xref: /illumos-gate/usr/src/uts/sun4u/cpu/opl_olympus.c (revision a194faf8907a6722dcf10ad16c6ca72c9b7bd0ba)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Support for Olympus-C (SPARC64-VI) and Jupiter (SPARC64-VII).
28  */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #include <sys/types.h>
33 #include <sys/systm.h>
34 #include <sys/ddi.h>
35 #include <sys/sysmacros.h>
36 #include <sys/archsystm.h>
37 #include <sys/vmsystm.h>
38 #include <sys/machparam.h>
39 #include <sys/machsystm.h>
40 #include <sys/machthread.h>
41 #include <sys/cpu.h>
42 #include <sys/cmp.h>
43 #include <sys/elf_SPARC.h>
44 #include <vm/vm_dep.h>
45 #include <vm/hat_sfmmu.h>
46 #include <vm/seg_kpm.h>
47 #include <vm/seg_kmem.h>
48 #include <sys/cpuvar.h>
49 #include <sys/opl_olympus_regs.h>
50 #include <sys/opl_module.h>
51 #include <sys/async.h>
52 #include <sys/cmn_err.h>
53 #include <sys/debug.h>
54 #include <sys/dditypes.h>
55 #include <sys/cpu_module.h>
56 #include <sys/sysmacros.h>
57 #include <sys/intreg.h>
58 #include <sys/clock.h>
59 #include <sys/platform_module.h>
60 #include <sys/ontrap.h>
61 #include <sys/panic.h>
62 #include <sys/memlist.h>
63 #include <sys/ndifm.h>
64 #include <sys/ddifm.h>
65 #include <sys/fm/protocol.h>
66 #include <sys/fm/util.h>
67 #include <sys/fm/cpu/SPARC64-VI.h>
68 #include <sys/dtrace.h>
69 #include <sys/watchpoint.h>
70 #include <sys/promif.h>
71 
72 /*
73  * Internal functions.
74  */
75 static int cpu_sync_log_err(void *flt);
76 static void cpu_payload_add_aflt(struct async_flt *, nvlist_t *, nvlist_t *);
77 static void opl_cpu_sync_error(struct regs *, ulong_t, ulong_t, uint_t, uint_t);
78 static int  cpu_flt_in_memory(opl_async_flt_t *, uint64_t);
79 static int prom_SPARC64VII_support_enabled(void);
80 static void opl_ta3();
81 
82 /*
83  * Error counters resetting interval.
84  */
85 static int opl_async_check_interval = 60;		/* 1 min */
86 
87 uint_t cpu_impl_dual_pgsz = 1;
88 
89 /*
90  * PA[22:0] represent Displacement in Jupiter
91  * configuration space.
92  */
93 uint_t	root_phys_addr_lo_mask = 0x7fffffu;
94 
95 /*
96  * set in /etc/system to control logging of user BERR/TO's
97  */
98 int cpu_berr_to_verbose = 0;
99 
100 /*
101  * Set to 1 if booted with all Jupiter cpus (all-Jupiter features enabled).
102  */
103 int cpu_alljupiter = 0;
104 
105 static int min_ecache_size;
106 static uint_t priv_hcl_1;
107 static uint_t priv_hcl_2;
108 static uint_t priv_hcl_4;
109 static uint_t priv_hcl_8;
110 
111 /*
112  * Olympus error log
113  */
114 static opl_errlog_t	*opl_err_log;
115 
116 /*
117  * OPL ta 3 save area.
118  */
119 char	*opl_ta3_save;
120 
121 /*
122  * UE is classified into four classes (MEM, CHANNEL, CPU, PATH).
123  * No any other ecc_type_info insertion is allowed in between the following
124  * four UE classess.
125  */
126 ecc_type_to_info_t ecc_type_to_info[] = {
127 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
128 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
129 	FM_EREPORT_CPU_UE_MEM,
130 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
131 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
132 	FM_EREPORT_CPU_UE_CHANNEL,
133 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
134 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
135 	FM_EREPORT_CPU_UE_CPU,
136 	SFSR_UE,	"UE ",	(OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
137 	"Uncorrectable ECC",  FM_EREPORT_PAYLOAD_SYNC,
138 	FM_EREPORT_CPU_UE_PATH,
139 	SFSR_BERR, "BERR ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
140 	"Bus Error",  FM_EREPORT_PAYLOAD_SYNC,
141 	FM_EREPORT_CPU_BERR,
142 	SFSR_TO, "TO ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
143 	"Bus Timeout",  FM_EREPORT_PAYLOAD_SYNC,
144 	FM_EREPORT_CPU_BTO,
145 	SFSR_TLB_MUL, "TLB_MUL ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
146 	"TLB MultiHit",  FM_EREPORT_PAYLOAD_SYNC,
147 	FM_EREPORT_CPU_MTLB,
148 	SFSR_TLB_PRT, "TLB_PRT ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
149 	"TLB Parity",  FM_EREPORT_PAYLOAD_SYNC,
150 	FM_EREPORT_CPU_TLBP,
151 
152 	UGESR_IAUG_CRE, "IAUG_CRE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
153 	"IAUG CRE",  FM_EREPORT_PAYLOAD_URGENT,
154 	FM_EREPORT_CPU_CRE,
155 	UGESR_IAUG_TSBCTXT, "IAUG_TSBCTXT",
156 	OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
157 	"IAUG TSBCTXT",  FM_EREPORT_PAYLOAD_URGENT,
158 	FM_EREPORT_CPU_TSBCTX,
159 	UGESR_IUG_TSBP, "IUG_TSBP", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
160 	"IUG TSBP",  FM_EREPORT_PAYLOAD_URGENT,
161 	FM_EREPORT_CPU_TSBP,
162 	UGESR_IUG_PSTATE, "IUG_PSTATE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
163 	"IUG PSTATE",  FM_EREPORT_PAYLOAD_URGENT,
164 	FM_EREPORT_CPU_PSTATE,
165 	UGESR_IUG_TSTATE, "IUG_TSTATE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
166 	"IUG TSTATE",  FM_EREPORT_PAYLOAD_URGENT,
167 	FM_EREPORT_CPU_TSTATE,
168 	UGESR_IUG_F, "IUG_F", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
169 	"IUG FREG",  FM_EREPORT_PAYLOAD_URGENT,
170 	FM_EREPORT_CPU_IUG_F,
171 	UGESR_IUG_R, "IUG_R", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
172 	"IUG RREG",  FM_EREPORT_PAYLOAD_URGENT,
173 	FM_EREPORT_CPU_IUG_R,
174 	UGESR_AUG_SDC, "AUG_SDC", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
175 	"AUG SDC",  FM_EREPORT_PAYLOAD_URGENT,
176 	FM_EREPORT_CPU_SDC,
177 	UGESR_IUG_WDT, "IUG_WDT", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
178 	"IUG WDT",  FM_EREPORT_PAYLOAD_URGENT,
179 	FM_EREPORT_CPU_WDT,
180 	UGESR_IUG_DTLB, "IUG_DTLB", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
181 	"IUG DTLB",  FM_EREPORT_PAYLOAD_URGENT,
182 	FM_EREPORT_CPU_DTLB,
183 	UGESR_IUG_ITLB, "IUG_ITLB", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
184 	"IUG ITLB",  FM_EREPORT_PAYLOAD_URGENT,
185 	FM_EREPORT_CPU_ITLB,
186 	UGESR_IUG_COREERR, "IUG_COREERR",
187 	OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
188 	"IUG COREERR",  FM_EREPORT_PAYLOAD_URGENT,
189 	FM_EREPORT_CPU_CORE,
190 	UGESR_MULTI_DAE, "MULTI_DAE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
191 	"MULTI DAE",  FM_EREPORT_PAYLOAD_URGENT,
192 	FM_EREPORT_CPU_DAE,
193 	UGESR_MULTI_IAE, "MULTI_IAE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
194 	"MULTI IAE",  FM_EREPORT_PAYLOAD_URGENT,
195 	FM_EREPORT_CPU_IAE,
196 	UGESR_MULTI_UGE, "MULTI_UGE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
197 	"MULTI UGE",  FM_EREPORT_PAYLOAD_URGENT,
198 	FM_EREPORT_CPU_UGE,
199 	0,		NULL,		0,		0,
200 	NULL,  0,	   0,
201 };
202 
203 int (*p2get_mem_info)(int synd_code, uint64_t paddr,
204 		uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
205 		int *segsp, int *banksp, int *mcidp);
206 
207 
208 /*
209  * Setup trap handlers for 0xA, 0x32, 0x40 trap types
210  * and "ta 3" and "ta 4".
211  */
212 void
213 cpu_init_trap(void)
214 {
215 	OPL_SET_TRAP(tt0_iae, opl_serr_instr);
216 	OPL_SET_TRAP(tt1_iae, opl_serr_instr);
217 	OPL_SET_TRAP(tt0_dae, opl_serr_instr);
218 	OPL_SET_TRAP(tt1_dae, opl_serr_instr);
219 	OPL_SET_TRAP(tt0_asdat, opl_ugerr_instr);
220 	OPL_SET_TRAP(tt1_asdat, opl_ugerr_instr);
221 	OPL_SET_TRAP(tt0_flushw, opl_ta3_instr);
222 	OPL_PATCH_28(opl_cleanw_patch, opl_ta4_instr);
223 }
224 
225 static int
226 getintprop(pnode_t node, char *name, int deflt)
227 {
228 	int	value;
229 
230 	switch (prom_getproplen(node, name)) {
231 	case sizeof (int):
232 		(void) prom_getprop(node, name, (caddr_t)&value);
233 		break;
234 
235 	default:
236 		value = deflt;
237 		break;
238 	}
239 
240 	return (value);
241 }
242 
243 /*
244  * Set the magic constants of the implementation.
245  */
246 /*ARGSUSED*/
247 void
248 cpu_fiximp(pnode_t dnode)
249 {
250 	int i, a;
251 	extern int vac_size, vac_shift;
252 	extern uint_t vac_mask;
253 
254 	static struct {
255 		char	*name;
256 		int	*var;
257 		int	defval;
258 	} prop[] = {
259 		"l1-dcache-size", &dcache_size, OPL_DCACHE_SIZE,
260 		"l1-dcache-line-size", &dcache_linesize, OPL_DCACHE_LSIZE,
261 		"l1-icache-size", &icache_size, OPL_ICACHE_SIZE,
262 		"l1-icache-line-size", &icache_linesize, OPL_ICACHE_LSIZE,
263 		"l2-cache-size", &ecache_size, OPL_ECACHE_SIZE,
264 		"l2-cache-line-size", &ecache_alignsize, OPL_ECACHE_LSIZE,
265 		"l2-cache-associativity", &ecache_associativity, OPL_ECACHE_NWAY
266 	};
267 
268 	for (i = 0; i < sizeof (prop) / sizeof (prop[0]); i++)
269 		*prop[i].var = getintprop(dnode, prop[i].name, prop[i].defval);
270 
271 	ecache_setsize = ecache_size / ecache_associativity;
272 
273 	vac_size = OPL_VAC_SIZE;
274 	vac_mask = MMU_PAGEMASK & (vac_size - 1);
275 	i = 0; a = vac_size;
276 	while (a >>= 1)
277 		++i;
278 	vac_shift = i;
279 	shm_alignment = vac_size;
280 	vac = 1;
281 }
282 
283 /*
284  * Enable features for Jupiter-only domains.
285  */
286 void
287 cpu_fix_alljupiter(void)
288 {
289 	if (!prom_SPARC64VII_support_enabled()) {
290 		/*
291 		 * Do not enable all-Jupiter features and do not turn on
292 		 * the cpu_alljupiter flag.
293 		 */
294 		return;
295 	}
296 
297 	cpu_alljupiter = 1;
298 
299 	/*
300 	 * Enable ima hwcap for Jupiter-only domains.  DR will prevent
301 	 * addition of Olympus-C to all-Jupiter domains to preserve ima
302 	 * hwcap semantics.
303 	 */
304 	cpu_hwcap_flags |= AV_SPARC_IMA;
305 }
306 
307 #ifdef	OLYMPUS_C_REV_B_ERRATA_XCALL
308 /*
309  * Quick and dirty way to redefine locally in
310  * OPL the value of IDSR_BN_SETS to 31 instead
311  * of the standard 32 value. This is to workaround
312  * REV_B of Olympus_c processor's problem in handling
313  * more than 31 xcall broadcast.
314  */
315 #undef	IDSR_BN_SETS
316 #define	IDSR_BN_SETS    31
317 #endif	/* OLYMPUS_C_REV_B_ERRATA_XCALL */
318 
319 void
320 send_mondo_set(cpuset_t set)
321 {
322 	int lo, busy, nack, shipped = 0;
323 	uint16_t i, cpuids[IDSR_BN_SETS];
324 	uint64_t idsr, nackmask = 0, busymask, curnack, curbusy;
325 	uint64_t starttick, endtick, tick, lasttick;
326 #if (NCPU > IDSR_BN_SETS)
327 	int index = 0;
328 	int ncpuids = 0;
329 #endif
330 #ifdef	OLYMPUS_C_REV_A_ERRATA_XCALL
331 	int bn_sets = IDSR_BN_SETS;
332 	uint64_t ver;
333 
334 	ASSERT(NCPU > bn_sets);
335 #endif
336 
337 	ASSERT(!CPUSET_ISNULL(set));
338 	starttick = lasttick = gettick();
339 
340 #ifdef	OLYMPUS_C_REV_A_ERRATA_XCALL
341 	ver = ultra_getver();
342 	if (((ULTRA_VER_IMPL(ver)) == OLYMPUS_C_IMPL) &&
343 	    ((OLYMPUS_REV_MASK(ver)) == OLYMPUS_C_A))
344 		bn_sets = 1;
345 #endif
346 
347 #if (NCPU <= IDSR_BN_SETS)
348 	for (i = 0; i < NCPU; i++)
349 		if (CPU_IN_SET(set, i)) {
350 			shipit(i, shipped);
351 			nackmask |= IDSR_NACK_BIT(shipped);
352 			cpuids[shipped++] = i;
353 			CPUSET_DEL(set, i);
354 			if (CPUSET_ISNULL(set))
355 				break;
356 		}
357 	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
358 #else
359 	for (i = 0; i < NCPU; i++)
360 		if (CPU_IN_SET(set, i)) {
361 			ncpuids++;
362 
363 			/*
364 			 * Ship only to the first (IDSR_BN_SETS) CPUs.  If we
365 			 * find we have shipped to more than (IDSR_BN_SETS)
366 			 * CPUs, set "index" to the highest numbered CPU in
367 			 * the set so we can ship to other CPUs a bit later on.
368 			 */
369 #ifdef	OLYMPUS_C_REV_A_ERRATA_XCALL
370 			if (shipped < bn_sets) {
371 #else
372 			if (shipped < IDSR_BN_SETS) {
373 #endif
374 				shipit(i, shipped);
375 				nackmask |= IDSR_NACK_BIT(shipped);
376 				cpuids[shipped++] = i;
377 				CPUSET_DEL(set, i);
378 				if (CPUSET_ISNULL(set))
379 					break;
380 			} else
381 				index = (int)i;
382 		}
383 
384 	CPU_STATS_ADDQ(CPU, sys, xcalls, ncpuids);
385 #endif
386 
387 	busymask = IDSR_NACK_TO_BUSY(nackmask);
388 	busy = nack = 0;
389 	endtick = starttick + xc_tick_limit;
390 	for (;;) {
391 		idsr = getidsr();
392 #if (NCPU <= IDSR_BN_SETS)
393 		if (idsr == 0)
394 			break;
395 #else
396 		if (idsr == 0 && shipped == ncpuids)
397 			break;
398 #endif
399 		tick = gettick();
400 		/*
401 		 * If there is a big jump between the current tick
402 		 * count and lasttick, we have probably hit a break
403 		 * point.  Adjust endtick accordingly to avoid panic.
404 		 */
405 		if (tick > (lasttick + xc_tick_jump_limit))
406 			endtick += (tick - lasttick);
407 		lasttick = tick;
408 		if (tick > endtick) {
409 			if (panic_quiesce)
410 				return;
411 			cmn_err(CE_CONT, "send mondo timeout [%d NACK %d "
412 			    "BUSY]\nIDSR 0x%" PRIx64 "  cpuids:",
413 			    nack, busy, idsr);
414 #ifdef	OLYMPUS_C_REV_A_ERRATA_XCALL
415 			for (i = 0; i < bn_sets; i++) {
416 #else
417 			for (i = 0; i < IDSR_BN_SETS; i++) {
418 #endif
419 				if (idsr & (IDSR_NACK_BIT(i) |
420 				    IDSR_BUSY_BIT(i))) {
421 					cmn_err(CE_CONT, " 0x%x", cpuids[i]);
422 				}
423 			}
424 			cmn_err(CE_CONT, "\n");
425 			cmn_err(CE_PANIC, "send_mondo_set: timeout");
426 		}
427 		curnack = idsr & nackmask;
428 		curbusy = idsr & busymask;
429 
430 #ifdef OLYMPUS_C_REV_B_ERRATA_XCALL
431 		/*
432 		 * Only proceed to send more xcalls if all the
433 		 * cpus in the previous IDSR_BN_SETS were completed.
434 		 */
435 		if (curbusy) {
436 			busy++;
437 			continue;
438 		}
439 #endif /* OLYMPUS_C_REV_B_ERRATA_XCALL */
440 
441 #if (NCPU > IDSR_BN_SETS)
442 		if (shipped < ncpuids) {
443 			uint64_t cpus_left;
444 			uint16_t next = (uint16_t)index;
445 
446 			cpus_left = ~(IDSR_NACK_TO_BUSY(curnack) | curbusy) &
447 			    busymask;
448 
449 			if (cpus_left) {
450 				do {
451 					/*
452 					 * Sequence through and ship to the
453 					 * remainder of the CPUs in the system
454 					 * (e.g. other than the first
455 					 * (IDSR_BN_SETS)) in reverse order.
456 					 */
457 					lo = lowbit(cpus_left) - 1;
458 					i = IDSR_BUSY_IDX(lo);
459 					shipit(next, i);
460 					shipped++;
461 					cpuids[i] = next;
462 
463 					/*
464 					 * If we've processed all the CPUs,
465 					 * exit the loop now and save
466 					 * instructions.
467 					 */
468 					if (shipped == ncpuids)
469 						break;
470 
471 					for ((index = ((int)next - 1));
472 					    index >= 0; index--)
473 						if (CPU_IN_SET(set, index)) {
474 							next = (uint16_t)index;
475 							break;
476 						}
477 
478 					cpus_left &= ~(1ull << lo);
479 				} while (cpus_left);
480 				continue;
481 			}
482 		}
483 #endif
484 #ifndef	OLYMPUS_C_REV_B_ERRATA_XCALL
485 		if (curbusy) {
486 			busy++;
487 			continue;
488 		}
489 #endif	/* OLYMPUS_C_REV_B_ERRATA_XCALL */
490 #ifdef SEND_MONDO_STATS
491 		{
492 			int n = gettick() - starttick;
493 			if (n < 8192)
494 				x_nack_stimes[n >> 7]++;
495 		}
496 #endif
497 		while (gettick() < (tick + sys_clock_mhz))
498 			;
499 		do {
500 			lo = lowbit(curnack) - 1;
501 			i = IDSR_NACK_IDX(lo);
502 			shipit(cpuids[i], i);
503 			curnack &= ~(1ull << lo);
504 		} while (curnack);
505 		nack++;
506 		busy = 0;
507 	}
508 #ifdef SEND_MONDO_STATS
509 	{
510 		int n = gettick() - starttick;
511 		if (n < 8192)
512 			x_set_stimes[n >> 7]++;
513 		else
514 			x_set_ltimes[(n >> 13) & 0xf]++;
515 	}
516 	x_set_cpus[shipped]++;
517 #endif
518 }
519 
520 /*
521  * Cpu private initialization.
522  */
523 void
524 cpu_init_private(struct cpu *cp)
525 {
526 	if (!((IS_OLYMPUS_C(cpunodes[cp->cpu_id].implementation)) ||
527 	    (IS_JUPITER(cpunodes[cp->cpu_id].implementation)))) {
528 		cmn_err(CE_PANIC, "CPU%d Impl %d: Only SPARC64-VI(I) is "
529 		    "supported", cp->cpu_id,
530 		    cpunodes[cp->cpu_id].implementation);
531 	}
532 
533 	adjust_hw_copy_limits(cpunodes[cp->cpu_id].ecache_size);
534 }
535 
536 void
537 cpu_setup(void)
538 {
539 	extern int at_flags;
540 	extern int cpc_has_overflow_intr;
541 	uint64_t cpu0_log;
542 	extern	 uint64_t opl_cpu0_err_log;
543 
544 	/*
545 	 * Initialize Error log Scratch register for error handling.
546 	 */
547 
548 	cpu0_log = va_to_pa(&opl_cpu0_err_log);
549 	opl_error_setup(cpu0_log);
550 
551 	/*
552 	 * Enable MMU translating multiple page sizes for
553 	 * sITLB and sDTLB.
554 	 */
555 	opl_mpg_enable();
556 
557 	/*
558 	 * Setup chip-specific trap handlers.
559 	 */
560 	cpu_init_trap();
561 
562 	cache |= (CACHE_VAC | CACHE_PTAG | CACHE_IOCOHERENT);
563 
564 	at_flags = EF_SPARC_32PLUS | EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3;
565 
566 	/*
567 	 * Due to the number of entries in the fully-associative tlb
568 	 * this may have to be tuned lower than in spitfire.
569 	 */
570 	pp_slots = MIN(8, MAXPP_SLOTS);
571 
572 	/*
573 	 * Block stores do not invalidate all pages of the d$, pagecopy
574 	 * et. al. need virtual translations with virtual coloring taken
575 	 * into consideration.  prefetch/ldd will pollute the d$ on the
576 	 * load side.
577 	 */
578 	pp_consistent_coloring = PPAGE_STORE_VCOLORING | PPAGE_LOADS_POLLUTE;
579 
580 	if (use_page_coloring) {
581 		do_pg_coloring = 1;
582 	}
583 
584 	isa_list =
585 	    "sparcv9+vis2 sparcv9+vis sparcv9 "
586 	    "sparcv8plus+vis2 sparcv8plus+vis sparcv8plus "
587 	    "sparcv8 sparcv8-fsmuld sparcv7 sparc";
588 
589 	cpu_hwcap_flags = AV_SPARC_VIS | AV_SPARC_VIS2 |
590 	    AV_SPARC_POPC | AV_SPARC_FMAF;
591 
592 	/*
593 	 * On SPARC64-VI, there's no hole in the virtual address space
594 	 */
595 	hole_start = hole_end = 0;
596 
597 	/*
598 	 * The kpm mapping window.
599 	 * kpm_size:
600 	 *	The size of a single kpm range.
601 	 *	The overall size will be: kpm_size * vac_colors.
602 	 * kpm_vbase:
603 	 *	The virtual start address of the kpm range within the kernel
604 	 *	virtual address space. kpm_vbase has to be kpm_size aligned.
605 	 */
606 	kpm_size = (size_t)(128ull * 1024 * 1024 * 1024 * 1024); /* 128TB */
607 	kpm_size_shift = 47;
608 	kpm_vbase = (caddr_t)0x8000000000000000ull; /* 8EB */
609 	kpm_smallpages = 1;
610 
611 	/*
612 	 * The traptrace code uses either %tick or %stick for
613 	 * timestamping.  We have %stick so we can use it.
614 	 */
615 	traptrace_use_stick = 1;
616 
617 	/*
618 	 * SPARC64-VI has a performance counter overflow interrupt
619 	 */
620 	cpc_has_overflow_intr = 1;
621 
622 	/*
623 	 * Declare that this architecture/cpu combination does not support
624 	 * fpRAS.
625 	 */
626 	fpras_implemented = 0;
627 }
628 
629 /*
630  * Called by setcpudelay
631  */
632 void
633 cpu_init_tick_freq(void)
634 {
635 	/*
636 	 * For SPARC64-VI we want to use the system clock rate as
637 	 * the basis for low level timing, due to support of mixed
638 	 * speed CPUs and power managment.
639 	 */
640 	if (system_clock_freq == 0)
641 		cmn_err(CE_PANIC, "setcpudelay: invalid system_clock_freq");
642 
643 	sys_tick_freq = system_clock_freq;
644 }
645 
646 #ifdef SEND_MONDO_STATS
647 uint32_t x_one_stimes[64];
648 uint32_t x_one_ltimes[16];
649 uint32_t x_set_stimes[64];
650 uint32_t x_set_ltimes[16];
651 uint32_t x_set_cpus[NCPU];
652 uint32_t x_nack_stimes[64];
653 #endif
654 
655 /*
656  * Note: A version of this function is used by the debugger via the KDI,
657  * and must be kept in sync with this version.  Any changes made to this
658  * function to support new chips or to accomodate errata must also be included
659  * in the KDI-specific version.  See us3_kdi.c.
660  */
661 void
662 send_one_mondo(int cpuid)
663 {
664 	int busy, nack;
665 	uint64_t idsr, starttick, endtick, tick, lasttick;
666 	uint64_t busymask;
667 
668 	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
669 	starttick = lasttick = gettick();
670 	shipit(cpuid, 0);
671 	endtick = starttick + xc_tick_limit;
672 	busy = nack = 0;
673 	busymask = IDSR_BUSY;
674 	for (;;) {
675 		idsr = getidsr();
676 		if (idsr == 0)
677 			break;
678 
679 		tick = gettick();
680 		/*
681 		 * If there is a big jump between the current tick
682 		 * count and lasttick, we have probably hit a break
683 		 * point.  Adjust endtick accordingly to avoid panic.
684 		 */
685 		if (tick > (lasttick + xc_tick_jump_limit))
686 			endtick += (tick - lasttick);
687 		lasttick = tick;
688 		if (tick > endtick) {
689 			if (panic_quiesce)
690 				return;
691 			cmn_err(CE_PANIC, "send mondo timeout (target 0x%x) "
692 			    "[%d NACK %d BUSY]", cpuid, nack, busy);
693 		}
694 
695 		if (idsr & busymask) {
696 			busy++;
697 			continue;
698 		}
699 		drv_usecwait(1);
700 		shipit(cpuid, 0);
701 		nack++;
702 		busy = 0;
703 	}
704 #ifdef SEND_MONDO_STATS
705 	{
706 		int n = gettick() - starttick;
707 		if (n < 8192)
708 			x_one_stimes[n >> 7]++;
709 		else
710 			x_one_ltimes[(n >> 13) & 0xf]++;
711 	}
712 #endif
713 }
714 
715 /*
716  * init_mmu_page_sizes is set to one after the bootup time initialization
717  * via mmu_init_mmu_page_sizes, to indicate that mmu_page_sizes has a
718  * valid value.
719  *
720  * mmu_disable_ism_large_pages and mmu_disable_large_pages are the mmu-specific
721  * versions of disable_ism_large_pages and disable_large_pages, and feed back
722  * into those two hat variables at hat initialization time.
723  *
724  */
725 int init_mmu_page_sizes = 0;
726 
727 static uint_t mmu_disable_large_pages = 0;
728 static uint_t mmu_disable_ism_large_pages = ((1 << TTE64K) |
729 	(1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M));
730 static uint_t mmu_disable_auto_data_large_pages = ((1 << TTE64K) |
731 	(1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M));
732 static uint_t mmu_disable_auto_text_large_pages = ((1 << TTE64K) |
733 	(1 << TTE512K));
734 
735 /*
736  * Re-initialize mmu_page_sizes and friends, for SPARC64-VI mmu support.
737  * Called during very early bootup from check_cpus_set().
738  * Can be called to verify that mmu_page_sizes are set up correctly.
739  *
740  * Set Olympus defaults. We do not use the function parameter.
741  */
742 /*ARGSUSED*/
743 int
744 mmu_init_mmu_page_sizes(int32_t not_used)
745 {
746 	if (!init_mmu_page_sizes) {
747 		mmu_page_sizes = MMU_PAGE_SIZES;
748 		mmu_hashcnt = MAX_HASHCNT;
749 		mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
750 		mmu_exported_pagesize_mask = (1 << TTE8K) |
751 		    (1 << TTE64K) | (1 << TTE512K) | (1 << TTE4M) |
752 		    (1 << TTE32M) | (1 << TTE256M);
753 		init_mmu_page_sizes = 1;
754 		return (0);
755 	}
756 	return (1);
757 }
758 
759 /* SPARC64-VI worst case DTLB parameters */
760 #ifndef	LOCKED_DTLB_ENTRIES
761 #define	LOCKED_DTLB_ENTRIES	5	/* 2 user TSBs, 2 nucleus, + OBP */
762 #endif
763 #define	TOTAL_DTLB_ENTRIES	32
764 #define	AVAIL_32M_ENTRIES	0
765 #define	AVAIL_256M_ENTRIES	0
766 #define	AVAIL_DTLB_ENTRIES	(TOTAL_DTLB_ENTRIES - LOCKED_DTLB_ENTRIES)
767 static uint64_t ttecnt_threshold[MMU_PAGE_SIZES] = {
768 	AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES,
769 	AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES,
770 	AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES};
771 
772 /*
773  * The function returns the mmu-specific values for the
774  * hat's disable_large_pages, disable_ism_large_pages, and
775  * disable_auto_data_large_pages and
776  * disable_text_data_large_pages variables.
777  */
778 uint_t
779 mmu_large_pages_disabled(uint_t flag)
780 {
781 	uint_t pages_disable = 0;
782 	extern int use_text_pgsz64K;
783 	extern int use_text_pgsz512K;
784 
785 	if (flag == HAT_LOAD) {
786 		pages_disable =  mmu_disable_large_pages;
787 	} else if (flag == HAT_LOAD_SHARE) {
788 		pages_disable = mmu_disable_ism_large_pages;
789 	} else if (flag == HAT_AUTO_DATA) {
790 		pages_disable = mmu_disable_auto_data_large_pages;
791 	} else if (flag == HAT_AUTO_TEXT) {
792 		pages_disable = mmu_disable_auto_text_large_pages;
793 		if (use_text_pgsz512K) {
794 			pages_disable &= ~(1 << TTE512K);
795 		}
796 		if (use_text_pgsz64K) {
797 			pages_disable &= ~(1 << TTE64K);
798 		}
799 	}
800 	return (pages_disable);
801 }
802 
803 /*
804  * mmu_init_large_pages is called with the desired ism_pagesize parameter.
805  * It may be called from set_platform_defaults, if some value other than 32M
806  * is desired.  mmu_ism_pagesize is the tunable.  If it has a bad value,
807  * then only warn, since it would be bad form to panic due to a user typo.
808  *
809  * The function re-initializes the mmu_disable_ism_large_pages variable.
810  */
811 void
812 mmu_init_large_pages(size_t ism_pagesize)
813 {
814 	switch (ism_pagesize) {
815 	case MMU_PAGESIZE4M:
816 		mmu_disable_ism_large_pages = ((1 << TTE64K) |
817 		    (1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M));
818 		mmu_disable_auto_data_large_pages = ((1 << TTE64K) |
819 		    (1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M));
820 		break;
821 	case MMU_PAGESIZE32M:
822 		mmu_disable_ism_large_pages = ((1 << TTE64K) |
823 		    (1 << TTE512K) | (1 << TTE256M));
824 		mmu_disable_auto_data_large_pages = ((1 << TTE64K) |
825 		    (1 << TTE512K) | (1 << TTE4M) | (1 << TTE256M));
826 		adjust_data_maxlpsize(ism_pagesize);
827 		break;
828 	case MMU_PAGESIZE256M:
829 		mmu_disable_ism_large_pages = ((1 << TTE64K) |
830 		    (1 << TTE512K) | (1 << TTE32M));
831 		mmu_disable_auto_data_large_pages = ((1 << TTE64K) |
832 		    (1 << TTE512K) | (1 << TTE4M) | (1 << TTE32M));
833 		adjust_data_maxlpsize(ism_pagesize);
834 		break;
835 	default:
836 		cmn_err(CE_WARN, "Unrecognized mmu_ism_pagesize value 0x%lx",
837 		    ism_pagesize);
838 		break;
839 	}
840 }
841 
842 /*
843  * Function to reprogram the TLBs when page sizes used
844  * by a process change significantly.
845  */
846 void
847 mmu_setup_page_sizes(struct hat *hat, uint64_t *ttecnt, uint8_t *tmp_pgsz)
848 {
849 	uint8_t pgsz0, pgsz1;
850 
851 	/*
852 	 * Don't program 2nd dtlb for kernel and ism hat
853 	 */
854 	ASSERT(hat->sfmmu_ismhat == NULL);
855 	ASSERT(hat != ksfmmup);
856 
857 	/*
858 	 * hat->sfmmu_pgsz[] is an array whose elements
859 	 * contain a sorted order of page sizes.  Element
860 	 * 0 is the most commonly used page size, followed
861 	 * by element 1, and so on.
862 	 *
863 	 * ttecnt[] is an array of per-page-size page counts
864 	 * mapped into the process.
865 	 *
866 	 * If the HAT's choice for page sizes is unsuitable,
867 	 * we can override it here.  The new values written
868 	 * to the array will be handed back to us later to
869 	 * do the actual programming of the TLB hardware.
870 	 *
871 	 */
872 	pgsz0 = (uint8_t)MIN(tmp_pgsz[0], tmp_pgsz[1]);
873 	pgsz1 = (uint8_t)MAX(tmp_pgsz[0], tmp_pgsz[1]);
874 
875 	/*
876 	 * This implements PAGESIZE programming of the sTLB
877 	 * if large TTE counts don't exceed the thresholds.
878 	 */
879 	if (ttecnt[pgsz0] < ttecnt_threshold[pgsz0])
880 		pgsz0 = page_szc(MMU_PAGESIZE);
881 	if (ttecnt[pgsz1] < ttecnt_threshold[pgsz1])
882 		pgsz1 = page_szc(MMU_PAGESIZE);
883 	tmp_pgsz[0] = pgsz0;
884 	tmp_pgsz[1] = pgsz1;
885 	/* otherwise, accept what the HAT chose for us */
886 }
887 
888 /*
889  * The HAT calls this function when an MMU context is allocated so that we
890  * can reprogram the large TLBs appropriately for the new process using
891  * the context.
892  *
893  * The caller must hold the HAT lock.
894  */
895 void
896 mmu_set_ctx_page_sizes(struct hat *hat)
897 {
898 	uint8_t pgsz0, pgsz1;
899 	uint8_t new_cext;
900 
901 	ASSERT(sfmmu_hat_lock_held(hat));
902 	/*
903 	 * Don't program 2nd dtlb for kernel and ism hat
904 	 */
905 	if (hat->sfmmu_ismhat || hat == ksfmmup)
906 		return;
907 
908 	/*
909 	 * If supported, reprogram the TLBs to a larger pagesize.
910 	 */
911 	pgsz0 = hat->sfmmu_pgsz[0];
912 	pgsz1 = hat->sfmmu_pgsz[1];
913 	ASSERT(pgsz0 < mmu_page_sizes);
914 	ASSERT(pgsz1 < mmu_page_sizes);
915 	new_cext = TAGACCEXT_MKSZPAIR(pgsz1, pgsz0);
916 	if (hat->sfmmu_cext != new_cext) {
917 #ifdef DEBUG
918 		int i;
919 		/*
920 		 * assert cnum should be invalid, this is because pagesize
921 		 * can only be changed after a proc's ctxs are invalidated.
922 		 */
923 		for (i = 0; i < max_mmu_ctxdoms; i++) {
924 			ASSERT(hat->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
925 		}
926 #endif /* DEBUG */
927 		hat->sfmmu_cext = new_cext;
928 	}
929 	/*
930 	 * sfmmu_setctx_sec() will take care of the
931 	 * rest of the dirty work for us.
932 	 */
933 }
934 
935 /*
936  * This function assumes that there are either four or six supported page
937  * sizes and at most two programmable TLBs, so we need to decide which
938  * page sizes are most important and then adjust the TLB page sizes
939  * accordingly (if supported).
940  *
941  * If these assumptions change, this function will need to be
942  * updated to support whatever the new limits are.
943  */
944 void
945 mmu_check_page_sizes(sfmmu_t *sfmmup, uint64_t *ttecnt)
946 {
947 	uint64_t sortcnt[MMU_PAGE_SIZES];
948 	uint8_t tmp_pgsz[MMU_PAGE_SIZES];
949 	uint8_t i, j, max;
950 	uint16_t oldval, newval;
951 
952 	/*
953 	 * We only consider reprogramming the TLBs if one or more of
954 	 * the two most used page sizes changes and we're using
955 	 * large pages in this process.
956 	 */
957 	if (SFMMU_LGPGS_INUSE(sfmmup)) {
958 		/* Sort page sizes. */
959 		for (i = 0; i < mmu_page_sizes; i++) {
960 			sortcnt[i] = ttecnt[i];
961 		}
962 		for (j = 0; j < mmu_page_sizes; j++) {
963 			for (i = mmu_page_sizes - 1, max = 0; i > 0; i--) {
964 				if (sortcnt[i] > sortcnt[max])
965 					max = i;
966 			}
967 			tmp_pgsz[j] = max;
968 			sortcnt[max] = 0;
969 		}
970 
971 		oldval = sfmmup->sfmmu_pgsz[0] << 8 | sfmmup->sfmmu_pgsz[1];
972 
973 		mmu_setup_page_sizes(sfmmup, ttecnt, tmp_pgsz);
974 
975 		/* Check 2 largest values after the sort. */
976 		newval = tmp_pgsz[0] << 8 | tmp_pgsz[1];
977 		if (newval != oldval) {
978 			sfmmu_reprog_pgsz_arr(sfmmup, tmp_pgsz);
979 		}
980 	}
981 }
982 
983 /*
984  * Return processor specific async error structure
985  * size used.
986  */
987 int
988 cpu_aflt_size(void)
989 {
990 	return (sizeof (opl_async_flt_t));
991 }
992 
993 /*
994  * The cpu_sync_log_err() function is called via the [uc]e_drain() function to
995  * post-process CPU events that are dequeued.  As such, it can be invoked
996  * from softint context, from AST processing in the trap() flow, or from the
997  * panic flow.  We decode the CPU-specific data, and take appropriate actions.
998  * Historically this entry point was used to log the actual cmn_err(9F) text;
999  * now with FMA it is used to prepare 'flt' to be converted into an ereport.
1000  * With FMA this function now also returns a flag which indicates to the
1001  * caller whether the ereport should be posted (1) or suppressed (0).
1002  */
1003 /*ARGSUSED*/
1004 static int
1005 cpu_sync_log_err(void *flt)
1006 {
1007 	opl_async_flt_t *opl_flt = (opl_async_flt_t *)flt;
1008 	struct async_flt *aflt = (struct async_flt *)flt;
1009 
1010 	/*
1011 	 * No extra processing of urgent error events.
1012 	 * Always generate ereports for these events.
1013 	 */
1014 	if (aflt->flt_status == OPL_ECC_URGENT_TRAP)
1015 		return (1);
1016 
1017 	/*
1018 	 * Additional processing for synchronous errors.
1019 	 */
1020 	switch (opl_flt->flt_type) {
1021 	case OPL_CPU_INV_SFSR:
1022 		return (1);
1023 
1024 	case OPL_CPU_SYNC_UE:
1025 		/*
1026 		 * The validity: SFSR_MK_UE bit has been checked
1027 		 * in opl_cpu_sync_error()
1028 		 * No more check is required.
1029 		 *
1030 		 * opl_flt->flt_eid_mod and flt_eid_sid have been set by H/W,
1031 		 * and they have been retrieved in cpu_queue_events()
1032 		 */
1033 
1034 		if (opl_flt->flt_eid_mod == OPL_ERRID_MEM) {
1035 			ASSERT(aflt->flt_in_memory);
1036 			/*
1037 			 * We want to skip logging only if ALL the following
1038 			 * conditions are true:
1039 			 *
1040 			 *	1. We are not panicing already.
1041 			 *	2. The error is a memory error.
1042 			 *	3. There is only one error.
1043 			 *	4. The error is on a retired page.
1044 			 *	5. The error occurred under on_trap
1045 			 *	protection AFLT_PROT_EC
1046 			 */
1047 			if (!panicstr && aflt->flt_prot == AFLT_PROT_EC &&
1048 			    page_retire_check(aflt->flt_addr, NULL) == 0) {
1049 				/*
1050 				 * Do not log an error from
1051 				 * the retired page
1052 				 */
1053 				softcall(ecc_page_zero, (void *)aflt->flt_addr);
1054 				return (0);
1055 			}
1056 			if (!panicstr)
1057 				cpu_page_retire(opl_flt);
1058 		}
1059 		return (1);
1060 
1061 	case OPL_CPU_SYNC_OTHERS:
1062 		/*
1063 		 * For the following error cases, the processor HW does
1064 		 * not set the flt_eid_mod/flt_eid_sid. Instead, SW will attempt
1065 		 * to assign appropriate values here to reflect what we
1066 		 * think is the most likely cause of the problem w.r.t to
1067 		 * the particular error event.  For Buserr and timeout
1068 		 * error event, we will assign OPL_ERRID_CHANNEL as the
1069 		 * most likely reason.  For TLB parity or multiple hit
1070 		 * error events, we will assign the reason as
1071 		 * OPL_ERRID_CPU (cpu related problem) and set the
1072 		 * flt_eid_sid to point to the cpuid.
1073 		 */
1074 
1075 		if (opl_flt->flt_bit & (SFSR_BERR|SFSR_TO)) {
1076 			/*
1077 			 * flt_eid_sid will not be used for this case.
1078 			 */
1079 			opl_flt->flt_eid_mod = OPL_ERRID_CHANNEL;
1080 		}
1081 		if (opl_flt->flt_bit & (SFSR_TLB_MUL|SFSR_TLB_PRT)) {
1082 			opl_flt->flt_eid_mod = OPL_ERRID_CPU;
1083 			opl_flt->flt_eid_sid = aflt->flt_inst;
1084 		}
1085 
1086 		/*
1087 		 * In case of no effective error bit
1088 		 */
1089 		if ((opl_flt->flt_bit & SFSR_ERRS) == 0) {
1090 			opl_flt->flt_eid_mod = OPL_ERRID_CPU;
1091 			opl_flt->flt_eid_sid = aflt->flt_inst;
1092 		}
1093 		break;
1094 
1095 		default:
1096 			return (1);
1097 	}
1098 	return (1);
1099 }
1100 
1101 /*
1102  * Retire the bad page that may contain the flushed error.
1103  */
1104 void
1105 cpu_page_retire(opl_async_flt_t *opl_flt)
1106 {
1107 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1108 	(void) page_retire(aflt->flt_addr, PR_UE);
1109 }
1110 
1111 /*
1112  * Invoked by error_init() early in startup and therefore before
1113  * startup_errorq() is called to drain any error Q -
1114  *
1115  * startup()
1116  *   startup_end()
1117  *     error_init()
1118  *       cpu_error_init()
1119  * errorq_init()
1120  *   errorq_drain()
1121  * start_other_cpus()
1122  *
1123  * The purpose of this routine is to create error-related taskqs.  Taskqs
1124  * are used for this purpose because cpu_lock can't be grabbed from interrupt
1125  * context.
1126  *
1127  */
1128 /*ARGSUSED*/
1129 void
1130 cpu_error_init(int items)
1131 {
1132 	opl_err_log = (opl_errlog_t *)
1133 	    kmem_alloc(ERRLOG_ALLOC_SZ, KM_SLEEP);
1134 	if ((uint64_t)opl_err_log & MMU_PAGEOFFSET)
1135 		cmn_err(CE_PANIC, "The base address of the error log "
1136 		    "is not page aligned");
1137 }
1138 
1139 /*
1140  * We route all errors through a single switch statement.
1141  */
1142 void
1143 cpu_ue_log_err(struct async_flt *aflt)
1144 {
1145 	switch (aflt->flt_class) {
1146 	case CPU_FAULT:
1147 		if (cpu_sync_log_err(aflt))
1148 			cpu_ereport_post(aflt);
1149 		break;
1150 
1151 	case BUS_FAULT:
1152 		bus_async_log_err(aflt);
1153 		break;
1154 
1155 	default:
1156 		cmn_err(CE_WARN, "discarding async error %p with invalid "
1157 		    "fault class (0x%x)", (void *)aflt, aflt->flt_class);
1158 		return;
1159 	}
1160 }
1161 
1162 /*
1163  * Routine for panic hook callback from panic_idle().
1164  *
1165  * Nothing to do here.
1166  */
1167 void
1168 cpu_async_panic_callb(void)
1169 {
1170 }
1171 
1172 /*
1173  * Routine to return a string identifying the physical name
1174  * associated with a memory/cache error.
1175  */
1176 /*ARGSUSED*/
1177 int
1178 cpu_get_mem_unum(int synd_status, ushort_t flt_synd, uint64_t flt_stat,
1179     uint64_t flt_addr, int flt_bus_id, int flt_in_memory,
1180     ushort_t flt_status, char *buf, int buflen, int *lenp)
1181 {
1182 	int synd_code;
1183 	int ret;
1184 
1185 	/*
1186 	 * An AFSR of -1 defaults to a memory syndrome.
1187 	 */
1188 	synd_code = (int)flt_synd;
1189 
1190 	if (&plat_get_mem_unum) {
1191 		if ((ret = plat_get_mem_unum(synd_code, flt_addr, flt_bus_id,
1192 		    flt_in_memory, flt_status, buf, buflen, lenp)) != 0) {
1193 			buf[0] = '\0';
1194 			*lenp = 0;
1195 		}
1196 		return (ret);
1197 	}
1198 	buf[0] = '\0';
1199 	*lenp = 0;
1200 	return (ENOTSUP);
1201 }
1202 
1203 /*
1204  * Wrapper for cpu_get_mem_unum() routine that takes an
1205  * async_flt struct rather than explicit arguments.
1206  */
1207 int
1208 cpu_get_mem_unum_aflt(int synd_status, struct async_flt *aflt,
1209     char *buf, int buflen, int *lenp)
1210 {
1211 	/*
1212 	 * We always pass -1 so that cpu_get_mem_unum will interpret this as a
1213 	 * memory error.
1214 	 */
1215 	return (cpu_get_mem_unum(synd_status, aflt->flt_synd,
1216 	    (uint64_t)-1,
1217 	    aflt->flt_addr, aflt->flt_bus_id, aflt->flt_in_memory,
1218 	    aflt->flt_status, buf, buflen, lenp));
1219 }
1220 
1221 /*
1222  * This routine is a more generic interface to cpu_get_mem_unum()
1223  * that may be used by other modules (e.g. mm).
1224  */
1225 /*ARGSUSED*/
1226 int
1227 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
1228     char *buf, int buflen, int *lenp)
1229 {
1230 	int synd_status, flt_in_memory, ret;
1231 	ushort_t flt_status = 0;
1232 	char unum[UNUM_NAMLEN];
1233 
1234 	/*
1235 	 * Check for an invalid address.
1236 	 */
1237 	if (afar == (uint64_t)-1)
1238 		return (ENXIO);
1239 
1240 	if (synd == (uint64_t)-1)
1241 		synd_status = AFLT_STAT_INVALID;
1242 	else
1243 		synd_status = AFLT_STAT_VALID;
1244 
1245 	flt_in_memory = (*afsr & SFSR_MEMORY) &&
1246 	    pf_is_memory(afar >> MMU_PAGESHIFT);
1247 
1248 	ret = cpu_get_mem_unum(synd_status, (ushort_t)synd, *afsr, afar,
1249 	    CPU->cpu_id, flt_in_memory, flt_status, unum, UNUM_NAMLEN, lenp);
1250 	if (ret != 0)
1251 		return (ret);
1252 
1253 	if (*lenp >= buflen)
1254 		return (ENAMETOOLONG);
1255 
1256 	(void) strncpy(buf, unum, buflen);
1257 
1258 	return (0);
1259 }
1260 
1261 /*
1262  * Routine to return memory information associated
1263  * with a physical address and syndrome.
1264  */
1265 /*ARGSUSED*/
1266 int
1267 cpu_get_mem_info(uint64_t synd, uint64_t afar,
1268     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
1269     int *segsp, int *banksp, int *mcidp)
1270 {
1271 	int synd_code = (int)synd;
1272 
1273 	if (afar == (uint64_t)-1)
1274 		return (ENXIO);
1275 
1276 	if (p2get_mem_info != NULL)
1277 		return ((p2get_mem_info)(synd_code, afar, mem_sizep, seg_sizep,
1278 		    bank_sizep, segsp, banksp, mcidp));
1279 	else
1280 		return (ENOTSUP);
1281 }
1282 
1283 /*
1284  * Routine to return a string identifying the physical
1285  * name associated with a cpuid.
1286  */
1287 int
1288 cpu_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
1289 {
1290 	int ret;
1291 	char unum[UNUM_NAMLEN];
1292 
1293 	if (&plat_get_cpu_unum) {
1294 		if ((ret = plat_get_cpu_unum(cpuid, unum, UNUM_NAMLEN,
1295 		    lenp)) != 0)
1296 			return (ret);
1297 	} else {
1298 		return (ENOTSUP);
1299 	}
1300 
1301 	if (*lenp >= buflen)
1302 		return (ENAMETOOLONG);
1303 
1304 	(void) strncpy(buf, unum, *lenp);
1305 
1306 	return (0);
1307 }
1308 
1309 /*
1310  * This routine exports the name buffer size.
1311  */
1312 size_t
1313 cpu_get_name_bufsize()
1314 {
1315 	return (UNUM_NAMLEN);
1316 }
1317 
1318 /*
1319  * Flush the entire ecache by ASI_L2_CNTL.U2_FLUSH
1320  */
1321 void
1322 cpu_flush_ecache(void)
1323 {
1324 	flush_ecache(ecache_flushaddr, cpunodes[CPU->cpu_id].ecache_size,
1325 	    cpunodes[CPU->cpu_id].ecache_linesize);
1326 }
1327 
1328 static uint8_t
1329 flt_to_trap_type(struct async_flt *aflt)
1330 {
1331 	if (aflt->flt_status & OPL_ECC_ISYNC_TRAP)
1332 		return (TRAP_TYPE_ECC_I);
1333 	if (aflt->flt_status & OPL_ECC_DSYNC_TRAP)
1334 		return (TRAP_TYPE_ECC_D);
1335 	if (aflt->flt_status & OPL_ECC_URGENT_TRAP)
1336 		return (TRAP_TYPE_URGENT);
1337 	return (TRAP_TYPE_UNKNOWN);
1338 }
1339 
1340 /*
1341  * Encode the data saved in the opl_async_flt_t struct into
1342  * the FM ereport payload.
1343  */
1344 /* ARGSUSED */
1345 static void
1346 cpu_payload_add_aflt(struct async_flt *aflt, nvlist_t *payload,
1347 		nvlist_t *resource)
1348 {
1349 	opl_async_flt_t *opl_flt = (opl_async_flt_t *)aflt;
1350 	char unum[UNUM_NAMLEN];
1351 	char sbuf[21]; /* sizeof (UINT64_MAX) + '\0' */
1352 	int len;
1353 
1354 
1355 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SFSR) {
1356 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SFSR,
1357 		    DATA_TYPE_UINT64, aflt->flt_stat, NULL);
1358 	}
1359 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SFAR) {
1360 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SFAR,
1361 		    DATA_TYPE_UINT64, aflt->flt_addr, NULL);
1362 	}
1363 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_UGESR) {
1364 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_UGESR,
1365 		    DATA_TYPE_UINT64, aflt->flt_stat, NULL);
1366 	}
1367 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PC) {
1368 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PC,
1369 		    DATA_TYPE_UINT64, (uint64_t)aflt->flt_pc, NULL);
1370 	}
1371 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TL) {
1372 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TL,
1373 		    DATA_TYPE_UINT8, (uint8_t)aflt->flt_tl, NULL);
1374 	}
1375 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TT) {
1376 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TT,
1377 		    DATA_TYPE_UINT8, flt_to_trap_type(aflt), NULL);
1378 	}
1379 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PRIV) {
1380 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PRIV,
1381 		    DATA_TYPE_BOOLEAN_VALUE,
1382 		    (aflt->flt_priv ? B_TRUE : B_FALSE), NULL);
1383 	}
1384 	if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_FLT_STATUS) {
1385 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_FLT_STATUS,
1386 		    DATA_TYPE_UINT64, (uint64_t)aflt->flt_status, NULL);
1387 	}
1388 
1389 	switch (opl_flt->flt_eid_mod) {
1390 	case OPL_ERRID_CPU:
1391 		(void) snprintf(sbuf, sizeof (sbuf), "%llX",
1392 		    (u_longlong_t)cpunodes[opl_flt->flt_eid_sid].device_id);
1393 		(void) fm_fmri_cpu_set(resource, FM_CPU_SCHEME_VERSION,
1394 		    NULL, opl_flt->flt_eid_sid,
1395 		    (uint8_t *)&cpunodes[opl_flt->flt_eid_sid].version, sbuf);
1396 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE,
1397 		    DATA_TYPE_NVLIST, resource, NULL);
1398 		break;
1399 
1400 	case OPL_ERRID_CHANNEL:
1401 		/*
1402 		 * No resource is created but the cpumem DE will find
1403 		 * the defective path by retreiving EID from SFSR which is
1404 		 * included in the payload.
1405 		 */
1406 		break;
1407 
1408 	case OPL_ERRID_MEM:
1409 		(void) cpu_get_mem_unum_aflt(0, aflt, unum, UNUM_NAMLEN, &len);
1410 		(void) fm_fmri_mem_set(resource, FM_MEM_SCHEME_VERSION, NULL,
1411 		    unum, NULL, (uint64_t)-1);
1412 		fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE,
1413 		    DATA_TYPE_NVLIST, resource, NULL);
1414 		break;
1415 
1416 	case OPL_ERRID_PATH:
1417 		/*
1418 		 * No resource is created but the cpumem DE will find
1419 		 * the defective path by retreiving EID from SFSR which is
1420 		 * included in the payload.
1421 		 */
1422 		break;
1423 	}
1424 }
1425 
1426 /*
1427  * Returns whether fault address is valid for this error bit and
1428  * whether the address is "in memory" (i.e. pf_is_memory returns 1).
1429  */
1430 /*ARGSUSED*/
1431 static int
1432 cpu_flt_in_memory(opl_async_flt_t *opl_flt, uint64_t t_afsr_bit)
1433 {
1434 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1435 
1436 	if (aflt->flt_status & (OPL_ECC_SYNC_TRAP)) {
1437 		return ((t_afsr_bit & SFSR_MEMORY) &&
1438 		    pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT));
1439 	}
1440 	return (0);
1441 }
1442 
1443 /*
1444  * In OPL SCF does the stick synchronization.
1445  */
1446 void
1447 sticksync_slave(void)
1448 {
1449 }
1450 
1451 /*
1452  * In OPL SCF does the stick synchronization.
1453  */
1454 void
1455 sticksync_master(void)
1456 {
1457 }
1458 
1459 /*
1460  * Cpu private unitialization.  OPL cpus do not use the private area.
1461  */
1462 void
1463 cpu_uninit_private(struct cpu *cp)
1464 {
1465 	cmp_delete_cpu(cp->cpu_id);
1466 }
1467 
1468 /*
1469  * Always flush an entire cache.
1470  */
1471 void
1472 cpu_error_ecache_flush(void)
1473 {
1474 	cpu_flush_ecache();
1475 }
1476 
1477 void
1478 cpu_ereport_post(struct async_flt *aflt)
1479 {
1480 	char *cpu_type, buf[FM_MAX_CLASS];
1481 	nv_alloc_t *nva = NULL;
1482 	nvlist_t *ereport, *detector, *resource;
1483 	errorq_elem_t *eqep;
1484 	char sbuf[21]; /* sizeof (UINT64_MAX) + '\0' */
1485 
1486 	if (aflt->flt_panic || panicstr) {
1487 		eqep = errorq_reserve(ereport_errorq);
1488 		if (eqep == NULL)
1489 			return;
1490 		ereport = errorq_elem_nvl(ereport_errorq, eqep);
1491 		nva = errorq_elem_nva(ereport_errorq, eqep);
1492 	} else {
1493 		ereport = fm_nvlist_create(nva);
1494 	}
1495 
1496 	/*
1497 	 * Create the scheme "cpu" FMRI.
1498 	 */
1499 	detector = fm_nvlist_create(nva);
1500 	resource = fm_nvlist_create(nva);
1501 	switch (cpunodes[aflt->flt_inst].implementation) {
1502 	case OLYMPUS_C_IMPL:
1503 		cpu_type = FM_EREPORT_CPU_SPARC64_VI;
1504 		break;
1505 	case JUPITER_IMPL:
1506 		cpu_type = FM_EREPORT_CPU_SPARC64_VII;
1507 		break;
1508 	default:
1509 		cpu_type = FM_EREPORT_CPU_UNSUPPORTED;
1510 		break;
1511 	}
1512 	(void) snprintf(sbuf, sizeof (sbuf), "%llX",
1513 	    (u_longlong_t)cpunodes[aflt->flt_inst].device_id);
1514 	(void) fm_fmri_cpu_set(detector, FM_CPU_SCHEME_VERSION, NULL,
1515 	    aflt->flt_inst, (uint8_t *)&cpunodes[aflt->flt_inst].version,
1516 	    sbuf);
1517 
1518 	/*
1519 	 * Encode all the common data into the ereport.
1520 	 */
1521 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s.%s",
1522 	    FM_ERROR_CPU, cpu_type, aflt->flt_erpt_class);
1523 
1524 	fm_ereport_set(ereport, FM_EREPORT_VERSION, buf,
1525 	    fm_ena_generate(aflt->flt_id, FM_ENA_FMT1), detector, NULL);
1526 
1527 	/*
1528 	 * Encode the error specific data that was saved in
1529 	 * the async_flt structure into the ereport.
1530 	 */
1531 	cpu_payload_add_aflt(aflt, ereport, resource);
1532 
1533 	if (aflt->flt_panic || panicstr) {
1534 		errorq_commit(ereport_errorq, eqep, ERRORQ_SYNC);
1535 	} else {
1536 		(void) fm_ereport_post(ereport, EVCH_TRYHARD);
1537 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
1538 		fm_nvlist_destroy(detector, FM_NVA_FREE);
1539 		fm_nvlist_destroy(resource, FM_NVA_FREE);
1540 	}
1541 }
1542 
1543 void
1544 cpu_run_bus_error_handlers(struct async_flt *aflt, int expected)
1545 {
1546 	int status;
1547 	ddi_fm_error_t de;
1548 
1549 	bzero(&de, sizeof (ddi_fm_error_t));
1550 
1551 	de.fme_version = DDI_FME_VERSION;
1552 	de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1);
1553 	de.fme_flag = expected;
1554 	de.fme_bus_specific = (void *)aflt->flt_addr;
1555 	status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de);
1556 	if ((aflt->flt_prot == AFLT_PROT_NONE) && (status == DDI_FM_FATAL))
1557 		aflt->flt_panic = 1;
1558 }
1559 
1560 void
1561 cpu_errorq_dispatch(char *error_class, void *payload, size_t payload_sz,
1562     errorq_t *eqp, uint_t flag)
1563 {
1564 	struct async_flt *aflt = (struct async_flt *)payload;
1565 
1566 	aflt->flt_erpt_class = error_class;
1567 	errorq_dispatch(eqp, payload, payload_sz, flag);
1568 }
1569 
1570 void
1571 adjust_hw_copy_limits(int ecache_size)
1572 {
1573 	/*
1574 	 * Set hw copy limits.
1575 	 *
1576 	 * /etc/system will be parsed later and can override one or more
1577 	 * of these settings.
1578 	 *
1579 	 * At this time, ecache size seems only mildly relevant.
1580 	 * We seem to run into issues with the d-cache and stalls
1581 	 * we see on misses.
1582 	 *
1583 	 * Cycle measurement indicates that 2 byte aligned copies fare
1584 	 * little better than doing things with VIS at around 512 bytes.
1585 	 * 4 byte aligned shows promise until around 1024 bytes. 8 Byte
1586 	 * aligned is faster whenever the source and destination data
1587 	 * in cache and the total size is less than 2 Kbytes.  The 2K
1588 	 * limit seems to be driven by the 2K write cache.
1589 	 * When more than 2K of copies are done in non-VIS mode, stores
1590 	 * backup in the write cache.  In VIS mode, the write cache is
1591 	 * bypassed, allowing faster cache-line writes aligned on cache
1592 	 * boundaries.
1593 	 *
1594 	 * In addition, in non-VIS mode, there is no prefetching, so
1595 	 * for larger copies, the advantage of prefetching to avoid even
1596 	 * occasional cache misses is enough to justify using the VIS code.
1597 	 *
1598 	 * During testing, it was discovered that netbench ran 3% slower
1599 	 * when hw_copy_limit_8 was 2K or larger.  Apparently for server
1600 	 * applications, data is only used once (copied to the output
1601 	 * buffer, then copied by the network device off the system).  Using
1602 	 * the VIS copy saves more L2 cache state.  Network copies are
1603 	 * around 1.3K to 1.5K in size for historical reasons.
1604 	 *
1605 	 * Therefore, a limit of 1K bytes will be used for the 8 byte
1606 	 * aligned copy even for large caches and 8 MB ecache.  The
1607 	 * infrastructure to allow different limits for different sized
1608 	 * caches is kept to allow further tuning in later releases.
1609 	 */
1610 
1611 	if (min_ecache_size == 0 && use_hw_bcopy) {
1612 		/*
1613 		 * First time through - should be before /etc/system
1614 		 * is read.
1615 		 * Could skip the checks for zero but this lets us
1616 		 * preserve any debugger rewrites.
1617 		 */
1618 		if (hw_copy_limit_1 == 0) {
1619 			hw_copy_limit_1 = VIS_COPY_THRESHOLD;
1620 			priv_hcl_1 = hw_copy_limit_1;
1621 		}
1622 		if (hw_copy_limit_2 == 0) {
1623 			hw_copy_limit_2 = 2 * VIS_COPY_THRESHOLD;
1624 			priv_hcl_2 = hw_copy_limit_2;
1625 		}
1626 		if (hw_copy_limit_4 == 0) {
1627 			hw_copy_limit_4 = 4 * VIS_COPY_THRESHOLD;
1628 			priv_hcl_4 = hw_copy_limit_4;
1629 		}
1630 		if (hw_copy_limit_8 == 0) {
1631 			hw_copy_limit_8 = 4 * VIS_COPY_THRESHOLD;
1632 			priv_hcl_8 = hw_copy_limit_8;
1633 		}
1634 		min_ecache_size = ecache_size;
1635 	} else {
1636 		/*
1637 		 * MP initialization. Called *after* /etc/system has
1638 		 * been parsed. One CPU has already been initialized.
1639 		 * Need to cater for /etc/system having scragged one
1640 		 * of our values.
1641 		 */
1642 		if (ecache_size == min_ecache_size) {
1643 			/*
1644 			 * Same size ecache. We do nothing unless we
1645 			 * have a pessimistic ecache setting. In that
1646 			 * case we become more optimistic (if the cache is
1647 			 * large enough).
1648 			 */
1649 			if (hw_copy_limit_8 == 4 * VIS_COPY_THRESHOLD) {
1650 				/*
1651 				 * Need to adjust hw_copy_limit* from our
1652 				 * pessimistic uniprocessor value to a more
1653 				 * optimistic UP value *iff* it hasn't been
1654 				 * reset.
1655 				 */
1656 				if ((ecache_size > 1048576) &&
1657 				    (priv_hcl_8 == hw_copy_limit_8)) {
1658 					if (ecache_size <= 2097152)
1659 						hw_copy_limit_8 = 4 *
1660 						    VIS_COPY_THRESHOLD;
1661 					else if (ecache_size <= 4194304)
1662 						hw_copy_limit_8 = 4 *
1663 						    VIS_COPY_THRESHOLD;
1664 					else
1665 						hw_copy_limit_8 = 4 *
1666 						    VIS_COPY_THRESHOLD;
1667 					priv_hcl_8 = hw_copy_limit_8;
1668 				}
1669 			}
1670 		} else if (ecache_size < min_ecache_size) {
1671 			/*
1672 			 * A different ecache size. Can this even happen?
1673 			 */
1674 			if (priv_hcl_8 == hw_copy_limit_8) {
1675 				/*
1676 				 * The previous value that we set
1677 				 * is unchanged (i.e., it hasn't been
1678 				 * scragged by /etc/system). Rewrite it.
1679 				 */
1680 				if (ecache_size <= 1048576)
1681 					hw_copy_limit_8 = 8 *
1682 					    VIS_COPY_THRESHOLD;
1683 				else if (ecache_size <= 2097152)
1684 					hw_copy_limit_8 = 8 *
1685 					    VIS_COPY_THRESHOLD;
1686 				else if (ecache_size <= 4194304)
1687 					hw_copy_limit_8 = 8 *
1688 					    VIS_COPY_THRESHOLD;
1689 				else
1690 					hw_copy_limit_8 = 10 *
1691 					    VIS_COPY_THRESHOLD;
1692 				priv_hcl_8 = hw_copy_limit_8;
1693 				min_ecache_size = ecache_size;
1694 			}
1695 		}
1696 	}
1697 }
1698 
1699 #define	VIS_BLOCKSIZE		64
1700 
1701 int
1702 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
1703 {
1704 	int ret, watched;
1705 
1706 	watched = watch_disable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
1707 	ret = dtrace_blksuword32(addr, data, 0);
1708 	if (watched)
1709 		watch_enable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
1710 
1711 	return (ret);
1712 }
1713 
1714 void
1715 opl_cpu_reg_init()
1716 {
1717 	uint64_t	this_cpu_log;
1718 
1719 	/*
1720 	 * We do not need to re-initialize cpu0 registers.
1721 	 */
1722 	if (cpu[getprocessorid()] == &cpu0) {
1723 		/*
1724 		 * Support for "ta 3"
1725 		 */
1726 		opl_ta3();
1727 		return;
1728 	}
1729 
1730 	/*
1731 	 * Initialize Error log Scratch register for error handling.
1732 	 */
1733 
1734 	this_cpu_log = va_to_pa((void*)(((uint64_t)opl_err_log) +
1735 	    ERRLOG_BUFSZ * (getprocessorid())));
1736 	opl_error_setup(this_cpu_log);
1737 
1738 	/*
1739 	 * Enable MMU translating multiple page sizes for
1740 	 * sITLB and sDTLB.
1741 	 */
1742 	opl_mpg_enable();
1743 }
1744 
1745 /*
1746  * Queue one event in ue_queue based on ecc_type_to_info entry.
1747  */
1748 static void
1749 cpu_queue_one_event(opl_async_flt_t *opl_flt, char *reason,
1750     ecc_type_to_info_t *eccp)
1751 {
1752 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1753 
1754 	if (reason &&
1755 	    strlen(reason) + strlen(eccp->ec_reason) < MAX_REASON_STRING) {
1756 		(void) strcat(reason, eccp->ec_reason);
1757 	}
1758 
1759 	opl_flt->flt_bit = eccp->ec_afsr_bit;
1760 	opl_flt->flt_type = eccp->ec_flt_type;
1761 	aflt->flt_in_memory = cpu_flt_in_memory(opl_flt, opl_flt->flt_bit);
1762 	aflt->flt_payload = eccp->ec_err_payload;
1763 
1764 	ASSERT(aflt->flt_status & (OPL_ECC_SYNC_TRAP|OPL_ECC_URGENT_TRAP));
1765 	cpu_errorq_dispatch(eccp->ec_err_class, (void *)opl_flt,
1766 	    sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic);
1767 }
1768 
1769 /*
1770  * Queue events on async event queue one event per error bit.
1771  * Return number of events queued.
1772  */
1773 int
1774 cpu_queue_events(opl_async_flt_t *opl_flt, char *reason, uint64_t t_afsr_errs)
1775 {
1776 	struct async_flt *aflt = (struct async_flt *)opl_flt;
1777 	ecc_type_to_info_t *eccp;
1778 	int nevents = 0;
1779 
1780 	/*
1781 	 * Queue expected errors, error bit and fault type must must match
1782 	 * in the ecc_type_to_info table.
1783 	 */
1784 	for (eccp = ecc_type_to_info; t_afsr_errs != 0 && eccp->ec_desc != NULL;
1785 	    eccp++) {
1786 		if ((eccp->ec_afsr_bit & t_afsr_errs) != 0 &&
1787 		    (eccp->ec_flags & aflt->flt_status) != 0) {
1788 			/*
1789 			 * UE error event can be further
1790 			 * classified/breakdown into finer granularity
1791 			 * based on the flt_eid_mod value set by HW.  We do
1792 			 * special handling here so that we can report UE
1793 			 * error in finer granularity as ue_mem,
1794 			 * ue_channel, ue_cpu or ue_path.
1795 			 */
1796 			if (eccp->ec_flt_type == OPL_CPU_SYNC_UE) {
1797 				opl_flt->flt_eid_mod = (aflt->flt_stat &
1798 				    SFSR_EID_MOD) >> SFSR_EID_MOD_SHIFT;
1799 				opl_flt->flt_eid_sid = (aflt->flt_stat &
1800 				    SFSR_EID_SID) >> SFSR_EID_SID_SHIFT;
1801 				/*
1802 				 * Need to advance eccp pointer by flt_eid_mod
1803 				 * so that we get an appropriate ecc pointer
1804 				 *
1805 				 * EID			# of advances
1806 				 * ----------------------------------
1807 				 * OPL_ERRID_MEM	0
1808 				 * OPL_ERRID_CHANNEL	1
1809 				 * OPL_ERRID_CPU	2
1810 				 * OPL_ERRID_PATH	3
1811 				 */
1812 				eccp += opl_flt->flt_eid_mod;
1813 			}
1814 			cpu_queue_one_event(opl_flt, reason, eccp);
1815 			t_afsr_errs &= ~eccp->ec_afsr_bit;
1816 			nevents++;
1817 		}
1818 	}
1819 
1820 	return (nevents);
1821 }
1822 
1823 /*
1824  * Sync. error wrapper functions.
1825  * We use these functions in order to transfer here from the
1826  * nucleus trap handler information about trap type (data or
1827  * instruction) and trap level (0 or above 0). This way we
1828  * get rid of using SFSR's reserved bits.
1829  */
1830 
1831 #define	OPL_SYNC_TL0	0
1832 #define	OPL_SYNC_TL1	1
1833 #define	OPL_ISYNC_ERR	0
1834 #define	OPL_DSYNC_ERR	1
1835 
1836 void
1837 opl_cpu_isync_tl0_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1838 {
1839 	uint64_t t_sfar = p_sfar;
1840 	uint64_t t_sfsr = p_sfsr;
1841 
1842 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1843 	    OPL_SYNC_TL0, OPL_ISYNC_ERR);
1844 }
1845 
1846 void
1847 opl_cpu_isync_tl1_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1848 {
1849 	uint64_t t_sfar = p_sfar;
1850 	uint64_t t_sfsr = p_sfsr;
1851 
1852 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1853 	    OPL_SYNC_TL1, OPL_ISYNC_ERR);
1854 }
1855 
1856 void
1857 opl_cpu_dsync_tl0_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1858 {
1859 	uint64_t t_sfar = p_sfar;
1860 	uint64_t t_sfsr = p_sfsr;
1861 
1862 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1863 	    OPL_SYNC_TL0, OPL_DSYNC_ERR);
1864 }
1865 
1866 void
1867 opl_cpu_dsync_tl1_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
1868 {
1869 	uint64_t t_sfar = p_sfar;
1870 	uint64_t t_sfsr = p_sfsr;
1871 
1872 	opl_cpu_sync_error(rp, t_sfar, t_sfsr,
1873 	    OPL_SYNC_TL1, OPL_DSYNC_ERR);
1874 }
1875 
1876 /*
1877  * The fj sync err handler transfers control here for UE, BERR, TO, TLB_MUL
1878  * and TLB_PRT.
1879  * This function is designed based on cpu_deferred_error().
1880  */
1881 
1882 static void
1883 opl_cpu_sync_error(struct regs *rp, ulong_t t_sfar, ulong_t t_sfsr,
1884     uint_t tl, uint_t derr)
1885 {
1886 	opl_async_flt_t opl_flt;
1887 	struct async_flt *aflt;
1888 	int trampolined = 0;
1889 	char pr_reason[MAX_REASON_STRING];
1890 	uint64_t log_sfsr;
1891 	int expected = DDI_FM_ERR_UNEXPECTED;
1892 	ddi_acc_hdl_t *hp;
1893 
1894 	/*
1895 	 * We need to look at p_flag to determine if the thread detected an
1896 	 * error while dumping core.  We can't grab p_lock here, but it's ok
1897 	 * because we just need a consistent snapshot and we know that everyone
1898 	 * else will store a consistent set of bits while holding p_lock.  We
1899 	 * don't have to worry about a race because SDOCORE is set once prior
1900 	 * to doing i/o from the process's address space and is never cleared.
1901 	 */
1902 	uint_t pflag = ttoproc(curthread)->p_flag;
1903 
1904 	pr_reason[0] = '\0';
1905 
1906 	/*
1907 	 * handle the specific error
1908 	 */
1909 	bzero(&opl_flt, sizeof (opl_async_flt_t));
1910 	aflt = (struct async_flt *)&opl_flt;
1911 	aflt->flt_id = gethrtime_waitfree();
1912 	aflt->flt_bus_id = getprocessorid();
1913 	aflt->flt_inst = CPU->cpu_id;
1914 	aflt->flt_stat = t_sfsr;
1915 	aflt->flt_addr = t_sfar;
1916 	aflt->flt_pc = (caddr_t)rp->r_pc;
1917 	aflt->flt_prot = (uchar_t)AFLT_PROT_NONE;
1918 	aflt->flt_class = (uchar_t)CPU_FAULT;
1919 	aflt->flt_priv = (uchar_t)(tl == 1 ? 1 : ((rp->r_tstate &
1920 	    TSTATE_PRIV) ? 1 : 0));
1921 	aflt->flt_tl = (uchar_t)tl;
1922 	aflt->flt_panic = (uchar_t)(tl != 0 || aft_testfatal != 0 ||
1923 	    (t_sfsr & (SFSR_TLB_MUL|SFSR_TLB_PRT)) != 0);
1924 	aflt->flt_core = (pflag & SDOCORE) ? 1 : 0;
1925 	aflt->flt_status = (derr) ? OPL_ECC_DSYNC_TRAP : OPL_ECC_ISYNC_TRAP;
1926 
1927 	/*
1928 	 * If SFSR.FV is not set, both SFSR and SFAR/SFPAR values are uncertain.
1929 	 * So, clear all error bits to avoid mis-handling and force the system
1930 	 * panicked.
1931 	 * We skip all the procedures below down to the panic message call.
1932 	 */
1933 	if (!(t_sfsr & SFSR_FV)) {
1934 		opl_flt.flt_type = OPL_CPU_INV_SFSR;
1935 		aflt->flt_panic = 1;
1936 		aflt->flt_payload = FM_EREPORT_PAYLOAD_SYNC;
1937 		cpu_errorq_dispatch(FM_EREPORT_CPU_INV_SFSR, (void *)&opl_flt,
1938 		    sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic);
1939 		fm_panic("%sErrors(s)", "invalid SFSR");
1940 	}
1941 
1942 	/*
1943 	 * If either UE and MK bit is off, this is not valid UE error.
1944 	 * If it is not valid UE error, clear UE & MK_UE bits to prevent
1945 	 * mis-handling below.
1946 	 * aflt->flt_stat keeps the original bits as a reference.
1947 	 */
1948 	if ((t_sfsr & (SFSR_MK_UE|SFSR_UE)) !=
1949 	    (SFSR_MK_UE|SFSR_UE)) {
1950 		t_sfsr &= ~(SFSR_MK_UE|SFSR_UE);
1951 	}
1952 
1953 	/*
1954 	 * If the trap occurred in privileged mode at TL=0, we need to check to
1955 	 * see if we were executing in the kernel under on_trap() or t_lofault
1956 	 * protection.  If so, modify the saved registers so that we return
1957 	 * from the trap to the appropriate trampoline routine.
1958 	 */
1959 	if (!aflt->flt_panic && aflt->flt_priv && tl == 0) {
1960 		if (curthread->t_ontrap != NULL) {
1961 			on_trap_data_t *otp = curthread->t_ontrap;
1962 
1963 			if (otp->ot_prot & OT_DATA_EC) {
1964 				aflt->flt_prot = (uchar_t)AFLT_PROT_EC;
1965 				otp->ot_trap |= (ushort_t)OT_DATA_EC;
1966 				rp->r_pc = otp->ot_trampoline;
1967 				rp->r_npc = rp->r_pc + 4;
1968 				trampolined = 1;
1969 			}
1970 
1971 			if ((t_sfsr & (SFSR_TO | SFSR_BERR)) &&
1972 			    (otp->ot_prot & OT_DATA_ACCESS)) {
1973 				aflt->flt_prot = (uchar_t)AFLT_PROT_ACCESS;
1974 				otp->ot_trap |= (ushort_t)OT_DATA_ACCESS;
1975 				rp->r_pc = otp->ot_trampoline;
1976 				rp->r_npc = rp->r_pc + 4;
1977 				trampolined = 1;
1978 				/*
1979 				 * for peeks and caut_gets errors are expected
1980 				 */
1981 				hp = (ddi_acc_hdl_t *)otp->ot_handle;
1982 				if (!hp)
1983 					expected = DDI_FM_ERR_PEEK;
1984 				else if (hp->ah_acc.devacc_attr_access ==
1985 				    DDI_CAUTIOUS_ACC)
1986 					expected = DDI_FM_ERR_EXPECTED;
1987 			}
1988 
1989 		} else if (curthread->t_lofault) {
1990 			aflt->flt_prot = AFLT_PROT_COPY;
1991 			rp->r_g1 = EFAULT;
1992 			rp->r_pc = curthread->t_lofault;
1993 			rp->r_npc = rp->r_pc + 4;
1994 			trampolined = 1;
1995 		}
1996 	}
1997 
1998 	/*
1999 	 * If we're in user mode or we're doing a protected copy, we either
2000 	 * want the ASTON code below to send a signal to the user process
2001 	 * or we want to panic if aft_panic is set.
2002 	 *
2003 	 * If we're in privileged mode and we're not doing a copy, then we
2004 	 * need to check if we've trampolined.  If we haven't trampolined,
2005 	 * we should panic.
2006 	 */
2007 	if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
2008 		if (t_sfsr & (SFSR_ERRS & ~(SFSR_BERR | SFSR_TO)))
2009 			aflt->flt_panic |= aft_panic;
2010 	} else if (!trampolined) {
2011 		aflt->flt_panic = 1;
2012 	}
2013 
2014 	/*
2015 	 * If we've trampolined due to a privileged TO or BERR, or if an
2016 	 * unprivileged TO or BERR occurred, we don't want to enqueue an
2017 	 * event for that TO or BERR.  Queue all other events (if any) besides
2018 	 * the TO/BERR.
2019 	 */
2020 	log_sfsr = t_sfsr;
2021 	if (trampolined) {
2022 		log_sfsr &= ~(SFSR_TO | SFSR_BERR);
2023 	} else if (!aflt->flt_priv) {
2024 		/*
2025 		 * User mode, suppress messages if
2026 		 * cpu_berr_to_verbose is not set.
2027 		 */
2028 		if (!cpu_berr_to_verbose)
2029 			log_sfsr &= ~(SFSR_TO | SFSR_BERR);
2030 	}
2031 
2032 	if (((log_sfsr & SFSR_ERRS) && (cpu_queue_events(&opl_flt, pr_reason,
2033 	    t_sfsr) == 0)) || ((t_sfsr & SFSR_ERRS) == 0)) {
2034 		opl_flt.flt_type = OPL_CPU_INV_SFSR;
2035 		aflt->flt_payload = FM_EREPORT_PAYLOAD_SYNC;
2036 		cpu_errorq_dispatch(FM_EREPORT_CPU_INV_SFSR, (void *)&opl_flt,
2037 		    sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic);
2038 	}
2039 
2040 	if (t_sfsr & (SFSR_UE|SFSR_TO|SFSR_BERR)) {
2041 		cpu_run_bus_error_handlers(aflt, expected);
2042 	}
2043 
2044 	/*
2045 	 * Panic here if aflt->flt_panic has been set.  Enqueued errors will
2046 	 * be logged as part of the panic flow.
2047 	 */
2048 	if (aflt->flt_panic) {
2049 		if (pr_reason[0] == 0)
2050 			strcpy(pr_reason, "invalid SFSR ");
2051 
2052 		fm_panic("%sErrors(s)", pr_reason);
2053 	}
2054 
2055 	/*
2056 	 * If we queued an error and we are going to return from the trap and
2057 	 * the error was in user mode or inside of a copy routine, set AST flag
2058 	 * so the queue will be drained before returning to user mode.  The
2059 	 * AST processing will also act on our failure policy.
2060 	 */
2061 	if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
2062 		int pcb_flag = 0;
2063 
2064 		if (t_sfsr & (SFSR_ERRS & ~(SFSR_BERR | SFSR_TO)))
2065 			pcb_flag |= ASYNC_HWERR;
2066 
2067 		if (t_sfsr & SFSR_BERR)
2068 			pcb_flag |= ASYNC_BERR;
2069 
2070 		if (t_sfsr & SFSR_TO)
2071 			pcb_flag |= ASYNC_BTO;
2072 
2073 		ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag;
2074 		aston(curthread);
2075 	}
2076 }
2077 
2078 /*ARGSUSED*/
2079 void
2080 opl_cpu_urgent_error(struct regs *rp, ulong_t p_ugesr, ulong_t tl)
2081 {
2082 	opl_async_flt_t opl_flt;
2083 	struct async_flt *aflt;
2084 	char pr_reason[MAX_REASON_STRING];
2085 
2086 	/* normalize tl */
2087 	tl = (tl >= 2 ? 1 : 0);
2088 	pr_reason[0] = '\0';
2089 
2090 	bzero(&opl_flt, sizeof (opl_async_flt_t));
2091 	aflt = (struct async_flt *)&opl_flt;
2092 	aflt->flt_id = gethrtime_waitfree();
2093 	aflt->flt_bus_id = getprocessorid();
2094 	aflt->flt_inst = CPU->cpu_id;
2095 	aflt->flt_stat = p_ugesr;
2096 	aflt->flt_pc = (caddr_t)rp->r_pc;
2097 	aflt->flt_class = (uchar_t)CPU_FAULT;
2098 	aflt->flt_tl = tl;
2099 	aflt->flt_priv = (uchar_t)(tl == 1 ? 1 : ((rp->r_tstate & TSTATE_PRIV) ?
2100 	    1 : 0));
2101 	aflt->flt_status = OPL_ECC_URGENT_TRAP;
2102 	aflt->flt_panic = 1;
2103 	/*
2104 	 * HW does not set mod/sid in case of urgent error.
2105 	 * So we have to set it here.
2106 	 */
2107 	opl_flt.flt_eid_mod = OPL_ERRID_CPU;
2108 	opl_flt.flt_eid_sid = aflt->flt_inst;
2109 
2110 	if (cpu_queue_events(&opl_flt, pr_reason, p_ugesr) == 0) {
2111 		opl_flt.flt_type = OPL_CPU_INV_UGESR;
2112 		aflt->flt_payload = FM_EREPORT_PAYLOAD_URGENT;
2113 		cpu_errorq_dispatch(FM_EREPORT_CPU_INV_URG, (void *)&opl_flt,
2114 		    sizeof (opl_async_flt_t), ue_queue, aflt->flt_panic);
2115 	}
2116 
2117 	fm_panic("Urgent Error");
2118 }
2119 
2120 /*
2121  * Initialization error counters resetting.
2122  */
2123 /* ARGSUSED */
2124 static void
2125 opl_ras_online(void *arg, cpu_t *cp, cyc_handler_t *hdlr, cyc_time_t *when)
2126 {
2127 	hdlr->cyh_func = (cyc_func_t)ras_cntr_reset;
2128 	hdlr->cyh_level = CY_LOW_LEVEL;
2129 	hdlr->cyh_arg = (void *)(uintptr_t)cp->cpu_id;
2130 
2131 	when->cyt_when = cp->cpu_id * (((hrtime_t)NANOSEC * 10)/ NCPU);
2132 	when->cyt_interval = (hrtime_t)NANOSEC * opl_async_check_interval;
2133 }
2134 
2135 void
2136 cpu_mp_init(void)
2137 {
2138 	cyc_omni_handler_t hdlr;
2139 
2140 	hdlr.cyo_online = opl_ras_online;
2141 	hdlr.cyo_offline = NULL;
2142 	hdlr.cyo_arg = NULL;
2143 	mutex_enter(&cpu_lock);
2144 	(void) cyclic_add_omni(&hdlr);
2145 	mutex_exit(&cpu_lock);
2146 }
2147 
2148 int heaplp_use_stlb = 0;
2149 
2150 void
2151 mmu_init_kernel_pgsz(struct hat *hat)
2152 {
2153 	uint_t tte = page_szc(segkmem_lpsize);
2154 	uchar_t new_cext_primary, new_cext_nucleus;
2155 
2156 	if (heaplp_use_stlb == 0) {
2157 		/* do not reprogram stlb */
2158 		tte = TTE8K;
2159 	}
2160 
2161 	new_cext_nucleus = TAGACCEXT_MKSZPAIR(tte, TTE8K);
2162 	new_cext_primary = TAGACCEXT_MKSZPAIR(TTE8K, tte);
2163 
2164 	hat->sfmmu_cext = new_cext_primary;
2165 	kcontextreg = ((uint64_t)new_cext_nucleus << CTXREG_NEXT_SHIFT) |
2166 	    ((uint64_t)new_cext_primary << CTXREG_EXT_SHIFT);
2167 }
2168 
2169 size_t
2170 mmu_get_kernel_lpsize(size_t lpsize)
2171 {
2172 	uint_t tte;
2173 
2174 	if (lpsize == 0) {
2175 		/* no setting for segkmem_lpsize in /etc/system: use default */
2176 		return (MMU_PAGESIZE4M);
2177 	}
2178 
2179 	for (tte = TTE8K; tte <= TTE4M; tte++) {
2180 		if (lpsize == TTEBYTES(tte))
2181 			return (lpsize);
2182 	}
2183 
2184 	return (TTEBYTES(TTE8K));
2185 }
2186 
2187 /*
2188  * Support for ta 3.
2189  * We allocate here a buffer for each cpu
2190  * for saving the current register window.
2191  */
2192 typedef struct win_regs {
2193 	uint64_t l[8];
2194 	uint64_t i[8];
2195 } win_regs_t;
2196 static void
2197 opl_ta3(void)
2198 {
2199 	opl_ta3_save = (char *)kmem_alloc(NCPU * sizeof (win_regs_t), KM_SLEEP);
2200 }
2201 
2202 /*
2203  * The following are functions that are unused in
2204  * OPL cpu module. They are defined here to resolve
2205  * dependencies in the "unix" module.
2206  * Unused functions that should never be called in
2207  * OPL are coded with ASSERT(0).
2208  */
2209 
2210 void
2211 cpu_disable_errors(void)
2212 {}
2213 
2214 void
2215 cpu_enable_errors(void)
2216 { ASSERT(0); }
2217 
2218 /*ARGSUSED*/
2219 void
2220 cpu_ce_scrub_mem_err(struct async_flt *ecc, boolean_t t)
2221 { ASSERT(0); }
2222 
2223 /*ARGSUSED*/
2224 void
2225 cpu_faulted_enter(struct cpu *cp)
2226 {}
2227 
2228 /*ARGSUSED*/
2229 void
2230 cpu_faulted_exit(struct cpu *cp)
2231 {}
2232 
2233 /*ARGSUSED*/
2234 void
2235 cpu_check_allcpus(struct async_flt *aflt)
2236 {}
2237 
2238 /*ARGSUSED*/
2239 void
2240 cpu_ce_log_err(struct async_flt *aflt, errorq_elem_t *t)
2241 { ASSERT(0); }
2242 
2243 /*ARGSUSED*/
2244 void
2245 cpu_check_ce(int flag, uint64_t pa, caddr_t va, uint_t psz)
2246 { ASSERT(0); }
2247 
2248 /*ARGSUSED*/
2249 void
2250 cpu_ce_count_unum(struct async_flt *ecc, int len, char *unum)
2251 { ASSERT(0); }
2252 
2253 /*ARGSUSED*/
2254 void
2255 cpu_busy_ecache_scrub(struct cpu *cp)
2256 {}
2257 
2258 /*ARGSUSED*/
2259 void
2260 cpu_idle_ecache_scrub(struct cpu *cp)
2261 {}
2262 
2263 /* ARGSUSED */
2264 void
2265 cpu_change_speed(uint64_t divisor, uint64_t arg2)
2266 { ASSERT(0); }
2267 
2268 void
2269 cpu_init_cache_scrub(void)
2270 {}
2271 
2272 /* ARGSUSED */
2273 int
2274 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
2275 {
2276 	if (&plat_get_mem_sid) {
2277 		return (plat_get_mem_sid(unum, buf, buflen, lenp));
2278 	} else {
2279 		return (ENOTSUP);
2280 	}
2281 }
2282 
2283 /* ARGSUSED */
2284 int
2285 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
2286 {
2287 	if (&plat_get_mem_addr) {
2288 		return (plat_get_mem_addr(unum, sid, offset, addrp));
2289 	} else {
2290 		return (ENOTSUP);
2291 	}
2292 }
2293 
2294 /* ARGSUSED */
2295 int
2296 cpu_get_mem_offset(uint64_t flt_addr, uint64_t *offp)
2297 {
2298 	if (&plat_get_mem_offset) {
2299 		return (plat_get_mem_offset(flt_addr, offp));
2300 	} else {
2301 		return (ENOTSUP);
2302 	}
2303 }
2304 
2305 /*ARGSUSED*/
2306 void
2307 itlb_rd_entry(uint_t entry, tte_t *tte, uint64_t *va_tag)
2308 { ASSERT(0); }
2309 
2310 /*ARGSUSED*/
2311 void
2312 dtlb_rd_entry(uint_t entry, tte_t *tte, uint64_t *va_tag)
2313 { ASSERT(0); }
2314 
2315 /*ARGSUSED*/
2316 void
2317 read_ecc_data(struct async_flt *aflt, short verbose, short ce_err)
2318 { ASSERT(0); }
2319 
2320 /*ARGSUSED*/
2321 int
2322 ce_scrub_xdiag_recirc(struct async_flt *aflt, errorq_t *eqp,
2323     errorq_elem_t *eqep, size_t afltoffset)
2324 {
2325 	ASSERT(0);
2326 	return (0);
2327 }
2328 
2329 /*ARGSUSED*/
2330 char *
2331 flt_to_error_type(struct async_flt *aflt)
2332 {
2333 	ASSERT(0);
2334 	return (NULL);
2335 }
2336 
2337 #define	PROM_SPARC64VII_MODE_PROPNAME	"SPARC64-VII-mode"
2338 
2339 /*
2340  * Check for existence of OPL OBP property that indicates
2341  * SPARC64-VII support. By default, only enable Jupiter
2342  * features if the property is present.   It will be
2343  * present in all-Jupiter domains by OBP if the domain has
2344  * been selected by the user on the system controller to
2345  * run in Jupiter mode.  Basically, this OBP property must
2346  * be present to turn on the cpu_alljupiter flag.
2347  */
2348 static int
2349 prom_SPARC64VII_support_enabled(void)
2350 {
2351 	int val;
2352 
2353 	return ((prom_getprop(prom_rootnode(), PROM_SPARC64VII_MODE_PROPNAME,
2354 	    (caddr_t)&val) == 0) ? 1 : 0);
2355 }
2356