1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * UNIX machine dependent virtual memory support. 27 */ 28 29 #ifndef _VM_DEP_H 30 #define _VM_DEP_H 31 32 #ifdef __cplusplus 33 extern "C" { 34 #endif 35 36 #include <vm/hat_sfmmu.h> 37 #include <sys/archsystm.h> 38 #include <sys/memnode.h> 39 40 #define GETTICK() gettick() 41 42 /* tick value that should be used for random values */ 43 extern u_longlong_t randtick(void); 44 45 /* 46 * Per page size free lists. Allocated dynamically. 47 */ 48 #define MAX_MEM_TYPES 2 /* 0 = reloc, 1 = noreloc */ 49 #define MTYPE_RELOC 0 50 #define MTYPE_NORELOC 1 51 52 #define PP_2_MTYPE(pp) (PP_ISNORELOC(pp) ? MTYPE_NORELOC : MTYPE_RELOC) 53 54 #define MTYPE_INIT(mtype, vp, vaddr, flags, pgsz) \ 55 mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC; 56 57 /* mtype init for page_get_replacement_page */ 58 #define MTYPE_PGR_INIT(mtype, flags, pp, mnode, pgcnt) \ 59 mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC; 60 61 #define MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi) \ 62 pfnlo = mem_node_config[mnode].physbase; \ 63 pfnhi = mem_node_config[mnode].physmax; 64 65 /* 66 * candidate counters in vm_pagelist.c are indexed by color and range 67 */ 68 #define MAX_MNODE_MRANGES MAX_MEM_TYPES 69 #define MNODE_RANGE_CNT(mnode) MAX_MNODE_MRANGES 70 #define MNODE_MAX_MRANGE(mnode) (MAX_MEM_TYPES - 1) 71 #define MTYPE_2_MRANGE(mnode, mtype) (mtype) 72 73 /* 74 * Internal PG_ flags. 75 */ 76 #define PGI_RELOCONLY 0x10000 /* acts in the opposite sense to PG_NORELOC */ 77 #define PGI_NOCAGE 0x20000 /* indicates Cage is disabled */ 78 #define PGI_PGCPHIPRI 0x40000 /* page_get_contig_page priority allocation */ 79 #define PGI_PGCPSZC0 0x80000 /* relocate base pagesize page */ 80 81 /* 82 * PGI mtype flags - should not overlap PGI flags 83 */ 84 #define PGI_MT_RANGE 0x1000000 /* mtype range */ 85 #define PGI_MT_NEXT 0x2000000 /* get next mtype */ 86 87 extern page_t ***page_freelists[MMU_PAGE_SIZES][MAX_MEM_TYPES]; 88 extern page_t ***page_cachelists[MAX_MEM_TYPES]; 89 90 #define PAGE_FREELISTS(mnode, szc, color, mtype) \ 91 (*(page_freelists[szc][mtype][mnode] + (color))) 92 93 #define PAGE_CACHELISTS(mnode, color, mtype) \ 94 (*(page_cachelists[mtype][mnode] + (color))) 95 96 /* 97 * There are 'page_colors' colors/bins. Spread them out under a 98 * couple of locks. There are mutexes for both the page freelist 99 * and the page cachelist. We want enough locks to make contention 100 * reasonable, but not too many -- otherwise page_freelist_lock() gets 101 * so expensive that it becomes the bottleneck! 102 */ 103 #define NPC_MUTEX 16 104 105 extern kmutex_t *fpc_mutex[NPC_MUTEX]; 106 extern kmutex_t *cpc_mutex[NPC_MUTEX]; 107 108 /* 109 * Iterator provides the info needed to convert RA to PA. 110 * MEM_NODE_ITERATOR_INIT() should be called before 111 * PAGE_NEXT_PFN_FOR_COLOR() if pfn was not obtained via a previous 112 * PAGE_NEXT_PFN_FOR_COLOR() call. Iterator caches color 2 hash 113 * translations requiring initializer call if color or ceq_mask changes, 114 * even if pfn doesn't. MEM_NODE_ITERATOR_INIT() must also be called before 115 * PFN_2_COLOR() that uses a valid iterator argument. 116 * 117 * plat_mem_node_iterator_init() starts from last mblock in continuation 118 * case which may be invalid because memory DR. To detect this situation 119 * mi_genid is checked against mpo_genid which is incremented after a 120 * memory DR operation. See also plat_slice_add()/plat_slice_del(). 121 */ 122 #ifdef sun4v 123 124 typedef struct mem_node_iterator { 125 uint_t mi_mnode; /* mnode in which to iterate */ 126 int mi_init; /* set to 1 when first init */ 127 int mi_genid; /* set/checked against mpo_genid */ 128 int mi_last_mblock; /* last mblock visited */ 129 uint_t mi_hash_ceq_mask; /* cached copy of ceq_mask */ 130 uint_t mi_hash_color; /* cached copy of color */ 131 uint_t mi_mnode_mask; /* number of mask bits */ 132 uint_t mi_mnode_pfn_shift; /* mnode position in pfn */ 133 pfn_t mi_mblock_base; /* first valid pfn in current mblock */ 134 pfn_t mi_mblock_end; /* last valid pfn in current mblock */ 135 pfn_t mi_ra_to_pa; /* ra adjustment for current mblock */ 136 pfn_t mi_mnode_pfn_mask; /* mask to obtain mnode id bits */ 137 } mem_node_iterator_t; 138 139 #define MEM_NODE_ITERATOR_DECL(it) \ 140 mem_node_iterator_t it 141 #define MEM_NODE_ITERATOR_INIT(pfn, mnode, szc, it) \ 142 (pfn) = plat_mem_node_iterator_init((pfn), (mnode), (szc), (it), 1) 143 144 extern pfn_t plat_mem_node_iterator_init(pfn_t, int, uchar_t, 145 mem_node_iterator_t *, int); 146 extern pfn_t plat_rapfn_to_papfn(pfn_t); 147 extern int interleaved_mnodes; 148 149 #else /* sun4v */ 150 151 #define MEM_NODE_ITERATOR_DECL(it) \ 152 void *it = NULL 153 #define MEM_NODE_ITERATOR_INIT(pfn, mnode, szc, it) 154 155 #endif /* sun4v */ 156 157 /* 158 * Return the mnode limits so that hpc_counters length and base 159 * index can be determined. When interleaved_mnodes is set, we 160 * create an array only for the first mnode that exists. All other 161 * mnodes will share the array in this case. 162 * If interleaved_mnodes is not set, simply return the limits for 163 * the given mnode. 164 */ 165 #define HPM_COUNTERS_LIMITS(mnode, physbase, physmax, first) \ 166 if (!interleaved_mnodes) { \ 167 (physbase) = mem_node_config[(mnode)].physbase; \ 168 (physmax) = mem_node_config[(mnode)].physmax; \ 169 (first) = (mnode); \ 170 } else if ((first) < 0) { \ 171 mem_node_max_range(&(physbase), &(physmax)); \ 172 (first) = (mnode); \ 173 } 174 175 #define PAGE_CTRS_WRITE_LOCK(mnode) \ 176 if (!interleaved_mnodes) { \ 177 rw_enter(&page_ctrs_rwlock[(mnode)], RW_WRITER); \ 178 page_freelist_lock(mnode); \ 179 } else { \ 180 /* changing shared hpm_counters */ \ 181 int _i; \ 182 for (_i = 0; _i < max_mem_nodes; _i++) { \ 183 rw_enter(&page_ctrs_rwlock[_i], RW_WRITER); \ 184 page_freelist_lock(_i); \ 185 } \ 186 } 187 188 #define PAGE_CTRS_WRITE_UNLOCK(mnode) \ 189 if (!interleaved_mnodes) { \ 190 page_freelist_unlock(mnode); \ 191 rw_exit(&page_ctrs_rwlock[(mnode)]); \ 192 } else { \ 193 int _i; \ 194 for (_i = 0; _i < max_mem_nodes; _i++) { \ 195 page_freelist_unlock(_i); \ 196 rw_exit(&page_ctrs_rwlock[_i]); \ 197 } \ 198 } 199 200 /* 201 * cpu specific color conversion functions 202 */ 203 extern uint_t page_get_nsz_color_mask_cpu(uchar_t, uint_t); 204 #pragma weak page_get_nsz_color_mask_cpu 205 206 extern uint_t page_get_nsz_color_cpu(uchar_t, uint_t); 207 #pragma weak page_get_nsz_color_cpu 208 209 extern uint_t page_get_color_shift_cpu(uchar_t, uchar_t); 210 #pragma weak page_get_color_shift_cpu 211 212 extern uint_t page_convert_color_cpu(uint_t, uchar_t, uchar_t); 213 #pragma weak page_convert_color_cpu 214 215 extern pfn_t page_next_pfn_for_color_cpu(pfn_t, 216 uchar_t, uint_t, uint_t, uint_t, void *); 217 #pragma weak page_next_pfn_for_color_cpu 218 219 extern uint_t page_pfn_2_color_cpu(pfn_t, uchar_t, void *); 220 #pragma weak page_pfn_2_color_cpu 221 222 #define PAGE_GET_COLOR_SHIFT(szc, nszc) \ 223 ((&page_get_color_shift_cpu != NULL) ? \ 224 page_get_color_shift_cpu(szc, nszc) : \ 225 (hw_page_array[(nszc)].hp_shift - \ 226 hw_page_array[(szc)].hp_shift)) 227 228 #define PAGE_CONVERT_COLOR(ncolor, szc, nszc) \ 229 ((&page_convert_color_cpu != NULL) ? \ 230 page_convert_color_cpu(ncolor, szc, nszc) : \ 231 ((ncolor) << PAGE_GET_COLOR_SHIFT((szc), (nszc)))) 232 233 #define PFN_2_COLOR(pfn, szc, it) \ 234 ((&page_pfn_2_color_cpu != NULL) ? \ 235 page_pfn_2_color_cpu(pfn, szc, it) : \ 236 ((pfn & (hw_page_array[0].hp_colors - 1)) >> \ 237 (hw_page_array[szc].hp_shift - \ 238 hw_page_array[0].hp_shift))) 239 240 #define PNUM_SIZE(szc) \ 241 (hw_page_array[(szc)].hp_pgcnt) 242 #define PNUM_SHIFT(szc) \ 243 (hw_page_array[(szc)].hp_shift - hw_page_array[0].hp_shift) 244 #define PAGE_GET_SHIFT(szc) \ 245 (hw_page_array[(szc)].hp_shift) 246 #define PAGE_GET_PAGECOLORS(szc) \ 247 (hw_page_array[(szc)].hp_colors) 248 249 /* 250 * This macro calculates the next sequential pfn with the specified 251 * color using color equivalency mask 252 */ 253 #define PAGE_NEXT_PFN_FOR_COLOR(pfn, szc, color, ceq_mask, color_mask, it) \ 254 { \ 255 ASSERT(((color) & ~(ceq_mask)) == 0); \ 256 if (&page_next_pfn_for_color_cpu == NULL) { \ 257 uint_t pfn_shift = PAGE_BSZS_SHIFT(szc); \ 258 pfn_t spfn = pfn >> pfn_shift; \ 259 pfn_t stride = (ceq_mask) + 1; \ 260 ASSERT((((ceq_mask) + 1) & (ceq_mask)) == 0); \ 261 if (((spfn ^ (color)) & (ceq_mask)) == 0) { \ 262 pfn += stride << pfn_shift; \ 263 } else { \ 264 pfn = (spfn & ~(pfn_t)(ceq_mask)) | (color); \ 265 pfn = (pfn > spfn ? pfn : pfn + stride) << \ 266 pfn_shift; \ 267 } \ 268 } else { \ 269 pfn = page_next_pfn_for_color_cpu(pfn, szc, color, \ 270 ceq_mask, color_mask, it); \ 271 } \ 272 } 273 274 /* get the color equivalency mask for the next szc */ 275 #define PAGE_GET_NSZ_MASK(szc, mask) \ 276 ((&page_get_nsz_color_mask_cpu == NULL) ? \ 277 ((mask) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) : \ 278 page_get_nsz_color_mask_cpu(szc, mask)) 279 280 /* get the color of the next szc */ 281 #define PAGE_GET_NSZ_COLOR(szc, color) \ 282 ((&page_get_nsz_color_cpu == NULL) ? \ 283 ((color) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) : \ 284 page_get_nsz_color_cpu(szc, color)) 285 286 /* Find the bin for the given page if it was of size szc */ 287 #define PP_2_BIN_SZC(pp, szc) (PFN_2_COLOR(pp->p_pagenum, szc, (void *)(-1))) 288 289 #define PP_2_BIN(pp) (PP_2_BIN_SZC(pp, pp->p_szc)) 290 291 #define PP_2_MEM_NODE(pp) (PFN_2_MEM_NODE(pp->p_pagenum)) 292 293 #define PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ? \ 294 &fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] : \ 295 &cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode]) 296 297 #define FPC_MUTEX(mnode, i) (&fpc_mutex[i][mnode]) 298 #define CPC_MUTEX(mnode, i) (&cpc_mutex[i][mnode]) 299 300 #define PFN_BASE(pfnum, szc) (pfnum & ~((1 << PAGE_BSZS_SHIFT(szc)) - 1)) 301 302 /* 303 * this structure is used for walking free page lists 304 * controls when to split large pages into smaller pages, 305 * and when to coalesce smaller pages into larger pages 306 */ 307 typedef struct page_list_walker { 308 uint_t plw_colors; /* num of colors for szc */ 309 uint_t plw_color_mask; /* colors-1 */ 310 uint_t plw_bin_step; /* next bin: 1 or 2 */ 311 uint_t plw_count; /* loop count */ 312 uint_t plw_bin0; /* starting bin */ 313 uint_t plw_bin_marker; /* bin after initial jump */ 314 uint_t plw_bin_split_prev; /* last bin we tried to split */ 315 uint_t plw_do_split; /* set if OK to split */ 316 uint_t plw_split_next; /* next bin to split */ 317 uint_t plw_ceq_dif; /* number of different color groups */ 318 /* to check */ 319 uint_t plw_ceq_mask[MMU_PAGE_SIZES + 1]; /* color equiv mask */ 320 uint_t plw_bins[MMU_PAGE_SIZES + 1]; /* num of bins */ 321 } page_list_walker_t; 322 323 void page_list_walk_init(uchar_t szc, uint_t flags, uint_t bin, 324 int can_split, int use_ceq, page_list_walker_t *plw); 325 326 typedef char hpmctr_t; 327 328 #ifdef DEBUG 329 #define CHK_LPG(pp, szc) chk_lpg(pp, szc) 330 extern void chk_lpg(page_t *, uchar_t); 331 #else 332 #define CHK_LPG(pp, szc) 333 #endif 334 335 /* 336 * page list count per mnode and type. 337 */ 338 typedef struct { 339 pgcnt_t plc_mt_pgmax; /* max page cnt */ 340 pgcnt_t plc_mt_clpgcnt; /* cache list cnt */ 341 pgcnt_t plc_mt_flpgcnt; /* free list cnt - small pages */ 342 pgcnt_t plc_mt_lgpgcnt; /* free list cnt - large pages */ 343 #ifdef DEBUG 344 struct { 345 pgcnt_t plc_mts_pgcnt; /* per page size count */ 346 int plc_mts_colors; 347 pgcnt_t *plc_mtsc_pgcnt; /* per color bin count */ 348 } plc_mts[MMU_PAGE_SIZES]; 349 #endif 350 } plcnt_t[MAX_MEM_NODES][MAX_MEM_TYPES]; 351 352 #ifdef DEBUG 353 354 #define PLCNT_SZ(ctrs_sz) { \ 355 int szc; \ 356 for (szc = 0; szc < mmu_page_sizes; szc++) { \ 357 int colors = page_get_pagecolors(szc); \ 358 ctrs_sz += (max_mem_nodes * MAX_MEM_TYPES * \ 359 colors * sizeof (pgcnt_t)); \ 360 } \ 361 } 362 363 #define PLCNT_INIT(base) { \ 364 int mn, mt, szc, colors; \ 365 for (szc = 0; szc < mmu_page_sizes; szc++) { \ 366 colors = page_get_pagecolors(szc); \ 367 for (mn = 0; mn < max_mem_nodes; mn++) { \ 368 for (mt = 0; mt < MAX_MEM_TYPES; mt++) { \ 369 plcnt[mn][mt].plc_mts[szc]. \ 370 plc_mts_colors = colors; \ 371 plcnt[mn][mt].plc_mts[szc]. \ 372 plc_mtsc_pgcnt = (pgcnt_t *)base; \ 373 base += (colors * sizeof (pgcnt_t)); \ 374 } \ 375 } \ 376 } \ 377 } 378 379 #define PLCNT_DO(pp, mn, mtype, szc, cnt, flags) { \ 380 int bin = PP_2_BIN(pp); \ 381 if (flags & PG_CACHE_LIST) \ 382 atomic_add_long(&plcnt[mn][mtype].plc_mt_clpgcnt, cnt); \ 383 else if (szc) \ 384 atomic_add_long(&plcnt[mn][mtype].plc_mt_lgpgcnt, cnt); \ 385 else \ 386 atomic_add_long(&plcnt[mn][mtype].plc_mt_flpgcnt, cnt); \ 387 atomic_add_long(&plcnt[mn][mtype].plc_mts[szc].plc_mts_pgcnt, \ 388 cnt); \ 389 atomic_add_long(&plcnt[mn][mtype].plc_mts[szc]. \ 390 plc_mtsc_pgcnt[bin], cnt); \ 391 } 392 393 #else 394 395 #define PLCNT_SZ(ctrs_sz) 396 397 #define PLCNT_INIT(base) 398 399 /* PG_FREE_LIST may not be explicitly set in flags for large pages */ 400 401 #define PLCNT_DO(pp, mn, mtype, szc, cnt, flags) { \ 402 if (flags & PG_CACHE_LIST) \ 403 atomic_add_long(&plcnt[mn][mtype].plc_mt_clpgcnt, cnt); \ 404 else if (szc) \ 405 atomic_add_long(&plcnt[mn][mtype].plc_mt_lgpgcnt, cnt); \ 406 else \ 407 atomic_add_long(&plcnt[mn][mtype].plc_mt_flpgcnt, cnt); \ 408 } 409 410 #endif 411 412 #define PLCNT_INCR(pp, mn, mtype, szc, flags) { \ 413 long cnt = (1 << PAGE_BSZS_SHIFT(szc)); \ 414 PLCNT_DO(pp, mn, mtype, szc, cnt, flags); \ 415 } 416 417 #define PLCNT_DECR(pp, mn, mtype, szc, flags) { \ 418 long cnt = ((-1) << PAGE_BSZS_SHIFT(szc)); \ 419 PLCNT_DO(pp, mn, mtype, szc, cnt, flags); \ 420 } 421 422 /* 423 * macros to update page list max counts - done when pages transferred 424 * from RELOC to NORELOC mtype (kcage_init or kcage_assimilate_page). 425 */ 426 427 #define PLCNT_XFER_NORELOC(pp) { \ 428 long cnt = (1 << PAGE_BSZS_SHIFT((pp)->p_szc)); \ 429 int mn = PP_2_MEM_NODE(pp); \ 430 atomic_add_long(&plcnt[mn][MTYPE_NORELOC].plc_mt_pgmax, cnt); \ 431 atomic_add_long(&plcnt[mn][MTYPE_RELOC].plc_mt_pgmax, -cnt); \ 432 } 433 434 /* 435 * macro to modify the page list max counts when memory is added to 436 * the page lists during startup (add_physmem) or during a DR operation 437 * when memory is added (kphysm_add_memory_dynamic) or deleted 438 * (kphysm_del_cleanup). 439 */ 440 #define PLCNT_MODIFY_MAX(pfn, cnt) { \ 441 spgcnt_t _cnt = (spgcnt_t)(cnt); \ 442 pgcnt_t _acnt = ABS(_cnt); \ 443 int _mn; \ 444 pgcnt_t _np; \ 445 if (&plat_mem_node_intersect_range != NULL) { \ 446 for (_mn = 0; _mn < max_mem_nodes; _mn++) { \ 447 plat_mem_node_intersect_range((pfn), _acnt, _mn, &_np);\ 448 if (_np == 0) \ 449 continue; \ 450 atomic_add_long(&plcnt[_mn][MTYPE_RELOC].plc_mt_pgmax, \ 451 (_cnt < 0) ? -_np : _np); \ 452 } \ 453 } else { \ 454 pfn_t _pfn = (pfn); \ 455 pfn_t _endpfn = _pfn + _acnt; \ 456 while (_pfn < _endpfn) { \ 457 _mn = PFN_2_MEM_NODE(_pfn); \ 458 _np = MIN(_endpfn, mem_node_config[_mn].physmax + 1) - \ 459 _pfn; \ 460 _pfn += _np; \ 461 atomic_add_long(&plcnt[_mn][MTYPE_RELOC].plc_mt_pgmax, \ 462 (_cnt < 0) ? -_np : _np); \ 463 } \ 464 } \ 465 } 466 467 /* 468 * macro to call page_ctrs_adjust() when memory is added 469 * during a DR operation. 470 */ 471 #define PAGE_CTRS_ADJUST(pfn, cnt, rv) { \ 472 spgcnt_t _cnt = (spgcnt_t)(cnt); \ 473 int _mn; \ 474 pgcnt_t _np; \ 475 if (&plat_mem_node_intersect_range != NULL) { \ 476 for (_mn = 0; _mn < max_mem_nodes; _mn++) { \ 477 plat_mem_node_intersect_range((pfn), _cnt, _mn, &_np); \ 478 if (_np == 0) \ 479 continue; \ 480 if ((rv = page_ctrs_adjust(_mn)) != 0) \ 481 break; \ 482 } \ 483 } else { \ 484 pfn_t _pfn = (pfn); \ 485 pfn_t _endpfn = _pfn + _cnt; \ 486 while (_pfn < _endpfn) { \ 487 _mn = PFN_2_MEM_NODE(_pfn); \ 488 _np = MIN(_endpfn, mem_node_config[_mn].physmax + 1) - \ 489 _pfn; \ 490 _pfn += _np; \ 491 if ((rv = page_ctrs_adjust(_mn)) != 0) \ 492 break; \ 493 } \ 494 } \ 495 } 496 497 extern plcnt_t plcnt; 498 499 #define MNODE_PGCNT(mn) \ 500 (plcnt[mn][MTYPE_RELOC].plc_mt_clpgcnt + \ 501 plcnt[mn][MTYPE_NORELOC].plc_mt_clpgcnt + \ 502 plcnt[mn][MTYPE_RELOC].plc_mt_flpgcnt + \ 503 plcnt[mn][MTYPE_NORELOC].plc_mt_flpgcnt + \ 504 plcnt[mn][MTYPE_RELOC].plc_mt_lgpgcnt + \ 505 plcnt[mn][MTYPE_NORELOC].plc_mt_lgpgcnt) 506 507 #define MNODETYPE_PGCNT(mn, mtype) \ 508 (plcnt[mn][mtype].plc_mt_clpgcnt + \ 509 plcnt[mn][mtype].plc_mt_flpgcnt + \ 510 plcnt[mn][mtype].plc_mt_lgpgcnt) 511 512 /* 513 * macros to loop through the mtype range - MTYPE_START returns -1 in 514 * mtype if no pages in mnode/mtype and possibly NEXT mtype. 515 */ 516 #define MTYPE_START(mnode, mtype, flags) { \ 517 if (plcnt[mnode][mtype].plc_mt_pgmax == 0) { \ 518 ASSERT(mtype == MTYPE_RELOC || \ 519 MNODETYPE_PGCNT(mnode, mtype) == 0 || \ 520 plcnt[mnode][mtype].plc_mt_pgmax != 0); \ 521 MTYPE_NEXT(mnode, mtype, flags); \ 522 } \ 523 } 524 525 /* 526 * if allocation from the RELOC pool failed and there is sufficient cage 527 * memory, attempt to allocate from the NORELOC pool. 528 */ 529 #define MTYPE_NEXT(mnode, mtype, flags) { \ 530 if (!(flags & (PG_NORELOC | PGI_NOCAGE | PGI_RELOCONLY)) && \ 531 (kcage_freemem >= kcage_lotsfree)) { \ 532 if (plcnt[mnode][MTYPE_NORELOC].plc_mt_pgmax == 0) { \ 533 ASSERT(MNODETYPE_PGCNT(mnode, MTYPE_NORELOC) == 0 || \ 534 plcnt[mnode][MTYPE_NORELOC].plc_mt_pgmax != 0); \ 535 mtype = -1; \ 536 } else { \ 537 mtype = MTYPE_NORELOC; \ 538 flags |= PG_NORELOC; \ 539 } \ 540 } else { \ 541 mtype = -1; \ 542 } \ 543 } 544 545 /* 546 * get the ecache setsize for the current cpu. 547 */ 548 #define CPUSETSIZE() (cpunodes[CPU->cpu_id].ecache_setsize) 549 550 extern struct cpu cpu0; 551 #define CPU0 &cpu0 552 553 #define PAGE_BSZS_SHIFT(szc) TTE_BSZS_SHIFT(szc) 554 /* 555 * For sfmmu each larger page is 8 times the size of the previous 556 * size page. 557 */ 558 #define FULL_REGION_CNT(rg_szc) (8) 559 560 /* 561 * The counter base must be per page_counter element to prevent 562 * races when re-indexing, and the base page size element should 563 * be aligned on a boundary of the given region size. 564 * 565 * We also round up the number of pages spanned by the counters 566 * for a given region to PC_BASE_ALIGN in certain situations to simplify 567 * the coding for some non-performance critical routines. 568 */ 569 #define PC_BASE_ALIGN ((pfn_t)1 << PAGE_BSZS_SHIFT(mmu_page_sizes-1)) 570 #define PC_BASE_ALIGN_MASK (PC_BASE_ALIGN - 1) 571 572 extern int ecache_alignsize; 573 #define L2CACHE_ALIGN ecache_alignsize 574 #define L2CACHE_ALIGN_MAX 512 575 576 extern int update_proc_pgcolorbase_after_fork; 577 extern int consistent_coloring; 578 extern uint_t vac_colors_mask; 579 extern int vac_size; 580 extern int vac_shift; 581 582 /* 583 * Kernel mem segment in 64-bit space 584 */ 585 extern caddr_t kmem64_base, kmem64_end, kmem64_aligned_end; 586 extern int kmem64_alignsize, kmem64_szc; 587 extern uint64_t kmem64_pabase; 588 extern int max_bootlp_tteszc; 589 590 /* 591 * Maximum and default values for user heap, stack, private and shared 592 * anonymous memory, and user text and initialized data. 593 * 594 * Initial values are defined in architecture specific mach_vm_dep.c file. 595 * Used by map_pgsz*() routines. 596 */ 597 extern size_t max_uheap_lpsize; 598 extern size_t default_uheap_lpsize; 599 extern size_t max_ustack_lpsize; 600 extern size_t default_ustack_lpsize; 601 extern size_t max_privmap_lpsize; 602 extern size_t max_uidata_lpsize; 603 extern size_t max_utext_lpsize; 604 extern size_t max_shm_lpsize; 605 606 /* 607 * For adjusting the default lpsize, for DTLB-limited page sizes. 608 */ 609 extern void adjust_data_maxlpsize(size_t ismpagesize); 610 611 /* 612 * Sanity control. Don't use large pages regardless of user 613 * settings if there's less than priv or shm_lpg_min_physmem memory installed. 614 * The units for this variable are 8K pages. 615 */ 616 extern pgcnt_t privm_lpg_min_physmem; 617 extern pgcnt_t shm_lpg_min_physmem; 618 619 /* 620 * AS_2_BIN macro controls the page coloring policy. 621 * 0 (default) uses various vaddr bits 622 * 1 virtual=paddr 623 * 2 bin hopping 624 */ 625 #define AS_2_BIN(as, seg, vp, addr, bin, szc) \ 626 switch (consistent_coloring) { \ 627 default: \ 628 cmn_err(CE_WARN, \ 629 "AS_2_BIN: bad consistent coloring value"); \ 630 /* assume default algorithm -> continue */ \ 631 case 0: { \ 632 uint32_t ndx, new; \ 633 int slew = 0; \ 634 pfn_t pfn; \ 635 \ 636 if (vp != NULL && IS_SWAPVP(vp) && \ 637 seg->s_ops == &segvn_ops) \ 638 slew = as_color_bin(as); \ 639 \ 640 pfn = ((uintptr_t)addr >> MMU_PAGESHIFT) + \ 641 (((uintptr_t)addr >> page_coloring_shift) << \ 642 (vac_shift - MMU_PAGESHIFT)); \ 643 if ((szc) == 0 || &page_pfn_2_color_cpu == NULL) { \ 644 pfn += slew; \ 645 bin = PFN_2_COLOR(pfn, szc, NULL); \ 646 } else { \ 647 bin = PFN_2_COLOR(pfn, szc, NULL); \ 648 bin += slew >> (vac_shift - MMU_PAGESHIFT); \ 649 bin &= hw_page_array[(szc)].hp_colors - 1; \ 650 } \ 651 break; \ 652 } \ 653 case 1: \ 654 bin = PFN_2_COLOR(((uintptr_t)addr >> MMU_PAGESHIFT), \ 655 szc, NULL); \ 656 break; \ 657 case 2: { \ 658 int cnt = as_color_bin(as); \ 659 uint_t color_mask = page_get_pagecolors(0) - 1; \ 660 \ 661 /* make sure physical color aligns with vac color */ \ 662 while ((cnt & vac_colors_mask) != \ 663 addr_to_vcolor(addr)) { \ 664 cnt++; \ 665 } \ 666 bin = cnt = cnt & color_mask; \ 667 bin >>= PAGE_GET_COLOR_SHIFT(0, szc); \ 668 /* update per as page coloring fields */ \ 669 cnt = (cnt + 1) & color_mask; \ 670 if (cnt == (as_color_start(as) & color_mask)) { \ 671 cnt = as_color_start(as) = as_color_start(as) + \ 672 PGCLR_LOOPFACTOR; \ 673 } \ 674 as_color_bin(as) = cnt & color_mask; \ 675 break; \ 676 } \ 677 } \ 678 ASSERT(bin < page_get_pagecolors(szc)); 679 680 /* 681 * cpu private vm data - accessed thru CPU->cpu_vm_data 682 * vc_pnum_memseg: tracks last memseg visited in page_numtopp_nolock() 683 * vc_pnext_memseg: tracks last memseg visited in page_nextn() 684 * vc_kmptr: unaligned kmem pointer for this vm_cpu_data_t 685 * vc_kmsize: orignal kmem size for this vm_cpu_data_t 686 */ 687 688 typedef struct { 689 struct memseg *vc_pnum_memseg; 690 struct memseg *vc_pnext_memseg; 691 void *vc_kmptr; 692 size_t vc_kmsize; 693 } vm_cpu_data_t; 694 695 /* allocation size to ensure vm_cpu_data_t resides in its own cache line */ 696 #define VM_CPU_DATA_PADSIZE \ 697 (P2ROUNDUP(sizeof (vm_cpu_data_t), L2CACHE_ALIGN_MAX)) 698 699 /* 700 * Function to get an ecache color bin: F(as, cnt, vcolor). 701 * the goal of this function is to: 702 * - to spread a processes' physical pages across the entire ecache to 703 * maximize its use. 704 * - to minimize vac flushes caused when we reuse a physical page on a 705 * different vac color than it was previously used. 706 * - to prevent all processes to use the same exact colors and trash each 707 * other. 708 * 709 * cnt is a bin ptr kept on a per as basis. As we page_create we increment 710 * the ptr so we spread out the physical pages to cover the entire ecache. 711 * The virtual color is made a subset of the physical color in order to 712 * in minimize virtual cache flushing. 713 * We add in the as to spread out different as. This happens when we 714 * initialize the start count value. 715 * sizeof(struct as) is 60 so we shift by 3 to get into the bit range 716 * that will tend to change. For example, on spitfire based machines 717 * (vcshft == 1) contigous as are spread bu ~6 bins. 718 * vcshft provides for proper virtual color alignment. 719 * In theory cnt should be updated using cas only but if we are off by one 720 * or 2 it is no big deal. 721 * We also keep a start value which is used to randomize on what bin we 722 * start counting when it is time to start another loop. This avoids 723 * contigous allocations of ecache size to point to the same bin. 724 * Why 3? Seems work ok. Better than 7 or anything larger. 725 */ 726 #define PGCLR_LOOPFACTOR 3 727 728 /* 729 * When a bin is empty, and we can't satisfy a color request correctly, 730 * we scan. If we assume that the programs have reasonable spatial 731 * behavior, then it will not be a good idea to use the adjacent color. 732 * Using the adjacent color would result in virtually adjacent addresses 733 * mapping into the same spot in the cache. So, if we stumble across 734 * an empty bin, skip a bunch before looking. After the first skip, 735 * then just look one bin at a time so we don't miss our cache on 736 * every look. Be sure to check every bin. Page_create() will panic 737 * if we miss a page. 738 * 739 * This also explains the `<=' in the for loops in both page_get_freelist() 740 * and page_get_cachelist(). Since we checked the target bin, skipped 741 * a bunch, then continued one a time, we wind up checking the target bin 742 * twice to make sure we get all of them bins. 743 */ 744 #define BIN_STEP 20 745 746 #ifdef VM_STATS 747 struct vmm_vmstats_str { 748 ulong_t pgf_alloc[MMU_PAGE_SIZES]; /* page_get_freelist */ 749 ulong_t pgf_allocok[MMU_PAGE_SIZES]; 750 ulong_t pgf_allocokrem[MMU_PAGE_SIZES]; 751 ulong_t pgf_allocfailed[MMU_PAGE_SIZES]; 752 ulong_t pgf_allocdeferred; 753 ulong_t pgf_allocretry[MMU_PAGE_SIZES]; 754 ulong_t pgc_alloc; /* page_get_cachelist */ 755 ulong_t pgc_allocok; 756 ulong_t pgc_allocokrem; 757 ulong_t pgc_allocokdeferred; 758 ulong_t pgc_allocfailed; 759 ulong_t pgcp_alloc[MMU_PAGE_SIZES]; /* page_get_contig_pages */ 760 ulong_t pgcp_allocfailed[MMU_PAGE_SIZES]; 761 ulong_t pgcp_allocempty[MMU_PAGE_SIZES]; 762 ulong_t pgcp_allocok[MMU_PAGE_SIZES]; 763 ulong_t ptcp[MMU_PAGE_SIZES]; /* page_trylock_contig_pages */ 764 ulong_t ptcpfreethresh[MMU_PAGE_SIZES]; 765 ulong_t ptcpfailexcl[MMU_PAGE_SIZES]; 766 ulong_t ptcpfailszc[MMU_PAGE_SIZES]; 767 ulong_t ptcpfailcage[MMU_PAGE_SIZES]; 768 ulong_t ptcpok[MMU_PAGE_SIZES]; 769 ulong_t pgmf_alloc[MMU_PAGE_SIZES]; /* page_get_mnode_freelist */ 770 ulong_t pgmf_allocfailed[MMU_PAGE_SIZES]; 771 ulong_t pgmf_allocempty[MMU_PAGE_SIZES]; 772 ulong_t pgmf_allocok[MMU_PAGE_SIZES]; 773 ulong_t pgmc_alloc; /* page_get_mnode_cachelist */ 774 ulong_t pgmc_allocfailed; 775 ulong_t pgmc_allocempty; 776 ulong_t pgmc_allocok; 777 ulong_t pladd_free[MMU_PAGE_SIZES]; /* page_list_add/sub */ 778 ulong_t plsub_free[MMU_PAGE_SIZES]; 779 ulong_t pladd_cache; 780 ulong_t plsub_cache; 781 ulong_t plsubpages_szcbig; 782 ulong_t plsubpages_szc0; 783 ulong_t pfs_req[MMU_PAGE_SIZES]; /* page_freelist_split */ 784 ulong_t pfs_demote[MMU_PAGE_SIZES]; 785 ulong_t pfc_coalok[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 786 ulong_t ppr_reloc[MMU_PAGE_SIZES]; /* page_relocate */ 787 ulong_t ppr_relocok[MMU_PAGE_SIZES]; 788 ulong_t ppr_relocnoroot[MMU_PAGE_SIZES]; 789 ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES]; 790 ulong_t ppr_relocnolock[MMU_PAGE_SIZES]; 791 ulong_t ppr_relocnomem[MMU_PAGE_SIZES]; 792 ulong_t ppr_krelocfail[MMU_PAGE_SIZES]; 793 ulong_t ppr_copyfail; 794 /* page coalesce counter */ 795 ulong_t page_ctrs_coalesce[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 796 /* candidates useful */ 797 ulong_t page_ctrs_cands_skip[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 798 /* ctrs changed after locking */ 799 ulong_t page_ctrs_changed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 800 /* page_freelist_coalesce failed */ 801 ulong_t page_ctrs_failed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 802 ulong_t page_ctrs_coalesce_all; /* page coalesce all counter */ 803 ulong_t page_ctrs_cands_skip_all; /* candidates useful for all func */ 804 }; 805 extern struct vmm_vmstats_str vmm_vmstats; 806 #endif /* VM_STATS */ 807 808 /* 809 * Used to hold off page relocations into the cage until OBP has completed 810 * its boot-time handoff of its resources to the kernel. 811 */ 812 extern int page_relocate_ready; 813 814 /* 815 * cpu/mmu-dependent vm variables may be reset at bootup. 816 */ 817 extern uint_t mmu_page_sizes; 818 extern uint_t max_mmu_page_sizes; 819 extern uint_t mmu_hashcnt; 820 extern uint_t max_mmu_hashcnt; 821 extern size_t mmu_ism_pagesize; 822 extern int mmu_exported_pagesize_mask; 823 extern uint_t mmu_exported_page_sizes; 824 extern uint_t szc_2_userszc[]; 825 extern uint_t userszc_2_szc[]; 826 827 #define mmu_legacy_page_sizes mmu_exported_page_sizes 828 #define USERSZC_2_SZC(userszc) (userszc_2_szc[userszc]) 829 #define SZC_2_USERSZC(szc) (szc_2_userszc[szc]) 830 831 /* 832 * Platform specific page routines 833 */ 834 extern void mach_page_add(page_t **, page_t *); 835 extern void mach_page_sub(page_t **, page_t *); 836 extern uint_t page_get_pagecolors(uint_t); 837 extern void ppcopy_kernel__relocatable(page_t *, page_t *); 838 #define ppcopy_kernel(p1, p2) ppcopy_kernel__relocatable(p1, p2) 839 840 /* 841 * platform specific large pages for kernel heap support 842 */ 843 extern size_t get_segkmem_lpsize(size_t lpsize); 844 extern size_t mmu_get_kernel_lpsize(size_t lpsize); 845 extern void mmu_init_kernel_pgsz(struct hat *hat); 846 extern void mmu_init_kcontext(); 847 extern uint64_t kcontextreg; 848 849 /* 850 * Nucleus data page allocator routines 851 */ 852 extern void ndata_alloc_init(struct memlist *, uintptr_t, uintptr_t); 853 extern void *ndata_alloc(struct memlist *, size_t, size_t); 854 extern void *ndata_extra_base(struct memlist *, size_t, caddr_t); 855 extern size_t ndata_maxsize(struct memlist *); 856 extern size_t ndata_spare(struct memlist *, size_t, size_t); 857 858 #ifdef __cplusplus 859 } 860 #endif 861 862 #endif /* _VM_DEP_H */ 863