1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/cpuvar.h> 28 #include <sys/param.h> 29 #include <sys/systm.h> 30 #include <sys/sunddi.h> 31 #include <sys/ddi.h> 32 #include <sys/esunddi.h> 33 #include <sys/sysmacros.h> 34 #include <sys/note.h> 35 36 #include <sys/modctl.h> /* for modload() */ 37 #include <sys/platform_module.h> 38 #include <sys/errno.h> 39 #include <sys/daktari.h> 40 #include <sys/machsystm.h> 41 #include <sys/promif.h> 42 #include <vm/page.h> 43 #include <sys/memnode.h> 44 #include <vm/vm_dep.h> 45 46 /* I2C Stuff */ 47 #include <sys/i2c/clients/i2c_client.h> 48 49 50 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *); 51 52 /* Daktari Keyswitch Information */ 53 #define DAK_KEY_POLL_PORT 3 54 #define DAK_KEY_POLL_BIT 2 55 #define DAK_KEY_POLL_INTVL 10 56 57 static boolean_t key_locked_bit; 58 static clock_t keypoll_timeout_hz; 59 60 /* 61 * Table that maps memory slices to a specific memnode. 62 */ 63 int slice_to_memnode[DAK_MAX_SLICE]; 64 65 /* 66 * For software memory interleaving support. 67 */ 68 static void update_mem_bounds(int, int, int, uint64_t, uint64_t); 69 70 static uint64_t 71 slice_table[DAK_SBD_SLOTS][DAK_CPUS_PER_BOARD][DAK_BANKS_PER_MC][2]; 72 73 #define SLICE_PA 0 74 #define SLICE_SPAN 1 75 76 int (*daktari_ssc050_get_port_bit) (dev_info_t *, int, int, uint8_t *, int); 77 extern void (*abort_seq_handler)(); 78 static int daktari_dev_search(dev_info_t *, void *); 79 static void keyswitch_poll(void *); 80 static void daktari_abort_seq_handler(char *msg); 81 82 void 83 startup_platform(void) 84 { 85 /* 86 * Disable an active h/w watchdog timer 87 * upon exit to OBP. 88 */ 89 extern int disable_watchdog_on_exit; 90 disable_watchdog_on_exit = 1; 91 } 92 93 int 94 set_platform_tsb_spares() 95 { 96 return (0); 97 } 98 99 #pragma weak mmu_init_large_pages 100 101 void 102 set_platform_defaults(void) 103 { 104 extern void mmu_init_large_pages(size_t); 105 106 if ((mmu_page_sizes == max_mmu_page_sizes) && 107 (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) { 108 if (&mmu_init_large_pages) 109 mmu_init_large_pages(mmu_ism_pagesize); 110 } 111 } 112 113 void 114 load_platform_modules(void) 115 { 116 if (modload("misc", "pcihp") < 0) { 117 cmn_err(CE_NOTE, "pcihp driver failed to load"); 118 } 119 if (modload("drv", "pmc") < 0) { 120 cmn_err(CE_NOTE, "pmc driver failed to load"); 121 } 122 123 } 124 125 void 126 load_platform_drivers(void) 127 { 128 char **drv; 129 dev_info_t *keysw_dip; 130 131 static char *boot_time_drivers[] = { 132 "hpc3130", 133 "todds1287", 134 "mc-us3", 135 "ssc050", 136 "pcisch", 137 NULL 138 }; 139 140 for (drv = boot_time_drivers; *drv; drv++) { 141 if (i_ddi_attach_hw_nodes(*drv) != DDI_SUCCESS) 142 cmn_err(CE_WARN, "Failed to install \"%s\" driver.", 143 *drv); 144 } 145 146 /* 147 * mc-us3 & ssc050 must stay loaded for plat_get_mem_unum() 148 * and keyswitch_poll() 149 */ 150 (void) ddi_hold_driver(ddi_name_to_major("mc-us3")); 151 (void) ddi_hold_driver(ddi_name_to_major("ssc050")); 152 153 /* Gain access into the ssc050_get_port function */ 154 daktari_ssc050_get_port_bit = (int (*) (dev_info_t *, int, int, 155 uint8_t *, int)) modgetsymvalue("ssc050_get_port_bit", 0); 156 if (daktari_ssc050_get_port_bit == NULL) { 157 cmn_err(CE_WARN, "cannot find ssc050_get_port_bit"); 158 return; 159 } 160 161 ddi_walk_devs(ddi_root_node(), daktari_dev_search, (void *)&keysw_dip); 162 ASSERT(keysw_dip != NULL); 163 164 /* 165 * prevent detach of i2c-ssc050 166 */ 167 e_ddi_hold_devi(keysw_dip); 168 169 keypoll_timeout_hz = drv_usectohz(10 * MICROSEC); 170 keyswitch_poll(keysw_dip); 171 abort_seq_handler = daktari_abort_seq_handler; 172 } 173 174 static int 175 daktari_dev_search(dev_info_t *dip, void *arg) 176 { 177 char *compatible = NULL; /* Search tree for "i2c-ssc050" */ 178 int *dev_regs; /* Info about where the device is. */ 179 uint_t len; 180 int err; 181 182 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 183 "compatible", &compatible) != DDI_PROP_SUCCESS) 184 return (DDI_WALK_CONTINUE); 185 186 if (strcmp(compatible, "i2c-ssc050") == 0) { 187 ddi_prop_free(compatible); 188 189 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 190 DDI_PROP_DONTPASS, "reg", &dev_regs, &len); 191 if (err != DDI_PROP_SUCCESS) { 192 return (DDI_WALK_CONTINUE); 193 } 194 /* 195 * regs[0] contains the bus number and regs[1] 196 * contains the device address of the i2c device. 197 * 0x82 is the device address of the i2c device 198 * from which the key switch position is read. 199 */ 200 if (dev_regs[0] == 0 && dev_regs[1] == 0x82) { 201 *((dev_info_t **)arg) = dip; 202 ddi_prop_free(dev_regs); 203 return (DDI_WALK_TERMINATE); 204 } 205 ddi_prop_free(dev_regs); 206 } else { 207 ddi_prop_free(compatible); 208 } 209 return (DDI_WALK_CONTINUE); 210 } 211 212 static void 213 keyswitch_poll(void *arg) 214 { 215 dev_info_t *dip = arg; 216 uchar_t port_byte; 217 int port = DAK_KEY_POLL_PORT; 218 int bit = DAK_KEY_POLL_BIT; 219 int err; 220 221 err = daktari_ssc050_get_port_bit(dip, port, bit, 222 &port_byte, I2C_NOSLEEP); 223 if (err != 0) { 224 cmn_err(CE_WARN, "keyswitch polling disabled: " 225 "errno=%d while reading ssc050", err); 226 return; 227 } 228 229 key_locked_bit = (boolean_t)((port_byte & 0x1)); 230 (void) timeout(keyswitch_poll, (caddr_t)dip, keypoll_timeout_hz); 231 } 232 233 static void 234 daktari_abort_seq_handler(char *msg) 235 { 236 if (key_locked_bit == 0) 237 cmn_err(CE_CONT, "KEY in LOCKED position, " 238 "ignoring debug enter sequence"); 239 else { 240 debug_enter(msg); 241 } 242 } 243 244 245 int 246 plat_cpu_poweron(struct cpu *cp) 247 { 248 _NOTE(ARGUNUSED(cp)) 249 return (ENOTSUP); 250 } 251 252 int 253 plat_cpu_poweroff(struct cpu *cp) 254 { 255 _NOTE(ARGUNUSED(cp)) 256 return (ENOTSUP); 257 } 258 259 /* 260 * Given a pfn, return the board and beginning/end of the page's 261 * memory controller's address range. 262 */ 263 static int 264 plat_discover_slice(pfn_t pfn, pfn_t *first, pfn_t *last) 265 { 266 int bd, cpu, bank; 267 268 for (bd = 0; bd < DAK_SBD_SLOTS; bd++) { 269 for (cpu = 0; cpu < DAK_CPUS_PER_BOARD; cpu++) { 270 for (bank = 0; bank < DAK_BANKS_PER_MC; bank++) { 271 uint64_t *slice = slice_table[bd][cpu][bank]; 272 uint64_t base = btop(slice[SLICE_PA]); 273 uint64_t len = btop(slice[SLICE_SPAN]); 274 if (len && pfn >= base && pfn < (base + len)) { 275 *first = base; 276 *last = base + len - 1; 277 return (bd); 278 } 279 } 280 } 281 } 282 panic("plat_discover_slice: no slice for pfn 0x%lx\n", pfn); 283 /* NOTREACHED */ 284 } 285 286 /*ARGSUSED*/ 287 void 288 plat_freelist_process(int mnode) 289 {} 290 291 292 /* 293 * Called for each board/cpu/PA range detected in plat_fill_mc(). 294 */ 295 static void 296 update_mem_bounds(int boardid, int cpuid, int bankid, 297 uint64_t base, uint64_t size) 298 { 299 uint64_t end; 300 int mnode; 301 302 slice_table[boardid][cpuid][bankid][SLICE_PA] = base; 303 slice_table[boardid][cpuid][bankid][SLICE_SPAN] = size; 304 305 end = base + size - 1; 306 307 /* 308 * First see if this board already has a memnode associated 309 * with it. If not, see if this slice has a memnode. This 310 * covers the cases where a single slice covers multiple 311 * boards (cross-board interleaving) and where a single 312 * board has multiple slices (1+GB DIMMs). 313 */ 314 if ((mnode = plat_lgrphand_to_mem_node(boardid)) == -1) { 315 if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1) 316 mnode = mem_node_alloc(); 317 318 ASSERT(mnode >= 0); 319 ASSERT(mnode < MAX_MEM_NODES); 320 plat_assign_lgrphand_to_mem_node(boardid, mnode); 321 } 322 323 base = P2ALIGN(base, (1ul << PA_SLICE_SHIFT)); 324 325 while (base < end) { 326 slice_to_memnode[PA_2_SLICE(base)] = mnode; 327 base += (1ul << PA_SLICE_SHIFT); 328 } 329 } 330 331 /* 332 * Dynamically detect memory slices in the system by decoding 333 * the cpu memory decoder registers at boot time. 334 */ 335 void 336 plat_fill_mc(pnode_t nodeid) 337 { 338 uint64_t mc_addr, saf_addr; 339 uint64_t mc_decode[DAK_BANKS_PER_MC]; 340 uint64_t base, size; 341 uint64_t saf_mask; 342 uint64_t offset; 343 uint32_t regs[4]; 344 int len; 345 int local_mc; 346 int portid; 347 int boardid; 348 int cpuid; 349 int i; 350 351 if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) || 352 (portid == -1)) 353 return; 354 355 /* 356 * Decode the board number from the MC portid. Assumes 357 * portid == safari agentid. 358 */ 359 boardid = DAK_GETSLOT(portid); 360 cpuid = DAK_GETSID(portid); 361 362 /* 363 * The "reg" property returns 4 32-bit values. The first two are 364 * combined to form a 64-bit address. The second two are for a 365 * 64-bit size, but we don't actually need to look at that value. 366 */ 367 len = prom_getproplen(nodeid, "reg"); 368 if (len != (sizeof (uint32_t) * 4)) { 369 prom_printf("Warning: malformed 'reg' property\n"); 370 return; 371 } 372 if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0) 373 return; 374 mc_addr = ((uint64_t)regs[0]) << 32; 375 mc_addr |= (uint64_t)regs[1]; 376 377 /* 378 * Figure out whether the memory controller we are examining 379 * belongs to this CPU or a different one. 380 */ 381 saf_addr = lddsafaddr(8); 382 saf_mask = (uint64_t)SAF_MASK; 383 if ((mc_addr & saf_mask) == saf_addr) 384 local_mc = 1; 385 else 386 local_mc = 0; 387 388 for (i = 0; i < DAK_BANKS_PER_MC; i++) { 389 /* 390 * Memory decode masks are at offsets 0x10 - 0x28. 391 */ 392 offset = 0x10 + (i << 3); 393 394 /* 395 * If the memory controller is local to this CPU, we use 396 * the special ASI to read the decode registers. 397 * Otherwise, we load the values from a magic address in 398 * I/O space. 399 */ 400 if (local_mc) 401 mc_decode[i] = lddmcdecode(offset); 402 else 403 mc_decode[i] = lddphysio(mc_addr | offset); 404 405 /* 406 * If the upper bit is set, we have a valid mask 407 */ 408 if ((int64_t)mc_decode[i] < 0) { 409 /* 410 * The memory decode register is a bitmask field, 411 * so we can decode that into both a base and 412 * a span. 413 */ 414 base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT; 415 size = MC_UK2SPAN(mc_decode[i]); 416 update_mem_bounds(boardid, cpuid, i, base, size); 417 } 418 } 419 } 420 421 422 /* 423 * This routine is run midway through the boot process. By the time we get 424 * here, we know about all the active CPU boards in the system, and we have 425 * extracted information about each board's memory from the memory 426 * controllers. We have also figured out which ranges of memory will be 427 * assigned to which memnodes, so we walk the slice table to build the table 428 * of memnodes. 429 */ 430 /* ARGSUSED */ 431 void 432 plat_build_mem_nodes(prom_memlist_t *list, size_t nelems) 433 { 434 int slice; 435 pfn_t basepfn; 436 pgcnt_t npgs; 437 438 mem_node_pfn_shift = PFN_SLICE_SHIFT; 439 mem_node_physalign = (1ull << PA_SLICE_SHIFT); 440 npgs = 1ull << PFN_SLICE_SHIFT; 441 442 for (slice = 0; slice < DAK_MAX_SLICE; slice++) { 443 if (slice_to_memnode[slice] == -1) 444 continue; 445 basepfn = (uint64_t)slice << PFN_SLICE_SHIFT; 446 mem_node_add_slice(basepfn, basepfn + npgs - 1); 447 } 448 } 449 450 451 452 /* 453 * Daktari support for lgroups. 454 * 455 * On Daktari, an lgroup platform handle == slot number. 456 * 457 * Mappings between lgroup handles and memnodes are managed 458 * in addition to mappings between memory slices and memnodes 459 * to support cross-board interleaving as well as multiple 460 * slices per board (e.g. >1GB DIMMs). The initial mapping 461 * of memnodes to lgroup handles is determined at boot time. 462 */ 463 int 464 plat_pfn_to_mem_node(pfn_t pfn) 465 { 466 return (slice_to_memnode[PFN_2_SLICE(pfn)]); 467 } 468 469 /* 470 * Return the platform handle for the lgroup containing the given CPU 471 * 472 * For Daktari, lgroup platform handle == slot number 473 */ 474 lgrp_handle_t 475 plat_lgrp_cpu_to_hand(processorid_t id) 476 { 477 return (DAK_GETSLOT(id)); 478 } 479 480 /* 481 * Platform specific lgroup initialization 482 */ 483 void 484 plat_lgrp_init(void) 485 { 486 int i; 487 488 /* 489 * Initialize lookup tables to invalid values so we catch 490 * any illegal use of them. 491 */ 492 for (i = 0; i < DAK_MAX_SLICE; i++) { 493 slice_to_memnode[i] = -1; 494 } 495 } 496 497 /* 498 * Return latency between "from" and "to" lgroups 499 * 500 * This latency number can only be used for relative comparison 501 * between lgroups on the running system, cannot be used across platforms, 502 * and may not reflect the actual latency. It is platform and implementation 503 * specific, so platform gets to decide its value. It would be nice if the 504 * number was at least proportional to make comparisons more meaningful though. 505 * NOTE: The numbers below are supposed to be load latencies for uncached 506 * memory divided by 10. 507 */ 508 int 509 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to) 510 { 511 /* 512 * Return min remote latency when there are more than two lgroups 513 * (root and child) and getting latency between two different lgroups 514 * or root is involved 515 */ 516 if (lgrp_optimizations() && (from != to || 517 from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)) 518 return (21); 519 else 520 return (19); 521 } 522 /* 523 * No platform drivers on this platform 524 */ 525 char *platform_module_list[] = { 526 (char *)0 527 }; 528 529 /*ARGSUSED*/ 530 void 531 plat_tod_fault(enum tod_fault_type tod_bad) 532 { 533 } 534 535 /*ARGSUSED*/ 536 int 537 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id, 538 int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp) 539 { 540 if (flt_in_memory && (p2get_mem_unum != NULL)) 541 return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8), 542 buf, buflen, lenp)); 543 else 544 return (ENOTSUP); 545 } 546 547 /* 548 * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3 549 * driver giving each platform the opportunity to add platform 550 * specific label information to the unum for ECC error logging purposes. 551 */ 552 void 553 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm) 554 { 555 _NOTE(ARGUNUSED(bank, dimm)) 556 557 char board = DAK_GETSLOT_LABEL(mcid); 558 char old_unum[UNUM_NAMLEN]; 559 560 (void) strcpy(old_unum, unum); 561 (void) snprintf(unum, UNUM_NAMLEN, "Slot %c: %s", board, old_unum); 562 } 563 564 int 565 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp) 566 { 567 char board = DAK_GETSLOT_LABEL(cpuid); 568 569 if (snprintf(buf, buflen, "Slot %c", board) >= buflen) { 570 return (ENOSPC); 571 } else { 572 *lenp = strlen(buf); 573 return (0); 574 } 575 } 576 577 /* 578 * The zuluvm module required a dmv interrupt for each installed 579 * Zulu/XVR-4000 board. The following has not been updated during the 580 * removal of zuluvm and therefore it may be suboptimal. 581 */ 582 void 583 plat_dmv_params(uint_t *hwint, uint_t *swint) 584 { 585 *hwint = 0; 586 *swint = DAK_SBD_SLOTS - 1; 587 } 588