1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/cpuvar.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sunddi.h> 32 #include <sys/ddi.h> 33 #include <sys/sysmacros.h> 34 #include <sys/note.h> 35 36 #include <sys/modctl.h> /* for modload() */ 37 #include <sys/platform_module.h> 38 #include <sys/errno.h> 39 #include <sys/daktari.h> 40 #include <sys/machsystm.h> 41 #include <sys/promif.h> 42 #include <vm/page.h> 43 #include <sys/memnode.h> 44 #include <vm/vm_dep.h> 45 46 /* I2C Stuff */ 47 #include <sys/i2c/clients/i2c_client.h> 48 49 50 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *); 51 52 /* Daktari Keyswitch Information */ 53 #define DAK_KEY_POLL_PORT 3 54 #define DAK_KEY_POLL_BIT 2 55 #define DAK_KEY_POLL_INTVL 10 56 57 static boolean_t key_locked_bit; 58 static clock_t keypoll_timeout_hz; 59 60 /* 61 * Table that maps memory slices to a specific memnode. 62 */ 63 int slice_to_memnode[DAK_MAX_SLICE]; 64 65 /* 66 * For software memory interleaving support. 67 */ 68 static void update_mem_bounds(int, int, int, uint64_t, uint64_t); 69 70 static uint64_t 71 slice_table[DAK_SBD_SLOTS][DAK_CPUS_PER_BOARD][DAK_BANKS_PER_MC][2]; 72 73 #define SLICE_PA 0 74 #define SLICE_SPAN 1 75 76 int (*daktari_ssc050_get_port_bit) (dev_info_t *, int, int, uint8_t *, int); 77 extern void (*abort_seq_handler)(); 78 static int daktari_dev_search(dev_info_t *, void *); 79 static void keyswitch_poll(void *); 80 static void daktari_abort_seq_handler(char *msg); 81 82 void 83 startup_platform(void) 84 { 85 /* 86 * Disable an active h/w watchdog timer 87 * upon exit to OBP. 88 */ 89 extern int disable_watchdog_on_exit; 90 disable_watchdog_on_exit = 1; 91 } 92 93 int 94 set_platform_tsb_spares() 95 { 96 return (0); 97 } 98 99 #pragma weak mmu_init_large_pages 100 101 void 102 set_platform_defaults(void) 103 { 104 extern void mmu_init_large_pages(size_t); 105 106 if ((mmu_page_sizes == max_mmu_page_sizes) && 107 (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) { 108 if (&mmu_init_large_pages) 109 mmu_init_large_pages(mmu_ism_pagesize); 110 } 111 } 112 113 void 114 load_platform_modules(void) 115 { 116 if (modload("misc", "pcihp") < 0) { 117 cmn_err(CE_NOTE, "pcihp driver failed to load"); 118 } 119 if (modload("drv", "pmc") < 0) { 120 cmn_err(CE_NOTE, "pmc driver failed to load"); 121 } 122 123 } 124 125 void 126 load_platform_drivers(void) 127 { 128 char **drv; 129 dev_info_t *keysw_dip; 130 131 static char *boot_time_drivers[] = { 132 "hpc3130", 133 "todds1287", 134 "mc-us3", 135 "ssc050", 136 "pcisch", 137 NULL 138 }; 139 140 for (drv = boot_time_drivers; *drv; drv++) { 141 if (i_ddi_attach_hw_nodes(*drv) != DDI_SUCCESS) 142 cmn_err(CE_WARN, "Failed to install \"%s\" driver.", 143 *drv); 144 } 145 146 /* 147 * mc-us3 & ssc050 must stay loaded for plat_get_mem_unum() 148 * and keyswitch_poll() 149 */ 150 (void) ddi_hold_driver(ddi_name_to_major("mc-us3")); 151 (void) ddi_hold_driver(ddi_name_to_major("ssc050")); 152 153 /* Gain access into the ssc050_get_port function */ 154 daktari_ssc050_get_port_bit = (int (*) (dev_info_t *, int, int, 155 uint8_t *, int)) modgetsymvalue("ssc050_get_port_bit", 0); 156 if (daktari_ssc050_get_port_bit == NULL) { 157 cmn_err(CE_WARN, "cannot find ssc050_get_port_bit"); 158 return; 159 } 160 161 ddi_walk_devs(ddi_root_node(), daktari_dev_search, (void *)&keysw_dip); 162 ASSERT(keysw_dip != NULL); 163 164 keypoll_timeout_hz = drv_usectohz(10 * MICROSEC); 165 keyswitch_poll(keysw_dip); 166 abort_seq_handler = daktari_abort_seq_handler; 167 } 168 169 static int 170 daktari_dev_search(dev_info_t *dip, void *arg) 171 { 172 char *compatible = NULL; /* Search tree for "i2c-ssc050" */ 173 int *dev_regs; /* Info about where the device is. */ 174 uint_t len; 175 int err; 176 177 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 178 "compatible", &compatible) != DDI_PROP_SUCCESS) 179 return (DDI_WALK_CONTINUE); 180 181 if (strcmp(compatible, "i2c-ssc050") == 0) { 182 ddi_prop_free(compatible); 183 184 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 185 DDI_PROP_DONTPASS, "reg", &dev_regs, &len); 186 if (err != DDI_PROP_SUCCESS) { 187 return (DDI_WALK_CONTINUE); 188 } 189 /* 190 * regs[0] contains the bus number and regs[1] 191 * contains the device address of the i2c device. 192 * 0x82 is the device address of the i2c device 193 * from which the key switch position is read. 194 */ 195 if (dev_regs[0] == 0 && dev_regs[1] == 0x82) { 196 *((dev_info_t **)arg) = dip; 197 ddi_prop_free(dev_regs); 198 return (DDI_WALK_TERMINATE); 199 } 200 ddi_prop_free(dev_regs); 201 } else { 202 ddi_prop_free(compatible); 203 } 204 return (DDI_WALK_CONTINUE); 205 } 206 207 static void 208 keyswitch_poll(void *arg) 209 { 210 dev_info_t *dip = arg; 211 uchar_t port_byte; 212 int port = DAK_KEY_POLL_PORT; 213 int bit = DAK_KEY_POLL_BIT; 214 int err; 215 216 err = daktari_ssc050_get_port_bit(dip, port, bit, 217 &port_byte, I2C_NOSLEEP); 218 if (err != 0) { 219 return; 220 } 221 222 key_locked_bit = (boolean_t)((port_byte & 0x1)); 223 timeout(keyswitch_poll, (caddr_t)dip, keypoll_timeout_hz); 224 } 225 226 static void 227 daktari_abort_seq_handler(char *msg) 228 { 229 if (key_locked_bit == 0) 230 cmn_err(CE_CONT, "KEY in LOCKED position, " 231 "ignoring debug enter sequence"); 232 else { 233 debug_enter(msg); 234 } 235 } 236 237 238 int 239 plat_cpu_poweron(struct cpu *cp) 240 { 241 _NOTE(ARGUNUSED(cp)) 242 return (ENOTSUP); 243 } 244 245 int 246 plat_cpu_poweroff(struct cpu *cp) 247 { 248 _NOTE(ARGUNUSED(cp)) 249 return (ENOTSUP); 250 } 251 252 /* 253 * Given a pfn, return the board and beginning/end of the page's 254 * memory controller's address range. 255 */ 256 static int 257 plat_discover_slice(pfn_t pfn, pfn_t *first, pfn_t *last) 258 { 259 int bd, cpu, bank; 260 261 for (bd = 0; bd < DAK_SBD_SLOTS; bd++) { 262 for (cpu = 0; cpu < DAK_CPUS_PER_BOARD; cpu++) { 263 for (bank = 0; bank < DAK_BANKS_PER_MC; bank++) { 264 uint64_t *slice = slice_table[bd][cpu][bank]; 265 uint64_t base = btop(slice[SLICE_PA]); 266 uint64_t len = btop(slice[SLICE_SPAN]); 267 if (len && pfn >= base && pfn < (base + len)) { 268 *first = base; 269 *last = base + len - 1; 270 return (bd); 271 } 272 } 273 } 274 } 275 panic("plat_discover_slice: no slice for pfn 0x%lx\n", pfn); 276 /* NOTREACHED */ 277 } 278 279 /*ARGSUSED*/ 280 void 281 plat_freelist_process(int mnode) 282 {} 283 284 285 /* 286 * Called for each board/cpu/PA range detected in plat_fill_mc(). 287 */ 288 static void 289 update_mem_bounds(int boardid, int cpuid, int bankid, 290 uint64_t base, uint64_t size) 291 { 292 uint64_t end; 293 int mnode; 294 295 slice_table[boardid][cpuid][bankid][SLICE_PA] = base; 296 slice_table[boardid][cpuid][bankid][SLICE_SPAN] = size; 297 298 end = base + size - 1; 299 300 /* 301 * First see if this board already has a memnode associated 302 * with it. If not, see if this slice has a memnode. This 303 * covers the cases where a single slice covers multiple 304 * boards (cross-board interleaving) and where a single 305 * board has multiple slices (1+GB DIMMs). 306 */ 307 if ((mnode = plat_lgrphand_to_mem_node(boardid)) == -1) { 308 if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1) 309 mnode = mem_node_alloc(); 310 311 ASSERT(mnode >= 0); 312 ASSERT(mnode < MAX_MEM_NODES); 313 plat_assign_lgrphand_to_mem_node(boardid, mnode); 314 } 315 316 base = P2ALIGN(base, (1ul << PA_SLICE_SHIFT)); 317 318 while (base < end) { 319 slice_to_memnode[PA_2_SLICE(base)] = mnode; 320 base += (1ul << PA_SLICE_SHIFT); 321 } 322 } 323 324 /* 325 * Dynamically detect memory slices in the system by decoding 326 * the cpu memory decoder registers at boot time. 327 */ 328 void 329 plat_fill_mc(pnode_t nodeid) 330 { 331 uint64_t mc_addr, saf_addr; 332 uint64_t mc_decode[DAK_BANKS_PER_MC]; 333 uint64_t base, size; 334 uint64_t saf_mask; 335 uint64_t offset; 336 uint32_t regs[4]; 337 int len; 338 int local_mc; 339 int portid; 340 int boardid; 341 int cpuid; 342 int i; 343 344 if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) || 345 (portid == -1)) 346 return; 347 348 /* 349 * Decode the board number from the MC portid. Assumes 350 * portid == safari agentid. 351 */ 352 boardid = DAK_GETSLOT(portid); 353 cpuid = DAK_GETSID(portid); 354 355 /* 356 * The "reg" property returns 4 32-bit values. The first two are 357 * combined to form a 64-bit address. The second two are for a 358 * 64-bit size, but we don't actually need to look at that value. 359 */ 360 len = prom_getproplen(nodeid, "reg"); 361 if (len != (sizeof (uint32_t) * 4)) { 362 prom_printf("Warning: malformed 'reg' property\n"); 363 return; 364 } 365 if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0) 366 return; 367 mc_addr = ((uint64_t)regs[0]) << 32; 368 mc_addr |= (uint64_t)regs[1]; 369 370 /* 371 * Figure out whether the memory controller we are examining 372 * belongs to this CPU or a different one. 373 */ 374 saf_addr = lddsafaddr(8); 375 saf_mask = (uint64_t)SAF_MASK; 376 if ((mc_addr & saf_mask) == saf_addr) 377 local_mc = 1; 378 else 379 local_mc = 0; 380 381 for (i = 0; i < DAK_BANKS_PER_MC; i++) { 382 /* 383 * Memory decode masks are at offsets 0x10 - 0x28. 384 */ 385 offset = 0x10 + (i << 3); 386 387 /* 388 * If the memory controller is local to this CPU, we use 389 * the special ASI to read the decode registers. 390 * Otherwise, we load the values from a magic address in 391 * I/O space. 392 */ 393 if (local_mc) 394 mc_decode[i] = lddmcdecode(offset); 395 else 396 mc_decode[i] = lddphysio(mc_addr | offset); 397 398 /* 399 * If the upper bit is set, we have a valid mask 400 */ 401 if ((int64_t)mc_decode[i] < 0) { 402 /* 403 * The memory decode register is a bitmask field, 404 * so we can decode that into both a base and 405 * a span. 406 */ 407 base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT; 408 size = MC_UK2SPAN(mc_decode[i]); 409 update_mem_bounds(boardid, cpuid, i, base, size); 410 } 411 } 412 } 413 414 415 /* 416 * This routine is run midway through the boot process. By the time we get 417 * here, we know about all the active CPU boards in the system, and we have 418 * extracted information about each board's memory from the memory 419 * controllers. We have also figured out which ranges of memory will be 420 * assigned to which memnodes, so we walk the slice table to build the table 421 * of memnodes. 422 */ 423 /* ARGSUSED */ 424 void 425 plat_build_mem_nodes(u_longlong_t *list, size_t nelems) 426 { 427 int slice; 428 pfn_t basepfn; 429 pgcnt_t npgs; 430 431 mem_node_pfn_shift = PFN_SLICE_SHIFT; 432 mem_node_physalign = (1ull << PA_SLICE_SHIFT); 433 npgs = 1ull << PFN_SLICE_SHIFT; 434 435 for (slice = 0; slice < DAK_MAX_SLICE; slice++) { 436 if (slice_to_memnode[slice] == -1) 437 continue; 438 basepfn = (uint64_t)slice << PFN_SLICE_SHIFT; 439 mem_node_add_slice(basepfn, basepfn + npgs - 1); 440 } 441 } 442 443 444 445 /* 446 * Daktari support for lgroups. 447 * 448 * On Daktari, an lgroup platform handle == slot number. 449 * 450 * Mappings between lgroup handles and memnodes are managed 451 * in addition to mappings between memory slices and memnodes 452 * to support cross-board interleaving as well as multiple 453 * slices per board (e.g. >1GB DIMMs). The initial mapping 454 * of memnodes to lgroup handles is determined at boot time. 455 */ 456 int 457 plat_pfn_to_mem_node(pfn_t pfn) 458 { 459 return (slice_to_memnode[PFN_2_SLICE(pfn)]); 460 } 461 462 /* 463 * Return the platform handle for the lgroup containing the given CPU 464 * 465 * For Daktari, lgroup platform handle == slot number 466 */ 467 lgrp_handle_t 468 plat_lgrp_cpu_to_hand(processorid_t id) 469 { 470 return (DAK_GETSLOT(id)); 471 } 472 473 /* 474 * Platform specific lgroup initialization 475 */ 476 void 477 plat_lgrp_init(void) 478 { 479 int i; 480 481 /* 482 * Initialize lookup tables to invalid values so we catch 483 * any illegal use of them. 484 */ 485 for (i = 0; i < DAK_MAX_SLICE; i++) { 486 slice_to_memnode[i] = -1; 487 } 488 } 489 490 /* 491 * Return latency between "from" and "to" lgroups 492 * 493 * This latency number can only be used for relative comparison 494 * between lgroups on the running system, cannot be used across platforms, 495 * and may not reflect the actual latency. It is platform and implementation 496 * specific, so platform gets to decide its value. It would be nice if the 497 * number was at least proportional to make comparisons more meaningful though. 498 * NOTE: The numbers below are supposed to be load latencies for uncached 499 * memory divided by 10. 500 */ 501 int 502 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to) 503 { 504 /* 505 * Return min remote latency when there are more than two lgroups 506 * (root and child) and getting latency between two different lgroups 507 * or root is involved 508 */ 509 if (lgrp_optimizations() && (from != to || 510 from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)) 511 return (21); 512 else 513 return (19); 514 } 515 /* 516 * No platform drivers on this platform 517 */ 518 char *platform_module_list[] = { 519 (char *)0 520 }; 521 522 /*ARGSUSED*/ 523 void 524 plat_tod_fault(enum tod_fault_type tod_bad) 525 { 526 } 527 528 /*ARGSUSED*/ 529 int 530 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id, 531 int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp) 532 { 533 if (flt_in_memory && (p2get_mem_unum != NULL)) 534 return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8), 535 buf, buflen, lenp)); 536 else 537 return (ENOTSUP); 538 } 539 540 /* 541 * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3 542 * driver giving each platform the opportunity to add platform 543 * specific label information to the unum for ECC error logging purposes. 544 */ 545 void 546 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm) 547 { 548 _NOTE(ARGUNUSED(bank, dimm)) 549 550 char board = DAK_GETSLOT_LABEL(mcid); 551 char old_unum[UNUM_NAMLEN]; 552 553 strcpy(old_unum, unum); 554 snprintf(unum, UNUM_NAMLEN, "Slot %c: %s", board, old_unum); 555 } 556 557 int 558 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp) 559 { 560 char board = DAK_GETSLOT_LABEL(cpuid); 561 562 if (snprintf(buf, buflen, "Slot %c", board) >= buflen) { 563 return (ENOSPC); 564 } else { 565 *lenp = strlen(buf); 566 return (0); 567 } 568 } 569 570 /* 571 * The zuluvm module requires a dmv interrupt for each installed zulu board. 572 */ 573 void 574 plat_dmv_params(uint_t *hwint, uint_t *swint) 575 { 576 *hwint = 0; 577 *swint = DAK_SBD_SLOTS - 1; 578 } 579