xref: /illumos-gate/usr/src/uts/sun4u/cherrystone/os/cherrystone.c (revision a07094369b21309434206d9b3601d162693466fc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sunddi.h>
32 #include <sys/esunddi.h>
33 #include <sys/sunndi.h>
34 #include <sys/ddi.h>
35 #include <sys/modctl.h>
36 #include <sys/sysmacros.h>
37 #include <sys/note.h>
38 
39 #include <sys/platform_module.h>
40 #include <sys/errno.h>
41 #include <sys/i2c/clients/i2c_client.h>
42 #include <sys/cherrystone.h>
43 #include <sys/machsystm.h>
44 #include <sys/promif.h>
45 #include <vm/page.h>
46 #include <sys/memnode.h>
47 #include <vm/vm_dep.h>
48 
49 /* Cherrystone Keyswitch Information */
50 #define	CHERRY_KEY_POLL_PORT	3
51 #define	CHERRY_KEY_POLL_BIT	2
52 #define	CHERRY_KEY_POLL_INTVL	10
53 
54 #define	SHARED_PCF8584_PATH "/pci@9,700000/ebus@1/i2c@1,2e/nvram@4,a4"
55 static dev_info_t *shared_pcf8584_dip;
56 static kmutex_t cherry_pcf8584_mutex;
57 
58 static	boolean_t	key_locked_bit;
59 static	clock_t		keypoll_timeout_hz;
60 
61 /*
62  * Table that maps memory slices to a specific memnode.
63  */
64 int slice_to_memnode[CHERRYSTONE_MAX_SLICE];
65 
66 /*
67  * For software memory interleaving support.
68  */
69 static void update_mem_bounds(int, int, int, uint64_t, uint64_t);
70 
71 static uint64_t
72 slice_table[CHERRYSTONE_SBD_SLOTS][CHERRYSTONE_CPUS_PER_BOARD]
73 		[CHERRYSTONE_BANKS_PER_MC][2];
74 
75 #define	SLICE_PA	0
76 #define	SLICE_SPAN	1
77 
78 /* Function prototypes */
79 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
80 
81 int (*cherry_ssc050_get_port_bit) (dev_info_t *, int, int, uint8_t *, int);
82 extern	void (*abort_seq_handler)();
83 
84 static	int cherry_dev_search(dev_info_t *, void *);
85 static	void keyswitch_poll(void *);
86 static	void cherry_abort_seq_handler(char *msg);
87 
88 /* Function definitions from this point forward. */
89 
90 int
91 set_platform_tsb_spares()
92 {
93 	return (0);
94 }
95 
96 void
97 startup_platform(void)
98 {
99 	/*
100 	 * Disable an active h/w watchdog timer
101 	 * upon exit to OBP.
102 	 */
103 	extern int disable_watchdog_on_exit;
104 	disable_watchdog_on_exit = 1;
105 
106 	mutex_init(&cherry_pcf8584_mutex, NULL, NULL, NULL);
107 }
108 
109 #pragma weak mmu_init_large_pages
110 
111 void
112 set_platform_defaults(void)
113 {
114 	extern void mmu_init_large_pages(size_t);
115 
116 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
117 	    (mmu_ism_pagesize != MMU_PAGESIZE32M)) {
118 		if (&mmu_init_large_pages)
119 			mmu_init_large_pages(mmu_ism_pagesize);
120 	}
121 }
122 
123 void
124 load_platform_modules(void)
125 {
126 	if (modload("drv", "pmc") < 0) {
127 		cmn_err(CE_NOTE, "pmc driver failed to load");
128 	}
129 }
130 
131 void
132 load_platform_drivers(void)
133 {
134 	char		**drv;
135 	dev_info_t	*i2cnexus_dip;
136 	dev_info_t	*keysw_dip = NULL;
137 
138 	static char	*boot_time_drivers[] = {
139 		"todds1287",
140 		"mc-us3",
141 		"ssc050",
142 		NULL
143 	};
144 
145 	for (drv = boot_time_drivers; *drv; drv++) {
146 		if (i_ddi_attach_hw_nodes(*drv) != DDI_SUCCESS)
147 			cmn_err(CE_WARN, "Failed to install \"%s\" driver.",
148 				*drv);
149 	}
150 
151 	/*
152 	 * mc-us3 and ssc050 must stay loaded for plat_get_mem_unum()
153 	 * and keyswitch_poll()
154 	 */
155 	(void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
156 	(void) ddi_hold_driver(ddi_name_to_major("ssc050"));
157 
158 	/* Gain access into the ssc050_get_port function */
159 	cherry_ssc050_get_port_bit = (int (*) (dev_info_t *, int, int,
160 		uint8_t *, int)) modgetsymvalue("ssc050_get_port_bit", 0);
161 	if (cherry_ssc050_get_port_bit == NULL) {
162 		cmn_err(CE_WARN, "cannot find ssc050_get_port_bit");
163 		return;
164 	}
165 
166 	e_ddi_walk_driver("i2c-ssc050", cherry_dev_search, (void *)&keysw_dip);
167 	ASSERT(keysw_dip != NULL);
168 
169 	keypoll_timeout_hz = drv_usectohz(10 * MICROSEC);
170 	keyswitch_poll(keysw_dip);
171 	abort_seq_handler = cherry_abort_seq_handler;
172 
173 	/*
174 	 * Figure out which pcf8584_dip is shared with OBP for the nvram
175 	 * device, so the lock can be acquired.
176 	 */
177 
178 	i2cnexus_dip = e_ddi_hold_devi_by_path(SHARED_PCF8584_PATH, 0);
179 
180 	ASSERT(i2cnexus_dip != NULL);
181 	shared_pcf8584_dip = ddi_get_parent(i2cnexus_dip);
182 
183 	ndi_hold_devi(shared_pcf8584_dip);
184 	ndi_rele_devi(i2cnexus_dip);
185 }
186 
187 static int
188 cherry_dev_search(dev_info_t *dip, void *arg)
189 {
190 	int		*dev_regs; /* Info about where the device is. */
191 	uint_t		len;
192 	int		err;
193 
194 	if (strcmp(ddi_binding_name(dip), "i2c-ssc050") != 0)
195 		return (DDI_WALK_CONTINUE);
196 
197 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
198 		DDI_PROP_DONTPASS, "reg", &dev_regs, &len);
199 	if (err != DDI_PROP_SUCCESS) {
200 		return (DDI_WALK_CONTINUE);
201 	}
202 	/*
203 	 * regs[0] contains the bus number and regs[1]
204 	 * contains the device address of the i2c device.
205 	 * 0x82 is the device address of the i2c device
206 	 * from which  the key switch position is read.
207 	 */
208 	if (dev_regs[0] == 0 && dev_regs[1] == 0x82) {
209 		*((dev_info_t **)arg) = dip;
210 		ddi_prop_free(dev_regs);
211 		return (DDI_WALK_TERMINATE);
212 	}
213 	ddi_prop_free(dev_regs);
214 	return (DDI_WALK_CONTINUE);
215 }
216 
217 static void
218 keyswitch_poll(void *arg)
219 {
220 	dev_info_t	*dip = arg;
221 	uchar_t	port_byte;
222 	int	port = CHERRY_KEY_POLL_PORT;
223 	int	bit = CHERRY_KEY_POLL_BIT;
224 	int	err;
225 
226 	err = cherry_ssc050_get_port_bit(dip, port, bit,
227 		&port_byte, I2C_NOSLEEP);
228 	if (err != 0) {
229 		return;
230 	}
231 
232 	key_locked_bit = (boolean_t)((port_byte & 0x1));
233 	timeout(keyswitch_poll, (caddr_t)dip, keypoll_timeout_hz);
234 }
235 
236 static void
237 cherry_abort_seq_handler(char *msg)
238 {
239 	if (key_locked_bit == 0)
240 		cmn_err(CE_CONT, "KEY in LOCKED position, "
241 			"ignoring debug enter sequence");
242 	else  {
243 		debug_enter(msg);
244 	}
245 }
246 
247 
248 /*ARGSUSED*/
249 int
250 plat_cpu_poweron(struct cpu *cp)
251 {
252 	return (ENOTSUP);	/* not supported on this platform */
253 }
254 
255 /*ARGSUSED*/
256 int
257 plat_cpu_poweroff(struct cpu *cp)
258 {
259 	return (ENOTSUP);	/* not supported on this platform */
260 }
261 
262 /*
263  * Given a pfn, return the board and beginning/end of the page's
264  * memory controller's address range.
265  */
266 static int
267 plat_discover_slice(pfn_t pfn, pfn_t *first, pfn_t *last)
268 {
269 	int bd, cpu, bank;
270 
271 	for (bd = 0; bd < CHERRYSTONE_SBD_SLOTS; bd++) {
272 		for (cpu = 0; cpu < CHERRYSTONE_CPUS_PER_BOARD; cpu++) {
273 			for (bank = 0; bank < CHERRYSTONE_BANKS_PER_MC;
274 				bank++) {
275 				uint64_t *slice = slice_table[bd][cpu][bank];
276 				uint64_t base = btop(slice[SLICE_PA]);
277 				uint64_t len = btop(slice[SLICE_SPAN]);
278 				if (len && pfn >= base && pfn < (base + len)) {
279 					*first = base;
280 					*last = base + len - 1;
281 					return (bd);
282 				}
283 			}
284 		}
285 	}
286 	panic("plat_discover_slice: no slice for pfn 0x%lx\n", pfn);
287 	/* NOTREACHED */
288 }
289 
290 /*ARGSUSED*/
291 void
292 plat_freelist_process(int mnode)
293 {}
294 
295 /*
296  * Called for each board/cpu/PA range detected in plat_fill_mc().
297  */
298 static void
299 update_mem_bounds(int boardid, int cpuid, int bankid,
300 	uint64_t base, uint64_t size)
301 {
302 	uint64_t	end;
303 	int		mnode;
304 
305 	slice_table[boardid][cpuid][bankid][SLICE_PA] = base;
306 	slice_table[boardid][cpuid][bankid][SLICE_SPAN] = size;
307 
308 	end = base + size - 1;
309 
310 	/*
311 	 * First see if this board already has a memnode associated
312 	 * with it.  If not, see if this slice has a memnode.  This
313 	 * covers the cases where a single slice covers multiple
314 	 * boards (cross-board interleaving) and where a single
315 	 * board has multiple slices (1+GB DIMMs).
316 	 */
317 	if ((mnode = plat_lgrphand_to_mem_node(boardid)) == -1) {
318 		if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1)
319 			mnode = mem_node_alloc();
320 
321 		ASSERT(mnode >= 0);
322 		ASSERT(mnode < MAX_MEM_NODES);
323 		plat_assign_lgrphand_to_mem_node(boardid, mnode);
324 	}
325 
326 	base = P2ALIGN(base, (1ul << PA_SLICE_SHIFT));
327 
328 	while (base < end) {
329 		slice_to_memnode[PA_2_SLICE(base)] = mnode;
330 		base += (1ul << PA_SLICE_SHIFT);
331 	}
332 }
333 
334 /*
335  * Dynamically detect memory slices in the system by decoding
336  * the cpu memory decoder registers at boot time.
337  */
338 void
339 plat_fill_mc(pnode_t nodeid)
340 {
341 	uint64_t	mc_addr, saf_addr;
342 	uint64_t	mc_decode[CHERRYSTONE_BANKS_PER_MC];
343 	uint64_t	base, size;
344 	uint64_t	saf_mask;
345 	uint64_t	offset;
346 	uint32_t	regs[4];
347 	int		len;
348 	int		local_mc;
349 	int		portid;
350 	int		boardid;
351 	int		cpuid;
352 	int		i;
353 
354 	if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
355 	    (portid == -1))
356 		return;
357 
358 	/*
359 	 * Decode the board number from the MC portid.  Assumes
360 	 * portid == safari agentid.
361 	 */
362 	boardid = CHERRYSTONE_GETSLOT(portid);
363 	cpuid = CHERRYSTONE_GETSID(portid);
364 
365 	/*
366 	 * The "reg" property returns 4 32-bit values. The first two are
367 	 * combined to form a 64-bit address.  The second two are for a
368 	 * 64-bit size, but we don't actually need to look at that value.
369 	 */
370 	len = prom_getproplen(nodeid, "reg");
371 	if (len != (sizeof (uint32_t) * 4)) {
372 		prom_printf("Warning: malformed 'reg' property\n");
373 		return;
374 	}
375 	if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
376 		return;
377 	mc_addr = ((uint64_t)regs[0]) << 32;
378 	mc_addr |= (uint64_t)regs[1];
379 
380 	/*
381 	 * Figure out whether the memory controller we are examining
382 	 * belongs to this CPU or a different one.
383 	 */
384 	saf_addr = lddsafaddr(8);
385 	saf_mask = (uint64_t)SAF_MASK;
386 	if ((mc_addr & saf_mask) == saf_addr)
387 		local_mc = 1;
388 	else
389 		local_mc = 0;
390 
391 	for (i = 0; i < CHERRYSTONE_BANKS_PER_MC; i++) {
392 		/*
393 		 * Memory decode masks are at offsets 0x10 - 0x28.
394 		 */
395 		offset = 0x10 + (i << 3);
396 
397 		/*
398 		 * If the memory controller is local to this CPU, we use
399 		 * the special ASI to read the decode registers.
400 		 * Otherwise, we load the values from a magic address in
401 		 * I/O space.
402 		 */
403 		if (local_mc)
404 			mc_decode[i] = lddmcdecode(offset);
405 		else
406 			mc_decode[i] = lddphysio(mc_addr | offset);
407 
408 		/*
409 		 * If the upper bit is set, we have a valid mask
410 		 */
411 		if ((int64_t)mc_decode[i] < 0) {
412 			/*
413 			 * The memory decode register is a bitmask field,
414 			 * so we can decode that into both a base and
415 			 * a span.
416 			 */
417 			base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
418 			size = MC_UK2SPAN(mc_decode[i]);
419 			update_mem_bounds(boardid, cpuid, i, base, size);
420 		}
421 	}
422 }
423 
424 /*
425  * This routine is run midway through the boot process.  By the time we get
426  * here, we know about all the active CPU boards in the system, and we have
427  * extracted information about each board's memory from the memory
428  * controllers.  We have also figured out which ranges of memory will be
429  * assigned to which memnodes, so we walk the slice table to build the table
430  * of memnodes.
431  */
432 /* ARGSUSED */
433 void
434 plat_build_mem_nodes(u_longlong_t *list, size_t  nelems)
435 {
436 	int	slice;
437 	pfn_t	basepfn;
438 	pgcnt_t npgs;
439 
440 	mem_node_pfn_shift = PFN_SLICE_SHIFT;
441 	mem_node_physalign = (1ull << PA_SLICE_SHIFT);
442 	npgs = 1ull << PFN_SLICE_SHIFT;
443 
444 	for (slice = 0; slice < CHERRYSTONE_MAX_SLICE; slice++) {
445 		if (slice_to_memnode[slice] == -1)
446 			continue;
447 		basepfn = (uint64_t)slice << PFN_SLICE_SHIFT;
448 		mem_node_add_slice(basepfn, basepfn + npgs - 1);
449 	}
450 }
451 
452 
453 
454 /*
455  * Cherrystone support for lgroups.
456  *
457  * On Cherrystone, an lgroup platform handle == slot number.
458  *
459  * Mappings between lgroup handles and memnodes are managed
460  * in addition to mappings between memory slices and memnodes
461  * to support cross-board interleaving as well as multiple
462  * slices per board (e.g. >1GB DIMMs). The initial mapping
463  * of memnodes to lgroup handles is determined at boot time.
464  */
465 
466 int
467 plat_pfn_to_mem_node(pfn_t pfn)
468 {
469 	return (slice_to_memnode[PFN_2_SLICE(pfn)]);
470 }
471 
472 /*
473  * Return the platform handle for the lgroup containing the given CPU
474  *
475  * For Cherrystone, lgroup platform handle == slot/board number
476  */
477 lgrp_handle_t
478 plat_lgrp_cpu_to_hand(processorid_t id)
479 {
480 	return (CHERRYSTONE_GETSLOT(id));
481 }
482 
483 /*
484  * Platform specific lgroup initialization
485  */
486 void
487 plat_lgrp_init(void)
488 {
489 	int i;
490 
491 	/*
492 	 * Initialize lookup tables to invalid values so we catch
493 	 * any illegal use of them.
494 	 */
495 	for (i = 0; i < CHERRYSTONE_MAX_SLICE; i++) {
496 		slice_to_memnode[i] = -1;
497 	}
498 }
499 
500 /*
501  * Return latency between "from" and "to" lgroups
502  *
503  * This latency number can only be used for relative comparison
504  * between lgroups on the running system, cannot be used across platforms,
505  * and may not reflect the actual latency.  It is platform and implementation
506  * specific, so platform gets to decide its value.  It would be nice if the
507  * number was at least proportional to make comparisons more meaningful though.
508  * NOTE: The numbers below are supposed to be load latencies for uncached
509  * memory divided by 10.
510  */
511 int
512 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
513 {
514 	/*
515 	 * Return min remote latency when there are more than two lgroups
516 	 * (root and child) and getting latency between two different lgroups
517 	 * or root is involved
518 	 */
519 	if (lgrp_optimizations() && (from != to ||
520 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
521 		return (21);
522 	else
523 		return (19);
524 }
525 
526 /*
527  * No platform drivers on this platform
528  */
529 char *platform_module_list[] = {
530 	(char *)0
531 };
532 
533 /*ARGSUSED*/
534 void
535 plat_tod_fault(enum tod_fault_type tod_bad)
536 {
537 }
538 
539 /*ARGSUSED*/
540 int
541 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
542     int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
543 {
544 	if (flt_in_memory && (p2get_mem_unum != NULL))
545 		return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8),
546 			buf, buflen, lenp));
547 	else
548 		return (ENOTSUP);
549 }
550 
551 /*
552  * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
553  * driver giving each platform the opportunity to add platform
554  * specific label information to the unum for ECC error logging purposes.
555  */
556 void
557 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
558 {
559 	_NOTE(ARGUNUSED(bank, dimm))
560 
561 	char board = CHERRYSTONE_GETSLOT_LABEL(mcid);
562 	char old_unum[UNUM_NAMLEN];
563 
564 	strcpy(old_unum, unum);
565 	snprintf(unum, UNUM_NAMLEN, "Slot %c: %s", board, old_unum);
566 }
567 
568 int
569 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
570 {
571 	char board = CHERRYSTONE_GETSLOT_LABEL(cpuid);
572 
573 	if (snprintf(buf, buflen, "Slot %c", board) >= buflen) {
574 		return (ENOSPC);
575 	} else {
576 		*lenp = strlen(buf);
577 		return (0);
578 	}
579 }
580 
581 /*
582  * Cherrystone's BBC pcf8584 controller is used by both OBP and the OS's i2c
583  * drivers.  The 'eeprom' command executes OBP code to handle property requests.
584  * If eeprom didn't do this, or if the controllers were partitioned so that all
585  * devices on a given controller were driven by either OBP or the OS, this
586  * wouldn't be necessary.
587  *
588  * Note that getprop doesn't have the same issue as it reads from cached
589  * memory in OBP.
590  */
591 
592 /*
593  * Common locking enter code
594  */
595 void
596 plat_setprop_enter(void)
597 {
598 	mutex_enter(&cherry_pcf8584_mutex);
599 }
600 
601 /*
602  * Common locking exit code
603  */
604 void
605 plat_setprop_exit(void)
606 {
607 	mutex_exit(&cherry_pcf8584_mutex);
608 }
609 
610 /*
611  * Called by pcf8584 driver
612  */
613 void
614 plat_shared_i2c_enter(dev_info_t *i2cnexus_dip)
615 {
616 	if (i2cnexus_dip == shared_pcf8584_dip) {
617 		plat_setprop_enter();
618 	}
619 }
620 
621 /*
622  * Called by pcf8584 driver
623  */
624 void
625 plat_shared_i2c_exit(dev_info_t *i2cnexus_dip)
626 {
627 	if (i2cnexus_dip == shared_pcf8584_dip) {
628 		plat_setprop_exit();
629 	}
630 }
631