xref: /illumos-gate/usr/src/uts/sun4u/io/sysiosbus.c (revision 7b34a9a5df26271af0da06974fc361c468cd48d3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
28  */
29 
30 /*
31  * Copyright 2019 Peter Tribble.
32  */
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/ddi.h>
37 #include <sys/sunddi.h>
38 #include <sys/sunndi.h>
39 #include <sys/ddi_impldefs.h>
40 #include <sys/ddi_implfuncs.h>
41 #include <sys/obpdefs.h>
42 #include <sys/cmn_err.h>
43 #include <sys/errno.h>
44 #include <sys/kmem.h>
45 #include <sys/debug.h>
46 #include <sys/sysmacros.h>
47 #include <sys/autoconf.h>
48 #include <sys/spl.h>
49 #include <sys/iommu.h>
50 #include <sys/sysiosbus.h>
51 #include <sys/sysioerr.h>
52 #include <sys/iocache.h>
53 #include <sys/async.h>
54 #include <sys/machsystm.h>
55 #include <sys/intreg.h>
56 #include <sys/ddi_subrdefs.h>
57 #include <sys/sdt.h>
58 
59 /* Useful debugging Stuff */
60 #include <sys/nexusdebug.h>
61 /* Bitfield debugging definitions for this file */
62 #define	SBUS_ATTACH_DEBUG	0x1
63 #define	SBUS_SBUSMEM_DEBUG	0x2
64 #define	SBUS_INTERRUPT_DEBUG	0x4
65 #define	SBUS_REGISTERS_DEBUG	0x8
66 
67 /*
68  * Interrupt registers table.
69  * This table is necessary due to inconsistencies in the sysio register
70  * layout.  If this gets fixed in the chip, we can get rid of this stupid
71  * table.
72  */
73 static struct sbus_slot_entry ino_1 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
74 					SBUS_SLOT0_L1_CLEAR, 0};
75 static struct sbus_slot_entry ino_2 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
76 					SBUS_SLOT0_L2_CLEAR, 0};
77 static struct sbus_slot_entry ino_3 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
78 					SBUS_SLOT0_L3_CLEAR, 0};
79 static struct sbus_slot_entry ino_4 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
80 					SBUS_SLOT0_L4_CLEAR, 0};
81 static struct sbus_slot_entry ino_5 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
82 					SBUS_SLOT0_L5_CLEAR, 0};
83 static struct sbus_slot_entry ino_6 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
84 					SBUS_SLOT0_L6_CLEAR, 0};
85 static struct sbus_slot_entry ino_7 = {SBUS_SLOT0_CONFIG, SBUS_SLOT0_MAPREG,
86 					SBUS_SLOT0_L7_CLEAR, 0};
87 static struct sbus_slot_entry ino_9 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
88 					SBUS_SLOT1_L1_CLEAR, 0};
89 static struct sbus_slot_entry ino_10 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
90 					SBUS_SLOT1_L2_CLEAR, 0};
91 static struct sbus_slot_entry ino_11 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
92 					SBUS_SLOT1_L3_CLEAR, 0};
93 static struct sbus_slot_entry ino_12 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
94 					SBUS_SLOT1_L4_CLEAR, 0};
95 static struct sbus_slot_entry ino_13 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
96 					SBUS_SLOT1_L5_CLEAR, 0};
97 static struct sbus_slot_entry ino_14 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
98 					SBUS_SLOT1_L6_CLEAR, 0};
99 static struct sbus_slot_entry ino_15 = {SBUS_SLOT1_CONFIG, SBUS_SLOT1_MAPREG,
100 					SBUS_SLOT1_L7_CLEAR, 0};
101 static struct sbus_slot_entry ino_17 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
102 					SBUS_SLOT2_L1_CLEAR, 0};
103 static struct sbus_slot_entry ino_18 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
104 					SBUS_SLOT2_L2_CLEAR, 0};
105 static struct sbus_slot_entry ino_19 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
106 					SBUS_SLOT2_L3_CLEAR, 0};
107 static struct sbus_slot_entry ino_20 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
108 					SBUS_SLOT2_L4_CLEAR, 0};
109 static struct sbus_slot_entry ino_21 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
110 					SBUS_SLOT2_L5_CLEAR, 0};
111 static struct sbus_slot_entry ino_22 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
112 					SBUS_SLOT2_L6_CLEAR, 0};
113 static struct sbus_slot_entry ino_23 = {SBUS_SLOT2_CONFIG, SBUS_SLOT2_MAPREG,
114 					SBUS_SLOT2_L7_CLEAR, 0};
115 static struct sbus_slot_entry ino_25 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
116 					SBUS_SLOT3_L1_CLEAR, 0};
117 static struct sbus_slot_entry ino_26 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
118 					SBUS_SLOT3_L2_CLEAR, 0};
119 static struct sbus_slot_entry ino_27 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
120 					SBUS_SLOT3_L3_CLEAR, 0};
121 static struct sbus_slot_entry ino_28 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
122 					SBUS_SLOT3_L4_CLEAR, 0};
123 static struct sbus_slot_entry ino_29 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
124 					SBUS_SLOT3_L5_CLEAR, 0};
125 static struct sbus_slot_entry ino_30 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
126 					SBUS_SLOT3_L6_CLEAR, 0};
127 static struct sbus_slot_entry ino_31 = {SBUS_SLOT3_CONFIG, SBUS_SLOT3_MAPREG,
128 					SBUS_SLOT3_L7_CLEAR, 0};
129 static struct sbus_slot_entry ino_32 = {SBUS_SLOT5_CONFIG, ESP_MAPREG,
130 					ESP_CLEAR, ESP_INTR_STATE_SHIFT};
131 static struct sbus_slot_entry ino_33 = {SBUS_SLOT5_CONFIG, ETHER_MAPREG,
132 					ETHER_CLEAR, ETHER_INTR_STATE_SHIFT};
133 static struct sbus_slot_entry ino_34 = {SBUS_SLOT5_CONFIG, PP_MAPREG,
134 					PP_CLEAR, PP_INTR_STATE_SHIFT};
135 static struct sbus_slot_entry ino_36 = {SBUS_SLOT4_CONFIG, AUDIO_MAPREG,
136 					AUDIO_CLEAR, AUDIO_INTR_STATE_SHIFT};
137 static struct sbus_slot_entry ino_40 = {SBUS_SLOT6_CONFIG, KBDMOUSE_MAPREG,
138 					KBDMOUSE_CLEAR,
139 					KBDMOUSE_INTR_STATE_SHIFT};
140 static struct sbus_slot_entry ino_41 = {SBUS_SLOT6_CONFIG, FLOPPY_MAPREG,
141 					FLOPPY_CLEAR, FLOPPY_INTR_STATE_SHIFT};
142 static struct sbus_slot_entry ino_42 = {SBUS_SLOT6_CONFIG, THERMAL_MAPREG,
143 					THERMAL_CLEAR,
144 					THERMAL_INTR_STATE_SHIFT};
145 static struct sbus_slot_entry ino_48 = {SBUS_SLOT6_CONFIG, TIMER0_MAPREG,
146 					TIMER0_CLEAR, TIMER0_INTR_STATE_SHIFT};
147 static struct sbus_slot_entry ino_49 = {SBUS_SLOT6_CONFIG, TIMER1_MAPREG,
148 					TIMER1_CLEAR, TIMER1_INTR_STATE_SHIFT};
149 static struct sbus_slot_entry ino_52 = {SBUS_SLOT6_CONFIG, UE_ECC_MAPREG,
150 					UE_ECC_CLEAR, UE_INTR_STATE_SHIFT};
151 static struct sbus_slot_entry ino_53 = {SBUS_SLOT6_CONFIG, CE_ECC_MAPREG,
152 					CE_ECC_CLEAR, CE_INTR_STATE_SHIFT};
153 static struct sbus_slot_entry ino_54 = {SBUS_SLOT6_CONFIG, SBUS_ERR_MAPREG,
154 					SBUS_ERR_CLEAR, SERR_INTR_STATE_SHIFT};
155 static struct sbus_slot_entry ino_55 = {SBUS_SLOT6_CONFIG, PM_WAKEUP_MAPREG,
156 					PM_WAKEUP_CLEAR, PM_INTR_STATE_SHIFT};
157 static struct sbus_slot_entry ino_ffb = {0, FFB_MAPPING_REG, 0, 0};
158 static struct sbus_slot_entry ino_exp = {0, EXP_MAPPING_REG, 0, 0};
159 
160 /* Construct the interrupt number array */
161 struct sbus_slot_entry *ino_table[] = {
162 	NULL, &ino_1, &ino_2, &ino_3, &ino_4, &ino_5, &ino_6, &ino_7,
163 	NULL, &ino_9, &ino_10, &ino_11, &ino_12, &ino_13, &ino_14, &ino_15,
164 	NULL, &ino_17, &ino_18, &ino_19, &ino_20, &ino_21, &ino_22, &ino_23,
165 	NULL, &ino_25, &ino_26, &ino_27, &ino_28, &ino_29, &ino_30, &ino_31,
166 	&ino_32, &ino_33, &ino_34, NULL, &ino_36, NULL, NULL, NULL,
167 	&ino_40, &ino_41, &ino_42, NULL, NULL, NULL, NULL, NULL, &ino_48,
168 	&ino_49, NULL, NULL, &ino_52, &ino_53, &ino_54, &ino_55, &ino_ffb,
169 	&ino_exp
170 };
171 
172 /*
173  * This table represents the Fusion interrupt priorities.  They range
174  * from 1 - 15, so we'll pattern the priorities after the 4M.  We map Fusion
175  * interrupt number to system priority.  The mondo number is used as an
176  * index into this table.
177  */
178 int interrupt_priorities[] = {
179 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 0 sbus level 1 - 7 */
180 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 1 sbus level 1 - 7 */
181 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 2 sbus level 1 - 7 */
182 	-1, 2, 3, 5, 7, 9, 11, 13,	/* Slot 3 sbus level 1 - 7 */
183 	4,				/* Onboard SCSI */
184 	6,				/* Onboard Ethernet */
185 	3,				/* Onboard Parallel port */
186 	-1,				/* Not in use */
187 	9,				/* Onboard Audio */
188 	-1, -1, -1,			/* Not in use */
189 	12,				/* Onboard keyboard/serial ports */
190 	11,				/* Onboard Floppy */
191 	9,				/* Thermal interrupt */
192 	-1, -1, -1,			/* Not is use */
193 	10,				/* Timer 0 (tick timer) */
194 	14,				/* Timer 1 (not used) */
195 	15,				/* Sysio UE ECC error */
196 	10,				/* Sysio CE ECC error */
197 	10,				/* Sysio Sbus error */
198 	10,				/* PM Wakeup */
199 };
200 
201 /* Interrupt counter flag.  To enable/disable spurious interrupt counter. */
202 static int intr_cntr_on;
203 
204 /*
205  * Function prototypes.
206  */
207 static int
208 sbus_ctlops(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, void *);
209 
210 static int
211 sbus_add_intr_impl(dev_info_t *dip, dev_info_t *rdip,
212     ddi_intr_handle_impl_t *hdlp);
213 
214 static void
215 sbus_remove_intr_impl(dev_info_t *dip, dev_info_t *rdip,
216     ddi_intr_handle_impl_t *hdlp);
217 
218 static int
219 sbus_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op,
220     ddi_intr_handle_impl_t *hdlp, void *result);
221 
222 static int
223 sbus_xlate_intrs(dev_info_t *dip, dev_info_t *rdip, uint32_t *intr,
224     uint32_t *pil, int32_t ign);
225 
226 static int
227 sbus_attach(dev_info_t *devi, ddi_attach_cmd_t cmd);
228 
229 static int
230 sbus_detach(dev_info_t *devi, ddi_detach_cmd_t cmd);
231 
232 static int
233 sbus_do_detach(dev_info_t *devi);
234 
235 static	void
236 sbus_add_picN_kstats(dev_info_t *dip);
237 
238 static	void
239 sbus_add_kstats(struct sbus_soft_state *);
240 
241 static	int
242 sbus_counters_kstat_update(kstat_t *, int);
243 
244 extern int
245 sysio_err_uninit(struct sbus_soft_state *softsp);
246 
247 extern int
248 iommu_uninit(struct sbus_soft_state *softsp);
249 
250 extern int
251 stream_buf_uninit(struct sbus_soft_state *softsp);
252 
253 static int
254 find_sbus_slot(dev_info_t *dip, dev_info_t *rdip);
255 
256 static void make_sbus_ppd(dev_info_t *child);
257 
258 static int
259 sbusmem_initchild(dev_info_t *dip, dev_info_t *child);
260 
261 static int
262 sbus_initchild(dev_info_t *dip, dev_info_t *child);
263 
264 static int
265 sbus_uninitchild(dev_info_t *dip);
266 
267 static int
268 sbus_ctlops_poke(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args);
269 
270 static int
271 sbus_ctlops_peek(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args,
272     void *result);
273 
274 static int
275 sbus_init(struct sbus_soft_state *softsp, caddr_t address);
276 
277 static int
278 sbus_resume_init(struct sbus_soft_state *softsp, int resume);
279 
280 static void
281 sbus_cpr_handle_intr_map_reg(uint64_t *cpr_softsp, volatile uint64_t *baddr,
282     int flag);
283 
284 static void sbus_intrdist(void *);
285 static uint_t sbus_intr_reset(void *);
286 
287 static int
288 sbus_update_intr_state(dev_info_t *dip, dev_info_t *rdip,
289     ddi_intr_handle_impl_t *hdlp, uint_t new_intr_state);
290 
291 /*
292  * Configuration data structures
293  */
294 static struct bus_ops sbus_bus_ops = {
295 	BUSO_REV,
296 	i_ddi_bus_map,
297 	0,
298 	0,
299 	0,
300 	i_ddi_map_fault,
301 	0,
302 	iommu_dma_allochdl,
303 	iommu_dma_freehdl,
304 	iommu_dma_bindhdl,
305 	iommu_dma_unbindhdl,
306 	iommu_dma_flush,
307 	iommu_dma_win,
308 	iommu_dma_mctl,
309 	sbus_ctlops,
310 	ddi_bus_prop_op,
311 	0,			/* (*bus_get_eventcookie)();	*/
312 	0,			/* (*bus_add_eventcall)();	*/
313 	0,			/* (*bus_remove_eventcall)();	*/
314 	0,			/* (*bus_post_event)();		*/
315 	0,			/* (*bus_intr_control)();	*/
316 	0,			/* (*bus_config)();		*/
317 	0,			/* (*bus_unconfig)();		*/
318 	0,			/* (*bus_fm_init)();		*/
319 	0,			/* (*bus_fm_fini)();		*/
320 	0,			/* (*bus_fm_access_enter)();	*/
321 	0,			/* (*bus_fm_access_exit)();	*/
322 	0,			/* (*bus_power)();		*/
323 	sbus_intr_ops		/* (*bus_intr_op)();		*/
324 };
325 
326 static struct cb_ops sbus_cb_ops = {
327 	nodev,			/* open */
328 	nodev,			/* close */
329 	nodev,			/* strategy */
330 	nodev,			/* print */
331 	nodev,			/* dump */
332 	nodev,			/* read */
333 	nodev,			/* write */
334 	nodev,			/* ioctl */
335 	nodev,			/* devmap */
336 	nodev,			/* mmap */
337 	nodev,			/* segmap */
338 	nochpoll,		/* poll */
339 	ddi_prop_op,		/* prop_op */
340 	NULL,
341 	D_NEW | D_MP | D_HOTPLUG,
342 	CB_REV,				/* rev */
343 	nodev,				/* int (*cb_aread)() */
344 	nodev				/* int (*cb_awrite)() */
345 };
346 
347 static struct dev_ops sbus_ops = {
348 	DEVO_REV,		/* devo_rev, */
349 	0,			/* refcnt  */
350 	ddi_no_info,		/* info */
351 	nulldev,		/* identify */
352 	nulldev,		/* probe */
353 	sbus_attach,		/* attach */
354 	sbus_detach,		/* detach */
355 	nodev,			/* reset */
356 	&sbus_cb_ops,		/* driver operations */
357 	&sbus_bus_ops,		/* bus operations */
358 	nulldev,		/* power */
359 	ddi_quiesce_not_supported,	/* devo_quiesce */
360 };
361 
362 /* global data */
363 void *sbusp;		/* sbus soft state hook */
364 void *sbus_cprp;	/* subs suspend/resume soft state hook */
365 static kstat_t *sbus_picN_ksp[SBUS_NUM_PICS]; /* performance picN kstats */
366 static int	sbus_attachcnt = 0;   /* number of instances attached */
367 static kmutex_t	sbus_attachcnt_mutex; /* sbus_attachcnt lock - attach/detach */
368 
369 #include <sys/modctl.h>
370 extern struct mod_ops mod_driverops;
371 
372 static struct modldrv modldrv = {
373 	&mod_driverops,		/* Type of module.  This one is a driver */
374 	"SBus (sysio) nexus driver",	/* Name of module. */
375 	&sbus_ops,		/* driver ops */
376 };
377 
378 static struct modlinkage modlinkage = {
379 	MODREV_1, (void *)&modldrv, NULL
380 };
381 
382 /*
383  * These are the module initialization routines.
384  */
385 int
386 _init(void)
387 {
388 	int error;
389 
390 	if ((error = ddi_soft_state_init(&sbusp,
391 	    sizeof (struct sbus_soft_state), 1)) != 0)
392 		return (error);
393 
394 	/*
395 	 * Initialize cpr soft state structure
396 	 */
397 	if ((error = ddi_soft_state_init(&sbus_cprp,
398 	    sizeof (uint64_t) * MAX_INO_TABLE_SIZE, 0)) != 0)
399 		return (error);
400 
401 	/* Initialize global mutex */
402 	mutex_init(&sbus_attachcnt_mutex, NULL, MUTEX_DRIVER, NULL);
403 
404 	return (mod_install(&modlinkage));
405 }
406 
407 int
408 _fini(void)
409 {
410 	int error;
411 
412 	if ((error = mod_remove(&modlinkage)) != 0)
413 		return (error);
414 
415 	mutex_destroy(&sbus_attachcnt_mutex);
416 	ddi_soft_state_fini(&sbusp);
417 	ddi_soft_state_fini(&sbus_cprp);
418 	return (0);
419 }
420 
421 int
422 _info(struct modinfo *modinfop)
423 {
424 	return (mod_info(&modlinkage, modinfop));
425 }
426 
427 /*ARGSUSED*/
428 static int
429 sbus_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
430 {
431 	struct sbus_soft_state *softsp;
432 	int instance, error;
433 	uint64_t *cpr_softsp;
434 	ddi_device_acc_attr_t attr;
435 
436 
437 #ifdef	DEBUG
438 	debug_info = 1;
439 	debug_print_level = 0;
440 #endif
441 
442 	instance = ddi_get_instance(devi);
443 
444 	switch (cmd) {
445 	case DDI_ATTACH:
446 		break;
447 
448 	case DDI_RESUME:
449 		softsp = ddi_get_soft_state(sbusp, instance);
450 
451 		if ((error = iommu_resume_init(softsp)) != DDI_SUCCESS)
452 			return (error);
453 
454 		if ((error = sbus_resume_init(softsp, 1)) != DDI_SUCCESS)
455 			return (error);
456 
457 		if ((error = stream_buf_resume_init(softsp)) != DDI_SUCCESS)
458 			return (error);
459 
460 		/*
461 		 * Restore Interrupt Mapping registers
462 		 */
463 		cpr_softsp = ddi_get_soft_state(sbus_cprp, instance);
464 
465 		if (cpr_softsp != NULL) {
466 			sbus_cpr_handle_intr_map_reg(cpr_softsp,
467 			    softsp->intr_mapping_reg, 0);
468 			ddi_soft_state_free(sbus_cprp, instance);
469 		}
470 
471 		return (DDI_SUCCESS);
472 
473 	default:
474 		return (DDI_FAILURE);
475 	}
476 
477 	if (ddi_soft_state_zalloc(sbusp, instance) != DDI_SUCCESS)
478 		return (DDI_FAILURE);
479 
480 	softsp = ddi_get_soft_state(sbusp, instance);
481 
482 	/* Set the dip in the soft state */
483 	softsp->dip = devi;
484 
485 	if ((softsp->upa_id = (int)ddi_getprop(DDI_DEV_T_ANY, softsp->dip,
486 	    DDI_PROP_DONTPASS, "upa-portid", -1)) == -1) {
487 		cmn_err(CE_WARN, "Unable to retrieve sbus upa-portid"
488 		    "property.");
489 		error = DDI_FAILURE;
490 		goto bad;
491 	}
492 
493 	/*
494 	 * The firmware maps in all 3 pages of the sysio chips device
495 	 * device registers and exports the mapping in the int-sized
496 	 * property "address".  Read in this address and pass it to
497 	 * the subsidiary *_init functions, so we don't create extra
498 	 * mappings to the same physical pages and we don't have to
499 	 * retrieve the more than once.
500 	 */
501 	/*
502 	 * Implement new policy to start ignoring the "address" property
503 	 * due to new requirements from DR.  The problem is that the contents
504 	 * of the "address" property contain vm mappings from OBP which needs
505 	 * to be recaptured into kernel vm.  Instead of relying on a blanket
506 	 * recapture during boot time, we map psycho registers each time during
507 	 * attach and unmap the during detach.  In some future point of time
508 	 * OBP will drop creating "address" property but this driver will
509 	 * will already not rely on this property any more.
510 	 */
511 
512 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
513 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
514 	attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
515 	if (ddi_regs_map_setup(softsp->dip, 0, &softsp->address, 0, 0,
516 	    &attr, &softsp->ac) != DDI_SUCCESS) {
517 		cmn_err(CE_WARN, "%s%d: unable to map reg set 0\n",
518 		    ddi_get_name(softsp->dip),
519 		    ddi_get_instance(softsp->dip));
520 		return (0);
521 	}
522 	if (softsp->address == (caddr_t)-1) {
523 		cmn_err(CE_CONT, "?sbus%d: No sysio <address> property\n",
524 		    ddi_get_instance(softsp->dip));
525 		return (DDI_FAILURE);
526 	}
527 
528 	DPRINTF(SBUS_ATTACH_DEBUG, ("sbus: devi=0x%p, softsp=0x%p\n",
529 	    (void *)devi, (void *)softsp));
530 
531 #ifdef	notdef
532 	/*
533 	 * This bit of code, plus the firmware, will tell us if
534 	 * the #size-cells infrastructure code works, to some degree.
535 	 * You should be able to use the firmware to determine if
536 	 * the address returned by ddi_map_regs maps the correct phys. pages.
537 	 */
538 
539 	{
540 		caddr_t addr;
541 		int rv;
542 
543 		cmn_err(CE_CONT, "?sbus: address property = 0x%x\n", address);
544 
545 		if ((rv = ddi_map_regs(softsp->dip, 0, &addr,
546 		    (off_t)0, (off_t)0)) != DDI_SUCCESS)  {
547 			cmn_err(CE_CONT, "?sbus: ddi_map_regs failed: %d\n",
548 			    rv);
549 		} else {
550 			cmn_err(CE_CONT, "?sbus: ddi_map_regs returned "
551 			    " virtual address 0x%x\n", addr);
552 		}
553 	}
554 #endif	/* notdef */
555 
556 	if ((error = iommu_init(softsp, softsp->address)) != DDI_SUCCESS)
557 		goto bad;
558 
559 	if ((error = sbus_init(softsp, softsp->address)) != DDI_SUCCESS)
560 		goto bad;
561 
562 	if ((error = sysio_err_init(softsp, softsp->address)) != DDI_SUCCESS)
563 		goto bad;
564 
565 	if ((error = stream_buf_init(softsp, softsp->address)) != DDI_SUCCESS)
566 		goto bad;
567 
568 	/* Init the pokefault mutex for sbus devices */
569 	mutex_init(&softsp->pokefault_mutex, NULL, MUTEX_SPIN,
570 	    (void *)ipltospl(SBUS_ERR_PIL - 1));
571 
572 	sbus_add_kstats(softsp);
573 
574 	bus_func_register(BF_TYPE_RESINTR, sbus_intr_reset, devi);
575 
576 	intr_dist_add(sbus_intrdist, devi);
577 
578 	ddi_report_dev(devi);
579 
580 	return (DDI_SUCCESS);
581 
582 bad:
583 	ddi_soft_state_free(sbusp, instance);
584 	return (error);
585 }
586 
587 /* ARGSUSED */
588 static int
589 sbus_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
590 {
591 	int instance;
592 	struct sbus_soft_state *softsp;
593 	uint64_t *cpr_softsp;
594 
595 	switch (cmd) {
596 	case DDI_SUSPEND:
597 		/*
598 		 * Allocate the cpr  soft data structure to save the current
599 		 * state of the interrupt mapping registers.
600 		 * This structure will be deallocated after the system
601 		 * is resumed.
602 		 */
603 		instance = ddi_get_instance(devi);
604 
605 		if (ddi_soft_state_zalloc(sbus_cprp, instance)
606 		    != DDI_SUCCESS)
607 			return (DDI_FAILURE);
608 
609 		cpr_softsp = ddi_get_soft_state(sbus_cprp, instance);
610 
611 		softsp = ddi_get_soft_state(sbusp, instance);
612 
613 		sbus_cpr_handle_intr_map_reg(cpr_softsp,
614 		    softsp->intr_mapping_reg, 1);
615 		return (DDI_SUCCESS);
616 
617 	case DDI_DETACH:
618 		return (sbus_do_detach(devi));
619 	default:
620 		return (DDI_FAILURE);
621 	}
622 }
623 
624 static int
625 sbus_do_detach(dev_info_t *devi)
626 {
627 	int instance, pic;
628 	struct sbus_soft_state *softsp;
629 
630 	instance = ddi_get_instance(devi);
631 	softsp = ddi_get_soft_state(sbusp, instance);
632 	ASSERT(softsp != NULL);
633 
634 	bus_func_unregister(BF_TYPE_RESINTR, sbus_intr_reset, devi);
635 
636 	intr_dist_rem(sbus_intrdist, devi);
637 
638 	/* disable the streamming cache */
639 	if (stream_buf_uninit(softsp) == DDI_FAILURE) {
640 		goto err;
641 	}
642 
643 	/* remove the interrupt handlers from the system */
644 	if (sysio_err_uninit(softsp) == DDI_FAILURE) {
645 		goto err;
646 	}
647 
648 	/* disable the IOMMU */
649 	if (iommu_uninit(softsp)) {
650 		goto err;
651 	}
652 
653 	/* unmap register space if we have a handle */
654 	if (softsp->ac) {
655 		ddi_regs_map_free(&softsp->ac);
656 		softsp->address = NULL;
657 	}
658 
659 	/*
660 	 * remove counter kstats for this device
661 	 */
662 	if (softsp->sbus_counters_ksp != (kstat_t *)NULL)
663 		kstat_delete(softsp->sbus_counters_ksp);
664 
665 	/*
666 	 * if we are the last instance to detach we need to
667 	 * remove the picN kstats. We use sbus_attachcnt as a
668 	 * count of how many instances are still attached. This
669 	 * is protected by a mutex.
670 	 */
671 	mutex_enter(&sbus_attachcnt_mutex);
672 	sbus_attachcnt --;
673 	if (sbus_attachcnt == 0) {
674 		for (pic = 0; pic < SBUS_NUM_PICS; pic++) {
675 			if (sbus_picN_ksp[pic] != (kstat_t *)NULL) {
676 				kstat_delete(sbus_picN_ksp[pic]);
677 				sbus_picN_ksp[pic] = NULL;
678 			}
679 		}
680 	}
681 	mutex_exit(&sbus_attachcnt_mutex);
682 
683 	/* free the soft state structure */
684 	ddi_soft_state_free(sbusp, instance);
685 
686 	return (DDI_SUCCESS);
687 err:
688 	return (DDI_FAILURE);
689 }
690 
691 static int
692 sbus_init(struct sbus_soft_state *softsp, caddr_t address)
693 {
694 	int i;
695 	extern void set_intr_mapping_reg(int, uint64_t *, int);
696 	int numproxy;
697 
698 	/*
699 	 * Simply add each registers offset to the base address
700 	 * to calculate the already mapped virtual address of
701 	 * the device register...
702 	 *
703 	 * define a macro for the pointer arithmetic; all registers
704 	 * are 64 bits wide and are defined as uint64_t's.
705 	 */
706 
707 #define	REG_ADDR(b, o)	(uint64_t *)((caddr_t)(b) + (o))
708 
709 	softsp->sysio_ctrl_reg = REG_ADDR(address, OFF_SYSIO_CTRL_REG);
710 	softsp->sbus_ctrl_reg = REG_ADDR(address, OFF_SBUS_CTRL_REG);
711 	softsp->sbus_slot_config_reg = REG_ADDR(address, OFF_SBUS_SLOT_CONFIG);
712 	softsp->intr_mapping_reg = REG_ADDR(address, OFF_INTR_MAPPING_REG);
713 	softsp->clr_intr_reg = REG_ADDR(address, OFF_CLR_INTR_REG);
714 	softsp->intr_retry_reg = REG_ADDR(address, OFF_INTR_RETRY_REG);
715 	softsp->sbus_intr_state = REG_ADDR(address, OFF_SBUS_INTR_STATE_REG);
716 	softsp->sbus_pcr = REG_ADDR(address, OFF_SBUS_PCR);
717 	softsp->sbus_pic = REG_ADDR(address, OFF_SBUS_PIC);
718 
719 #undef	REG_ADDR
720 
721 	DPRINTF(SBUS_REGISTERS_DEBUG, ("SYSIO Control reg: 0x%p\n"
722 	    "SBUS Control reg: 0x%p", (void *)softsp->sysio_ctrl_reg,
723 	    (void *)softsp->sbus_ctrl_reg));
724 
725 	softsp->intr_mapping_ign =
726 	    UPAID_TO_IGN(softsp->upa_id) << IMR_IGN_SHIFT;
727 
728 	/* Diag reg 2 is the next 64 bit word after diag reg 1 */
729 	softsp->obio_intr_state = softsp->sbus_intr_state + 1;
730 
731 	(void) sbus_resume_init(softsp, 0);
732 
733 	/*
734 	 * Set the initial burstsizes for each slot to all 1's.  This will
735 	 * get changed at initchild time.
736 	 */
737 	for (i = 0; i < MAX_SBUS_SLOTS; i++)
738 		softsp->sbus_slave_burstsizes[i] = 0xffffffffu;
739 
740 	/*
741 	 * Since SYSIO is used as an interrupt mastering device for slave
742 	 * only UPA devices, we call a dedicated kernel function to register
743 	 * The address of the interrupt mapping register for the slave device.
744 	 *
745 	 * If RISC/sysio is wired to support 2 upa slave interrupt
746 	 * devices then register 2nd mapping register with system.
747 	 * The slave/proxy portid algorithm (decribed in Fusion Desktop Spec)
748 	 * allows for upto 3 slaves per proxy but Psycho/SYSIO only support 2.
749 	 *
750 	 * #upa-interrupt-proxies property defines how many UPA interrupt
751 	 * slaves a bridge is wired to support. Older systems that lack
752 	 * this property will default to 1.
753 	 */
754 	numproxy = ddi_prop_get_int(DDI_DEV_T_ANY, softsp->dip,
755 	    DDI_PROP_DONTPASS, "#upa-interrupt-proxies", 1);
756 
757 	if (numproxy > 0)
758 		set_intr_mapping_reg(softsp->upa_id,
759 		    (uint64_t *)(softsp->intr_mapping_reg +
760 		    FFB_MAPPING_REG), 1);
761 
762 	if (numproxy > 1)
763 		set_intr_mapping_reg(softsp->upa_id,
764 		    (uint64_t *)(softsp->intr_mapping_reg +
765 		    EXP_MAPPING_REG), 2);
766 
767 	/* support for a 3 interrupt proxy would go here */
768 
769 	/* Turn on spurious interrupt counter if we're not a DEBUG kernel. */
770 #ifndef DEBUG
771 	intr_cntr_on = 1;
772 #else
773 	intr_cntr_on = 0;
774 #endif
775 
776 
777 	return (DDI_SUCCESS);
778 }
779 
780 /*
781  * This procedure is part of sbus initialization. It is called by
782  * sbus_init() and is invoked when the system is being resumed.
783  */
784 static int
785 sbus_resume_init(struct sbus_soft_state *softsp, int resume)
786 {
787 	int i;
788 	uint_t sbus_burst_sizes;
789 
790 	/*
791 	 * This shouldn't be needed when we have a real OBP PROM.
792 	 * (RAZ) Get rid of this later!!!
793 	 */
794 
795 	/* for the rest of sun4u's */
796 	*softsp->sysio_ctrl_reg |=
797 	    (uint64_t)softsp->upa_id << 51;
798 
799 	/* Program in the interrupt group number */
800 	*softsp->sysio_ctrl_reg |=
801 	    (uint64_t)softsp->upa_id << SYSIO_IGN;
802 
803 	/*
804 	 * Set appropriate fields of sbus control register.
805 	 * Set DVMA arbitration enable for all devices.
806 	 */
807 	*softsp->sbus_ctrl_reg |= SBUS_ARBIT_ALL;
808 
809 	/* Calculate our burstsizes now so we don't have to do it later */
810 	sbus_burst_sizes = (SYSIO64_BURST_RANGE << SYSIO64_BURST_SHIFT)
811 	    | SYSIO_BURST_RANGE;
812 
813 	sbus_burst_sizes = ddi_getprop(DDI_DEV_T_ANY, softsp->dip,
814 	    DDI_PROP_DONTPASS, "up-burst-sizes", sbus_burst_sizes);
815 
816 	softsp->sbus_burst_sizes = sbus_burst_sizes & SYSIO_BURST_MASK;
817 	softsp->sbus64_burst_sizes = sbus_burst_sizes & SYSIO64_BURST_MASK;
818 
819 	if (!resume) {
820 		/* Set burstsizes to smallest value */
821 		for (i = 0; i < MAX_SBUS_SLOTS; i++) {
822 			volatile uint64_t *config;
823 			uint64_t tmpreg;
824 
825 			config = softsp->sbus_slot_config_reg + i;
826 
827 			/* Write out the burst size */
828 			tmpreg = (uint64_t)0;
829 			*config = tmpreg;
830 
831 			/* Flush any write buffers */
832 			tmpreg = *softsp->sbus_ctrl_reg;
833 
834 			DPRINTF(SBUS_REGISTERS_DEBUG, ("Sbus slot 0x%x slot "
835 			    "configuration reg: 0x%p", (i > 3) ? i + 9 : i,
836 			    (void *)config));
837 		}
838 	} else {
839 		/* Program the slot configuration registers */
840 		for (i = 0; i < MAX_SBUS_SLOTS; i++) {
841 			volatile uint64_t *config;
842 #ifndef lint
843 			uint64_t tmpreg;
844 #endif /* !lint */
845 			uint_t slave_burstsizes;
846 
847 			slave_burstsizes = 0;
848 			if (softsp->sbus_slave_burstsizes[i] != 0xffffffffu) {
849 				config = softsp->sbus_slot_config_reg + i;
850 
851 				if (softsp->sbus_slave_burstsizes[i] &
852 				    SYSIO64_BURST_MASK) {
853 					/* get the 64 bit burstsizes */
854 					slave_burstsizes =
855 					    softsp->sbus_slave_burstsizes[i] >>
856 					    SYSIO64_BURST_SHIFT;
857 
858 					/* Turn on 64 bit PIO's on the sbus */
859 					*config |= SBUS_ETM;
860 				} else {
861 					slave_burstsizes =
862 					    softsp->sbus_slave_burstsizes[i] &
863 					    SYSIO_BURST_MASK;
864 				}
865 
866 				/* Get burstsizes into sysio register format */
867 				slave_burstsizes >>= SYSIO_SLAVEBURST_REGSHIFT;
868 
869 				/* Program the burstsizes */
870 				*config |= (uint64_t)slave_burstsizes;
871 
872 				/* Flush any write buffers */
873 #ifndef lint
874 				tmpreg = *softsp->sbus_ctrl_reg;
875 #endif /* !lint */
876 			}
877 		}
878 	}
879 
880 	return (DDI_SUCCESS);
881 }
882 
883 #define	get_prop(di, pname, flag, pval, plen)	\
884 	(ddi_prop_op(DDI_DEV_T_NONE, di, PROP_LEN_AND_VAL_ALLOC, \
885 	flag | DDI_PROP_DONTPASS | DDI_PROP_CANSLEEP, \
886 	pname, (caddr_t)pval, plen))
887 
888 struct prop_ispec {
889 	uint_t	pri, vec;
890 };
891 
892 /*
893  * Create a sysio_parent_private_data structure from the ddi properties of
894  * the dev_info node.
895  *
896  * The "reg" and either an "intr" or "interrupts" properties are required
897  * if the driver wishes to create mappings or field interrupts on behalf
898  * of the device.
899  *
900  * The "reg" property is assumed to be a list of at least one triple
901  *
902  *	<bustype, address, size>*1
903  *
904  * On pre-fusion machines, the "intr" property was the IPL for the system.
905  * Most new sbus devices post an "interrupts" property that corresponds to
906  * a particular bus level.  All devices on fusion using an "intr" property
907  * will have it's contents translated into a bus level.  Hence, "intr" and
908  * "interrupts on the fusion platform can be treated the same.
909  *
910  * The "interrupts" property is assumed to be a list of at least one
911  * n-tuples that describes the interrupt capabilities of the bus the device
912  * is connected to.  For SBus, this looks like
913  *
914  *	<SBus-level>*1
915  *
916  * (This property obsoletes the 'intr' property).
917  *
918  * The OBP_RANGES property is optional.
919  */
920 static void
921 make_sbus_ppd(dev_info_t *child)
922 {
923 	struct sysio_parent_private_data *pdptr;
924 	int n;
925 	int *reg_prop, *rgstr_prop, *rng_prop;
926 	int reg_len, rgstr_len, rng_len;
927 
928 	/*
929 	 * Make the function idempotent, because name_child could
930 	 * be called multiple times on a node.
931 	 */
932 	if (ddi_get_parent_data(child) != NULL)
933 		return;
934 
935 	pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
936 	ddi_set_parent_data(child, pdptr);
937 
938 	/*
939 	 * Handle the 'reg'/'registers' properties.
940 	 * "registers" overrides "reg", but requires that "reg" be exported,
941 	 * so we can handle wildcard specifiers.  "registers" implies an
942 	 * sbus style device.  "registers" implies that we insert the
943 	 * correct value in the regspec_bustype field of each spec for a real
944 	 * (non-pseudo) device node.  "registers" is a s/w only property, so
945 	 * we inhibit the prom search for this property.
946 	 */
947 	if (get_prop(child, OBP_REG, 0, &reg_prop, &reg_len) != DDI_SUCCESS)
948 		reg_len = 0;
949 
950 	/*
951 	 * Save the underlying slot number and slot offset.
952 	 * Among other things, we use these to name the child node.
953 	 */
954 	pdptr->slot = (uint_t)-1;
955 	if (reg_len != 0) {
956 		pdptr->slot = ((struct regspec *)reg_prop)->regspec_bustype;
957 		pdptr->offset = ((struct regspec *)reg_prop)->regspec_addr;
958 	}
959 
960 	rgstr_len = 0;
961 	(void) get_prop(child, "registers", DDI_PROP_NOTPROM,
962 	    &rgstr_prop, &rgstr_len);
963 
964 	if (rgstr_len != 0)  {
965 		if (ndi_dev_is_persistent_node(child) && (reg_len != 0))  {
966 			/*
967 			 * Convert wildcard "registers" for a real node...
968 			 * (Else, this is the wildcard prototype node)
969 			 */
970 			struct regspec *rp = (struct regspec *)reg_prop;
971 			uint_t slot = rp->regspec_bustype;
972 			int i;
973 
974 			rp = (struct regspec *)rgstr_prop;
975 			n = rgstr_len / sizeof (struct regspec);
976 			for (i = 0; i < n; ++i, ++rp)
977 				rp->regspec_bustype = slot;
978 		}
979 
980 		if (reg_len != 0)
981 			kmem_free(reg_prop, reg_len);
982 
983 		reg_prop = rgstr_prop;
984 		reg_len = rgstr_len;
985 	}
986 	if (reg_len != 0)  {
987 		pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
988 		pdptr->par_reg = (struct regspec *)reg_prop;
989 	}
990 
991 	/*
992 	 * See if I have ranges.
993 	 */
994 	if (get_prop(child, OBP_RANGES, 0, &rng_prop, &rng_len) ==
995 	    DDI_SUCCESS) {
996 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
997 		pdptr->par_rng = (struct rangespec *)rng_prop;
998 	}
999 }
1000 
1001 /*
1002  * Special handling for "sbusmem" pseudo device nodes.
1003  * The special handling automatically creates the "reg"
1004  * property in the sbusmem nodes, based on the parent's
1005  * property so that each slot will automtically have a
1006  * correctly sized "reg" property, once created,
1007  * sbus_initchild does the rest of the work to init
1008  * the child node.
1009  */
1010 static int
1011 sbusmem_initchild(dev_info_t *dip, dev_info_t *child)
1012 {
1013 	int i, n;
1014 	int slot, size;
1015 	char ident[10];
1016 
1017 	slot = ddi_getprop(DDI_DEV_T_NONE, child,
1018 	    DDI_PROP_DONTPASS | DDI_PROP_CANSLEEP, "slot", -1);
1019 	if (slot == -1) {
1020 		DPRINTF(SBUS_SBUSMEM_DEBUG, ("can't get slot property\n"));
1021 		return (DDI_FAILURE);
1022 	}
1023 
1024 	/*
1025 	 * Find the parent range corresponding to this "slot",
1026 	 * so we can set the size of the child's "reg" property.
1027 	 */
1028 	for (i = 0, n = sparc_pd_getnrng(dip); i < n; i++) {
1029 		struct rangespec *rp = sparc_pd_getrng(dip, i);
1030 
1031 		if (rp->rng_cbustype == (uint_t)slot) {
1032 			struct regspec r;
1033 
1034 			/* create reg property */
1035 
1036 			r.regspec_bustype = (uint_t)slot;
1037 			r.regspec_addr = 0;
1038 			r.regspec_size = rp->rng_size;
1039 			(void) ddi_prop_update_int_array(DDI_DEV_T_NONE,
1040 			    child, "reg", (int *)&r,
1041 			    sizeof (struct regspec) / sizeof (int));
1042 
1043 			/* create size property for slot */
1044 
1045 			size = rp->rng_size;
1046 			(void) ddi_prop_update_int(DDI_DEV_T_NONE,
1047 			    child, "size", size);
1048 
1049 			(void) sprintf(ident, "slot%x", slot);
1050 			(void) ddi_prop_update_string(DDI_DEV_T_NONE,
1051 			    child, "ident", ident);
1052 
1053 			return (DDI_SUCCESS);
1054 		}
1055 	}
1056 	return (DDI_FAILURE);
1057 }
1058 
1059 /*
1060  * Nexus routine to name a child.
1061  * It takes a dev_info node and a buffer, returns the name
1062  * in the buffer.
1063  */
1064 static int
1065 sysio_name_child(dev_info_t *child, char *name, int namelen)
1066 {
1067 	/*
1068 	 * Fill in parent-private data
1069 	 */
1070 	make_sbus_ppd(child);
1071 
1072 	/*
1073 	 * Name the device node using the underlying (prom) values
1074 	 * of the first entry in the "reg" property.  For SBus devices,
1075 	 * the textual form of the name is <name>@<slot#>,<offset>.
1076 	 * This must match the prom's pathname or mountroot, etc, won't
1077 	 */
1078 	name[0] = '\0';
1079 	if (sysio_pd_getslot(child) != (uint_t)-1) {
1080 		(void) snprintf(name, namelen, "%x,%x",
1081 		    sysio_pd_getslot(child), sysio_pd_getoffset(child));
1082 	}
1083 	return (DDI_SUCCESS);
1084 }
1085 
1086 /*
1087  * Called from the bus_ctl op of sysio sbus nexus driver
1088  * to implement the DDI_CTLOPS_INITCHILD operation.  That is, it names
1089  * the children of sysio sbusses based on the reg spec.
1090  *
1091  * Handles the following properties:
1092  *
1093  *	Property		value
1094  *	  Name			type
1095  *
1096  *	reg		register spec
1097  *	registers	wildcard s/w sbus register spec (.conf file property)
1098  *	intr		old-form interrupt spec
1099  *	interrupts	new (bus-oriented) interrupt spec
1100  *	ranges		range spec
1101  */
1102 static int
1103 sbus_initchild(dev_info_t *dip, dev_info_t *child)
1104 {
1105 	char name[MAXNAMELEN];
1106 	ulong_t slave_burstsizes;
1107 	int slot;
1108 	volatile uint64_t *slot_reg;
1109 #ifndef lint
1110 	uint64_t tmp;
1111 #endif /* !lint */
1112 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1113 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1114 
1115 	if (strcmp(ddi_get_name(child), "sbusmem") == 0) {
1116 		if (sbusmem_initchild(dip, child) != DDI_SUCCESS)
1117 			return (DDI_FAILURE);
1118 	}
1119 
1120 	/*
1121 	 * If this is a s/w node defined with the "registers" property,
1122 	 * this means that this is a wildcard specifier, whose properties
1123 	 * get applied to all previously defined h/w nodes with the same
1124 	 * name and same parent.
1125 	 */
1126 	if (ndi_dev_is_persistent_node(child) == 0) {
1127 		int len = 0;
1128 		if ((ddi_getproplen(DDI_DEV_T_ANY, child, DDI_PROP_NOTPROM,
1129 		    "registers", &len) == DDI_SUCCESS) && (len != 0)) {
1130 			ndi_merge_wildcard_node(child);
1131 			return (DDI_FAILURE);
1132 		}
1133 	}
1134 
1135 	/* name the child */
1136 	(void) sysio_name_child(child, name, MAXNAMELEN);
1137 	ddi_set_name_addr(child, name);
1138 
1139 	/*
1140 	 * If a pseudo node, attempt to merge it into a hw node.
1141 	 * If merge is successful, we uinitialize the node and
1142 	 * return failure, to allow caller to remove the node.
1143 	 * The merge fails, this is a real pseudo node. Allow
1144 	 * initchild to continue.
1145 	 */
1146 	if ((ndi_dev_is_persistent_node(child) == 0) &&
1147 	    (ndi_merge_node(child, sysio_name_child) == DDI_SUCCESS)) {
1148 		(void) sbus_uninitchild(child);
1149 		return (DDI_FAILURE);
1150 	}
1151 
1152 	/* Figure out the child devices slot number */
1153 	slot = sysio_pd_getslot(child);
1154 
1155 	/* If we don't have a reg property, bypass slot specific programming */
1156 	if (slot < 0 || slot >= MAX_SBUS_SLOT_ADDR) {
1157 #ifdef DEBUG
1158 		cmn_err(CE_WARN, "?Invalid sbus slot address 0x%x for %s "
1159 		    "device\n", slot, ddi_get_name(child));
1160 #endif /* DEBUG */
1161 		goto done;
1162 	}
1163 
1164 	/* Modify the onboard slot numbers if applicable. */
1165 	slot = (slot > 3) ? slot - 9 : slot;
1166 
1167 	/* Get the slot configuration register for the child device. */
1168 	slot_reg = softsp->sbus_slot_config_reg + slot;
1169 
1170 	/*
1171 	 * Program the devices slot configuration register for the
1172 	 * appropriate slave burstsizes.
1173 	 * The upper 16 bits of the slave-burst-sizes are for 64 bit sbus
1174 	 * and the lower 16 bits are the burst sizes for 32 bit sbus. If
1175 	 * we see that a device supports both 64 bit and 32 bit slave accesses,
1176 	 * we default to 64 bit and turn it on in the slot config reg.
1177 	 *
1178 	 * For older devices, make sure we check the "burst-sizes" property
1179 	 * too.
1180 	 */
1181 	if ((slave_burstsizes = (ulong_t)ddi_getprop(DDI_DEV_T_ANY, child,
1182 	    DDI_PROP_DONTPASS, "slave-burst-sizes", 0)) != 0 ||
1183 	    (slave_burstsizes = (ulong_t)ddi_getprop(DDI_DEV_T_ANY, child,
1184 	    DDI_PROP_DONTPASS, "burst-sizes", 0)) != 0) {
1185 		uint_t burstsizes = 0;
1186 
1187 		/*
1188 		 * If we only have 32 bit burst sizes from a previous device,
1189 		 * mask out any burstsizes for 64 bit mode.
1190 		 */
1191 		if (((softsp->sbus_slave_burstsizes[slot] &
1192 		    0xffff0000u) == 0) &&
1193 		    ((softsp->sbus_slave_burstsizes[slot] & 0xffff) != 0)) {
1194 			slave_burstsizes &= 0xffff;
1195 		}
1196 
1197 		/*
1198 		 * If "slave-burst-sizes was defined but we have 0 at this
1199 		 * point, we must have had 64 bit burstsizes, however a prior
1200 		 * device can only burst in 32 bit mode.  Therefore, we leave
1201 		 * the burstsizes in the 32 bit mode and disregard the 64 bit.
1202 		 */
1203 		if (slave_burstsizes == 0)
1204 			goto done;
1205 
1206 		/*
1207 		 * We and in the new burst sizes with that of prior devices.
1208 		 * This ensures that we always take the least common
1209 		 * denominator of the burst sizes.
1210 		 */
1211 		softsp->sbus_slave_burstsizes[slot] &=
1212 		    (slave_burstsizes &
1213 		    ((SYSIO64_SLAVEBURST_RANGE <<
1214 		    SYSIO64_BURST_SHIFT) |
1215 		    SYSIO_SLAVEBURST_RANGE));
1216 
1217 		/* Get the 64 bit burstsizes. */
1218 		if (softsp->sbus_slave_burstsizes[slot] &
1219 		    SYSIO64_BURST_MASK) {
1220 			/* get the 64 bit burstsizes */
1221 			burstsizes = softsp->sbus_slave_burstsizes[slot] >>
1222 			    SYSIO64_BURST_SHIFT;
1223 
1224 			/* Turn on 64 bit PIO's on the sbus */
1225 			*slot_reg |= SBUS_ETM;
1226 		} else {
1227 			/* Turn off 64 bit PIO's on the sbus */
1228 			*slot_reg &= ~SBUS_ETM;
1229 
1230 			/* Get the 32 bit burstsizes if we don't have 64 bit. */
1231 			if (softsp->sbus_slave_burstsizes[slot] &
1232 			    SYSIO_BURST_MASK) {
1233 				burstsizes =
1234 				    softsp->sbus_slave_burstsizes[slot] &
1235 				    SYSIO_BURST_MASK;
1236 			}
1237 		}
1238 
1239 		/* Get the burstsizes into sysio register format */
1240 		burstsizes >>= SYSIO_SLAVEBURST_REGSHIFT;
1241 
1242 		/* Reset reg in case we're scaling back */
1243 		*slot_reg &= (uint64_t)~SYSIO_SLAVEBURST_MASK;
1244 
1245 		/* Program the burstsizes */
1246 		*slot_reg |= (uint64_t)burstsizes;
1247 
1248 		/* Flush system load/store buffers */
1249 #ifndef lint
1250 		tmp = *slot_reg;
1251 #endif /* !lint */
1252 	}
1253 
1254 done:
1255 	return (DDI_SUCCESS);
1256 }
1257 
1258 static int
1259 sbus_uninitchild(dev_info_t *dip)
1260 {
1261 	struct sysio_parent_private_data *pdptr;
1262 	size_t n;
1263 
1264 	if ((pdptr = ddi_get_parent_data(dip)) != NULL)  {
1265 		if ((n = (size_t)pdptr->par_nrng) != 0)
1266 			kmem_free(pdptr->par_rng, n *
1267 			    sizeof (struct rangespec));
1268 
1269 		if ((n = pdptr->par_nreg) != 0)
1270 			kmem_free(pdptr->par_reg, n * sizeof (struct regspec));
1271 
1272 		kmem_free(pdptr, sizeof (*pdptr));
1273 		ddi_set_parent_data(dip, NULL);
1274 	}
1275 	ddi_set_name_addr(dip, NULL);
1276 	/*
1277 	 * Strip the node to properly convert it back to prototype form
1278 	 */
1279 	ddi_remove_minor_node(dip, NULL);
1280 	impl_rem_dev_props(dip);
1281 	return (DDI_SUCCESS);
1282 }
1283 
1284 #ifdef  DEBUG
1285 int	sbus_peekfault_cnt = 0;
1286 int	sbus_pokefault_cnt = 0;
1287 #endif  /* DEBUG */
1288 
1289 static int
1290 sbus_ctlops_poke(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args)
1291 {
1292 	int err = DDI_SUCCESS;
1293 	on_trap_data_t otd;
1294 	volatile uint64_t tmpreg;
1295 
1296 	/* Cautious access not supported. */
1297 	if (in_args->handle != NULL)
1298 		return (DDI_FAILURE);
1299 
1300 	mutex_enter(&softsp->pokefault_mutex);
1301 	softsp->ontrap_data = &otd;
1302 
1303 	/* Set up protected environment. */
1304 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1305 		uintptr_t tramp = otd.ot_trampoline;
1306 
1307 		otd.ot_trampoline = (uintptr_t)&poke_fault;
1308 		err = do_poke(in_args->size, (void *)in_args->dev_addr,
1309 		    (void *)in_args->host_addr);
1310 		otd.ot_trampoline = tramp;
1311 	} else
1312 		err = DDI_FAILURE;
1313 
1314 	/* Flush any sbus store buffers. */
1315 	tmpreg = *softsp->sbus_ctrl_reg;
1316 
1317 	/*
1318 	 * Read the sbus error reg and see if a fault occured.  If
1319 	 * one has, give the SYSIO time to packetize the interrupt
1320 	 * for the fault and send it out.  The sbus error handler will
1321 	 * 0 these fields when it's called to service the fault.
1322 	 */
1323 	tmpreg = *softsp->sbus_err_reg;
1324 	while (tmpreg & SB_AFSR_P_TO || tmpreg & SB_AFSR_P_BERR)
1325 		tmpreg = *softsp->sbus_err_reg;
1326 
1327 	/* Take down protected environment. */
1328 	no_trap();
1329 
1330 	softsp->ontrap_data = NULL;
1331 	mutex_exit(&softsp->pokefault_mutex);
1332 
1333 #ifdef  DEBUG
1334 	if (err == DDI_FAILURE)
1335 		sbus_pokefault_cnt++;
1336 #endif
1337 	return (err);
1338 }
1339 
1340 /*ARGSUSED*/
1341 static int
1342 sbus_ctlops_peek(struct sbus_soft_state *softsp, peekpoke_ctlops_t *in_args,
1343     void *result)
1344 {
1345 	int err = DDI_SUCCESS;
1346 	on_trap_data_t otd;
1347 
1348 	/* No safe access except for peek is supported. */
1349 	if (in_args->handle != NULL)
1350 		return (DDI_FAILURE);
1351 
1352 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1353 		uintptr_t tramp = otd.ot_trampoline;
1354 
1355 		otd.ot_trampoline = (uintptr_t)&peek_fault;
1356 		err = do_peek(in_args->size, (void *)in_args->dev_addr,
1357 		    (void *)in_args->host_addr);
1358 		otd.ot_trampoline = tramp;
1359 		result = (void *)in_args->host_addr;
1360 	} else
1361 		err = DDI_FAILURE;
1362 
1363 #ifdef  DEBUG
1364 	if (err == DDI_FAILURE)
1365 		sbus_peekfault_cnt++;
1366 #endif
1367 	no_trap();
1368 	return (err);
1369 }
1370 
1371 static int
1372 sbus_ctlops(dev_info_t *dip, dev_info_t *rdip,
1373     ddi_ctl_enum_t op, void *arg, void *result)
1374 {
1375 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1376 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1377 
1378 	switch (op) {
1379 
1380 	case DDI_CTLOPS_INITCHILD:
1381 		return (sbus_initchild(dip, (dev_info_t *)arg));
1382 
1383 	case DDI_CTLOPS_UNINITCHILD:
1384 		return (sbus_uninitchild(arg));
1385 
1386 	case DDI_CTLOPS_IOMIN: {
1387 		int val = *((int *)result);
1388 
1389 		/*
1390 		 * The 'arg' value of nonzero indicates 'streaming' mode.
1391 		 * If in streaming mode, pick the largest of our burstsizes
1392 		 * available and say that that is our minimum value (modulo
1393 		 * what mincycle is).
1394 		 */
1395 		if ((int)(uintptr_t)arg)
1396 			val = maxbit(val,
1397 			    (1 << (ddi_fls(softsp->sbus_burst_sizes) - 1)));
1398 		else
1399 			val = maxbit(val,
1400 			    (1 << (ddi_ffs(softsp->sbus_burst_sizes) - 1)));
1401 
1402 		*((int *)result) = val;
1403 		return (ddi_ctlops(dip, rdip, op, arg, result));
1404 	}
1405 
1406 	case DDI_CTLOPS_REPORTDEV: {
1407 		dev_info_t *pdev;
1408 		int i, n, len, f_len;
1409 		char *msgbuf;
1410 
1411 	/*
1412 	 * So we can do one atomic cmn_err call, we allocate a 4k
1413 	 * buffer, and format the reportdev message into that buffer,
1414 	 * send it to cmn_err, and then free the allocated buffer.
1415 	 * If message is longer than 1k, the message is truncated and
1416 	 * an error message is emitted (debug kernel only).
1417 	 */
1418 #define	REPORTDEV_BUFSIZE	1024
1419 
1420 		int sbusid = ddi_get_instance(dip);
1421 
1422 		if (ddi_get_parent_data(rdip) == NULL)
1423 			return (DDI_FAILURE);
1424 
1425 		msgbuf = kmem_zalloc(REPORTDEV_BUFSIZE, KM_SLEEP);
1426 
1427 		pdev = ddi_get_parent(rdip);
1428 		f_len = snprintf(msgbuf, REPORTDEV_BUFSIZE,
1429 		    "%s%d at %s%d: SBus%d ",
1430 		    ddi_driver_name(rdip), ddi_get_instance(rdip),
1431 		    ddi_driver_name(pdev), ddi_get_instance(pdev), sbusid);
1432 		len = strlen(msgbuf);
1433 
1434 		for (i = 0, n = sysio_pd_getnreg(rdip); i < n; i++) {
1435 			struct regspec *rp;
1436 
1437 			rp = sysio_pd_getreg(rdip, i);
1438 			if (i != 0) {
1439 				f_len += snprintf(msgbuf + len,
1440 				    REPORTDEV_BUFSIZE - len, " and ");
1441 				len = strlen(msgbuf);
1442 			}
1443 
1444 			f_len += snprintf(msgbuf + len, REPORTDEV_BUFSIZE - len,
1445 			    "slot 0x%x offset 0x%x",
1446 			    rp->regspec_bustype, rp->regspec_addr);
1447 			len = strlen(msgbuf);
1448 		}
1449 
1450 		for (i = 0, n = i_ddi_get_intx_nintrs(rdip); i < n; i++) {
1451 			uint32_t sbuslevel, inum, pri;
1452 
1453 			if (i != 0) {
1454 				f_len += snprintf(msgbuf + len,
1455 				    REPORTDEV_BUFSIZE - len, ",");
1456 				len = strlen(msgbuf);
1457 			}
1458 
1459 			sbuslevel = inum = i_ddi_get_inum(rdip, i);
1460 			pri = i_ddi_get_intr_pri(rdip, i);
1461 
1462 			(void) sbus_xlate_intrs(dip, rdip, &inum,
1463 			    &pri, softsp->intr_mapping_ign);
1464 
1465 			if (sbuslevel > MAX_SBUS_LEVEL)
1466 				f_len += snprintf(msgbuf + len,
1467 				    REPORTDEV_BUFSIZE - len,
1468 				    " Onboard device ");
1469 			else
1470 				f_len += snprintf(msgbuf + len,
1471 				    REPORTDEV_BUFSIZE - len, " SBus level %d ",
1472 				    sbuslevel);
1473 			len = strlen(msgbuf);
1474 
1475 			f_len += snprintf(msgbuf + len, REPORTDEV_BUFSIZE - len,
1476 			    "sparc9 ipl %d", pri);
1477 			len = strlen(msgbuf);
1478 		}
1479 #ifdef DEBUG
1480 	if (f_len + 1 >= REPORTDEV_BUFSIZE) {
1481 		cmn_err(CE_NOTE, "next message is truncated: "
1482 		    "printed length 1024, real length %d", f_len);
1483 	}
1484 #endif /* DEBUG */
1485 
1486 		cmn_err(CE_CONT, "?%s\n", msgbuf);
1487 		kmem_free(msgbuf, REPORTDEV_BUFSIZE);
1488 		return (DDI_SUCCESS);
1489 
1490 #undef	REPORTDEV_BUFSIZE
1491 	}
1492 
1493 	case DDI_CTLOPS_SLAVEONLY:
1494 		return (DDI_FAILURE);
1495 
1496 	case DDI_CTLOPS_AFFINITY: {
1497 		dev_info_t *dipb = (dev_info_t *)arg;
1498 		int r_slot, b_slot;
1499 
1500 		if ((b_slot = find_sbus_slot(dip, dipb)) < 0)
1501 			return (DDI_FAILURE);
1502 
1503 		if ((r_slot = find_sbus_slot(dip, rdip)) < 0)
1504 			return (DDI_FAILURE);
1505 
1506 		return ((b_slot == r_slot)? DDI_SUCCESS : DDI_FAILURE);
1507 
1508 	}
1509 	case DDI_CTLOPS_DMAPMAPC:
1510 		cmn_err(CE_CONT, "?DDI_DMAPMAPC called!!\n");
1511 		return (DDI_FAILURE);
1512 
1513 	case DDI_CTLOPS_POKE:
1514 		return (sbus_ctlops_poke(softsp, (peekpoke_ctlops_t *)arg));
1515 
1516 	case DDI_CTLOPS_PEEK:
1517 		return (sbus_ctlops_peek(softsp, (peekpoke_ctlops_t *)arg,
1518 		    result));
1519 
1520 	case DDI_CTLOPS_DVMAPAGESIZE:
1521 		*(ulong_t *)result = IOMMU_PAGESIZE;
1522 		return (DDI_SUCCESS);
1523 
1524 	default:
1525 		return (ddi_ctlops(dip, rdip, op, arg, result));
1526 	}
1527 }
1528 
1529 static int
1530 find_sbus_slot(dev_info_t *dip, dev_info_t *rdip)
1531 {
1532 	dev_info_t *child;
1533 	int slot = -1;
1534 
1535 	/*
1536 	 * look for the node that's a direct child of this Sbus node.
1537 	 */
1538 	while (rdip && (child = ddi_get_parent(rdip)) != dip) {
1539 		rdip = child;
1540 	}
1541 
1542 	/*
1543 	 * If there is one, get the slot number of *my* child
1544 	 */
1545 	if (child == dip)
1546 		slot = sysio_pd_getslot(rdip);
1547 
1548 	return (slot);
1549 }
1550 
1551 /*
1552  * This is the sbus interrupt routine wrapper function.  This function
1553  * installs itself as a child devices interrupt handler.  It's function is
1554  * to dispatch a child devices interrupt handler, and then
1555  * reset the interrupt clear register for the child device.
1556  *
1557  * Warning: This routine may need to be implemented as an assembly level
1558  * routine to improve performance.
1559  */
1560 
1561 #define	MAX_INTR_CNT 10
1562 
1563 static uint_t
1564 sbus_intr_wrapper(caddr_t arg)
1565 {
1566 	uint_t intr_return = DDI_INTR_UNCLAIMED;
1567 	volatile uint64_t tmpreg;
1568 	struct sbus_wrapper_arg *intr_info;
1569 	struct sbus_intr_handler *intr_handler;
1570 	uchar_t *spurious_cntr;
1571 
1572 	intr_info = (struct sbus_wrapper_arg *)arg;
1573 	spurious_cntr = &intr_info->softsp->spurious_cntrs[intr_info->pil];
1574 	intr_handler = intr_info->handler_list;
1575 
1576 	while (intr_handler) {
1577 		caddr_t arg1 = intr_handler->arg1;
1578 		caddr_t arg2 = intr_handler->arg2;
1579 		uint_t (*funcp)() = intr_handler->funcp;
1580 		dev_info_t *dip = intr_handler->dip;
1581 		int r;
1582 
1583 		if (intr_handler->intr_state == SBUS_INTR_STATE_DISABLE) {
1584 			intr_handler = intr_handler->next;
1585 			continue;
1586 		}
1587 
1588 		DTRACE_PROBE4(interrupt__start, dev_info_t, dip,
1589 		    void *, funcp, caddr_t, arg1, caddr_t, arg2);
1590 
1591 		r = (*funcp)(arg1, arg2);
1592 
1593 		DTRACE_PROBE4(interrupt__complete, dev_info_t, dip,
1594 		    void *, funcp, caddr_t, arg1, int, r);
1595 
1596 		intr_return |= r;
1597 		intr_handler = intr_handler->next;
1598 	}
1599 
1600 	/* Set the interrupt state machine to idle */
1601 	tmpreg = *intr_info->softsp->sbus_ctrl_reg;
1602 	tmpreg = SBUS_INTR_IDLE;
1603 	*intr_info->clear_reg = tmpreg;
1604 	tmpreg = *intr_info->softsp->sbus_ctrl_reg;
1605 
1606 	if (intr_return == DDI_INTR_UNCLAIMED) {
1607 		(*spurious_cntr)++;
1608 
1609 		if (*spurious_cntr < MAX_INTR_CNT) {
1610 			if (intr_cntr_on)
1611 				return (DDI_INTR_CLAIMED);
1612 		}
1613 #ifdef DEBUG
1614 		else if (intr_info->pil >= LOCK_LEVEL) {
1615 			cmn_err(CE_PANIC, "%d unclaimed interrupts at "
1616 			    "interrupt level %d", MAX_INTR_CNT,
1617 			    intr_info->pil);
1618 		}
1619 #endif
1620 
1621 		/*
1622 		 * Reset spurious counter once we acknowledge
1623 		 * it to the system level.
1624 		 */
1625 		*spurious_cntr = (uchar_t)0;
1626 	} else {
1627 		*spurious_cntr = (uchar_t)0;
1628 	}
1629 
1630 	return (intr_return);
1631 }
1632 
1633 /*
1634  * add_intrspec - Add an interrupt specification.
1635  */
1636 static int
1637 sbus_add_intr_impl(dev_info_t *dip, dev_info_t *rdip,
1638     ddi_intr_handle_impl_t *hdlp)
1639 {
1640 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1641 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1642 	volatile uint64_t *mondo_vec_reg;
1643 	volatile uint64_t tmp_mondo_vec;
1644 	volatile uint64_t *intr_state_reg;
1645 	volatile uint64_t tmpreg;	/* HW flush reg */
1646 	uint_t start_bit;
1647 	int ino;
1648 	uint_t cpu_id;
1649 	struct sbus_wrapper_arg *sbus_arg;
1650 	struct sbus_intr_handler *intr_handler;
1651 	int slot;
1652 	/* Interrupt state machine reset flag */
1653 	int reset_ism_register = 1;
1654 	int ret = DDI_SUCCESS;
1655 
1656 	/* Check if we have a valid sbus slot address */
1657 	slot = find_sbus_slot(dip, rdip);
1658 	if (slot >= MAX_SBUS_SLOT_ADDR || slot < 0) {
1659 		cmn_err(CE_WARN, "Invalid sbus slot 0x%x during add intr\n",
1660 		    slot);
1661 		return (DDI_FAILURE);
1662 	}
1663 
1664 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: sbus interrupt %d "
1665 	    "for device %s%d\n", hdlp->ih_vector, ddi_driver_name(rdip),
1666 	    ddi_get_instance(rdip)));
1667 
1668 	/* Xlate the interrupt */
1669 	if (sbus_xlate_intrs(dip, rdip, (uint32_t *)&hdlp->ih_vector,
1670 	    &hdlp->ih_pri, softsp->intr_mapping_ign) == DDI_FAILURE) {
1671 		cmn_err(CE_WARN, "Can't xlate SBUS devices %s interrupt.\n",
1672 		    ddi_driver_name(rdip));
1673 		return (DDI_FAILURE);
1674 	}
1675 
1676 	/* get the ino number */
1677 	ino = hdlp->ih_vector & SBUS_MAX_INO;
1678 	mondo_vec_reg = (softsp->intr_mapping_reg +
1679 	    ino_table[ino]->mapping_reg);
1680 
1681 	/*
1682 	 * This is an intermediate step in identifying
1683 	 * the exact bits which represent the device in the interrupt
1684 	 * state diagnostic register.
1685 	 */
1686 	if (ino > MAX_MONDO_EXTERNAL) {
1687 		start_bit = ino_table[ino]->diagreg_shift;
1688 		intr_state_reg = softsp->obio_intr_state;
1689 	} else {
1690 		start_bit = 16 * (ino >> 3) + 2 * (ino & 0x7);
1691 		intr_state_reg = softsp->sbus_intr_state;
1692 	}
1693 
1694 
1695 	/* Allocate a nexus interrupt data structure */
1696 	intr_handler = kmem_zalloc(sizeof (struct sbus_intr_handler), KM_SLEEP);
1697 	intr_handler->dip = rdip;
1698 	intr_handler->funcp = hdlp->ih_cb_func;
1699 	intr_handler->arg1 = hdlp->ih_cb_arg1;
1700 	intr_handler->arg2 = hdlp->ih_cb_arg2;
1701 	intr_handler->inum = hdlp->ih_inum;
1702 
1703 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: xlated interrupt 0x%x "
1704 	    "intr_handler 0x%p\n", hdlp->ih_vector, (void *)intr_handler));
1705 
1706 	/*
1707 	 * Grab this lock here. So it will protect the poll list.
1708 	 */
1709 	mutex_enter(&softsp->intr_poll_list_lock);
1710 
1711 	sbus_arg = softsp->intr_list[ino];
1712 	/* Check if we have a poll list to deal with */
1713 	if (sbus_arg) {
1714 		tmp_mondo_vec = *mondo_vec_reg;
1715 		tmp_mondo_vec &= ~INTERRUPT_VALID;
1716 		*mondo_vec_reg = tmp_mondo_vec;
1717 
1718 		tmpreg = *softsp->sbus_ctrl_reg;
1719 #ifdef	lint
1720 		tmpreg = tmpreg;
1721 #endif
1722 
1723 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr:sbus_arg exists "
1724 		    "0x%p\n", (void *)sbus_arg));
1725 		/*
1726 		 * Two bits per ino in the diagnostic register
1727 		 * indicate the status of its interrupt.
1728 		 * 0 - idle, 1 - transmit, 3 - pending.
1729 		 */
1730 		while (((*intr_state_reg >>
1731 		    start_bit) & 0x3) == INT_PENDING && !panicstr)
1732 			/* empty */;
1733 
1734 		intr_handler->next = sbus_arg->handler_list;
1735 		sbus_arg->handler_list = intr_handler;
1736 
1737 		reset_ism_register = 0;
1738 	} else {
1739 		sbus_arg = kmem_zalloc(sizeof (struct sbus_wrapper_arg),
1740 		    KM_SLEEP);
1741 
1742 		softsp->intr_list[ino] = sbus_arg;
1743 		sbus_arg->clear_reg = (softsp->clr_intr_reg +
1744 		    ino_table[ino]->clear_reg);
1745 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr:Ino 0x%x Interrupt "
1746 		    "clear reg: 0x%p\n", ino, (void *)sbus_arg->clear_reg));
1747 		sbus_arg->softsp = softsp;
1748 		sbus_arg->handler_list = intr_handler;
1749 
1750 		/*
1751 		 * No handler added yet in the interrupt vector
1752 		 * table for this ino.
1753 		 * Install the nexus interrupt wrapper in the
1754 		 * system. The wrapper will call the device
1755 		 * interrupt handler.
1756 		 */
1757 		DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp,
1758 		    (ddi_intr_handler_t *)sbus_intr_wrapper,
1759 		    (caddr_t)sbus_arg, NULL);
1760 
1761 		ret = i_ddi_add_ivintr(hdlp);
1762 
1763 		/*
1764 		 * Restore original interrupt handler
1765 		 * and arguments in interrupt handle.
1766 		 */
1767 		DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, intr_handler->funcp,
1768 		    intr_handler->arg1, intr_handler->arg2);
1769 
1770 		if (ret != DDI_SUCCESS) {
1771 			mutex_exit(&softsp->intr_poll_list_lock);
1772 			goto done;
1773 		}
1774 
1775 		if ((slot >= EXT_SBUS_SLOTS) ||
1776 		    (softsp->intr_hndlr_cnt[slot] == 0)) {
1777 
1778 			cpu_id = intr_dist_cpuid();
1779 			tmp_mondo_vec =
1780 			    cpu_id << IMR_TID_SHIFT;
1781 			DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: initial "
1782 			    "mapping reg 0x%lx\n", tmp_mondo_vec));
1783 		} else {
1784 			/*
1785 			 * There is already a different
1786 			 * ino programmed at this IMR.
1787 			 * Just read the IMR out to get the
1788 			 * correct MID target.
1789 			 */
1790 			tmp_mondo_vec = *mondo_vec_reg;
1791 			tmp_mondo_vec &= ~INTERRUPT_VALID;
1792 			*mondo_vec_reg = tmp_mondo_vec;
1793 			DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: existing "
1794 			    "mapping reg 0x%lx\n", tmp_mondo_vec));
1795 		}
1796 
1797 		sbus_arg->pil = hdlp->ih_pri;
1798 
1799 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr:Alloc sbus_arg "
1800 		    "0x%p\n", (void *)sbus_arg));
1801 	}
1802 
1803 	softsp->intr_hndlr_cnt[slot]++;
1804 
1805 	mutex_exit(&softsp->intr_poll_list_lock);
1806 
1807 	/*
1808 	 * Program the ino vector accordingly.  This MUST be the
1809 	 * last thing we do.  Once we program the ino, the device
1810 	 * may begin to interrupt. Add this hardware interrupt to
1811 	 * the interrupt lists, and get the CPU to target it at.
1812 	 */
1813 
1814 	tmp_mondo_vec |= INTERRUPT_VALID;
1815 
1816 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Add intr: Ino 0x%x mapping reg: 0x%p "
1817 	    "Intr cntr %d\n", ino, (void *)mondo_vec_reg,
1818 	    softsp->intr_hndlr_cnt[slot]));
1819 
1820 	/* Force the interrupt state machine to idle. */
1821 	if (reset_ism_register) {
1822 		tmpreg = SBUS_INTR_IDLE;
1823 		*sbus_arg->clear_reg = tmpreg;
1824 	}
1825 
1826 	/* Store it in the hardware reg. */
1827 	*mondo_vec_reg = tmp_mondo_vec;
1828 
1829 	/* Flush store buffers */
1830 	tmpreg = *softsp->sbus_ctrl_reg;
1831 
1832 done:
1833 	return (ret);
1834 }
1835 
1836 static void
1837 sbus_free_handler(dev_info_t *dip, uint32_t inum,
1838     struct sbus_wrapper_arg *sbus_arg)
1839 {
1840 	struct sbus_intr_handler *listp, *prevp;
1841 
1842 	if (sbus_arg) {
1843 		prevp = NULL;
1844 		listp = sbus_arg->handler_list;
1845 
1846 		while (listp) {
1847 			if (listp->dip == dip && listp->inum == inum) {
1848 				if (prevp)
1849 					prevp->next = listp->next;
1850 				else {
1851 					prevp = listp->next;
1852 					sbus_arg->handler_list = prevp;
1853 				}
1854 
1855 				kmem_free(listp,
1856 				    sizeof (struct sbus_intr_handler));
1857 				break;
1858 			}
1859 			prevp = listp;
1860 			listp = listp->next;
1861 		}
1862 	}
1863 }
1864 
1865 /*
1866  * remove_intrspec - Remove an interrupt specification.
1867  */
1868 /*ARGSUSED*/
1869 static void
1870 sbus_remove_intr_impl(dev_info_t *dip, dev_info_t *rdip,
1871     ddi_intr_handle_impl_t *hdlp)
1872 {
1873 	volatile uint64_t *mondo_vec_reg;
1874 	volatile uint64_t *intr_state_reg;
1875 #ifndef lint
1876 	volatile uint64_t tmpreg;
1877 #endif /* !lint */
1878 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
1879 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
1880 	int start_bit, ino, slot;
1881 	struct sbus_wrapper_arg *sbus_arg;
1882 
1883 	/* Grab the mutex protecting the poll list */
1884 	mutex_enter(&softsp->intr_poll_list_lock);
1885 
1886 	/* Xlate the interrupt */
1887 	if (sbus_xlate_intrs(dip, rdip, (uint32_t *)&hdlp->ih_vector,
1888 	    &hdlp->ih_pri, softsp->intr_mapping_ign) == DDI_FAILURE) {
1889 		cmn_err(CE_WARN, "Can't xlate SBUS devices %s interrupt.\n",
1890 		    ddi_driver_name(rdip));
1891 		goto done;
1892 	}
1893 
1894 	ino = ((int32_t)hdlp->ih_vector) & SBUS_MAX_INO;
1895 
1896 	mondo_vec_reg = (softsp->intr_mapping_reg +
1897 	    ino_table[ino]->mapping_reg);
1898 
1899 	/* Turn off the valid bit in the mapping register. */
1900 	*mondo_vec_reg &= ~INTERRUPT_VALID;
1901 #ifndef lint
1902 	tmpreg = *softsp->sbus_ctrl_reg;
1903 #endif /* !lint */
1904 
1905 	/* Get our bit position for checking intr pending */
1906 	if (ino > MAX_MONDO_EXTERNAL) {
1907 		start_bit = ino_table[ino]->diagreg_shift;
1908 		intr_state_reg = softsp->obio_intr_state;
1909 	} else {
1910 		start_bit = 16 * (ino >> 3) + 2 * (ino & 0x7);
1911 		intr_state_reg = softsp->sbus_intr_state;
1912 	}
1913 
1914 	while (((*intr_state_reg >> start_bit) & 0x3) == INT_PENDING &&
1915 	    !panicstr)
1916 		/* empty */;
1917 
1918 	slot = find_sbus_slot(dip, rdip);
1919 
1920 	/* Return if the slot is invalid */
1921 	if (slot >= MAX_SBUS_SLOT_ADDR || slot < 0) {
1922 		goto done;
1923 	}
1924 
1925 	sbus_arg = softsp->intr_list[ino];
1926 
1927 	/* Decrement the intr handler count on this slot */
1928 	softsp->intr_hndlr_cnt[slot]--;
1929 
1930 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Rem intr: Softsp 0x%p, Mondo 0x%x, "
1931 	    "ino 0x%x, sbus_arg 0x%p intr cntr %d\n", (void *)softsp,
1932 	    hdlp->ih_vector, ino, (void *)sbus_arg,
1933 	    softsp->intr_hndlr_cnt[slot]));
1934 
1935 	ASSERT(sbus_arg != NULL);
1936 	ASSERT(sbus_arg->handler_list != NULL);
1937 	sbus_free_handler(rdip, hdlp->ih_inum, sbus_arg);
1938 
1939 	/* If we still have a list, we're done. */
1940 	if (sbus_arg->handler_list == NULL)
1941 		i_ddi_rem_ivintr(hdlp);
1942 
1943 	/*
1944 	 * If other devices are still installed for this slot, we need to
1945 	 * turn the valid bit back on.
1946 	 */
1947 	if (softsp->intr_hndlr_cnt[slot] > 0) {
1948 		*mondo_vec_reg |= INTERRUPT_VALID;
1949 #ifndef lint
1950 		tmpreg = *softsp->sbus_ctrl_reg;
1951 #endif /* !lint */
1952 	}
1953 
1954 	if ((softsp->intr_hndlr_cnt[slot] == 0) || (slot >= EXT_SBUS_SLOTS)) {
1955 		ASSERT(sbus_arg->handler_list == NULL);
1956 	}
1957 
1958 
1959 	/* Free up the memory used for the sbus interrupt handler */
1960 	if (sbus_arg->handler_list == NULL) {
1961 		DPRINTF(SBUS_INTERRUPT_DEBUG, ("Rem intr: Freeing sbus arg "
1962 		    "0x%p\n", (void *)sbus_arg));
1963 		kmem_free(sbus_arg, sizeof (struct sbus_wrapper_arg));
1964 		softsp->intr_list[ino] = NULL;
1965 	}
1966 
1967 done:
1968 	mutex_exit(&softsp->intr_poll_list_lock);
1969 }
1970 
1971 /*
1972  * We're prepared to claim that the interrupt string is in
1973  * the form of a list of <SBusintr> specifications, or we're dealing
1974  * with on-board devices and we have an interrupt_number property which
1975  * gives us our mondo number.
1976  * Translate the sbus levels or mondos into sysiointrspecs.
1977  */
1978 static int
1979 sbus_xlate_intrs(dev_info_t *dip, dev_info_t *rdip, uint32_t *intr,
1980     uint32_t *pil, int32_t ign)
1981 {
1982 	uint32_t ino, slot, level = *intr;
1983 	int ret = DDI_SUCCESS;
1984 
1985 	/*
1986 	 * Create the sysio ino number.  onboard devices will have
1987 	 * an "interrupts" property, that is equal to the ino number.
1988 	 * If the devices are from the
1989 	 * expansion slots, we construct the ino number by putting
1990 	 * the slot number in the upper three bits, and the sbus
1991 	 * interrupt level in the lower three bits.
1992 	 */
1993 	if (level > MAX_SBUS_LEVEL) {
1994 		ino = level;
1995 	} else {
1996 		/* Construct ino from slot and interrupts */
1997 		if ((slot = find_sbus_slot(dip, rdip)) == -1) {
1998 			cmn_err(CE_WARN, "Can't determine sbus slot "
1999 			    "of %s device\n", ddi_driver_name(rdip));
2000 			ret = DDI_FAILURE;
2001 			goto done;
2002 		}
2003 
2004 		if (slot >= MAX_SBUS_SLOT_ADDR) {
2005 			cmn_err(CE_WARN, "Invalid sbus slot 0x%x"
2006 			    "in %s device\n", slot, ddi_driver_name(rdip));
2007 			ret = DDI_FAILURE;
2008 			goto done;
2009 		}
2010 
2011 		ino = slot << 3;
2012 		ino |= level;
2013 	}
2014 
2015 	/* Sanity check the inos range */
2016 	if (ino >= MAX_INO_TABLE_SIZE) {
2017 		cmn_err(CE_WARN, "Ino vector 0x%x out of range", ino);
2018 		ret = DDI_FAILURE;
2019 		goto done;
2020 	}
2021 	/* Sanity check the inos value */
2022 	if (!ino_table[ino]) {
2023 		cmn_err(CE_WARN, "Ino vector 0x%x is invalid", ino);
2024 		ret = DDI_FAILURE;
2025 		goto done;
2026 	}
2027 
2028 	if (*pil == 0) {
2029 #define	SOC_PRIORITY 5
2030 		/* The sunfire i/o board has a soc in the printer slot */
2031 		if ((ino_table[ino]->clear_reg == PP_CLEAR) &&
2032 		    ((strcmp(ddi_get_name(rdip), "soc") == 0) ||
2033 		    (strcmp(ddi_get_name(rdip), "SUNW,soc") == 0))) {
2034 			*pil = SOC_PRIORITY;
2035 		} else {
2036 			/* Figure out the pil associated with this interrupt */
2037 			*pil = interrupt_priorities[ino];
2038 		}
2039 	}
2040 
2041 	/* Or in the upa_id into the interrupt group number field */
2042 	*intr = (uint32_t)(ino | ign);
2043 
2044 	DPRINTF(SBUS_INTERRUPT_DEBUG, ("Xlate intr: Interrupt info for "
2045 	    "device %s Mondo: 0x%x, ino: 0x%x, Pil: 0x%x, sbus level: 0x%x\n",
2046 	    ddi_driver_name(rdip), *intr, ino, *pil, level));
2047 
2048 done:
2049 	return (ret);
2050 }
2051 
2052 /* new intr_ops structure */
2053 int
2054 sbus_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op,
2055     ddi_intr_handle_impl_t *hdlp, void *result)
2056 {
2057 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
2058 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2059 	int			ret = DDI_SUCCESS;
2060 
2061 
2062 	switch (intr_op) {
2063 	case DDI_INTROP_GETCAP:
2064 		*(int *)result = DDI_INTR_FLAG_LEVEL;
2065 		break;
2066 	case DDI_INTROP_ALLOC:
2067 		*(int *)result = hdlp->ih_scratch1;
2068 		break;
2069 	case DDI_INTROP_FREE:
2070 		break;
2071 	case DDI_INTROP_GETPRI:
2072 		if (hdlp->ih_pri == 0) {
2073 			/* Xlate the interrupt */
2074 			(void) sbus_xlate_intrs(dip, rdip,
2075 			    (uint32_t *)&hdlp->ih_vector, &hdlp->ih_pri,
2076 			    softsp->intr_mapping_ign);
2077 		}
2078 
2079 		*(int *)result = hdlp->ih_pri;
2080 		break;
2081 	case DDI_INTROP_SETPRI:
2082 		break;
2083 	case DDI_INTROP_ADDISR:
2084 		ret = sbus_add_intr_impl(dip, rdip, hdlp);
2085 		break;
2086 	case DDI_INTROP_REMISR:
2087 		sbus_remove_intr_impl(dip, rdip, hdlp);
2088 		break;
2089 	case DDI_INTROP_ENABLE:
2090 		ret = sbus_update_intr_state(dip, rdip, hdlp,
2091 		    SBUS_INTR_STATE_ENABLE);
2092 		break;
2093 	case DDI_INTROP_DISABLE:
2094 		ret = sbus_update_intr_state(dip, rdip, hdlp,
2095 		    SBUS_INTR_STATE_DISABLE);
2096 		break;
2097 	case DDI_INTROP_NINTRS:
2098 	case DDI_INTROP_NAVAIL:
2099 		*(int *)result = i_ddi_get_intx_nintrs(rdip);
2100 		break;
2101 	case DDI_INTROP_SETCAP:
2102 	case DDI_INTROP_SETMASK:
2103 	case DDI_INTROP_CLRMASK:
2104 	case DDI_INTROP_GETPENDING:
2105 		ret = DDI_ENOTSUP;
2106 		break;
2107 	case DDI_INTROP_SUPPORTED_TYPES:
2108 		/* Sbus nexus driver supports only fixed interrupts */
2109 		*(int *)result = i_ddi_get_intx_nintrs(rdip) ?
2110 		    DDI_INTR_TYPE_FIXED : 0;
2111 		break;
2112 	default:
2113 		ret = i_ddi_intr_ops(dip, rdip, intr_op, hdlp, result);
2114 		break;
2115 	}
2116 
2117 	return (ret);
2118 }
2119 
2120 
2121 /*
2122  * Called by suspend/resume to save/restore the interrupt status (valid bit)
2123  * of the interrupt mapping registers.
2124  */
2125 static void
2126 sbus_cpr_handle_intr_map_reg(uint64_t *cpr_softsp, volatile uint64_t *baddr,
2127     int save)
2128 {
2129 	int i;
2130 	volatile uint64_t *mondo_vec_reg;
2131 
2132 	for (i = 0; i < MAX_INO_TABLE_SIZE; i++) {
2133 		if (ino_table[i] != NULL) {
2134 			mondo_vec_reg = baddr + ino_table[i]->mapping_reg;
2135 			if (save) {
2136 				if (*mondo_vec_reg & INTERRUPT_VALID) {
2137 					cpr_softsp[i] = *mondo_vec_reg;
2138 				}
2139 			} else {
2140 				if (cpr_softsp[i]) {
2141 					*mondo_vec_reg = cpr_softsp[i];
2142 				}
2143 			}
2144 		}
2145 	}
2146 }
2147 
2148 #define	SZ_INO_TABLE (sizeof (ino_table) / sizeof (ino_table[0]))
2149 
2150 /*
2151  * sbus_intrdist
2152  *
2153  * This function retargets active interrupts by reprogramming the mondo
2154  * vec register. If the CPU ID of the target has not changed, then
2155  * the mondo is not reprogrammed. The routine must hold the mondo
2156  * lock for this instance of the sbus.
2157  */
2158 static void
2159 sbus_intrdist(void *arg)
2160 {
2161 	struct sbus_soft_state *softsp;
2162 	dev_info_t *dip = (dev_info_t *)arg;
2163 	volatile uint64_t *mondo_vec_reg;
2164 	uint64_t *last_mondo_vec_reg;
2165 	uint64_t mondo_vec;
2166 	volatile uint64_t *intr_state_reg;
2167 	uint_t start_bit;
2168 	volatile uint64_t tmpreg; /* HW flush reg */
2169 	uint_t mondo;
2170 	uint_t cpu_id;
2171 
2172 	/* extract the soft state pointer */
2173 	softsp = ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2174 
2175 	last_mondo_vec_reg = NULL;
2176 	for (mondo = 0; mondo < SZ_INO_TABLE; mondo++) {
2177 		if (ino_table[mondo] == NULL)
2178 			continue;
2179 
2180 		mondo_vec_reg = (softsp->intr_mapping_reg +
2181 		    ino_table[mondo]->mapping_reg);
2182 
2183 		/* Don't reprogram the same register twice */
2184 		if (mondo_vec_reg == last_mondo_vec_reg)
2185 			continue;
2186 
2187 		if ((*mondo_vec_reg & INTERRUPT_VALID) == 0)
2188 			continue;
2189 
2190 		last_mondo_vec_reg = (uint64_t *)mondo_vec_reg;
2191 
2192 		cpu_id = intr_dist_cpuid();
2193 		if (((*mondo_vec_reg & IMR_TID) >> IMR_TID_SHIFT) == cpu_id) {
2194 			/* It is the same, don't reprogram */
2195 			return;
2196 		}
2197 
2198 		/* So it's OK to reprogram the CPU target */
2199 
2200 		/* turn off valid bit and wait for the state machine to idle */
2201 		*mondo_vec_reg &= ~INTERRUPT_VALID;
2202 
2203 		tmpreg = *softsp->sbus_ctrl_reg;
2204 
2205 #ifdef	lint
2206 		tmpreg = tmpreg;
2207 #endif	/* lint */
2208 
2209 		if (mondo > MAX_MONDO_EXTERNAL) {
2210 			start_bit = ino_table[mondo]->diagreg_shift;
2211 			intr_state_reg = softsp->obio_intr_state;
2212 
2213 			/*
2214 			 * Loop waiting for state machine to idle. Do not keep
2215 			 * looping on a panic so that the system does not hang.
2216 			 */
2217 			while ((((*intr_state_reg >> start_bit) & 0x3) ==
2218 			    INT_PENDING) && !panicstr)
2219 				/* empty */;
2220 		} else {
2221 			int int_pending = 0;	/* interrupts pending */
2222 
2223 			/*
2224 			 * Shift over to first bit for this Sbus slot, 16
2225 			 * bits per slot, bits 0-1 of each slot are reserved.
2226 			 */
2227 			start_bit = 16 * (mondo >> 3) + 2;
2228 			intr_state_reg = softsp->sbus_intr_state;
2229 
2230 			/*
2231 			 * Make sure interrupts for levels 1-7 of this slot
2232 			 * are not pending.
2233 			 */
2234 			do {
2235 				int level;	/* Sbus interrupt level */
2236 				int shift;		/* # of bits to shift */
2237 				uint64_t state_reg = *intr_state_reg;
2238 
2239 				int_pending = 0;
2240 
2241 				for (shift = start_bit, level = 1; level < 8;
2242 				    level++, shift += 2) {
2243 					if (((state_reg >> shift) &
2244 					    0x3) == INT_PENDING) {
2245 						int_pending = 1;
2246 						break;
2247 					}
2248 				}
2249 			} while (int_pending && !panicstr);
2250 		}
2251 
2252 		/* re-target the mondo and turn it on */
2253 		mondo_vec = (cpu_id << INTERRUPT_CPU_FIELD) | INTERRUPT_VALID;
2254 
2255 		/* write it back to the hardware. */
2256 		*mondo_vec_reg = mondo_vec;
2257 
2258 		/* flush the hardware buffers. */
2259 		tmpreg = *mondo_vec_reg;
2260 
2261 #ifdef	lint
2262 		tmpreg = tmpreg;
2263 #endif	/* lint */
2264 	}
2265 }
2266 
2267 /*
2268  * Reset interrupts to IDLE.  This function is called during
2269  * panic handling after redistributing interrupts; it's needed to
2270  * support dumping to network devices after 'sync' from OBP.
2271  *
2272  * N.B.  This routine runs in a context where all other threads
2273  * are permanently suspended.
2274  */
2275 static uint_t
2276 sbus_intr_reset(void *arg)
2277 {
2278 	dev_info_t *dip = (dev_info_t *)arg;
2279 	struct sbus_soft_state *softsp;
2280 	uint_t mondo;
2281 	volatile uint64_t *mondo_clear_reg;
2282 
2283 	softsp = ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2284 
2285 	for (mondo = 0; mondo < SZ_INO_TABLE; mondo++) {
2286 		if (ino_table[mondo] == NULL ||
2287 		    ino_table[mondo]->clear_reg == 0) {
2288 			continue;
2289 		}
2290 
2291 		mondo_clear_reg = (softsp->clr_intr_reg +
2292 		    ino_table[mondo]->clear_reg);
2293 		*mondo_clear_reg = SBUS_INTR_IDLE;
2294 	}
2295 
2296 	return (BF_NONE);
2297 }
2298 
2299 /*
2300  * called from sbus_add_kstats() to create a kstat for each %pic
2301  * that the SBUS supports. These (read-only) kstats export the
2302  * event names that each %pic supports.
2303  *
2304  * if we fail to create any of these kstats we must remove any
2305  * that we have already created and return;
2306  *
2307  * NOTE: because all sbus devices use the same events we only
2308  *	 need to create the picN kstats once. All instances can
2309  *	 use the same picN kstats.
2310  *
2311  *       The flexibility exists to allow each device specify it's
2312  *       own events by creating picN kstats with the instance number
2313  *       set to ddi_get_instance(softsp->dip).
2314  *
2315  *       When searching for a picN kstat for a device you should
2316  *       first search for a picN kstat using the instance number
2317  *       of the device you are interested in. If that fails you
2318  *       should use the first picN kstat found for that device.
2319  */
2320 static	void
2321 sbus_add_picN_kstats(dev_info_t *dip)
2322 {
2323 	/*
2324 	 * SBUS Performance Events.
2325 	 *
2326 	 * We declare an array of event-names and event-masks.
2327 	 * The num of events in this array is AC_NUM_EVENTS.
2328 	 */
2329 	sbus_event_mask_t sbus_events_arr[SBUS_NUM_EVENTS] = {
2330 		{"dvma_stream_rd", 0x0}, {"dvma_stream_wr", 0x1},
2331 		{"dvma_const_rd", 0x2}, {"dvma_const_wr", 0x3},
2332 		{"dvma_tlb_misses", 0x4}, {"dvma_stream_buf_mis", 0x5},
2333 		{"dvma_cycles", 0x6}, {"dvma_bytes_xfr", 0x7},
2334 		{"interrupts", 0x8}, {"upa_inter_nack", 0x9},
2335 		{"pio_reads", 0xA}, {"pio_writes", 0xB},
2336 		{"sbus_reruns", 0xC}, {"pio_cycles", 0xD}
2337 	};
2338 
2339 	/*
2340 	 * We declare an array of clear masks for each pic.
2341 	 * These masks are used to clear the %pcr bits for
2342 	 * each pic.
2343 	 */
2344 	sbus_event_mask_t sbus_clear_pic[SBUS_NUM_PICS] = {
2345 		/* pic0 */
2346 		{"clear_pic", (uint64_t)~(0xf)},
2347 		/* pic1 */
2348 		{"clear_pic", (uint64_t)~(0xf << 8)}
2349 	};
2350 
2351 	struct kstat_named *sbus_pic_named_data;
2352 	int		event, pic;
2353 	char		pic_name[30];
2354 	int		instance = ddi_get_instance(dip);
2355 	int		pic_shift = 0;
2356 
2357 	for (pic = 0; pic < SBUS_NUM_PICS; pic++) {
2358 		/*
2359 		 * create the picN kstat. The size of this kstat is
2360 		 * SBUS_NUM_EVENTS + 1 for the clear_event_mask
2361 		 */
2362 		(void) sprintf(pic_name, "pic%d", pic);	/* pic0, pic1 ... */
2363 		if ((sbus_picN_ksp[pic] = kstat_create("sbus",
2364 		    instance, pic_name, "bus", KSTAT_TYPE_NAMED,
2365 		    SBUS_NUM_EVENTS + 1, 0)) == NULL) {
2366 			cmn_err(CE_WARN, "sbus %s: kstat_create failed",
2367 			    pic_name);
2368 
2369 			/* remove pic0 kstat if pic1 create fails */
2370 			if (pic == 1) {
2371 				kstat_delete(sbus_picN_ksp[0]);
2372 				sbus_picN_ksp[0] = NULL;
2373 			}
2374 			return;
2375 		}
2376 
2377 		sbus_pic_named_data =
2378 		    (struct kstat_named *)(sbus_picN_ksp[pic]->ks_data);
2379 
2380 		/*
2381 		 * when we are writing pcr_masks to the kstat we need to
2382 		 * shift bits left by 8 for pic1 events.
2383 		 */
2384 		if (pic == 1)
2385 			pic_shift = 8;
2386 
2387 		/*
2388 		 * for each picN event we need to write a kstat record
2389 		 * (name = EVENT, value.ui64 = PCR_MASK)
2390 		 */
2391 		for (event = 0; event < SBUS_NUM_EVENTS; event ++) {
2392 
2393 			/* pcr_mask */
2394 			sbus_pic_named_data[event].value.ui64 =
2395 			    sbus_events_arr[event].pcr_mask << pic_shift;
2396 
2397 			/* event-name */
2398 			kstat_named_init(&sbus_pic_named_data[event],
2399 			    sbus_events_arr[event].event_name,
2400 			    KSTAT_DATA_UINT64);
2401 		}
2402 
2403 		/*
2404 		 * we add the clear_pic event and mask as the last
2405 		 * record in the kstat
2406 		 */
2407 		/* pcr mask */
2408 		sbus_pic_named_data[SBUS_NUM_EVENTS].value.ui64 =
2409 		    sbus_clear_pic[pic].pcr_mask;
2410 
2411 		/* event-name */
2412 		kstat_named_init(&sbus_pic_named_data[SBUS_NUM_EVENTS],
2413 		    sbus_clear_pic[pic].event_name,
2414 		    KSTAT_DATA_UINT64);
2415 
2416 		kstat_install(sbus_picN_ksp[pic]);
2417 	}
2418 }
2419 
2420 static	void
2421 sbus_add_kstats(struct sbus_soft_state *softsp)
2422 {
2423 	struct kstat *sbus_counters_ksp;
2424 	struct kstat_named *sbus_counters_named_data;
2425 
2426 	/*
2427 	 * Create the picN kstats if we are the first instance
2428 	 * to attach. We use sbus_attachcnt as a count of how
2429 	 * many instances have attached. This is protected by
2430 	 * a mutex.
2431 	 */
2432 	mutex_enter(&sbus_attachcnt_mutex);
2433 	if (sbus_attachcnt == 0)
2434 		sbus_add_picN_kstats(softsp->dip);
2435 
2436 	sbus_attachcnt ++;
2437 	mutex_exit(&sbus_attachcnt_mutex);
2438 
2439 	/*
2440 	 * A "counter" kstat is created for each sbus
2441 	 * instance that provides access to the %pcr and %pic
2442 	 * registers for that instance.
2443 	 *
2444 	 * The size of this kstat is SBUS_NUM_PICS + 1 for %pcr
2445 	 */
2446 	if ((sbus_counters_ksp = kstat_create("sbus",
2447 	    ddi_get_instance(softsp->dip), "counters",
2448 	    "bus", KSTAT_TYPE_NAMED, SBUS_NUM_PICS + 1,
2449 	    KSTAT_FLAG_WRITABLE)) == NULL) {
2450 		cmn_err(CE_WARN, "sbus%d counters: kstat_create"
2451 		    " failed", ddi_get_instance(softsp->dip));
2452 		return;
2453 	}
2454 
2455 	sbus_counters_named_data =
2456 	    (struct kstat_named *)(sbus_counters_ksp->ks_data);
2457 
2458 	/* initialize the named kstats */
2459 	kstat_named_init(&sbus_counters_named_data[0],
2460 	    "pcr", KSTAT_DATA_UINT64);
2461 
2462 	kstat_named_init(&sbus_counters_named_data[1],
2463 	    "pic0", KSTAT_DATA_UINT64);
2464 
2465 	kstat_named_init(&sbus_counters_named_data[2],
2466 	    "pic1", KSTAT_DATA_UINT64);
2467 
2468 	sbus_counters_ksp->ks_update = sbus_counters_kstat_update;
2469 	sbus_counters_ksp->ks_private = (void *)softsp;
2470 
2471 	kstat_install(sbus_counters_ksp);
2472 
2473 	/* update the sofstate */
2474 	softsp->sbus_counters_ksp = sbus_counters_ksp;
2475 }
2476 
2477 static	int
2478 sbus_counters_kstat_update(kstat_t *ksp, int rw)
2479 {
2480 	struct kstat_named *sbus_counters_data;
2481 	struct sbus_soft_state *softsp;
2482 	uint64_t pic_register;
2483 
2484 	sbus_counters_data = (struct kstat_named *)ksp->ks_data;
2485 	softsp = (struct sbus_soft_state *)ksp->ks_private;
2486 
2487 	if (rw == KSTAT_WRITE) {
2488 
2489 		/*
2490 		 * Write the pcr value to the softsp->sbus_pcr.
2491 		 * The pic register is read-only so we don't
2492 		 * attempt to write to it.
2493 		 */
2494 
2495 		*softsp->sbus_pcr =
2496 		    (uint32_t)sbus_counters_data[0].value.ui64;
2497 
2498 	} else {
2499 		/*
2500 		 * Read %pcr and %pic register values and write them
2501 		 * into counters kstat.
2502 		 *
2503 		 * Due to a hardware bug we need to right shift the %pcr
2504 		 * by 4 bits. This is only done when reading the %pcr.
2505 		 *
2506 		 */
2507 		/* pcr */
2508 		sbus_counters_data[0].value.ui64 = *softsp->sbus_pcr >> 4;
2509 
2510 		pic_register = *softsp->sbus_pic;
2511 		/*
2512 		 * sbus pic register:
2513 		 *  (63:32) = pic0
2514 		 *  (31:00) = pic1
2515 		 */
2516 
2517 		/* pic0 */
2518 		sbus_counters_data[1].value.ui64 = pic_register >> 32;
2519 		/* pic1 */
2520 		sbus_counters_data[2].value.ui64 =
2521 		    pic_register & SBUS_PIC0_MASK;
2522 
2523 	}
2524 	return (0);
2525 }
2526 
2527 static int
2528 sbus_update_intr_state(dev_info_t *dip, dev_info_t *rdip,
2529     ddi_intr_handle_impl_t *hdlp, uint_t new_intr_state)
2530 {
2531 	struct sbus_soft_state *softsp = (struct sbus_soft_state *)
2532 	    ddi_get_soft_state(sbusp, ddi_get_instance(dip));
2533 	int ino;
2534 	struct sbus_wrapper_arg *sbus_arg;
2535 	struct sbus_intr_handler *intr_handler;
2536 
2537 	/* Xlate the interrupt */
2538 	if (sbus_xlate_intrs(dip, rdip, (uint32_t *)&hdlp->ih_vector,
2539 	    &hdlp->ih_pri, softsp->intr_mapping_ign) == DDI_FAILURE) {
2540 		cmn_err(CE_WARN, "sbus_update_intr_state() can't xlate SBUS "
2541 		    "devices %s interrupt.", ddi_driver_name(rdip));
2542 		return (DDI_FAILURE);
2543 	}
2544 
2545 	ino = ((int32_t)hdlp->ih_vector) & SBUS_MAX_INO;
2546 	sbus_arg = softsp->intr_list[ino];
2547 
2548 	ASSERT(sbus_arg != NULL);
2549 	ASSERT(sbus_arg->handler_list != NULL);
2550 	intr_handler = sbus_arg->handler_list;
2551 
2552 	while (intr_handler) {
2553 		if ((intr_handler->inum == hdlp->ih_inum) &&
2554 		    (intr_handler->dip == rdip)) {
2555 			intr_handler->intr_state = new_intr_state;
2556 			return (DDI_SUCCESS);
2557 		}
2558 
2559 		intr_handler = intr_handler->next;
2560 	}
2561 
2562 	return (DDI_FAILURE);
2563 }
2564