1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <vm/hat.h> 30 #include <vm/hat_sfmmu.h> 31 #include <vm/page.h> 32 #include <sys/pte.h> 33 #include <sys/systm.h> 34 #include <sys/mman.h> 35 #include <sys/sysmacros.h> 36 #include <sys/machparam.h> 37 #include <sys/vtrace.h> 38 #include <sys/kmem.h> 39 #include <sys/mmu.h> 40 #include <sys/cmn_err.h> 41 #include <sys/cpu.h> 42 #include <sys/cpuvar.h> 43 #include <sys/debug.h> 44 #include <sys/lgrp.h> 45 #include <sys/archsystm.h> 46 #include <sys/machsystm.h> 47 #include <sys/vmsystm.h> 48 #include <sys/bitmap.h> 49 #include <vm/as.h> 50 #include <vm/seg.h> 51 #include <vm/seg_kmem.h> 52 #include <vm/seg_kp.h> 53 #include <vm/seg_kpm.h> 54 #include <vm/rm.h> 55 #include <vm/vm_dep.h> 56 #include <sys/t_lock.h> 57 #include <sys/vm_machparam.h> 58 #include <sys/promif.h> 59 #include <sys/prom_isa.h> 60 #include <sys/prom_plat.h> 61 #include <sys/prom_debug.h> 62 #include <sys/privregs.h> 63 #include <sys/bootconf.h> 64 #include <sys/memlist.h> 65 #include <sys/memlist_plat.h> 66 #include <sys/cpu_module.h> 67 #include <sys/reboot.h> 68 #include <sys/kdi.h> 69 70 /* 71 * Static routines 72 */ 73 static void sfmmu_map_prom_mappings(struct translation *, size_t); 74 static struct translation *read_prom_mappings(size_t *); 75 static void sfmmu_reloc_trap_handler(void *, void *, size_t); 76 77 /* 78 * External routines 79 */ 80 extern void sfmmu_remap_kernel(void); 81 extern void sfmmu_patch_utsb(void); 82 83 /* 84 * Global Data: 85 */ 86 extern caddr_t textva, datava; 87 extern tte_t ktext_tte, kdata_tte; /* ttes for kernel text and data */ 88 extern int enable_bigktsb; 89 90 uint64_t memsegspa = (uintptr_t)MSEG_NULLPTR_PA; /* memsegs physical linkage */ 91 uint64_t memseg_phash[N_MEM_SLOTS]; /* use physical memseg addresses */ 92 93 int sfmmu_kern_mapped = 0; 94 95 /* 96 * DMMU primary context register for the kernel context. Machine specific code 97 * inserts correct page size codes when necessary 98 */ 99 uint64_t kcontextreg = KCONTEXT; 100 101 #ifdef DEBUG 102 static int ndata_middle_hole_detected = 0; 103 #endif 104 105 /* Extern Global Data */ 106 107 extern int page_relocate_ready; 108 109 /* 110 * Controls the logic which enables the use of the 111 * QUAD_LDD_PHYS ASI for TSB accesses. 112 */ 113 extern int ktsb_phys; 114 115 /* 116 * Global Routines called from within: 117 * usr/src/uts/sun4u 118 * usr/src/uts/sfmmu 119 * usr/src/uts/sun 120 */ 121 122 pfn_t 123 va_to_pfn(void *vaddr) 124 { 125 u_longlong_t physaddr; 126 int mode, valid; 127 128 if (tba_taken_over) 129 return (hat_getpfnum(kas.a_hat, (caddr_t)vaddr)); 130 131 #if !defined(C_OBP) 132 if ((caddr_t)vaddr >= kmem64_base && (caddr_t)vaddr < kmem64_end) { 133 if (kmem64_pabase == (uint64_t)-1) 134 prom_panic("va_to_pfn: kmem64_pabase not init"); 135 physaddr = kmem64_pabase + ((caddr_t)vaddr - kmem64_base); 136 return ((pfn_t)physaddr >> MMU_PAGESHIFT); 137 } 138 #endif /* !C_OBP */ 139 140 if ((prom_translate_virt(vaddr, &valid, &physaddr, &mode) != -1) && 141 (valid == -1)) { 142 return ((pfn_t)(physaddr >> MMU_PAGESHIFT)); 143 } 144 return (PFN_INVALID); 145 } 146 147 uint64_t 148 va_to_pa(void *vaddr) 149 { 150 pfn_t pfn; 151 152 if ((pfn = va_to_pfn(vaddr)) == PFN_INVALID) 153 return ((uint64_t)-1); 154 return (((uint64_t)pfn << MMU_PAGESHIFT) | 155 ((uint64_t)vaddr & MMU_PAGEOFFSET)); 156 } 157 158 void 159 hat_kern_setup(void) 160 { 161 struct translation *trans_root; 162 size_t ntrans_root; 163 extern void startup_fixup_physavail(void); 164 165 /* 166 * These are the steps we take to take over the mmu from the prom. 167 * 168 * (1) Read the prom's mappings through the translation property. 169 * (2) Remap the kernel text and kernel data with 2 locked 4MB ttes. 170 * Create the the hmeblks for these 2 ttes at this time. 171 * (3) Create hat structures for all other prom mappings. Since the 172 * kernel text and data hme_blks have already been created we 173 * skip the equivalent prom's mappings. 174 * (4) Initialize the tsb and its corresponding hardware regs. 175 * (5) Take over the trap table (currently in startup). 176 * (6) Up to this point it is possible the prom required some of its 177 * locked tte's. Now that we own the trap table we remove them. 178 */ 179 180 ktsb_pbase = va_to_pa(ktsb_base); 181 ktsb4m_pbase = va_to_pa(ktsb4m_base); 182 PRM_DEBUG(ktsb_pbase); 183 PRM_DEBUG(ktsb4m_pbase); 184 185 sfmmu_patch_ktsb(); 186 sfmmu_patch_utsb(); 187 sfmmu_patch_mmu_asi(ktsb_phys); 188 189 sfmmu_init_tsbs(); 190 191 if (kpm_enable) { 192 sfmmu_kpm_patch_tlbm(); 193 if (kpm_smallpages == 0) { 194 sfmmu_kpm_patch_tsbm(); 195 } 196 } 197 198 if (!shctx_on) { 199 sfmmu_patch_shctx(); 200 } 201 202 /* 203 * The 8K-indexed kernel TSB space is used to hold 204 * translations below... 205 */ 206 trans_root = read_prom_mappings(&ntrans_root); 207 sfmmu_remap_kernel(); 208 startup_fixup_physavail(); 209 mmu_init_kernel_pgsz(kas.a_hat); 210 sfmmu_map_prom_mappings(trans_root, ntrans_root); 211 212 /* 213 * We invalidate 8K kernel TSB because we used it in 214 * sfmmu_map_prom_mappings() 215 */ 216 sfmmu_inv_tsb(ktsb_base, ktsb_sz); 217 sfmmu_inv_tsb(ktsb4m_base, ktsb4m_sz); 218 219 sfmmu_init_ktsbinfo(); 220 221 222 sfmmu_kern_mapped = 1; 223 224 /* 225 * hments have been created for mapped pages, and thus we're ready 226 * for kmdb to start using its own trap table. It walks the hments 227 * to resolve TLB misses, and can't be used until they're ready. 228 */ 229 if (boothowto & RB_DEBUG) 230 kdi_dvec_vmready(); 231 } 232 233 /* 234 * Macro used below to convert the prom's 32-bit high and low fields into 235 * a value appropriate for the 64-bit kernel. 236 */ 237 238 #define COMBINE(hi, lo) (((uint64_t)(uint32_t)(hi) << 32) | (uint32_t)(lo)) 239 240 /* 241 * Track larges pages used. 242 * Provides observability for this feature on non-debug kernels. 243 */ 244 ulong_t map_prom_lpcount[MMU_PAGE_SIZES]; 245 246 /* 247 * This function traverses the prom mapping list and creates equivalent 248 * mappings in the sfmmu mapping hash. 249 */ 250 static void 251 sfmmu_map_prom_mappings(struct translation *trans_root, size_t ntrans_root) 252 { 253 struct translation *promt; 254 tte_t tte, oldtte, *ttep; 255 pfn_t pfn, oldpfn, basepfn; 256 caddr_t vaddr; 257 size_t size, offset; 258 unsigned long i; 259 uint_t attr; 260 page_t *pp; 261 extern struct memlist *virt_avail; 262 char buf[256]; 263 264 ttep = &tte; 265 for (i = 0, promt = trans_root; i < ntrans_root; i++, promt++) { 266 ASSERT(promt->tte_hi != 0); 267 ASSERT32(promt->virt_hi == 0 && promt->size_hi == 0); 268 269 vaddr = (caddr_t)COMBINE(promt->virt_hi, promt->virt_lo); 270 271 /* 272 * hack until we get rid of map-for-unix 273 */ 274 if (vaddr < (caddr_t)KERNELBASE) 275 continue; 276 277 ttep->tte_inthi = promt->tte_hi; 278 ttep->tte_intlo = promt->tte_lo; 279 attr = PROC_DATA | HAT_NOSYNC; 280 #if defined(TTE_IS_GLOBAL) 281 if (TTE_IS_GLOBAL(ttep)) { 282 /* 283 * The prom better not use global translations 284 * because a user process might use the same 285 * virtual addresses 286 */ 287 prom_panic("sfmmu_map_prom_mappings: global" 288 " translation"); 289 TTE_SET_LOFLAGS(ttep, TTE_GLB_INT, 0); 290 } 291 #endif 292 if (TTE_IS_LOCKED(ttep)) { 293 /* clear the lock bits */ 294 TTE_CLR_LOCKED(ttep); 295 } 296 attr |= (TTE_IS_VCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEVTTE; 297 attr |= (TTE_IS_PCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEPTTE; 298 attr |= (TTE_IS_SIDEFFECT(ttep)) ? SFMMU_SIDEFFECT : 0; 299 attr |= (TTE_IS_IE(ttep)) ? HAT_STRUCTURE_LE : 0; 300 301 size = COMBINE(promt->size_hi, promt->size_lo); 302 offset = 0; 303 basepfn = TTE_TO_PFN((caddr_t)COMBINE(promt->virt_hi, 304 promt->virt_lo), ttep); 305 while (size) { 306 vaddr = (caddr_t)(COMBINE(promt->virt_hi, 307 promt->virt_lo) + offset); 308 309 /* 310 * make sure address is not in virt-avail list 311 */ 312 if (address_in_memlist(virt_avail, (uint64_t)vaddr, 313 size)) { 314 prom_panic("sfmmu_map_prom_mappings:" 315 " inconsistent translation/avail lists"); 316 } 317 318 pfn = basepfn + mmu_btop(offset); 319 if (pf_is_memory(pfn)) { 320 if (attr & SFMMU_UNCACHEPTTE) { 321 prom_panic("sfmmu_map_prom_mappings:" 322 " uncached prom memory page"); 323 } 324 } else { 325 if (!(attr & SFMMU_SIDEFFECT)) { 326 prom_panic("sfmmu_map_prom_mappings:" 327 " prom i/o page without" 328 " side-effect"); 329 } 330 } 331 332 /* 333 * skip kmem64 area 334 */ 335 if (vaddr >= kmem64_base && 336 vaddr < kmem64_aligned_end) { 337 #if !defined(C_OBP) 338 prom_panic("sfmmu_map_prom_mappings:" 339 " unexpected kmem64 prom mapping"); 340 #else /* !C_OBP */ 341 size_t mapsz; 342 343 if (ptob(pfn) != 344 kmem64_pabase + (vaddr - kmem64_base)) { 345 prom_panic("sfmmu_map_prom_mappings:" 346 " unexpected kmem64 prom mapping"); 347 } 348 349 mapsz = kmem64_aligned_end - vaddr; 350 if (mapsz >= size) { 351 break; 352 } 353 size -= mapsz; 354 offset += mapsz; 355 continue; 356 #endif /* !C_OBP */ 357 } 358 359 oldpfn = sfmmu_vatopfn(vaddr, KHATID, &oldtte); 360 ASSERT(oldpfn != PFN_SUSPENDED); 361 ASSERT(page_relocate_ready == 0); 362 363 if (oldpfn != PFN_INVALID) { 364 /* 365 * mapping already exists. 366 * Verify they are equal 367 */ 368 if (pfn != oldpfn) { 369 (void) snprintf(buf, sizeof (buf), 370 "sfmmu_map_prom_mappings: mapping" 371 " conflict (va = 0x%p, pfn = 0x%p," 372 " oldpfn = 0x%p)", (void *)vaddr, 373 (void *)pfn, (void *)oldpfn); 374 prom_panic(buf); 375 } 376 size -= MMU_PAGESIZE; 377 offset += MMU_PAGESIZE; 378 continue; 379 } 380 381 pp = page_numtopp_nolock(pfn); 382 if ((pp != NULL) && PP_ISFREE((page_t *)pp)) { 383 (void) snprintf(buf, sizeof (buf), 384 "sfmmu_map_prom_mappings: prom-mapped" 385 " page (va = 0x%p, pfn = 0x%p) on free list", 386 (void *)vaddr, (void *)pfn); 387 prom_panic(buf); 388 } 389 390 sfmmu_memtte(ttep, pfn, attr, TTE8K); 391 sfmmu_tteload(kas.a_hat, ttep, vaddr, pp, 392 HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD); 393 size -= MMU_PAGESIZE; 394 offset += MMU_PAGESIZE; 395 } 396 } 397 398 /* 399 * We claimed kmem64 from prom, so now we need to load tte. 400 */ 401 if (kmem64_base != NULL) { 402 pgcnt_t pages; 403 size_t psize; 404 int pszc; 405 406 pszc = kmem64_szc; 407 #ifdef sun4u 408 if (pszc > TTE8K) { 409 pszc = segkmem_lpszc; 410 } 411 #endif /* sun4u */ 412 psize = TTEBYTES(pszc); 413 pages = btop(psize); 414 basepfn = kmem64_pabase >> MMU_PAGESHIFT; 415 vaddr = kmem64_base; 416 while (vaddr < kmem64_end) { 417 sfmmu_memtte(ttep, basepfn, 418 PROC_DATA | HAT_NOSYNC, pszc); 419 sfmmu_tteload(kas.a_hat, ttep, vaddr, NULL, 420 HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD); 421 vaddr += psize; 422 basepfn += pages; 423 } 424 map_prom_lpcount[pszc] = 425 ((caddr_t)P2ROUNDUP((uintptr_t)kmem64_end, psize) - 426 kmem64_base) >> TTE_PAGE_SHIFT(pszc); 427 } 428 } 429 430 #undef COMBINE /* local to previous routine */ 431 432 /* 433 * This routine reads in the "translations" property in to a buffer and 434 * returns a pointer to this buffer and the number of translations. 435 */ 436 static struct translation * 437 read_prom_mappings(size_t *ntransrootp) 438 { 439 char *prop = "translations"; 440 size_t translen; 441 pnode_t node; 442 struct translation *transroot; 443 444 /* 445 * the "translations" property is associated with the mmu node 446 */ 447 node = (pnode_t)prom_getphandle(prom_mmu_ihandle()); 448 449 /* 450 * We use the TSB space to read in the prom mappings. This space 451 * is currently not being used because we haven't taken over the 452 * trap table yet. It should be big enough to hold the mappings. 453 */ 454 if ((translen = prom_getproplen(node, prop)) == -1) 455 cmn_err(CE_PANIC, "no translations property"); 456 *ntransrootp = translen / sizeof (*transroot); 457 translen = roundup(translen, MMU_PAGESIZE); 458 PRM_DEBUG(translen); 459 if (translen > TSB_BYTES(ktsb_szcode)) 460 cmn_err(CE_PANIC, "not enough space for translations"); 461 462 transroot = (struct translation *)ktsb_base; 463 ASSERT(transroot); 464 if (prom_getprop(node, prop, (caddr_t)transroot) == -1) { 465 cmn_err(CE_PANIC, "translations getprop failed"); 466 } 467 return (transroot); 468 } 469 470 /* 471 * Init routine of the nucleus data memory allocator. 472 * 473 * The nucleus data memory allocator is organized in ecache_alignsize'd 474 * memory chunks. Memory allocated by ndata_alloc() will never be freed. 475 * 476 * The ndata argument is used as header of the ndata freelist. 477 * Other freelist nodes are placed in the nucleus memory itself 478 * at the beginning of a free memory chunk. Therefore a freelist 479 * node (struct memlist) must fit into the smallest allocatable 480 * memory chunk (ecache_alignsize bytes). 481 * 482 * The memory interval [base, end] passed to ndata_alloc_init() must be 483 * bzero'd to allow the allocator to return bzero'd memory easily. 484 */ 485 void 486 ndata_alloc_init(struct memlist *ndata, uintptr_t base, uintptr_t end) 487 { 488 ASSERT(sizeof (struct memlist) <= ecache_alignsize); 489 490 base = roundup(base, ecache_alignsize); 491 end = end - end % ecache_alignsize; 492 493 ASSERT(base < end); 494 495 ndata->address = base; 496 ndata->size = end - base; 497 ndata->next = NULL; 498 ndata->prev = NULL; 499 } 500 501 /* 502 * Deliver the size of the largest free memory chunk. 503 */ 504 size_t 505 ndata_maxsize(struct memlist *ndata) 506 { 507 size_t chunksize = ndata->size; 508 509 while ((ndata = ndata->next) != NULL) { 510 if (chunksize < ndata->size) 511 chunksize = ndata->size; 512 } 513 514 return (chunksize); 515 } 516 517 518 /* 519 * Allocate the last properly aligned memory chunk. 520 * This function is called when no more large nucleus memory chunks 521 * will be allocated. The remaining free nucleus memory at the end 522 * of the nucleus can be added to the phys_avail list. 523 */ 524 void * 525 ndata_extra_base(struct memlist *ndata, size_t alignment, caddr_t endaddr) 526 { 527 uintptr_t base; 528 size_t wasteage = 0; 529 #ifdef DEBUG 530 static int called = 0; 531 532 if (called++ > 0) 533 cmn_err(CE_PANIC, "ndata_extra_base() called more than once"); 534 #endif /* DEBUG */ 535 536 /* 537 * The alignment needs to be a multiple of ecache_alignsize. 538 */ 539 ASSERT((alignment % ecache_alignsize) == 0); 540 541 while (ndata->next != NULL) { 542 wasteage += ndata->size; 543 ndata = ndata->next; 544 } 545 546 base = roundup(ndata->address, alignment); 547 548 if (base >= ndata->address + ndata->size) 549 return (NULL); 550 551 if ((caddr_t)(ndata->address + ndata->size) != endaddr) { 552 #ifdef DEBUG 553 ndata_middle_hole_detected = 1; /* see if we hit this again */ 554 #endif 555 return (NULL); 556 } 557 558 if (base == ndata->address) { 559 if (ndata->prev != NULL) 560 ndata->prev->next = NULL; 561 else 562 ndata->size = 0; 563 564 bzero((void *)base, sizeof (struct memlist)); 565 566 } else { 567 ndata->size = base - ndata->address; 568 wasteage += ndata->size; 569 } 570 PRM_DEBUG(wasteage); 571 572 return ((void *)base); 573 } 574 575 /* 576 * Select the best matching buffer, avoid memory fragmentation. 577 */ 578 static struct memlist * 579 ndata_select_chunk(struct memlist *ndata, size_t wanted, size_t alignment) 580 { 581 struct memlist *fnd_below = NULL; 582 struct memlist *fnd_above = NULL; 583 struct memlist *fnd_unused = NULL; 584 struct memlist *frlist; 585 uintptr_t base; 586 uintptr_t end; 587 size_t below; 588 size_t above; 589 size_t unused; 590 size_t best_below = ULONG_MAX; 591 size_t best_above = ULONG_MAX; 592 size_t best_unused = ULONG_MAX; 593 594 ASSERT(ndata != NULL); 595 596 /* 597 * Look for the best matching buffer, avoid memory fragmentation. 598 * The following strategy is used, try to find 599 * 1. an exact fitting buffer 600 * 2. avoid wasting any space below the buffer, take first 601 * fitting buffer 602 * 3. avoid wasting any space above the buffer, take first 603 * fitting buffer 604 * 4. avoid wasting space, take first fitting buffer 605 * 5. take the last buffer in chain 606 */ 607 for (frlist = ndata; frlist != NULL; frlist = frlist->next) { 608 base = roundup(frlist->address, alignment); 609 end = roundup(base + wanted, ecache_alignsize); 610 611 if (end > frlist->address + frlist->size) 612 continue; 613 614 below = (base - frlist->address) / ecache_alignsize; 615 above = (frlist->address + frlist->size - end) / 616 ecache_alignsize; 617 unused = below + above; 618 619 if (unused == 0) 620 return (frlist); 621 622 if (frlist->next == NULL) 623 break; 624 625 if (below < best_below) { 626 best_below = below; 627 fnd_below = frlist; 628 } 629 630 if (above < best_above) { 631 best_above = above; 632 fnd_above = frlist; 633 } 634 635 if (unused < best_unused) { 636 best_unused = unused; 637 fnd_unused = frlist; 638 } 639 } 640 641 if (best_below == 0) 642 return (fnd_below); 643 if (best_above == 0) 644 return (fnd_above); 645 if (best_unused < ULONG_MAX) 646 return (fnd_unused); 647 648 return (frlist); 649 } 650 651 /* 652 * Nucleus data memory allocator. 653 * The granularity of the allocator is ecache_alignsize. 654 * See also comment for ndata_alloc_init(). 655 */ 656 void * 657 ndata_alloc(struct memlist *ndata, size_t wanted, size_t alignment) 658 { 659 struct memlist *found; 660 struct memlist *fnd_above; 661 uintptr_t base; 662 uintptr_t end; 663 size_t below; 664 size_t above; 665 666 /* 667 * Look for the best matching buffer, avoid memory fragmentation. 668 */ 669 if ((found = ndata_select_chunk(ndata, wanted, alignment)) == NULL) 670 return (NULL); 671 672 /* 673 * Allocate the nucleus data buffer. 674 */ 675 base = roundup(found->address, alignment); 676 end = roundup(base + wanted, ecache_alignsize); 677 ASSERT(end <= found->address + found->size); 678 679 below = base - found->address; 680 above = found->address + found->size - end; 681 ASSERT(above == 0 || (above % ecache_alignsize) == 0); 682 683 if (below >= ecache_alignsize) { 684 /* 685 * There is free memory below the allocated memory chunk. 686 */ 687 found->size = below - below % ecache_alignsize; 688 689 if (above) { 690 fnd_above = (struct memlist *)end; 691 fnd_above->address = end; 692 fnd_above->size = above; 693 694 if ((fnd_above->next = found->next) != NULL) 695 found->next->prev = fnd_above; 696 fnd_above->prev = found; 697 found->next = fnd_above; 698 } 699 700 return ((void *)base); 701 } 702 703 if (found->prev == NULL) { 704 /* 705 * The first chunk (ndata) is selected. 706 */ 707 ASSERT(found == ndata); 708 if (above) { 709 found->address = end; 710 found->size = above; 711 } else if (found->next != NULL) { 712 found->address = found->next->address; 713 found->size = found->next->size; 714 if ((found->next = found->next->next) != NULL) 715 found->next->prev = found; 716 717 bzero((void *)found->address, sizeof (struct memlist)); 718 } else { 719 found->address = end; 720 found->size = 0; 721 } 722 723 return ((void *)base); 724 } 725 726 /* 727 * Not the first chunk. 728 */ 729 if (above) { 730 fnd_above = (struct memlist *)end; 731 fnd_above->address = end; 732 fnd_above->size = above; 733 734 if ((fnd_above->next = found->next) != NULL) 735 fnd_above->next->prev = fnd_above; 736 fnd_above->prev = found->prev; 737 found->prev->next = fnd_above; 738 739 } else { 740 if ((found->prev->next = found->next) != NULL) 741 found->next->prev = found->prev; 742 } 743 744 bzero((void *)found->address, sizeof (struct memlist)); 745 746 return ((void *)base); 747 } 748 749 /* 750 * Size the kernel TSBs based upon the amount of physical 751 * memory in the system. 752 */ 753 static void 754 calc_tsb_sizes(pgcnt_t npages) 755 { 756 PRM_DEBUG(npages); 757 758 if (npages <= TSB_FREEMEM_MIN) { 759 ktsb_szcode = TSB_128K_SZCODE; 760 enable_bigktsb = 0; 761 } else if (npages <= TSB_FREEMEM_LARGE / 2) { 762 ktsb_szcode = TSB_256K_SZCODE; 763 enable_bigktsb = 0; 764 } else if (npages <= TSB_FREEMEM_LARGE) { 765 ktsb_szcode = TSB_512K_SZCODE; 766 enable_bigktsb = 0; 767 } else if (npages <= TSB_FREEMEM_LARGE * 2 || 768 enable_bigktsb == 0) { 769 ktsb_szcode = TSB_1M_SZCODE; 770 enable_bigktsb = 0; 771 } else { 772 ktsb_szcode = highbit(npages - 1); 773 ktsb_szcode -= TSB_START_SIZE; 774 ktsb_szcode = MAX(ktsb_szcode, MIN_BIGKTSB_SZCODE); 775 ktsb_szcode = MIN(ktsb_szcode, MAX_BIGKTSB_SZCODE); 776 } 777 778 /* 779 * We choose the TSB to hold kernel 4M mappings to have twice 780 * the reach as the primary kernel TSB since this TSB will 781 * potentially (currently) be shared by both mappings to all of 782 * physical memory plus user TSBs. If this TSB has to be in nucleus 783 * (only for Spitfire and Cheetah) limit its size to 64K. 784 */ 785 ktsb4m_szcode = highbit((2 * npages) / TTEPAGES(TTE4M) - 1); 786 ktsb4m_szcode -= TSB_START_SIZE; 787 ktsb4m_szcode = MAX(ktsb4m_szcode, TSB_MIN_SZCODE); 788 ktsb4m_szcode = MIN(ktsb4m_szcode, TSB_SOFTSZ_MASK); 789 if ((enable_bigktsb == 0 || ktsb_phys == 0) && ktsb4m_szcode > 790 TSB_64K_SZCODE) { 791 ktsb4m_szcode = TSB_64K_SZCODE; 792 max_bootlp_tteszc = TTE8K; 793 } 794 795 ktsb_sz = TSB_BYTES(ktsb_szcode); /* kernel 8K tsb size */ 796 ktsb4m_sz = TSB_BYTES(ktsb4m_szcode); /* kernel 4M tsb size */ 797 } 798 799 /* 800 * Allocate kernel TSBs from nucleus data memory. 801 * The function return 0 on success and -1 on failure. 802 */ 803 int 804 ndata_alloc_tsbs(struct memlist *ndata, pgcnt_t npages) 805 { 806 /* 807 * Set ktsb_phys to 1 if the processor supports ASI_QUAD_LDD_PHYS. 808 */ 809 sfmmu_setup_4lp(); 810 811 /* 812 * Size the kernel TSBs based upon the amount of physical 813 * memory in the system. 814 */ 815 calc_tsb_sizes(npages); 816 817 /* 818 * Allocate the 8K kernel TSB if it belongs inside the nucleus. 819 */ 820 if (enable_bigktsb == 0) { 821 if ((ktsb_base = ndata_alloc(ndata, ktsb_sz, ktsb_sz)) == NULL) 822 return (-1); 823 ASSERT(!((uintptr_t)ktsb_base & (ktsb_sz - 1))); 824 825 PRM_DEBUG(ktsb_base); 826 PRM_DEBUG(ktsb_sz); 827 PRM_DEBUG(ktsb_szcode); 828 } 829 830 /* 831 * Next, allocate 4M kernel TSB from the nucleus since it's small. 832 */ 833 if (ktsb4m_szcode <= TSB_64K_SZCODE) { 834 835 ktsb4m_base = ndata_alloc(ndata, ktsb4m_sz, ktsb4m_sz); 836 if (ktsb4m_base == NULL) 837 return (-1); 838 ASSERT(!((uintptr_t)ktsb4m_base & (ktsb4m_sz - 1))); 839 840 PRM_DEBUG(ktsb4m_base); 841 PRM_DEBUG(ktsb4m_sz); 842 PRM_DEBUG(ktsb4m_szcode); 843 } 844 845 return (0); 846 } 847 848 size_t 849 calc_hmehash_sz(pgcnt_t npages) 850 { 851 ulong_t hme_buckets; 852 853 /* 854 * The number of buckets in the hme hash tables 855 * is a power of 2 such that the average hash chain length is 856 * HMENT_HASHAVELEN. The number of buckets for the user hash is 857 * a function of physical memory and a predefined overmapping factor. 858 * The number of buckets for the kernel hash is a function of 859 * physical memory only. 860 */ 861 hme_buckets = (npages * HMEHASH_FACTOR) / 862 (HMENT_HASHAVELEN * (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT)); 863 864 uhmehash_num = (int)MIN(hme_buckets, MAX_UHME_BUCKETS); 865 866 if (uhmehash_num > USER_BUCKETS_THRESHOLD) { 867 /* 868 * if uhmehash_num is not power of 2 round it down to the 869 * next power of 2. 870 */ 871 uint_t align = 1 << (highbit(uhmehash_num - 1) - 1); 872 uhmehash_num = P2ALIGN(uhmehash_num, align); 873 } else 874 uhmehash_num = 1 << highbit(uhmehash_num - 1); 875 876 hme_buckets = npages / (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT); 877 khmehash_num = (int)MIN(hme_buckets, MAX_KHME_BUCKETS); 878 khmehash_num = 1 << highbit(khmehash_num - 1); 879 khmehash_num = MAX(khmehash_num, MIN_KHME_BUCKETS); 880 881 return ((uhmehash_num + khmehash_num) * sizeof (struct hmehash_bucket)); 882 } 883 884 caddr_t 885 alloc_hmehash(caddr_t alloc_base) 886 { 887 size_t khmehash_sz, uhmehash_sz; 888 889 khme_hash = (struct hmehash_bucket *)alloc_base; 890 khmehash_sz = khmehash_num * sizeof (struct hmehash_bucket); 891 alloc_base += khmehash_sz; 892 893 uhme_hash = (struct hmehash_bucket *)alloc_base; 894 uhmehash_sz = uhmehash_num * sizeof (struct hmehash_bucket); 895 alloc_base += uhmehash_sz; 896 897 PRM_DEBUG(khme_hash); 898 PRM_DEBUG(uhme_hash); 899 900 return (alloc_base); 901 } 902 903 /* 904 * Allocate hat structs from the nucleus data memory. 905 */ 906 int 907 ndata_alloc_hat(struct memlist *ndata, pgcnt_t npages) 908 { 909 size_t mml_alloc_sz; 910 size_t cb_alloc_sz; 911 912 /* 913 * For the page mapping list mutex array we allocate one mutex 914 * for every 128 pages (1 MB) with a minimum of 64 entries and 915 * a maximum of 8K entries. For the initial computation npages 916 * is rounded up (ie. 1 << highbit(npages * 1.5 / 128)) 917 * 918 * mml_shift is roughly log2(mml_table_sz) + 3 for MLIST_HASH 919 */ 920 mml_table_sz = 1 << highbit((npages * 3) / 256); 921 if (mml_table_sz < 64) 922 mml_table_sz = 64; 923 else if (mml_table_sz > 8192) 924 mml_table_sz = 8192; 925 mml_shift = highbit(mml_table_sz) + 3; 926 927 PRM_DEBUG(mml_table_sz); 928 PRM_DEBUG(mml_shift); 929 930 mml_alloc_sz = mml_table_sz * sizeof (kmutex_t); 931 932 mml_table = ndata_alloc(ndata, mml_alloc_sz, ecache_alignsize); 933 if (mml_table == NULL) 934 return (-1); 935 PRM_DEBUG(mml_table); 936 937 cb_alloc_sz = sfmmu_max_cb_id * sizeof (struct sfmmu_callback); 938 PRM_DEBUG(cb_alloc_sz); 939 sfmmu_cb_table = ndata_alloc(ndata, cb_alloc_sz, ecache_alignsize); 940 if (sfmmu_cb_table == NULL) 941 return (-1); 942 PRM_DEBUG(sfmmu_cb_table); 943 944 return (0); 945 } 946 947 int 948 ndata_alloc_kpm(struct memlist *ndata, pgcnt_t kpm_npages) 949 { 950 size_t kpmp_alloc_sz; 951 952 /* 953 * For the kpm_page mutex array we allocate one mutex every 16 954 * kpm pages (64MB). In smallpage mode we allocate one mutex 955 * every 8K pages. The minimum is set to 64 entries and the 956 * maximum to 8K entries. 957 */ 958 if (kpm_smallpages == 0) { 959 kpmp_shift = highbit(sizeof (kpm_page_t)) - 1; 960 kpmp_table_sz = 1 << highbit(kpm_npages / 16); 961 kpmp_table_sz = (kpmp_table_sz < 64) ? 64 : 962 ((kpmp_table_sz > 8192) ? 8192 : kpmp_table_sz); 963 kpmp_alloc_sz = kpmp_table_sz * sizeof (kpm_hlk_t); 964 965 kpmp_table = ndata_alloc(ndata, kpmp_alloc_sz, 966 ecache_alignsize); 967 if (kpmp_table == NULL) 968 return (-1); 969 970 PRM_DEBUG(kpmp_table); 971 PRM_DEBUG(kpmp_table_sz); 972 973 kpmp_stable_sz = 0; 974 kpmp_stable = NULL; 975 } else { 976 ASSERT(kpm_pgsz == PAGESIZE); 977 kpmp_shift = highbit(sizeof (kpm_shlk_t)) + 1; 978 kpmp_stable_sz = 1 << highbit(kpm_npages / 8192); 979 kpmp_stable_sz = (kpmp_stable_sz < 64) ? 64 : 980 ((kpmp_stable_sz > 8192) ? 8192 : kpmp_stable_sz); 981 kpmp_alloc_sz = kpmp_stable_sz * sizeof (kpm_shlk_t); 982 983 kpmp_stable = ndata_alloc(ndata, kpmp_alloc_sz, 984 ecache_alignsize); 985 if (kpmp_stable == NULL) 986 return (-1); 987 988 PRM_DEBUG(kpmp_stable); 989 PRM_DEBUG(kpmp_stable_sz); 990 991 kpmp_table_sz = 0; 992 kpmp_table = NULL; 993 } 994 PRM_DEBUG(kpmp_shift); 995 996 return (0); 997 } 998 999 /* 1000 * This function bop allocs kernel TSBs. 1001 */ 1002 caddr_t 1003 sfmmu_ktsb_alloc(caddr_t tsbbase) 1004 { 1005 caddr_t vaddr; 1006 1007 if (enable_bigktsb) { 1008 ktsb_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb_sz); 1009 vaddr = prom_alloc(ktsb_base, ktsb_sz, ktsb_sz); 1010 if (vaddr != ktsb_base) 1011 cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc" 1012 " 8K bigktsb"); 1013 ktsb_base = vaddr; 1014 tsbbase = ktsb_base + ktsb_sz; 1015 PRM_DEBUG(ktsb_base); 1016 PRM_DEBUG(tsbbase); 1017 } 1018 1019 if (ktsb4m_szcode > TSB_64K_SZCODE) { 1020 ASSERT(ktsb_phys && enable_bigktsb); 1021 ktsb4m_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb4m_sz); 1022 vaddr = (caddr_t)BOP_ALLOC(bootops, ktsb4m_base, ktsb4m_sz, 1023 ktsb4m_sz); 1024 if (vaddr != ktsb4m_base) 1025 cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc" 1026 " 4M bigktsb"); 1027 ktsb4m_base = vaddr; 1028 tsbbase = ktsb4m_base + ktsb4m_sz; 1029 PRM_DEBUG(ktsb4m_base); 1030 PRM_DEBUG(tsbbase); 1031 } 1032 return (tsbbase); 1033 } 1034 1035 /* 1036 * Moves code assembled outside of the trap table into the trap 1037 * table taking care to relocate relative branches to code outside 1038 * of the trap handler. 1039 */ 1040 static void 1041 sfmmu_reloc_trap_handler(void *tablep, void *start, size_t count) 1042 { 1043 size_t i; 1044 uint32_t *src; 1045 uint32_t *dst; 1046 uint32_t inst; 1047 int op, op2; 1048 int32_t offset; 1049 int disp; 1050 1051 src = start; 1052 dst = tablep; 1053 offset = src - dst; 1054 for (src = start, i = 0; i < count; i++, src++, dst++) { 1055 inst = *dst = *src; 1056 op = (inst >> 30) & 0x2; 1057 if (op == 1) { 1058 /* call */ 1059 disp = ((int32_t)inst << 2) >> 2; /* sign-extend */ 1060 if (disp + i >= 0 && disp + i < count) 1061 continue; 1062 disp += offset; 1063 inst = 0x40000000u | (disp & 0x3fffffffu); 1064 *dst = inst; 1065 } else if (op == 0) { 1066 /* branch or sethi */ 1067 op2 = (inst >> 22) & 0x7; 1068 1069 switch (op2) { 1070 case 0x3: /* BPr */ 1071 disp = (((inst >> 20) & 0x3) << 14) | 1072 (inst & 0x3fff); 1073 disp = (disp << 16) >> 16; /* sign-extend */ 1074 if (disp + i >= 0 && disp + i < count) 1075 continue; 1076 disp += offset; 1077 if (((disp << 16) >> 16) != disp) 1078 cmn_err(CE_PANIC, "bad reloc"); 1079 inst &= ~0x303fff; 1080 inst |= (disp & 0x3fff); 1081 inst |= (disp & 0xc000) << 6; 1082 break; 1083 1084 case 0x2: /* Bicc */ 1085 disp = ((int32_t)inst << 10) >> 10; 1086 if (disp + i >= 0 && disp + i < count) 1087 continue; 1088 disp += offset; 1089 if (((disp << 10) >> 10) != disp) 1090 cmn_err(CE_PANIC, "bad reloc"); 1091 inst &= ~0x3fffff; 1092 inst |= (disp & 0x3fffff); 1093 break; 1094 1095 case 0x1: /* Bpcc */ 1096 disp = ((int32_t)inst << 13) >> 13; 1097 if (disp + i >= 0 && disp + i < count) 1098 continue; 1099 disp += offset; 1100 if (((disp << 13) >> 13) != disp) 1101 cmn_err(CE_PANIC, "bad reloc"); 1102 inst &= ~0x7ffff; 1103 inst |= (disp & 0x7ffffu); 1104 break; 1105 } 1106 *dst = inst; 1107 } 1108 } 1109 flush_instr_mem(tablep, count * sizeof (uint32_t)); 1110 } 1111 1112 /* 1113 * Routine to allocate a large page to use in the TSB caches. 1114 */ 1115 /*ARGSUSED*/ 1116 static page_t * 1117 sfmmu_tsb_page_create(void *addr, size_t size, int vmflag, void *arg) 1118 { 1119 int pgflags; 1120 1121 pgflags = PG_EXCL; 1122 if ((vmflag & VM_NOSLEEP) == 0) 1123 pgflags |= PG_WAIT; 1124 if (vmflag & VM_PANIC) 1125 pgflags |= PG_PANIC; 1126 if (vmflag & VM_PUSHPAGE) 1127 pgflags |= PG_PUSHPAGE; 1128 1129 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1130 pgflags, &kvseg, addr, arg)); 1131 } 1132 1133 /* 1134 * Allocate a large page to back the virtual address range 1135 * [addr, addr + size). If addr is NULL, allocate the virtual address 1136 * space as well. 1137 */ 1138 static void * 1139 sfmmu_tsb_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1140 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1141 void *pcarg) 1142 { 1143 page_t *ppl; 1144 page_t *rootpp; 1145 caddr_t addr = inaddr; 1146 pgcnt_t npages = btopr(size); 1147 page_t **ppa; 1148 int i = 0; 1149 1150 /* 1151 * Assuming that only TSBs will call this with size > PAGESIZE 1152 * There is no reason why this couldn't be expanded to 8k pages as 1153 * well, or other page sizes in the future .... but for now, we 1154 * only support fixed sized page requests. 1155 */ 1156 if ((inaddr == NULL) && ((addr = vmem_xalloc(vmp, size, size, 0, 0, 1157 NULL, NULL, vmflag)) == NULL)) 1158 return (NULL); 1159 1160 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1161 if (inaddr == NULL) 1162 vmem_xfree(vmp, addr, size); 1163 return (NULL); 1164 } 1165 1166 ppl = page_create_func(addr, size, vmflag, pcarg); 1167 if (ppl == NULL) { 1168 if (inaddr == NULL) 1169 vmem_xfree(vmp, addr, size); 1170 page_unresv(npages); 1171 return (NULL); 1172 } 1173 1174 rootpp = ppl; 1175 ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP); 1176 while (ppl != NULL) { 1177 page_t *pp = ppl; 1178 ppa[i++] = pp; 1179 page_sub(&ppl, pp); 1180 ASSERT(page_iolock_assert(pp)); 1181 page_io_unlock(pp); 1182 } 1183 1184 /* 1185 * Load the locked entry. It's OK to preload the entry into 1186 * the TSB since we now support large mappings in the kernel TSB. 1187 */ 1188 hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size, 1189 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, HAT_LOAD_LOCK); 1190 1191 for (--i; i >= 0; --i) { 1192 (void) page_pp_lock(ppa[i], 0, 1); 1193 page_unlock(ppa[i]); 1194 } 1195 1196 kmem_free(ppa, npages * sizeof (page_t *)); 1197 return (addr); 1198 } 1199 1200 /* Called to import new spans into the TSB vmem arenas */ 1201 void * 1202 sfmmu_tsb_segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 1203 { 1204 lgrp_id_t lgrpid = LGRP_NONE; 1205 1206 if (tsb_lgrp_affinity) { 1207 /* 1208 * Search for the vmp->lgrpid mapping by brute force; 1209 * some day vmp will have an lgrp, until then we have 1210 * to do this the hard way. 1211 */ 1212 for (lgrpid = 0; lgrpid < NLGRPS_MAX && 1213 vmp != kmem_tsb_default_arena[lgrpid]; lgrpid++) 1214 ; 1215 if (lgrpid == NLGRPS_MAX) 1216 lgrpid = LGRP_NONE; 1217 } 1218 1219 return (sfmmu_tsb_xalloc(vmp, NULL, size, vmflag, 0, 1220 sfmmu_tsb_page_create, lgrpid != LGRP_NONE? &lgrpid : NULL)); 1221 } 1222 1223 /* Called to free spans from the TSB vmem arenas */ 1224 void 1225 sfmmu_tsb_segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 1226 { 1227 page_t *pp; 1228 caddr_t addr = inaddr; 1229 caddr_t eaddr; 1230 pgcnt_t npages = btopr(size); 1231 pgcnt_t pgs_left = npages; 1232 page_t *rootpp = NULL; 1233 1234 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1235 1236 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 1237 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1238 if (pp == NULL) 1239 panic("sfmmu_tsb_segkmem_free: page not found"); 1240 1241 ASSERT(PAGE_EXCL(pp)); 1242 page_pp_unlock(pp, 0, 1); 1243 1244 if (rootpp == NULL) 1245 rootpp = pp; 1246 if (--pgs_left == 0) { 1247 /* 1248 * similar logic to segspt_free_pages, but we know we 1249 * have one large page. 1250 */ 1251 page_destroy_pages(rootpp); 1252 } 1253 } 1254 page_unresv(npages); 1255 1256 if (vmp != NULL) 1257 vmem_xfree(vmp, inaddr, size); 1258 } 1259