as many lgroups as possible one CPU at a time.
507 	 */
508 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX;
509 	lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
510 }
511 
512 /*
513  * Platform notification of lgroup (re)configuration changes
514  */
515 /*ARGSUSED*/
516 void
517 plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
518 {
519 	update_membounds_t	*umb;
520 	lgrp_config_mem_rename_t lmr;
521 	lgrp_handle_t		shand, thand;
522 	int			snode, tnode;
523 
524 	switch (evt) {
525 
526 	case LGRP_CONFIG_MEM_ADD:
527 		umb = (update_membounds_t *)arg;
528 		update_mem_bounds(umb->u_board, umb->u_base, umb->u_len);
529 
530 		break;
531 
532 	case LGRP_CONFIG_MEM_DEL:
533 		/* We don't have to do anything */
534 
535 		break;
536 
537 	case LGRP_CONFIG_MEM_RENAME:
538 		/*
539 		 * During a DR copy-rename operation, all of the memory
540 		 * on one board is moved to another board -- but the
541 		 * addresses/pfns and memnodes don't change. This means
542 		 * the memory has changed locations without changing identity.
543 		 *
544 		 * Source is where we are copying from and target is where we
545 		 * are copying to.  After source memnode is copied to target
546 		 * memnode, the physical addresses of the target memnode are
547 		 * renamed to match what the source memnode had.  Then target
548 		 * memnode can be removed and source memnode can take its
549 		 * place.
550 		 *
551 		 * To do this, swap the lgroup handle to memnode mappings for
552 		 * the boards, so target lgroup will have source memnode and
553 		 * source lgroup will have empty target memnode which is where
554 		 * its memory will go (if any is added to it later).
555 		 *
556 		 * Then source memnode needs to be removed from its lgroup
557 		 * and added to the target lgroup where the memory was living
558 		 * but under a different name/memnode.  The memory was in the
559 		 * target memnode and now lives in the source memnode with
560 		 * different physical addresses even though it is the same
561 		 * memory.
562 		 */
563 		shand = arg & 0xffff;
564 		thand = (arg & 0xffff0000) >> 16;
565 		snode = plat_lgrphand_to_mem_node(shand);
566 		tnode = plat_lgrphand_to_mem_node(thand);
567 
568 		plat_assign_lgrphand_to_mem_node(thand, snode);
569 		plat_assign_lgrphand_to_mem_node(shand, tnode);
570 
571 		/*
572 		 * Remove source memnode of copy rename from its lgroup
573 		 * and add it to its new target lgroup
574 		 */
575 		lmr.lmem_rename_from = shand;
576 		lmr.lmem_rename_to = thand;
577 
578 		lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
579 		    (uintptr_t)&lmr);
580 
581 		break;
582 
583 	default:
584 		break;
585 	}
586 }
587 
588 /*
589  * Return latency between "from" and "to" lgroups
590  *
591  * This latency number can only be used for relative comparison
592  * between lgroups on the running system, cannot be used across platforms,
593  * and may not reflect the actual latency.  It is platform and implementation
594  * specific, so platform gets to decide its value.  It would be nice if the
595  * number was at least proportional to make comparisons more meaningful though.
596  * NOTE: The numbers below are supposed to be load latencies for uncached
597  * memory divided by 10.
598  */
599 int
600 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
601 {
602 	/*
603 	 * Return min remote latency when there are more than two lgroups
604 	 * (root and child) and getting latency between two different lgroups
605 	 * or root is involved
606 	 */
607 	if (lgrp_optimizations() && (from != to ||
608 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
609 		return (28);
610 	else
611 		return (23);
612 }
613 
614 /* ARGSUSED */
615 void
616 plat_freelist_process(int mnode)
617 {
618 }
619 
620 /*
621  * Find dip for chosen IOSRAM
622  */
623 dev_info_t *
624 find_chosen_dip(void)
625 {
626 	dev_info_t	*dip;
627 	char		master_sbbc[MAXNAMELEN];
628 	int		nodeid;
629 	uint_t		tunnel;
630 
631 	/*
632 	 * find the /chosen SBBC node, prom interface will handle errors
633 	 */
634 	nodeid = prom_chosennode();
635 	/*
636 	 * get the 'iosram' property from the /chosen node
637 	 */
638 	if (prom_getprop(nodeid, IOSRAM_CHOSEN_PROP, (caddr_t)&tunnel) <= 0) {
639 		SBBC_ERR(CE_PANIC, "No iosram property found! \n");
640 	}
641 
642 	if (prom_phandle_to_path((phandle_t)tunnel, master_sbbc,
643 	    sizeof (master_sbbc)) < 0) {
644 		SBBC_ERR1(CE_PANIC, "prom_phandle_to_path(%d) failed\n",
645 		    tunnel);
646 	}
647 
648 	chosen_nodeid = nodeid;
649 
650 	/*
651 	 * load and attach the sgsbbc driver.
652 	 * This will also attach all the sgsbbc driver instances
653 	 */
654 	if (i_ddi_attach_hw_nodes("sgsbbc") != DDI_SUCCESS) {
655 		cmn_err(CE_WARN, "sgsbbc failed to load\n");
656 	}
657 	/* translate a path name to a dev_info_t */
658 	dip = e_ddi_hold_devi_by_path(master_sbbc, 0);
659 	if ((dip == NULL) || (ddi_get_nodeid(dip) != tunnel)) {
660 		cmn_err(CE_PANIC,
661 		    "e_ddi_hold_devi_by_path(%x) failed for SBBC\n", tunnel);
662 	}
663 
664 	/* make sure devi_ref is ZERO */
665 	ndi_rele_devi(dip);
666 	DCMNERR(CE_CONT, "Chosen IOSRAM is at %s \n", master_sbbc);
667 
668 	return (dip);
669 }
670 
671 void
672 load_platform_drivers(void)
673 {
674 	int ret;
675 
676 	/*
677 	 * Load the mc-us3 memory driver.
678 	 */
679 	if (i_ddi_attach_hw_nodes("mc-us3") != DDI_SUCCESS)
680 		cmn_err(CE_WARN, "mc-us3 failed to load");
681 	else
682 		(void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
683 
684 	/*
685 	 * Initialize the chosen IOSRAM before its clients
686 	 * are loaded.
687 	 */
688 	(void) find_chosen_dip();
689 
690 	/*
691 	 * Load the environmentals driver (sgenv)
692 	 *
693 	 * We need this driver to handle events from the SC when state
694 	 * changes occur in the environmental data.
695 	 */
696 	if (i_ddi_attach_hw_nodes("sgenv") != DDI_SUCCESS)
697 		cmn_err(CE_WARN, "sgenv failed to load");
698 
699 	/*
700 	 * Ideally, we'd do this in set_platform_defaults(), but
701 	 * at that point it's too early to look up symbols.
702 	 */
703 	iosram_write_ptr = (int (*)(int, uint32_t, caddr_t, uint32_t))
704 	    modgetsymvalue("iosram_write", 0);
705 
706 	if (iosram_write_ptr == NULL) {
707 		DCMNERR(CE_WARN, "load_platform_defaults: iosram_write()"
708 		    " not found; signatures will not be updated\n");
709 	} else {
710 		/*
711 		 * The iosram read ptr is only needed if we can actually
712 		 * write CPU signatures, so only bother setting it if we
713 		 * set a valid write pointer, above.
714 		 */
715 		iosram_read_ptr = (int (*)(int, uint32_t, caddr_t, uint32_t))
716 		    modgetsymvalue("iosram_read", 0);
717 
718 		if (iosram_read_ptr == NULL)
719 			DCMNERR(CE_WARN, "load_platform_defaults: iosram_read()"
720 			    " not found\n");
721 	}
722 
723 	/*
724 	 * Set todsg_use_sc to TRUE so that we will be getting date
725 	 * from the SC.
726 	 */
727 	todsg_use_sc = TRUE;
728 
729 	/*
730 	 * Now is a good time to activate hardware watchdog (if one exists).
731 	 */
732 	mutex_enter(&tod_lock);
733 	if (watchdog_enable)
734 		ret = tod_ops.tod_set_watchdog_timer(watchdog_timeout_seconds);
735 	mutex_exit(&tod_lock);
736 	if (ret != 0)
737 		printf("Hardware watchdog enabled\n");
738 
739 	plat_ecc_init();
740 }
741 
742 /*
743  * No platform drivers on this platform
744  */
745 char *platform_module_list[] = {
746 	(char *)0
747 };
748 
749 /*ARGSUSED*/
750 void
751 plat_tod_fault(enum tod_fault_type tod_bad)
752 {
753 }
754 int
755 plat_max_boards()
756 {
757 	return (SG_MAX_BDS);
758 }
759 int
760 plat_max_io_units_per_board()
761 {
762 	return (SG_MAX_IO_PER_BD);
763 }
764 int
765 plat_max_cmp_units_per_board()
766 {
767 	return (SG_MAX_CMPS_PER_BD);
768 }
769 int
770 plat_max_cpu_units_per_board()
771 {
772 	return (SG_MAX_CPUS_PER_BD);
773 }
774 
775 int
776 plat_max_mc_units_per_board()
777 {
778 	return (SG_MAX_CMPS_PER_BD); /* each CPU die has a memory controller */
779 }
780 
781 int
782 plat_max_mem_units_per_board()
783 {
784 	return (SG_MAX_MEM_PER_BD);
785 }
786 
787 int
788 plat_max_cpumem_boards(void)
789 {
790 	return (LW8_MAX_CPU_BDS);
791 }
792 
793 int
794 set_platform_max_ncpus(void)
795 {
796 	return (sg_max_ncpus);
797 }
798 
799 void
800 plat_dmv_params(uint_t *hwint, uint_t *swint)
801 {
802 	*hwint = MAX_UPA;
803 	*swint = 0;
804 }
805 
806 static int (*sg_mbox)(sbbc_msg_t *, sbbc_msg_t *, time_t) = NULL;
807 
808 /*
809  * Our nodename has been set, pass it along to the SC.
810  */
811 void
812 plat_nodename_set(void)
813 {
814 	sbbc_msg_t	req;	/* request */
815 	sbbc_msg_t	resp;	/* response */
816 	int		rv;	/* return value from call to mbox */
817 	struct nodename_info {
818 		int32_t	namelen;
819 		char	nodename[_SYS_NMLN];
820 	} nni;
821 
822 	/*
823 	 * find the symbol for the mailbox routine
824 	 */
825 	if (sg_mbox == NULL)
826 		sg_mbox = (int (*)(sbbc_msg_t *, sbbc_msg_t *, time_t))
827 		    modgetsymvalue("sbbc_mbox_request_response", 0);
828 
829 	if (sg_mbox == NULL) {
830 		cmn_err(CE_NOTE, "!plat_nodename_set: sg_mbox not found\n");
831 		return;
832 	}
833 
834 	/*
835 	 * construct the message telling the SC our nodename
836 	 */
837 	(void) strcpy(nni.nodename, utsname.nodename);
838 	nni.namelen = (int32_t)strlen(nni.nodename);
839 
840 	req.msg_type.type = INFO_MBOX;
841 	req.msg_type.sub_type = INFO_MBOX_NODENAME;
842 	req.msg_status = 0;
843 	req.msg_len = (int)(nni.namelen + sizeof (nni.namelen));
844 	req.msg_bytes = 0;
845 	req.msg_buf = (caddr_t)&nni;
846 	req.msg_data[0] = 0;
847 	req.msg_data[1] = 0;
848 
849 	/*
850 	 * initialize the response back from the SC
851 	 */
852 	resp.msg_type.type = INFO_MBOX;
853 	resp.msg_type.sub_type = INFO_MBOX_NODENAME;
854 	resp.msg_status = 0;
855 	resp.msg_len = 0;
856 	resp.msg_bytes = 0;
857 	resp.msg_buf = (caddr_t)0;
858 	resp.msg_data[0] = 0;
859 	resp.msg_data[1] = 0;
860 
861 	/*
862 	 * ship it and check for success
863 	 */
864 	rv = (sg_mbox)(&req, &resp, sbbc_mbox_default_timeout);
865 
866 	if (rv != 0) {
867 		cmn_err(CE_NOTE, "!plat_nodename_set: sg_mbox retval %d\n", rv);
868 	} else if (resp.msg_status != 0) {
869 		cmn_err(CE_NOTE, "!plat_nodename_set: msg_status %d\n",
870 		    resp.msg_status);
871 	} else {
872 		DCMNERR(CE_NOTE, "!plat_nodename_set was successful\n");
873 
874 		/*
875 		 * It is necessary to exchange capability the bitmap
876 		 * with SC before sending any ecc error information and
877 		 * indictment. We are calling the plat_ecc_capability_send()
878 		 * here just after sending the nodename successfully.
879 		 */
880 		rv = plat_ecc_capability_send();
881 		if (rv == 0) {
882 			DCMNERR(CE_NOTE, "!plat_ecc_capability_send was"
883 			    "successful\n");
884 		}
885 	}
886 }
887 
888 /*
889  * flag to allow users switch between using OBP's
890  * prom_get_unum() and mc-us3 driver's p2get_mem_unum()
891  * (for main memory errors only).
892  */
893 int sg_use_prom_get_unum = 0;
894 
895 /*
896  * Debugging flag: set to 1 to call into obp for get_unum, or set it to 0
897  * to call into the unum cache system.  This is the E$ equivalent of
898  * sg_use_prom_get_unum.
899  */
900 int sg_use_prom_ecache_unum = 0;
901 
902 /* used for logging ECC errors to the SC */
903 #define	SG_MEMORY_ECC	1
904 #define	SG_ECACHE_ECC	2
905 #define	SG_UNKNOWN_ECC	(-1)
906 
907 /*
908  * plat_get_mem_unum() generates a string identifying either the
909  * memory or E$ DIMM(s) during error logging. Depending on whether
910  * the error is E$ or memory related, the appropriate support
911  * routine is called to assist in the string generation.
912  *
913  * - For main memory errors we can use the mc-us3 drivers p2getunum()
914  *   (or prom_get_unum() for debugging purposes).
915  *
916  * - For E$ errors we call sg_get_ecacheunum() to generate the unum (or
917  *   prom_serengeti_get_ecacheunum() for debugging purposes).
918  */
919 
920 static int
921 sg_prom_get_unum(int synd_code, uint64_t paddr, char *buf, int buflen,
922     int *lenp)
923 {
924 	if ((prom_get_unum(synd_code, (unsigned long long)paddr,
925 	    buf, buflen, lenp)) != 0)
926 		return (EIO);
927 	else if (*lenp <= 1)
928 		return (EINVAL);
929 	else
930 		return (0);
931 }
932 
933 /*ARGSUSED*/
934 int
935 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
936     int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
937 {
938 	/*
939 	 * unum_func will either point to the memory drivers p2get_mem_unum()
940 	 * or to prom_get_unum() for memory errors.
941 	 */
942 	int (*unum_func)(int synd_code, uint64_t paddr, char *buf,
943 	    int buflen, int *lenp) = p2get_mem_unum;
944 
945 	/*
946 	 * check if it's a Memory or an Ecache error.
947 	 */
948 	if (flt_in_memory) {
949 		/*
950 		 * It's a main memory error.
951 		 *
952 		 * For debugging we allow the user to switch between
953 		 * using OBP's get_unum and the memory driver's get_unum
954 		 * so we create a pointer to the functions and switch
955 		 * depending on the sg_use_prom_get_unum flag.
956 		 */
957 		if (sg_use_prom_get_unum) {
958 			DCMNERR(CE_NOTE, "Using prom_get_unum from OBP");
959 			return (sg_prom_get_unum(synd_code,
960 			    P2ALIGN(flt_addr, 8), buf, buflen, lenp));
961 		} else if (unum_func != NULL) {
962 			return (unum_func(synd_code, P2ALIGN(flt_addr, 8),
963 			    buf, buflen, lenp));
964 		} else {
965 			return (ENOTSUP);
966 		}
967 	} else if (flt_status & ECC_ECACHE) {
968 		/*
969 		 * It's an E$ error.
970 		 */
971 		if (sg_use_prom_ecache_unum) {
972 			/*
973 			 * We call to OBP to handle this.
974 			 */
975 			DCMNERR(CE_NOTE,
976 			    "Using prom_serengeti_get_ecacheunum from OBP");
977 			if (prom_serengeti_get_ecacheunum(flt_bus_id,
978 			    P2ALIGN(flt_addr, 8), buf, buflen, lenp) != 0) {
979 				return (EIO);
980 			}
981 		} else {
982 			return (sg_get_ecacheunum(flt_bus_id, flt_addr,
983 			    buf, buflen, lenp));
984 		}
985 	} else {
986 		return (ENOTSUP);
987 	}
988 
989 	return (0);
990 }
991 
992 /*
993  * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
994  * driver giving each platform the opportunity to add platform
995  * specific label information to the unum for ECC error logging purposes.
996  */
997 void
998 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
999 {
1000 	char	new_unum[UNUM_NAMLEN] = "";
1001 	int	node = SG_PORTID_TO_NODEID(mcid);
1002 	int	board = SG_CPU_BD_PORTID_TO_BD_NUM(mcid);
1003 	int	position = SG_PORTID_TO_CPU_POSN(mcid);
1004 
1005 	/*
1006 	 * The mc-us3 driver deals with logical banks but for unum
1007 	 * purposes we need to use physical banks so that the correct
1008 	 * dimm can be physically located. Logical banks 0 and 2
1009 	 * make up physical bank 0. Logical banks 1 and 3 make up
1010 	 * physical bank 1. Here we do the necessary conversion.
1011 	 */
1012 	bank = (bank % 2);
1013 
1014 	if (dimm == -1) {
1015 		SG_SET_FRU_NAME_NODE(new_unum, node);
1016 		SG_SET_FRU_NAME_CPU_BOARD(new_unum, board);
1017 		SG_SET_FRU_NAME_MODULE(new_unum, position);
1018 		SG_SET_FRU_NAME_BANK(new_unum, bank);
1019 
1020 	} else {
1021 		SG_SET_FRU_NAME_NODE(new_unum, node);
1022 		SG_SET_FRU_NAME_CPU_BOARD(new_unum, board);
1023 		SG_SET_FRU_NAME_MODULE(new_unum, position);
1024 		SG_SET_FRU_NAME_BANK(new_unum, bank);
1025 		SG_SET_FRU_NAME_DIMM(new_unum, dimm);
1026 
1027 		(void) strcat(new_unum, " ");
1028 		(void) strcat(new_unum, unum);
1029 	}
1030 
1031 	(void) strcpy(unum, new_unum);
1032 }
1033 
1034 int
1035 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
1036 {
1037 	int	node = SG_PORTID_TO_NODEID(cpuid);
1038 	int	board = SG_CPU_BD_PORTID_TO_BD_NUM(cpuid);
1039 
1040 	if (snprintf(buf, buflen, "/N%d/%s%d", node,
1041 	    SG_HPU_TYPE_CPU_BOARD_ID, board) >= buflen) {
1042 		return (ENOSPC);
1043 	} else {
1044 		*lenp = strlen(buf);
1045 		return (0);
1046 	}
1047 }
1048 
1049 static void (*sg_ecc_taskq_func)(sbbc_ecc_mbox_t *) = NULL;
1050 static int (*sg_ecc_mbox_func)(sbbc_ecc_mbox_t *) = NULL;
1051 
1052 /*
1053  * We log all ECC errors to the SC so we send a mailbox
1054  * message to the SC passing it the relevant data.
1055  * ECC mailbox messages are sent via a taskq mechanism to
1056  * prevent impaired system performance during ECC floods.
1057  * Indictments have already passed through a taskq, so they
1058  * are not queued here.
1059  */
1060 int
1061 plat_send_ecc_mailbox_msg(plat_ecc_message_type_t msg_type, void *datap)
1062 {
1063 	sbbc_ecc_mbox_t	*msgp;
1064 	uint16_t	msg_subtype;
1065 	int		sleep_flag, log_error;
1066 	size_t		msg_size;
1067 
1068 	if (sg_ecc_taskq_func == NULL) {
1069 		sg_ecc_taskq_func = (void (*)(sbbc_ecc_mbox_t *))
1070 		    modgetsymvalue("sbbc_mbox_queue_ecc_event", 0);
1071 		if (sg_ecc_taskq_func == NULL) {
1072 			cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1073 			    "sbbc_mbox_queue_ecc_event not found");
1074 			return (ENODEV);
1075 		}
1076 	}
1077 	if (sg_ecc_mbox_func == NULL) {
1078 		sg_ecc_mbox_func = (int (*)(sbbc_ecc_mbox_t *))
1079 		    modgetsymvalue("sbbc_mbox_ecc_output", 0);
1080 		if (sg_ecc_mbox_func == NULL) {
1081 			cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1082 			    "sbbc_mbox_ecc_output not found");
1083 			return (ENODEV);
1084 		}
1085 	}
1086 
1087 	/*
1088 	 * Initialize the request and response structures
1089 	 */
1090 	switch (msg_type) {
1091 	case PLAT_ECC_ERROR_MESSAGE:
1092 		msg_subtype = INFO_MBOX_ERROR_ECC;
1093 		msg_size = sizeof (plat_ecc_error_data_t);
1094 		sleep_flag = KM_NOSLEEP;
1095 		log_error = 1;
1096 		break;
1097 	case PLAT_ECC_ERROR2_MESSAGE:
1098 		msg_subtype = INFO_MBOX_ECC;
1099 		msg_size = sizeof (plat_ecc_error2_data_t);
1100 		sleep_flag = KM_NOSLEEP;
1101 		log_error = 1;
1102 		break;
1103 	case PLAT_ECC_INDICTMENT_MESSAGE:
1104 		msg_subtype = INFO_MBOX_ERROR_INDICT;
1105 		msg_size = sizeof (plat_ecc_indictment_data_t);
1106 		sleep_flag = KM_SLEEP;
1107 		log_error = 0;
1108 		break;
1109 	case PLAT_ECC_INDICTMENT2_MESSAGE:
1110 		msg_subtype = INFO_MBOX_ECC;
1111 		msg_size = sizeof (plat_ecc_indictment2_data_t);
1112 		sleep_flag = KM_SLEEP;
1113 		log_error = 0;
1114 		break;
1115 	case PLAT_ECC_CAPABILITY_MESSAGE:
1116 		msg_subtype = INFO_MBOX_ECC_CAP;
1117 		msg_size = sizeof (plat_capability_data_t) +
1118 		    strlen(utsname.release) + strlen(utsname.version) + 2;
1119 		sleep_flag = KM_SLEEP;
1120 		log_error = 0;
1121 		break;
1122 	case PLAT_ECC_DIMM_SID_MESSAGE:
1123 		msg_subtype = INFO_MBOX_ECC;
1124 		msg_size = sizeof (plat_dimm_sid_request_data_t);
1125 		sleep_flag = KM_SLEEP;
1126 		log_error = 0;
1127 		break;
1128 	default:
1129 		return (EINVAL);
1130 	}
1131 
1132 	msgp = (sbbc_ecc_mbox_t *)kmem_zalloc(sizeof (sbbc_ecc_mbox_t),
1133 	    sleep_flag);
1134 	if (msgp == NULL) {
1135 		cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1136 		    "unable to allocate sbbc_ecc_mbox");
1137 		return (ENOMEM);
1138 	}
1139 
1140 	msgp->ecc_log_error = log_error;
1141 
1142 	msgp->ecc_req.msg_type.type = INFO_MBOX;
1143 	msgp->ecc_req.msg_type.sub_type = msg_subtype;
1144 	msgp->ecc_req.msg_status = 0;
1145 	msgp->ecc_req.msg_len = (int)msg_size;
1146 	msgp->ecc_req.msg_bytes = 0;
1147 	msgp->ecc_req.msg_buf = (caddr_t)kmem_zalloc(msg_size, sleep_flag);
1148 	msgp->ecc_req.msg_data[0] = 0;
1149 	msgp->ecc_req.msg_data[1] = 0;
1150 
1151 	if (msgp->ecc_req.msg_buf == NULL) {
1152 		cmn_err(CE_NOTE, "!plat_send_ecc_mailbox_msg: "
1153 		    "unable to allocate request msg_buf");
1154 		kmem_free((void *)msgp, sizeof (sbbc_ecc_mbox_t));
1155 		return (ENOMEM);
1156 	}
1157 
1158 	bcopy(datap, (void *)msgp->ecc_req.msg_buf, msg_size);
1159 
1160 	/*
1161 	 * initialize the response back from the SC
1162 	 */
1163 	msgp->ecc_resp.msg_type.type = INFO_MBOX;
1164 	msgp->ecc_resp.msg_type.sub_type = msg_subtype;
1165 	msgp->ecc_resp.msg_status = 0;
1166 	msgp->ecc_resp.msg_len = 0;
1167 	msgp->ecc_resp.msg_bytes = 0;
1168 	msgp->ecc_resp.msg_buf = NULL;
1169 	msgp->ecc_resp.msg_data[0] = 0;
1170 	msgp->ecc_resp.msg_data[1] = 0;
1171 
1172 	switch (msg_type) {
1173 	case PLAT_ECC_ERROR_MESSAGE:
1174 	case PLAT_ECC_ERROR2_MESSAGE:
1175 		/*
1176 		 * For Error Messages, we go through a taskq.
1177 		 * Queue up message for processing
1178 		 */
1179 		(*sg_ecc_taskq_func)(msgp);
1180 		return (0);
1181 
1182 	case PLAT_ECC_CAPABILITY_MESSAGE:
1183 		/*
1184 		 * For indictment and capability messages, we've already gone
1185 		 * through the taskq, so we can call the mailbox routine
1186 		 * directly.  Find the symbol for the routine that sends
1187 		 * the mailbox msg
1188 		 */
1189 		msgp->ecc_resp.msg_len = (int)msg_size;
1190 		msgp->ecc_resp.msg_buf = (caddr_t)kmem_zalloc(msg_size,
1191 		    sleep_flag);
1192 		/* FALLTHRU */
1193 
1194 	case PLAT_ECC_INDICTMENT_MESSAGE:
1195 	case PLAT_ECC_INDICTMENT2_MESSAGE:
1196 		return ((*sg_ecc_mbox_func)(msgp));
1197 
1198 	case PLAT_ECC_DIMM_SID_MESSAGE:
1199 		msgp->ecc_resp.msg_len = sizeof (plat_dimm_sid_board_data_t);
1200 		msgp->ecc_resp.msg_buf = (caddr_t)kmem_zalloc(
1201 		    sizeof (plat_dimm_sid_board_data_t), sleep_flag);
1202 
1203 		return ((*sg_ecc_mbox_func)(msgp));
1204 
1205 	default:
1206 		ASSERT(0);
1207 		return (EINVAL);
1208 	}
1209 }
1210 
1211 /*
1212  * m is redundant on serengeti as the multiplyer is always 4
1213  */
1214 /*ARGSUSED*/
1215 int
1216 plat_make_fru_cpuid(int sb, int m, int proc)
1217 {
1218 	return (MAKE_CPUID(sb, proc));
1219 }
1220 
1221 /*
1222  * board number for a given proc
1223  */
1224 int
1225 plat_make_fru_boardnum(int proc)
1226 {
1227 	return (SG_PORTID_TO_BOARD_NUM(proc));
1228 }
1229 
1230 static
1231 void
1232 cpu_sgn_update(ushort_t sig, uchar_t state, uchar_t sub_state, int cpuid)
1233 {
1234 	uint32_t signature = CPU_SIG_BLD(sig, state, sub_state);
1235 	sig_state_t current_sgn;
1236 	int i;
1237 
1238 	if (iosram_write_ptr == NULL) {
1239 		/*
1240 		 * If the IOSRAM write pointer isn't set, we won't be able
1241 		 * to write signatures to ANYTHING, so we may as well just
1242 		 * write out an error message (if desired) and exit this
1243 		 * routine now...
1244 		 */
1245 		DCMNERR(CE_WARN,
1246 		    "cpu_sgn_update: iosram_write() not found;"
1247 		    " cannot write signature 0x%x for CPU(s) or domain\n",
1248 		    signature);
1249 		return;
1250 	}
1251 
1252 
1253 	/*
1254 	 * Differentiate a panic reboot from a non-panic reboot in the
1255 	 * setting of the substate of the signature.
1256 	 *
1257 	 * If the new substate is REBOOT and we're rebooting due to a panic,
1258 	 * then set the new substate to a special value indicating a panic
1259 	 * reboot, SIGSUBST_PANIC_REBOOT.
1260 	 *
1261 	 * A panic reboot is detected by a current (previous) domain signature
1262 	 * state of SIGST_EXIT, and a new signature substate of SIGSUBST_REBOOT.
1263 	 * The domain signature state SIGST_EXIT is used as the panic flow
1264 	 * progresses.
1265 	 *
1266 	 * At the end of the panic flow, the reboot occurs but we should now
1267 	 * one that was involuntary, something that may be quite useful to know
1268 	 * at OBP level.
1269 	 */
1270 	if (sub_state == SIGSUBST_REBOOT) {
1271 		if (iosram_read_ptr == NULL) {
1272 			DCMNERR(CE_WARN,
1273 			    "cpu_sgn_update: iosram_read() not found;"
1274 			    " could not check current domain signature\n");
1275 		} else {
1276 			(void) (*iosram_read_ptr)(SBBC_SIGBLCK_KEY,
1277 			    SG_SGNBLK_DOMAINSIG_OFFSET,
1278 			    (char *)&current_sgn, sizeof (current_sgn));
1279 			if (current_sgn.state_t.state == SIGST_EXIT)
1280 				signature = CPU_SIG_BLD(sig, state,
1281 				    SIGSUBST_PANIC_REBOOT);
1282 		}
1283 	}
1284 
1285 	/*
1286 	 * cpuid == -1 indicates that the operation applies to all cpus.
1287 	 */
1288 	if (cpuid >= 0) {
1289 		(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1290 		    SG_SGNBLK_CPUSIG_OFFSET(cpuid), (char *)&signature,
1291 		    sizeof (signature));
1292 	} else {
1293 		for (i = 0; i < NCPU; i++) {
1294 			if (cpu[i] == NULL || !(cpu[i]->cpu_flags &
1295 			    (CPU_EXISTS|CPU_QUIESCED))) {
1296 				continue;
1297 			}
1298 			(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1299 			    SG_SGNBLK_CPUSIG_OFFSET(i), (char *)&signature,
1300 			    sizeof (signature));
1301 		}
1302 	}
1303 
1304 	if (state == SIGST_OFFLINE || state == SIGST_DETACHED) {
1305 		return;
1306 	}
1307 
1308 	(void) (*iosram_write_ptr)(SBBC_SIGBLCK_KEY,
1309 	    SG_SGNBLK_DOMAINSIG_OFFSET, (char *)&signature,
1310 	    sizeof (signature));
1311 }
1312 
1313 void
1314 startup_platform(void)
1315 {
1316 }
1317 
1318 /*
1319  * A routine to convert a number (represented as a string) to
1320  * the integer value it represents.
1321  */
1322 
1323 static int
1324 isdigit(int ch)
1325 {
1326 	return (ch >= '0' && ch <= '9');
1327 }
1328 
1329 #define	isspace(c)	((c) == ' ' || (c) == '\t' || (c) == '\n')
1330 
1331 static int
1332 strtoi(char *p, char **pos)
1333 {
1334 	int n;
1335 	int c, neg = 0;
1336 
1337 	if (!isdigit(c = *p)) {
1338 		while (isspace(c))
1339 			c = *++p;
1340 		switch (c) {
1341 			case '-':
1342 				neg++;
1343 				/* FALLTHROUGH */
1344 			case '+':
1345 			c = *++p;
1346 		}
1347 		if (!isdigit(c)) {
1348 			if (pos != NULL)
1349 				*pos = p;
1350 			return (0);
1351 		}
1352 	}
1353 	for (n = '0' - c; isdigit(c = *++p); ) {
1354 		n *= 10; /* two steps to avoid unnecessary overflow */
1355 		n += '0' - c; /* accum neg to avoid surprises at MAX */
1356 	}
1357 	if (pos != NULL)
1358 		*pos = p;
1359 	return (neg ? n : -n);
1360 }
1361 
1362 /*
1363  * Get the three parts of the Serengeti PROM version.
1364  * Used for feature readiness tests.
1365  *
1366  * Return 0 if version extracted successfully, -1 otherwise.
1367  */
1368 
1369 int
1370 sg_get_prom_version(int *sysp, int *intfp, int *bldp)
1371 {
1372 	int plen;
1373 	char vers[512];
1374 	static pnode_t node;
1375 	static char version[] = "version";
1376 	char *verp, *ep;
1377 
1378 	node = prom_finddevice("/openprom");
1379 	if (node == OBP_BADNODE)
1380 		return (-1);
1381 
1382 	plen = prom_getproplen(node, version);
1383 	if (plen <= 0 || plen >= sizeof (vers))
1384 		return (-1);
1385 	(void) prom_getprop(node, version, vers);
1386 	vers[plen] = '\0';
1387 
1388 	/* Make sure it's an OBP flashprom */
1389 	if (vers[0] != 'O' && vers[1] != 'B' && vers[2] != 'P') {
1390 		cmn_err(CE_WARN, "sg_get_prom_version: "
1391 		    "unknown <version> string in </openprom>\n");
1392 		return (-1);
1393 	}
1394 	verp = &vers[4];
1395 
1396 	*sysp = strtoi(verp, &ep);
1397 	if (ep == verp || *ep != '.')
1398 		return (-1);
1399 	verp = ep + 1;
1400 
1401 	*intfp = strtoi(verp, &ep);
1402 	if (ep == verp || *ep != '.')
1403 		return (-1);
1404 	verp = ep + 1;
1405 
1406 	*bldp = strtoi(verp, &ep);
1407 	if (ep == verp || (*ep != '\0' && !isspace(*ep)))
1408 		return (-1);
1409 	return (0);
1410 }
1411 
1412 /*
1413  * Return 0 if system board Dynamic Reconfiguration
1414  * is supported by the firmware, -1 otherwise.
1415  */
1416 int
1417 sg_prom_sb_dr_check(void)
1418 {
1419 	static int prom_res = 1;
1420 
1421 	if (prom_res == 1) {
1422 		int sys, intf, bld;
1423 		int rv;
1424 
1425 		rv = sg_get_prom_version(&sys, &intf, &bld);
1426 		if (rv == 0 && sys == 5 &&
1427 		    (intf >= 12 || (intf == 11 && bld >= 200))) {
1428 			prom_res = 0;
1429 		} else {
1430 			prom_res = -1;
1431 		}
1432 	}
1433 	return (prom_res);
1434 }
1435 
1436 /*
1437  * Return 0 if cPCI Dynamic Reconfiguration
1438  * is supported by the firmware, -1 otherwise.
1439  */
1440 int
1441 sg_prom_cpci_dr_check(void)
1442 {
1443 	/*
1444 	 * The version check is currently the same as for
1445 	 * system boards. Since the two DR sub-systems are
1446 	 * independent, this could change.
1447 	 */
1448 	return (sg_prom_sb_dr_check());
1449 }
1450 
1451 /*
1452  * Our implementation of this KDI op updates the CPU signature in the system
1453  * controller.  Note that we set the signature to OBP_SIG, rather than DBG_SIG.
1454  * The Forth words we execute will, among other things, transform our OBP_SIG
1455  * into DBG_SIG.  They won't function properly if we try to use DBG_SIG.
1456  */
1457 static void
1458 sg_system_claim(void)
1459 {
1460 	lbolt_debug_entry();
1461 
1462 	prom_interpret("sigb-sig! my-sigb-sig!", OBP_SIG, OBP_SIG, 0, 0, 0);
1463 }
1464 
1465 static void
1466 sg_system_release(void)
1467 {
1468 	prom_interpret("sigb-sig! my-sigb-sig!", OS_SIG, OS_SIG, 0, 0, 0);
1469 
1470 	lbolt_debug_return();
1471 }
1472 
1473 static void
1474 sg_console_claim(void)
1475 {
1476 	(void) prom_serengeti_set_console_input(SGCN_OBP_STR);
1477 }
1478 
1479 static void
1480 sg_console_release(void)
1481 {
1482 	(void) prom_serengeti_set_console_input(SGCN_CLNT_STR);
1483 }
1484 
1485 void
1486 plat_kdi_init(kdi_t *kdi)
1487 {
1488 	kdi->pkdi_system_claim = sg_system_claim;
1489 	kdi->pkdi_system_release = sg_system_release;
1490 	kdi->pkdi_console_claim = sg_console_claim;
1491 	kdi->pkdi_console_release = sg_console_release;
1492 }
1493