xref: /illumos-gate/usr/src/uts/sun4u/cpu/us3_cheetahplus.c (revision 60405de4d8688d96dd05157c28db3ade5c9bc234)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/ddi.h>
31 #include <sys/sysmacros.h>
32 #include <sys/archsystm.h>
33 #include <sys/vmsystm.h>
34 #include <sys/machparam.h>
35 #include <sys/machsystm.h>
36 #include <sys/machthread.h>
37 #include <sys/cpu.h>
38 #include <sys/cmp.h>
39 #include <sys/elf_SPARC.h>
40 #include <vm/hat_sfmmu.h>
41 #include <vm/seg_kmem.h>
42 #include <sys/cpuvar.h>
43 #include <sys/cheetahregs.h>
44 #include <sys/us3_module.h>
45 #include <sys/async.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/dditypes.h>
49 #include <sys/prom_debug.h>
50 #include <sys/prom_plat.h>
51 #include <sys/cpu_module.h>
52 #include <sys/sysmacros.h>
53 #include <sys/intreg.h>
54 #include <sys/clock.h>
55 #include <sys/platform_module.h>
56 #include <sys/machtrap.h>
57 #include <sys/ontrap.h>
58 #include <sys/panic.h>
59 #include <sys/memlist.h>
60 #include <sys/bootconf.h>
61 #include <sys/ivintr.h>
62 #include <sys/atomic.h>
63 #include <sys/fm/protocol.h>
64 #include <sys/fm/cpu/UltraSPARC-III.h>
65 #include <sys/fm/util.h>
66 
67 #ifdef	CHEETAHPLUS_ERRATUM_25
68 #include <sys/cyclic.h>
69 #endif	/* CHEETAHPLUS_ERRATUM_25 */
70 
71 /*
72  * See comment above cpu_scrub_cpu_setup() for description
73  */
74 #define	SCRUBBER_NEITHER_CORE_ONLINE	0x0
75 #define	SCRUBBER_CORE_0_ONLINE		0x1
76 #define	SCRUBBER_CORE_1_ONLINE		0x2
77 #define	SCRUBBER_BOTH_CORES_ONLINE	(SCRUBBER_CORE_0_ONLINE | \
78 					SCRUBBER_CORE_1_ONLINE)
79 
80 static int pn_matching_valid_l2_line(uint64_t faddr, ch_ec_data_t *clo_l2_data);
81 static void cpu_async_log_tlb_parity_err(void *flt);
82 static cpu_t *cpu_get_sibling_core(cpu_t *cpup);
83 
84 
85 /*
86  * Setup trap handlers.
87  */
88 void
89 cpu_init_trap(void)
90 {
91 	CH_SET_TRAP(tt_pil15, ch_pil15_interrupt_instr);
92 
93 	CH_SET_TRAP(tt0_fecc, fecc_err_instr);
94 	CH_SET_TRAP(tt1_fecc, fecc_err_tl1_instr);
95 	CH_SET_TRAP(tt1_swtrap0, fecc_err_tl1_cont_instr);
96 
97 	CH_SET_TRAP(tt0_dperr, dcache_parity_instr);
98 	CH_SET_TRAP(tt1_dperr, dcache_parity_tl1_instr);
99 	CH_SET_TRAP(tt1_swtrap1, dcache_parity_tl1_cont_instr);
100 
101 	CH_SET_TRAP(tt0_iperr, icache_parity_instr);
102 	CH_SET_TRAP(tt1_iperr, icache_parity_tl1_instr);
103 	CH_SET_TRAP(tt1_swtrap2, icache_parity_tl1_cont_instr);
104 }
105 
106 /*
107  * Set the magic constants of the implementation.
108  */
109 /*ARGSUSED*/
110 void
111 cpu_fiximp(pnode_t dnode)
112 {
113 	int i, a;
114 	extern int vac_size, vac_shift;
115 	extern uint_t vac_mask;
116 
117 	dcache_size = CH_DCACHE_SIZE;
118 	dcache_linesize = CH_DCACHE_LSIZE;
119 
120 	icache_size = CHP_ICACHE_MAX_SIZE;
121 	icache_linesize = CHP_ICACHE_MIN_LSIZE;
122 
123 	ecache_size = CH_ECACHE_MAX_SIZE;
124 	ecache_alignsize = CH_ECACHE_MAX_LSIZE;
125 	ecache_associativity = CHP_ECACHE_MIN_NWAY;
126 
127 	/*
128 	 * ecache_setsize needs to maximum of all cpu ecache setsizes
129 	 */
130 	ecache_setsize = CHP_ECACHE_MAX_SETSIZE;
131 	ASSERT(ecache_setsize >= (ecache_size / ecache_associativity));
132 
133 	vac_size = CH_VAC_SIZE;
134 	vac_mask = MMU_PAGEMASK & (vac_size - 1);
135 	i = 0; a = vac_size;
136 	while (a >>= 1)
137 		++i;
138 	vac_shift = i;
139 	shm_alignment = vac_size;
140 	vac = 1;
141 }
142 
143 /*
144  * Use Panther values for Panther-only domains.
145  * See Panther PRM, 1.5.4 Cache Hierarchy
146  */
147 void
148 cpu_fix_allpanther(void)
149 {
150 	/* dcache same as Ch+ */
151 	icache_size = PN_ICACHE_SIZE;
152 	icache_linesize = PN_ICACHE_LSIZE;
153 	ecache_size = PN_L3_SIZE;
154 	ecache_alignsize = PN_L3_LINESIZE;
155 	ecache_associativity = PN_L3_NWAYS;
156 	ecache_setsize = PN_L3_SET_SIZE;
157 	ASSERT(ecache_setsize >= (ecache_size / ecache_associativity));
158 	/* vac same as Ch+ */
159 	/* fix hwcaps for USIV+-only domains */
160 	cpu_hwcap_flags |= AV_SPARC_POPC;
161 }
162 
163 void
164 send_mondo_set(cpuset_t set)
165 {
166 	int lo, busy, nack, shipped = 0;
167 	uint16_t i, cpuids[IDSR_BN_SETS];
168 	uint64_t idsr, nackmask = 0, busymask, curnack, curbusy;
169 	uint64_t starttick, endtick, tick, lasttick;
170 #if (NCPU > IDSR_BN_SETS)
171 	int index = 0;
172 	int ncpuids = 0;
173 #endif
174 #ifdef	CHEETAHPLUS_ERRATUM_25
175 	int recovered = 0;
176 	int cpuid;
177 #endif
178 
179 	ASSERT(!CPUSET_ISNULL(set));
180 	starttick = lasttick = gettick();
181 
182 #if (NCPU <= IDSR_BN_SETS)
183 	for (i = 0; i < NCPU; i++)
184 		if (CPU_IN_SET(set, i)) {
185 			shipit(i, shipped);
186 			nackmask |= IDSR_NACK_BIT(shipped);
187 			cpuids[shipped++] = i;
188 			CPUSET_DEL(set, i);
189 			if (CPUSET_ISNULL(set))
190 				break;
191 		}
192 	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
193 #else
194 	for (i = 0; i < NCPU; i++)
195 		if (CPU_IN_SET(set, i)) {
196 			ncpuids++;
197 
198 			/*
199 			 * Ship only to the first (IDSR_BN_SETS) CPUs.  If we
200 			 * find we have shipped to more than (IDSR_BN_SETS)
201 			 * CPUs, set "index" to the highest numbered CPU in
202 			 * the set so we can ship to other CPUs a bit later on.
203 			 */
204 			if (shipped < IDSR_BN_SETS) {
205 				shipit(i, shipped);
206 				nackmask |= IDSR_NACK_BIT(shipped);
207 				cpuids[shipped++] = i;
208 				CPUSET_DEL(set, i);
209 				if (CPUSET_ISNULL(set))
210 					break;
211 			} else
212 				index = (int)i;
213 		}
214 
215 	CPU_STATS_ADDQ(CPU, sys, xcalls, ncpuids);
216 #endif
217 
218 	busymask = IDSR_NACK_TO_BUSY(nackmask);
219 	busy = nack = 0;
220 	endtick = starttick + xc_tick_limit;
221 	for (;;) {
222 		idsr = getidsr();
223 #if (NCPU <= IDSR_BN_SETS)
224 		if (idsr == 0)
225 			break;
226 #else
227 		if (idsr == 0 && shipped == ncpuids)
228 			break;
229 #endif
230 		tick = gettick();
231 		/*
232 		 * If there is a big jump between the current tick
233 		 * count and lasttick, we have probably hit a break
234 		 * point.  Adjust endtick accordingly to avoid panic.
235 		 */
236 		if (tick > (lasttick + xc_tick_jump_limit))
237 			endtick += (tick - lasttick);
238 		lasttick = tick;
239 		if (tick > endtick) {
240 			if (panic_quiesce)
241 				return;
242 #ifdef	CHEETAHPLUS_ERRATUM_25
243 			cpuid = -1;
244 			for (i = 0; i < IDSR_BN_SETS; i++) {
245 				if (idsr & (IDSR_NACK_BIT(i) |
246 				    IDSR_BUSY_BIT(i))) {
247 					cpuid = cpuids[i];
248 					break;
249 				}
250 			}
251 			if (cheetah_sendmondo_recover && cpuid != -1 &&
252 			    recovered == 0) {
253 				if (mondo_recover(cpuid, i)) {
254 					/*
255 					 * We claimed the whole memory or
256 					 * full scan is disabled.
257 					 */
258 					recovered++;
259 				}
260 				tick = gettick();
261 				endtick = tick + xc_tick_limit;
262 				lasttick = tick;
263 				/*
264 				 * Recheck idsr
265 				 */
266 				continue;
267 			} else
268 #endif	/* CHEETAHPLUS_ERRATUM_25 */
269 			{
270 				cmn_err(CE_CONT, "send mondo timeout "
271 				    "[%d NACK %d BUSY]\nIDSR 0x%"
272 				    "" PRIx64 "  cpuids:", nack, busy, idsr);
273 				for (i = 0; i < IDSR_BN_SETS; i++) {
274 					if (idsr & (IDSR_NACK_BIT(i) |
275 					    IDSR_BUSY_BIT(i))) {
276 						cmn_err(CE_CONT, " 0x%x",
277 						    cpuids[i]);
278 					}
279 				}
280 				cmn_err(CE_CONT, "\n");
281 				cmn_err(CE_PANIC, "send_mondo_set: timeout");
282 			}
283 		}
284 		curnack = idsr & nackmask;
285 		curbusy = idsr & busymask;
286 #if (NCPU > IDSR_BN_SETS)
287 		if (shipped < ncpuids) {
288 			uint64_t cpus_left;
289 			uint16_t next = (uint16_t)index;
290 
291 			cpus_left = ~(IDSR_NACK_TO_BUSY(curnack) | curbusy) &
292 				busymask;
293 
294 			if (cpus_left) {
295 				do {
296 					/*
297 					 * Sequence through and ship to the
298 					 * remainder of the CPUs in the system
299 					 * (e.g. other than the first
300 					 * (IDSR_BN_SETS)) in reverse order.
301 					 */
302 					lo = lowbit(cpus_left) - 1;
303 					i = IDSR_BUSY_IDX(lo);
304 					shipit(next, i);
305 					shipped++;
306 					cpuids[i] = next;
307 
308 					/*
309 					 * If we've processed all the CPUs,
310 					 * exit the loop now and save
311 					 * instructions.
312 					 */
313 					if (shipped == ncpuids)
314 						break;
315 
316 					for ((index = ((int)next - 1));
317 					    index >= 0; index--)
318 						if (CPU_IN_SET(set, index)) {
319 							next = (uint16_t)index;
320 							break;
321 						}
322 
323 					cpus_left &= ~(1ull << lo);
324 				} while (cpus_left);
325 #ifdef	CHEETAHPLUS_ERRATUM_25
326 				/*
327 				 * Clear recovered because we are sending to
328 				 * a new set of targets.
329 				 */
330 				recovered = 0;
331 #endif
332 				continue;
333 			}
334 		}
335 #endif
336 		if (curbusy) {
337 			busy++;
338 			continue;
339 		}
340 
341 #ifdef SEND_MONDO_STATS
342 		{
343 			int n = gettick() - starttick;
344 			if (n < 8192)
345 				x_nack_stimes[n >> 7]++;
346 		}
347 #endif
348 		while (gettick() < (tick + sys_clock_mhz))
349 			;
350 		do {
351 			lo = lowbit(curnack) - 1;
352 			i = IDSR_NACK_IDX(lo);
353 			shipit(cpuids[i], i);
354 			curnack &= ~(1ull << lo);
355 		} while (curnack);
356 		nack++;
357 		busy = 0;
358 	}
359 #ifdef SEND_MONDO_STATS
360 	{
361 		int n = gettick() - starttick;
362 		if (n < 8192)
363 			x_set_stimes[n >> 7]++;
364 		else
365 			x_set_ltimes[(n >> 13) & 0xf]++;
366 	}
367 	x_set_cpus[shipped]++;
368 #endif
369 }
370 
371 /*
372  * Handles error logging for implementation specific error types
373  */
374 /*ARGSUSED1*/
375 int
376 cpu_impl_async_log_err(void *flt, errorq_elem_t *eqep)
377 {
378 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)flt;
379 	struct async_flt *aflt = (struct async_flt *)flt;
380 
381 	switch (ch_flt->flt_type) {
382 
383 	case CPU_IC_PARITY:
384 		cpu_async_log_ic_parity_err(flt);
385 		return (CH_ASYNC_LOG_DONE);
386 
387 	case CPU_DC_PARITY:
388 		cpu_async_log_dc_parity_err(flt);
389 		return (CH_ASYNC_LOG_DONE);
390 
391 	case CPU_DUE:
392 		cpu_log_err(aflt);
393 		cpu_page_retire(ch_flt);
394 		return (CH_ASYNC_LOG_DONE);
395 
396 	case CPU_ITLB_PARITY:
397 	case CPU_DTLB_PARITY:
398 		cpu_async_log_tlb_parity_err(flt);
399 		return (CH_ASYNC_LOG_DONE);
400 
401 	default:
402 		return (CH_ASYNC_LOG_UNKNOWN);
403 	}
404 }
405 
406 /*
407  * Figure out if Ecache is direct-mapped (Cheetah or Cheetah+ with Ecache
408  * control ECCR_ASSOC bit off or 2-way (Cheetah+ with ECCR_ASSOC on).
409  * We need to do this on the fly because we may have mixed Cheetah+'s with
410  * both direct and 2-way Ecaches. Panther only supports 4-way L3$.
411  */
412 int
413 cpu_ecache_nway(void)
414 {
415 	if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation))
416 		return (PN_L3_NWAYS);
417 	return ((get_ecache_ctrl() & ECCR_ASSOC) ? 2 : 1);
418 }
419 
420 /*
421  * Note that these are entered into the table: Fatal Errors (PERR, IERR, ISAP,
422  * EMU, IMU) first, orphaned UCU/UCC, AFAR Overwrite policy, finally IVU, IVC.
423  * Afar overwrite policy is:
424  *   Class 4:
425  *      AFSR     -- UCC, UCU, TUE, TSCE, TUE_SH
426  *      AFSR_EXT -- L3_UCC, L3_UCU, L3_TUE, L3_TUE_SH
427  *   Class 3:
428  *      AFSR     -- UE, DUE, EDU, WDU, CPU
429  *      AFSR_EXT -- L3_EDU, L3_WDU, L3_CPU
430  *   Class 2:
431  *      AFSR     -- CE, EDC, EMC, WDC, CPC, THCE
432  *      AFSR_EXT -- L3_EDC, L3_WDC, L3_CPC, L3_THCE
433  *   Class 1:
434  *      AFSR     -- TO, DTO, BERR, DBERR
435  */
436 ecc_type_to_info_t ecc_type_to_info[] = {
437 
438 	/* Fatal Errors */
439 	C_AFSR_PERR,		"PERR ",	ECC_ALL_TRAPS,
440 		CPU_FATAL,	"PERR Fatal",
441 		FM_EREPORT_PAYLOAD_SYSTEM2,
442 		FM_EREPORT_CPU_USIII_PERR,
443 	C_AFSR_IERR,		"IERR ", 	ECC_ALL_TRAPS,
444 		CPU_FATAL,	"IERR Fatal",
445 		FM_EREPORT_PAYLOAD_SYSTEM2,
446 		FM_EREPORT_CPU_USIII_IERR,
447 	C_AFSR_ISAP,		"ISAP ",	ECC_ALL_TRAPS,
448 		CPU_FATAL,	"ISAP Fatal",
449 		FM_EREPORT_PAYLOAD_SYSTEM1,
450 		FM_EREPORT_CPU_USIII_ISAP,
451 	C_AFSR_L3_TUE_SH,	"L3_TUE_SH ", 	ECC_C_TRAP,
452 		CPU_FATAL,	"L3_TUE_SH Fatal",
453 		FM_EREPORT_PAYLOAD_L3_TAG_ECC,
454 		FM_EREPORT_CPU_USIII_L3_TUE_SH,
455 	C_AFSR_L3_TUE,		"L3_TUE ", 	ECC_C_TRAP,
456 		CPU_FATAL,	"L3_TUE Fatal",
457 		FM_EREPORT_PAYLOAD_L3_TAG_ECC,
458 		FM_EREPORT_CPU_USIII_L3_TUE,
459 	C_AFSR_TUE_SH,		"TUE_SH ", 	ECC_C_TRAP,
460 		CPU_FATAL,	"TUE_SH Fatal",
461 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
462 		FM_EREPORT_CPU_USIII_TUE_SH,
463 	C_AFSR_TUE,		"TUE ", 	ECC_ALL_TRAPS,
464 		CPU_FATAL,	"TUE Fatal",
465 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
466 		FM_EREPORT_CPU_USIII_TUE,
467 	C_AFSR_EMU,		"EMU ",		ECC_ASYNC_TRAPS,
468 		CPU_FATAL,	"EMU Fatal",
469 		FM_EREPORT_PAYLOAD_MEMORY,
470 		FM_EREPORT_CPU_USIII_EMU,
471 	C_AFSR_IMU,		"IMU ",		ECC_C_TRAP,
472 		CPU_FATAL,	"IMU Fatal",
473 		FM_EREPORT_PAYLOAD_SYSTEM1,
474 		FM_EREPORT_CPU_USIII_IMU,
475 
476 	/* L3$ Address parity errors are reported via the MECC bit */
477 	C_AFSR_L3_MECC,		"L3_MECC ",	ECC_MECC_TRAPS,
478 		CPU_L3_ADDR_PE,	"L3 Address Parity",
479 		FM_EREPORT_PAYLOAD_L3_DATA,
480 		FM_EREPORT_CPU_USIII_L3_MECC,
481 
482 	/* Orphaned UCC/UCU Errors */
483 	C_AFSR_L3_UCU,		"L3_OUCU ",	ECC_ORPH_TRAPS,
484 		CPU_ORPH,	"Orphaned L3_UCU",
485 		FM_EREPORT_PAYLOAD_L3_DATA,
486 		FM_EREPORT_CPU_USIII_L3_UCU,
487 	C_AFSR_L3_UCC,		"L3_OUCC ",	ECC_ORPH_TRAPS,
488 		CPU_ORPH,	"Orphaned L3_UCC",
489 		FM_EREPORT_PAYLOAD_L3_DATA,
490 		FM_EREPORT_CPU_USIII_L3_UCC,
491 	C_AFSR_UCU,		"OUCU ",	ECC_ORPH_TRAPS,
492 		CPU_ORPH,	"Orphaned UCU",
493 		FM_EREPORT_PAYLOAD_L2_DATA,
494 		FM_EREPORT_CPU_USIII_UCU,
495 	C_AFSR_UCC,		"OUCC ",	ECC_ORPH_TRAPS,
496 		CPU_ORPH,	"Orphaned UCC",
497 		FM_EREPORT_PAYLOAD_L2_DATA,
498 		FM_EREPORT_CPU_USIII_UCC,
499 
500 	/* UCU, UCC */
501 	C_AFSR_L3_UCU,		"L3_UCU ",	ECC_F_TRAP,
502 		CPU_UE_ECACHE,	"L3_UCU",
503 		FM_EREPORT_PAYLOAD_L3_DATA,
504 		FM_EREPORT_CPU_USIII_L3_UCU,
505 	C_AFSR_L3_UCC,		"L3_UCC ",	ECC_F_TRAP,
506 		CPU_CE_ECACHE,	"L3_UCC",
507 		FM_EREPORT_PAYLOAD_L3_DATA,
508 		FM_EREPORT_CPU_USIII_L3_UCC,
509 	C_AFSR_UCU,		"UCU ",		ECC_F_TRAP,
510 		CPU_UE_ECACHE,	"UCU",
511 		FM_EREPORT_PAYLOAD_L2_DATA,
512 		FM_EREPORT_CPU_USIII_UCU,
513 	C_AFSR_UCC,		"UCC ",		ECC_F_TRAP,
514 		CPU_CE_ECACHE,	"UCC",
515 		FM_EREPORT_PAYLOAD_L2_DATA,
516 		FM_EREPORT_CPU_USIII_UCC,
517 	C_AFSR_TSCE,		"TSCE ",	ECC_F_TRAP,
518 		CPU_CE_ECACHE,	"TSCE",
519 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
520 		FM_EREPORT_CPU_USIII_TSCE,
521 
522 	/* UE, EDU:ST, EDU:BLD, WDU, CPU */
523 	C_AFSR_UE,		"UE ",		ECC_ASYNC_TRAPS,
524 		CPU_UE,		"Uncorrectable system bus (UE)",
525 		FM_EREPORT_PAYLOAD_MEMORY,
526 		FM_EREPORT_CPU_USIII_UE,
527 	C_AFSR_L3_EDU,		"L3_EDU ",	ECC_C_TRAP,
528 		CPU_UE_ECACHE_RETIRE,	"L3_EDU:ST",
529 		FM_EREPORT_PAYLOAD_L3_DATA,
530 		FM_EREPORT_CPU_USIII_L3_EDUST,
531 	C_AFSR_L3_EDU,		"L3_EDU ",	ECC_D_TRAP,
532 		CPU_UE_ECACHE_RETIRE,	"L3_EDU:BLD",
533 		FM_EREPORT_PAYLOAD_L3_DATA,
534 		FM_EREPORT_CPU_USIII_L3_EDUBL,
535 	C_AFSR_L3_WDU,		"L3_WDU ",	ECC_C_TRAP,
536 		CPU_UE_ECACHE_RETIRE,	"L3_WDU",
537 		FM_EREPORT_PAYLOAD_L3_DATA,
538 		FM_EREPORT_CPU_USIII_L3_WDU,
539 	C_AFSR_L3_CPU,		"L3_CPU ",	ECC_C_TRAP,
540 		CPU_UE_ECACHE,	"L3_CPU",
541 		FM_EREPORT_PAYLOAD_L3_DATA,
542 		FM_EREPORT_CPU_USIII_L3_CPU,
543 	C_AFSR_EDU,		"EDU ",		ECC_C_TRAP,
544 		CPU_UE_ECACHE_RETIRE,	"EDU:ST",
545 		FM_EREPORT_PAYLOAD_L2_DATA,
546 		FM_EREPORT_CPU_USIII_EDUST,
547 	C_AFSR_EDU,		"EDU ",		ECC_D_TRAP,
548 		CPU_UE_ECACHE_RETIRE,	"EDU:BLD",
549 		FM_EREPORT_PAYLOAD_L2_DATA,
550 		FM_EREPORT_CPU_USIII_EDUBL,
551 	C_AFSR_WDU,		"WDU ",		ECC_C_TRAP,
552 		CPU_UE_ECACHE_RETIRE,	"WDU",
553 		FM_EREPORT_PAYLOAD_L2_DATA,
554 		FM_EREPORT_CPU_USIII_WDU,
555 	C_AFSR_CPU,		"CPU ",		ECC_C_TRAP,
556 		CPU_UE_ECACHE,	"CPU",
557 		FM_EREPORT_PAYLOAD_L2_DATA,
558 		FM_EREPORT_CPU_USIII_CPU,
559 	C_AFSR_DUE,		"DUE ",		ECC_C_TRAP,
560 		CPU_DUE,	"DUE",
561 		FM_EREPORT_PAYLOAD_MEMORY,
562 		FM_EREPORT_CPU_USIII_DUE,
563 
564 	/* CE, EDC, EMC, WDC, CPC */
565 	C_AFSR_CE,		"CE ",		ECC_C_TRAP,
566 		CPU_CE,		"Corrected system bus (CE)",
567 		FM_EREPORT_PAYLOAD_MEMORY,
568 		FM_EREPORT_CPU_USIII_CE,
569 	C_AFSR_L3_EDC,		"L3_EDC ",	ECC_C_TRAP,
570 		CPU_CE_ECACHE,	"L3_EDC",
571 		FM_EREPORT_PAYLOAD_L3_DATA,
572 		FM_EREPORT_CPU_USIII_L3_EDC,
573 	C_AFSR_EDC,		"EDC ",		ECC_C_TRAP,
574 		CPU_CE_ECACHE,	"EDC",
575 		FM_EREPORT_PAYLOAD_L2_DATA,
576 		FM_EREPORT_CPU_USIII_EDC,
577 	C_AFSR_EMC,		"EMC ",		ECC_C_TRAP,
578 		CPU_EMC,	"EMC",
579 		FM_EREPORT_PAYLOAD_MEMORY,
580 		FM_EREPORT_CPU_USIII_EMC,
581 	C_AFSR_L3_WDC,		"L3_WDC ",	ECC_C_TRAP,
582 		CPU_CE_ECACHE,	"L3_WDC",
583 		FM_EREPORT_PAYLOAD_L3_DATA,
584 		FM_EREPORT_CPU_USIII_L3_WDC,
585 	C_AFSR_L3_CPC,		"L3_CPC ",	ECC_C_TRAP,
586 		CPU_CE_ECACHE,	"L3_CPC",
587 		FM_EREPORT_PAYLOAD_L3_DATA,
588 		FM_EREPORT_CPU_USIII_L3_CPC,
589 	C_AFSR_L3_THCE,		"L3_THCE ",	ECC_C_TRAP,
590 		CPU_CE_ECACHE,	"L3_THCE",
591 		FM_EREPORT_PAYLOAD_L3_TAG_ECC,
592 		FM_EREPORT_CPU_USIII_L3_THCE,
593 	C_AFSR_WDC,		"WDC ",		ECC_C_TRAP,
594 		CPU_CE_ECACHE,	"WDC",
595 		FM_EREPORT_PAYLOAD_L2_DATA,
596 		FM_EREPORT_CPU_USIII_WDC,
597 	C_AFSR_CPC,		"CPC ",		ECC_C_TRAP,
598 		CPU_CE_ECACHE,	"CPC",
599 		FM_EREPORT_PAYLOAD_L2_DATA,
600 		FM_EREPORT_CPU_USIII_CPC,
601 	C_AFSR_THCE,		"THCE ",	ECC_C_TRAP,
602 		CPU_CE_ECACHE,	"THCE",
603 		FM_EREPORT_PAYLOAD_L2_TAG_ECC,
604 		FM_EREPORT_CPU_USIII_THCE,
605 
606 	/* TO, BERR */
607 	C_AFSR_TO,		"TO ",		ECC_ASYNC_TRAPS,
608 		CPU_TO,		"Timeout (TO)",
609 		FM_EREPORT_PAYLOAD_IO,
610 		FM_EREPORT_CPU_USIII_TO,
611 	C_AFSR_BERR,		"BERR ",	ECC_ASYNC_TRAPS,
612 		CPU_BERR,	"Bus Error (BERR)",
613 		FM_EREPORT_PAYLOAD_IO,
614 		FM_EREPORT_CPU_USIII_BERR,
615 	C_AFSR_DTO,		"DTO ",		ECC_C_TRAP,
616 		CPU_TO,		"Disrupting Timeout (DTO)",
617 		FM_EREPORT_PAYLOAD_IO,
618 		FM_EREPORT_CPU_USIII_DTO,
619 	C_AFSR_DBERR,		"DBERR ",	ECC_C_TRAP,
620 		CPU_BERR,	"Disrupting Bus Error (DBERR)",
621 		FM_EREPORT_PAYLOAD_IO,
622 		FM_EREPORT_CPU_USIII_DBERR,
623 
624 	/* IVU, IVC, IMC */
625 	C_AFSR_IVU,		"IVU ",		ECC_C_TRAP,
626 		CPU_IV,		"IVU",
627 		FM_EREPORT_PAYLOAD_SYSTEM1,
628 		FM_EREPORT_CPU_USIII_IVU,
629 	C_AFSR_IVC,		"IVC ",		ECC_C_TRAP,
630 		CPU_IV,		"IVC",
631 		FM_EREPORT_PAYLOAD_SYSTEM1,
632 		FM_EREPORT_CPU_USIII_IVC,
633 	C_AFSR_IMC,		"IMC ",		ECC_C_TRAP,
634 		CPU_IV,		"IMC",
635 		FM_EREPORT_PAYLOAD_SYSTEM1,
636 		FM_EREPORT_CPU_USIII_IMC,
637 
638 	0,			NULL,		0,
639 		0,		NULL,
640 		FM_EREPORT_PAYLOAD_UNKNOWN,
641 		FM_EREPORT_CPU_USIII_UNKNOWN,
642 };
643 
644 /*
645  * See Cheetah+ Delta PRM 10.9 and section P.6.1 of the Panther PRM
646  *   Class 4:
647  *      AFSR     -- UCC, UCU, TUE, TSCE, TUE_SH
648  *      AFSR_EXT -- L3_UCC, L3_UCU, L3_TUE, L3_TUE_SH
649  *   Class 3:
650  *      AFSR     -- UE, DUE, EDU, EMU, WDU, CPU
651  *      AFSR_EXT -- L3_EDU, L3_WDU, L3_CPU
652  *   Class 2:
653  *      AFSR     -- CE, EDC, EMC, WDC, CPC, THCE
654  *      AFSR_EXT -- L3_EDC, L3_WDC, L3_CPC, L3_THCE
655  *   Class 1:
656  *      AFSR     -- TO, DTO, BERR, DBERR
657  *      AFSR_EXT --
658  */
659 uint64_t afar_overwrite[] = {
660 	/* class 4: */
661 	C_AFSR_UCC | C_AFSR_UCU | C_AFSR_TUE | C_AFSR_TSCE | C_AFSR_TUE_SH |
662 	C_AFSR_L3_UCC | C_AFSR_L3_UCU | C_AFSR_L3_TUE | C_AFSR_L3_TUE_SH,
663 	/* class 3: */
664 	C_AFSR_UE | C_AFSR_DUE | C_AFSR_EDU | C_AFSR_EMU | C_AFSR_WDU |
665 	C_AFSR_CPU | C_AFSR_L3_EDU | C_AFSR_L3_WDU | C_AFSR_L3_CPU,
666 	/* class 2: */
667 	C_AFSR_CE | C_AFSR_EDC | C_AFSR_EMC | C_AFSR_WDC | C_AFSR_CPC |
668 	C_AFSR_THCE | C_AFSR_L3_EDC | C_AFSR_L3_WDC | C_AFSR_L3_CPC |
669 	C_AFSR_L3_THCE,
670 	/* class 1: */
671 	C_AFSR_TO | C_AFSR_DTO | C_AFSR_BERR | C_AFSR_DBERR,
672 
673 	0
674 };
675 
676 /*
677  * For Cheetah+, the E_SYND and M_SYND overwrite priorities are combined.
678  * See Cheetah+ Delta PRM 10.9 and Cheetah+ PRM 11.6.2
679  *   Class 2:  UE, DUE, IVU, EDU, EMU, WDU, UCU, CPU
680  *   Class 1:  CE, IVC, EDC, EMC, WDC, UCC, CPC
681  */
682 uint64_t esynd_overwrite[] = {
683 	/* class 2: */
684 	C_AFSR_UE | C_AFSR_DUE | C_AFSR_IVU | C_AFSR_EDU | C_AFSR_EMU |
685 	    C_AFSR_WDU | C_AFSR_UCU | C_AFSR_CPU,
686 	/* class 1: */
687 	C_AFSR_CE | C_AFSR_IVC | C_AFSR_EDC | C_AFSR_EMC | C_AFSR_WDC |
688 	    C_AFSR_UCC | C_AFSR_CPC,
689 	0
690 };
691 
692 /*
693  * In panther, the E_SYND overwrite policy changed a little bit
694  * by adding one more level.
695  * See Panther PRM P.6.2
696  *   class 3:
697  *      AFSR     -- UCU, UCC
698  *      AFSR_EXT -- L3_UCU, L3_UCC
699  *   Class 2:
700  *      AFSR     -- UE, DUE, IVU, EDU, WDU, CPU
701  *      AFSR_EXT -- L3_EDU, L3_WDU, L3_CPU
702  *   Class 1:
703  *      AFSR     -- CE, IVC, EDC, WDC, CPC
704  *      AFSR_EXT -- L3_EDC, L3_WDC, L3_CPC
705  */
706 uint64_t pn_esynd_overwrite[] = {
707 	/* class 3: */
708 	C_AFSR_UCU | C_AFSR_UCC |
709 	C_AFSR_L3_UCU | C_AFSR_L3_UCC,
710 	/* class 2: */
711 	C_AFSR_UE | C_AFSR_DUE | C_AFSR_IVU | C_AFSR_EDU | C_AFSR_WDU |
712 	    C_AFSR_CPU |
713 	C_AFSR_L3_EDU | C_AFSR_L3_WDU | C_AFSR_L3_CPU,
714 	/* class 1: */
715 	C_AFSR_CE | C_AFSR_IVC | C_AFSR_EDC | C_AFSR_WDC | C_AFSR_CPC |
716 	C_AFSR_L3_EDC | C_AFSR_L3_WDC | C_AFSR_L3_CPC,
717 
718 	0
719 };
720 
721 int
722 afsr_to_pn_esynd_status(uint64_t afsr, uint64_t afsr_bit)
723 {
724 	return (afsr_to_overw_status(afsr, afsr_bit, pn_esynd_overwrite));
725 }
726 
727 /*
728  * Prioritized list of Error bits for MSYND overwrite.
729  * See Panther PRM P.6.2 (For Cheetah+, see esynd_overwrite classes)
730  *   Class 2:  EMU, IMU
731  *   Class 1:  EMC, IMC
732  *
733  * Panther adds IMU and IMC.
734  */
735 uint64_t msynd_overwrite[] = {
736 	/* class 2: */
737 	C_AFSR_EMU | C_AFSR_IMU,
738 	/* class 1: */
739 	C_AFSR_EMC | C_AFSR_IMC,
740 
741 	0
742 };
743 
744 /*
745  * change cpu speed bits -- new speed will be normal-speed/divisor.
746  *
747  * The Jalapeno memory controllers are required to drain outstanding
748  * memory transactions within 32 JBus clocks in order to be ready
749  * to enter Estar mode.  In some corner cases however, that time
750  * fell short.
751  *
752  * A safe software solution is to force MCU to act like in Estar mode,
753  * then delay 1us (in ppm code) prior to assert J_CHNG_L signal.
754  * To reverse the effect, upon exiting Estar, software restores the
755  * MCU to its original state.
756  */
757 /* ARGSUSED1 */
758 void
759 cpu_change_speed(uint64_t divisor, uint64_t arg2)
760 {
761 	bus_config_eclk_t *bceclk;
762 	uint64_t		reg;
763 
764 	for (bceclk = bus_config_eclk; bceclk->divisor; bceclk++) {
765 		if (bceclk->divisor != divisor)
766 			continue;
767 		reg = get_safari_config();
768 		reg &= ~SAFARI_CONFIG_ECLK_MASK;
769 		reg |= bceclk->mask;
770 		set_safari_config(reg);
771 		CPU->cpu_m.divisor = (uchar_t)divisor;
772 		return;
773 	}
774 	/*
775 	 * We will reach here only if OBP and kernel don't agree on
776 	 * the speeds supported by the CPU.
777 	 */
778 	cmn_err(CE_WARN, "cpu_change_speed: bad divisor %" PRIu64, divisor);
779 }
780 
781 /*
782  * Cpu private initialization.  This includes allocating the cpu_private
783  * data structure, initializing it, and initializing the scrubber for this
784  * cpu.  This function calls cpu_init_ecache_scrub_dr to init the scrubber.
785  * We use kmem_cache_create for the cheetah private data structure because
786  * it needs to be allocated on a PAGESIZE (8192) byte boundary.
787  */
788 void
789 cpu_init_private(struct cpu *cp)
790 {
791 	cheetah_private_t *chprp;
792 	int i;
793 
794 	ASSERT(CPU_PRIVATE(cp) == NULL);
795 
796 	/* LINTED: E_TRUE_LOGICAL_EXPR */
797 	ASSERT((offsetof(cheetah_private_t, chpr_tl1_err_data) +
798 	    sizeof (ch_err_tl1_data_t) * CH_ERR_TL1_TLMAX) <= PAGESIZE);
799 
800 	/*
801 	 * Running with Cheetah CPUs in a Cheetah+, Jaguar, Panther or
802 	 * mixed Cheetah+/Jaguar/Panther machine is not a supported
803 	 * configuration. Attempting to do so may result in unpredictable
804 	 * failures (e.g. running Cheetah+ CPUs with Cheetah E$ disp flush)
805 	 * so don't allow it.
806 	 *
807 	 * This is just defensive code since this configuration mismatch
808 	 * should have been caught prior to OS execution.
809 	 */
810 	if (!(IS_CHEETAH_PLUS(cpunodes[cp->cpu_id].implementation) ||
811 	    IS_JAGUAR(cpunodes[cp->cpu_id].implementation) ||
812 	    IS_PANTHER(cpunodes[cp->cpu_id].implementation))) {
813 		cmn_err(CE_PANIC, "CPU%d: UltraSPARC-III not supported"
814 		    " on UltraSPARC-III+/IV/IV+ code\n", cp->cpu_id);
815 	}
816 
817 	/*
818 	 * If the ch_private_cache has not been created, create it.
819 	 */
820 	if (ch_private_cache == NULL) {
821 		ch_private_cache = kmem_cache_create("ch_private_cache",
822 		    sizeof (cheetah_private_t), PAGESIZE, NULL, NULL,
823 		    NULL, NULL, static_arena, 0);
824 	}
825 
826 	chprp = CPU_PRIVATE(cp) = kmem_cache_alloc(ch_private_cache, KM_SLEEP);
827 
828 	bzero(chprp, sizeof (cheetah_private_t));
829 	chprp->chpr_fecctl0_logout.clo_data.chd_afar = LOGOUT_INVALID;
830 	chprp->chpr_cecc_logout.clo_data.chd_afar = LOGOUT_INVALID;
831 	chprp->chpr_async_logout.clo_data.chd_afar = LOGOUT_INVALID;
832 	chprp->chpr_tlb_logout.tlo_addr = LOGOUT_INVALID;
833 	for (i = 0; i < CH_ERR_TL1_TLMAX; i++)
834 		chprp->chpr_tl1_err_data[i].ch_err_tl1_logout.clo_data.chd_afar
835 		    = LOGOUT_INVALID;
836 
837 	/* Panther has a larger Icache compared to cheetahplus or Jaguar */
838 	if (IS_PANTHER(cpunodes[cp->cpu_id].implementation)) {
839 		chprp->chpr_icache_size = PN_ICACHE_SIZE;
840 		chprp->chpr_icache_linesize = PN_ICACHE_LSIZE;
841 	} else {
842 		chprp->chpr_icache_size = CH_ICACHE_SIZE;
843 		chprp->chpr_icache_linesize = CH_ICACHE_LSIZE;
844 	}
845 
846 	cpu_init_ecache_scrub_dr(cp);
847 
848 	/*
849 	 * Panther's L2$ and E$ are shared between cores, so the scrubber is
850 	 * only needed on one of the cores.  At this point, we assume all cores
851 	 * are online, and we only enable the scrubber on core 0.
852 	 */
853 	if (IS_PANTHER(cpunodes[cp->cpu_id].implementation)) {
854 		chprp->chpr_scrub_misc.chsm_core_state =
855 		    SCRUBBER_BOTH_CORES_ONLINE;
856 		if (cp->cpu_id != (processorid_t)cmp_cpu_to_chip(cp->cpu_id)) {
857 			chprp->chpr_scrub_misc.chsm_enable[
858 			    CACHE_SCRUBBER_INFO_E] = 0;
859 		}
860 	}
861 
862 	chprp->chpr_ec_set_size = cpunodes[cp->cpu_id].ecache_size /
863 	    cpu_ecache_nway();
864 
865 	adjust_hw_copy_limits(cpunodes[cp->cpu_id].ecache_size);
866 	ch_err_tl1_paddrs[cp->cpu_id] = va_to_pa(chprp);
867 	ASSERT(ch_err_tl1_paddrs[cp->cpu_id] != -1);
868 }
869 
870 /*
871  * Clear the error state registers for this CPU.
872  * For Cheetah+/Jaguar, just clear the AFSR but
873  * for Panther we also have to clear the AFSR_EXT.
874  */
875 void
876 set_cpu_error_state(ch_cpu_errors_t *cpu_error_regs)
877 {
878 	set_asyncflt(cpu_error_regs->afsr & ~C_AFSR_FATAL_ERRS);
879 	if (IS_PANTHER(cpunodes[CPU->cpu_id].implementation)) {
880 		set_afsr_ext(cpu_error_regs->afsr_ext & ~C_AFSR_EXT_FATAL_ERRS);
881 	}
882 }
883 
884 void
885 pn_cpu_log_diag_l2_info(ch_async_flt_t *ch_flt) {
886 	struct async_flt *aflt = (struct async_flt *)ch_flt;
887 	ch_ec_data_t *l2_data = &ch_flt->flt_diag_data.chd_l2_data[0];
888 	uint64_t faddr = aflt->flt_addr;
889 	uint8_t log_way_mask = 0;
890 	int i;
891 
892 	/*
893 	 * Only Panther CPUs have the additional L2$ data that needs
894 	 * to be logged here
895 	 */
896 	if (!IS_PANTHER(cpunodes[aflt->flt_inst].implementation))
897 		return;
898 
899 	/*
900 	 * We'll use a simple bit mask to keep track of which way(s)
901 	 * of the stored cache line we want to log. The idea is to
902 	 * log the entry if it is a valid line and it matches our
903 	 * fault AFAR. If no match is found, we will simply log all
904 	 * the ways.
905 	 */
906 	for (i = 0; i < PN_L2_NWAYS; i++)
907 		if (pn_matching_valid_l2_line(faddr, &l2_data[i]))
908 			log_way_mask |= (1 << i);
909 
910 	/* If no matching valid lines were found, we log all ways */
911 	if (log_way_mask == 0)
912 		log_way_mask = (1 << PN_L2_NWAYS) - 1;
913 
914 	/* Log the cache lines */
915 	for (i = 0; i < PN_L2_NWAYS; i++)
916 		if (log_way_mask & (1 << i))
917 			l2_data[i].ec_logflag = EC_LOGFLAG_MAGIC;
918 }
919 
920 /*
921  * For this routine to return true, the L2 tag in question must be valid
922  * and the tag PA must match the fault address (faddr) assuming the correct
923  * index is being used.
924  */
925 static int
926 pn_matching_valid_l2_line(uint64_t faddr, ch_ec_data_t *clo_l2_data) {
927 	if ((!PN_L2_LINE_INVALID(clo_l2_data->ec_tag)) &&
928 	((faddr & P2ALIGN(C_AFAR_PA, PN_L2_SET_SIZE)) ==
929 	    PN_L2TAG_TO_PA(clo_l2_data->ec_tag)))
930 		return (1);
931 	return (0);
932 }
933 
934 /*
935  * This array is used to convert the 3 digit PgSz encoding (as used in
936  * various MMU registers such as MMU_TAG_ACCESS_EXT) into the corresponding
937  * page size.
938  */
939 static uint64_t tlb_pgsz_to_size[] = {
940 	/* 000 = 8KB: */
941 	0x2000,
942 	/* 001 = 64KB: */
943 	0x10000,
944 	/* 010 = 512KB: */
945 	0x80000,
946 	/* 011 = 4MB: */
947 	0x400000,
948 	/* 100 = 32MB: */
949 	0x2000000,
950 	/* 101 = 256MB: */
951 	0x10000000,
952 	/* undefined for encodings 110 and 111: */
953 	0, 0
954 };
955 
956 /*
957  * The itlb_parity_trap and dtlb_parity_trap handlers transfer control here
958  * after collecting logout information related to the TLB parity error and
959  * flushing the offending TTE entries from the ITLB or DTLB.
960  *
961  * DTLB traps which occur at TL>0 are not recoverable because we will most
962  * likely be corrupting some other trap handler's alternate globals. As
963  * such, we simply panic here when that happens. ITLB parity errors are
964  * not expected to happen at TL>0.
965  */
966 void
967 cpu_tlb_parity_error(struct regs *rp, ulong_t trap_va, ulong_t tlb_info) {
968 	ch_async_flt_t ch_flt;
969 	struct async_flt *aflt;
970 	pn_tlb_logout_t *tlop = NULL;
971 	int immu_parity = (tlb_info & PN_TLO_INFO_IMMU) != 0;
972 	int tl1_trap = (tlb_info & PN_TLO_INFO_TL1) != 0;
973 	char *error_class;
974 
975 	bzero(&ch_flt, sizeof (ch_async_flt_t));
976 
977 	/*
978 	 * Get the CPU log out info. If we can't find our CPU private
979 	 * pointer, or if the logout information does not correspond to
980 	 * this error, then we will have to make due without detailed
981 	 * logout information.
982 	 */
983 	if (CPU_PRIVATE(CPU)) {
984 		tlop = CPU_PRIVATE_PTR(CPU, chpr_tlb_logout);
985 		if ((tlop->tlo_addr != trap_va) ||
986 		    (tlop->tlo_info != tlb_info))
987 			tlop = NULL;
988 	}
989 
990 	if (tlop) {
991 		ch_flt.tlb_diag_data = *tlop;
992 
993 		/* Zero out + invalidate TLB logout. */
994 		bzero(tlop, sizeof (pn_tlb_logout_t));
995 		tlop->tlo_addr = LOGOUT_INVALID;
996 	} else {
997 		/*
998 		 * Copy what logout information we have and mark
999 		 * it incomplete.
1000 		 */
1001 		ch_flt.flt_data_incomplete = 1;
1002 		ch_flt.tlb_diag_data.tlo_info = tlb_info;
1003 		ch_flt.tlb_diag_data.tlo_addr = trap_va;
1004 	}
1005 
1006 	/*
1007 	 * Log the error.
1008 	 */
1009 	aflt = (struct async_flt *)&ch_flt;
1010 	aflt->flt_id = gethrtime_waitfree();
1011 	aflt->flt_bus_id = getprocessorid();
1012 	aflt->flt_inst = CPU->cpu_id;
1013 	aflt->flt_pc = (caddr_t)rp->r_pc;
1014 	aflt->flt_addr = trap_va;
1015 	aflt->flt_prot = AFLT_PROT_NONE;
1016 	aflt->flt_class = CPU_FAULT;
1017 	aflt->flt_priv = (rp->r_tstate & TSTATE_PRIV) ?  1 : 0;
1018 	aflt->flt_tl = tl1_trap ? 1 : 0;
1019 	aflt->flt_panic = tl1_trap ? 1 : 0;
1020 
1021 	if (immu_parity) {
1022 		aflt->flt_status = ECC_ITLB_TRAP;
1023 		ch_flt.flt_type = CPU_ITLB_PARITY;
1024 		error_class = FM_EREPORT_CPU_USIII_ITLBPE;
1025 		aflt->flt_payload = FM_EREPORT_PAYLOAD_ITLB_PE;
1026 	} else {
1027 		aflt->flt_status = ECC_DTLB_TRAP;
1028 		ch_flt.flt_type = CPU_DTLB_PARITY;
1029 		error_class = FM_EREPORT_CPU_USIII_DTLBPE;
1030 		aflt->flt_payload = FM_EREPORT_PAYLOAD_DTLB_PE;
1031 	}
1032 
1033 	/*
1034 	 * The TLB entries have already been flushed by the TL1 trap
1035 	 * handler so at this point the only thing left to do is log
1036 	 * the error message.
1037 	 */
1038 	if (aflt->flt_panic) {
1039 		cpu_errorq_dispatch(error_class, (void *)&ch_flt,
1040 		    sizeof (ch_async_flt_t), ue_queue, aflt->flt_panic);
1041 		/*
1042 		 * Panic here if aflt->flt_panic has been set.  Enqueued
1043 		 * errors will be logged as part of the panic flow.
1044 		 */
1045 		fm_panic("%sError(s)", immu_parity ? "ITLBPE " : "DTLBPE ");
1046 	} else {
1047 		cpu_errorq_dispatch(error_class, (void *)&ch_flt,
1048 		    sizeof (ch_async_flt_t), ce_queue, aflt->flt_panic);
1049 	}
1050 }
1051 
1052 /*
1053  * This routine is called when a TLB parity error event is 'ue_drain'ed
1054  * or 'ce_drain'ed from the errorq.
1055  */
1056 void
1057 cpu_async_log_tlb_parity_err(void *flt) {
1058 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)flt;
1059 	struct async_flt *aflt = (struct async_flt *)flt;
1060 #ifdef lint
1061 	aflt = aflt;
1062 #endif
1063 
1064 	/*
1065 	 * We only capture TLB information if we encountered
1066 	 * a TLB parity error and Panther is the only CPU which
1067 	 * can detect a TLB parity error.
1068 	 */
1069 	ASSERT(IS_PANTHER(cpunodes[aflt->flt_inst].implementation));
1070 	ASSERT((ch_flt->flt_type == CPU_ITLB_PARITY) ||
1071 	    (ch_flt->flt_type == CPU_DTLB_PARITY));
1072 
1073 	if (ch_flt->flt_data_incomplete == 0) {
1074 		if (ch_flt->flt_type == CPU_ITLB_PARITY)
1075 			ch_flt->tlb_diag_data.tlo_logflag = IT_LOGFLAG_MAGIC;
1076 		else /* parity error is in DTLB */
1077 			ch_flt->tlb_diag_data.tlo_logflag = DT_LOGFLAG_MAGIC;
1078 	}
1079 }
1080 
1081 /*
1082  * Add L1 Prefetch cache data to the ereport payload.
1083  */
1084 void
1085 cpu_payload_add_pcache(struct async_flt *aflt, nvlist_t *nvl)
1086 {
1087 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
1088 	ch_pc_data_t *pcp;
1089 	ch_pc_data_t pcdata[CH_PCACHE_NWAY];
1090 	uint_t nelem;
1091 	int i, ways_logged = 0;
1092 
1093 	/*
1094 	 * We only capture P$ information if we encountered
1095 	 * a P$ parity error and Panther is the only CPU which
1096 	 * can detect a P$ parity error.
1097 	 */
1098 	ASSERT(IS_PANTHER(cpunodes[aflt->flt_inst].implementation));
1099 	for (i = 0; i < CH_PCACHE_NWAY; i++) {
1100 		pcp = &ch_flt->parity_data.dpe.cpl_pc[i];
1101 		if (pcp->pc_logflag == PC_LOGFLAG_MAGIC) {
1102 			bcopy(pcp, &pcdata[ways_logged],
1103 				sizeof (ch_pc_data_t));
1104 			ways_logged++;
1105 		}
1106 	}
1107 
1108 	/*
1109 	 * Add the pcache data to the payload.
1110 	 */
1111 	fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1P_WAYS,
1112 	    DATA_TYPE_UINT8, (uint8_t)ways_logged, NULL);
1113 	if (ways_logged != 0) {
1114 		nelem = sizeof (ch_pc_data_t) / sizeof (uint64_t) * ways_logged;
1115 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_L1P_DATA,
1116 		    DATA_TYPE_UINT64_ARRAY, nelem, (uint64_t *)pcdata, NULL);
1117 	}
1118 }
1119 
1120 /*
1121  * Add TLB diagnostic data to the ereport payload.
1122  */
1123 void
1124 cpu_payload_add_tlb(struct async_flt *aflt, nvlist_t *nvl)
1125 {
1126 	ch_async_flt_t *ch_flt = (ch_async_flt_t *)aflt;
1127 	uint8_t num_entries, tlb_data_words;
1128 
1129 	/*
1130 	 * We only capture TLB information if we encountered
1131 	 * a TLB parity error and Panther is the only CPU which
1132 	 * can detect a TLB parity error.
1133 	 */
1134 	ASSERT(IS_PANTHER(cpunodes[aflt->flt_inst].implementation));
1135 	ASSERT((ch_flt->flt_type == CPU_ITLB_PARITY) ||
1136 	    (ch_flt->flt_type == CPU_DTLB_PARITY));
1137 
1138 	if (ch_flt->flt_type == CPU_ITLB_PARITY) {
1139 		num_entries = (uint8_t)(PN_ITLB_NWAYS * PN_NUM_512_ITLBS);
1140 		tlb_data_words = sizeof (ch_tte_entry_t) / sizeof (uint64_t) *
1141 		    num_entries;
1142 
1143 		/*
1144 		 * Add the TLB diagnostic data to the payload
1145 		 * if it was collected.
1146 		 */
1147 		if (ch_flt->tlb_diag_data.tlo_logflag == IT_LOGFLAG_MAGIC) {
1148 			fm_payload_set(nvl,
1149 			    FM_EREPORT_PAYLOAD_NAME_ITLB_ENTRIES,
1150 			    DATA_TYPE_UINT8, num_entries, NULL);
1151 			fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_ITLB_DATA,
1152 			    DATA_TYPE_UINT64_ARRAY, tlb_data_words,
1153 			    (uint64_t *)ch_flt->tlb_diag_data.tlo_itlb_tte,
1154 			    NULL);
1155 		}
1156 	} else {
1157 		num_entries = (uint8_t)(PN_DTLB_NWAYS * PN_NUM_512_DTLBS);
1158 		tlb_data_words = sizeof (ch_tte_entry_t) / sizeof (uint64_t) *
1159 		    num_entries;
1160 
1161 		fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_VA,
1162 		    DATA_TYPE_UINT64, ch_flt->tlb_diag_data.tlo_addr, NULL);
1163 
1164 		/*
1165 		 * Add the TLB diagnostic data to the payload
1166 		 * if it was collected.
1167 		 */
1168 		if (ch_flt->tlb_diag_data.tlo_logflag == DT_LOGFLAG_MAGIC) {
1169 			fm_payload_set(nvl,
1170 			    FM_EREPORT_PAYLOAD_NAME_DTLB_ENTRIES,
1171 			    DATA_TYPE_UINT8, num_entries, NULL);
1172 			fm_payload_set(nvl, FM_EREPORT_PAYLOAD_NAME_DTLB_DATA,
1173 			    DATA_TYPE_UINT64_ARRAY, tlb_data_words,
1174 			    (uint64_t *)ch_flt->tlb_diag_data.tlo_dtlb_tte,
1175 			    NULL);
1176 		}
1177 	}
1178 }
1179 
1180 /*
1181  * Panther Cache Scrubbing:
1182  *
1183  * In Jaguar, the E$ was split between cores, so the scrubber must run on both
1184  * cores.  For Panther, however, the L2$ and L3$ are shared across cores.
1185  * Therefore, the E$ scrubber only needs to run on one of the two cores.
1186  *
1187  * There are four possible states for the E$ scrubber:
1188  *
1189  * 0. If both cores are offline, add core 0 to cpu_offline_set so that
1190  *    the offline scrubber will run on it.
1191  * 1. If core 0 is online and core 1 off, we run the scrubber on core 0.
1192  * 2. If core 1 is online and core 0 off, we move the scrubber to run
1193  *    on core 1.
1194  * 3. If both cores are online, only run the scrubber on core 0.
1195  *
1196  * These states are enumerated by the SCRUBBER_[BOTH|CORE|NEITHER]_* defines
1197  * above.  One of those values is stored in
1198  * chpr_scrub_misc->chsm_core_state on each core.
1199  *
1200  * Also note that, for Panther, ecache_flush_line() will flush out the L2$
1201  * before the E$, so the L2$ will be scrubbed by the E$ scrubber.  No
1202  * additional code is necessary to scrub the L2$.
1203  *
1204  * For all cpu types, whenever a cpu or core is offlined, add it to
1205  * cpu_offline_set so the necessary scrubbers can still run.  This is still
1206  * necessary on Panther so the D$ scrubber can still run.
1207  */
1208 /*ARGSUSED*/
1209 int
1210 cpu_scrub_cpu_setup(cpu_setup_t what, int cpuid, void *arg)
1211 {
1212 	processorid_t core_0_id;
1213 	cpu_t *core_cpus[2];
1214 	ch_scrub_misc_t *core_scrub[2];
1215 	int old_state, i;
1216 	int new_state = SCRUBBER_NEITHER_CORE_ONLINE;
1217 
1218 	switch (what) {
1219 	case CPU_ON:
1220 	case CPU_INIT:
1221 		CPUSET_DEL(cpu_offline_set, cpuid);
1222 		break;
1223 	case CPU_OFF:
1224 		CPUSET_ADD(cpu_offline_set, cpuid);
1225 		break;
1226 	default:
1227 		return (0);
1228 	}
1229 
1230 	if (!IS_PANTHER(cpunodes[cpuid].implementation)) {
1231 		return (0);
1232 	}
1233 
1234 	/*
1235 	 * Update the chsm_enable[CACHE_SCRUBBER_INFO_E] value
1236 	 * if necessary
1237 	 */
1238 	core_0_id = cmp_cpu_to_chip(cpuid);
1239 	core_cpus[0] = cpu_get(core_0_id);
1240 	core_cpus[1] = cpu_get_sibling_core(core_cpus[0]);
1241 
1242 	for (i = 0; i < 2; i++) {
1243 		if (core_cpus[i] == NULL) {
1244 			/*
1245 			 * This may happen during DR - one core is offlined
1246 			 * and completely unconfigured before the second
1247 			 * core is offlined.  Give up and return quietly,
1248 			 * since the second core should quickly be removed
1249 			 * anyways.
1250 			 */
1251 			return (0);
1252 		}
1253 		core_scrub[i] = CPU_PRIVATE_PTR(core_cpus[i], chpr_scrub_misc);
1254 	}
1255 
1256 	if (cpuid == (processorid_t)cmp_cpu_to_chip(cpuid)) {
1257 		/* cpuid is core 0 */
1258 		if (cpu_is_active(core_cpus[1])) {
1259 			new_state |= SCRUBBER_CORE_1_ONLINE;
1260 		}
1261 		if (what != CPU_OFF) {
1262 			new_state |= SCRUBBER_CORE_0_ONLINE;
1263 		}
1264 	} else {
1265 		/* cpuid is core 1 */
1266 		if (cpu_is_active(core_cpus[0])) {
1267 			new_state |= SCRUBBER_CORE_0_ONLINE;
1268 		}
1269 		if (what != CPU_OFF) {
1270 			new_state |= SCRUBBER_CORE_1_ONLINE;
1271 		}
1272 	}
1273 
1274 	old_state = core_scrub[0]->chsm_core_state;
1275 
1276 	if (old_state == new_state) {
1277 		return (0);
1278 	}
1279 
1280 	if (old_state == SCRUBBER_CORE_1_ONLINE) {
1281 		/*
1282 		 * We need to move the scrubber state from core 1
1283 		 * back to core 0.  This data is not protected by
1284 		 * locks, but the worst that can happen is some
1285 		 * lines are scrubbed multiple times.  chsm_oustanding is
1286 		 * set to 0 to make sure an interrupt is scheduled the
1287 		 * first time through do_scrub().
1288 		 */
1289 		core_scrub[0]->chsm_flush_index[CACHE_SCRUBBER_INFO_E] =
1290 		    core_scrub[1]->chsm_flush_index[CACHE_SCRUBBER_INFO_E];
1291 		core_scrub[0]->chsm_outstanding[CACHE_SCRUBBER_INFO_E] = 0;
1292 	}
1293 
1294 	switch (new_state) {
1295 	case SCRUBBER_NEITHER_CORE_ONLINE:
1296 	case SCRUBBER_BOTH_CORES_ONLINE:
1297 	case SCRUBBER_CORE_0_ONLINE:
1298 		core_scrub[1]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 0;
1299 		core_scrub[0]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 1;
1300 		break;
1301 
1302 	case SCRUBBER_CORE_1_ONLINE:
1303 	default:
1304 		/*
1305 		 * We need to move the scrubber state from core 0
1306 		 * to core 1.
1307 		 */
1308 		core_scrub[1]->chsm_flush_index[CACHE_SCRUBBER_INFO_E] =
1309 		    core_scrub[0]->chsm_flush_index[CACHE_SCRUBBER_INFO_E];
1310 		core_scrub[1]->chsm_outstanding[CACHE_SCRUBBER_INFO_E] = 0;
1311 
1312 		core_scrub[0]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 0;
1313 		core_scrub[1]->chsm_enable[CACHE_SCRUBBER_INFO_E] = 1;
1314 		break;
1315 	}
1316 
1317 	core_scrub[0]->chsm_core_state = new_state;
1318 	core_scrub[1]->chsm_core_state = new_state;
1319 	return (0);
1320 }
1321 
1322 /*
1323  * Returns a pointer to the cpu structure of the argument's sibling core.
1324  * If no sibling core can be found, return NULL.
1325  */
1326 static cpu_t *
1327 cpu_get_sibling_core(cpu_t *cpup)
1328 {
1329 	cpu_t *nextp;
1330 
1331 	if ((cpup == NULL) || (!cmp_cpu_is_cmp(cpup->cpu_id)))
1332 		return (NULL);
1333 
1334 	nextp = cpup->cpu_next_chip;
1335 	if ((nextp == NULL) || (nextp == cpup))
1336 		return (NULL);
1337 
1338 	return (nextp);
1339 }
1340