1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright (c) 2016 by Delphix. All rights reserved. 25 * Copyright 2023 Oxide Computer Company 26 */ 27 28 #include <sys/conf.h> 29 #include <sys/kmem.h> 30 #include <sys/debug.h> 31 #include <sys/modctl.h> 32 #include <sys/autoconf.h> 33 #include <sys/hwconf.h> 34 #include <sys/ddi_impldefs.h> 35 #include <sys/ddi.h> 36 #include <sys/sunddi.h> 37 #include <sys/sunndi.h> 38 #include <sys/ndi_impldefs.h> 39 #include <sys/machsystm.h> 40 #include <sys/fcode.h> 41 #include <sys/promif.h> 42 #include <sys/promimpl.h> 43 #include <sys/opl_cfg.h> 44 #include <sys/scfd/scfostoescf.h> 45 46 static unsigned int opl_cfg_inited; 47 static opl_board_cfg_t opl_boards[HWD_SBS_PER_DOMAIN]; 48 49 /* 50 * Module control operations 51 */ 52 53 extern struct mod_ops mod_miscops; 54 55 static struct modlmisc modlmisc = { 56 &mod_miscops, /* Type of module */ 57 "OPL opl_cfg" 58 }; 59 60 static struct modlinkage modlinkage = { 61 MODREV_1, (void *)&modlmisc, NULL 62 }; 63 64 static int opl_map_in(dev_info_t *, fco_handle_t, fc_ci_t *); 65 static int opl_map_out(dev_info_t *, fco_handle_t, fc_ci_t *); 66 static int opl_register_fetch(dev_info_t *, fco_handle_t, fc_ci_t *); 67 static int opl_register_store(dev_info_t *, fco_handle_t, fc_ci_t *); 68 69 static int opl_claim_memory(dev_info_t *, fco_handle_t, fc_ci_t *); 70 static int opl_release_memory(dev_info_t *, fco_handle_t, fc_ci_t *); 71 static int opl_vtop(dev_info_t *, fco_handle_t, fc_ci_t *); 72 73 static int opl_config_child(dev_info_t *, fco_handle_t, fc_ci_t *); 74 75 static int opl_get_fcode_size(dev_info_t *, fco_handle_t, fc_ci_t *); 76 static int opl_get_fcode(dev_info_t *, fco_handle_t, fc_ci_t *); 77 78 static int opl_map_phys(dev_info_t *, struct regspec *, caddr_t *, 79 ddi_device_acc_attr_t *, ddi_acc_handle_t *); 80 static void opl_unmap_phys(ddi_acc_handle_t *); 81 static int opl_get_hwd_va(dev_info_t *, fco_handle_t, fc_ci_t *); 82 static int opl_master_interrupt(dev_info_t *, fco_handle_t, fc_ci_t *); 83 84 extern int prom_get_fcode_size(char *); 85 extern int prom_get_fcode(char *, char *); 86 87 static int master_interrupt_init(uint32_t, uint32_t); 88 89 #define PROBE_STR_SIZE 64 90 #define UNIT_ADDR_SIZE 64 91 92 opl_fc_ops_t opl_fc_ops[] = { 93 94 { FC_MAP_IN, opl_map_in}, 95 { FC_MAP_OUT, opl_map_out}, 96 { "rx@", opl_register_fetch}, 97 { FC_RL_FETCH, opl_register_fetch}, 98 { FC_RW_FETCH, opl_register_fetch}, 99 { FC_RB_FETCH, opl_register_fetch}, 100 { "rx!", opl_register_store}, 101 { FC_RL_STORE, opl_register_store}, 102 { FC_RW_STORE, opl_register_store}, 103 { FC_RB_STORE, opl_register_store}, 104 { "claim-memory", opl_claim_memory}, 105 { "release-memory", opl_release_memory}, 106 { "vtop", opl_vtop}, 107 { FC_CONFIG_CHILD, opl_config_child}, 108 { FC_GET_FCODE_SIZE, opl_get_fcode_size}, 109 { FC_GET_FCODE, opl_get_fcode}, 110 { "get-hwd-va", opl_get_hwd_va}, 111 { "master-interrupt", opl_master_interrupt}, 112 { NULL, NULL} 113 114 }; 115 116 extern caddr_t efcode_vaddr; 117 extern int efcode_size; 118 119 #ifdef DEBUG 120 #define HWDDUMP_OFFSETS 1 121 #define HWDDUMP_ALL_STATUS 2 122 #define HWDDUMP_CHUNKS 3 123 #define HWDDUMP_SBP 4 124 125 int hwddump_flags = HWDDUMP_SBP | HWDDUMP_CHUNKS; 126 #endif 127 128 static int master_interrupt_inited = 0; 129 130 int 131 _init() 132 { 133 int err = 0; 134 135 /* 136 * Create a resource map for the contiguous memory allocated 137 * at start-of-day in startup.c 138 */ 139 err = ndi_ra_map_setup(ddi_root_node(), "opl-fcodemem"); 140 if (err == NDI_FAILURE) { 141 cmn_err(CE_WARN, "Cannot setup resource map opl-fcodemem\n"); 142 return (1); 143 } 144 145 /* 146 * Put the allocated memory into the pool. 147 */ 148 (void) ndi_ra_free(ddi_root_node(), (uint64_t)efcode_vaddr, 149 (uint64_t)efcode_size, "opl-fcodemem", 0); 150 151 if ((err = mod_install(&modlinkage)) != 0) { 152 cmn_err(CE_WARN, "opl_cfg failed to load, error=%d", err); 153 (void) ndi_ra_map_destroy(ddi_root_node(), "opl-fcodemem"); 154 } 155 156 return (err); 157 } 158 159 int 160 _fini(void) 161 { 162 int ret; 163 164 ret = (mod_remove(&modlinkage)); 165 if (ret != 0) 166 return (ret); 167 168 (void) ndi_ra_map_destroy(ddi_root_node(), "opl-fcodemem"); 169 170 return (ret); 171 } 172 173 int 174 _info(struct modinfo *modinfop) 175 { 176 return (mod_info(&modlinkage, modinfop)); 177 } 178 179 #ifdef DEBUG 180 static void 181 opl_dump_hwd(opl_probe_t *probe) 182 { 183 hwd_header_t *hdrp; 184 hwd_sb_status_t *statp; 185 hwd_domain_info_t *dinfop; 186 hwd_sb_t *sbp; 187 hwd_cpu_chip_t *chips; 188 hwd_pci_ch_t *channels; 189 int board, i, status; 190 191 board = probe->pr_board; 192 193 hdrp = probe->pr_hdr; 194 statp = probe->pr_sb_status; 195 dinfop = probe->pr_dinfo; 196 sbp = probe->pr_sb; 197 198 printf("HWD: board %d\n", board); 199 printf("HWD:magic = 0x%x\n", hdrp->hdr_magic); 200 printf("HWD:version = 0x%x.%x\n", hdrp->hdr_version.major, 201 hdrp->hdr_version.minor); 202 203 if (hwddump_flags & HWDDUMP_OFFSETS) { 204 printf("HWD:status offset = 0x%x\n", 205 hdrp->hdr_sb_status_offset); 206 printf("HWD:domain offset = 0x%x\n", 207 hdrp->hdr_domain_info_offset); 208 printf("HWD:board offset = 0x%x\n", hdrp->hdr_sb_info_offset); 209 } 210 211 if (hwddump_flags & HWDDUMP_SBP) 212 printf("HWD:sb_t ptr = 0x%p\n", (void *)probe->pr_sb); 213 214 if (hwddump_flags & HWDDUMP_ALL_STATUS) { 215 int bd; 216 printf("HWD:board status ="); 217 for (bd = 0; bd < HWD_SBS_PER_DOMAIN; bd++) 218 printf("%x ", statp->sb_status[bd]); 219 printf("\n"); 220 } else { 221 printf("HWD:board status = %d\n", statp->sb_status[board]); 222 } 223 224 printf("HWD:banner name = %s\n", dinfop->dinf_banner_name); 225 printf("HWD:platform = %s\n", dinfop->dinf_platform_token); 226 227 printf("HWD:chip status:\n"); 228 chips = &sbp->sb_cmu.cmu_cpu_chips[0]; 229 for (i = 0; i < HWD_CPU_CHIPS_PER_CMU; i++) { 230 231 status = chips[i].chip_status; 232 printf("chip[%d] = ", i); 233 if (HWD_STATUS_NONE(status)) 234 printf("none"); 235 else if (HWD_STATUS_FAILED(status)) 236 printf("fail"); 237 else if (HWD_STATUS_OK(status)) 238 printf("ok"); 239 printf("\n"); 240 } 241 242 if (hwddump_flags & HWDDUMP_CHUNKS) { 243 int chunk; 244 hwd_memory_t *mem = &sbp->sb_cmu.cmu_memory; 245 printf("HWD:chunks:\n"); 246 for (chunk = 0; chunk < HWD_MAX_MEM_CHUNKS; chunk++) 247 printf("\t%d 0x%lx 0x%lx\n", chunk, 248 mem->mem_chunks[chunk].chnk_start_address, 249 mem->mem_chunks[chunk].chnk_size); 250 } 251 252 printf("HWD:channel status:\n"); 253 channels = &sbp->sb_pci_ch[0]; 254 for (i = 0; i < HWD_PCI_CHANNELS_PER_SB; i++) { 255 256 status = channels[i].pci_status; 257 printf("channels[%d] = ", i); 258 if (HWD_STATUS_NONE(status)) 259 printf("none"); 260 else if (HWD_STATUS_FAILED(status)) 261 printf("fail"); 262 else if (HWD_STATUS_OK(status)) 263 printf("ok"); 264 printf("\n"); 265 } 266 printf("channels[%d] = ", i); 267 status = sbp->sb_cmu.cmu_ch.chan_status; 268 if (HWD_STATUS_NONE(status)) 269 printf("none"); 270 else if (HWD_STATUS_FAILED(status)) 271 printf("fail"); 272 else if (HWD_STATUS_OK(status)) 273 printf("ok"); 274 printf("\n"); 275 } 276 #endif /* DEBUG */ 277 278 #ifdef UCTEST 279 /* 280 * For SesamI debugging, just map the SRAM directly to a kernel 281 * VA and read it out from there 282 */ 283 284 #include <sys/vmem.h> 285 #include <vm/seg_kmem.h> 286 287 /* 288 * 0x4081F1323000LL is the HWD base address for LSB 0. But we need to map 289 * at page boundaries. So, we use a base address of 0x4081F1322000LL. 290 * Note that this has to match the HWD base pa set in .sesami-common-defs. 291 * 292 * The size specified for the HWD in the SCF spec is 36K. But since 293 * we adjusted the base address by 4K, we need to use 40K for the 294 * mapping size to cover the HWD. And 40K is also a multiple of the 295 * base page size. 296 */ 297 #define OPL_HWD_BASE(lsb) \ 298 (0x4081F1322000LL | (((uint64_t)(lsb)) << 40)) 299 300 void *opl_hwd_vaddr; 301 #endif /* UCTEST */ 302 303 /* 304 * Get the hardware descriptor from SCF. 305 */ 306 307 /*ARGSUSED*/ 308 int 309 opl_read_hwd(int board, hwd_header_t **hdrp, hwd_sb_status_t **statp, 310 hwd_domain_info_t **dinfop, hwd_sb_t **sbp) 311 { 312 static int (*getinfop)(uint32_t, uint8_t, uint32_t, uint32_t *, 313 void *) = NULL; 314 void *hwdp; 315 316 uint32_t key = KEY_ESCF; /* required value */ 317 uint8_t type = 0x40; /* SUB_OS_RECEIVE_HWD */ 318 uint32_t transid = board; 319 uint32_t datasize = HWD_DATA_SIZE; 320 321 hwd_header_t *hd; 322 hwd_sb_status_t *st; 323 hwd_domain_info_t *di; 324 hwd_sb_t *sb; 325 326 int ret; 327 328 if (opl_boards[board].cfg_hwd == NULL) { 329 #ifdef UCTEST 330 /* 331 * Just map the HWD in SRAM to a kernel VA 332 */ 333 334 size_t size; 335 pfn_t pfn; 336 337 size = 0xA000; 338 339 opl_hwd_vaddr = vmem_alloc(heap_arena, size, VM_SLEEP); 340 if (opl_hwd_vaddr == NULL) { 341 cmn_err(CE_NOTE, "No space for HWD"); 342 return (-1); 343 } 344 345 pfn = btop(OPL_HWD_BASE(board)); 346 hat_devload(kas.a_hat, opl_hwd_vaddr, size, pfn, PROT_READ, 347 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 348 349 hwdp = (void *)((char *)opl_hwd_vaddr + 0x1000); 350 opl_boards[board].cfg_hwd = hwdp; 351 ret = 0; 352 #else 353 354 /* find the scf_service_getinfo() function */ 355 if (getinfop == NULL) 356 getinfop = (int (*)(uint32_t, uint8_t, uint32_t, 357 uint32_t *, 358 void *))modgetsymvalue("scf_service_getinfo", 0); 359 360 if (getinfop == NULL) 361 return (-1); 362 363 /* allocate memory to receive the data */ 364 hwdp = kmem_alloc(HWD_DATA_SIZE, KM_SLEEP); 365 366 /* get the HWD */ 367 ret = (*getinfop)(key, type, transid, &datasize, hwdp); 368 if (ret == 0) 369 opl_boards[board].cfg_hwd = hwdp; 370 else 371 kmem_free(hwdp, HWD_DATA_SIZE); 372 #endif 373 } else { 374 hwdp = opl_boards[board].cfg_hwd; 375 ret = 0; 376 } 377 378 /* copy the data to the destination */ 379 if (ret == 0) { 380 hd = (hwd_header_t *)hwdp; 381 st = (hwd_sb_status_t *) 382 ((char *)hwdp + hd->hdr_sb_status_offset); 383 di = (hwd_domain_info_t *) 384 ((char *)hwdp + hd->hdr_domain_info_offset); 385 sb = (hwd_sb_t *) 386 ((char *)hwdp + hd->hdr_sb_info_offset); 387 if (hdrp != NULL) 388 *hdrp = hd; 389 if (statp != NULL) 390 *statp = st; 391 if (dinfop != NULL) 392 *dinfop = di; 393 if (sbp != NULL) 394 *sbp = sb; 395 } 396 397 return (ret); 398 } 399 400 /* 401 * The opl_probe_t probe structure is used to pass all sorts of parameters 402 * to callback functions during probing. It also contains a snapshot of 403 * the hardware descriptor that is taken at the beginning of a probe. 404 */ 405 static int 406 opl_probe_init(opl_probe_t *probe) 407 { 408 hwd_header_t **hdrp; 409 hwd_sb_status_t **statp; 410 hwd_domain_info_t **dinfop; 411 hwd_sb_t **sbp; 412 int board, ret; 413 414 board = probe->pr_board; 415 416 hdrp = &probe->pr_hdr; 417 statp = &probe->pr_sb_status; 418 dinfop = &probe->pr_dinfo; 419 sbp = &probe->pr_sb; 420 421 /* 422 * Read the hardware descriptor. 423 */ 424 ret = opl_read_hwd(board, hdrp, statp, dinfop, sbp); 425 if (ret != 0) { 426 427 cmn_err(CE_WARN, "IKP: failed to read HWD header"); 428 return (-1); 429 } 430 431 #ifdef DEBUG 432 opl_dump_hwd(probe); 433 #endif 434 return (0); 435 } 436 437 /* 438 * This function is used to obtain pointers to relevant device nodes 439 * which are created by Solaris at boot time. 440 * 441 * This function walks the child nodes of a given node, extracts 442 * the "name" property, if it exists, and passes the node to a 443 * callback init function. The callback determines if this node is 444 * interesting or not. If it is, then a pointer to the node is 445 * stored away by the callback for use during unprobe. 446 * 447 * The DDI get property function allocates storage for the name 448 * property. That needs to be freed within this function. 449 */ 450 static int 451 opl_init_nodes(dev_info_t *parent, opl_init_func_t init) 452 { 453 dev_info_t *node; 454 char *name; 455 int ret; 456 int len; 457 458 ASSERT(parent != NULL); 459 460 /* 461 * Hold parent node busy to walk its child list 462 */ 463 ndi_devi_enter(parent); 464 node = ddi_get_child(parent); 465 466 while (node != NULL) { 467 468 ret = OPL_GET_PROP(string, node, "name", &name, &len); 469 if (ret != DDI_PROP_SUCCESS) { 470 /* 471 * The property does not exist for this node. 472 */ 473 node = ddi_get_next_sibling(node); 474 continue; 475 } 476 477 ret = init(node, name, len); 478 kmem_free(name, len); 479 if (ret != 0) { 480 481 ndi_devi_exit(parent); 482 return (-1); 483 } 484 485 node = ddi_get_next_sibling(node); 486 } 487 488 ndi_devi_exit(parent); 489 490 return (0); 491 } 492 493 /* 494 * This init function finds all the interesting nodes under the 495 * root node and stores pointers to them. The following nodes 496 * are considered interesting by this implementation: 497 * 498 * "cmp" 499 * These are nodes that represent processor chips. 500 * 501 * "pci" 502 * These are nodes that represent PCI leaves. 503 * 504 * "pseudo-mc" 505 * These are nodes that contain memory information. 506 */ 507 static int 508 opl_init_root_nodes(dev_info_t *node, char *name, int len) 509 { 510 int portid, board, chip, channel, leaf; 511 int ret; 512 513 if (strncmp(name, OPL_CPU_CHIP_NODE, len) == 0) { 514 515 ret = OPL_GET_PROP(int, node, "portid", &portid, -1); 516 if (ret != DDI_PROP_SUCCESS) 517 return (-1); 518 519 ret = OPL_GET_PROP(int, node, "board#", &board, -1); 520 if (ret != DDI_PROP_SUCCESS) 521 return (-1); 522 523 chip = OPL_CPU_CHIP(portid); 524 opl_boards[board].cfg_cpu_chips[chip] = node; 525 526 } else if (strncmp(name, OPL_PCI_LEAF_NODE, len) == 0) { 527 528 ret = OPL_GET_PROP(int, node, "portid", &portid, -1); 529 if (ret != DDI_PROP_SUCCESS) 530 return (-1); 531 532 board = OPL_IO_PORTID_TO_LSB(portid); 533 channel = OPL_PORTID_TO_CHANNEL(portid); 534 535 if (channel == OPL_CMU_CHANNEL) { 536 537 opl_boards[board].cfg_cmuch_leaf = node; 538 539 } else { 540 541 leaf = OPL_PORTID_TO_LEAF(portid); 542 opl_boards[board].cfg_pcich_leaf[channel][leaf] = node; 543 } 544 } else if (strncmp(name, OPL_PSEUDO_MC_NODE, len) == 0) { 545 546 ret = OPL_GET_PROP(int, node, "board#", &board, -1); 547 if (ret != DDI_PROP_SUCCESS) 548 return (-1); 549 550 ASSERT((board >= 0) && (board < HWD_SBS_PER_DOMAIN)); 551 552 opl_boards[board].cfg_pseudo_mc = node; 553 } 554 555 return (0); 556 } 557 558 /* 559 * This function initializes the OPL IKP feature. Currently, all it does 560 * is find the interesting nodes that Solaris has created at boot time 561 * for boards present at boot time and store pointers to them. This 562 * is useful if those boards are unprobed by DR. 563 */ 564 int 565 opl_init_cfg() 566 { 567 dev_info_t *root; 568 569 if (opl_cfg_inited == 0) { 570 571 root = ddi_root_node(); 572 if ((opl_init_nodes(root, opl_init_root_nodes) != 0)) { 573 cmn_err(CE_WARN, "IKP: init failed"); 574 return (1); 575 } 576 577 opl_cfg_inited = 1; 578 } 579 580 return (0); 581 } 582 583 /* 584 * When DR is initialized, we walk the device tree and acquire a hold on 585 * all the nodes that are interesting to IKP. This is so that the corresponding 586 * branches cannot be deleted. 587 * 588 * The following function informs the walk about which nodes are interesting 589 * so that it can hold the corresponding branches. 590 */ 591 static int 592 opl_hold_node(char *name) 593 { 594 /* 595 * We only need to hold/release the following nodes which 596 * represent separate branches that must be managed. 597 */ 598 return ((strcmp(name, OPL_CPU_CHIP_NODE) == 0) || 599 (strcmp(name, OPL_PSEUDO_MC_NODE) == 0) || 600 (strcmp(name, OPL_PCI_LEAF_NODE) == 0)); 601 } 602 603 static int 604 opl_hold_rele_devtree(dev_info_t *rdip, void *arg) 605 { 606 607 int *holdp = (int *)arg; 608 char *name = ddi_node_name(rdip); 609 610 /* 611 * We only need to hold/release the following nodes which 612 * represent separate branches that must be managed. 613 */ 614 if (opl_hold_node(name) == 0) { 615 /* Not of interest to us */ 616 return (DDI_WALK_PRUNECHILD); 617 } 618 if (*holdp) { 619 ASSERT(!e_ddi_branch_held(rdip)); 620 e_ddi_branch_hold(rdip); 621 } else { 622 ASSERT(e_ddi_branch_held(rdip)); 623 e_ddi_branch_rele(rdip); 624 } 625 626 return (DDI_WALK_PRUNECHILD); 627 } 628 629 void 630 opl_hold_devtree() 631 { 632 dev_info_t *dip; 633 int hold = 1; 634 635 dip = ddi_root_node(); 636 ndi_devi_enter(dip); 637 ddi_walk_devs(ddi_get_child(dip), opl_hold_rele_devtree, &hold); 638 ndi_devi_exit(dip); 639 } 640 641 void 642 opl_release_devtree() 643 { 644 dev_info_t *dip; 645 int hold = 0; 646 647 dip = ddi_root_node(); 648 ndi_devi_enter(dip); 649 ddi_walk_devs(ddi_get_child(dip), opl_hold_rele_devtree, &hold); 650 ndi_devi_exit(dip); 651 } 652 653 /* 654 * This is a helper function that allows opl_create_node() to return a 655 * pointer to a newly created node to its caller. 656 */ 657 /*ARGSUSED*/ 658 static void 659 opl_set_node(dev_info_t *node, void *arg, uint_t flags) 660 { 661 opl_probe_t *probe; 662 663 probe = arg; 664 probe->pr_node = node; 665 } 666 667 /* 668 * Function to create a node in the device tree under a specified parent. 669 * 670 * e_ddi_branch_create() allows the creation of a whole branch with a 671 * single call of the function. However, we only use it to create one node 672 * at a time in the case of non-I/O device nodes. In other words, we 673 * create branches by repeatedly using this function. This makes the 674 * code more readable. 675 * 676 * The branch descriptor passed to e_ddi_branch_create() takes two 677 * callbacks. The create() callback is used to set the properties of a 678 * newly created node. The other callback is used to return a pointer 679 * to the newly created node. The create() callback is passed by the 680 * caller of this function based on the kind of node it wishes to 681 * create. 682 * 683 * e_ddi_branch_create() returns with the newly created node held. We 684 * only need to hold the top nodes of the branches we create. We release 685 * the hold for the others. E.g., the "cmp" node needs to be held. Since 686 * we hold the "cmp" node, there is no need to hold the "core" and "cpu" 687 * nodes below it. 688 */ 689 static dev_info_t * 690 opl_create_node(opl_probe_t *probe) 691 { 692 devi_branch_t branch; 693 694 probe->pr_node = NULL; 695 696 branch.arg = probe; 697 branch.type = DEVI_BRANCH_SID; 698 branch.create.sid_branch_create = probe->pr_create; 699 branch.devi_branch_callback = opl_set_node; 700 701 if (e_ddi_branch_create(probe->pr_parent, &branch, NULL, 0) != 0) 702 return (NULL); 703 704 ASSERT(probe->pr_node != NULL); 705 706 if (probe->pr_hold == 0) 707 e_ddi_branch_rele(probe->pr_node); 708 709 return (probe->pr_node); 710 } 711 712 /* 713 * Function to tear down a whole branch rooted at the specified node. 714 * 715 * Although we create each node of a branch individually, we destroy 716 * a whole branch in one call. This is more efficient. 717 */ 718 static int 719 opl_destroy_node(dev_info_t *node) 720 { 721 if (e_ddi_branch_destroy(node, NULL, 0) != 0) { 722 char *path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 723 (void) ddi_pathname(node, path); 724 cmn_err(CE_WARN, "OPL node removal failed: %s (%p)", path, 725 (void *)node); 726 kmem_free(path, MAXPATHLEN); 727 return (-1); 728 } 729 730 return (0); 731 } 732 733 /* 734 * Set the properties for a "cpu" node. 735 */ 736 /*ARGSUSED*/ 737 static int 738 opl_create_cpu(dev_info_t *node, void *arg, uint_t flags) 739 { 740 opl_probe_t *probe; 741 hwd_cpu_chip_t *chip; 742 hwd_core_t *core; 743 hwd_cpu_t *cpu; 744 int ret; 745 746 probe = arg; 747 chip = &probe->pr_sb->sb_cmu.cmu_cpu_chips[probe->pr_cpu_chip]; 748 core = &chip->chip_cores[probe->pr_core]; 749 cpu = &core->core_cpus[probe->pr_cpu]; 750 OPL_UPDATE_PROP(string, node, "name", OPL_CPU_NODE); 751 OPL_UPDATE_PROP(string, node, "device_type", OPL_CPU_NODE); 752 753 OPL_UPDATE_PROP(int, node, "cpuid", cpu->cpu_cpuid); 754 OPL_UPDATE_PROP(int, node, "reg", probe->pr_cpu); 755 756 OPL_UPDATE_PROP(string, node, "status", "okay"); 757 758 return (DDI_WALK_TERMINATE); 759 } 760 761 /* 762 * Create "cpu" nodes as child nodes of a given "core" node. 763 */ 764 static int 765 opl_probe_cpus(opl_probe_t *probe) 766 { 767 int i; 768 hwd_cpu_chip_t *chip; 769 hwd_core_t *core; 770 hwd_cpu_t *cpus; 771 772 chip = &probe->pr_sb->sb_cmu.cmu_cpu_chips[probe->pr_cpu_chip]; 773 core = &chip->chip_cores[probe->pr_core]; 774 cpus = &core->core_cpus[0]; 775 776 for (i = 0; i < HWD_CPUS_PER_CORE; i++) { 777 778 /* 779 * Olympus-C has 2 cpus per core. 780 * Jupiter has 4 cpus per core. 781 * For the Olympus-C based platform, we expect the cpu_status 782 * of the non-existent cpus to be set to missing. 783 */ 784 if (!HWD_STATUS_OK(cpus[i].cpu_status)) 785 continue; 786 787 probe->pr_create = opl_create_cpu; 788 probe->pr_cpu = i; 789 if (opl_create_node(probe) == NULL) { 790 791 cmn_err(CE_WARN, "IKP: create cpu (%d-%d-%d-%d) failed", 792 probe->pr_board, probe->pr_cpu_chip, probe->pr_core, 793 probe->pr_cpu); 794 return (-1); 795 } 796 } 797 798 return (0); 799 } 800 801 /* 802 * Set the properties for a "core" node. 803 */ 804 /*ARGSUSED*/ 805 static int 806 opl_create_core(dev_info_t *node, void *arg, uint_t flags) 807 { 808 opl_probe_t *probe; 809 hwd_cpu_chip_t *chip; 810 hwd_core_t *core; 811 int sharing[2]; 812 int ret; 813 814 probe = arg; 815 chip = &probe->pr_sb->sb_cmu.cmu_cpu_chips[probe->pr_cpu_chip]; 816 core = &chip->chip_cores[probe->pr_core]; 817 818 OPL_UPDATE_PROP(string, node, "name", OPL_CORE_NODE); 819 OPL_UPDATE_PROP(string, node, "device_type", OPL_CORE_NODE); 820 OPL_UPDATE_PROP(string, node, "compatible", chip->chip_compatible); 821 822 OPL_UPDATE_PROP(int, node, "reg", probe->pr_core); 823 OPL_UPDATE_PROP(int, node, "manufacturer#", core->core_manufacturer); 824 OPL_UPDATE_PROP(int, node, "implementation#", 825 core->core_implementation); 826 OPL_UPDATE_PROP(int, node, "mask#", core->core_mask); 827 828 OPL_UPDATE_PROP(int, node, "sparc-version", 9); 829 OPL_UPDATE_PROP(int, node, "clock-frequency", core->core_frequency); 830 831 OPL_UPDATE_PROP(int, node, "l1-icache-size", core->core_l1_icache_size); 832 OPL_UPDATE_PROP(int, node, "l1-icache-line-size", 833 core->core_l1_icache_line_size); 834 OPL_UPDATE_PROP(int, node, "l1-icache-associativity", 835 core->core_l1_icache_associativity); 836 OPL_UPDATE_PROP(int, node, "#itlb-entries", 837 core->core_num_itlb_entries); 838 839 OPL_UPDATE_PROP(int, node, "l1-dcache-size", core->core_l1_dcache_size); 840 OPL_UPDATE_PROP(int, node, "l1-dcache-line-size", 841 core->core_l1_dcache_line_size); 842 OPL_UPDATE_PROP(int, node, "l1-dcache-associativity", 843 core->core_l1_dcache_associativity); 844 OPL_UPDATE_PROP(int, node, "#dtlb-entries", 845 core->core_num_dtlb_entries); 846 847 OPL_UPDATE_PROP(int, node, "l2-cache-size", core->core_l2_cache_size); 848 OPL_UPDATE_PROP(int, node, "l2-cache-line-size", 849 core->core_l2_cache_line_size); 850 OPL_UPDATE_PROP(int, node, "l2-cache-associativity", 851 core->core_l2_cache_associativity); 852 sharing[0] = 0; 853 sharing[1] = core->core_l2_cache_sharing; 854 OPL_UPDATE_PROP_ARRAY(int, node, "l2-cache-sharing", sharing, 2); 855 856 OPL_UPDATE_PROP(string, node, "status", "okay"); 857 858 return (DDI_WALK_TERMINATE); 859 } 860 861 /* 862 * Create "core" nodes as child nodes of a given "cmp" node. 863 * 864 * Create the branch below each "core" node". 865 */ 866 static int 867 opl_probe_cores(opl_probe_t *probe) 868 { 869 int i; 870 hwd_cpu_chip_t *chip; 871 hwd_core_t *cores; 872 dev_info_t *parent, *node; 873 874 chip = &probe->pr_sb->sb_cmu.cmu_cpu_chips[probe->pr_cpu_chip]; 875 cores = &chip->chip_cores[0]; 876 parent = probe->pr_parent; 877 878 for (i = 0; i < HWD_CORES_PER_CPU_CHIP; i++) { 879 880 if (!HWD_STATUS_OK(cores[i].core_status)) 881 continue; 882 883 probe->pr_parent = parent; 884 probe->pr_create = opl_create_core; 885 probe->pr_core = i; 886 node = opl_create_node(probe); 887 if (node == NULL) { 888 889 cmn_err(CE_WARN, "IKP: create core (%d-%d-%d) failed", 890 probe->pr_board, probe->pr_cpu_chip, 891 probe->pr_core); 892 return (-1); 893 } 894 895 /* 896 * Create "cpu" nodes below "core". 897 */ 898 probe->pr_parent = node; 899 if (opl_probe_cpus(probe) != 0) 900 return (-1); 901 probe->pr_cpu_impl |= (1 << cores[i].core_implementation); 902 } 903 904 return (0); 905 } 906 907 /* 908 * Set the properties for a "cmp" node. 909 */ 910 /*ARGSUSED*/ 911 static int 912 opl_create_cpu_chip(dev_info_t *node, void *arg, uint_t flags) 913 { 914 opl_probe_t *probe; 915 hwd_cpu_chip_t *chip; 916 opl_range_t range; 917 uint64_t dummy_addr; 918 int ret; 919 920 probe = arg; 921 chip = &probe->pr_sb->sb_cmu.cmu_cpu_chips[probe->pr_cpu_chip]; 922 923 OPL_UPDATE_PROP(string, node, "name", OPL_CPU_CHIP_NODE); 924 925 OPL_UPDATE_PROP(int, node, "portid", chip->chip_portid); 926 OPL_UPDATE_PROP(int, node, "board#", probe->pr_board); 927 928 dummy_addr = OPL_PROC_AS(probe->pr_board, probe->pr_cpu_chip); 929 range.rg_addr_hi = OPL_HI(dummy_addr); 930 range.rg_addr_lo = OPL_LO(dummy_addr); 931 range.rg_size_hi = 0; 932 range.rg_size_lo = 0; 933 OPL_UPDATE_PROP_ARRAY(int, node, "reg", (int *)&range, 4); 934 935 OPL_UPDATE_PROP(int, node, "#address-cells", 1); 936 OPL_UPDATE_PROP(int, node, "#size-cells", 0); 937 938 OPL_UPDATE_PROP(string, node, "status", "okay"); 939 940 return (DDI_WALK_TERMINATE); 941 } 942 943 /* 944 * Create "cmp" nodes as child nodes of the root node. 945 * 946 * Create the branch below each "cmp" node. 947 */ 948 static int 949 opl_probe_cpu_chips(opl_probe_t *probe) 950 { 951 int i; 952 dev_info_t **cfg_cpu_chips; 953 hwd_cpu_chip_t *chips; 954 dev_info_t *node; 955 956 cfg_cpu_chips = opl_boards[probe->pr_board].cfg_cpu_chips; 957 chips = &probe->pr_sb->sb_cmu.cmu_cpu_chips[0]; 958 959 for (i = 0; i < HWD_CPU_CHIPS_PER_CMU; i++) { 960 961 ASSERT(cfg_cpu_chips[i] == NULL); 962 963 if (!HWD_STATUS_OK(chips[i].chip_status)) 964 continue; 965 966 probe->pr_parent = ddi_root_node(); 967 probe->pr_create = opl_create_cpu_chip; 968 probe->pr_cpu_chip = i; 969 probe->pr_hold = 1; 970 node = opl_create_node(probe); 971 if (node == NULL) { 972 973 cmn_err(CE_WARN, "IKP: create chip (%d-%d) failed", 974 probe->pr_board, probe->pr_cpu_chip); 975 return (-1); 976 } 977 978 cfg_cpu_chips[i] = node; 979 980 /* 981 * Create "core" nodes below "cmp". 982 * We hold the "cmp" node. So, there is no need to hold 983 * the "core" and "cpu" nodes below it. 984 */ 985 probe->pr_parent = node; 986 probe->pr_hold = 0; 987 if (opl_probe_cores(probe) != 0) 988 return (-1); 989 } 990 991 return (0); 992 } 993 994 /* 995 * Set the properties for a "pseudo-mc" node. 996 */ 997 /*ARGSUSED*/ 998 static int 999 opl_create_pseudo_mc(dev_info_t *node, void *arg, uint_t flags) 1000 { 1001 opl_probe_t *probe; 1002 int board, portid; 1003 hwd_bank_t *bank; 1004 hwd_memory_t *mem; 1005 opl_range_t range; 1006 opl_mc_addr_t mc[HWD_BANKS_PER_CMU]; 1007 int status[2][7]; 1008 int i, j; 1009 int ret; 1010 1011 probe = arg; 1012 board = probe->pr_board; 1013 1014 OPL_UPDATE_PROP(string, node, "name", OPL_PSEUDO_MC_NODE); 1015 OPL_UPDATE_PROP(string, node, "device_type", "memory-controller"); 1016 OPL_UPDATE_PROP(string, node, "compatible", "FJSV,oplmc"); 1017 1018 portid = OPL_LSB_TO_PSEUDOMC_PORTID(board); 1019 OPL_UPDATE_PROP(int, node, "portid", portid); 1020 1021 range.rg_addr_hi = OPL_HI(OPL_MC_AS(board)); 1022 range.rg_addr_lo = 0x200; 1023 range.rg_size_hi = 0; 1024 range.rg_size_lo = 0; 1025 OPL_UPDATE_PROP_ARRAY(int, node, "reg", (int *)&range, 4); 1026 1027 OPL_UPDATE_PROP(int, node, "board#", board); 1028 OPL_UPDATE_PROP(int, node, "physical-board#", 1029 probe->pr_sb->sb_psb_number); 1030 1031 OPL_UPDATE_PROP(int, node, "#address-cells", 1); 1032 OPL_UPDATE_PROP(int, node, "#size-cells", 2); 1033 1034 mem = &probe->pr_sb->sb_cmu.cmu_memory; 1035 1036 range.rg_addr_hi = OPL_HI(mem->mem_start_address); 1037 range.rg_addr_lo = OPL_LO(mem->mem_start_address); 1038 range.rg_size_hi = OPL_HI(mem->mem_size); 1039 range.rg_size_lo = OPL_LO(mem->mem_size); 1040 OPL_UPDATE_PROP_ARRAY(int, node, "sb-mem-ranges", (int *)&range, 4); 1041 1042 bank = probe->pr_sb->sb_cmu.cmu_memory.mem_banks; 1043 for (i = 0, j = 0; i < HWD_BANKS_PER_CMU; i++) { 1044 1045 if (!HWD_STATUS_OK(bank[i].bank_status)) 1046 continue; 1047 1048 mc[j].mc_bank = i; 1049 mc[j].mc_hi = OPL_HI(bank[i].bank_register_address); 1050 mc[j].mc_lo = OPL_LO(bank[i].bank_register_address); 1051 j++; 1052 } 1053 1054 if (j > 0) { 1055 OPL_UPDATE_PROP_ARRAY(int, node, "mc-addr", (int *)mc, j*3); 1056 } else { 1057 /* 1058 * If there is no memory, we need the mc-addr property, but 1059 * it is length 0. The only way to do this using ndi seems 1060 * to be by creating a boolean property. 1061 */ 1062 ret = ndi_prop_create_boolean(DDI_DEV_T_NONE, node, "mc-addr"); 1063 OPL_UPDATE_PROP_ERR(ret, "mc-addr"); 1064 } 1065 1066 OPL_UPDATE_PROP_ARRAY(byte, node, "cs0-mc-pa-trans-table", 1067 mem->mem_cs[0].cs_pa_mac_table, 64); 1068 OPL_UPDATE_PROP_ARRAY(byte, node, "cs1-mc-pa-trans-table", 1069 mem->mem_cs[1].cs_pa_mac_table, 64); 1070 1071 #define CS_PER_MEM 2 1072 1073 for (i = 0, j = 0; i < CS_PER_MEM; i++) { 1074 if (HWD_STATUS_OK(mem->mem_cs[i].cs_status) || 1075 HWD_STATUS_FAILED(mem->mem_cs[i].cs_status)) { 1076 status[j][0] = i; 1077 if (HWD_STATUS_OK(mem->mem_cs[i].cs_status)) 1078 status[j][1] = 0; 1079 else 1080 status[j][1] = 1; 1081 status[j][2] = 1082 OPL_HI(mem->mem_cs[i].cs_available_capacity); 1083 status[j][3] = 1084 OPL_LO(mem->mem_cs[i].cs_available_capacity); 1085 status[j][4] = OPL_HI(mem->mem_cs[i].cs_dimm_capacity); 1086 status[j][5] = OPL_LO(mem->mem_cs[i].cs_dimm_capacity); 1087 status[j][6] = mem->mem_cs[i].cs_number_of_dimms; 1088 j++; 1089 } 1090 } 1091 1092 if (j > 0) { 1093 OPL_UPDATE_PROP_ARRAY(int, node, "cs-status", (int *)status, 1094 j*7); 1095 } else { 1096 /* 1097 * If there is no memory, we need the cs-status property, but 1098 * it is length 0. The only way to do this using ndi seems 1099 * to be by creating a boolean property. 1100 */ 1101 ret = ndi_prop_create_boolean(DDI_DEV_T_NONE, node, 1102 "cs-status"); 1103 OPL_UPDATE_PROP_ERR(ret, "cs-status"); 1104 } 1105 1106 return (DDI_WALK_TERMINATE); 1107 } 1108 1109 /* 1110 * Create "pseudo-mc" nodes 1111 */ 1112 static int 1113 opl_probe_memory(opl_probe_t *probe) 1114 { 1115 int board; 1116 opl_board_cfg_t *board_cfg; 1117 dev_info_t *node; 1118 1119 board = probe->pr_board; 1120 board_cfg = &opl_boards[board]; 1121 1122 ASSERT(board_cfg->cfg_pseudo_mc == NULL); 1123 1124 probe->pr_parent = ddi_root_node(); 1125 probe->pr_create = opl_create_pseudo_mc; 1126 probe->pr_hold = 1; 1127 node = opl_create_node(probe); 1128 if (node == NULL) { 1129 1130 cmn_err(CE_WARN, "IKP: create pseudo-mc (%d) failed", board); 1131 return (-1); 1132 } 1133 1134 board_cfg->cfg_pseudo_mc = node; 1135 1136 return (0); 1137 } 1138 1139 /* 1140 * Allocate the fcode ops handle. 1141 */ 1142 /*ARGSUSED*/ 1143 static 1144 fco_handle_t 1145 opl_fc_ops_alloc_handle(dev_info_t *parent, dev_info_t *child, 1146 void *fcode, size_t fcode_size, char *unit_address, 1147 char *my_args) 1148 { 1149 fco_handle_t rp; 1150 phandle_t h; 1151 char *buf; 1152 1153 rp = kmem_zalloc(sizeof (struct fc_resource_list), KM_SLEEP); 1154 rp->next_handle = fc_ops_alloc_handle(parent, child, fcode, fcode_size, 1155 unit_address, NULL); 1156 rp->ap = parent; 1157 rp->child = child; 1158 rp->fcode = fcode; 1159 rp->fcode_size = fcode_size; 1160 rp->my_args = my_args; 1161 1162 if (unit_address) { 1163 buf = kmem_zalloc(UNIT_ADDR_SIZE, KM_SLEEP); 1164 (void) strcpy(buf, unit_address); 1165 rp->unit_address = buf; 1166 } 1167 1168 /* 1169 * Add the child's nodeid to our table... 1170 */ 1171 h = ddi_get_nodeid(rp->child); 1172 fc_add_dip_to_phandle(fc_handle_to_phandle_head(rp), rp->child, h); 1173 1174 return (rp); 1175 } 1176 1177 1178 static void 1179 opl_fc_ops_free_handle(fco_handle_t rp) 1180 { 1181 struct fc_resource *resp, *nresp; 1182 1183 ASSERT(rp); 1184 1185 if (rp->next_handle) 1186 fc_ops_free_handle(rp->next_handle); 1187 if (rp->unit_address) 1188 kmem_free(rp->unit_address, UNIT_ADDR_SIZE); 1189 1190 /* 1191 * Release all the resources from the resource list 1192 */ 1193 for (resp = rp->head; resp != NULL; resp = nresp) { 1194 nresp = resp->next; 1195 switch (resp->type) { 1196 1197 case RT_MAP: 1198 /* 1199 * If this is still mapped, we'd better unmap it now, 1200 * or all our structures that are tracking it will 1201 * be leaked. 1202 */ 1203 if (resp->fc_map_handle != NULL) 1204 opl_unmap_phys(&resp->fc_map_handle); 1205 break; 1206 1207 case RT_DMA: 1208 /* 1209 * DMA has to be freed up at exit time. 1210 */ 1211 cmn_err(CE_CONT, 1212 "opl_fc_ops_free_handle: Unexpected DMA seen!"); 1213 break; 1214 1215 case RT_CONTIGIOUS: 1216 FC_DEBUG2(1, CE_CONT, "opl_fc_ops_free: " 1217 "Free claim-memory resource 0x%lx size 0x%x\n", 1218 resp->fc_contig_virt, resp->fc_contig_len); 1219 1220 (void) ndi_ra_free(ddi_root_node(), 1221 (uint64_t)resp->fc_contig_virt, 1222 resp->fc_contig_len, "opl-fcodemem", 1223 NDI_RA_PASS); 1224 1225 break; 1226 1227 default: 1228 cmn_err(CE_CONT, "opl_fc_ops_free: " 1229 "unknown resource type %d", resp->type); 1230 break; 1231 } 1232 fc_rem_resource(rp, resp); 1233 kmem_free(resp, sizeof (struct fc_resource)); 1234 } 1235 1236 kmem_free(rp, sizeof (struct fc_resource_list)); 1237 } 1238 1239 int 1240 opl_fc_do_op(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1241 { 1242 opl_fc_ops_t *op; 1243 char *service = fc_cell2ptr(cp->svc_name); 1244 1245 ASSERT(rp); 1246 1247 FC_DEBUG1(1, CE_CONT, "opl_fc_do_op: <%s>\n", service); 1248 1249 /* 1250 * First try the generic fc_ops. 1251 */ 1252 if (fc_ops(ap, rp->next_handle, cp) == 0) 1253 return (0); 1254 1255 /* 1256 * Now try the Jupiter-specific ops. 1257 */ 1258 for (op = opl_fc_ops; op->fc_service != NULL; ++op) 1259 if (strcmp(op->fc_service, service) == 0) 1260 return (op->fc_op(ap, rp, cp)); 1261 1262 FC_DEBUG1(9, CE_CONT, "opl_fc_do_op: <%s> not serviced\n", service); 1263 1264 return (-1); 1265 } 1266 1267 /* 1268 * map-in (phys.lo phys.hi size -- virt) 1269 */ 1270 static int 1271 opl_map_in(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1272 { 1273 size_t len; 1274 int error; 1275 caddr_t virt; 1276 struct fc_resource *resp; 1277 struct regspec rspec; 1278 ddi_device_acc_attr_t acc; 1279 ddi_acc_handle_t h; 1280 1281 if (fc_cell2int(cp->nargs) != 3) 1282 return (fc_syntax_error(cp, "nargs must be 3")); 1283 1284 if (fc_cell2int(cp->nresults) < 1) 1285 return (fc_syntax_error(cp, "nresults must be >= 1")); 1286 1287 rspec.regspec_size = len = fc_cell2size(fc_arg(cp, 0)); 1288 rspec.regspec_bustype = fc_cell2uint(fc_arg(cp, 1)); 1289 rspec.regspec_addr = fc_cell2uint(fc_arg(cp, 2)); 1290 1291 acc.devacc_attr_version = DDI_DEVICE_ATTR_V0; 1292 acc.devacc_attr_endian_flags = DDI_STRUCTURE_BE_ACC; 1293 acc.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 1294 1295 FC_DEBUG3(1, CE_CONT, "opl_map_in: attempting map in " 1296 "address 0x%08x.%08x length %x\n", rspec.regspec_bustype, 1297 rspec.regspec_addr, rspec.regspec_size); 1298 1299 error = opl_map_phys(rp->child, &rspec, &virt, &acc, &h); 1300 1301 if (error) { 1302 FC_DEBUG3(1, CE_CONT, "opl_map_in: map in failed - " 1303 "address 0x%08x.%08x length %x\n", rspec.regspec_bustype, 1304 rspec.regspec_addr, rspec.regspec_size); 1305 1306 return (fc_priv_error(cp, "opl map-in failed")); 1307 } 1308 1309 FC_DEBUG1(3, CE_CONT, "opl_map_in: returning virt %p\n", virt); 1310 1311 cp->nresults = fc_int2cell(1); 1312 fc_result(cp, 0) = fc_ptr2cell(virt); 1313 1314 /* 1315 * Log this resource ... 1316 */ 1317 resp = kmem_zalloc(sizeof (struct fc_resource), KM_SLEEP); 1318 resp->type = RT_MAP; 1319 resp->fc_map_virt = virt; 1320 resp->fc_map_len = len; 1321 resp->fc_map_handle = h; 1322 fc_add_resource(rp, resp); 1323 1324 return (fc_success_op(ap, rp, cp)); 1325 } 1326 1327 /* 1328 * map-out (virt size -- ) 1329 */ 1330 static int 1331 opl_map_out(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1332 { 1333 caddr_t virt; 1334 size_t len; 1335 struct fc_resource *resp; 1336 1337 if (fc_cell2int(cp->nargs) != 2) 1338 return (fc_syntax_error(cp, "nargs must be 2")); 1339 1340 virt = fc_cell2ptr(fc_arg(cp, 1)); 1341 1342 len = fc_cell2size(fc_arg(cp, 0)); 1343 1344 FC_DEBUG2(1, CE_CONT, "opl_map_out: attempting map out %p %x\n", 1345 virt, len); 1346 1347 /* 1348 * Find if this request matches a mapping resource we set up. 1349 */ 1350 fc_lock_resource_list(rp); 1351 for (resp = rp->head; resp != NULL; resp = resp->next) { 1352 if (resp->type != RT_MAP) 1353 continue; 1354 if (resp->fc_map_virt != virt) 1355 continue; 1356 if (resp->fc_map_len == len) 1357 break; 1358 } 1359 fc_unlock_resource_list(rp); 1360 1361 if (resp == NULL) 1362 return (fc_priv_error(cp, "request doesn't match a " 1363 "known mapping")); 1364 1365 opl_unmap_phys(&resp->fc_map_handle); 1366 1367 /* 1368 * remove the resource from the list and release it. 1369 */ 1370 fc_rem_resource(rp, resp); 1371 kmem_free(resp, sizeof (struct fc_resource)); 1372 1373 cp->nresults = fc_int2cell(0); 1374 return (fc_success_op(ap, rp, cp)); 1375 } 1376 1377 static int 1378 opl_register_fetch(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1379 { 1380 size_t len; 1381 caddr_t virt; 1382 int error = 0; 1383 uint64_t v; 1384 uint64_t x; 1385 uint32_t l; 1386 uint16_t w; 1387 uint8_t b; 1388 char *service = fc_cell2ptr(cp->svc_name); 1389 struct fc_resource *resp; 1390 1391 if (fc_cell2int(cp->nargs) != 1) 1392 return (fc_syntax_error(cp, "nargs must be 1")); 1393 1394 if (fc_cell2int(cp->nresults) < 1) 1395 return (fc_syntax_error(cp, "nresults must be >= 1")); 1396 1397 virt = fc_cell2ptr(fc_arg(cp, 0)); 1398 1399 /* 1400 * Determine the access width .. we can switch on the 2nd 1401 * character of the name which is "rx@", "rl@", "rb@" or "rw@" 1402 */ 1403 switch (*(service + 1)) { 1404 case 'x': len = sizeof (x); break; 1405 case 'l': len = sizeof (l); break; 1406 case 'w': len = sizeof (w); break; 1407 case 'b': len = sizeof (b); break; 1408 } 1409 1410 /* 1411 * Check the alignment ... 1412 */ 1413 if (((intptr_t)virt & (len - 1)) != 0) 1414 return (fc_priv_error(cp, "unaligned access")); 1415 1416 /* 1417 * Find if this virt is 'within' a request we know about 1418 */ 1419 fc_lock_resource_list(rp); 1420 for (resp = rp->head; resp != NULL; resp = resp->next) { 1421 if (resp->type == RT_MAP) { 1422 if ((virt >= (caddr_t)resp->fc_map_virt) && 1423 ((virt + len) <= 1424 ((caddr_t)resp->fc_map_virt + resp->fc_map_len))) 1425 break; 1426 } else if (resp->type == RT_CONTIGIOUS) { 1427 if ((virt >= (caddr_t)resp->fc_contig_virt) && 1428 ((virt + len) <= ((caddr_t)resp->fc_contig_virt + 1429 resp->fc_contig_len))) 1430 break; 1431 } 1432 } 1433 fc_unlock_resource_list(rp); 1434 1435 if (resp == NULL) { 1436 return (fc_priv_error(cp, "request not within " 1437 "known mappings")); 1438 } 1439 1440 switch (len) { 1441 case sizeof (x): 1442 if (resp->type == RT_MAP) 1443 error = ddi_peek64(rp->child, (int64_t *)virt, 1444 (int64_t *)&x); 1445 else /* RT_CONTIGIOUS */ 1446 x = *(int64_t *)virt; 1447 v = x; 1448 break; 1449 case sizeof (l): 1450 if (resp->type == RT_MAP) 1451 error = ddi_peek32(rp->child, (int32_t *)virt, 1452 (int32_t *)&l); 1453 else /* RT_CONTIGIOUS */ 1454 l = *(int32_t *)virt; 1455 v = l; 1456 break; 1457 case sizeof (w): 1458 if (resp->type == RT_MAP) 1459 error = ddi_peek16(rp->child, (int16_t *)virt, 1460 (int16_t *)&w); 1461 else /* RT_CONTIGIOUS */ 1462 w = *(int16_t *)virt; 1463 v = w; 1464 break; 1465 case sizeof (b): 1466 if (resp->type == RT_MAP) 1467 error = ddi_peek8(rp->child, (int8_t *)virt, 1468 (int8_t *)&b); 1469 else /* RT_CONTIGIOUS */ 1470 b = *(int8_t *)virt; 1471 v = b; 1472 break; 1473 } 1474 1475 if (error == DDI_FAILURE) { 1476 FC_DEBUG2(1, CE_CONT, "opl_register_fetch: access error " 1477 "accessing virt %p len %d\n", virt, len); 1478 return (fc_priv_error(cp, "access error")); 1479 } 1480 1481 FC_DEBUG3(1, CE_CONT, "register_fetch (%s) %llx %llx\n", 1482 service, virt, v); 1483 1484 cp->nresults = fc_int2cell(1); 1485 switch (len) { 1486 case sizeof (x): fc_result(cp, 0) = x; break; 1487 case sizeof (l): fc_result(cp, 0) = fc_uint32_t2cell(l); break; 1488 case sizeof (w): fc_result(cp, 0) = fc_uint16_t2cell(w); break; 1489 case sizeof (b): fc_result(cp, 0) = fc_uint8_t2cell(b); break; 1490 } 1491 return (fc_success_op(ap, rp, cp)); 1492 } 1493 1494 static int 1495 opl_register_store(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1496 { 1497 size_t len; 1498 caddr_t virt; 1499 uint64_t v; 1500 uint64_t x; 1501 uint32_t l; 1502 uint16_t w; 1503 uint8_t b; 1504 char *service = fc_cell2ptr(cp->svc_name); 1505 struct fc_resource *resp; 1506 int error = 0; 1507 1508 if (fc_cell2int(cp->nargs) != 2) 1509 return (fc_syntax_error(cp, "nargs must be 2")); 1510 1511 virt = fc_cell2ptr(fc_arg(cp, 0)); 1512 1513 /* 1514 * Determine the access width .. we can switch on the 2nd 1515 * character of the name which is "rx!", "rl!", "rb!" or "rw!" 1516 */ 1517 switch (*(service + 1)) { 1518 case 'x': 1519 len = sizeof (x); 1520 x = fc_arg(cp, 1); 1521 v = x; 1522 break; 1523 case 'l': 1524 len = sizeof (l); 1525 l = fc_cell2uint32_t(fc_arg(cp, 1)); 1526 v = l; 1527 break; 1528 case 'w': 1529 len = sizeof (w); 1530 w = fc_cell2uint16_t(fc_arg(cp, 1)); 1531 v = w; 1532 break; 1533 case 'b': 1534 len = sizeof (b); 1535 b = fc_cell2uint8_t(fc_arg(cp, 1)); 1536 v = b; 1537 break; 1538 } 1539 1540 FC_DEBUG3(1, CE_CONT, "register_store (%s) %llx %llx\n", 1541 service, virt, v); 1542 1543 /* 1544 * Check the alignment ... 1545 */ 1546 if (((intptr_t)virt & (len - 1)) != 0) 1547 return (fc_priv_error(cp, "unaligned access")); 1548 1549 /* 1550 * Find if this virt is 'within' a request we know about 1551 */ 1552 fc_lock_resource_list(rp); 1553 for (resp = rp->head; resp != NULL; resp = resp->next) { 1554 if (resp->type == RT_MAP) { 1555 if ((virt >= (caddr_t)resp->fc_map_virt) && 1556 ((virt + len) <= 1557 ((caddr_t)resp->fc_map_virt + resp->fc_map_len))) 1558 break; 1559 } else if (resp->type == RT_CONTIGIOUS) { 1560 if ((virt >= (caddr_t)resp->fc_contig_virt) && 1561 ((virt + len) <= ((caddr_t)resp->fc_contig_virt + 1562 resp->fc_contig_len))) 1563 break; 1564 } 1565 } 1566 fc_unlock_resource_list(rp); 1567 1568 if (resp == NULL) 1569 return (fc_priv_error(cp, "request not within" 1570 "known mappings")); 1571 1572 switch (len) { 1573 case sizeof (x): 1574 if (resp->type == RT_MAP) 1575 error = ddi_poke64(rp->child, (int64_t *)virt, x); 1576 else if (resp->type == RT_CONTIGIOUS) 1577 *(uint64_t *)virt = x; 1578 break; 1579 case sizeof (l): 1580 if (resp->type == RT_MAP) 1581 error = ddi_poke32(rp->child, (int32_t *)virt, l); 1582 else if (resp->type == RT_CONTIGIOUS) 1583 *(uint32_t *)virt = l; 1584 break; 1585 case sizeof (w): 1586 if (resp->type == RT_MAP) 1587 error = ddi_poke16(rp->child, (int16_t *)virt, w); 1588 else if (resp->type == RT_CONTIGIOUS) 1589 *(uint16_t *)virt = w; 1590 break; 1591 case sizeof (b): 1592 if (resp->type == RT_MAP) 1593 error = ddi_poke8(rp->child, (int8_t *)virt, b); 1594 else if (resp->type == RT_CONTIGIOUS) 1595 *(uint8_t *)virt = b; 1596 break; 1597 } 1598 1599 if (error == DDI_FAILURE) { 1600 FC_DEBUG2(1, CE_CONT, "opl_register_store: access error " 1601 "accessing virt %p len %d\n", virt, len); 1602 return (fc_priv_error(cp, "access error")); 1603 } 1604 1605 cp->nresults = fc_int2cell(0); 1606 return (fc_success_op(ap, rp, cp)); 1607 } 1608 1609 /* 1610 * opl_claim_memory 1611 * 1612 * claim-memory (align size vhint -- vaddr) 1613 */ 1614 static int 1615 opl_claim_memory(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1616 { 1617 int align, size, vhint; 1618 uint64_t answer, alen; 1619 ndi_ra_request_t request; 1620 struct fc_resource *resp; 1621 1622 if (fc_cell2int(cp->nargs) != 3) 1623 return (fc_syntax_error(cp, "nargs must be 3")); 1624 1625 if (fc_cell2int(cp->nresults) < 1) 1626 return (fc_syntax_error(cp, "nresults must be >= 1")); 1627 1628 vhint = fc_cell2int(fc_arg(cp, 2)); 1629 size = fc_cell2int(fc_arg(cp, 1)); 1630 align = fc_cell2int(fc_arg(cp, 0)); 1631 1632 FC_DEBUG3(1, CE_CONT, "opl_claim_memory: align=0x%x size=0x%x " 1633 "vhint=0x%x\n", align, size, vhint); 1634 1635 if (size == 0) { 1636 cmn_err(CE_WARN, "opl_claim_memory - unable to allocate " 1637 "contiguous memory of size zero\n"); 1638 return (fc_priv_error(cp, "allocation error")); 1639 } 1640 1641 if (vhint) { 1642 cmn_err(CE_WARN, "opl_claim_memory - vhint is not zero " 1643 "vhint=0x%x - Ignoring Argument\n", vhint); 1644 } 1645 1646 bzero((caddr_t)&request, sizeof (ndi_ra_request_t)); 1647 request.ra_flags = NDI_RA_ALLOC_BOUNDED; 1648 request.ra_boundbase = 0; 1649 request.ra_boundlen = 0xffffffff; 1650 request.ra_len = size; 1651 request.ra_align_mask = align - 1; 1652 1653 if (ndi_ra_alloc(ddi_root_node(), &request, &answer, &alen, 1654 "opl-fcodemem", NDI_RA_PASS) != NDI_SUCCESS) { 1655 cmn_err(CE_WARN, "opl_claim_memory - unable to allocate " 1656 "contiguous memory\n"); 1657 return (fc_priv_error(cp, "allocation error")); 1658 } 1659 1660 FC_DEBUG2(1, CE_CONT, "opl_claim_memory: address allocated=0x%lx " 1661 "size=0x%x\n", answer, alen); 1662 1663 cp->nresults = fc_int2cell(1); 1664 fc_result(cp, 0) = answer; 1665 1666 /* 1667 * Log this resource ... 1668 */ 1669 resp = kmem_zalloc(sizeof (struct fc_resource), KM_SLEEP); 1670 resp->type = RT_CONTIGIOUS; 1671 resp->fc_contig_virt = (void *)answer; 1672 resp->fc_contig_len = size; 1673 fc_add_resource(rp, resp); 1674 1675 return (fc_success_op(ap, rp, cp)); 1676 } 1677 1678 /* 1679 * opl_release_memory 1680 * 1681 * release-memory (size vaddr -- ) 1682 */ 1683 static int 1684 opl_release_memory(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1685 { 1686 int32_t vaddr, size; 1687 struct fc_resource *resp; 1688 1689 if (fc_cell2int(cp->nargs) != 2) 1690 return (fc_syntax_error(cp, "nargs must be 2")); 1691 1692 if (fc_cell2int(cp->nresults) != 0) 1693 return (fc_syntax_error(cp, "nresults must be 0")); 1694 1695 vaddr = fc_cell2int(fc_arg(cp, 1)); 1696 size = fc_cell2int(fc_arg(cp, 0)); 1697 1698 FC_DEBUG2(1, CE_CONT, "opl_release_memory: vaddr=0x%x size=0x%x\n", 1699 vaddr, size); 1700 1701 /* 1702 * Find if this request matches a mapping resource we set up. 1703 */ 1704 fc_lock_resource_list(rp); 1705 for (resp = rp->head; resp != NULL; resp = resp->next) { 1706 if (resp->type != RT_CONTIGIOUS) 1707 continue; 1708 if (resp->fc_contig_virt != (void *)(uintptr_t)vaddr) 1709 continue; 1710 if (resp->fc_contig_len == size) 1711 break; 1712 } 1713 fc_unlock_resource_list(rp); 1714 1715 if (resp == NULL) 1716 return (fc_priv_error(cp, "request doesn't match a " 1717 "known mapping")); 1718 1719 (void) ndi_ra_free(ddi_root_node(), vaddr, size, 1720 "opl-fcodemem", NDI_RA_PASS); 1721 1722 /* 1723 * remove the resource from the list and release it. 1724 */ 1725 fc_rem_resource(rp, resp); 1726 kmem_free(resp, sizeof (struct fc_resource)); 1727 1728 cp->nresults = fc_int2cell(0); 1729 1730 return (fc_success_op(ap, rp, cp)); 1731 } 1732 1733 /* 1734 * opl_vtop 1735 * 1736 * vtop (vaddr -- paddr.lo paddr.hi) 1737 */ 1738 static int 1739 opl_vtop(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1740 { 1741 int vaddr; 1742 uint64_t paddr; 1743 struct fc_resource *resp; 1744 1745 if (fc_cell2int(cp->nargs) != 1) 1746 return (fc_syntax_error(cp, "nargs must be 1")); 1747 1748 if (fc_cell2int(cp->nresults) >= 3) 1749 return (fc_syntax_error(cp, "nresults must be less than 2")); 1750 1751 vaddr = fc_cell2int(fc_arg(cp, 0)); 1752 1753 /* 1754 * Find if this request matches a mapping resource we set up. 1755 */ 1756 fc_lock_resource_list(rp); 1757 for (resp = rp->head; resp != NULL; resp = resp->next) { 1758 if (resp->type != RT_CONTIGIOUS) 1759 continue; 1760 if (((uint64_t)resp->fc_contig_virt <= vaddr) && 1761 (vaddr < (uint64_t)resp->fc_contig_virt + 1762 resp->fc_contig_len)) 1763 break; 1764 } 1765 fc_unlock_resource_list(rp); 1766 1767 if (resp == NULL) 1768 return (fc_priv_error(cp, "request doesn't match a " 1769 "known mapping")); 1770 1771 paddr = va_to_pa((void *)(uintptr_t)vaddr); 1772 1773 FC_DEBUG2(1, CE_CONT, "opl_vtop: vaddr=0x%x paddr=0x%x\n", 1774 vaddr, paddr); 1775 1776 cp->nresults = fc_int2cell(2); 1777 1778 fc_result(cp, 0) = paddr; 1779 fc_result(cp, 1) = 0; 1780 1781 return (fc_success_op(ap, rp, cp)); 1782 } 1783 1784 static int 1785 opl_config_child(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1786 { 1787 fc_phandle_t h; 1788 1789 if (fc_cell2int(cp->nargs) != 0) 1790 return (fc_syntax_error(cp, "nargs must be 0")); 1791 1792 if (fc_cell2int(cp->nresults) < 1) 1793 return (fc_syntax_error(cp, "nresults must be >= 1")); 1794 1795 h = fc_dip_to_phandle(fc_handle_to_phandle_head(rp), rp->child); 1796 1797 cp->nresults = fc_int2cell(1); 1798 fc_result(cp, 0) = fc_phandle2cell(h); 1799 1800 return (fc_success_op(ap, rp, cp)); 1801 } 1802 1803 static int 1804 opl_get_fcode(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1805 { 1806 caddr_t dropin_name_virt, fcode_virt; 1807 char *dropin_name, *fcode; 1808 int fcode_len, status; 1809 1810 if (fc_cell2int(cp->nargs) != 3) 1811 return (fc_syntax_error(cp, "nargs must be 3")); 1812 1813 if (fc_cell2int(cp->nresults) < 1) 1814 return (fc_syntax_error(cp, "nresults must be >= 1")); 1815 1816 dropin_name_virt = fc_cell2ptr(fc_arg(cp, 0)); 1817 1818 fcode_virt = fc_cell2ptr(fc_arg(cp, 1)); 1819 1820 fcode_len = fc_cell2int(fc_arg(cp, 2)); 1821 1822 dropin_name = kmem_zalloc(FC_SVC_NAME_LEN, KM_SLEEP); 1823 1824 FC_DEBUG2(1, CE_CONT, "get_fcode: %x %d\n", fcode_virt, fcode_len); 1825 1826 if (copyinstr(fc_cell2ptr(dropin_name_virt), dropin_name, 1827 FC_SVC_NAME_LEN - 1, NULL)) { 1828 FC_DEBUG1(1, CE_CONT, "opl_get_fcode: " 1829 "fault copying in drop in name %p\n", dropin_name_virt); 1830 status = 0; 1831 } else { 1832 FC_DEBUG1(1, CE_CONT, "get_fcode: %s\n", dropin_name); 1833 1834 fcode = kmem_zalloc(fcode_len, KM_SLEEP); 1835 1836 if ((status = prom_get_fcode(dropin_name, fcode)) != 0) { 1837 1838 if (copyout((void *)fcode, (void *)fcode_virt, 1839 fcode_len)) { 1840 cmn_err(CE_WARN, " opl_get_fcode: Unable " 1841 "to copy out fcode image"); 1842 status = 0; 1843 } 1844 } 1845 1846 kmem_free(fcode, fcode_len); 1847 } 1848 1849 kmem_free(dropin_name, FC_SVC_NAME_LEN); 1850 1851 cp->nresults = fc_int2cell(1); 1852 fc_result(cp, 0) = status; 1853 1854 return (fc_success_op(ap, rp, cp)); 1855 } 1856 1857 static int 1858 opl_get_fcode_size(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1859 { 1860 caddr_t virt; 1861 char *dropin_name; 1862 int len; 1863 1864 if (fc_cell2int(cp->nargs) != 1) 1865 return (fc_syntax_error(cp, "nargs must be 1")); 1866 1867 if (fc_cell2int(cp->nresults) < 1) 1868 return (fc_syntax_error(cp, "nresults must be >= 1")); 1869 1870 virt = fc_cell2ptr(fc_arg(cp, 0)); 1871 1872 dropin_name = kmem_zalloc(FC_SVC_NAME_LEN, KM_SLEEP); 1873 1874 FC_DEBUG0(1, CE_CONT, "opl_get_fcode_size:\n"); 1875 1876 if (copyinstr(fc_cell2ptr(virt), dropin_name, 1877 FC_SVC_NAME_LEN - 1, NULL)) { 1878 FC_DEBUG1(1, CE_CONT, "opl_get_fcode_size: " 1879 "fault copying in drop in name %p\n", virt); 1880 len = 0; 1881 } else { 1882 FC_DEBUG1(1, CE_CONT, "opl_get_fcode_size: %s\n", dropin_name); 1883 1884 len = prom_get_fcode_size(dropin_name); 1885 } 1886 1887 kmem_free(dropin_name, FC_SVC_NAME_LEN); 1888 1889 FC_DEBUG1(1, CE_CONT, "opl_get_fcode_size: fcode_len = %d\n", len); 1890 1891 cp->nresults = fc_int2cell(1); 1892 fc_result(cp, 0) = len; 1893 1894 return (fc_success_op(ap, rp, cp)); 1895 } 1896 1897 static int 1898 opl_map_phys(dev_info_t *dip, struct regspec *phys_spec, 1899 caddr_t *addrp, ddi_device_acc_attr_t *accattrp, 1900 ddi_acc_handle_t *handlep) 1901 { 1902 ddi_map_req_t mapreq; 1903 ddi_acc_hdl_t *acc_handlep; 1904 int result; 1905 struct regspec *rspecp; 1906 1907 *handlep = impl_acc_hdl_alloc(KM_SLEEP, NULL); 1908 acc_handlep = impl_acc_hdl_get(*handlep); 1909 acc_handlep->ah_vers = VERS_ACCHDL; 1910 acc_handlep->ah_dip = dip; 1911 acc_handlep->ah_rnumber = 0; 1912 acc_handlep->ah_offset = 0; 1913 acc_handlep->ah_len = 0; 1914 acc_handlep->ah_acc = *accattrp; 1915 rspecp = kmem_zalloc(sizeof (struct regspec), KM_SLEEP); 1916 *rspecp = *phys_spec; 1917 /* 1918 * cache a copy of the reg spec 1919 */ 1920 acc_handlep->ah_bus_private = rspecp; 1921 1922 mapreq.map_op = DDI_MO_MAP_LOCKED; 1923 mapreq.map_type = DDI_MT_REGSPEC; 1924 mapreq.map_obj.rp = (struct regspec *)phys_spec; 1925 mapreq.map_prot = PROT_READ | PROT_WRITE; 1926 mapreq.map_flags = DDI_MF_KERNEL_MAPPING; 1927 mapreq.map_handlep = acc_handlep; 1928 mapreq.map_vers = DDI_MAP_VERSION; 1929 1930 result = ddi_map(dip, &mapreq, 0, 0, addrp); 1931 1932 if (result != DDI_SUCCESS) { 1933 impl_acc_hdl_free(*handlep); 1934 kmem_free(rspecp, sizeof (struct regspec)); 1935 *handlep = (ddi_acc_handle_t)NULL; 1936 } else { 1937 acc_handlep->ah_addr = *addrp; 1938 } 1939 1940 return (result); 1941 } 1942 1943 static void 1944 opl_unmap_phys(ddi_acc_handle_t *handlep) 1945 { 1946 ddi_map_req_t mapreq; 1947 ddi_acc_hdl_t *acc_handlep; 1948 struct regspec *rspecp; 1949 1950 acc_handlep = impl_acc_hdl_get(*handlep); 1951 ASSERT(acc_handlep); 1952 rspecp = acc_handlep->ah_bus_private; 1953 1954 mapreq.map_op = DDI_MO_UNMAP; 1955 mapreq.map_type = DDI_MT_REGSPEC; 1956 mapreq.map_obj.rp = (struct regspec *)rspecp; 1957 mapreq.map_prot = PROT_READ | PROT_WRITE; 1958 mapreq.map_flags = DDI_MF_KERNEL_MAPPING; 1959 mapreq.map_handlep = acc_handlep; 1960 mapreq.map_vers = DDI_MAP_VERSION; 1961 1962 (void) ddi_map(acc_handlep->ah_dip, &mapreq, acc_handlep->ah_offset, 1963 acc_handlep->ah_len, &acc_handlep->ah_addr); 1964 1965 impl_acc_hdl_free(*handlep); 1966 /* 1967 * Free the cached copy 1968 */ 1969 kmem_free(rspecp, sizeof (struct regspec)); 1970 *handlep = (ddi_acc_handle_t)NULL; 1971 } 1972 1973 static int 1974 opl_get_hwd_va(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 1975 { 1976 uint32_t portid; 1977 void *hwd_virt; 1978 hwd_header_t *hwd_h = NULL; 1979 hwd_sb_t *hwd_sb = NULL; 1980 int lsb, ch, leaf; 1981 int status = 1; 1982 1983 /* Check the argument */ 1984 if (fc_cell2int(cp->nargs) != 2) 1985 return (fc_syntax_error(cp, "nargs must be 2")); 1986 1987 if (fc_cell2int(cp->nresults) < 1) 1988 return (fc_syntax_error(cp, "nresults must be >= 1")); 1989 1990 /* Get the parameters */ 1991 portid = fc_cell2uint32_t(fc_arg(cp, 0)); 1992 hwd_virt = (void *)fc_cell2ptr(fc_arg(cp, 1)); 1993 1994 /* Get the ID numbers */ 1995 lsb = OPL_IO_PORTID_TO_LSB(portid); 1996 ch = OPL_PORTID_TO_CHANNEL(portid); 1997 leaf = OPL_PORTID_TO_LEAF(portid); 1998 ASSERT(OPL_IO_PORTID(lsb, ch, leaf) == portid); 1999 2000 /* Set the pointer of hwd. */ 2001 if ((hwd_h = (hwd_header_t *)opl_boards[lsb].cfg_hwd) == NULL) { 2002 return (fc_priv_error(cp, "null hwd header")); 2003 } 2004 /* Set the pointer of hwd sb. */ 2005 if ((hwd_sb = (hwd_sb_t *)((char *)hwd_h + hwd_h->hdr_sb_info_offset)) 2006 == NULL) { 2007 return (fc_priv_error(cp, "null hwd sb")); 2008 } 2009 2010 if (ch == OPL_CMU_CHANNEL) { 2011 /* Copyout CMU-CH HW Descriptor */ 2012 if (copyout((void *)&hwd_sb->sb_cmu.cmu_ch, 2013 (void *)hwd_virt, sizeof (hwd_cmu_chan_t))) { 2014 cmn_err(CE_WARN, "opl_get_hwd_va: " 2015 "Unable to copy out cmuch descriptor for %x", 2016 portid); 2017 status = 0; 2018 } 2019 } else { 2020 /* Copyout PCI-CH HW Descriptor */ 2021 if (copyout((void *)&hwd_sb->sb_pci_ch[ch].pci_leaf[leaf], 2022 (void *)hwd_virt, sizeof (hwd_leaf_t))) { 2023 cmn_err(CE_WARN, "opl_get_hwd_va: " 2024 "Unable to copy out pcich descriptor for %x", 2025 portid); 2026 status = 0; 2027 } 2028 } 2029 2030 cp->nresults = fc_int2cell(1); 2031 fc_result(cp, 0) = status; 2032 2033 return (fc_success_op(ap, rp, cp)); 2034 } 2035 2036 /* 2037 * After Solaris boots, a user can enter OBP using L1A, etc. While in OBP, 2038 * interrupts may be received from PCI devices. These interrupts 2039 * cannot be handled meaningfully since the system is in OBP. These 2040 * interrupts need to be cleared on the CPU side so that the CPU may 2041 * continue with whatever it is doing. Devices that have raised the 2042 * interrupts are expected to reraise the interrupts after sometime 2043 * as they have not been handled. At that time, Solaris will have a 2044 * chance to properly service the interrupts. 2045 * 2046 * The location of the interrupt registers depends on what is present 2047 * at a port. OPL currently supports the Oberon and the CMU channel. 2048 * The following handler handles both kinds of ports and computes 2049 * interrupt register addresses from the specifications and Jupiter Bus 2050 * device bindings. 2051 * 2052 * Fcode drivers install their interrupt handler via a "master-interrupt" 2053 * service. For boot time devices, this takes place within OBP. In the case 2054 * of DR, OPL uses IKP. The Fcode drivers that run within the efcode framework 2055 * attempt to install their handler via the "master-interrupt" service. 2056 * However, we cannot meaningfully install the Fcode driver's handler. 2057 * Instead, we install our own handler in OBP which does the same thing. 2058 * 2059 * Note that the only handling done for interrupts here is to clear it 2060 * on the CPU side. If any device in the future requires more special 2061 * handling, we would have to put in some kind of framework for adding 2062 * device-specific handlers. This is *highly* unlikely, but possible. 2063 * 2064 * Finally, OBP provides a hook called "unix-interrupt-handler" to install 2065 * a Solaris-defined master-interrupt handler for a port. The default 2066 * definition for this method does nothing. Solaris may override this 2067 * with its own definition. This is the way the following handler gets 2068 * control from OBP when interrupts happen at a port after L1A, etc. 2069 */ 2070 2071 static char define_master_interrupt_handler[] = 2072 2073 /* 2074 * This method translates an Oberon port id to the base (physical) address 2075 * of the interrupt clear registers for that port id. 2076 */ 2077 2078 ": pcich-mid>clear-int-pa ( mid -- pa ) " 2079 " dup 1 >> 7 and ( mid ch# ) " 2080 " over 4 >> h# 1f and ( mid ch# lsb# ) " 2081 " 1 d# 46 << ( mid ch# lsb# pa ) " 2082 " swap d# 40 << or ( mid ch# pa ) " 2083 " swap d# 37 << or ( mid pa ) " 2084 " swap 1 and if h# 70.0000 else h# 60.0000 then " 2085 " or h# 1400 or ( pa ) " 2086 "; " 2087 2088 /* 2089 * This method translates a CMU channel port id to the base (physical) address 2090 * of the interrupt clear registers for that port id. There are two classes of 2091 * interrupts that need to be handled for a CMU channel: 2092 * - obio interrupts 2093 * - pci interrupts 2094 * So, there are two addresses that need to be computed. 2095 */ 2096 2097 ": cmuch-mid>clear-int-pa ( mid -- obio-pa pci-pa ) " 2098 " dup 1 >> 7 and ( mid ch# ) " 2099 " over 4 >> h# 1f and ( mid ch# lsb# ) " 2100 " 1 d# 46 << ( mid ch# lsb# pa ) " 2101 " swap d# 40 << or ( mid ch# pa ) " 2102 " swap d# 37 << or ( mid pa ) " 2103 " nip dup h# 1800 + ( pa obio-pa ) " 2104 " swap h# 1400 + ( obio-pa pci-pa ) " 2105 "; " 2106 2107 /* 2108 * This method checks if a given I/O port ID is valid or not. 2109 * For a given LSB, 2110 * Oberon ports range from 0 - 3 2111 * CMU ch ports range from 4 - 4 2112 * 2113 * Also, the Oberon supports leaves 0 and 1. 2114 * The CMU ch supports only one leaf, leaf 0. 2115 */ 2116 2117 ": valid-io-mid? ( mid -- flag ) " 2118 " dup 1 >> 7 and ( mid ch# ) " 2119 " dup 4 > if 2drop false exit then ( mid ch# ) " 2120 " 4 = swap 1 and 1 = and not " 2121 "; " 2122 2123 /* 2124 * This method checks if a given port id is a CMU ch. 2125 */ 2126 2127 ": cmuch? ( mid -- flag ) 1 >> 7 and 4 = ; " 2128 2129 /* 2130 * Given the base address of the array of interrupt clear registers for 2131 * a port id, this method iterates over the given interrupt number bitmap 2132 * and resets the interrupt on the CPU side for every interrupt number 2133 * in the bitmap. Note that physical addresses are used to perform the 2134 * writes, not virtual addresses. This allows the handler to work without 2135 * any involvement from Solaris. 2136 */ 2137 2138 ": clear-ints ( pa bitmap count -- ) " 2139 " 0 do ( pa bitmap ) " 2140 " dup 0= if 2drop unloop exit then " 2141 " tuck ( bitmap pa bitmap ) " 2142 " 1 and if ( bitmap pa ) " 2143 " dup i 8 * + 0 swap ( bitmap pa 0 pa' ) " 2144 " h# 15 spacex! ( bitmap pa ) " 2145 " then ( bitmap pa ) " 2146 " swap 1 >> ( pa bitmap ) " 2147 " loop " 2148 "; " 2149 2150 /* 2151 * This method replaces the master-interrupt handler in OBP. Once 2152 * this method is plumbed into OBP, OBP transfers control to this 2153 * handler while returning to Solaris from OBP after L1A. This method's 2154 * task is to simply reset received interrupts on the CPU side. 2155 * When the devices reassert the interrupts later, Solaris will 2156 * be able to see them and handle them. 2157 * 2158 * For each port ID that has interrupts, this method is called 2159 * once by OBP. The input arguments are: 2160 * mid portid 2161 * bitmap bitmap of interrupts that have happened 2162 * 2163 * This method returns true, if it is able to handle the interrupts. 2164 * OBP does nothing further. 2165 * 2166 * This method returns false, if it encountered a problem. Currently, 2167 * the only problem could be an invalid port id. OBP needs to do 2168 * its own processing in that case. If this method returns false, 2169 * it preserves the mid and bitmap arguments for OBP. 2170 */ 2171 2172 ": unix-resend-mondos ( mid bitmap -- [ mid bitmap false ] | true ) " 2173 2174 /* 2175 * Uncomment the following line if you want to display the input arguments. 2176 * This is meant for debugging. 2177 * " .\" Bitmap=\" dup u. .\" MID=\" over u. cr " 2178 */ 2179 2180 /* 2181 * If the port id is not valid (according to the Oberon and CMU ch 2182 * specifications, then return false to OBP to continue further 2183 * processing. 2184 */ 2185 2186 " over valid-io-mid? not if ( mid bitmap ) " 2187 " false exit " 2188 " then " 2189 2190 /* 2191 * If the port is a CMU ch, then the 64-bit bitmap represents 2192 * 2 32-bit bitmaps: 2193 * - obio interrupt bitmap (20 bits) 2194 * - pci interrupt bitmap (32 bits) 2195 * 2196 * - Split the bitmap into two 2197 * - Compute the base addresses of the interrupt clear registers 2198 * for both pci interrupts and obio interrupts 2199 * - Clear obio interrupts 2200 * - Clear pci interrupts 2201 */ 2202 2203 " over cmuch? if ( mid bitmap ) " 2204 " xlsplit ( mid pci-bit obio-bit ) " 2205 " rot cmuch-mid>clear-int-pa ( pci-bit obio-bit obio-pa pci-pa ) " 2206 " >r ( pci-bit obio-bit obio-pa ) ( r: pci-pa ) " 2207 " swap d# 20 clear-ints ( pci-bit ) ( r: pci-pa ) " 2208 " r> swap d# 32 clear-ints ( ) ( r: ) " 2209 2210 /* 2211 * If the port is an Oberon, then the 64-bit bitmap is used fully. 2212 * 2213 * - Compute the base address of the interrupt clear registers 2214 * - Clear interrupts 2215 */ 2216 2217 " else ( mid bitmap ) " 2218 " swap pcich-mid>clear-int-pa ( bitmap pa ) " 2219 " swap d# 64 clear-ints ( ) " 2220 " then " 2221 2222 /* 2223 * Always return true from here. 2224 */ 2225 2226 " true ( true ) " 2227 "; " 2228 ; 2229 2230 static char install_master_interrupt_handler[] = 2231 "' unix-resend-mondos to unix-interrupt-handler"; 2232 static char handler[] = "unix-interrupt-handler"; 2233 static char handler_defined[] = "p\" %s\" find nip swap l! "; 2234 2235 /*ARGSUSED*/ 2236 static int 2237 master_interrupt_init(uint32_t portid, uint32_t xt) 2238 { 2239 uint_t defined; 2240 char buf[sizeof (handler) + sizeof (handler_defined)]; 2241 2242 if (master_interrupt_inited) 2243 return (1); 2244 2245 /* 2246 * Check if the defer word "unix-interrupt-handler" is defined. 2247 * This must be defined for OPL systems. So, this is only a 2248 * sanity check. 2249 */ 2250 (void) sprintf(buf, handler_defined, handler); 2251 prom_interpret(buf, (uintptr_t)&defined, 0, 0, 0, 0); 2252 if (!defined) { 2253 cmn_err(CE_WARN, "master_interrupt_init: " 2254 "%s is not defined\n", handler); 2255 return (0); 2256 } 2257 2258 /* 2259 * Install the generic master-interrupt handler. Note that 2260 * this is only done one time on the first DR operation. 2261 * This is because, for OPL, one, single generic handler 2262 * handles all ports (Oberon and CMU channel) and all 2263 * interrupt sources within each port. 2264 * 2265 * The current support is only for the Oberon and CMU-channel. 2266 * If any others need to be supported, the handler has to be 2267 * modified accordingly. 2268 */ 2269 2270 /* 2271 * Define the OPL master interrupt handler 2272 */ 2273 prom_interpret(define_master_interrupt_handler, 0, 0, 0, 0, 0); 2274 2275 /* 2276 * Take over the master interrupt handler from OBP. 2277 */ 2278 prom_interpret(install_master_interrupt_handler, 0, 0, 0, 0, 0); 2279 2280 master_interrupt_inited = 1; 2281 2282 /* 2283 * prom_interpret() does not return a status. So, we assume 2284 * that the calls succeeded. In reality, the calls may fail 2285 * if there is a syntax error, etc in the strings. 2286 */ 2287 2288 return (1); 2289 } 2290 2291 /* 2292 * Install the master-interrupt handler for a device. 2293 */ 2294 static int 2295 opl_master_interrupt(dev_info_t *ap, fco_handle_t rp, fc_ci_t *cp) 2296 { 2297 uint32_t portid, xt; 2298 int board, channel, leaf; 2299 int status; 2300 2301 /* Check the argument */ 2302 if (fc_cell2int(cp->nargs) != 2) 2303 return (fc_syntax_error(cp, "nargs must be 2")); 2304 2305 if (fc_cell2int(cp->nresults) < 1) 2306 return (fc_syntax_error(cp, "nresults must be >= 1")); 2307 2308 /* Get the parameters */ 2309 portid = fc_cell2uint32_t(fc_arg(cp, 0)); 2310 xt = fc_cell2uint32_t(fc_arg(cp, 1)); 2311 2312 board = OPL_IO_PORTID_TO_LSB(portid); 2313 channel = OPL_PORTID_TO_CHANNEL(portid); 2314 leaf = OPL_PORTID_TO_LEAF(portid); 2315 2316 if ((board >= HWD_SBS_PER_DOMAIN) || !OPL_VALID_CHANNEL(channel) || 2317 (OPL_OBERON_CHANNEL(channel) && !OPL_VALID_LEAF(leaf)) || 2318 ((channel == OPL_CMU_CHANNEL) && (leaf != 0))) { 2319 FC_DEBUG1(1, CE_CONT, "opl_master_interrupt: invalid port %x\n", 2320 portid); 2321 status = 0; 2322 } else { 2323 status = master_interrupt_init(portid, xt); 2324 } 2325 2326 cp->nresults = fc_int2cell(1); 2327 fc_result(cp, 0) = status; 2328 2329 return (fc_success_op(ap, rp, cp)); 2330 } 2331 2332 /* 2333 * Set the properties for a leaf node (Oberon leaf or CMU channel leaf). 2334 */ 2335 /*ARGSUSED*/ 2336 static int 2337 opl_create_leaf(dev_info_t *node, void *arg, uint_t flags) 2338 { 2339 int ret; 2340 2341 OPL_UPDATE_PROP(string, node, "name", OPL_PCI_LEAF_NODE); 2342 2343 OPL_UPDATE_PROP(string, node, "status", "okay"); 2344 2345 return (DDI_WALK_TERMINATE); 2346 } 2347 2348 static char * 2349 opl_get_probe_string(opl_probe_t *probe, int channel, int leaf) 2350 { 2351 char *probe_string; 2352 int portid; 2353 2354 probe_string = kmem_zalloc(PROBE_STR_SIZE, KM_SLEEP); 2355 2356 if (channel == OPL_CMU_CHANNEL) 2357 portid = probe->pr_sb->sb_cmu.cmu_ch.chan_portid; 2358 else 2359 portid = probe-> 2360 pr_sb->sb_pci_ch[channel].pci_leaf[leaf].leaf_port_id; 2361 2362 (void) sprintf(probe_string, "%x", portid); 2363 2364 return (probe_string); 2365 } 2366 2367 static int 2368 opl_probe_leaf(opl_probe_t *probe) 2369 { 2370 int channel, leaf, portid, error; 2371 int board; 2372 fco_handle_t fco_handle, *cfg_handle; 2373 dev_info_t *parent, *leaf_node; 2374 char unit_address[UNIT_ADDR_SIZE]; 2375 char *probe_string; 2376 opl_board_cfg_t *board_cfg; 2377 2378 board = probe->pr_board; 2379 channel = probe->pr_channel; 2380 leaf = probe->pr_leaf; 2381 parent = ddi_root_node(); 2382 board_cfg = &opl_boards[board]; 2383 2384 ASSERT(OPL_VALID_CHANNEL(channel)); 2385 ASSERT(OPL_VALID_LEAF(leaf)); 2386 2387 if (channel == OPL_CMU_CHANNEL) { 2388 portid = probe->pr_sb->sb_cmu.cmu_ch.chan_portid; 2389 cfg_handle = &board_cfg->cfg_cmuch_handle; 2390 } else { 2391 portid = probe-> 2392 pr_sb->sb_pci_ch[channel].pci_leaf[leaf].leaf_port_id; 2393 cfg_handle = &board_cfg->cfg_pcich_handle[channel][leaf]; 2394 } 2395 2396 /* 2397 * Prevent any changes to leaf_node until we have bound 2398 * it to the correct driver. 2399 */ 2400 ndi_devi_enter(parent); 2401 2402 /* 2403 * Ideally, fcode would be run from the "sid_branch_create" 2404 * callback (that is the primary purpose of that callback). 2405 * However, the fcode interpreter was written with the 2406 * assumption that the "new_child" was linked into the 2407 * device tree. The callback is invoked with the devinfo node 2408 * in the DS_PROTO state. More investigation is needed before 2409 * we can invoke the interpreter from the callback. For now, 2410 * we create the "new_child" in the BOUND state, invoke the 2411 * fcode interpreter and then rebind the dip to use any 2412 * compatible properties created by fcode. 2413 */ 2414 2415 probe->pr_parent = parent; 2416 probe->pr_create = opl_create_leaf; 2417 probe->pr_hold = 1; 2418 2419 leaf_node = opl_create_node(probe); 2420 if (leaf_node == NULL) { 2421 2422 cmn_err(CE_WARN, "IKP: create leaf (%d-%d-%d) failed", 2423 probe->pr_board, probe->pr_channel, probe->pr_leaf); 2424 ndi_devi_exit(parent); 2425 return (-1); 2426 } 2427 2428 /* 2429 * The platform DR interfaces created the dip in 2430 * bound state. Bring devinfo node down to linked 2431 * state and hold it there until compatible 2432 * properties are created. 2433 */ 2434 e_ddi_branch_rele(leaf_node); 2435 (void) i_ndi_unconfig_node(leaf_node, DS_LINKED, 0); 2436 ASSERT(i_ddi_node_state(leaf_node) == DS_LINKED); 2437 e_ddi_branch_hold(leaf_node); 2438 2439 mutex_enter(&DEVI(leaf_node)->devi_lock); 2440 DEVI(leaf_node)->devi_flags |= DEVI_NO_BIND; 2441 mutex_exit(&DEVI(leaf_node)->devi_lock); 2442 2443 /* 2444 * Drop the busy-hold on parent before calling 2445 * fcode_interpreter to prevent potential deadlocks 2446 */ 2447 ndi_devi_exit(parent); 2448 2449 (void) sprintf(unit_address, "%x", portid); 2450 2451 /* 2452 * Get the probe string 2453 */ 2454 probe_string = opl_get_probe_string(probe, channel, leaf); 2455 2456 /* 2457 * The fcode pointer specified here is NULL and the fcode 2458 * size specified here is 0. This causes the user-level 2459 * fcode interpreter to issue a request to the fcode 2460 * driver to get the Oberon/cmu-ch fcode. 2461 */ 2462 fco_handle = opl_fc_ops_alloc_handle(parent, leaf_node, 2463 NULL, 0, unit_address, probe_string); 2464 2465 error = fcode_interpreter(parent, &opl_fc_do_op, fco_handle); 2466 2467 if (error != 0) { 2468 cmn_err(CE_WARN, "IKP: Unable to probe PCI leaf (%d-%d-%d)", 2469 probe->pr_board, probe->pr_channel, probe->pr_leaf); 2470 2471 opl_fc_ops_free_handle(fco_handle); 2472 2473 if (probe_string != NULL) 2474 kmem_free(probe_string, PROBE_STR_SIZE); 2475 2476 (void) opl_destroy_node(leaf_node); 2477 } else { 2478 *cfg_handle = fco_handle; 2479 2480 if (channel == OPL_CMU_CHANNEL) 2481 board_cfg->cfg_cmuch_probe_str = probe_string; 2482 else 2483 board_cfg->cfg_pcich_probe_str[channel][leaf] 2484 = probe_string; 2485 2486 /* 2487 * Compatible properties (if any) have been created, 2488 * so bind driver. 2489 */ 2490 ndi_devi_enter(parent); 2491 ASSERT(i_ddi_node_state(leaf_node) <= DS_LINKED); 2492 2493 mutex_enter(&DEVI(leaf_node)->devi_lock); 2494 DEVI(leaf_node)->devi_flags &= ~DEVI_NO_BIND; 2495 mutex_exit(&DEVI(leaf_node)->devi_lock); 2496 2497 ndi_devi_exit(parent); 2498 2499 if (ndi_devi_bind_driver(leaf_node, 0) != DDI_SUCCESS) { 2500 cmn_err(CE_WARN, "IKP: Unable to bind PCI leaf " 2501 "(%d-%d-%d)", probe->pr_board, probe->pr_channel, 2502 probe->pr_leaf); 2503 } 2504 } 2505 2506 if ((error != 0) && (channel == OPL_CMU_CHANNEL)) 2507 return (-1); 2508 2509 return (0); 2510 } 2511 2512 static void 2513 opl_init_leaves(int myboard) 2514 { 2515 dev_info_t *parent, *node; 2516 char *name; 2517 int ret; 2518 int len, portid, board, channel, leaf; 2519 opl_board_cfg_t *cfg; 2520 2521 parent = ddi_root_node(); 2522 2523 /* 2524 * Hold parent node busy to walk its child list 2525 */ 2526 ndi_devi_enter(parent); 2527 2528 for (node = ddi_get_child(parent); (node != NULL); node = 2529 ddi_get_next_sibling(node)) { 2530 2531 ret = OPL_GET_PROP(string, node, "name", &name, &len); 2532 if (ret != DDI_PROP_SUCCESS) { 2533 /* 2534 * The property does not exist for this node. 2535 */ 2536 continue; 2537 } 2538 2539 if (strncmp(name, OPL_PCI_LEAF_NODE, len) == 0) { 2540 2541 ret = OPL_GET_PROP(int, node, "portid", &portid, -1); 2542 if (ret == DDI_PROP_SUCCESS) { 2543 2544 ret = OPL_GET_PROP(int, node, "board#", 2545 &board, -1); 2546 if ((ret != DDI_PROP_SUCCESS) || 2547 (board != myboard)) { 2548 kmem_free(name, len); 2549 continue; 2550 } 2551 2552 cfg = &opl_boards[board]; 2553 channel = OPL_PORTID_TO_CHANNEL(portid); 2554 if (channel == OPL_CMU_CHANNEL) { 2555 2556 if (cfg->cfg_cmuch_handle != NULL) 2557 cfg->cfg_cmuch_leaf = node; 2558 2559 } else { 2560 2561 leaf = OPL_PORTID_TO_LEAF(portid); 2562 if (cfg->cfg_pcich_handle[ 2563 channel][leaf] != NULL) 2564 cfg->cfg_pcich_leaf[ 2565 channel][leaf] = node; 2566 } 2567 } 2568 } 2569 2570 kmem_free(name, len); 2571 if (ret != DDI_PROP_SUCCESS) 2572 break; 2573 } 2574 2575 ndi_devi_exit(parent); 2576 } 2577 2578 /* 2579 * Create "pci" node and hierarchy for the Oberon channels and the 2580 * CMU channel. 2581 */ 2582 /*ARGSUSED*/ 2583 static int 2584 opl_probe_io(opl_probe_t *probe) 2585 { 2586 2587 int i, j; 2588 hwd_pci_ch_t *channels; 2589 2590 if (HWD_STATUS_OK(probe->pr_sb->sb_cmu.cmu_ch.chan_status)) { 2591 2592 probe->pr_channel = HWD_CMU_CHANNEL; 2593 probe->pr_channel_status = 2594 probe->pr_sb->sb_cmu.cmu_ch.chan_status; 2595 probe->pr_leaf = 0; 2596 probe->pr_leaf_status = probe->pr_channel_status; 2597 2598 if (opl_probe_leaf(probe) != 0) 2599 return (-1); 2600 } 2601 2602 channels = &probe->pr_sb->sb_pci_ch[0]; 2603 2604 for (i = 0; i < HWD_PCI_CHANNELS_PER_SB; i++) { 2605 2606 if (!HWD_STATUS_OK(channels[i].pci_status)) 2607 continue; 2608 2609 probe->pr_channel = i; 2610 probe->pr_channel_status = channels[i].pci_status; 2611 2612 for (j = 0; j < HWD_LEAVES_PER_PCI_CHANNEL; j++) { 2613 2614 probe->pr_leaf = j; 2615 probe->pr_leaf_status = 2616 channels[i].pci_leaf[j].leaf_status; 2617 2618 if (!HWD_STATUS_OK(probe->pr_leaf_status)) 2619 continue; 2620 2621 (void) opl_probe_leaf(probe); 2622 } 2623 } 2624 opl_init_leaves(probe->pr_board); 2625 return (0); 2626 } 2627 2628 /* 2629 * Perform the probe in the following order: 2630 * 2631 * processors 2632 * memory 2633 * IO 2634 * 2635 * Each probe function returns 0 on sucess and a non-zero value on failure. 2636 * What is a failure is determined by the implementor of the probe function. 2637 * For example, while probing CPUs, any error encountered during probe 2638 * is considered a failure and causes the whole probe operation to fail. 2639 * However, for I/O, an error encountered while probing one device 2640 * should not prevent other devices from being probed. It should not cause 2641 * the whole probe operation to fail. 2642 */ 2643 int 2644 opl_probe_sb(int board, unsigned *cpu_impl) 2645 { 2646 opl_probe_t *probe; 2647 int ret; 2648 2649 if ((board < 0) || (board >= HWD_SBS_PER_DOMAIN)) 2650 return (-1); 2651 2652 ASSERT(opl_cfg_inited != 0); 2653 2654 /* 2655 * If the previous probe failed and left a partially configured 2656 * board, we need to unprobe the board and start with a clean slate. 2657 */ 2658 if ((opl_boards[board].cfg_hwd != NULL) && 2659 (opl_unprobe_sb(board) != 0)) 2660 return (-1); 2661 2662 ret = 0; 2663 2664 probe = kmem_zalloc(sizeof (opl_probe_t), KM_SLEEP); 2665 probe->pr_board = board; 2666 2667 if ((opl_probe_init(probe) != 0) || 2668 2669 (opl_probe_cpu_chips(probe) != 0) || 2670 2671 (opl_probe_memory(probe) != 0) || 2672 2673 (opl_probe_io(probe) != 0)) { 2674 2675 /* 2676 * Probe failed. Perform cleanup. 2677 */ 2678 (void) opl_unprobe_sb(board); 2679 ret = -1; 2680 } 2681 2682 *cpu_impl = probe->pr_cpu_impl; 2683 2684 kmem_free(probe, sizeof (opl_probe_t)); 2685 2686 return (ret); 2687 } 2688 2689 /* 2690 * This unprobing also includes CMU-CH. 2691 */ 2692 /*ARGSUSED*/ 2693 static int 2694 opl_unprobe_io(int board) 2695 { 2696 int i, j, ret; 2697 opl_board_cfg_t *board_cfg; 2698 dev_info_t **node; 2699 fco_handle_t *hand; 2700 char **probe_str; 2701 2702 board_cfg = &opl_boards[board]; 2703 2704 for (i = 0; i < HWD_PCI_CHANNELS_PER_SB; i++) { 2705 2706 for (j = 0; j < HWD_LEAVES_PER_PCI_CHANNEL; j++) { 2707 2708 node = &board_cfg->cfg_pcich_leaf[i][j]; 2709 hand = &board_cfg->cfg_pcich_handle[i][j]; 2710 probe_str = &board_cfg->cfg_pcich_probe_str[i][j]; 2711 2712 if (*node == NULL) 2713 continue; 2714 2715 if (*hand != NULL) { 2716 opl_fc_ops_free_handle(*hand); 2717 *hand = NULL; 2718 } 2719 2720 if (*probe_str != NULL) { 2721 kmem_free(*probe_str, PROBE_STR_SIZE); 2722 *probe_str = NULL; 2723 } 2724 2725 ret = opl_destroy_node(*node); 2726 if (ret != 0) { 2727 2728 cmn_err(CE_WARN, "IKP: destroy pci (%d-%d-%d) " 2729 "failed", board, i, j); 2730 return (-1); 2731 } 2732 2733 *node = NULL; 2734 2735 } 2736 } 2737 2738 node = &board_cfg->cfg_cmuch_leaf; 2739 hand = &board_cfg->cfg_cmuch_handle; 2740 probe_str = &board_cfg->cfg_cmuch_probe_str; 2741 2742 if (*node == NULL) 2743 return (0); 2744 2745 if (*hand != NULL) { 2746 opl_fc_ops_free_handle(*hand); 2747 *hand = NULL; 2748 } 2749 2750 if (*probe_str != NULL) { 2751 kmem_free(*probe_str, PROBE_STR_SIZE); 2752 *probe_str = NULL; 2753 } 2754 2755 if (opl_destroy_node(*node) != 0) { 2756 2757 cmn_err(CE_WARN, "IKP: destroy pci (%d-%d-%d) failed", board, 2758 OPL_CMU_CHANNEL, 0); 2759 return (-1); 2760 } 2761 2762 *node = NULL; 2763 2764 return (0); 2765 } 2766 2767 /* 2768 * Destroy the "pseudo-mc" node for a board. 2769 */ 2770 static int 2771 opl_unprobe_memory(int board) 2772 { 2773 opl_board_cfg_t *board_cfg; 2774 2775 board_cfg = &opl_boards[board]; 2776 2777 if (board_cfg->cfg_pseudo_mc == NULL) 2778 return (0); 2779 2780 if (opl_destroy_node(board_cfg->cfg_pseudo_mc) != 0) { 2781 2782 cmn_err(CE_WARN, "IKP: destroy pseudo-mc (%d) failed", board); 2783 return (-1); 2784 } 2785 2786 board_cfg->cfg_pseudo_mc = NULL; 2787 2788 return (0); 2789 } 2790 2791 /* 2792 * Destroy the "cmp" nodes for a board. This also destroys the "core" 2793 * and "cpu" nodes below the "cmp" nodes. 2794 */ 2795 static int 2796 opl_unprobe_processors(int board) 2797 { 2798 int i; 2799 dev_info_t **cfg_cpu_chips; 2800 2801 cfg_cpu_chips = opl_boards[board].cfg_cpu_chips; 2802 2803 for (i = 0; i < HWD_CPU_CHIPS_PER_CMU; i++) { 2804 2805 if (cfg_cpu_chips[i] == NULL) 2806 continue; 2807 2808 if (opl_destroy_node(cfg_cpu_chips[i]) != 0) { 2809 2810 cmn_err(CE_WARN, "IKP: destroy chip (%d-%d) failed", 2811 board, i); 2812 return (-1); 2813 } 2814 2815 cfg_cpu_chips[i] = NULL; 2816 } 2817 2818 return (0); 2819 } 2820 2821 /* 2822 * Perform the unprobe in the following order: 2823 * 2824 * IO 2825 * memory 2826 * processors 2827 */ 2828 int 2829 opl_unprobe_sb(int board) 2830 { 2831 if ((board < 0) || (board >= HWD_SBS_PER_DOMAIN)) 2832 return (-1); 2833 2834 ASSERT(opl_cfg_inited != 0); 2835 2836 if ((opl_unprobe_io(board) != 0) || 2837 2838 (opl_unprobe_memory(board) != 0) || 2839 2840 (opl_unprobe_processors(board) != 0)) 2841 2842 return (-1); 2843 2844 if (opl_boards[board].cfg_hwd != NULL) { 2845 #ifdef UCTEST 2846 size_t size = 0xA000; 2847 #endif 2848 /* Release the memory for the HWD */ 2849 void *hwdp = opl_boards[board].cfg_hwd; 2850 opl_boards[board].cfg_hwd = NULL; 2851 #ifdef UCTEST 2852 hwdp = (void *)((char *)hwdp - 0x1000); 2853 hat_unload(kas.a_hat, hwdp, size, HAT_UNLOAD_UNLOCK); 2854 vmem_free(heap_arena, hwdp, size); 2855 #else 2856 kmem_free(hwdp, HWD_DATA_SIZE); 2857 #endif 2858 } 2859 return (0); 2860 } 2861 2862 /* 2863 * For MAC patrol support, we need to update the PA-related properties 2864 * when there is a copy-rename event. This should be called after the 2865 * physical copy and rename has been done by DR, and before the MAC 2866 * patrol is restarted. 2867 */ 2868 int 2869 oplcfg_pa_swap(int from, int to) 2870 { 2871 dev_info_t *from_node = opl_boards[from].cfg_pseudo_mc; 2872 dev_info_t *to_node = opl_boards[to].cfg_pseudo_mc; 2873 opl_range_t *rangef, *ranget; 2874 int elems; 2875 int ret; 2876 2877 if ((OPL_GET_PROP_ARRAY(int, from_node, "sb-mem-ranges", rangef, 2878 elems) != DDI_SUCCESS) || (elems != 4)) { 2879 /* XXX -- bad news */ 2880 return (-1); 2881 } 2882 if ((OPL_GET_PROP_ARRAY(int, to_node, "sb-mem-ranges", ranget, 2883 elems) != DDI_SUCCESS) || (elems != 4)) { 2884 /* XXX -- bad news */ 2885 return (-1); 2886 } 2887 OPL_UPDATE_PROP_ARRAY(int, from_node, "sb-mem-ranges", (int *)ranget, 2888 4); 2889 OPL_UPDATE_PROP_ARRAY(int, to_node, "sb-mem-ranges", (int *)rangef, 2890 4); 2891 2892 OPL_FREE_PROP(ranget); 2893 OPL_FREE_PROP(rangef); 2894 2895 return (0); 2896 } 2897