xref: /illumos-gate/usr/src/uts/sun4u/io/px/px_hlib.c (revision ae9405842e25ee75c6a9fd1996e04b41fbd2eda3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/cmn_err.h>
28 #include <sys/vmsystm.h>
29 #include <sys/vmem.h>
30 #include <sys/machsystm.h>	/* lddphys() */
31 #include <sys/iommutsb.h>
32 #include <px_obj.h>
33 #include <sys/hotplug/pci/pcie_hp.h>
34 #include "px_regs.h"
35 #include "oberon_regs.h"
36 #include "px_csr.h"
37 #include "px_lib4u.h"
38 #include "px_err.h"
39 
40 /*
41  * Registers that need to be saved and restored during suspend/resume.
42  */
43 
44 /*
45  * Registers in the PEC Module.
46  * LPU_RESET should be set to 0ull during resume
47  *
48  * This array is in reg,chip form. PX_CHIP_UNIDENTIFIED is for all chips
49  * or PX_CHIP_FIRE for Fire only, or PX_CHIP_OBERON for Oberon only.
50  */
51 static struct px_pec_regs {
52 	uint64_t reg;
53 	uint64_t chip;
54 } pec_config_state_regs[] = {
55 	{PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
56 	{ILU_ERROR_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
57 	{ILU_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
58 	{TLU_CONTROL, PX_CHIP_UNIDENTIFIED},
59 	{TLU_OTHER_EVENT_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
60 	{TLU_OTHER_EVENT_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
61 	{TLU_DEVICE_CONTROL, PX_CHIP_UNIDENTIFIED},
62 	{TLU_LINK_CONTROL, PX_CHIP_UNIDENTIFIED},
63 	{TLU_UNCORRECTABLE_ERROR_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
64 	{TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
65 	{TLU_CORRECTABLE_ERROR_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
66 	{TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
67 	{DLU_LINK_LAYER_CONFIG, PX_CHIP_OBERON},
68 	{DLU_FLOW_CONTROL_UPDATE_CONTROL, PX_CHIP_OBERON},
69 	{DLU_TXLINK_REPLAY_TIMER_THRESHOLD, PX_CHIP_OBERON},
70 	{LPU_LINK_LAYER_INTERRUPT_MASK, PX_CHIP_FIRE},
71 	{LPU_PHY_INTERRUPT_MASK, PX_CHIP_FIRE},
72 	{LPU_RECEIVE_PHY_INTERRUPT_MASK, PX_CHIP_FIRE},
73 	{LPU_TRANSMIT_PHY_INTERRUPT_MASK, PX_CHIP_FIRE},
74 	{LPU_GIGABLAZE_GLUE_INTERRUPT_MASK, PX_CHIP_FIRE},
75 	{LPU_LTSSM_INTERRUPT_MASK, PX_CHIP_FIRE},
76 	{LPU_RESET, PX_CHIP_FIRE},
77 	{LPU_DEBUG_CONFIG, PX_CHIP_FIRE},
78 	{LPU_INTERRUPT_MASK, PX_CHIP_FIRE},
79 	{LPU_LINK_LAYER_CONFIG, PX_CHIP_FIRE},
80 	{LPU_FLOW_CONTROL_UPDATE_CONTROL, PX_CHIP_FIRE},
81 	{LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD, PX_CHIP_FIRE},
82 	{LPU_TXLINK_REPLAY_TIMER_THRESHOLD, PX_CHIP_FIRE},
83 	{LPU_REPLAY_BUFFER_MAX_ADDRESS, PX_CHIP_FIRE},
84 	{LPU_TXLINK_RETRY_FIFO_POINTER, PX_CHIP_FIRE},
85 	{LPU_LTSSM_CONFIG2, PX_CHIP_FIRE},
86 	{LPU_LTSSM_CONFIG3, PX_CHIP_FIRE},
87 	{LPU_LTSSM_CONFIG4, PX_CHIP_FIRE},
88 	{LPU_LTSSM_CONFIG5, PX_CHIP_FIRE},
89 	{DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
90 	{DMC_DEBUG_SELECT_FOR_PORT_A, PX_CHIP_UNIDENTIFIED},
91 	{DMC_DEBUG_SELECT_FOR_PORT_B, PX_CHIP_UNIDENTIFIED}
92 };
93 
94 #define	PEC_KEYS	\
95 	((sizeof (pec_config_state_regs))/sizeof (struct px_pec_regs))
96 
97 #define	PEC_SIZE	(PEC_KEYS * sizeof (uint64_t))
98 
99 /*
100  * Registers for the MMU module.
101  * MMU_TTE_CACHE_INVALIDATE needs to be cleared. (-1ull)
102  */
103 static uint64_t mmu_config_state_regs[] = {
104 	MMU_TSB_CONTROL,
105 	MMU_CONTROL_AND_STATUS,
106 	MMU_ERROR_LOG_ENABLE,
107 	MMU_INTERRUPT_ENABLE
108 };
109 #define	MMU_SIZE (sizeof (mmu_config_state_regs))
110 #define	MMU_KEYS (MMU_SIZE / sizeof (uint64_t))
111 
112 /*
113  * Registers for the IB Module
114  */
115 static uint64_t ib_config_state_regs[] = {
116 	IMU_ERROR_LOG_ENABLE,
117 	IMU_INTERRUPT_ENABLE
118 };
119 #define	IB_SIZE (sizeof (ib_config_state_regs))
120 #define	IB_KEYS (IB_SIZE / sizeof (uint64_t))
121 #define	IB_MAP_SIZE (INTERRUPT_MAPPING_ENTRIES * sizeof (uint64_t))
122 
123 /*
124  * Registers for the JBC module.
125  * JBC_ERROR_STATUS_CLEAR needs to be cleared. (-1ull)
126  */
127 static uint64_t	jbc_config_state_regs[] = {
128 	JBUS_PARITY_CONTROL,
129 	JBC_FATAL_RESET_ENABLE,
130 	JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE,
131 	JBC_ERROR_LOG_ENABLE,
132 	JBC_INTERRUPT_ENABLE
133 };
134 #define	JBC_SIZE (sizeof (jbc_config_state_regs))
135 #define	JBC_KEYS (JBC_SIZE / sizeof (uint64_t))
136 
137 /*
138  * Registers for the UBC module.
139  * UBC_ERROR_STATUS_CLEAR needs to be cleared. (-1ull)
140  */
141 static uint64_t	ubc_config_state_regs[] = {
142 	UBC_ERROR_LOG_ENABLE,
143 	UBC_INTERRUPT_ENABLE
144 };
145 #define	UBC_SIZE (sizeof (ubc_config_state_regs))
146 #define	UBC_KEYS (UBC_SIZE / sizeof (uint64_t))
147 
148 static uint64_t	msiq_config_other_regs[] = {
149 	ERR_COR_MAPPING,
150 	ERR_NONFATAL_MAPPING,
151 	ERR_FATAL_MAPPING,
152 	PM_PME_MAPPING,
153 	PME_TO_ACK_MAPPING,
154 	MSI_32_BIT_ADDRESS,
155 	MSI_64_BIT_ADDRESS
156 };
157 #define	MSIQ_OTHER_SIZE	(sizeof (msiq_config_other_regs))
158 #define	MSIQ_OTHER_KEYS	(MSIQ_OTHER_SIZE / sizeof (uint64_t))
159 
160 #define	MSIQ_STATE_SIZE		(EVENT_QUEUE_STATE_ENTRIES * sizeof (uint64_t))
161 #define	MSIQ_MAPPING_SIZE	(MSI_MAPPING_ENTRIES * sizeof (uint64_t))
162 
163 /* OPL tuning variables for link unstable issue */
164 int wait_perst = 5000000;	/* step 9, default: 5s */
165 int wait_enable_port = 30000;	/* step 11, default: 30ms */
166 int link_retry_count = 2;	/* step 11, default: 2 */
167 int link_status_check = 400000;	/* step 11, default: 400ms */
168 
169 static uint64_t msiq_suspend(devhandle_t dev_hdl, pxu_t *pxu_p);
170 static void msiq_resume(devhandle_t dev_hdl, pxu_t *pxu_p);
171 static void jbc_init(caddr_t xbc_csr_base, pxu_t *pxu_p);
172 static void ubc_init(caddr_t xbc_csr_base, pxu_t *pxu_p);
173 
174 extern int px_acknak_timer_table[LINK_MAX_PKT_ARR_SIZE][LINK_WIDTH_ARR_SIZE];
175 extern int px_replay_timer_table[LINK_MAX_PKT_ARR_SIZE][LINK_WIDTH_ARR_SIZE];
176 
177 /*
178  * Initialize the bus, but do not enable interrupts.
179  */
180 /* ARGSUSED */
181 void
182 hvio_cb_init(caddr_t xbc_csr_base, pxu_t *pxu_p)
183 {
184 	switch (PX_CHIP_TYPE(pxu_p)) {
185 	case PX_CHIP_OBERON:
186 		ubc_init(xbc_csr_base, pxu_p);
187 		break;
188 	case PX_CHIP_FIRE:
189 		jbc_init(xbc_csr_base, pxu_p);
190 		break;
191 	default:
192 		DBG(DBG_CB, NULL, "hvio_cb_init - unknown chip type: 0x%x\n",
193 		    PX_CHIP_TYPE(pxu_p));
194 		break;
195 	}
196 }
197 
198 /*
199  * Initialize the JBC module, but do not enable interrupts.
200  */
201 /* ARGSUSED */
202 static void
203 jbc_init(caddr_t xbc_csr_base, pxu_t *pxu_p)
204 {
205 	uint64_t val;
206 
207 	/* Check if we need to enable inverted parity */
208 	val = (1ULL << JBUS_PARITY_CONTROL_P_EN);
209 	CSR_XS(xbc_csr_base, JBUS_PARITY_CONTROL, val);
210 	DBG(DBG_CB, NULL, "jbc_init, JBUS_PARITY_CONTROL: 0x%llx\n",
211 	    CSR_XR(xbc_csr_base, JBUS_PARITY_CONTROL));
212 
213 	val = (1 << JBC_FATAL_RESET_ENABLE_SPARE_P_INT_EN) |
214 	    (1 << JBC_FATAL_RESET_ENABLE_MB_PEA_P_INT_EN) |
215 	    (1 << JBC_FATAL_RESET_ENABLE_CPE_P_INT_EN) |
216 	    (1 << JBC_FATAL_RESET_ENABLE_APE_P_INT_EN) |
217 	    (1 << JBC_FATAL_RESET_ENABLE_PIO_CPE_INT_EN) |
218 	    (1 << JBC_FATAL_RESET_ENABLE_JTCEEW_P_INT_EN) |
219 	    (1 << JBC_FATAL_RESET_ENABLE_JTCEEI_P_INT_EN) |
220 	    (1 << JBC_FATAL_RESET_ENABLE_JTCEER_P_INT_EN);
221 	CSR_XS(xbc_csr_base, JBC_FATAL_RESET_ENABLE, val);
222 	DBG(DBG_CB, NULL, "jbc_init, JBC_FATAL_RESET_ENABLE: 0x%llx\n",
223 	    CSR_XR(xbc_csr_base, JBC_FATAL_RESET_ENABLE));
224 
225 	/*
226 	 * Enable merge, jbc and dmc interrupts.
227 	 */
228 	CSR_XS(xbc_csr_base, JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE, -1ull);
229 	DBG(DBG_CB, NULL,
230 	    "jbc_init, JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE: 0x%llx\n",
231 	    CSR_XR(xbc_csr_base, JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE));
232 
233 	/*
234 	 * CSR_V JBC's interrupt regs (log, enable, status, clear)
235 	 */
236 	DBG(DBG_CB, NULL, "jbc_init, JBC_ERROR_LOG_ENABLE: 0x%llx\n",
237 	    CSR_XR(xbc_csr_base, JBC_ERROR_LOG_ENABLE));
238 
239 	DBG(DBG_CB, NULL, "jbc_init, JBC_INTERRUPT_ENABLE: 0x%llx\n",
240 	    CSR_XR(xbc_csr_base, JBC_INTERRUPT_ENABLE));
241 
242 	DBG(DBG_CB, NULL, "jbc_init, JBC_INTERRUPT_STATUS: 0x%llx\n",
243 	    CSR_XR(xbc_csr_base, JBC_INTERRUPT_STATUS));
244 
245 	DBG(DBG_CB, NULL, "jbc_init, JBC_ERROR_STATUS_CLEAR: 0x%llx\n",
246 	    CSR_XR(xbc_csr_base, JBC_ERROR_STATUS_CLEAR));
247 }
248 
249 /*
250  * Initialize the UBC module, but do not enable interrupts.
251  */
252 /* ARGSUSED */
253 static void
254 ubc_init(caddr_t xbc_csr_base, pxu_t *pxu_p)
255 {
256 	/*
257 	 * Enable Uranus bus error log bits.
258 	 */
259 	CSR_XS(xbc_csr_base, UBC_ERROR_LOG_ENABLE, -1ull);
260 	DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_LOG_ENABLE: 0x%llx\n",
261 	    CSR_XR(xbc_csr_base, UBC_ERROR_LOG_ENABLE));
262 
263 	/*
264 	 * Clear Uranus bus errors.
265 	 */
266 	CSR_XS(xbc_csr_base, UBC_ERROR_STATUS_CLEAR, -1ull);
267 	DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_STATUS_CLEAR: 0x%llx\n",
268 	    CSR_XR(xbc_csr_base, UBC_ERROR_STATUS_CLEAR));
269 
270 	/*
271 	 * CSR_V UBC's interrupt regs (log, enable, status, clear)
272 	 */
273 	DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_LOG_ENABLE: 0x%llx\n",
274 	    CSR_XR(xbc_csr_base, UBC_ERROR_LOG_ENABLE));
275 
276 	DBG(DBG_CB, NULL, "ubc_init, UBC_INTERRUPT_ENABLE: 0x%llx\n",
277 	    CSR_XR(xbc_csr_base, UBC_INTERRUPT_ENABLE));
278 
279 	DBG(DBG_CB, NULL, "ubc_init, UBC_INTERRUPT_STATUS: 0x%llx\n",
280 	    CSR_XR(xbc_csr_base, UBC_INTERRUPT_STATUS));
281 
282 	DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_STATUS_CLEAR: 0x%llx\n",
283 	    CSR_XR(xbc_csr_base, UBC_ERROR_STATUS_CLEAR));
284 }
285 
286 /*
287  * Initialize the module, but do not enable interrupts.
288  */
289 /* ARGSUSED */
290 void
291 hvio_ib_init(caddr_t csr_base, pxu_t *pxu_p)
292 {
293 	/*
294 	 * CSR_V IB's interrupt regs (log, enable, status, clear)
295 	 */
296 	DBG(DBG_IB, NULL, "hvio_ib_init - IMU_ERROR_LOG_ENABLE: 0x%llx\n",
297 	    CSR_XR(csr_base, IMU_ERROR_LOG_ENABLE));
298 
299 	DBG(DBG_IB, NULL, "hvio_ib_init - IMU_INTERRUPT_ENABLE: 0x%llx\n",
300 	    CSR_XR(csr_base, IMU_INTERRUPT_ENABLE));
301 
302 	DBG(DBG_IB, NULL, "hvio_ib_init - IMU_INTERRUPT_STATUS: 0x%llx\n",
303 	    CSR_XR(csr_base, IMU_INTERRUPT_STATUS));
304 
305 	DBG(DBG_IB, NULL, "hvio_ib_init - IMU_ERROR_STATUS_CLEAR: 0x%llx\n",
306 	    CSR_XR(csr_base, IMU_ERROR_STATUS_CLEAR));
307 }
308 
309 /*
310  * Initialize the module, but do not enable interrupts.
311  */
312 /* ARGSUSED */
313 static void
314 ilu_init(caddr_t csr_base, pxu_t *pxu_p)
315 {
316 	/*
317 	 * CSR_V ILU's interrupt regs (log, enable, status, clear)
318 	 */
319 	DBG(DBG_ILU, NULL, "ilu_init - ILU_ERROR_LOG_ENABLE: 0x%llx\n",
320 	    CSR_XR(csr_base, ILU_ERROR_LOG_ENABLE));
321 
322 	DBG(DBG_ILU, NULL, "ilu_init - ILU_INTERRUPT_ENABLE: 0x%llx\n",
323 	    CSR_XR(csr_base, ILU_INTERRUPT_ENABLE));
324 
325 	DBG(DBG_ILU, NULL, "ilu_init - ILU_INTERRUPT_STATUS: 0x%llx\n",
326 	    CSR_XR(csr_base, ILU_INTERRUPT_STATUS));
327 
328 	DBG(DBG_ILU, NULL, "ilu_init - ILU_ERROR_STATUS_CLEAR: 0x%llx\n",
329 	    CSR_XR(csr_base, ILU_ERROR_STATUS_CLEAR));
330 }
331 
332 /*
333  * Initialize the module, but do not enable interrupts.
334  */
335 /* ARGSUSED */
336 static void
337 tlu_init(caddr_t csr_base, pxu_t *pxu_p)
338 {
339 	uint64_t val;
340 
341 	/*
342 	 * CSR_V TLU_CONTROL Expect OBP ???
343 	 */
344 
345 	/*
346 	 * L0s entry default timer value - 7.0 us
347 	 * Completion timeout select default value - 67.1 ms and
348 	 * OBP will set this value.
349 	 *
350 	 * Configuration - Bit 0 should always be 0 for upstream port.
351 	 * Bit 1 is clock - how is this related to the clock bit in TLU
352 	 * Link Control register?  Both are hardware dependent and likely
353 	 * set by OBP.
354 	 *
355 	 * NOTE: Do not set the NPWR_EN bit.  The desired value of this bit
356 	 * will be set by OBP.
357 	 */
358 	val = CSR_XR(csr_base, TLU_CONTROL);
359 	val |= (TLU_CONTROL_L0S_TIM_DEFAULT << TLU_CONTROL_L0S_TIM) |
360 	    TLU_CONTROL_CONFIG_DEFAULT;
361 
362 	/*
363 	 * For Oberon, NPWR_EN is set to 0 to prevent PIO reads from blocking
364 	 * behind non-posted PIO writes. This blocking could cause a master or
365 	 * slave timeout on the host bus if multiple serialized PIOs were to
366 	 * suffer Completion Timeouts because the CTO delays for each PIO ahead
367 	 * of the read would accumulate. Since the Olympus processor can have
368 	 * only 1 PIO outstanding, there is no possibility of PIO accesses from
369 	 * a given CPU to a given device being re-ordered by the PCIe fabric;
370 	 * therefore turning off serialization should be safe from a PCIe
371 	 * ordering perspective.
372 	 */
373 	if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON)
374 		val &= ~(1ull << TLU_CONTROL_NPWR_EN);
375 
376 	/*
377 	 * Set Detect.Quiet. This will disable automatic link
378 	 * re-training, if the link goes down e.g. power management
379 	 * turns off power to the downstream device. This will enable
380 	 * Fire to go to Drain state, after link down. The drain state
381 	 * forces a reset to the FC state machine, which is required for
382 	 * proper link re-training.
383 	 */
384 	val |= (1ull << TLU_REMAIN_DETECT_QUIET);
385 	CSR_XS(csr_base, TLU_CONTROL, val);
386 	DBG(DBG_TLU, NULL, "tlu_init - TLU_CONTROL: 0x%llx\n",
387 	    CSR_XR(csr_base, TLU_CONTROL));
388 
389 	/*
390 	 * CSR_V TLU_STATUS Expect HW 0x4
391 	 */
392 
393 	/*
394 	 * Only bit [7:0] are currently defined.  Bits [2:0]
395 	 * are the state, which should likely be in state active,
396 	 * 100b.  Bit three is 'recovery', which is not understood.
397 	 * All other bits are reserved.
398 	 */
399 	DBG(DBG_TLU, NULL, "tlu_init - TLU_STATUS: 0x%llx\n",
400 	    CSR_XR(csr_base, TLU_STATUS));
401 
402 	/*
403 	 * CSR_V TLU_PME_TURN_OFF_GENERATE Expect HW 0x0
404 	 */
405 	DBG(DBG_TLU, NULL, "tlu_init - TLU_PME_TURN_OFF_GENERATE: 0x%llx\n",
406 	    CSR_XR(csr_base, TLU_PME_TURN_OFF_GENERATE));
407 
408 	/*
409 	 * CSR_V TLU_INGRESS_CREDITS_INITIAL Expect HW 0x10000200C0
410 	 */
411 
412 	/*
413 	 * Ingress credits initial register.  Bits [39:32] should be
414 	 * 0x10, bits [19:12] should be 0x20, and bits [11:0] should
415 	 * be 0xC0.  These are the reset values, and should be set by
416 	 * HW.
417 	 */
418 	DBG(DBG_TLU, NULL, "tlu_init - TLU_INGRESS_CREDITS_INITIAL: 0x%llx\n",
419 	    CSR_XR(csr_base, TLU_INGRESS_CREDITS_INITIAL));
420 
421 	/*
422 	 * CSR_V TLU_DIAGNOSTIC Expect HW 0x0
423 	 */
424 
425 	/*
426 	 * Diagnostic register - always zero unless we are debugging.
427 	 */
428 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DIAGNOSTIC: 0x%llx\n",
429 	    CSR_XR(csr_base, TLU_DIAGNOSTIC));
430 
431 	/*
432 	 * CSR_V TLU_EGRESS_CREDITS_CONSUMED Expect HW 0x0
433 	 */
434 	DBG(DBG_TLU, NULL, "tlu_init - TLU_EGRESS_CREDITS_CONSUMED: 0x%llx\n",
435 	    CSR_XR(csr_base, TLU_EGRESS_CREDITS_CONSUMED));
436 
437 	/*
438 	 * CSR_V TLU_EGRESS_CREDIT_LIMIT Expect HW 0x0
439 	 */
440 	DBG(DBG_TLU, NULL, "tlu_init - TLU_EGRESS_CREDIT_LIMIT: 0x%llx\n",
441 	    CSR_XR(csr_base, TLU_EGRESS_CREDIT_LIMIT));
442 
443 	/*
444 	 * CSR_V TLU_EGRESS_RETRY_BUFFER Expect HW 0x0
445 	 */
446 	DBG(DBG_TLU, NULL, "tlu_init - TLU_EGRESS_RETRY_BUFFER: 0x%llx\n",
447 	    CSR_XR(csr_base, TLU_EGRESS_RETRY_BUFFER));
448 
449 	/*
450 	 * CSR_V TLU_INGRESS_CREDITS_ALLOCATED Expected HW 0x0
451 	 */
452 	DBG(DBG_TLU, NULL,
453 	    "tlu_init - TLU_INGRESS_CREDITS_ALLOCATED: 0x%llx\n",
454 	    CSR_XR(csr_base, TLU_INGRESS_CREDITS_ALLOCATED));
455 
456 	/*
457 	 * CSR_V TLU_INGRESS_CREDITS_RECEIVED Expected HW 0x0
458 	 */
459 	DBG(DBG_TLU, NULL,
460 	    "tlu_init - TLU_INGRESS_CREDITS_RECEIVED: 0x%llx\n",
461 	    CSR_XR(csr_base, TLU_INGRESS_CREDITS_RECEIVED));
462 
463 	/*
464 	 * CSR_V TLU's interrupt regs (log, enable, status, clear)
465 	 */
466 	DBG(DBG_TLU, NULL,
467 	    "tlu_init - TLU_OTHER_EVENT_LOG_ENABLE: 0x%llx\n",
468 	    CSR_XR(csr_base, TLU_OTHER_EVENT_LOG_ENABLE));
469 
470 	DBG(DBG_TLU, NULL,
471 	    "tlu_init - TLU_OTHER_EVENT_INTERRUPT_ENABLE: 0x%llx\n",
472 	    CSR_XR(csr_base, TLU_OTHER_EVENT_INTERRUPT_ENABLE));
473 
474 	DBG(DBG_TLU, NULL,
475 	    "tlu_init - TLU_OTHER_EVENT_INTERRUPT_STATUS: 0x%llx\n",
476 	    CSR_XR(csr_base, TLU_OTHER_EVENT_INTERRUPT_STATUS));
477 
478 	DBG(DBG_TLU, NULL,
479 	    "tlu_init - TLU_OTHER_EVENT_STATUS_CLEAR: 0x%llx\n",
480 	    CSR_XR(csr_base, TLU_OTHER_EVENT_STATUS_CLEAR));
481 
482 	/*
483 	 * CSR_V TLU_RECEIVE_OTHER_EVENT_HEADER1_LOG Expect HW 0x0
484 	 */
485 	DBG(DBG_TLU, NULL,
486 	    "tlu_init - TLU_RECEIVE_OTHER_EVENT_HEADER1_LOG: 0x%llx\n",
487 	    CSR_XR(csr_base, TLU_RECEIVE_OTHER_EVENT_HEADER1_LOG));
488 
489 	/*
490 	 * CSR_V TLU_RECEIVE_OTHER_EVENT_HEADER2_LOG Expect HW 0x0
491 	 */
492 	DBG(DBG_TLU, NULL,
493 	    "tlu_init - TLU_RECEIVE_OTHER_EVENT_HEADER2_LOG: 0x%llx\n",
494 	    CSR_XR(csr_base, TLU_RECEIVE_OTHER_EVENT_HEADER2_LOG));
495 
496 	/*
497 	 * CSR_V TLU_TRANSMIT_OTHER_EVENT_HEADER1_LOG Expect HW 0x0
498 	 */
499 	DBG(DBG_TLU, NULL,
500 	    "tlu_init - TLU_TRANSMIT_OTHER_EVENT_HEADER1_LOG: 0x%llx\n",
501 	    CSR_XR(csr_base, TLU_TRANSMIT_OTHER_EVENT_HEADER1_LOG));
502 
503 	/*
504 	 * CSR_V TLU_TRANSMIT_OTHER_EVENT_HEADER2_LOG Expect HW 0x0
505 	 */
506 	DBG(DBG_TLU, NULL,
507 	    "tlu_init - TLU_TRANSMIT_OTHER_EVENT_HEADER2_LOG: 0x%llx\n",
508 	    CSR_XR(csr_base, TLU_TRANSMIT_OTHER_EVENT_HEADER2_LOG));
509 
510 	/*
511 	 * CSR_V TLU_PERFORMANCE_COUNTER_SELECT Expect HW 0x0
512 	 */
513 	DBG(DBG_TLU, NULL,
514 	    "tlu_init - TLU_PERFORMANCE_COUNTER_SELECT: 0x%llx\n",
515 	    CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_SELECT));
516 
517 	/*
518 	 * CSR_V TLU_PERFORMANCE_COUNTER_ZERO Expect HW 0x0
519 	 */
520 	DBG(DBG_TLU, NULL,
521 	    "tlu_init - TLU_PERFORMANCE_COUNTER_ZERO: 0x%llx\n",
522 	    CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_ZERO));
523 
524 	/*
525 	 * CSR_V TLU_PERFORMANCE_COUNTER_ONE Expect HW 0x0
526 	 */
527 	DBG(DBG_TLU, NULL, "tlu_init - TLU_PERFORMANCE_COUNTER_ONE: 0x%llx\n",
528 	    CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_ONE));
529 
530 	/*
531 	 * CSR_V TLU_PERFORMANCE_COUNTER_TWO Expect HW 0x0
532 	 */
533 	DBG(DBG_TLU, NULL, "tlu_init - TLU_PERFORMANCE_COUNTER_TWO: 0x%llx\n",
534 	    CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_TWO));
535 
536 	/*
537 	 * CSR_V TLU_DEBUG_SELECT_A Expect HW 0x0
538 	 */
539 
540 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEBUG_SELECT_A: 0x%llx\n",
541 	    CSR_XR(csr_base, TLU_DEBUG_SELECT_A));
542 
543 	/*
544 	 * CSR_V TLU_DEBUG_SELECT_B Expect HW 0x0
545 	 */
546 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEBUG_SELECT_B: 0x%llx\n",
547 	    CSR_XR(csr_base, TLU_DEBUG_SELECT_B));
548 
549 	/*
550 	 * CSR_V TLU_DEVICE_CAPABILITIES Expect HW 0xFC2
551 	 */
552 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEVICE_CAPABILITIES: 0x%llx\n",
553 	    CSR_XR(csr_base, TLU_DEVICE_CAPABILITIES));
554 
555 	/*
556 	 * CSR_V TLU_DEVICE_CONTROL Expect HW 0x0
557 	 */
558 
559 	/*
560 	 * Bits [14:12] are the Max Read Request Size, which is always 64
561 	 * bytes which is 000b.  Bits [7:5] are Max Payload Size, which
562 	 * start at 128 bytes which is 000b.  This may be revisited if
563 	 * init_child finds greater values.
564 	 */
565 	val = 0x0ull;
566 	CSR_XS(csr_base, TLU_DEVICE_CONTROL, val);
567 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEVICE_CONTROL: 0x%llx\n",
568 	    CSR_XR(csr_base, TLU_DEVICE_CONTROL));
569 
570 	/*
571 	 * CSR_V TLU_DEVICE_STATUS Expect HW 0x0
572 	 */
573 	DBG(DBG_TLU, NULL, "tlu_init - TLU_DEVICE_STATUS: 0x%llx\n",
574 	    CSR_XR(csr_base, TLU_DEVICE_STATUS));
575 
576 	/*
577 	 * CSR_V TLU_LINK_CAPABILITIES Expect HW 0x15C81
578 	 */
579 	DBG(DBG_TLU, NULL, "tlu_init - TLU_LINK_CAPABILITIES: 0x%llx\n",
580 	    CSR_XR(csr_base, TLU_LINK_CAPABILITIES));
581 
582 	/*
583 	 * CSR_V TLU_LINK_CONTROL Expect OBP 0x40
584 	 */
585 
586 	/*
587 	 * The CLOCK bit should be set by OBP if the hardware dictates,
588 	 * and if it is set then ASPM should be used since then L0s exit
589 	 * latency should be lower than L1 exit latency.
590 	 *
591 	 * Note that we will not enable power management during bringup
592 	 * since it has not been test and is creating some problems in
593 	 * simulation.
594 	 */
595 	val = (1ull << TLU_LINK_CONTROL_CLOCK);
596 
597 	CSR_XS(csr_base, TLU_LINK_CONTROL, val);
598 	DBG(DBG_TLU, NULL, "tlu_init - TLU_LINK_CONTROL: 0x%llx\n",
599 	    CSR_XR(csr_base, TLU_LINK_CONTROL));
600 
601 	/*
602 	 * CSR_V TLU_LINK_STATUS Expect OBP 0x1011
603 	 */
604 
605 	/*
606 	 * Not sure if HW or OBP will be setting this read only
607 	 * register.  Bit 12 is Clock, and it should always be 1
608 	 * signifying that the component uses the same physical
609 	 * clock as the platform.  Bits [9:4] are for the width,
610 	 * with the expected value above signifying a x1 width.
611 	 * Bits [3:0] are the speed, with 1b signifying 2.5 Gb/s,
612 	 * the only speed as yet supported by the PCI-E spec.
613 	 */
614 	DBG(DBG_TLU, NULL, "tlu_init - TLU_LINK_STATUS: 0x%llx\n",
615 	    CSR_XR(csr_base, TLU_LINK_STATUS));
616 
617 	/*
618 	 * CSR_V TLU_SLOT_CAPABILITIES Expect OBP ???
619 	 */
620 
621 	/*
622 	 * Power Limits for the slots.  Will be platform
623 	 * dependent, and OBP will need to set after consulting
624 	 * with the HW guys.
625 	 *
626 	 * Bits [16:15] are power limit scale, which most likely
627 	 * will be 0b signifying 1x.  Bits [14:7] are the Set
628 	 * Power Limit Value, which is a number which is multiplied
629 	 * by the power limit scale to get the actual power limit.
630 	 */
631 	DBG(DBG_TLU, NULL, "tlu_init - TLU_SLOT_CAPABILITIES: 0x%llx\n",
632 	    CSR_XR(csr_base, TLU_SLOT_CAPABILITIES));
633 
634 	/*
635 	 * CSR_V TLU_UNCORRECTABLE_ERROR_LOG_ENABLE Expect Kernel 0x17F011
636 	 */
637 	DBG(DBG_TLU, NULL,
638 	    "tlu_init - TLU_UNCORRECTABLE_ERROR_LOG_ENABLE: 0x%llx\n",
639 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE));
640 
641 	/*
642 	 * CSR_V TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE Expect
643 	 * Kernel 0x17F0110017F011
644 	 */
645 	DBG(DBG_TLU, NULL,
646 	    "tlu_init - TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE: 0x%llx\n",
647 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE));
648 
649 	/*
650 	 * CSR_V TLU_UNCORRECTABLE_ERROR_INTERRUPT_STATUS Expect HW 0x0
651 	 */
652 	DBG(DBG_TLU, NULL,
653 	    "tlu_init - TLU_UNCORRECTABLE_ERROR_INTERRUPT_STATUS: 0x%llx\n",
654 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_INTERRUPT_STATUS));
655 
656 	/*
657 	 * CSR_V TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR Expect HW 0x0
658 	 */
659 	DBG(DBG_TLU, NULL,
660 	    "tlu_init - TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR: 0x%llx\n",
661 	    CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR));
662 
663 	/*
664 	 * CSR_V TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG HW 0x0
665 	 */
666 	DBG(DBG_TLU, NULL,
667 	    "tlu_init - TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG: 0x%llx\n",
668 	    CSR_XR(csr_base, TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG));
669 
670 	/*
671 	 * CSR_V TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG HW 0x0
672 	 */
673 	DBG(DBG_TLU, NULL,
674 	    "tlu_init - TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG: 0x%llx\n",
675 	    CSR_XR(csr_base, TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG));
676 
677 	/*
678 	 * CSR_V TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG HW 0x0
679 	 */
680 	DBG(DBG_TLU, NULL,
681 	    "tlu_init - TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG: 0x%llx\n",
682 	    CSR_XR(csr_base, TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG));
683 
684 	/*
685 	 * CSR_V TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG HW 0x0
686 	 */
687 	DBG(DBG_TLU, NULL,
688 	    "tlu_init - TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG: 0x%llx\n",
689 	    CSR_XR(csr_base, TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG));
690 
691 
692 	/*
693 	 * CSR_V TLU's CE interrupt regs (log, enable, status, clear)
694 	 * Plus header logs
695 	 */
696 
697 	/*
698 	 * CSR_V TLU_CORRECTABLE_ERROR_LOG_ENABLE Expect Kernel 0x11C1
699 	 */
700 	DBG(DBG_TLU, NULL,
701 	    "tlu_init - TLU_CORRECTABLE_ERROR_LOG_ENABLE: 0x%llx\n",
702 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_LOG_ENABLE));
703 
704 	/*
705 	 * CSR_V TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE Kernel 0x11C1000011C1
706 	 */
707 	DBG(DBG_TLU, NULL,
708 	    "tlu_init - TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE: 0x%llx\n",
709 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE));
710 
711 	/*
712 	 * CSR_V TLU_CORRECTABLE_ERROR_INTERRUPT_STATUS Expect HW 0x0
713 	 */
714 	DBG(DBG_TLU, NULL,
715 	    "tlu_init - TLU_CORRECTABLE_ERROR_INTERRUPT_STATUS: 0x%llx\n",
716 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_INTERRUPT_STATUS));
717 
718 	/*
719 	 * CSR_V TLU_CORRECTABLE_ERROR_STATUS_CLEAR Expect HW 0x0
720 	 */
721 	DBG(DBG_TLU, NULL,
722 	    "tlu_init - TLU_CORRECTABLE_ERROR_STATUS_CLEAR: 0x%llx\n",
723 	    CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_STATUS_CLEAR));
724 }
725 
726 /* ARGSUSED */
727 static void
728 lpu_init(caddr_t csr_base, pxu_t *pxu_p)
729 {
730 	/* Variables used to set the ACKNAK Latency Timer and Replay Timer */
731 	int link_width, max_payload;
732 
733 	uint64_t val;
734 
735 	/*
736 	 * Get the Link Width.  See table above LINK_WIDTH_ARR_SIZE #define
737 	 * Only Link Widths of x1, x4, and x8 are supported.
738 	 * If any width is reported other than x8, set default to x8.
739 	 */
740 	link_width = CSR_FR(csr_base, TLU_LINK_STATUS, WIDTH);
741 	DBG(DBG_LPU, NULL, "lpu_init - Link Width: x%d\n", link_width);
742 
743 	/*
744 	 * Convert link_width to match timer array configuration.
745 	 */
746 	switch (link_width) {
747 	case 1:
748 		link_width = 0;
749 		break;
750 	case 4:
751 		link_width = 1;
752 		break;
753 	case 8:
754 		link_width = 2;
755 		break;
756 	case 16:
757 		link_width = 3;
758 		break;
759 	default:
760 		link_width = 0;
761 	}
762 
763 	/*
764 	 * Get the Max Payload Size.
765 	 * See table above LINK_MAX_PKT_ARR_SIZE #define
766 	 */
767 	max_payload = ((CSR_FR(csr_base, TLU_CONTROL, CONFIG) &
768 	    TLU_CONTROL_MPS_MASK) >> TLU_CONTROL_MPS_SHIFT);
769 
770 	DBG(DBG_LPU, NULL, "lpu_init - May Payload: %d\n",
771 	    (0x80 << max_payload));
772 
773 	/* Make sure the packet size is not greater than 4096 */
774 	max_payload = (max_payload >= LINK_MAX_PKT_ARR_SIZE) ?
775 	    (LINK_MAX_PKT_ARR_SIZE - 1) : max_payload;
776 
777 	/*
778 	 * CSR_V LPU_ID Expect HW 0x0
779 	 */
780 
781 	/*
782 	 * This register has link id, phy id and gigablaze id.
783 	 * Should be set by HW.
784 	 */
785 	DBG(DBG_LPU, NULL, "lpu_init - LPU_ID: 0x%llx\n",
786 	    CSR_XR(csr_base, LPU_ID));
787 
788 	/*
789 	 * CSR_V LPU_RESET Expect Kernel 0x0
790 	 */
791 
792 	/*
793 	 * No reason to have any reset bits high until an error is
794 	 * detected on the link.
795 	 */
796 	val = 0ull;
797 	CSR_XS(csr_base, LPU_RESET, val);
798 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RESET: 0x%llx\n",
799 	    CSR_XR(csr_base, LPU_RESET));
800 
801 	/*
802 	 * CSR_V LPU_DEBUG_STATUS Expect HW 0x0
803 	 */
804 
805 	/*
806 	 * Bits [15:8] are Debug B, and bit [7:0] are Debug A.
807 	 * They are read-only.  What do the 8 bits mean, and
808 	 * how do they get set if they are read only?
809 	 */
810 	DBG(DBG_LPU, NULL, "lpu_init - LPU_DEBUG_STATUS: 0x%llx\n",
811 	    CSR_XR(csr_base, LPU_DEBUG_STATUS));
812 
813 	/*
814 	 * CSR_V LPU_DEBUG_CONFIG Expect Kernel 0x0
815 	 */
816 	DBG(DBG_LPU, NULL, "lpu_init - LPU_DEBUG_CONFIG: 0x%llx\n",
817 	    CSR_XR(csr_base, LPU_DEBUG_CONFIG));
818 
819 	/*
820 	 * CSR_V LPU_LTSSM_CONTROL Expect HW 0x0
821 	 */
822 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONTROL: 0x%llx\n",
823 	    CSR_XR(csr_base, LPU_LTSSM_CONTROL));
824 
825 	/*
826 	 * CSR_V LPU_LINK_STATUS Expect HW 0x101
827 	 */
828 
829 	/*
830 	 * This register has bits [9:4] for link width, and the
831 	 * default 0x10, means a width of x16.  The problem is
832 	 * this width is not supported according to the TLU
833 	 * link status register.
834 	 */
835 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LINK_STATUS: 0x%llx\n",
836 	    CSR_XR(csr_base, LPU_LINK_STATUS));
837 
838 	/*
839 	 * CSR_V LPU_INTERRUPT_STATUS Expect HW 0x0
840 	 */
841 	DBG(DBG_LPU, NULL, "lpu_init - LPU_INTERRUPT_STATUS: 0x%llx\n",
842 	    CSR_XR(csr_base, LPU_INTERRUPT_STATUS));
843 
844 	/*
845 	 * CSR_V LPU_INTERRUPT_MASK Expect HW 0x0
846 	 */
847 	DBG(DBG_LPU, NULL, "lpu_init - LPU_INTERRUPT_MASK: 0x%llx\n",
848 	    CSR_XR(csr_base, LPU_INTERRUPT_MASK));
849 
850 	/*
851 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER_SELECT Expect HW 0x0
852 	 */
853 	DBG(DBG_LPU, NULL,
854 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER_SELECT: 0x%llx\n",
855 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER_SELECT));
856 
857 	/*
858 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER_CONTROL Expect HW 0x0
859 	 */
860 	DBG(DBG_LPU, NULL,
861 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER_CONTROL: 0x%llx\n",
862 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER_CONTROL));
863 
864 	/*
865 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER1 Expect HW 0x0
866 	 */
867 	DBG(DBG_LPU, NULL,
868 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER1: 0x%llx\n",
869 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER1));
870 
871 	/*
872 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER1_TEST Expect HW 0x0
873 	 */
874 	DBG(DBG_LPU, NULL,
875 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER1_TEST: 0x%llx\n",
876 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER1_TEST));
877 
878 	/*
879 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER2 Expect HW 0x0
880 	 */
881 	DBG(DBG_LPU, NULL,
882 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER2: 0x%llx\n",
883 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER2));
884 
885 	/*
886 	 * CSR_V LPU_LINK_PERFORMANCE_COUNTER2_TEST Expect HW 0x0
887 	 */
888 	DBG(DBG_LPU, NULL,
889 	    "lpu_init - LPU_LINK_PERFORMANCE_COUNTER2_TEST: 0x%llx\n",
890 	    CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER2_TEST));
891 
892 	/*
893 	 * CSR_V LPU_LINK_LAYER_CONFIG Expect HW 0x100
894 	 */
895 
896 	/*
897 	 * This is another place where Max Payload can be set,
898 	 * this time for the link layer.  It will be set to
899 	 * 128B, which is the default, but this will need to
900 	 * be revisited.
901 	 */
902 	val = (1ull << LPU_LINK_LAYER_CONFIG_VC0_EN);
903 	CSR_XS(csr_base, LPU_LINK_LAYER_CONFIG, val);
904 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LINK_LAYER_CONFIG: 0x%llx\n",
905 	    CSR_XR(csr_base, LPU_LINK_LAYER_CONFIG));
906 
907 	/*
908 	 * CSR_V LPU_LINK_LAYER_STATUS Expect OBP 0x5
909 	 */
910 
911 	/*
912 	 * Another R/W status register.  Bit 3, DL up Status, will
913 	 * be set high.  The link state machine status bits [2:0]
914 	 * are set to 0x1, but the status bits are not defined in the
915 	 * PRM.  What does 0x1 mean, what others values are possible
916 	 * and what are thier meanings?
917 	 *
918 	 * This register has been giving us problems in simulation.
919 	 * It has been mentioned that software should not program
920 	 * any registers with WE bits except during debug.  So
921 	 * this register will no longer be programmed.
922 	 */
923 
924 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LINK_LAYER_STATUS: 0x%llx\n",
925 	    CSR_XR(csr_base, LPU_LINK_LAYER_STATUS));
926 
927 	/*
928 	 * CSR_V LPU_LINK_LAYER_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
929 	 */
930 	DBG(DBG_LPU, NULL,
931 	    "lpu_init - LPU_LINK_LAYER_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
932 	    CSR_XR(csr_base, LPU_LINK_LAYER_INTERRUPT_AND_STATUS_TEST));
933 
934 	/*
935 	 * CSR_V LPU Link Layer interrupt regs (mask, status)
936 	 */
937 	DBG(DBG_LPU, NULL,
938 	    "lpu_init - LPU_LINK_LAYER_INTERRUPT_MASK: 0x%llx\n",
939 	    CSR_XR(csr_base, LPU_LINK_LAYER_INTERRUPT_MASK));
940 
941 	DBG(DBG_LPU, NULL,
942 	    "lpu_init - LPU_LINK_LAYER_INTERRUPT_AND_STATUS: 0x%llx\n",
943 	    CSR_XR(csr_base, LPU_LINK_LAYER_INTERRUPT_AND_STATUS));
944 
945 	/*
946 	 * CSR_V LPU_FLOW_CONTROL_UPDATE_CONTROL Expect OBP 0x7
947 	 */
948 
949 	/*
950 	 * The PRM says that only the first two bits will be set
951 	 * high by default, which will enable flow control for
952 	 * posted and non-posted updates, but NOT completetion
953 	 * updates.
954 	 */
955 	val = (1ull << LPU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_NP_EN) |
956 	    (1ull << LPU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_P_EN);
957 	CSR_XS(csr_base, LPU_FLOW_CONTROL_UPDATE_CONTROL, val);
958 	DBG(DBG_LPU, NULL,
959 	    "lpu_init - LPU_FLOW_CONTROL_UPDATE_CONTROL: 0x%llx\n",
960 	    CSR_XR(csr_base, LPU_FLOW_CONTROL_UPDATE_CONTROL));
961 
962 	/*
963 	 * CSR_V LPU_LINK_LAYER_FLOW_CONTROL_UPDATE_TIMEOUT_VALUE
964 	 * Expect OBP 0x1D4C
965 	 */
966 
967 	/*
968 	 * This should be set by OBP.  We'll check to make sure.
969 	 */
970 	DBG(DBG_LPU, NULL, "lpu_init - "
971 	    "LPU_LINK_LAYER_FLOW_CONTROL_UPDATE_TIMEOUT_VALUE: 0x%llx\n",
972 	    CSR_XR(csr_base,
973 	    LPU_LINK_LAYER_FLOW_CONTROL_UPDATE_TIMEOUT_VALUE));
974 
975 	/*
976 	 * CSR_V LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER0 Expect OBP ???
977 	 */
978 
979 	/*
980 	 * This register has Flow Control Update Timer values for
981 	 * non-posted and posted requests, bits [30:16] and bits
982 	 * [14:0], respectively.  These are read-only to SW so
983 	 * either HW or OBP needs to set them.
984 	 */
985 	DBG(DBG_LPU, NULL, "lpu_init - "
986 	    "LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER0: 0x%llx\n",
987 	    CSR_XR(csr_base,
988 	    LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER0));
989 
990 	/*
991 	 * CSR_V LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER1 Expect OBP ???
992 	 */
993 
994 	/*
995 	 * Same as timer0 register above, except for bits [14:0]
996 	 * have the timer values for completetions.  Read-only to
997 	 * SW; OBP or HW need to set it.
998 	 */
999 	DBG(DBG_LPU, NULL, "lpu_init - "
1000 	    "LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER1: 0x%llx\n",
1001 	    CSR_XR(csr_base,
1002 	    LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER1));
1003 
1004 	/*
1005 	 * CSR_V LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD
1006 	 */
1007 	val = px_acknak_timer_table[max_payload][link_width];
1008 	CSR_XS(csr_base, LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD, val);
1009 
1010 	DBG(DBG_LPU, NULL, "lpu_init - "
1011 	    "LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD: 0x%llx\n",
1012 	    CSR_XR(csr_base, LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD));
1013 
1014 	/*
1015 	 * CSR_V LPU_TXLINK_ACKNAK_LATENCY_TIMER Expect HW 0x0
1016 	 */
1017 	DBG(DBG_LPU, NULL,
1018 	    "lpu_init - LPU_TXLINK_ACKNAK_LATENCY_TIMER: 0x%llx\n",
1019 	    CSR_XR(csr_base, LPU_TXLINK_ACKNAK_LATENCY_TIMER));
1020 
1021 	/*
1022 	 * CSR_V LPU_TXLINK_REPLAY_TIMER_THRESHOLD
1023 	 */
1024 	val = px_replay_timer_table[max_payload][link_width];
1025 	CSR_XS(csr_base, LPU_TXLINK_REPLAY_TIMER_THRESHOLD, val);
1026 
1027 	DBG(DBG_LPU, NULL,
1028 	    "lpu_init - LPU_TXLINK_REPLAY_TIMER_THRESHOLD: 0x%llx\n",
1029 	    CSR_XR(csr_base, LPU_TXLINK_REPLAY_TIMER_THRESHOLD));
1030 
1031 	/*
1032 	 * CSR_V LPU_TXLINK_REPLAY_TIMER Expect HW 0x0
1033 	 */
1034 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_REPLAY_TIMER: 0x%llx\n",
1035 	    CSR_XR(csr_base, LPU_TXLINK_REPLAY_TIMER));
1036 
1037 	/*
1038 	 * CSR_V LPU_TXLINK_REPLAY_NUMBER_STATUS Expect OBP 0x3
1039 	 */
1040 	DBG(DBG_LPU, NULL,
1041 	    "lpu_init - LPU_TXLINK_REPLAY_NUMBER_STATUS: 0x%llx\n",
1042 	    CSR_XR(csr_base, LPU_TXLINK_REPLAY_NUMBER_STATUS));
1043 
1044 	/*
1045 	 * CSR_V LPU_REPLAY_BUFFER_MAX_ADDRESS Expect OBP 0xB3F
1046 	 */
1047 	DBG(DBG_LPU, NULL,
1048 	    "lpu_init - LPU_REPLAY_BUFFER_MAX_ADDRESS: 0x%llx\n",
1049 	    CSR_XR(csr_base, LPU_REPLAY_BUFFER_MAX_ADDRESS));
1050 
1051 	/*
1052 	 * CSR_V LPU_TXLINK_RETRY_FIFO_POINTER Expect OBP 0xFFFF0000
1053 	 */
1054 	val = ((LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_TLPTR_DEFAULT <<
1055 	    LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_TLPTR) |
1056 	    (LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_HDPTR_DEFAULT <<
1057 	    LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_HDPTR));
1058 
1059 	CSR_XS(csr_base, LPU_TXLINK_RETRY_FIFO_POINTER, val);
1060 	DBG(DBG_LPU, NULL,
1061 	    "lpu_init - LPU_TXLINK_RETRY_FIFO_POINTER: 0x%llx\n",
1062 	    CSR_XR(csr_base, LPU_TXLINK_RETRY_FIFO_POINTER));
1063 
1064 	/*
1065 	 * CSR_V LPU_TXLINK_RETRY_FIFO_R_W_POINTER Expect OBP 0x0
1066 	 */
1067 	DBG(DBG_LPU, NULL,
1068 	    "lpu_init - LPU_TXLINK_RETRY_FIFO_R_W_POINTER: 0x%llx\n",
1069 	    CSR_XR(csr_base, LPU_TXLINK_RETRY_FIFO_R_W_POINTER));
1070 
1071 	/*
1072 	 * CSR_V LPU_TXLINK_RETRY_FIFO_CREDIT Expect HW 0x1580
1073 	 */
1074 	DBG(DBG_LPU, NULL,
1075 	    "lpu_init - LPU_TXLINK_RETRY_FIFO_CREDIT: 0x%llx\n",
1076 	    CSR_XR(csr_base, LPU_TXLINK_RETRY_FIFO_CREDIT));
1077 
1078 	/*
1079 	 * CSR_V LPU_TXLINK_SEQUENCE_COUNTER Expect OBP 0xFFF0000
1080 	 */
1081 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_SEQUENCE_COUNTER: 0x%llx\n",
1082 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNTER));
1083 
1084 	/*
1085 	 * CSR_V LPU_TXLINK_ACK_SENT_SEQUENCE_NUMBER Expect HW 0xFFF
1086 	 */
1087 	DBG(DBG_LPU, NULL,
1088 	    "lpu_init - LPU_TXLINK_ACK_SENT_SEQUENCE_NUMBER: 0x%llx\n",
1089 	    CSR_XR(csr_base, LPU_TXLINK_ACK_SENT_SEQUENCE_NUMBER));
1090 
1091 	/*
1092 	 * CSR_V LPU_TXLINK_SEQUENCE_COUNT_FIFO_MAX_ADDR Expect OBP 0x157
1093 	 */
1094 
1095 	/*
1096 	 * Test only register.  Will not be programmed.
1097 	 */
1098 	DBG(DBG_LPU, NULL,
1099 	    "lpu_init - LPU_TXLINK_SEQUENCE_COUNT_FIFO_MAX_ADDR: 0x%llx\n",
1100 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNT_FIFO_MAX_ADDR));
1101 
1102 	/*
1103 	 * CSR_V LPU_TXLINK_SEQUENCE_COUNT_FIFO_POINTERS Expect HW 0xFFF0000
1104 	 */
1105 
1106 	/*
1107 	 * Test only register.  Will not be programmed.
1108 	 */
1109 	DBG(DBG_LPU, NULL,
1110 	    "lpu_init - LPU_TXLINK_SEQUENCE_COUNT_FIFO_POINTERS: 0x%llx\n",
1111 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNT_FIFO_POINTERS));
1112 
1113 	/*
1114 	 * CSR_V LPU_TXLINK_SEQUENCE_COUNT_R_W_POINTERS Expect HW 0x0
1115 	 */
1116 	DBG(DBG_LPU, NULL,
1117 	    "lpu_init - LPU_TXLINK_SEQUENCE_COUNT_R_W_POINTERS: 0x%llx\n",
1118 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNT_R_W_POINTERS));
1119 
1120 	/*
1121 	 * CSR_V LPU_TXLINK_TEST_CONTROL Expect HW 0x0
1122 	 */
1123 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_TEST_CONTROL: 0x%llx\n",
1124 	    CSR_XR(csr_base, LPU_TXLINK_TEST_CONTROL));
1125 
1126 	/*
1127 	 * CSR_V LPU_TXLINK_MEMORY_ADDRESS_CONTROL Expect HW 0x0
1128 	 */
1129 
1130 	/*
1131 	 * Test only register.  Will not be programmed.
1132 	 */
1133 	DBG(DBG_LPU, NULL,
1134 	    "lpu_init - LPU_TXLINK_MEMORY_ADDRESS_CONTROL: 0x%llx\n",
1135 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_ADDRESS_CONTROL));
1136 
1137 	/*
1138 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD0 Expect HW 0x0
1139 	 */
1140 	DBG(DBG_LPU, NULL,
1141 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD0: 0x%llx\n",
1142 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD0));
1143 
1144 	/*
1145 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD1 Expect HW 0x0
1146 	 */
1147 	DBG(DBG_LPU, NULL,
1148 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD1: 0x%llx\n",
1149 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD1));
1150 
1151 	/*
1152 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD2 Expect HW 0x0
1153 	 */
1154 	DBG(DBG_LPU, NULL,
1155 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD2: 0x%llx\n",
1156 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD2));
1157 
1158 	/*
1159 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD3 Expect HW 0x0
1160 	 */
1161 	DBG(DBG_LPU, NULL,
1162 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD3: 0x%llx\n",
1163 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD3));
1164 
1165 	/*
1166 	 * CSR_V LPU_TXLINK_MEMORY_DATA_LOAD4 Expect HW 0x0
1167 	 */
1168 	DBG(DBG_LPU, NULL,
1169 	    "lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD4: 0x%llx\n",
1170 	    CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD4));
1171 
1172 	/*
1173 	 * CSR_V LPU_TXLINK_RETRY_DATA_COUNT Expect HW 0x0
1174 	 */
1175 
1176 	/*
1177 	 * Test only register.  Will not be programmed.
1178 	 */
1179 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_RETRY_DATA_COUNT: 0x%llx\n",
1180 	    CSR_XR(csr_base, LPU_TXLINK_RETRY_DATA_COUNT));
1181 
1182 	/*
1183 	 * CSR_V LPU_TXLINK_SEQUENCE_BUFFER_COUNT Expect HW 0x0
1184 	 */
1185 
1186 	/*
1187 	 * Test only register.  Will not be programmed.
1188 	 */
1189 	DBG(DBG_LPU, NULL,
1190 	    "lpu_init - LPU_TXLINK_SEQUENCE_BUFFER_COUNT: 0x%llx\n",
1191 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_BUFFER_COUNT));
1192 
1193 	/*
1194 	 * CSR_V LPU_TXLINK_SEQUENCE_BUFFER_BOTTOM_DATA Expect HW 0x0
1195 	 */
1196 
1197 	/*
1198 	 * Test only register.
1199 	 */
1200 	DBG(DBG_LPU, NULL,
1201 	    "lpu_init - LPU_TXLINK_SEQUENCE_BUFFER_BOTTOM_DATA: 0x%llx\n",
1202 	    CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_BUFFER_BOTTOM_DATA));
1203 
1204 	/*
1205 	 * CSR_V LPU_RXLINK_NEXT_RECEIVE_SEQUENCE_1_COUNTER Expect HW 0x0
1206 	 */
1207 	DBG(DBG_LPU, NULL, "lpu_init - "
1208 	    "LPU_RXLINK_NEXT_RECEIVE_SEQUENCE_1_COUNTER: 0x%llx\n",
1209 	    CSR_XR(csr_base, LPU_RXLINK_NEXT_RECEIVE_SEQUENCE_1_COUNTER));
1210 
1211 	/*
1212 	 * CSR_V LPU_RXLINK_UNSUPPORTED_DLLP_RECEIVED Expect HW 0x0
1213 	 */
1214 
1215 	/*
1216 	 * test only register.
1217 	 */
1218 	DBG(DBG_LPU, NULL,
1219 	    "lpu_init - LPU_RXLINK_UNSUPPORTED_DLLP_RECEIVED: 0x%llx\n",
1220 	    CSR_XR(csr_base, LPU_RXLINK_UNSUPPORTED_DLLP_RECEIVED));
1221 
1222 	/*
1223 	 * CSR_V LPU_RXLINK_TEST_CONTROL Expect HW 0x0
1224 	 */
1225 
1226 	/*
1227 	 * test only register.
1228 	 */
1229 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RXLINK_TEST_CONTROL: 0x%llx\n",
1230 	    CSR_XR(csr_base, LPU_RXLINK_TEST_CONTROL));
1231 
1232 	/*
1233 	 * CSR_V LPU_PHYSICAL_LAYER_CONFIGURATION Expect HW 0x10
1234 	 */
1235 	DBG(DBG_LPU, NULL,
1236 	    "lpu_init - LPU_PHYSICAL_LAYER_CONFIGURATION: 0x%llx\n",
1237 	    CSR_XR(csr_base, LPU_PHYSICAL_LAYER_CONFIGURATION));
1238 
1239 	/*
1240 	 * CSR_V LPU_PHY_LAYER_STATUS Expect HW 0x0
1241 	 */
1242 	DBG(DBG_LPU, NULL, "lpu_init - LPU_PHY_LAYER_STATUS: 0x%llx\n",
1243 	    CSR_XR(csr_base, LPU_PHY_LAYER_STATUS));
1244 
1245 	/*
1246 	 * CSR_V LPU_PHY_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
1247 	 */
1248 	DBG(DBG_LPU, NULL,
1249 	    "lpu_init - LPU_PHY_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1250 	    CSR_XR(csr_base, LPU_PHY_INTERRUPT_AND_STATUS_TEST));
1251 
1252 	/*
1253 	 * CSR_V LPU PHY LAYER interrupt regs (mask, status)
1254 	 */
1255 	DBG(DBG_LPU, NULL, "lpu_init - LPU_PHY_INTERRUPT_MASK: 0x%llx\n",
1256 	    CSR_XR(csr_base, LPU_PHY_INTERRUPT_MASK));
1257 
1258 	DBG(DBG_LPU, NULL,
1259 	    "lpu_init - LPU_PHY_LAYER_INTERRUPT_AND_STATUS: 0x%llx\n",
1260 	    CSR_XR(csr_base, LPU_PHY_LAYER_INTERRUPT_AND_STATUS));
1261 
1262 	/*
1263 	 * CSR_V LPU_RECEIVE_PHY_CONFIG Expect HW 0x0
1264 	 */
1265 
1266 	/*
1267 	 * This also needs some explanation.  What is the best value
1268 	 * for the water mark?  Test mode enables which test mode?
1269 	 * Programming model needed for the Receiver Reset Lane N
1270 	 * bits.
1271 	 */
1272 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_CONFIG: 0x%llx\n",
1273 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_CONFIG));
1274 
1275 	/*
1276 	 * CSR_V LPU_RECEIVE_PHY_STATUS1 Expect HW 0x0
1277 	 */
1278 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_STATUS1: 0x%llx\n",
1279 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_STATUS1));
1280 
1281 	/*
1282 	 * CSR_V LPU_RECEIVE_PHY_STATUS2 Expect HW 0x0
1283 	 */
1284 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_STATUS2: 0x%llx\n",
1285 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_STATUS2));
1286 
1287 	/*
1288 	 * CSR_V LPU_RECEIVE_PHY_STATUS3 Expect HW 0x0
1289 	 */
1290 	DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_STATUS3: 0x%llx\n",
1291 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_STATUS3));
1292 
1293 	/*
1294 	 * CSR_V LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
1295 	 */
1296 	DBG(DBG_LPU, NULL,
1297 	    "lpu_init - LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1298 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS_TEST));
1299 
1300 	/*
1301 	 * CSR_V LPU RX LAYER interrupt regs (mask, status)
1302 	 */
1303 	DBG(DBG_LPU, NULL,
1304 	    "lpu_init - LPU_RECEIVE_PHY_INTERRUPT_MASK: 0x%llx\n",
1305 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_INTERRUPT_MASK));
1306 
1307 	DBG(DBG_LPU, NULL,
1308 	    "lpu_init - LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS: 0x%llx\n",
1309 	    CSR_XR(csr_base, LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS));
1310 
1311 	/*
1312 	 * CSR_V LPU_TRANSMIT_PHY_CONFIG Expect HW 0x0
1313 	 */
1314 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TRANSMIT_PHY_CONFIG: 0x%llx\n",
1315 	    CSR_XR(csr_base, LPU_TRANSMIT_PHY_CONFIG));
1316 
1317 	/*
1318 	 * CSR_V LPU_TRANSMIT_PHY_STATUS Expect HW 0x0
1319 	 */
1320 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TRANSMIT_PHY_STATUS: 0x%llx\n",
1321 	    CSR_XR(csr_base, LPU_TRANSMIT_PHY_STATUS));
1322 
1323 	/*
1324 	 * CSR_V LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
1325 	 */
1326 	DBG(DBG_LPU, NULL,
1327 	    "lpu_init - LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1328 	    CSR_XR(csr_base,
1329 	    LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS_TEST));
1330 
1331 	/*
1332 	 * CSR_V LPU TX LAYER interrupt regs (mask, status)
1333 	 */
1334 	DBG(DBG_LPU, NULL,
1335 	    "lpu_init - LPU_TRANSMIT_PHY_INTERRUPT_MASK: 0x%llx\n",
1336 	    CSR_XR(csr_base, LPU_TRANSMIT_PHY_INTERRUPT_MASK));
1337 
1338 	DBG(DBG_LPU, NULL,
1339 	    "lpu_init - LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS: 0x%llx\n",
1340 	    CSR_XR(csr_base, LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS));
1341 
1342 	/*
1343 	 * CSR_V LPU_TRANSMIT_PHY_STATUS_2 Expect HW 0x0
1344 	 */
1345 	DBG(DBG_LPU, NULL, "lpu_init - LPU_TRANSMIT_PHY_STATUS_2: 0x%llx\n",
1346 	    CSR_XR(csr_base, LPU_TRANSMIT_PHY_STATUS_2));
1347 
1348 	/*
1349 	 * CSR_V LPU_LTSSM_CONFIG1 Expect OBP 0x205
1350 	 */
1351 
1352 	/*
1353 	 * The new PRM has values for LTSSM 8 ns timeout value and
1354 	 * LTSSM 20 ns timeout value.  But what do these values mean?
1355 	 * Most of the other bits are questions as well.
1356 	 *
1357 	 * As such we will use the reset value.
1358 	 */
1359 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG1: 0x%llx\n",
1360 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG1));
1361 
1362 	/*
1363 	 * CSR_V LPU_LTSSM_CONFIG2 Expect OBP 0x2DC6C0
1364 	 */
1365 
1366 	/*
1367 	 * Again, what does '12 ms timeout value mean'?
1368 	 */
1369 	val = (LPU_LTSSM_CONFIG2_LTSSM_12_TO_DEFAULT <<
1370 	    LPU_LTSSM_CONFIG2_LTSSM_12_TO);
1371 	CSR_XS(csr_base, LPU_LTSSM_CONFIG2, val);
1372 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG2: 0x%llx\n",
1373 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG2));
1374 
1375 	/*
1376 	 * CSR_V LPU_LTSSM_CONFIG3 Expect OBP 0x7A120
1377 	 */
1378 	val = (LPU_LTSSM_CONFIG3_LTSSM_2_TO_DEFAULT <<
1379 	    LPU_LTSSM_CONFIG3_LTSSM_2_TO);
1380 	CSR_XS(csr_base, LPU_LTSSM_CONFIG3, val);
1381 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG3: 0x%llx\n",
1382 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG3));
1383 
1384 	/*
1385 	 * CSR_V LPU_LTSSM_CONFIG4 Expect OBP 0x21300
1386 	 */
1387 	val = ((LPU_LTSSM_CONFIG4_DATA_RATE_DEFAULT <<
1388 	    LPU_LTSSM_CONFIG4_DATA_RATE) |
1389 	    (LPU_LTSSM_CONFIG4_N_FTS_DEFAULT <<
1390 	    LPU_LTSSM_CONFIG4_N_FTS));
1391 
1392 	CSR_XS(csr_base, LPU_LTSSM_CONFIG4, val);
1393 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG4: 0x%llx\n",
1394 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG4));
1395 
1396 	/*
1397 	 * CSR_V LPU_LTSSM_CONFIG5 Expect OBP 0x0
1398 	 */
1399 	val = 0ull;
1400 	CSR_XS(csr_base, LPU_LTSSM_CONFIG5, val);
1401 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG5: 0x%llx\n",
1402 	    CSR_XR(csr_base, LPU_LTSSM_CONFIG5));
1403 
1404 	/*
1405 	 * CSR_V LPU_LTSSM_STATUS1 Expect OBP 0x0
1406 	 */
1407 
1408 	/*
1409 	 * LTSSM Status registers are test only.
1410 	 */
1411 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_STATUS1: 0x%llx\n",
1412 	    CSR_XR(csr_base, LPU_LTSSM_STATUS1));
1413 
1414 	/*
1415 	 * CSR_V LPU_LTSSM_STATUS2 Expect OBP 0x0
1416 	 */
1417 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_STATUS2: 0x%llx\n",
1418 	    CSR_XR(csr_base, LPU_LTSSM_STATUS2));
1419 
1420 	/*
1421 	 * CSR_V LPU_LTSSM_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
1422 	 */
1423 	DBG(DBG_LPU, NULL,
1424 	    "lpu_init - LPU_LTSSM_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1425 	    CSR_XR(csr_base, LPU_LTSSM_INTERRUPT_AND_STATUS_TEST));
1426 
1427 	/*
1428 	 * CSR_V LPU LTSSM  LAYER interrupt regs (mask, status)
1429 	 */
1430 	DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_INTERRUPT_MASK: 0x%llx\n",
1431 	    CSR_XR(csr_base, LPU_LTSSM_INTERRUPT_MASK));
1432 
1433 	DBG(DBG_LPU, NULL,
1434 	    "lpu_init - LPU_LTSSM_INTERRUPT_AND_STATUS: 0x%llx\n",
1435 	    CSR_XR(csr_base, LPU_LTSSM_INTERRUPT_AND_STATUS));
1436 
1437 	/*
1438 	 * CSR_V LPU_LTSSM_STATUS_WRITE_ENABLE Expect OBP 0x0
1439 	 */
1440 	DBG(DBG_LPU, NULL,
1441 	    "lpu_init - LPU_LTSSM_STATUS_WRITE_ENABLE: 0x%llx\n",
1442 	    CSR_XR(csr_base, LPU_LTSSM_STATUS_WRITE_ENABLE));
1443 
1444 	/*
1445 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG1 Expect OBP 0x88407
1446 	 */
1447 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG1: 0x%llx\n",
1448 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG1));
1449 
1450 	/*
1451 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG2 Expect OBP 0x35
1452 	 */
1453 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG2: 0x%llx\n",
1454 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG2));
1455 
1456 	/*
1457 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG3 Expect OBP 0x4400FA
1458 	 */
1459 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG3: 0x%llx\n",
1460 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG3));
1461 
1462 	/*
1463 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG4 Expect OBP 0x1E848
1464 	 */
1465 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG4: 0x%llx\n",
1466 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG4));
1467 
1468 	/*
1469 	 * CSR_V LPU_GIGABLAZE_GLUE_STATUS Expect OBP 0x0
1470 	 */
1471 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_STATUS: 0x%llx\n",
1472 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_STATUS));
1473 
1474 	/*
1475 	 * CSR_V LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS_TEST Expect OBP 0x0
1476 	 */
1477 	DBG(DBG_LPU, NULL, "lpu_init - "
1478 	    "LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
1479 	    CSR_XR(csr_base,
1480 	    LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS_TEST));
1481 
1482 	/*
1483 	 * CSR_V LPU GIGABLASE LAYER interrupt regs (mask, status)
1484 	 */
1485 	DBG(DBG_LPU, NULL,
1486 	    "lpu_init - LPU_GIGABLAZE_GLUE_INTERRUPT_MASK: 0x%llx\n",
1487 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_INTERRUPT_MASK));
1488 
1489 	DBG(DBG_LPU, NULL,
1490 	    "lpu_init - LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS: 0x%llx\n",
1491 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS));
1492 
1493 	/*
1494 	 * CSR_V LPU_GIGABLAZE_GLUE_POWER_DOWN1 Expect HW 0x0
1495 	 */
1496 	DBG(DBG_LPU, NULL,
1497 	    "lpu_init - LPU_GIGABLAZE_GLUE_POWER_DOWN1: 0x%llx\n",
1498 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_POWER_DOWN1));
1499 
1500 	/*
1501 	 * CSR_V LPU_GIGABLAZE_GLUE_POWER_DOWN2 Expect HW 0x0
1502 	 */
1503 	DBG(DBG_LPU, NULL,
1504 	    "lpu_init - LPU_GIGABLAZE_GLUE_POWER_DOWN2: 0x%llx\n",
1505 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_POWER_DOWN2));
1506 
1507 	/*
1508 	 * CSR_V LPU_GIGABLAZE_GLUE_CONFIG5 Expect OBP 0x0
1509 	 */
1510 	DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG5: 0x%llx\n",
1511 	    CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG5));
1512 }
1513 
1514 /* ARGSUSED */
1515 static void
1516 dlu_init(caddr_t csr_base, pxu_t *pxu_p)
1517 {
1518 uint64_t val;
1519 
1520 	CSR_XS(csr_base, DLU_INTERRUPT_MASK, 0ull);
1521 	DBG(DBG_TLU, NULL, "dlu_init - DLU_INTERRUPT_MASK: 0x%llx\n",
1522 	    CSR_XR(csr_base, DLU_INTERRUPT_MASK));
1523 
1524 	val = (1ull << DLU_LINK_LAYER_CONFIG_VC0_EN);
1525 	CSR_XS(csr_base, DLU_LINK_LAYER_CONFIG, val);
1526 	DBG(DBG_TLU, NULL, "dlu_init - DLU_LINK_LAYER_CONFIG: 0x%llx\n",
1527 	    CSR_XR(csr_base, DLU_LINK_LAYER_CONFIG));
1528 
1529 	val = (1ull << DLU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_NP_EN) |
1530 	    (1ull << DLU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_P_EN);
1531 
1532 	CSR_XS(csr_base, DLU_FLOW_CONTROL_UPDATE_CONTROL, val);
1533 	DBG(DBG_TLU, NULL, "dlu_init - DLU_FLOW_CONTROL_UPDATE_CONTROL: "
1534 	    "0x%llx\n", CSR_XR(csr_base, DLU_FLOW_CONTROL_UPDATE_CONTROL));
1535 
1536 	val = (DLU_TXLINK_REPLAY_TIMER_THRESHOLD_DEFAULT <<
1537 	    DLU_TXLINK_REPLAY_TIMER_THRESHOLD_RPLAY_TMR_THR);
1538 
1539 	CSR_XS(csr_base, DLU_TXLINK_REPLAY_TIMER_THRESHOLD, val);
1540 
1541 	DBG(DBG_TLU, NULL, "dlu_init - DLU_TXLINK_REPLAY_TIMER_THRESHOLD: "
1542 	    "0x%llx\n", CSR_XR(csr_base, DLU_TXLINK_REPLAY_TIMER_THRESHOLD));
1543 }
1544 
1545 /* ARGSUSED */
1546 static void
1547 dmc_init(caddr_t csr_base, pxu_t *pxu_p)
1548 {
1549 	uint64_t val;
1550 
1551 /*
1552  * CSR_V DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE Expect OBP 0x8000000000000003
1553  */
1554 
1555 	val = -1ull;
1556 	CSR_XS(csr_base, DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE, val);
1557 	DBG(DBG_DMC, NULL,
1558 	    "dmc_init - DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE: 0x%llx\n",
1559 	    CSR_XR(csr_base, DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE));
1560 
1561 	/*
1562 	 * CSR_V DMC_CORE_AND_BLOCK_ERROR_STATUS Expect HW 0x0
1563 	 */
1564 	DBG(DBG_DMC, NULL,
1565 	    "dmc_init - DMC_CORE_AND_BLOCK_ERROR_STATUS: 0x%llx\n",
1566 	    CSR_XR(csr_base, DMC_CORE_AND_BLOCK_ERROR_STATUS));
1567 
1568 	/*
1569 	 * CSR_V DMC_DEBUG_SELECT_FOR_PORT_A Expect HW 0x0
1570 	 */
1571 	val = 0x0ull;
1572 	CSR_XS(csr_base, DMC_DEBUG_SELECT_FOR_PORT_A, val);
1573 	DBG(DBG_DMC, NULL, "dmc_init - DMC_DEBUG_SELECT_FOR_PORT_A: 0x%llx\n",
1574 	    CSR_XR(csr_base, DMC_DEBUG_SELECT_FOR_PORT_A));
1575 
1576 	/*
1577 	 * CSR_V DMC_DEBUG_SELECT_FOR_PORT_B Expect HW 0x0
1578 	 */
1579 	val = 0x0ull;
1580 	CSR_XS(csr_base, DMC_DEBUG_SELECT_FOR_PORT_B, val);
1581 	DBG(DBG_DMC, NULL, "dmc_init - DMC_DEBUG_SELECT_FOR_PORT_B: 0x%llx\n",
1582 	    CSR_XR(csr_base, DMC_DEBUG_SELECT_FOR_PORT_B));
1583 }
1584 
1585 void
1586 hvio_pec_init(caddr_t csr_base, pxu_t *pxu_p)
1587 {
1588 	uint64_t val;
1589 
1590 	ilu_init(csr_base, pxu_p);
1591 	tlu_init(csr_base, pxu_p);
1592 
1593 	switch (PX_CHIP_TYPE(pxu_p)) {
1594 	case PX_CHIP_OBERON:
1595 		dlu_init(csr_base, pxu_p);
1596 		break;
1597 	case PX_CHIP_FIRE:
1598 		lpu_init(csr_base, pxu_p);
1599 		break;
1600 	default:
1601 		DBG(DBG_PEC, NULL, "hvio_pec_init - unknown chip type: 0x%x\n",
1602 		    PX_CHIP_TYPE(pxu_p));
1603 		break;
1604 	}
1605 
1606 	dmc_init(csr_base, pxu_p);
1607 
1608 /*
1609  * CSR_V PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE Expect Kernel 0x800000000000000F
1610  */
1611 
1612 	val = -1ull;
1613 	CSR_XS(csr_base, PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE, val);
1614 	DBG(DBG_PEC, NULL,
1615 	    "hvio_pec_init - PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE: 0x%llx\n",
1616 	    CSR_XR(csr_base, PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE));
1617 
1618 	/*
1619 	 * CSR_V PEC_CORE_AND_BLOCK_INTERRUPT_STATUS Expect HW 0x0
1620 	 */
1621 	DBG(DBG_PEC, NULL,
1622 	    "hvio_pec_init - PEC_CORE_AND_BLOCK_INTERRUPT_STATUS: 0x%llx\n",
1623 	    CSR_XR(csr_base, PEC_CORE_AND_BLOCK_INTERRUPT_STATUS));
1624 }
1625 
1626 /*
1627  * Convert a TTE to physical address
1628  */
1629 static r_addr_t
1630 mmu_tte_to_pa(uint64_t tte, pxu_t *pxu_p)
1631 {
1632 	uint64_t pa_mask;
1633 
1634 	switch (PX_CHIP_TYPE(pxu_p)) {
1635 	case PX_CHIP_OBERON:
1636 		pa_mask = MMU_OBERON_PADDR_MASK;
1637 		break;
1638 	case PX_CHIP_FIRE:
1639 		pa_mask = MMU_FIRE_PADDR_MASK;
1640 		break;
1641 	default:
1642 		DBG(DBG_MMU, NULL, "mmu_tte_to_pa - unknown chip type: 0x%x\n",
1643 		    PX_CHIP_TYPE(pxu_p));
1644 		pa_mask = 0;
1645 		break;
1646 	}
1647 	return ((tte & pa_mask) >> MMU_PAGE_SHIFT);
1648 }
1649 
1650 /*
1651  * Return MMU bypass noncache bit for chip
1652  */
1653 static r_addr_t
1654 mmu_bypass_noncache(pxu_t *pxu_p)
1655 {
1656 	r_addr_t bypass_noncache_bit;
1657 
1658 	switch (PX_CHIP_TYPE(pxu_p)) {
1659 	case PX_CHIP_OBERON:
1660 		bypass_noncache_bit = MMU_OBERON_BYPASS_NONCACHE;
1661 		break;
1662 	case PX_CHIP_FIRE:
1663 		bypass_noncache_bit = MMU_FIRE_BYPASS_NONCACHE;
1664 		break;
1665 	default:
1666 		DBG(DBG_MMU, NULL,
1667 		    "mmu_bypass_nocache - unknown chip type: 0x%x\n",
1668 		    PX_CHIP_TYPE(pxu_p));
1669 		bypass_noncache_bit = 0;
1670 		break;
1671 	}
1672 	return (bypass_noncache_bit);
1673 }
1674 
1675 /*
1676  * Calculate number of TSB entries for the chip.
1677  */
1678 /* ARGSUSED */
1679 static uint_t
1680 mmu_tsb_entries(caddr_t csr_base, pxu_t *pxu_p)
1681 {
1682 	uint64_t tsb_ctrl;
1683 	uint_t obp_tsb_entries, obp_tsb_size;
1684 
1685 	tsb_ctrl = CSR_XR(csr_base, MMU_TSB_CONTROL);
1686 
1687 	obp_tsb_size = tsb_ctrl & 0xF;
1688 
1689 	obp_tsb_entries = MMU_TSBSIZE_TO_TSBENTRIES(obp_tsb_size);
1690 
1691 	return (obp_tsb_entries);
1692 }
1693 
1694 /*
1695  * Initialize the module, but do not enable interrupts.
1696  */
1697 void
1698 hvio_mmu_init(caddr_t csr_base, pxu_t *pxu_p)
1699 {
1700 	uint64_t	val, i, obp_tsb_pa;
1701 	uint_t obp_tsb_entries;
1702 
1703 	bzero(pxu_p->tsb_vaddr, pxu_p->tsb_size);
1704 
1705 	/*
1706 	 * Preserve OBP's TSB
1707 	 */
1708 	obp_tsb_pa = CSR_XR(csr_base, MMU_TSB_CONTROL) & MMU_TSB_PA_MASK;
1709 
1710 	obp_tsb_entries = mmu_tsb_entries(csr_base, pxu_p);
1711 
1712 	/* save "shape" of OBP's TSB for use during Detach */
1713 	pxu_p->obp_tsb_paddr = obp_tsb_pa;
1714 	pxu_p->obp_tsb_entries = obp_tsb_entries;
1715 
1716 	/* For each Valid TTE in OBP's TSB, save its value in px's IOTSB */
1717 	hvio_obptsb_attach(pxu_p);
1718 
1719 	/*
1720 	 * Invalidate the TLB through the diagnostic register.
1721 	 */
1722 
1723 	CSR_XS(csr_base, MMU_TTE_CACHE_INVALIDATE, -1ull);
1724 
1725 	/*
1726 	 * Configure the Fire MMU TSB Control Register.  Determine
1727 	 * the encoding for either 8KB pages (0) or 64KB pages (1).
1728 	 *
1729 	 * Write the most significant 30 bits of the TSB physical address
1730 	 * and the encoded TSB table size.
1731 	 */
1732 	for (i = 8; i && (pxu_p->tsb_size < (0x2000 << i)); i--)
1733 		;
1734 
1735 	val = (((((va_to_pa(pxu_p->tsb_vaddr)) >> 13) << 13) |
1736 	    ((MMU_PAGE_SHIFT == 13) ? 0 : 1) << 8) | i);
1737 
1738 	CSR_XS(csr_base, MMU_TSB_CONTROL, val);
1739 
1740 	/*
1741 	 * Enable the MMU, set the "TSB Cache Snoop Enable",
1742 	 * the "Cache Mode", the "Bypass Enable" and
1743 	 * the "Translation Enable" bits.
1744 	 */
1745 	val = CSR_XR(csr_base, MMU_CONTROL_AND_STATUS);
1746 	val |= ((1ull << MMU_CONTROL_AND_STATUS_SE)
1747 	    |  (MMU_CONTROL_AND_STATUS_ROE_BIT63_ENABLE <<
1748 	    MMU_CONTROL_AND_STATUS_ROE)
1749 	    | (MMU_CONTROL_AND_STATUS_CM_MASK << MMU_CONTROL_AND_STATUS_CM)
1750 	    | (1ull << MMU_CONTROL_AND_STATUS_BE)
1751 	    | (1ull << MMU_CONTROL_AND_STATUS_TE));
1752 
1753 	CSR_XS(csr_base, MMU_CONTROL_AND_STATUS, val);
1754 
1755 	/*
1756 	 * Read the register here to ensure that the previous writes to
1757 	 * the Fire MMU registers have been flushed.  (Technically, this
1758 	 * is not entirely necessary here as we will likely do later reads
1759 	 * during Fire initialization, but it is a small price to pay for
1760 	 * more modular code.)
1761 	 */
1762 	(void) CSR_XR(csr_base, MMU_CONTROL_AND_STATUS);
1763 
1764 	/*
1765 	 * CSR_V TLU's UE interrupt regs (log, enable, status, clear)
1766 	 * Plus header logs
1767 	 */
1768 	DBG(DBG_MMU, NULL, "mmu_init - MMU_ERROR_LOG_ENABLE: 0x%llx\n",
1769 	    CSR_XR(csr_base, MMU_ERROR_LOG_ENABLE));
1770 
1771 	DBG(DBG_MMU, NULL, "mmu_init - MMU_INTERRUPT_ENABLE: 0x%llx\n",
1772 	    CSR_XR(csr_base, MMU_INTERRUPT_ENABLE));
1773 
1774 	DBG(DBG_MMU, NULL, "mmu_init - MMU_INTERRUPT_STATUS: 0x%llx\n",
1775 	    CSR_XR(csr_base, MMU_INTERRUPT_STATUS));
1776 
1777 	DBG(DBG_MMU, NULL, "mmu_init - MMU_ERROR_STATUS_CLEAR: 0x%llx\n",
1778 	    CSR_XR(csr_base, MMU_ERROR_STATUS_CLEAR));
1779 }
1780 
1781 /*
1782  * Generic IOMMU Servies
1783  */
1784 
1785 /* ARGSUSED */
1786 uint64_t
1787 hvio_iommu_map(devhandle_t dev_hdl, pxu_t *pxu_p, tsbid_t tsbid, pages_t pages,
1788     io_attributes_t io_attr, void *addr, size_t pfn_index, int flags)
1789 {
1790 	tsbindex_t	tsb_index = PCI_TSBID_TO_TSBINDEX(tsbid);
1791 	uint64_t	attr = MMU_TTE_V;
1792 	int		i;
1793 
1794 	if (io_attr & PCI_MAP_ATTR_WRITE)
1795 		attr |= MMU_TTE_W;
1796 
1797 	if ((PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) &&
1798 	    (io_attr & PCI_MAP_ATTR_RO))
1799 		attr |= MMU_TTE_RO;
1800 
1801 	if (attr & MMU_TTE_RO) {
1802 		DBG(DBG_MMU, NULL, "hvio_iommu_map: pfn_index=0x%x "
1803 		    "pages=0x%x attr = 0x%lx\n", pfn_index, pages, attr);
1804 	}
1805 
1806 	if (flags & MMU_MAP_PFN) {
1807 		ddi_dma_impl_t	*mp = (ddi_dma_impl_t *)addr;
1808 		for (i = 0; i < pages; i++, pfn_index++, tsb_index++) {
1809 			px_iopfn_t pfn = PX_GET_MP_PFN(mp, pfn_index);
1810 			pxu_p->tsb_vaddr[tsb_index] = MMU_PTOB(pfn) | attr;
1811 
1812 			/*
1813 			 * Oberon will need to flush the corresponding TTEs in
1814 			 * Cache. We only need to flush every cache line.
1815 			 * Extra PIO's are expensive.
1816 			 */
1817 			if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
1818 				if ((i == (pages-1))||!((tsb_index+1) & 0x7)) {
1819 					CSR_XS(dev_hdl,
1820 					    MMU_TTE_CACHE_FLUSH_ADDRESS,
1821 					    (pxu_p->tsb_paddr+
1822 					    (tsb_index*MMU_TTE_SIZE)));
1823 				}
1824 			}
1825 		}
1826 	} else {
1827 		caddr_t	a = (caddr_t)addr;
1828 		for (i = 0; i < pages; i++, a += MMU_PAGE_SIZE, tsb_index++) {
1829 			px_iopfn_t pfn = hat_getpfnum(kas.a_hat, a);
1830 			pxu_p->tsb_vaddr[tsb_index] = MMU_PTOB(pfn) | attr;
1831 
1832 			/*
1833 			 * Oberon will need to flush the corresponding TTEs in
1834 			 * Cache. We only need to flush every cache line.
1835 			 * Extra PIO's are expensive.
1836 			 */
1837 			if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
1838 				if ((i == (pages-1))||!((tsb_index+1) & 0x7)) {
1839 					CSR_XS(dev_hdl,
1840 					    MMU_TTE_CACHE_FLUSH_ADDRESS,
1841 					    (pxu_p->tsb_paddr+
1842 					    (tsb_index*MMU_TTE_SIZE)));
1843 				}
1844 			}
1845 		}
1846 	}
1847 
1848 	return (H_EOK);
1849 }
1850 
1851 /* ARGSUSED */
1852 uint64_t
1853 hvio_iommu_demap(devhandle_t dev_hdl, pxu_t *pxu_p, tsbid_t tsbid,
1854     pages_t pages)
1855 {
1856 	tsbindex_t	tsb_index = PCI_TSBID_TO_TSBINDEX(tsbid);
1857 	int		i;
1858 
1859 	for (i = 0; i < pages; i++, tsb_index++) {
1860 		pxu_p->tsb_vaddr[tsb_index] = MMU_INVALID_TTE;
1861 
1862 			/*
1863 			 * Oberon will need to flush the corresponding TTEs in
1864 			 * Cache. We only need to flush every cache line.
1865 			 * Extra PIO's are expensive.
1866 			 */
1867 			if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
1868 				if ((i == (pages-1))||!((tsb_index+1) & 0x7)) {
1869 					CSR_XS(dev_hdl,
1870 					    MMU_TTE_CACHE_FLUSH_ADDRESS,
1871 					    (pxu_p->tsb_paddr+
1872 					    (tsb_index*MMU_TTE_SIZE)));
1873 				}
1874 			}
1875 	}
1876 
1877 	return (H_EOK);
1878 }
1879 
1880 /* ARGSUSED */
1881 uint64_t
1882 hvio_iommu_getmap(devhandle_t dev_hdl, pxu_t *pxu_p, tsbid_t tsbid,
1883     io_attributes_t *attr_p, r_addr_t *r_addr_p)
1884 {
1885 	tsbindex_t	tsb_index = PCI_TSBID_TO_TSBINDEX(tsbid);
1886 	uint64_t	*tte_addr;
1887 	uint64_t	ret = H_EOK;
1888 
1889 	tte_addr = (uint64_t *)(pxu_p->tsb_vaddr) + tsb_index;
1890 
1891 	if (*tte_addr & MMU_TTE_V) {
1892 		*r_addr_p = mmu_tte_to_pa(*tte_addr, pxu_p);
1893 		*attr_p = (*tte_addr & MMU_TTE_W) ?
1894 		    PCI_MAP_ATTR_WRITE:PCI_MAP_ATTR_READ;
1895 	} else {
1896 		*r_addr_p = 0;
1897 		*attr_p = 0;
1898 		ret = H_ENOMAP;
1899 	}
1900 
1901 	return (ret);
1902 }
1903 
1904 /*
1905  * Copy each Valid OBP TTE from OBP's IOTSB to px's IOTSB.
1906  */
1907 void
1908 hvio_obptsb_attach(pxu_t *pxu_p)
1909 {
1910 	uint64_t	obp_tsb_pa;
1911 	uint64_t	*base_tte_addr;
1912 	uint64_t	i;
1913 	uint_t		obp_tsb_entries;
1914 
1915 	obp_tsb_pa = pxu_p->obp_tsb_paddr;
1916 	obp_tsb_entries = pxu_p->obp_tsb_entries;
1917 
1918 	/*
1919 	 * Compute the starting addr of the area reserved for
1920 	 * OBP's TTEs; OBP's TTEs are stored at the highest addrs
1921 	 * of px's IOTSB.
1922 	 */
1923 	base_tte_addr = pxu_p->tsb_vaddr +
1924 	    ((pxu_p->tsb_size >> 3) - obp_tsb_entries);
1925 
1926 	for (i = 0; i < obp_tsb_entries; i++) {
1927 		uint64_t tte = lddphys(obp_tsb_pa + i * 8);
1928 
1929 		if (!MMU_TTE_VALID(tte))
1930 			continue;
1931 
1932 		base_tte_addr[i] = tte;
1933 	}
1934 }
1935 
1936 /*
1937  * For each Valid OBP TTE, deallocate space from the vmem Arena used
1938  * to manage the TTE's associated DVMA addr space.  (Allocation from
1939  * the DVMA Arena was done in px_mmu_attach).
1940  */
1941 void
1942 hvio_obptsb_detach(px_t *px_p)
1943 {
1944 	uint64_t	obp_tsb_pa;
1945 	uint64_t	i;
1946 	uint_t		obp_tsb_entries;
1947 	uint_t		obp_tsb_bias;
1948 	px_mmu_t	*mmu_p = px_p->px_mmu_p;
1949 	vmem_t		*dvma_map;
1950 	pxu_t		*pxu_p = (pxu_t *)px_p->px_plat_p;
1951 
1952 	dvma_map = mmu_p->mmu_dvma_map;
1953 
1954 	obp_tsb_pa = pxu_p->obp_tsb_paddr;
1955 	obp_tsb_entries = pxu_p->obp_tsb_entries;
1956 	/*
1957 	 * OBP's TTEs are located at the high end of px's IOTSB.
1958 	 * Equivalently, OBP's DVMA space is allocated at the high end
1959 	 * of px's DVMA space.  Compute the bias that references
1960 	 * OBP's first possible page of DVMA space.
1961 	 */
1962 	obp_tsb_bias = (pxu_p->tsb_size >> 3) - obp_tsb_entries;
1963 
1964 	for (i = 0; i < obp_tsb_entries; i++) {
1965 		caddr_t va;
1966 		uint64_t tte = lddphys(obp_tsb_pa + i * 8);
1967 
1968 		if (!MMU_TTE_VALID(tte))
1969 			continue;
1970 
1971 		/* deallocate the TTE's associated page of DVMA space */
1972 		va = (caddr_t)(MMU_PTOB(mmu_p->dvma_base_pg + obp_tsb_bias +
1973 		    i));
1974 		vmem_xfree(dvma_map, va, MMU_PAGE_SIZE);
1975 	}
1976 }
1977 
1978 /* ARGSUSED */
1979 uint64_t
1980 hvio_get_bypass_base(pxu_t *pxu_p)
1981 {
1982 	uint64_t base;
1983 
1984 	switch (PX_CHIP_TYPE(pxu_p)) {
1985 	case PX_CHIP_OBERON:
1986 		base = MMU_OBERON_BYPASS_BASE;
1987 		break;
1988 	case PX_CHIP_FIRE:
1989 		base = MMU_FIRE_BYPASS_BASE;
1990 		break;
1991 	default:
1992 		DBG(DBG_MMU, NULL,
1993 		    "hvio_get_bypass_base - unknown chip type: 0x%x\n",
1994 		    PX_CHIP_TYPE(pxu_p));
1995 		base = 0;
1996 		break;
1997 	}
1998 	return (base);
1999 }
2000 
2001 /* ARGSUSED */
2002 uint64_t
2003 hvio_get_bypass_end(pxu_t *pxu_p)
2004 {
2005 	uint64_t end;
2006 
2007 	switch (PX_CHIP_TYPE(pxu_p)) {
2008 	case PX_CHIP_OBERON:
2009 		end = MMU_OBERON_BYPASS_END;
2010 		break;
2011 	case PX_CHIP_FIRE:
2012 		end = MMU_FIRE_BYPASS_END;
2013 		break;
2014 	default:
2015 		DBG(DBG_MMU, NULL,
2016 		    "hvio_get_bypass_end - unknown chip type: 0x%x\n",
2017 		    PX_CHIP_TYPE(pxu_p));
2018 		end = 0;
2019 		break;
2020 	}
2021 	return (end);
2022 }
2023 
2024 /* ARGSUSED */
2025 uint64_t
2026 hvio_iommu_getbypass(devhandle_t dev_hdl, pxu_t *pxu_p, r_addr_t ra,
2027     io_attributes_t attr, io_addr_t *io_addr_p)
2028 {
2029 	uint64_t	pfn = MMU_BTOP(ra);
2030 
2031 	*io_addr_p = hvio_get_bypass_base(pxu_p) | ra |
2032 	    (pf_is_memory(pfn) ? 0 : mmu_bypass_noncache(pxu_p));
2033 
2034 	return (H_EOK);
2035 }
2036 
2037 /*
2038  * Generic IO Interrupt Servies
2039  */
2040 
2041 /*
2042  * Converts a device specific interrupt number given by the
2043  * arguments devhandle and devino into a system specific ino.
2044  */
2045 /* ARGSUSED */
2046 uint64_t
2047 hvio_intr_devino_to_sysino(devhandle_t dev_hdl, pxu_t *pxu_p, devino_t devino,
2048     sysino_t *sysino)
2049 {
2050 	if (devino > INTERRUPT_MAPPING_ENTRIES) {
2051 		DBG(DBG_IB, NULL, "ino %x is invalid\n", devino);
2052 		return (H_ENOINTR);
2053 	}
2054 
2055 	*sysino = DEVINO_TO_SYSINO(pxu_p->portid, devino);
2056 
2057 	return (H_EOK);
2058 }
2059 
2060 /*
2061  * Returns state in intr_valid_state if the interrupt defined by sysino
2062  * is valid (enabled) or not-valid (disabled).
2063  */
2064 uint64_t
2065 hvio_intr_getvalid(devhandle_t dev_hdl, sysino_t sysino,
2066     intr_valid_state_t *intr_valid_state)
2067 {
2068 	if (CSRA_BR((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2069 	    SYSINO_TO_DEVINO(sysino), ENTRIES_V)) {
2070 		*intr_valid_state = INTR_VALID;
2071 	} else {
2072 		*intr_valid_state = INTR_NOTVALID;
2073 	}
2074 
2075 	return (H_EOK);
2076 }
2077 
2078 /*
2079  * Sets the 'valid' state of the interrupt defined by
2080  * the argument sysino to the state defined by the
2081  * argument intr_valid_state.
2082  */
2083 uint64_t
2084 hvio_intr_setvalid(devhandle_t dev_hdl, sysino_t sysino,
2085     intr_valid_state_t intr_valid_state)
2086 {
2087 	switch (intr_valid_state) {
2088 	case INTR_VALID:
2089 		CSRA_BS((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2090 		    SYSINO_TO_DEVINO(sysino), ENTRIES_V);
2091 		break;
2092 	case INTR_NOTVALID:
2093 		CSRA_BC((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2094 		    SYSINO_TO_DEVINO(sysino), ENTRIES_V);
2095 		break;
2096 	default:
2097 		return (EINVAL);
2098 	}
2099 
2100 	return (H_EOK);
2101 }
2102 
2103 /*
2104  * Returns the current state of the interrupt given by the sysino
2105  * argument.
2106  */
2107 uint64_t
2108 hvio_intr_getstate(devhandle_t dev_hdl, sysino_t sysino,
2109     intr_state_t *intr_state)
2110 {
2111 	uint64_t state;
2112 
2113 	state = CSRA_FR((caddr_t)dev_hdl, INTERRUPT_CLEAR,
2114 	    SYSINO_TO_DEVINO(sysino), ENTRIES_INT_STATE);
2115 
2116 	switch (state) {
2117 	case INTERRUPT_IDLE_STATE:
2118 		*intr_state = INTR_IDLE_STATE;
2119 		break;
2120 	case INTERRUPT_RECEIVED_STATE:
2121 		*intr_state = INTR_RECEIVED_STATE;
2122 		break;
2123 	case INTERRUPT_PENDING_STATE:
2124 		*intr_state = INTR_DELIVERED_STATE;
2125 		break;
2126 	default:
2127 		return (EINVAL);
2128 	}
2129 
2130 	return (H_EOK);
2131 
2132 }
2133 
2134 /*
2135  * Sets the current state of the interrupt given by the sysino
2136  * argument to the value given in the argument intr_state.
2137  *
2138  * Note: Setting the state to INTR_IDLE clears any pending
2139  * interrupt for sysino.
2140  */
2141 uint64_t
2142 hvio_intr_setstate(devhandle_t dev_hdl, sysino_t sysino,
2143     intr_state_t intr_state)
2144 {
2145 	intr_state_t state;
2146 
2147 	switch (intr_state) {
2148 	case INTR_IDLE_STATE:
2149 		state = INTERRUPT_IDLE_STATE;
2150 		break;
2151 	case INTR_DELIVERED_STATE:
2152 		state = INTERRUPT_PENDING_STATE;
2153 		break;
2154 	default:
2155 		return (EINVAL);
2156 	}
2157 
2158 	CSRA_FS((caddr_t)dev_hdl, INTERRUPT_CLEAR,
2159 	    SYSINO_TO_DEVINO(sysino), ENTRIES_INT_STATE, state);
2160 
2161 	return (H_EOK);
2162 }
2163 
2164 /*
2165  * Returns the cpuid that is the current target of the
2166  * interrupt given by the sysino argument.
2167  *
2168  * The cpuid value returned is undefined if the target
2169  * has not been set via intr_settarget.
2170  */
2171 uint64_t
2172 hvio_intr_gettarget(devhandle_t dev_hdl, pxu_t *pxu_p, sysino_t sysino,
2173     cpuid_t *cpuid)
2174 {
2175 	switch (PX_CHIP_TYPE(pxu_p)) {
2176 	case PX_CHIP_OBERON:
2177 		*cpuid = CSRA_FR((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2178 		    SYSINO_TO_DEVINO(sysino), ENTRIES_T_DESTID);
2179 		break;
2180 	case PX_CHIP_FIRE:
2181 		*cpuid = CSRA_FR((caddr_t)dev_hdl, INTERRUPT_MAPPING,
2182 		    SYSINO_TO_DEVINO(sysino), ENTRIES_T_JPID);
2183 		break;
2184 	default:
2185 		DBG(DBG_CB, NULL, "hvio_intr_gettarget - "
2186 		    "unknown chip type: 0x%x\n", PX_CHIP_TYPE(pxu_p));
2187 		return (EINVAL);
2188 	}
2189 
2190 	return (H_EOK);
2191 }
2192 
2193 /*
2194  * Set the target cpu for the interrupt defined by the argument
2195  * sysino to the target cpu value defined by the argument cpuid.
2196  */
2197 uint64_t
2198 hvio_intr_settarget(devhandle_t dev_hdl, pxu_t *pxu_p, sysino_t sysino,
2199     cpuid_t cpuid)
2200 {
2201 	uint64_t	val, intr_controller;
2202 	uint32_t	ino = SYSINO_TO_DEVINO(sysino);
2203 
2204 	/*
2205 	 * For now, we assign interrupt controller in a round
2206 	 * robin fashion.  Later, we may need to come up with
2207 	 * a more efficient assignment algorithm.
2208 	 */
2209 	intr_controller = 0x1ull << (cpuid % 4);
2210 
2211 	switch (PX_CHIP_TYPE(pxu_p)) {
2212 	case PX_CHIP_OBERON:
2213 		val = (((cpuid &
2214 		    INTERRUPT_MAPPING_ENTRIES_T_DESTID_MASK) <<
2215 		    INTERRUPT_MAPPING_ENTRIES_T_DESTID) |
2216 		    ((intr_controller &
2217 		    INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM_MASK)
2218 		    << INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM));
2219 		break;
2220 	case PX_CHIP_FIRE:
2221 		val = (((cpuid & INTERRUPT_MAPPING_ENTRIES_T_JPID_MASK) <<
2222 		    INTERRUPT_MAPPING_ENTRIES_T_JPID) |
2223 		    ((intr_controller &
2224 		    INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM_MASK)
2225 		    << INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM));
2226 		break;
2227 	default:
2228 		DBG(DBG_CB, NULL, "hvio_intr_settarget - "
2229 		    "unknown chip type: 0x%x\n", PX_CHIP_TYPE(pxu_p));
2230 		return (EINVAL);
2231 	}
2232 
2233 	/* For EQ interrupts, set DATA MONDO bit */
2234 	if ((ino >= EQ_1ST_DEVINO) && (ino < (EQ_1ST_DEVINO + EQ_CNT)))
2235 		val |= (0x1ull << INTERRUPT_MAPPING_ENTRIES_MDO_MODE);
2236 
2237 	CSRA_XS((caddr_t)dev_hdl, INTERRUPT_MAPPING, ino, val);
2238 
2239 	return (H_EOK);
2240 }
2241 
2242 /*
2243  * MSIQ Functions:
2244  */
2245 uint64_t
2246 hvio_msiq_init(devhandle_t dev_hdl, pxu_t *pxu_p)
2247 {
2248 	CSRA_XS((caddr_t)dev_hdl, EVENT_QUEUE_BASE_ADDRESS, 0,
2249 	    (uint64_t)pxu_p->msiq_mapped_p);
2250 	DBG(DBG_IB, NULL,
2251 	    "hvio_msiq_init: EVENT_QUEUE_BASE_ADDRESS 0x%llx\n",
2252 	    CSR_XR((caddr_t)dev_hdl, EVENT_QUEUE_BASE_ADDRESS));
2253 
2254 	CSRA_XS((caddr_t)dev_hdl, INTERRUPT_MONDO_DATA_0, 0,
2255 	    (uint64_t)ID_TO_IGN(PX_CHIP_TYPE(pxu_p),
2256 	    pxu_p->portid) << INO_BITS);
2257 	DBG(DBG_IB, NULL, "hvio_msiq_init: "
2258 	    "INTERRUPT_MONDO_DATA_0: 0x%llx\n",
2259 	    CSR_XR((caddr_t)dev_hdl, INTERRUPT_MONDO_DATA_0));
2260 
2261 	return (H_EOK);
2262 }
2263 
2264 uint64_t
2265 hvio_msiq_getvalid(devhandle_t dev_hdl, msiqid_t msiq_id,
2266     pci_msiq_valid_state_t *msiq_valid_state)
2267 {
2268 	uint32_t	eq_state;
2269 	uint64_t	ret = H_EOK;
2270 
2271 	eq_state = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_STATE,
2272 	    msiq_id, ENTRIES_STATE);
2273 
2274 	switch (eq_state) {
2275 	case EQ_IDLE_STATE:
2276 		*msiq_valid_state = PCI_MSIQ_INVALID;
2277 		break;
2278 	case EQ_ACTIVE_STATE:
2279 	case EQ_ERROR_STATE:
2280 		*msiq_valid_state = PCI_MSIQ_VALID;
2281 		break;
2282 	default:
2283 		ret = H_EIO;
2284 		break;
2285 	}
2286 
2287 	return (ret);
2288 }
2289 
2290 uint64_t
2291 hvio_msiq_setvalid(devhandle_t dev_hdl, msiqid_t msiq_id,
2292     pci_msiq_valid_state_t msiq_valid_state)
2293 {
2294 	uint64_t	ret = H_EOK;
2295 
2296 	switch (msiq_valid_state) {
2297 	case PCI_MSIQ_INVALID:
2298 		CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_CLEAR,
2299 		    msiq_id, ENTRIES_DIS);
2300 		break;
2301 	case PCI_MSIQ_VALID:
2302 		CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_SET,
2303 		    msiq_id, ENTRIES_EN);
2304 		break;
2305 	default:
2306 		ret = H_EINVAL;
2307 		break;
2308 	}
2309 
2310 	return (ret);
2311 }
2312 
2313 uint64_t
2314 hvio_msiq_getstate(devhandle_t dev_hdl, msiqid_t msiq_id,
2315     pci_msiq_state_t *msiq_state)
2316 {
2317 	uint32_t	eq_state;
2318 	uint64_t	ret = H_EOK;
2319 
2320 	eq_state = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_STATE,
2321 	    msiq_id, ENTRIES_STATE);
2322 
2323 	switch (eq_state) {
2324 	case EQ_IDLE_STATE:
2325 	case EQ_ACTIVE_STATE:
2326 		*msiq_state = PCI_MSIQ_STATE_IDLE;
2327 		break;
2328 	case EQ_ERROR_STATE:
2329 		*msiq_state = PCI_MSIQ_STATE_ERROR;
2330 		break;
2331 	default:
2332 		ret = H_EIO;
2333 	}
2334 
2335 	return (ret);
2336 }
2337 
2338 uint64_t
2339 hvio_msiq_setstate(devhandle_t dev_hdl, msiqid_t msiq_id,
2340     pci_msiq_state_t msiq_state)
2341 {
2342 	uint32_t	eq_state;
2343 	uint64_t	ret = H_EOK;
2344 
2345 	eq_state = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_STATE,
2346 	    msiq_id, ENTRIES_STATE);
2347 
2348 	switch (eq_state) {
2349 	case EQ_IDLE_STATE:
2350 		if (msiq_state == PCI_MSIQ_STATE_ERROR)
2351 			ret = H_EIO;
2352 		break;
2353 	case EQ_ACTIVE_STATE:
2354 		if (msiq_state == PCI_MSIQ_STATE_ERROR)
2355 			CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_SET,
2356 			    msiq_id, ENTRIES_ENOVERR);
2357 		else
2358 			ret = H_EIO;
2359 		break;
2360 	case EQ_ERROR_STATE:
2361 		if (msiq_state == PCI_MSIQ_STATE_IDLE)
2362 			CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_CLEAR,
2363 			    msiq_id, ENTRIES_E2I);
2364 		else
2365 			ret = H_EIO;
2366 		break;
2367 	default:
2368 		ret = H_EIO;
2369 	}
2370 
2371 	return (ret);
2372 }
2373 
2374 uint64_t
2375 hvio_msiq_gethead(devhandle_t dev_hdl, msiqid_t msiq_id,
2376     msiqhead_t *msiq_head)
2377 {
2378 	*msiq_head = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_HEAD,
2379 	    msiq_id, ENTRIES_HEAD);
2380 
2381 	return (H_EOK);
2382 }
2383 
2384 uint64_t
2385 hvio_msiq_sethead(devhandle_t dev_hdl, msiqid_t msiq_id,
2386     msiqhead_t msiq_head)
2387 {
2388 	CSRA_FS((caddr_t)dev_hdl, EVENT_QUEUE_HEAD, msiq_id,
2389 	    ENTRIES_HEAD, msiq_head);
2390 
2391 	return (H_EOK);
2392 }
2393 
2394 uint64_t
2395 hvio_msiq_gettail(devhandle_t dev_hdl, msiqid_t msiq_id,
2396     msiqtail_t *msiq_tail)
2397 {
2398 	*msiq_tail = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_TAIL,
2399 	    msiq_id, ENTRIES_TAIL);
2400 
2401 	return (H_EOK);
2402 }
2403 
2404 /*
2405  * MSI Functions:
2406  */
2407 uint64_t
2408 hvio_msi_init(devhandle_t dev_hdl, uint64_t addr32, uint64_t addr64)
2409 {
2410 	/* PCI MEM 32 resources to perform 32 bit MSI transactions */
2411 	CSRA_FS((caddr_t)dev_hdl, MSI_32_BIT_ADDRESS, 0,
2412 	    ADDR, (uint64_t)addr32 >> MSI_32_BIT_ADDRESS_ADDR);
2413 	DBG(DBG_IB, NULL, "hvio_msi_init: MSI_32_BIT_ADDRESS: 0x%llx\n",
2414 	    CSR_XR((caddr_t)dev_hdl, MSI_32_BIT_ADDRESS));
2415 
2416 	/* Reserve PCI MEM 64 resources to perform 64 bit MSI transactions */
2417 	CSRA_FS((caddr_t)dev_hdl, MSI_64_BIT_ADDRESS, 0,
2418 	    ADDR, (uint64_t)addr64 >> MSI_64_BIT_ADDRESS_ADDR);
2419 	DBG(DBG_IB, NULL, "hvio_msi_init: MSI_64_BIT_ADDRESS: 0x%llx\n",
2420 	    CSR_XR((caddr_t)dev_hdl, MSI_64_BIT_ADDRESS));
2421 
2422 	return (H_EOK);
2423 }
2424 
2425 uint64_t
2426 hvio_msi_getmsiq(devhandle_t dev_hdl, msinum_t msi_num,
2427     msiqid_t *msiq_id)
2428 {
2429 	*msiq_id = CSRA_FR((caddr_t)dev_hdl, MSI_MAPPING,
2430 	    msi_num, ENTRIES_EQNUM);
2431 
2432 	return (H_EOK);
2433 }
2434 
2435 uint64_t
2436 hvio_msi_setmsiq(devhandle_t dev_hdl, msinum_t msi_num,
2437     msiqid_t msiq_id)
2438 {
2439 	CSRA_FS((caddr_t)dev_hdl, MSI_MAPPING, msi_num,
2440 	    ENTRIES_EQNUM, msiq_id);
2441 
2442 	return (H_EOK);
2443 }
2444 
2445 uint64_t
2446 hvio_msi_getvalid(devhandle_t dev_hdl, msinum_t msi_num,
2447     pci_msi_valid_state_t *msi_valid_state)
2448 {
2449 	*msi_valid_state = CSRA_BR((caddr_t)dev_hdl, MSI_MAPPING,
2450 	    msi_num, ENTRIES_V);
2451 
2452 	return (H_EOK);
2453 }
2454 
2455 uint64_t
2456 hvio_msi_setvalid(devhandle_t dev_hdl, msinum_t msi_num,
2457     pci_msi_valid_state_t msi_valid_state)
2458 {
2459 	uint64_t	ret = H_EOK;
2460 
2461 	switch (msi_valid_state) {
2462 	case PCI_MSI_VALID:
2463 		CSRA_BS((caddr_t)dev_hdl, MSI_MAPPING, msi_num,
2464 		    ENTRIES_V);
2465 		break;
2466 	case PCI_MSI_INVALID:
2467 		CSRA_BC((caddr_t)dev_hdl, MSI_MAPPING, msi_num,
2468 		    ENTRIES_V);
2469 		break;
2470 	default:
2471 		ret = H_EINVAL;
2472 	}
2473 
2474 	return (ret);
2475 }
2476 
2477 uint64_t
2478 hvio_msi_getstate(devhandle_t dev_hdl, msinum_t msi_num,
2479     pci_msi_state_t *msi_state)
2480 {
2481 	*msi_state = CSRA_BR((caddr_t)dev_hdl, MSI_MAPPING,
2482 	    msi_num, ENTRIES_EQWR_N);
2483 
2484 	return (H_EOK);
2485 }
2486 
2487 uint64_t
2488 hvio_msi_setstate(devhandle_t dev_hdl, msinum_t msi_num,
2489     pci_msi_state_t msi_state)
2490 {
2491 	uint64_t	ret = H_EOK;
2492 
2493 	switch (msi_state) {
2494 	case PCI_MSI_STATE_IDLE:
2495 		CSRA_BS((caddr_t)dev_hdl, MSI_CLEAR, msi_num,
2496 		    ENTRIES_EQWR_N);
2497 		break;
2498 	case PCI_MSI_STATE_DELIVERED:
2499 	default:
2500 		ret = H_EINVAL;
2501 		break;
2502 	}
2503 
2504 	return (ret);
2505 }
2506 
2507 /*
2508  * MSG Functions:
2509  */
2510 uint64_t
2511 hvio_msg_getmsiq(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
2512     msiqid_t *msiq_id)
2513 {
2514 	uint64_t	ret = H_EOK;
2515 
2516 	switch (msg_type) {
2517 	case PCIE_PME_MSG:
2518 		*msiq_id = CSR_FR((caddr_t)dev_hdl, PM_PME_MAPPING, EQNUM);
2519 		break;
2520 	case PCIE_PME_ACK_MSG:
2521 		*msiq_id = CSR_FR((caddr_t)dev_hdl, PME_TO_ACK_MAPPING,
2522 		    EQNUM);
2523 		break;
2524 	case PCIE_CORR_MSG:
2525 		*msiq_id = CSR_FR((caddr_t)dev_hdl, ERR_COR_MAPPING, EQNUM);
2526 		break;
2527 	case PCIE_NONFATAL_MSG:
2528 		*msiq_id = CSR_FR((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING,
2529 		    EQNUM);
2530 		break;
2531 	case PCIE_FATAL_MSG:
2532 		*msiq_id = CSR_FR((caddr_t)dev_hdl, ERR_FATAL_MAPPING, EQNUM);
2533 		break;
2534 	default:
2535 		ret = H_EINVAL;
2536 		break;
2537 	}
2538 
2539 	return (ret);
2540 }
2541 
2542 uint64_t
2543 hvio_msg_setmsiq(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
2544     msiqid_t msiq_id)
2545 {
2546 	uint64_t	ret = H_EOK;
2547 
2548 	switch (msg_type) {
2549 	case PCIE_PME_MSG:
2550 		CSR_FS((caddr_t)dev_hdl, PM_PME_MAPPING, EQNUM, msiq_id);
2551 		break;
2552 	case PCIE_PME_ACK_MSG:
2553 		CSR_FS((caddr_t)dev_hdl, PME_TO_ACK_MAPPING, EQNUM, msiq_id);
2554 		break;
2555 	case PCIE_CORR_MSG:
2556 		CSR_FS((caddr_t)dev_hdl, ERR_COR_MAPPING, EQNUM, msiq_id);
2557 		break;
2558 	case PCIE_NONFATAL_MSG:
2559 		CSR_FS((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING, EQNUM, msiq_id);
2560 		break;
2561 	case PCIE_FATAL_MSG:
2562 		CSR_FS((caddr_t)dev_hdl, ERR_FATAL_MAPPING, EQNUM, msiq_id);
2563 		break;
2564 	default:
2565 		ret = H_EINVAL;
2566 		break;
2567 	}
2568 
2569 	return (ret);
2570 }
2571 
2572 uint64_t
2573 hvio_msg_getvalid(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
2574     pcie_msg_valid_state_t *msg_valid_state)
2575 {
2576 	uint64_t	ret = H_EOK;
2577 
2578 	switch (msg_type) {
2579 	case PCIE_PME_MSG:
2580 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl, PM_PME_MAPPING, V);
2581 		break;
2582 	case PCIE_PME_ACK_MSG:
2583 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl,
2584 		    PME_TO_ACK_MAPPING, V);
2585 		break;
2586 	case PCIE_CORR_MSG:
2587 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl, ERR_COR_MAPPING, V);
2588 		break;
2589 	case PCIE_NONFATAL_MSG:
2590 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl,
2591 		    ERR_NONFATAL_MAPPING, V);
2592 		break;
2593 	case PCIE_FATAL_MSG:
2594 		*msg_valid_state = CSR_BR((caddr_t)dev_hdl, ERR_FATAL_MAPPING,
2595 		    V);
2596 		break;
2597 	default:
2598 		ret = H_EINVAL;
2599 		break;
2600 	}
2601 
2602 	return (ret);
2603 }
2604 
2605 uint64_t
2606 hvio_msg_setvalid(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
2607     pcie_msg_valid_state_t msg_valid_state)
2608 {
2609 	uint64_t	ret = H_EOK;
2610 
2611 	switch (msg_valid_state) {
2612 	case PCIE_MSG_VALID:
2613 		switch (msg_type) {
2614 		case PCIE_PME_MSG:
2615 			CSR_BS((caddr_t)dev_hdl, PM_PME_MAPPING, V);
2616 			break;
2617 		case PCIE_PME_ACK_MSG:
2618 			CSR_BS((caddr_t)dev_hdl, PME_TO_ACK_MAPPING, V);
2619 			break;
2620 		case PCIE_CORR_MSG:
2621 			CSR_BS((caddr_t)dev_hdl, ERR_COR_MAPPING, V);
2622 			break;
2623 		case PCIE_NONFATAL_MSG:
2624 			CSR_BS((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING, V);
2625 			break;
2626 		case PCIE_FATAL_MSG:
2627 			CSR_BS((caddr_t)dev_hdl, ERR_FATAL_MAPPING, V);
2628 			break;
2629 		default:
2630 			ret = H_EINVAL;
2631 			break;
2632 		}
2633 
2634 		break;
2635 	case PCIE_MSG_INVALID:
2636 		switch (msg_type) {
2637 		case PCIE_PME_MSG:
2638 			CSR_BC((caddr_t)dev_hdl, PM_PME_MAPPING, V);
2639 			break;
2640 		case PCIE_PME_ACK_MSG:
2641 			CSR_BC((caddr_t)dev_hdl, PME_TO_ACK_MAPPING, V);
2642 			break;
2643 		case PCIE_CORR_MSG:
2644 			CSR_BC((caddr_t)dev_hdl, ERR_COR_MAPPING, V);
2645 			break;
2646 		case PCIE_NONFATAL_MSG:
2647 			CSR_BC((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING, V);
2648 			break;
2649 		case PCIE_FATAL_MSG:
2650 			CSR_BC((caddr_t)dev_hdl, ERR_FATAL_MAPPING, V);
2651 			break;
2652 		default:
2653 			ret = H_EINVAL;
2654 			break;
2655 		}
2656 		break;
2657 	default:
2658 		ret = H_EINVAL;
2659 	}
2660 
2661 	return (ret);
2662 }
2663 
2664 /*
2665  * Suspend/Resume Functions:
2666  *	(pec, mmu, ib)
2667  *	cb
2668  * Registers saved have all been touched in the XXX_init functions.
2669  */
2670 uint64_t
2671 hvio_suspend(devhandle_t dev_hdl, pxu_t *pxu_p)
2672 {
2673 	uint64_t	*config_state;
2674 	int		total_size;
2675 	int		i;
2676 
2677 	if (msiq_suspend(dev_hdl, pxu_p) != H_EOK)
2678 		return (H_EIO);
2679 
2680 	total_size = PEC_SIZE + MMU_SIZE + IB_SIZE + IB_MAP_SIZE;
2681 	config_state = kmem_zalloc(total_size, KM_NOSLEEP);
2682 
2683 	if (config_state == NULL) {
2684 		return (H_EIO);
2685 	}
2686 
2687 	/*
2688 	 * Soft state for suspend/resume  from pxu_t
2689 	 * uint64_t	*pec_config_state;
2690 	 * uint64_t	*mmu_config_state;
2691 	 * uint64_t	*ib_intr_map;
2692 	 * uint64_t	*ib_config_state;
2693 	 * uint64_t	*xcb_config_state;
2694 	 */
2695 
2696 	/* Save the PEC configuration states */
2697 	pxu_p->pec_config_state = config_state;
2698 	for (i = 0; i < PEC_KEYS; i++) {
2699 		if ((pec_config_state_regs[i].chip == PX_CHIP_TYPE(pxu_p)) ||
2700 		    (pec_config_state_regs[i].chip == PX_CHIP_UNIDENTIFIED)) {
2701 			pxu_p->pec_config_state[i] =
2702 			    CSR_XR((caddr_t)dev_hdl,
2703 			    pec_config_state_regs[i].reg);
2704 		}
2705 	}
2706 
2707 	/* Save the MMU configuration states */
2708 	pxu_p->mmu_config_state = pxu_p->pec_config_state + PEC_KEYS;
2709 	for (i = 0; i < MMU_KEYS; i++) {
2710 		pxu_p->mmu_config_state[i] =
2711 		    CSR_XR((caddr_t)dev_hdl, mmu_config_state_regs[i]);
2712 	}
2713 
2714 	/* Save the interrupt mapping registers */
2715 	pxu_p->ib_intr_map = pxu_p->mmu_config_state + MMU_KEYS;
2716 	for (i = 0; i < INTERRUPT_MAPPING_ENTRIES; i++) {
2717 		pxu_p->ib_intr_map[i] =
2718 		    CSRA_XR((caddr_t)dev_hdl, INTERRUPT_MAPPING, i);
2719 	}
2720 
2721 	/* Save the IB configuration states */
2722 	pxu_p->ib_config_state = pxu_p->ib_intr_map + INTERRUPT_MAPPING_ENTRIES;
2723 	for (i = 0; i < IB_KEYS; i++) {
2724 		pxu_p->ib_config_state[i] =
2725 		    CSR_XR((caddr_t)dev_hdl, ib_config_state_regs[i]);
2726 	}
2727 
2728 	return (H_EOK);
2729 }
2730 
2731 void
2732 hvio_resume(devhandle_t dev_hdl, devino_t devino, pxu_t *pxu_p)
2733 {
2734 	int		total_size;
2735 	sysino_t	sysino;
2736 	int		i;
2737 	uint64_t	ret;
2738 
2739 	/* Make sure that suspend actually did occur */
2740 	if (!pxu_p->pec_config_state) {
2741 		return;
2742 	}
2743 
2744 	/* Restore IB configuration states */
2745 	for (i = 0; i < IB_KEYS; i++) {
2746 		CSR_XS((caddr_t)dev_hdl, ib_config_state_regs[i],
2747 		    pxu_p->ib_config_state[i]);
2748 	}
2749 
2750 	/*
2751 	 * Restore the interrupt mapping registers
2752 	 * And make sure the intrs are idle.
2753 	 */
2754 	for (i = 0; i < INTERRUPT_MAPPING_ENTRIES; i++) {
2755 		CSRA_FS((caddr_t)dev_hdl, INTERRUPT_CLEAR, i,
2756 		    ENTRIES_INT_STATE, INTERRUPT_IDLE_STATE);
2757 		CSRA_XS((caddr_t)dev_hdl, INTERRUPT_MAPPING, i,
2758 		    pxu_p->ib_intr_map[i]);
2759 	}
2760 
2761 	/* Restore MMU configuration states */
2762 	/* Clear the cache. */
2763 	CSR_XS((caddr_t)dev_hdl, MMU_TTE_CACHE_INVALIDATE, -1ull);
2764 
2765 	for (i = 0; i < MMU_KEYS; i++) {
2766 		CSR_XS((caddr_t)dev_hdl, mmu_config_state_regs[i],
2767 		    pxu_p->mmu_config_state[i]);
2768 	}
2769 
2770 	/* Restore PEC configuration states */
2771 	/* Make sure all reset bits are low until error is detected */
2772 	CSR_XS((caddr_t)dev_hdl, LPU_RESET, 0ull);
2773 
2774 	for (i = 0; i < PEC_KEYS; i++) {
2775 		if ((pec_config_state_regs[i].chip == PX_CHIP_TYPE(pxu_p)) ||
2776 		    (pec_config_state_regs[i].chip == PX_CHIP_UNIDENTIFIED)) {
2777 			CSR_XS((caddr_t)dev_hdl, pec_config_state_regs[i].reg,
2778 			    pxu_p->pec_config_state[i]);
2779 		}
2780 	}
2781 
2782 	/* Enable PCI-E interrupt */
2783 	if ((ret = hvio_intr_devino_to_sysino(dev_hdl, pxu_p, devino,
2784 	    &sysino)) != H_EOK) {
2785 		cmn_err(CE_WARN,
2786 		    "hvio_resume: hvio_intr_devino_to_sysino failed, "
2787 		    "ret 0x%lx", ret);
2788 	}
2789 
2790 	if ((ret =  hvio_intr_setstate(dev_hdl, sysino, INTR_IDLE_STATE))
2791 	    != H_EOK) {
2792 		cmn_err(CE_WARN,
2793 		    "hvio_resume: hvio_intr_setstate failed, "
2794 		    "ret 0x%lx", ret);
2795 	}
2796 
2797 	total_size = PEC_SIZE + MMU_SIZE + IB_SIZE + IB_MAP_SIZE;
2798 	kmem_free(pxu_p->pec_config_state, total_size);
2799 
2800 	pxu_p->pec_config_state = NULL;
2801 	pxu_p->mmu_config_state = NULL;
2802 	pxu_p->ib_config_state = NULL;
2803 	pxu_p->ib_intr_map = NULL;
2804 
2805 	msiq_resume(dev_hdl, pxu_p);
2806 }
2807 
2808 uint64_t
2809 hvio_cb_suspend(devhandle_t dev_hdl, pxu_t *pxu_p)
2810 {
2811 	uint64_t *config_state, *cb_regs;
2812 	int i, cb_size, cb_keys;
2813 
2814 	switch (PX_CHIP_TYPE(pxu_p)) {
2815 	case PX_CHIP_OBERON:
2816 		cb_size = UBC_SIZE;
2817 		cb_keys = UBC_KEYS;
2818 		cb_regs = ubc_config_state_regs;
2819 		break;
2820 	case PX_CHIP_FIRE:
2821 		cb_size = JBC_SIZE;
2822 		cb_keys = JBC_KEYS;
2823 		cb_regs = jbc_config_state_regs;
2824 		break;
2825 	default:
2826 		DBG(DBG_CB, NULL, "hvio_cb_suspend - unknown chip type: 0x%x\n",
2827 		    PX_CHIP_TYPE(pxu_p));
2828 		break;
2829 	}
2830 
2831 	config_state = kmem_zalloc(cb_size, KM_NOSLEEP);
2832 
2833 	if (config_state == NULL) {
2834 		return (H_EIO);
2835 	}
2836 
2837 	/* Save the configuration states */
2838 	pxu_p->xcb_config_state = config_state;
2839 	for (i = 0; i < cb_keys; i++) {
2840 		pxu_p->xcb_config_state[i] =
2841 		    CSR_XR((caddr_t)dev_hdl, cb_regs[i]);
2842 	}
2843 
2844 	return (H_EOK);
2845 }
2846 
2847 void
2848 hvio_cb_resume(devhandle_t pci_dev_hdl, devhandle_t xbus_dev_hdl,
2849     devino_t devino, pxu_t *pxu_p)
2850 {
2851 	sysino_t sysino;
2852 	uint64_t *cb_regs;
2853 	int i, cb_size, cb_keys;
2854 	uint64_t ret;
2855 
2856 	switch (PX_CHIP_TYPE(pxu_p)) {
2857 	case PX_CHIP_OBERON:
2858 		cb_size = UBC_SIZE;
2859 		cb_keys = UBC_KEYS;
2860 		cb_regs = ubc_config_state_regs;
2861 		/*
2862 		 * No reason to have any reset bits high until an error is
2863 		 * detected on the link.
2864 		 */
2865 		CSR_XS((caddr_t)xbus_dev_hdl, UBC_ERROR_STATUS_CLEAR, -1ull);
2866 		break;
2867 	case PX_CHIP_FIRE:
2868 		cb_size = JBC_SIZE;
2869 		cb_keys = JBC_KEYS;
2870 		cb_regs = jbc_config_state_regs;
2871 		/*
2872 		 * No reason to have any reset bits high until an error is
2873 		 * detected on the link.
2874 		 */
2875 		CSR_XS((caddr_t)xbus_dev_hdl, JBC_ERROR_STATUS_CLEAR, -1ull);
2876 		break;
2877 	default:
2878 		DBG(DBG_CB, NULL, "hvio_cb_resume - unknown chip type: 0x%x\n",
2879 		    PX_CHIP_TYPE(pxu_p));
2880 		break;
2881 	}
2882 
2883 	ASSERT(pxu_p->xcb_config_state);
2884 
2885 	/* Restore the configuration states */
2886 	for (i = 0; i < cb_keys; i++) {
2887 		CSR_XS((caddr_t)xbus_dev_hdl, cb_regs[i],
2888 		    pxu_p->xcb_config_state[i]);
2889 	}
2890 
2891 	/* Enable XBC interrupt */
2892 	if ((ret = hvio_intr_devino_to_sysino(pci_dev_hdl, pxu_p, devino,
2893 	    &sysino)) != H_EOK) {
2894 		cmn_err(CE_WARN,
2895 		    "hvio_cb_resume: hvio_intr_devino_to_sysino failed, "
2896 		    "ret 0x%lx", ret);
2897 	}
2898 
2899 	if ((ret = hvio_intr_setstate(pci_dev_hdl, sysino, INTR_IDLE_STATE))
2900 	    != H_EOK) {
2901 		cmn_err(CE_WARN,
2902 		    "hvio_cb_resume: hvio_intr_setstate failed, "
2903 		    "ret 0x%lx", ret);
2904 	}
2905 
2906 	kmem_free(pxu_p->xcb_config_state, cb_size);
2907 
2908 	pxu_p->xcb_config_state = NULL;
2909 }
2910 
2911 static uint64_t
2912 msiq_suspend(devhandle_t dev_hdl, pxu_t *pxu_p)
2913 {
2914 	size_t	bufsz;
2915 	volatile uint64_t *cur_p;
2916 	int i;
2917 
2918 	bufsz = MSIQ_STATE_SIZE + MSIQ_MAPPING_SIZE + MSIQ_OTHER_SIZE;
2919 	if ((pxu_p->msiq_config_state = kmem_zalloc(bufsz, KM_NOSLEEP)) ==
2920 	    NULL)
2921 		return (H_EIO);
2922 
2923 	cur_p = pxu_p->msiq_config_state;
2924 
2925 	/* Save each EQ state */
2926 	for (i = 0; i < EVENT_QUEUE_STATE_ENTRIES; i++, cur_p++)
2927 		*cur_p = CSRA_XR((caddr_t)dev_hdl, EVENT_QUEUE_STATE, i);
2928 
2929 	/* Save MSI mapping registers */
2930 	for (i = 0; i < MSI_MAPPING_ENTRIES; i++, cur_p++)
2931 		*cur_p = CSRA_XR((caddr_t)dev_hdl, MSI_MAPPING, i);
2932 
2933 	/* Save all other MSIQ registers */
2934 	for (i = 0; i < MSIQ_OTHER_KEYS; i++, cur_p++)
2935 		*cur_p = CSR_XR((caddr_t)dev_hdl, msiq_config_other_regs[i]);
2936 	return (H_EOK);
2937 }
2938 
2939 static void
2940 msiq_resume(devhandle_t dev_hdl, pxu_t *pxu_p)
2941 {
2942 	size_t	bufsz;
2943 	uint64_t *cur_p, state;
2944 	int i;
2945 	uint64_t ret;
2946 
2947 	bufsz = MSIQ_STATE_SIZE + MSIQ_MAPPING_SIZE + MSIQ_OTHER_SIZE;
2948 	cur_p = pxu_p->msiq_config_state;
2949 	/*
2950 	 * Initialize EQ base address register and
2951 	 * Interrupt Mondo Data 0 register.
2952 	 */
2953 	if ((ret = hvio_msiq_init(dev_hdl, pxu_p)) != H_EOK) {
2954 		cmn_err(CE_WARN,
2955 		    "msiq_resume: hvio_msiq_init failed, "
2956 		    "ret 0x%lx", ret);
2957 	}
2958 
2959 	/* Restore EQ states */
2960 	for (i = 0; i < EVENT_QUEUE_STATE_ENTRIES; i++, cur_p++) {
2961 		state = (*cur_p) & EVENT_QUEUE_STATE_ENTRIES_STATE_MASK;
2962 		if ((state == EQ_ACTIVE_STATE) || (state == EQ_ERROR_STATE))
2963 			CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_SET,
2964 			    i, ENTRIES_EN);
2965 	}
2966 
2967 	/* Restore MSI mapping */
2968 	for (i = 0; i < MSI_MAPPING_ENTRIES; i++, cur_p++)
2969 		CSRA_XS((caddr_t)dev_hdl, MSI_MAPPING, i, *cur_p);
2970 
2971 	/*
2972 	 * Restore all other registers. MSI 32 bit address and
2973 	 * MSI 64 bit address are restored as part of this.
2974 	 */
2975 	for (i = 0; i < MSIQ_OTHER_KEYS; i++, cur_p++)
2976 		CSR_XS((caddr_t)dev_hdl, msiq_config_other_regs[i], *cur_p);
2977 
2978 	kmem_free(pxu_p->msiq_config_state, bufsz);
2979 	pxu_p->msiq_config_state = NULL;
2980 }
2981 
2982 /*
2983  * sends PME_Turn_Off message to put the link in L2/L3 ready state.
2984  * called by px_goto_l23ready.
2985  * returns DDI_SUCCESS or DDI_FAILURE
2986  */
2987 int
2988 px_send_pme_turnoff(caddr_t csr_base)
2989 {
2990 	volatile uint64_t reg;
2991 
2992 	reg = CSR_XR(csr_base, TLU_PME_TURN_OFF_GENERATE);
2993 	/* If already pending, return failure */
2994 	if (reg & (1ull << TLU_PME_TURN_OFF_GENERATE_PTO)) {
2995 		DBG(DBG_PWR, NULL, "send_pme_turnoff: pending PTO bit "
2996 		    "tlu_pme_turn_off_generate = %x\n", reg);
2997 		return (DDI_FAILURE);
2998 	}
2999 
3000 	/* write to PME_Turn_off reg to boradcast */
3001 	reg |= (1ull << TLU_PME_TURN_OFF_GENERATE_PTO);
3002 	CSR_XS(csr_base,  TLU_PME_TURN_OFF_GENERATE, reg);
3003 
3004 	return (DDI_SUCCESS);
3005 }
3006 
3007 /*
3008  * Checks for link being in L1idle state.
3009  * Returns
3010  * DDI_SUCCESS - if the link is in L1idle
3011  * DDI_FAILURE - if the link is not in L1idle
3012  */
3013 int
3014 px_link_wait4l1idle(caddr_t csr_base)
3015 {
3016 	uint8_t ltssm_state;
3017 	int ntries = px_max_l1_tries;
3018 
3019 	while (ntries > 0) {
3020 		ltssm_state = CSR_FR(csr_base, LPU_LTSSM_STATUS1, LTSSM_STATE);
3021 		if (ltssm_state == LPU_LTSSM_L1_IDLE || (--ntries <= 0))
3022 			break;
3023 		delay(1);
3024 	}
3025 	DBG(DBG_PWR, NULL, "check_for_l1idle: ltssm_state %x\n", ltssm_state);
3026 	return ((ltssm_state == LPU_LTSSM_L1_IDLE) ? DDI_SUCCESS : DDI_FAILURE);
3027 }
3028 
3029 /*
3030  * Tranisition the link to L0, after it is down.
3031  */
3032 int
3033 px_link_retrain(caddr_t csr_base)
3034 {
3035 	volatile uint64_t reg;
3036 
3037 	reg = CSR_XR(csr_base, TLU_CONTROL);
3038 	if (!(reg & (1ull << TLU_REMAIN_DETECT_QUIET))) {
3039 		DBG(DBG_PWR, NULL, "retrain_link: detect.quiet bit not set\n");
3040 		return (DDI_FAILURE);
3041 	}
3042 
3043 	/* Clear link down bit in TLU Other Event Clear Status Register. */
3044 	CSR_BS(csr_base, TLU_OTHER_EVENT_STATUS_CLEAR, LDN_P);
3045 
3046 	/* Clear Drain bit in TLU Status Register */
3047 	CSR_BS(csr_base, TLU_STATUS, DRAIN);
3048 
3049 	/* Clear Remain in Detect.Quiet bit in TLU Control Register */
3050 	reg = CSR_XR(csr_base, TLU_CONTROL);
3051 	reg &= ~(1ull << TLU_REMAIN_DETECT_QUIET);
3052 	CSR_XS(csr_base, TLU_CONTROL, reg);
3053 
3054 	return (DDI_SUCCESS);
3055 }
3056 
3057 void
3058 px_enable_detect_quiet(caddr_t csr_base)
3059 {
3060 	volatile uint64_t tlu_ctrl;
3061 
3062 	tlu_ctrl = CSR_XR(csr_base, TLU_CONTROL);
3063 	tlu_ctrl |= (1ull << TLU_REMAIN_DETECT_QUIET);
3064 	CSR_XS(csr_base, TLU_CONTROL, tlu_ctrl);
3065 }
3066 
3067 static uint_t
3068 oberon_hp_pwron(caddr_t csr_base)
3069 {
3070 	volatile uint64_t reg;
3071 	boolean_t link_retry, link_up;
3072 	int loop, i;
3073 
3074 	DBG(DBG_HP, NULL, "oberon_hp_pwron the slot\n");
3075 
3076 	/* Check Leaf Reset status */
3077 	reg = CSR_XR(csr_base, ILU_ERROR_LOG_ENABLE);
3078 	if (!(reg & (1ull << ILU_ERROR_LOG_ENABLE_SPARE3))) {
3079 		DBG(DBG_HP, NULL, "oberon_hp_pwron fails: leaf not reset\n");
3080 		goto fail;
3081 	}
3082 
3083 	/* Check HP Capable */
3084 	if (!CSR_BR(csr_base, TLU_SLOT_CAPABILITIES, HP)) {
3085 		DBG(DBG_HP, NULL, "oberon_hp_pwron fails: leaf not "
3086 		    "hotplugable\n");
3087 		goto fail;
3088 	}
3089 
3090 	/* Check Slot status */
3091 	reg = CSR_XR(csr_base, TLU_SLOT_STATUS);
3092 	if (!(reg & (1ull << TLU_SLOT_STATUS_PSD)) ||
3093 	    (reg & (1ull << TLU_SLOT_STATUS_MRLS))) {
3094 		DBG(DBG_HP, NULL, "oberon_hp_pwron fails: slot status %lx\n",
3095 		    reg);
3096 		goto fail;
3097 	}
3098 
3099 	/* Blink power LED, this is done from pciehpc already */
3100 
3101 	/* Turn on slot power */
3102 	CSR_BS(csr_base, HOTPLUG_CONTROL, PWREN);
3103 
3104 	/* power fault detection */
3105 	delay(drv_usectohz(25000));
3106 	CSR_BS(csr_base, TLU_SLOT_STATUS, PWFD);
3107 	CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
3108 
3109 	/* wait to check power state */
3110 	delay(drv_usectohz(25000));
3111 
3112 	if (!CSR_BR(csr_base, TLU_SLOT_STATUS, PWFD)) {
3113 		DBG(DBG_HP, NULL, "oberon_hp_pwron fails: power fault\n");
3114 		goto fail1;
3115 	}
3116 
3117 	/* power is good */
3118 	CSR_BS(csr_base, HOTPLUG_CONTROL, PWREN);
3119 
3120 	delay(drv_usectohz(25000));
3121 	CSR_BS(csr_base, TLU_SLOT_STATUS, PWFD);
3122 	CSR_BS(csr_base, TLU_SLOT_CONTROL, PWFDEN);
3123 
3124 	/* Turn on slot clock */
3125 	CSR_BS(csr_base, HOTPLUG_CONTROL, CLKEN);
3126 
3127 	link_up = B_FALSE;
3128 	link_retry = B_FALSE;
3129 
3130 	for (loop = 0; (loop < link_retry_count) && (link_up == B_FALSE);
3131 	    loop++) {
3132 		if (link_retry == B_TRUE) {
3133 			DBG(DBG_HP, NULL, "oberon_hp_pwron : retry link loop "
3134 			    "%d\n", loop);
3135 			CSR_BS(csr_base, TLU_CONTROL, DRN_TR_DIS);
3136 			CSR_XS(csr_base, FLP_PORT_CONTROL, 0x1);
3137 			delay(drv_usectohz(10000));
3138 			CSR_BC(csr_base, TLU_CONTROL, DRN_TR_DIS);
3139 			CSR_BS(csr_base, TLU_DIAGNOSTIC, IFC_DIS);
3140 			CSR_BC(csr_base, HOTPLUG_CONTROL, N_PERST);
3141 			delay(drv_usectohz(50000));
3142 		}
3143 
3144 		/* Release PCI-E Reset */
3145 		delay(drv_usectohz(wait_perst));
3146 		CSR_BS(csr_base, HOTPLUG_CONTROL, N_PERST);
3147 
3148 		/*
3149 		 * Open events' mask
3150 		 * This should be done from pciehpc already
3151 		 */
3152 
3153 		/* Enable PCIE port */
3154 		delay(drv_usectohz(wait_enable_port));
3155 		CSR_BS(csr_base, TLU_CONTROL, DRN_TR_DIS);
3156 		CSR_XS(csr_base, FLP_PORT_CONTROL, 0x20);
3157 
3158 		/* wait for the link up */
3159 		/* BEGIN CSTYLED */
3160 		for (i = 0; (i < 2) && (link_up == B_FALSE); i++) {
3161 			delay(drv_usectohz(link_status_check));
3162 			reg = CSR_XR(csr_base, DLU_LINK_LAYER_STATUS);
3163 
3164 		if ((((reg >> DLU_LINK_LAYER_STATUS_INIT_FC_SM_STS) &
3165 		    DLU_LINK_LAYER_STATUS_INIT_FC_SM_STS_MASK) ==
3166 		    DLU_LINK_LAYER_STATUS_INIT_FC_SM_STS_FC_INIT_DONE) &&
3167 		    (reg & (1ull << DLU_LINK_LAYER_STATUS_DLUP_STS)) &&
3168 		    ((reg &
3169 		    DLU_LINK_LAYER_STATUS_LNK_STATE_MACH_STS_MASK) ==
3170 		    DLU_LINK_LAYER_STATUS_LNK_STATE_MACH_STS_DL_ACTIVE)) {
3171 			DBG(DBG_HP, NULL, "oberon_hp_pwron : "
3172 			    "link is up\n");
3173 			link_up = B_TRUE;
3174 		} else
3175 			link_retry = B_TRUE;
3176 
3177 		}
3178 		/* END CSTYLED */
3179 	}
3180 
3181 	if (link_up == B_FALSE) {
3182 		DBG(DBG_HP, NULL, "oberon_hp_pwron fails to enable "
3183 		    "PCI-E port\n");
3184 		goto fail2;
3185 	}
3186 
3187 	/* link is up */
3188 	CSR_BC(csr_base, TLU_DIAGNOSTIC, IFC_DIS);
3189 	CSR_BS(csr_base, FLP_PORT_ACTIVE_STATUS, TRAIN_ERROR);
3190 	CSR_BS(csr_base, TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR, TE_P);
3191 	CSR_BS(csr_base, TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR, TE_S);
3192 	CSR_BC(csr_base, TLU_CONTROL, DRN_TR_DIS);
3193 
3194 	/* Restore LUP/LDN */
3195 	reg = CSR_XR(csr_base, TLU_OTHER_EVENT_LOG_ENABLE);
3196 	if (px_tlu_oe_log_mask & (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_P))
3197 		reg |= 1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_P;
3198 	if (px_tlu_oe_log_mask & (1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_P))
3199 		reg |= 1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_P;
3200 	if (px_tlu_oe_log_mask & (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_S))
3201 		reg |= 1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_S;
3202 	if (px_tlu_oe_log_mask & (1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_S))
3203 		reg |= 1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_S;
3204 	CSR_XS(csr_base, TLU_OTHER_EVENT_LOG_ENABLE, reg);
3205 
3206 	/*
3207 	 * Initialize Leaf
3208 	 * SPLS = 00b, SPLV = 11001b, i.e. 25W
3209 	 */
3210 	reg = CSR_XR(csr_base, TLU_SLOT_CAPABILITIES);
3211 	reg &= ~(TLU_SLOT_CAPABILITIES_SPLS_MASK <<
3212 	    TLU_SLOT_CAPABILITIES_SPLS);
3213 	reg &= ~(TLU_SLOT_CAPABILITIES_SPLV_MASK <<
3214 	    TLU_SLOT_CAPABILITIES_SPLV);
3215 	reg |= (0x19 << TLU_SLOT_CAPABILITIES_SPLV);
3216 	CSR_XS(csr_base, TLU_SLOT_CAPABILITIES, reg);
3217 
3218 	/* Turn on Power LED */
3219 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3220 	reg &= ~PCIE_SLOTCTL_PWR_INDICATOR_MASK;
3221 	reg = pcie_slotctl_pwr_indicator_set(reg,
3222 	    PCIE_SLOTCTL_INDICATOR_STATE_ON);
3223 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3224 
3225 	/* Notify to SCF */
3226 	if (CSR_BR(csr_base, HOTPLUG_CONTROL, SLOTPON))
3227 		CSR_BC(csr_base, HOTPLUG_CONTROL, SLOTPON);
3228 	else
3229 		CSR_BS(csr_base, HOTPLUG_CONTROL, SLOTPON);
3230 
3231 	/* Wait for one second */
3232 	delay(drv_usectohz(1000000));
3233 
3234 	return (DDI_SUCCESS);
3235 
3236 fail2:
3237 	/* Link up is failed */
3238 	CSR_BS(csr_base, FLP_PORT_CONTROL, PORT_DIS);
3239 	CSR_BC(csr_base, HOTPLUG_CONTROL, N_PERST);
3240 	delay(drv_usectohz(150));
3241 
3242 	CSR_BC(csr_base, HOTPLUG_CONTROL, CLKEN);
3243 	delay(drv_usectohz(100));
3244 
3245 fail1:
3246 	CSR_BC(csr_base, TLU_SLOT_CONTROL, PWFDEN);
3247 
3248 	CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
3249 
3250 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3251 	reg &= ~PCIE_SLOTCTL_PWR_INDICATOR_MASK;
3252 	reg = pcie_slotctl_pwr_indicator_set(reg,
3253 	    PCIE_SLOTCTL_INDICATOR_STATE_OFF);
3254 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3255 
3256 	CSR_BC(csr_base, TLU_SLOT_STATUS, PWFD);
3257 
3258 fail:
3259 	return ((uint_t)DDI_FAILURE);
3260 }
3261 
3262 hrtime_t oberon_leaf_reset_timeout = 120ll * NANOSEC;	/* 120 seconds */
3263 
3264 static uint_t
3265 oberon_hp_pwroff(caddr_t csr_base)
3266 {
3267 	volatile uint64_t reg;
3268 	volatile uint64_t reg_tluue, reg_tluce;
3269 	hrtime_t start_time, end_time;
3270 
3271 	DBG(DBG_HP, NULL, "oberon_hp_pwroff the slot\n");
3272 
3273 	/* Blink power LED, this is done from pciehpc already */
3274 
3275 	/* Clear Slot Event */
3276 	CSR_BS(csr_base, TLU_SLOT_STATUS, PSDC);
3277 	CSR_BS(csr_base, TLU_SLOT_STATUS, PWFD);
3278 
3279 	/* DRN_TR_DIS on */
3280 	CSR_BS(csr_base, TLU_CONTROL, DRN_TR_DIS);
3281 	delay(drv_usectohz(10000));
3282 
3283 	/* Disable LUP/LDN */
3284 	reg = CSR_XR(csr_base, TLU_OTHER_EVENT_LOG_ENABLE);
3285 	reg &= ~((1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_P) |
3286 	    (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_P) |
3287 	    (1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_S) |
3288 	    (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_S));
3289 	CSR_XS(csr_base, TLU_OTHER_EVENT_LOG_ENABLE, reg);
3290 
3291 	/* Save the TLU registers */
3292 	reg_tluue = CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE);
3293 	reg_tluce = CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_LOG_ENABLE);
3294 	/* All clear */
3295 	CSR_XS(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE, 0);
3296 	CSR_XS(csr_base, TLU_CORRECTABLE_ERROR_LOG_ENABLE, 0);
3297 
3298 	/* Disable port */
3299 	CSR_BS(csr_base, FLP_PORT_CONTROL, PORT_DIS);
3300 
3301 	/* PCIE reset */
3302 	delay(drv_usectohz(10000));
3303 	CSR_BC(csr_base, HOTPLUG_CONTROL, N_PERST);
3304 
3305 	/* PCIE clock stop */
3306 	delay(drv_usectohz(150));
3307 	CSR_BC(csr_base, HOTPLUG_CONTROL, CLKEN);
3308 
3309 	/* Turn off slot power */
3310 	delay(drv_usectohz(100));
3311 	CSR_BC(csr_base, TLU_SLOT_CONTROL, PWFDEN);
3312 	CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
3313 	delay(drv_usectohz(25000));
3314 	CSR_BS(csr_base, TLU_SLOT_STATUS, PWFD);
3315 
3316 	/* write 0 to bit 7 of ILU Error Log Enable Register */
3317 	CSR_BC(csr_base, ILU_ERROR_LOG_ENABLE, SPARE3);
3318 
3319 	/* Set back TLU registers */
3320 	CSR_XS(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE, reg_tluue);
3321 	CSR_XS(csr_base, TLU_CORRECTABLE_ERROR_LOG_ENABLE, reg_tluce);
3322 
3323 	/* Power LED off */
3324 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3325 	reg &= ~PCIE_SLOTCTL_PWR_INDICATOR_MASK;
3326 	reg = pcie_slotctl_pwr_indicator_set(reg,
3327 	    PCIE_SLOTCTL_INDICATOR_STATE_OFF);
3328 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3329 
3330 	/* Indicator LED blink */
3331 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3332 	reg &= ~PCIE_SLOTCTL_ATTN_INDICATOR_MASK;
3333 	reg = pcie_slotctl_attn_indicator_set(reg,
3334 	    PCIE_SLOTCTL_INDICATOR_STATE_BLINK);
3335 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3336 
3337 	/* Notify to SCF */
3338 	if (CSR_BR(csr_base, HOTPLUG_CONTROL, SLOTPON))
3339 		CSR_BC(csr_base, HOTPLUG_CONTROL, SLOTPON);
3340 	else
3341 		CSR_BS(csr_base, HOTPLUG_CONTROL, SLOTPON);
3342 
3343 	start_time = gethrtime();
3344 	/* Check Leaf Reset status */
3345 	while (!(CSR_BR(csr_base, ILU_ERROR_LOG_ENABLE, SPARE3))) {
3346 		if ((end_time = (gethrtime() - start_time)) >
3347 		    oberon_leaf_reset_timeout) {
3348 			cmn_err(CE_WARN, "Oberon leaf reset is not completed, "
3349 			    "even after waiting %llx ticks", end_time);
3350 
3351 			break;
3352 		}
3353 
3354 		/* Wait for one second */
3355 		delay(drv_usectohz(1000000));
3356 	}
3357 
3358 	/* Indicator LED off */
3359 	reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3360 	reg &= ~PCIE_SLOTCTL_ATTN_INDICATOR_MASK;
3361 	reg = pcie_slotctl_attn_indicator_set(reg,
3362 	    PCIE_SLOTCTL_INDICATOR_STATE_OFF);
3363 	CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
3364 
3365 	return (DDI_SUCCESS);
3366 }
3367 
3368 static uint_t
3369 oberon_hpreg_get(void *cookie, off_t off)
3370 {
3371 	caddr_t csr_base = *(caddr_t *)cookie;
3372 	volatile uint64_t val = -1ull;
3373 
3374 	switch (off) {
3375 	case PCIE_SLOTCAP:
3376 		val = CSR_XR(csr_base, TLU_SLOT_CAPABILITIES);
3377 		break;
3378 	case PCIE_SLOTCTL:
3379 		val = CSR_XR(csr_base, TLU_SLOT_CONTROL);
3380 
3381 		/* Get the power state */
3382 		val |= (CSR_XR(csr_base, HOTPLUG_CONTROL) &
3383 		    (1ull << HOTPLUG_CONTROL_PWREN)) ?
3384 		    0 : PCIE_SLOTCTL_PWR_CONTROL;
3385 		break;
3386 	case PCIE_SLOTSTS:
3387 		val = CSR_XR(csr_base, TLU_SLOT_STATUS);
3388 		break;
3389 	case PCIE_LINKCAP:
3390 		val = CSR_XR(csr_base, TLU_LINK_CAPABILITIES);
3391 		break;
3392 	case PCIE_LINKSTS:
3393 		val = CSR_XR(csr_base, TLU_LINK_STATUS);
3394 		break;
3395 	default:
3396 		DBG(DBG_HP, NULL, "oberon_hpreg_get(): "
3397 		    "unsupported offset 0x%lx\n", off);
3398 		break;
3399 	}
3400 
3401 	return ((uint_t)val);
3402 }
3403 
3404 static uint_t
3405 oberon_hpreg_put(void *cookie, off_t off, uint_t val)
3406 {
3407 	caddr_t csr_base = *(caddr_t *)cookie;
3408 	volatile uint64_t pwr_state_on, pwr_fault;
3409 	uint_t pwr_off, ret = DDI_SUCCESS;
3410 
3411 	DBG(DBG_HP, NULL, "oberon_hpreg_put 0x%lx: cur %x, new %x\n",
3412 	    off, oberon_hpreg_get(cookie, off), val);
3413 
3414 	switch (off) {
3415 	case PCIE_SLOTCTL:
3416 		/*
3417 		 * Depending on the current state, insertion or removal
3418 		 * will go through their respective sequences.
3419 		 */
3420 		pwr_state_on = CSR_BR(csr_base, HOTPLUG_CONTROL, PWREN);
3421 		pwr_off = val & PCIE_SLOTCTL_PWR_CONTROL;
3422 
3423 		if (!pwr_off && !pwr_state_on)
3424 			ret = oberon_hp_pwron(csr_base);
3425 		else if (pwr_off && pwr_state_on) {
3426 			pwr_fault = CSR_XR(csr_base, TLU_SLOT_STATUS) &
3427 			    (1ull << TLU_SLOT_STATUS_PWFD);
3428 
3429 			if (pwr_fault) {
3430 				DBG(DBG_HP, NULL, "oberon_hpreg_put: power "
3431 				    "off because of power fault\n");
3432 				CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
3433 			}
3434 			else
3435 				ret = oberon_hp_pwroff(csr_base);
3436 		} else
3437 			CSR_XS(csr_base, TLU_SLOT_CONTROL, val);
3438 		break;
3439 	case PCIE_SLOTSTS:
3440 		CSR_XS(csr_base, TLU_SLOT_STATUS, val);
3441 		break;
3442 	default:
3443 		DBG(DBG_HP, NULL, "oberon_hpreg_put(): "
3444 		    "unsupported offset 0x%lx\n", off);
3445 		ret = (uint_t)DDI_FAILURE;
3446 		break;
3447 	}
3448 
3449 	return (ret);
3450 }
3451 
3452 int
3453 hvio_hotplug_init(dev_info_t *dip, void *arg)
3454 {
3455 	pcie_hp_regops_t *regops = (pcie_hp_regops_t *)arg;
3456 	px_t	*px_p = DIP_TO_STATE(dip);
3457 	pxu_t	*pxu_p = (pxu_t *)px_p->px_plat_p;
3458 	volatile uint64_t reg;
3459 
3460 	if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
3461 		if (!CSR_BR((caddr_t)pxu_p->px_address[PX_REG_CSR],
3462 		    TLU_SLOT_CAPABILITIES, HP)) {
3463 			DBG(DBG_HP, NULL, "%s%d: hotplug capabale not set\n",
3464 			    ddi_driver_name(dip), ddi_get_instance(dip));
3465 			return (DDI_FAILURE);
3466 		}
3467 
3468 		/* For empty or disconnected slot, disable LUP/LDN */
3469 		if (!CSR_BR((caddr_t)pxu_p->px_address[PX_REG_CSR],
3470 		    TLU_SLOT_STATUS, PSD) ||
3471 		    !CSR_BR((caddr_t)pxu_p->px_address[PX_REG_CSR],
3472 		    HOTPLUG_CONTROL, PWREN)) {
3473 
3474 			reg = CSR_XR((caddr_t)pxu_p->px_address[PX_REG_CSR],
3475 			    TLU_OTHER_EVENT_LOG_ENABLE);
3476 			reg &= ~((1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_P) |
3477 			    (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_P) |
3478 			    (1ull << TLU_OTHER_EVENT_STATUS_SET_LDN_S) |
3479 			    (1ull << TLU_OTHER_EVENT_STATUS_SET_LUP_S));
3480 			CSR_XS((caddr_t)pxu_p->px_address[PX_REG_CSR],
3481 			    TLU_OTHER_EVENT_LOG_ENABLE, reg);
3482 		}
3483 
3484 		regops->get = oberon_hpreg_get;
3485 		regops->put = oberon_hpreg_put;
3486 
3487 		/* cookie is the csr_base */
3488 		regops->cookie = (void *)&pxu_p->px_address[PX_REG_CSR];
3489 
3490 		return (DDI_SUCCESS);
3491 	}
3492 
3493 	return (DDI_ENOTSUP);
3494 }
3495 
3496 int
3497 hvio_hotplug_uninit(dev_info_t *dip)
3498 {
3499 	px_t	*px_p = DIP_TO_STATE(dip);
3500 	pxu_t	*pxu_p = (pxu_t *)px_p->px_plat_p;
3501 
3502 	if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON)
3503 		return (DDI_SUCCESS);
3504 
3505 	return (DDI_FAILURE);
3506 }
3507