xref: /illumos-gate/usr/src/uts/sun4u/daktari/os/daktari.c (revision d2a70789f056fc6c9ce3ab047b52126d80b0e3da)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/cpuvar.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sunddi.h>
31 #include <sys/ddi.h>
32 #include <sys/esunddi.h>
33 #include <sys/sysmacros.h>
34 #include <sys/note.h>
35 
36 #include <sys/modctl.h>		/* for modload() */
37 #include <sys/platform_module.h>
38 #include <sys/errno.h>
39 #include <sys/daktari.h>
40 #include <sys/machsystm.h>
41 #include <sys/promif.h>
42 #include <vm/page.h>
43 #include <sys/memnode.h>
44 #include <vm/vm_dep.h>
45 
46 /* I2C Stuff */
47 #include <sys/i2c/clients/i2c_client.h>
48 
49 
50 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
51 
52 /* Daktari Keyswitch Information */
53 #define	DAK_KEY_POLL_PORT	3
54 #define	DAK_KEY_POLL_BIT	2
55 #define	DAK_KEY_POLL_INTVL	10
56 
57 static	boolean_t	key_locked_bit;
58 static	clock_t		keypoll_timeout_hz;
59 
60 /*
61  * Table that maps memory slices to a specific memnode.
62  */
63 int slice_to_memnode[DAK_MAX_SLICE];
64 
65 /*
66  * For software memory interleaving support.
67  */
68 static	void update_mem_bounds(int, int, int, uint64_t, uint64_t);
69 
70 static uint64_t
71 slice_table[DAK_SBD_SLOTS][DAK_CPUS_PER_BOARD][DAK_BANKS_PER_MC][2];
72 
73 #define	SLICE_PA	0
74 #define	SLICE_SPAN	1
75 
76 int (*daktari_ssc050_get_port_bit) (dev_info_t *, int, int, uint8_t *, int);
77 extern	void (*abort_seq_handler)();
78 static	int daktari_dev_search(dev_info_t *, void *);
79 static	void keyswitch_poll(void *);
80 static	void daktari_abort_seq_handler(char *msg);
81 
82 void
83 startup_platform(void)
84 {
85 	/*
86 	 * Disable an active h/w watchdog timer
87 	 * upon exit to OBP.
88 	 */
89 	extern int disable_watchdog_on_exit;
90 	disable_watchdog_on_exit = 1;
91 }
92 
93 int
94 set_platform_tsb_spares()
95 {
96 	return (0);
97 }
98 
99 #pragma weak mmu_init_large_pages
100 
101 void
102 set_platform_defaults(void)
103 {
104 	extern void mmu_init_large_pages(size_t);
105 
106 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
107 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
108 		if (&mmu_init_large_pages)
109 			mmu_init_large_pages(mmu_ism_pagesize);
110 	}
111 }
112 
113 void
114 load_platform_modules(void)
115 {
116 	if (modload("misc", "pcihp") < 0) {
117 		cmn_err(CE_NOTE, "pcihp driver failed to load");
118 	}
119 	if (modload("drv", "pmc") < 0) {
120 		cmn_err(CE_NOTE, "pmc driver failed to load");
121 	}
122 
123 }
124 
125 void
126 load_platform_drivers(void)
127 {
128 	char **drv;
129 	dev_info_t	*keysw_dip;
130 
131 	static char *boot_time_drivers[] = {
132 		"hpc3130",
133 		"todds1287",
134 		"mc-us3",
135 		"ssc050",
136 		"pcisch",
137 		NULL
138 	};
139 
140 	for (drv = boot_time_drivers; *drv; drv++) {
141 		if (i_ddi_attach_hw_nodes(*drv) != DDI_SUCCESS)
142 			cmn_err(CE_WARN, "Failed to install \"%s\" driver.",
143 			    *drv);
144 	}
145 
146 	/*
147 	 * mc-us3 & ssc050 must stay loaded for plat_get_mem_unum()
148 	 * and keyswitch_poll()
149 	 */
150 	(void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
151 	(void) ddi_hold_driver(ddi_name_to_major("ssc050"));
152 
153 	/* Gain access into the ssc050_get_port function */
154 	daktari_ssc050_get_port_bit = (int (*) (dev_info_t *, int, int,
155 	    uint8_t *, int)) modgetsymvalue("ssc050_get_port_bit", 0);
156 	if (daktari_ssc050_get_port_bit == NULL) {
157 		cmn_err(CE_WARN, "cannot find ssc050_get_port_bit");
158 		return;
159 	}
160 
161 	ddi_walk_devs(ddi_root_node(), daktari_dev_search, (void *)&keysw_dip);
162 	ASSERT(keysw_dip != NULL);
163 
164 	/*
165 	 * prevent detach of i2c-ssc050
166 	 */
167 	e_ddi_hold_devi(keysw_dip);
168 
169 	keypoll_timeout_hz = drv_usectohz(10 * MICROSEC);
170 	keyswitch_poll(keysw_dip);
171 	abort_seq_handler = daktari_abort_seq_handler;
172 }
173 
174 static int
175 daktari_dev_search(dev_info_t *dip, void *arg)
176 {
177 	char		*compatible = NULL; /* Search tree for "i2c-ssc050" */
178 	int		*dev_regs; /* Info about where the device is. */
179 	uint_t		len;
180 	int		err;
181 
182 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
183 	    "compatible", &compatible) != DDI_PROP_SUCCESS)
184 		return (DDI_WALK_CONTINUE);
185 
186 	if (strcmp(compatible, "i2c-ssc050") == 0) {
187 		ddi_prop_free(compatible);
188 
189 		err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
190 		    DDI_PROP_DONTPASS, "reg", &dev_regs, &len);
191 		if (err != DDI_PROP_SUCCESS) {
192 			return (DDI_WALK_CONTINUE);
193 		}
194 		/*
195 		 * regs[0] contains the bus number and regs[1]
196 		 * contains the device address of the i2c device.
197 		 * 0x82 is the device address of the i2c device
198 		 * from which  the key switch position is read.
199 		 */
200 		if (dev_regs[0] == 0 && dev_regs[1] == 0x82) {
201 			*((dev_info_t **)arg) = dip;
202 			ddi_prop_free(dev_regs);
203 			return (DDI_WALK_TERMINATE);
204 		}
205 		ddi_prop_free(dev_regs);
206 	} else {
207 		ddi_prop_free(compatible);
208 	}
209 	return (DDI_WALK_CONTINUE);
210 }
211 
212 static void
213 keyswitch_poll(void *arg)
214 {
215 	dev_info_t	*dip = arg;
216 	uchar_t	port_byte;
217 	int	port = DAK_KEY_POLL_PORT;
218 	int	bit = DAK_KEY_POLL_BIT;
219 	int	err;
220 
221 	err = daktari_ssc050_get_port_bit(dip, port, bit,
222 	    &port_byte, I2C_NOSLEEP);
223 	if (err != 0) {
224 		cmn_err(CE_WARN, "keyswitch polling disabled: "
225 		    "errno=%d while reading ssc050", err);
226 		return;
227 	}
228 
229 	key_locked_bit = (boolean_t)((port_byte & 0x1));
230 	(void) timeout(keyswitch_poll, (caddr_t)dip, keypoll_timeout_hz);
231 }
232 
233 static void
234 daktari_abort_seq_handler(char *msg)
235 {
236 	if (key_locked_bit == 0)
237 		cmn_err(CE_CONT, "KEY in LOCKED position, "
238 		    "ignoring debug enter sequence");
239 	else  {
240 		debug_enter(msg);
241 	}
242 }
243 
244 
245 int
246 plat_cpu_poweron(struct cpu *cp)
247 {
248 	_NOTE(ARGUNUSED(cp))
249 	return (ENOTSUP);
250 }
251 
252 int
253 plat_cpu_poweroff(struct cpu *cp)
254 {
255 	_NOTE(ARGUNUSED(cp))
256 	return (ENOTSUP);
257 }
258 
259 /*
260  * Given a pfn, return the board and beginning/end of the page's
261  * memory controller's address range.
262  */
263 static int
264 plat_discover_slice(pfn_t pfn, pfn_t *first, pfn_t *last)
265 {
266 	int bd, cpu, bank;
267 
268 	for (bd = 0; bd < DAK_SBD_SLOTS; bd++) {
269 		for (cpu = 0; cpu < DAK_CPUS_PER_BOARD; cpu++) {
270 			for (bank = 0; bank < DAK_BANKS_PER_MC; bank++) {
271 				uint64_t *slice = slice_table[bd][cpu][bank];
272 				uint64_t base = btop(slice[SLICE_PA]);
273 				uint64_t len = btop(slice[SLICE_SPAN]);
274 				if (len && pfn >= base && pfn < (base + len)) {
275 					*first = base;
276 					*last = base + len - 1;
277 					return (bd);
278 				}
279 			}
280 		}
281 	}
282 	panic("plat_discover_slice: no slice for pfn 0x%lx\n", pfn);
283 	/* NOTREACHED */
284 }
285 
286 /*ARGSUSED*/
287 void
288 plat_freelist_process(int mnode)
289 {}
290 
291 
292 /*
293  * Called for each board/cpu/PA range detected in plat_fill_mc().
294  */
295 static void
296 update_mem_bounds(int boardid, int cpuid, int bankid,
297 	uint64_t base, uint64_t size)
298 {
299 	uint64_t	end;
300 	int		mnode;
301 
302 	slice_table[boardid][cpuid][bankid][SLICE_PA] = base;
303 	slice_table[boardid][cpuid][bankid][SLICE_SPAN] = size;
304 
305 	end = base + size - 1;
306 
307 	/*
308 	 * First see if this board already has a memnode associated
309 	 * with it.  If not, see if this slice has a memnode.  This
310 	 * covers the cases where a single slice covers multiple
311 	 * boards (cross-board interleaving) and where a single
312 	 * board has multiple slices (1+GB DIMMs).
313 	 */
314 	if ((mnode = plat_lgrphand_to_mem_node(boardid)) == -1) {
315 		if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1)
316 			mnode = mem_node_alloc();
317 
318 		ASSERT(mnode >= 0);
319 		ASSERT(mnode < MAX_MEM_NODES);
320 		plat_assign_lgrphand_to_mem_node(boardid, mnode);
321 	}
322 
323 	base = P2ALIGN(base, (1ul << PA_SLICE_SHIFT));
324 
325 	while (base < end) {
326 		slice_to_memnode[PA_2_SLICE(base)] = mnode;
327 		base += (1ul << PA_SLICE_SHIFT);
328 	}
329 }
330 
331 /*
332  * Dynamically detect memory slices in the system by decoding
333  * the cpu memory decoder registers at boot time.
334  */
335 void
336 plat_fill_mc(pnode_t nodeid)
337 {
338 	uint64_t	mc_addr, saf_addr;
339 	uint64_t	mc_decode[DAK_BANKS_PER_MC];
340 	uint64_t	base, size;
341 	uint64_t	saf_mask;
342 	uint64_t	offset;
343 	uint32_t	regs[4];
344 	int		len;
345 	int		local_mc;
346 	int		portid;
347 	int		boardid;
348 	int		cpuid;
349 	int		i;
350 
351 	if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
352 	    (portid == -1))
353 		return;
354 
355 	/*
356 	 * Decode the board number from the MC portid.  Assumes
357 	 * portid == safari agentid.
358 	 */
359 	boardid = DAK_GETSLOT(portid);
360 	cpuid = DAK_GETSID(portid);
361 
362 	/*
363 	 * The "reg" property returns 4 32-bit values. The first two are
364 	 * combined to form a 64-bit address.  The second two are for a
365 	 * 64-bit size, but we don't actually need to look at that value.
366 	 */
367 	len = prom_getproplen(nodeid, "reg");
368 	if (len != (sizeof (uint32_t) * 4)) {
369 		prom_printf("Warning: malformed 'reg' property\n");
370 		return;
371 	}
372 	if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
373 		return;
374 	mc_addr = ((uint64_t)regs[0]) << 32;
375 	mc_addr |= (uint64_t)regs[1];
376 
377 	/*
378 	 * Figure out whether the memory controller we are examining
379 	 * belongs to this CPU or a different one.
380 	 */
381 	saf_addr = lddsafaddr(8);
382 	saf_mask = (uint64_t)SAF_MASK;
383 	if ((mc_addr & saf_mask) == saf_addr)
384 		local_mc = 1;
385 	else
386 		local_mc = 0;
387 
388 	for (i = 0; i < DAK_BANKS_PER_MC; i++) {
389 		/*
390 		 * Memory decode masks are at offsets 0x10 - 0x28.
391 		 */
392 		offset = 0x10 + (i << 3);
393 
394 		/*
395 		 * If the memory controller is local to this CPU, we use
396 		 * the special ASI to read the decode registers.
397 		 * Otherwise, we load the values from a magic address in
398 		 * I/O space.
399 		 */
400 		if (local_mc)
401 			mc_decode[i] = lddmcdecode(offset);
402 		else
403 			mc_decode[i] = lddphysio(mc_addr | offset);
404 
405 		/*
406 		 * If the upper bit is set, we have a valid mask
407 		 */
408 		if ((int64_t)mc_decode[i] < 0) {
409 			/*
410 			 * The memory decode register is a bitmask field,
411 			 * so we can decode that into both a base and
412 			 * a span.
413 			 */
414 			base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
415 			size = MC_UK2SPAN(mc_decode[i]);
416 			update_mem_bounds(boardid, cpuid, i, base, size);
417 		}
418 	}
419 }
420 
421 
422 /*
423  * This routine is run midway through the boot process.  By the time we get
424  * here, we know about all the active CPU boards in the system, and we have
425  * extracted information about each board's memory from the memory
426  * controllers.  We have also figured out which ranges of memory will be
427  * assigned to which memnodes, so we walk the slice table to build the table
428  * of memnodes.
429  */
430 /* ARGSUSED */
431 void
432 plat_build_mem_nodes(prom_memlist_t *list, size_t  nelems)
433 {
434 	int	slice;
435 	pfn_t   basepfn;
436 	pgcnt_t npgs;
437 
438 	mem_node_pfn_shift = PFN_SLICE_SHIFT;
439 	mem_node_physalign = (1ull << PA_SLICE_SHIFT);
440 	npgs = 1ull << PFN_SLICE_SHIFT;
441 
442 	for (slice = 0; slice < DAK_MAX_SLICE; slice++) {
443 		if (slice_to_memnode[slice] == -1)
444 			continue;
445 		basepfn = (uint64_t)slice << PFN_SLICE_SHIFT;
446 		mem_node_add_slice(basepfn, basepfn + npgs - 1);
447 	}
448 }
449 
450 
451 
452 /*
453  * Daktari support for lgroups.
454  *
455  * On Daktari, an lgroup platform handle == slot number.
456  *
457  * Mappings between lgroup handles and memnodes are managed
458  * in addition to mappings between memory slices and memnodes
459  * to support cross-board interleaving as well as multiple
460  * slices per board (e.g. >1GB DIMMs). The initial mapping
461  * of memnodes to lgroup handles is determined at boot time.
462  */
463 int
464 plat_pfn_to_mem_node(pfn_t pfn)
465 {
466 	return (slice_to_memnode[PFN_2_SLICE(pfn)]);
467 }
468 
469 /*
470  * Return the platform handle for the lgroup containing the given CPU
471  *
472  * For Daktari, lgroup platform handle == slot number
473  */
474 lgrp_handle_t
475 plat_lgrp_cpu_to_hand(processorid_t id)
476 {
477 	return (DAK_GETSLOT(id));
478 }
479 
480 /*
481  * Platform specific lgroup initialization
482  */
483 void
484 plat_lgrp_init(void)
485 {
486 	int i;
487 
488 	/*
489 	 * Initialize lookup tables to invalid values so we catch
490 	 * any illegal use of them.
491 	 */
492 	for (i = 0; i < DAK_MAX_SLICE; i++) {
493 		slice_to_memnode[i] = -1;
494 	}
495 }
496 
497 /*
498  * Return latency between "from" and "to" lgroups
499  *
500  * This latency number can only be used for relative comparison
501  * between lgroups on the running system, cannot be used across platforms,
502  * and may not reflect the actual latency.  It is platform and implementation
503  * specific, so platform gets to decide its value.  It would be nice if the
504  * number was at least proportional to make comparisons more meaningful though.
505  * NOTE: The numbers below are supposed to be load latencies for uncached
506  * memory divided by 10.
507  */
508 int
509 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
510 {
511 	/*
512 	 * Return min remote latency when there are more than two lgroups
513 	 * (root and child) and getting latency between two different lgroups
514 	 * or root is involved
515 	 */
516 	if (lgrp_optimizations() && (from != to ||
517 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
518 		return (21);
519 	else
520 		return (19);
521 }
522 /*
523  * No platform drivers on this platform
524  */
525 char *platform_module_list[] = {
526 	(char *)0
527 };
528 
529 /*ARGSUSED*/
530 void
531 plat_tod_fault(enum tod_fault_type tod_bad)
532 {
533 }
534 
535 /*ARGSUSED*/
536 int
537 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
538     int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
539 {
540 	if (flt_in_memory && (p2get_mem_unum != NULL))
541 		return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8),
542 		    buf, buflen, lenp));
543 	else
544 		return (ENOTSUP);
545 }
546 
547 /*
548  * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
549  * driver giving each platform the opportunity to add platform
550  * specific label information to the unum for ECC error logging purposes.
551  */
552 void
553 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
554 {
555 	_NOTE(ARGUNUSED(bank, dimm))
556 
557 	char board = DAK_GETSLOT_LABEL(mcid);
558 	char old_unum[UNUM_NAMLEN];
559 
560 	(void) strcpy(old_unum, unum);
561 	(void) snprintf(unum, UNUM_NAMLEN, "Slot %c: %s", board, old_unum);
562 }
563 
564 int
565 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
566 {
567 	char board = DAK_GETSLOT_LABEL(cpuid);
568 
569 	if (snprintf(buf, buflen, "Slot %c", board) >= buflen) {
570 		return (ENOSPC);
571 	} else {
572 		*lenp = strlen(buf);
573 		return (0);
574 	}
575 }
576 
577 /*
578  * The zuluvm module required a dmv interrupt for each installed
579  * Zulu/XVR-4000 board.  The following has not been updated during the
580  * removal of zuluvm and therefore it may be suboptimal.
581  */
582 void
583 plat_dmv_params(uint_t *hwint, uint_t *swint)
584 {
585 	*hwint = 0;
586 	*swint = DAK_SBD_SLOTS - 1;
587 }
588