xref: /illumos-gate/usr/src/uts/sun4/os/startup.c (revision 291a8a98a6ce8a2e0a5203468242b79d419b06b6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2016 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/machsystm.h>
28 #include <sys/archsystm.h>
29 #include <sys/vm.h>
30 #include <sys/cpu.h>
31 #include <sys/atomic.h>
32 #include <sys/reboot.h>
33 #include <sys/kdi.h>
34 #include <sys/bootconf.h>
35 #include <sys/memlist_plat.h>
36 #include <sys/memlist_impl.h>
37 #include <sys/prom_plat.h>
38 #include <sys/prom_isa.h>
39 #include <sys/autoconf.h>
40 #include <sys/ivintr.h>
41 #include <sys/fpu/fpusystm.h>
42 #include <sys/iommutsb.h>
43 #include <vm/vm_dep.h>
44 #include <vm/seg_dev.h>
45 #include <vm/seg_kmem.h>
46 #include <vm/seg_kpm.h>
47 #include <vm/seg_map.h>
48 #include <vm/seg_kp.h>
49 #include <sys/sysconf.h>
50 #include <vm/hat_sfmmu.h>
51 #include <sys/kobj.h>
52 #include <sys/sun4asi.h>
53 #include <sys/clconf.h>
54 #include <sys/platform_module.h>
55 #include <sys/panic.h>
56 #include <sys/cpu_sgnblk_defs.h>
57 #include <sys/clock.h>
58 #include <sys/cmn_err.h>
59 #include <sys/dumphdr.h>
60 #include <sys/promif.h>
61 #include <sys/prom_debug.h>
62 #include <sys/traptrace.h>
63 #include <sys/memnode.h>
64 #include <sys/mem_cage.h>
65 #include <sys/mmu.h>
66 #include <sys/swap.h>
67 
68 extern void setup_trap_table(void);
69 extern int cpu_intrq_setup(struct cpu *);
70 extern void cpu_intrq_register(struct cpu *);
71 extern void contig_mem_init(void);
72 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t);
73 extern void mach_dump_buffer_init(void);
74 extern void mach_descrip_init(void);
75 extern void mach_descrip_startup_fini(void);
76 extern void mach_memscrub(void);
77 extern void mach_fpras(void);
78 extern void mach_cpu_halt_idle(void);
79 extern void mach_hw_copy_limit(void);
80 extern void load_mach_drivers(void);
81 extern void load_tod_module(void);
82 #pragma weak load_tod_module
83 
84 extern int ndata_alloc_mmfsa(struct memlist *ndata);
85 #pragma weak ndata_alloc_mmfsa
86 
87 extern void cif_init(void);
88 #pragma weak cif_init
89 
90 extern void parse_idprom(void);
91 extern void add_vx_handler(char *, int, void (*)(cell_t *));
92 extern void mem_config_init(void);
93 extern void memseg_remap_init(void);
94 
95 extern void mach_kpm_init(void);
96 extern void pcf_init();
97 extern int size_pse_array(pgcnt_t, int);
98 extern void pg_init();
99 
100 /*
101  * External Data:
102  */
103 extern int vac_size;	/* cache size in bytes */
104 extern uint_t vac_mask;	/* VAC alignment consistency mask */
105 extern uint_t vac_colors;
106 
107 /*
108  * Global Data Definitions:
109  */
110 
111 /*
112  * XXX - Don't port this to new architectures
113  * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
114  * 'romp' has no use with a prom with an IEEE 1275 client interface.
115  * The driver doesn't use the value, but it depends on the symbol.
116  */
117 void *romp;		/* veritas driver won't load without romp 4154976 */
118 /*
119  * Declare these as initialized data so we can patch them.
120  */
121 pgcnt_t physmem = 0;	/* memory size in pages, patch if you want less */
122 pgcnt_t segkpsize =
123     btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
124 uint_t segmap_percent = 6; /* Size of segmap segment */
125 
126 int use_cache = 1;		/* cache not reliable (605 bugs) with MP */
127 int vac_copyback = 1;
128 char *cache_mode = NULL;
129 int use_mix = 1;
130 int prom_debug = 0;
131 
132 caddr_t boot_tba;		/* %tba at boot - used by kmdb */
133 uint_t	tba_taken_over = 0;
134 
135 caddr_t s_text;			/* start of kernel text segment */
136 caddr_t e_text;			/* end of kernel text segment */
137 caddr_t s_data;			/* start of kernel data segment */
138 caddr_t e_data;			/* end of kernel data segment */
139 
140 caddr_t modtext;		/* beginning of module text */
141 size_t	modtext_sz;		/* size of module text */
142 caddr_t moddata;		/* beginning of module data reserve */
143 caddr_t e_moddata;		/* end of module data reserve */
144 
145 /*
146  * End of first block of contiguous kernel in 32-bit virtual address space
147  */
148 caddr_t		econtig32;	/* end of first blk of contiguous kernel */
149 
150 caddr_t		ncbase;		/* beginning of non-cached segment */
151 caddr_t		ncend;		/* end of non-cached segment */
152 
153 size_t	ndata_remain_sz;	/* bytes from end of data to 4MB boundary */
154 caddr_t	nalloc_base;		/* beginning of nucleus allocation */
155 caddr_t nalloc_end;		/* end of nucleus allocatable memory */
156 caddr_t valloc_base;		/* beginning of kvalloc segment	*/
157 
158 caddr_t kmem64_base;		/* base of kernel mem segment in 64-bit space */
159 caddr_t kmem64_end;		/* end of kernel mem segment in 64-bit space */
160 size_t	kmem64_sz;		/* bytes in kernel mem segment, 64-bit space */
161 caddr_t kmem64_aligned_end;	/* end of large page, overmaps 64-bit space */
162 int	kmem64_szc;		/* page size code */
163 uint64_t kmem64_pabase = (uint64_t)-1;	/* physical address of kmem64_base */
164 
165 uintptr_t shm_alignment;	/* VAC address consistency modulus */
166 struct memlist *phys_install;	/* Total installed physical memory */
167 struct memlist *phys_avail;	/* Available (unreserved) physical memory */
168 struct memlist *virt_avail;	/* Available (unmapped?) virtual memory */
169 struct memlist *nopp_list;	/* pages with no backing page structs */
170 struct memlist ndata;		/* memlist of nucleus allocatable memory */
171 int memexp_flag;		/* memory expansion card flag */
172 uint64_t ecache_flushaddr;	/* physical address used for flushing E$ */
173 pgcnt_t obp_pages;		/* Physical pages used by OBP */
174 
175 /*
176  * VM data structures
177  */
178 long page_hashsz;		/* Size of page hash table (power of two) */
179 unsigned int page_hashsz_shift;	/* log2(page_hashsz) */
180 struct page *pp_base;		/* Base of system page struct array */
181 size_t pp_sz;			/* Size in bytes of page struct array */
182 struct page **page_hash;	/* Page hash table */
183 pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
184 size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
185 int pse_shift;			/* log2(pse_table_size) */
186 struct seg ktextseg;		/* Segment used for kernel executable image */
187 struct seg kvalloc;		/* Segment used for "valloc" mapping */
188 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
189 struct seg ktexthole;		/* Segment used for nucleus text hole */
190 struct seg kmapseg;		/* Segment used for generic kernel mappings */
191 struct seg kpmseg;		/* Segment used for physical mapping */
192 struct seg kdebugseg;		/* Segment used for the kernel debugger */
193 
194 void *kpm_pp_base;		/* Base of system kpm_page array */
195 size_t	kpm_pp_sz;		/* Size of system kpm_page array */
196 pgcnt_t	kpm_npages;		/* How many kpm pages are managed */
197 
198 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
199 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
200 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
201 
202 int segzio_fromheap = 0;	/* zio allocations occur from heap */
203 caddr_t segzio_base;		/* Base address of segzio */
204 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
205 
206 /*
207  * A static DR page_t VA map is reserved that can map the page structures
208  * for a domain's entire RA space. The pages that backs this space are
209  * dynamically allocated and need not be physically contiguous.  The DR
210  * map size is derived from KPM size.
211  */
212 int ppvm_enable = 0;		/* Static virtual map for page structs */
213 page_t *ppvm_base;		/* Base of page struct map */
214 pgcnt_t ppvm_size = 0;		/* Size of page struct map */
215 
216 /*
217  * debugger pages (if allocated)
218  */
219 struct vnode kdebugvp;
220 
221 /*
222  * VA range available to the debugger
223  */
224 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
225 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
226 
227 /*
228  * Segment for relocated kernel structures in 64-bit large RAM kernels
229  */
230 struct seg kmem64;
231 
232 struct memseg *memseg_free;
233 
234 struct vnode unused_pages_vp;
235 
236 /*
237  * VM data structures allocated early during boot.
238  */
239 size_t pagehash_sz;
240 uint64_t memlist_sz;
241 
242 char tbr_wr_addr_inited = 0;
243 
244 caddr_t	mpo_heap32_buf = NULL;
245 size_t	mpo_heap32_bufsz = 0;
246 
247 /*
248  * Static Routines:
249  */
250 static int ndata_alloc_memseg(struct memlist *, size_t);
251 static void memlist_new(uint64_t, uint64_t, struct memlist **);
252 static void memlist_add(uint64_t, uint64_t,
253 	struct memlist **, struct memlist **);
254 static void kphysm_init(void);
255 static void kvm_init(void);
256 static void install_kmem64_tte(void);
257 
258 static void startup_init(void);
259 static void startup_memlist(void);
260 static void startup_modules(void);
261 static void startup_bop_gone(void);
262 static void startup_vm(void);
263 static void startup_end(void);
264 static void setup_cage_params(void);
265 static void startup_create_io_node(void);
266 
267 static pgcnt_t npages;
268 static struct memlist *memlist;
269 void *memlist_end;
270 
271 static pgcnt_t bop_alloc_pages;
272 static caddr_t hblk_base;
273 uint_t hblk_alloc_dynamic = 0;
274 uint_t hblk1_min = H1MIN;
275 
276 
277 /*
278  * Hooks for unsupported platforms and down-rev firmware
279  */
280 int iam_positron(void);
281 #pragma weak iam_positron
282 static void do_prom_version_check(void);
283 
284 /*
285  * After receiving a thermal interrupt, this is the number of seconds
286  * to delay before shutting off the system, assuming
287  * shutdown fails.  Use /etc/system to change the delay if this isn't
288  * large enough.
289  */
290 int thermal_powerdown_delay = 1200;
291 
292 /*
293  * Used to hold off page relocations into the cage until OBP has completed
294  * its boot-time handoff of its resources to the kernel.
295  */
296 int page_relocate_ready = 0;
297 
298 /*
299  * Indicate if kmem64 allocation was done in small chunks
300  */
301 int kmem64_smchunks = 0;
302 
303 /*
304  * Enable some debugging messages concerning memory usage...
305  */
306 #ifdef  DEBUGGING_MEM
307 static int debugging_mem;
308 static void
309 printmemlist(char *title, struct memlist *list)
310 {
311 	if (!debugging_mem)
312 		return;
313 
314 	printf("%s\n", title);
315 
316 	while (list) {
317 		prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
318 		    (uint32_t)(list->ml_address >> 32),
319 		    (uint32_t)list->ml_address,
320 		    (uint32_t)(list->ml_size >> 32),
321 		    (uint32_t)(list->ml_size));
322 		list = list->ml_next;
323 	}
324 }
325 
326 void
327 printmemseg(struct memseg *memseg)
328 {
329 	if (!debugging_mem)
330 		return;
331 
332 	printf("memseg\n");
333 
334 	while (memseg) {
335 		prom_printf("\tpage = 0x%p, epage = 0x%p, "
336 		    "pfn = 0x%x, epfn = 0x%x\n",
337 		    memseg->pages, memseg->epages,
338 		    memseg->pages_base, memseg->pages_end);
339 		memseg = memseg->next;
340 	}
341 }
342 
343 #define	debug_pause(str)	halt((str))
344 #define	MPRINTF(str)		if (debugging_mem) prom_printf((str))
345 #define	MPRINTF1(str, a)	if (debugging_mem) prom_printf((str), (a))
346 #define	MPRINTF2(str, a, b)	if (debugging_mem) prom_printf((str), (a), (b))
347 #define	MPRINTF3(str, a, b, c) \
348 	if (debugging_mem) prom_printf((str), (a), (b), (c))
349 #else	/* DEBUGGING_MEM */
350 #define	MPRINTF(str)
351 #define	MPRINTF1(str, a)
352 #define	MPRINTF2(str, a, b)
353 #define	MPRINTF3(str, a, b, c)
354 #endif	/* DEBUGGING_MEM */
355 
356 
357 /*
358  *
359  *                    Kernel's Virtual Memory Layout.
360  *                       /-----------------------\
361  * 0xFFFFFFFF.FFFFFFFF  -|                       |-
362  *                       |   OBP's virtual page  |
363  *                       |        tables         |
364  * 0xFFFFFFFC.00000000  -|-----------------------|-
365  *                       :                       :
366  *                       :                       :
367  *                      -|-----------------------|-
368  *                       |       segzio          | (base and size vary)
369  * 0xFFFFFE00.00000000  -|-----------------------|-
370  *                       |                       |  Ultrasparc I/II support
371  *                       |    segkpm segment     |  up to 2TB of physical
372  *                       | (64-bit kernel ONLY)  |  memory, VAC has 2 colors
373  *                       |                       |
374  * 0xFFFFFA00.00000000  -|-----------------------|- 2TB segkpm alignment
375  *                       :                       :
376  *                       :                       :
377  * 0xFFFFF810.00000000  -|-----------------------|- hole_end
378  *                       |                       |      ^
379  *                       |  UltraSPARC I/II call |      |
380  *                       | bug requires an extra |      |
381  *                       | 4 GB of space between |      |
382  *                       |   hole and used RAM   |	|
383  *                       |                       |      |
384  * 0xFFFFF800.00000000  -|-----------------------|-     |
385  *                       |                       |      |
386  *                       | Virtual Address Hole  |   UltraSPARC
387  *                       |  on UltraSPARC I/II   |  I/II * ONLY *
388  *                       |                       |      |
389  * 0x00000800.00000000  -|-----------------------|-     |
390  *                       |                       |      |
391  *                       |  UltraSPARC I/II call |      |
392  *                       | bug requires an extra |      |
393  *                       | 4 GB of space between |      |
394  *                       |   hole and used RAM   |      |
395  *                       |                       |      v
396  * 0x000007FF.00000000  -|-----------------------|- hole_start -----
397  *                       :                       :		   ^
398  *                       :                       :		   |
399  *                       |-----------------------|                 |
400  *                       |                       |                 |
401  *                       |  ecache flush area    |                 |
402  *                       |  (twice largest e$)   |                 |
403  *                       |                       |                 |
404  * 0x00000XXX.XXX00000  -|-----------------------|- kmem64_	   |
405  *                       | overmapped area       |   alignend_end  |
406  *                       | (kmem64_alignsize     |		   |
407  *                       |  boundary)            |		   |
408  * 0x00000XXX.XXXXXXXX  -|-----------------------|- kmem64_end	   |
409  *                       |                       |		   |
410  *                       |   64-bit kernel ONLY  |		   |
411  *                       |                       |		   |
412  *                       |    kmem64 segment     |		   |
413  *                       |                       |		   |
414  *                       | (Relocated extra HME  |	     Approximately
415  *                       |   block allocations,  |	    1 TB of virtual
416  *                       |   memnode freelists,  |	     address space
417  *                       |    HME hash buckets,  |		   |
418  *                       | mml_table, kpmp_table,|		   |
419  *                       |  page_t array and     |		   |
420  *                       |  hashblock pool to    |		   |
421  *                       |   avoid hard-coded    |		   |
422  *                       |     32-bit vaddr      |		   |
423  *                       |     limitations)      |		   |
424  *                       |                       |		   v
425  * 0x00000700.00000000  -|-----------------------|- SYSLIMIT (kmem64_base)
426  *                       |                       |
427  *                       |  segkmem segment      | (SYSLIMIT - SYSBASE = 4TB)
428  *                       |                       |
429  * 0x00000300.00000000  -|-----------------------|- SYSBASE
430  *                       :                       :
431  *                       :                       :
432  *                      -|-----------------------|-
433  *                       |                       |
434  *                       |  segmap segment       |   SEGMAPSIZE (1/8th physmem,
435  *                       |                       |               256G MAX)
436  * 0x000002a7.50000000  -|-----------------------|- SEGMAPBASE
437  *                       :                       :
438  *                       :                       :
439  *                      -|-----------------------|-
440  *                       |                       |
441  *                       |       segkp           |    SEGKPSIZE (2GB)
442  *                       |                       |
443  *                       |                       |
444  * 0x000002a1.00000000  -|-----------------------|- SEGKPBASE
445  *                       |                       |
446  * 0x000002a0.00000000  -|-----------------------|- MEMSCRUBBASE
447  *                       |                       |       (SEGKPBASE - 0x400000)
448  * 0x0000029F.FFE00000  -|-----------------------|- ARGSBASE
449  *                       |                       |       (MEMSCRUBBASE - NCARGS)
450  * 0x0000029F.FFD80000  -|-----------------------|- PPMAPBASE
451  *                       |                       |       (ARGSBASE - PPMAPSIZE)
452  * 0x0000029F.FFD00000  -|-----------------------|- PPMAP_FAST_BASE
453  *                       |                       |
454  * 0x0000029F.FF980000  -|-----------------------|- PIOMAPBASE
455  *                       |                       |
456  * 0x0000029F.FF580000  -|-----------------------|- NARG_BASE
457  *                       :                       :
458  *                       :                       :
459  * 0x00000000.FFFFFFFF  -|-----------------------|- OFW_END_ADDR
460  *                       |                       |
461  *                       |         OBP           |
462  *                       |                       |
463  * 0x00000000.F0000000  -|-----------------------|- OFW_START_ADDR
464  *                       |         kmdb          |
465  * 0x00000000.EDD00000  -|-----------------------|- SEGDEBUGBASE
466  *                       :                       :
467  *                       :                       :
468  * 0x00000000.7c000000  -|-----------------------|- SYSLIMIT32
469  *                       |                       |
470  *                       |  segkmem32 segment    | (SYSLIMIT32 - SYSBASE32 =
471  *                       |                       |    ~64MB)
472  *			-|-----------------------|
473  *			 |	IVSIZE		 |
474  * 0x00000000.70004000  -|-----------------------|
475  *                       |     panicbuf          |
476  * 0x00000000.70002000	-|-----------------------|
477  *			 |	PAGESIZE	 |
478  * 0x00000000.70000000  -|-----------------------|- SYSBASE32
479  *                       |       boot-time       |
480  *                       |    temporary space    |
481  * 0x00000000.4C000000  -|-----------------------|- BOOTTMPBASE
482  *                       :                       :
483  *                       :                       :
484  *                       |                       |
485  *                       |-----------------------|- econtig32
486  *                       |    vm structures      |
487  * 0x00000000.01C00000   |-----------------------|- nalloc_end
488  *                       |         TSBs          |
489  *                       |-----------------------|- end/nalloc_base
490  *                       |   kernel data & bss   |
491  * 0x00000000.01800000  -|-----------------------|
492  *                       :   nucleus text hole   :
493  * 0x00000000.01400000  -|-----------------------|
494  *                       :                       :
495  *                       |-----------------------|
496  *                       |      module text      |
497  *                       |-----------------------|- e_text/modtext
498  *                       |      kernel text      |
499  *                       |-----------------------|
500  *                       |    trap table (48k)   |
501  * 0x00000000.01000000  -|-----------------------|- KERNELBASE
502  *                       | reserved for trapstat |} TSTAT_TOTAL_SIZE
503  *                       |-----------------------|
504  *                       |                       |
505  *                       |        invalid        |
506  *                       |                       |
507  * 0x00000000.00000000  _|_______________________|
508  *
509  *
510  *
511  *                   32-bit User Virtual Memory Layout.
512  *                       /-----------------------\
513  *                       |                       |
514  *                       |        invalid        |
515  *                       |                       |
516  *          0xFFC00000  -|-----------------------|- USERLIMIT
517  *                       |       user stack      |
518  *                       :                       :
519  *                       :                       :
520  *                       :                       :
521  *                       |       user data       |
522  *                      -|-----------------------|-
523  *                       |       user text       |
524  *          0x00002000  -|-----------------------|-
525  *                       |       invalid         |
526  *          0x00000000  _|_______________________|
527  *
528  *
529  *
530  *                   64-bit User Virtual Memory Layout.
531  *                       /-----------------------\
532  *                       |                       |
533  *                       |        invalid        |
534  *                       |                       |
535  *  0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
536  *                       |       user stack      |
537  *                       :                       :
538  *                       :                       :
539  *                       :                       :
540  *                       |       user data       |
541  *                      -|-----------------------|-
542  *                       |       user text       |
543  *  0x00000000.01000000 -|-----------------------|-
544  *                       |       invalid         |
545  *  0x00000000.00000000 _|_______________________|
546  */
547 
548 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
549 extern uint64_t ecache_flush_address(void);
550 
551 #pragma weak load_platform_modules
552 #pragma weak plat_startup_memlist
553 #pragma weak ecache_init_scrub_flush_area
554 #pragma weak ecache_flush_address
555 
556 
557 /*
558  * By default the DR Cage is enabled for maximum OS
559  * MPSS performance.  Users needing to disable the cage mechanism
560  * can set this variable to zero via /etc/system.
561  * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
562  * will result in loss of DR functionality.
563  * Platforms wishing to disable kernel Cage by default
564  * should do so in their set_platform_defaults() routine.
565  */
566 int	kernel_cage_enable = 1;
567 
568 static void
569 setup_cage_params(void)
570 {
571 	void (*func)(void);
572 
573 	func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
574 	if (func != NULL) {
575 		(*func)();
576 		return;
577 	}
578 
579 	if (kernel_cage_enable == 0) {
580 		return;
581 	}
582 	kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256);
583 
584 	if (kcage_on) {
585 		cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
586 	} else {
587 		cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
588 	}
589 
590 }
591 
592 /*
593  * Machine-dependent startup code
594  */
595 void
596 startup(void)
597 {
598 	startup_init();
599 	if (&startup_platform)
600 		startup_platform();
601 	startup_memlist();
602 	startup_modules();
603 	setup_cage_params();
604 	startup_bop_gone();
605 	startup_vm();
606 	startup_end();
607 }
608 
609 struct regs sync_reg_buf;
610 uint64_t sync_tt;
611 
612 void
613 sync_handler(void)
614 {
615 	struct  panic_trap_info 	ti;
616 	int i;
617 
618 	/*
619 	 * Prevent trying to talk to the other CPUs since they are
620 	 * sitting in the prom and won't reply.
621 	 */
622 	for (i = 0; i < NCPU; i++) {
623 		if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
624 			cpu[i]->cpu_flags &= ~CPU_READY;
625 			cpu[i]->cpu_flags |= CPU_QUIESCED;
626 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
627 		}
628 	}
629 
630 	/*
631 	 * Force a serial dump, since there are no CPUs to help.
632 	 */
633 	dump_plat_mincpu = 0;
634 
635 	/*
636 	 * We've managed to get here without going through the
637 	 * normal panic code path. Try and save some useful
638 	 * information.
639 	 */
640 	if (!panicstr && (curthread->t_panic_trap == NULL)) {
641 		ti.trap_type = sync_tt;
642 		ti.trap_regs = &sync_reg_buf;
643 		ti.trap_addr = NULL;
644 		ti.trap_mmu_fsr = 0x0;
645 
646 		curthread->t_panic_trap = &ti;
647 	}
648 
649 	/*
650 	 * If we're re-entering the panic path, update the signature
651 	 * block so that the SC knows we're in the second part of panic.
652 	 */
653 	if (panicstr)
654 		CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
655 
656 	nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
657 	panic("sync initiated");
658 }
659 
660 
661 static void
662 startup_init(void)
663 {
664 	/*
665 	 * We want to save the registers while we're still in OBP
666 	 * so that we know they haven't been fiddled with since.
667 	 * (In principle, OBP can't change them just because it
668 	 * makes a callback, but we'd rather not depend on that
669 	 * behavior.)
670 	 */
671 	char		sync_str[] =
672 	    "warning @ warning off : sync "
673 	    "%%tl-c %%tstate h# %p x! "
674 	    "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
675 	    "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
676 	    "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
677 	    "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
678 	    "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
679 	    "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
680 	    "%%y h# %p l! %%tl-c %%tt h# %p x! "
681 	    "sync ; warning !";
682 
683 	/*
684 	 * 20 == num of %p substrings
685 	 * 16 == max num of chars %p will expand to.
686 	 */
687 	char 		bp[sizeof (sync_str) + 16 * 20];
688 
689 	/*
690 	 * Initialize ptl1 stack for the 1st CPU.
691 	 */
692 	ptl1_init_cpu(&cpu0);
693 
694 	/*
695 	 * Initialize the address map for cache consistent mappings
696 	 * to random pages; must be done after vac_size is set.
697 	 */
698 	ppmapinit();
699 
700 	/*
701 	 * Initialize the PROM callback handler.
702 	 */
703 	init_vx_handler();
704 
705 	/*
706 	 * have prom call sync_callback() to handle the sync and
707 	 * save some useful information which will be stored in the
708 	 * core file later.
709 	 */
710 	(void) sprintf((char *)bp, sync_str,
711 	    (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
712 	    (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
713 	    (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
714 	    (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
715 	    (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
716 	    (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
717 	    (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
718 	    (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
719 	    (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
720 	    (void *)&sync_reg_buf.r_y, (void *)&sync_tt);
721 	prom_interpret(bp, 0, 0, 0, 0, 0);
722 	add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
723 }
724 
725 
726 size_t
727 calc_pp_sz(pgcnt_t npages)
728 {
729 
730 	return (npages * sizeof (struct page));
731 }
732 
733 size_t
734 calc_kpmpp_sz(pgcnt_t npages)
735 {
736 
737 	kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
738 	kpm_pgsz = 1ull << kpm_pgshft;
739 	kpm_pgoff = kpm_pgsz - 1;
740 	kpmp2pshft = kpm_pgshft - PAGESHIFT;
741 	kpmpnpgs = 1 << kpmp2pshft;
742 
743 	if (kpm_smallpages == 0) {
744 		/*
745 		 * Avoid fragmentation problems in kphysm_init()
746 		 * by allocating for all of physical memory
747 		 */
748 		kpm_npages = ptokpmpr(physinstalled);
749 		return (kpm_npages * sizeof (kpm_page_t));
750 	} else {
751 		kpm_npages = npages;
752 		return (kpm_npages * sizeof (kpm_spage_t));
753 	}
754 }
755 
756 size_t
757 calc_pagehash_sz(pgcnt_t npages)
758 {
759 	/* LINTED */
760 	ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), (sizeof (struct page))));
761 	/*
762 	 * The page structure hash table size is a power of 2
763 	 * such that the average hash chain length is PAGE_HASHAVELEN.
764 	 */
765 	page_hashsz = npages / PAGE_HASHAVELEN;
766 	page_hashsz_shift = MAX((AN_VPSHIFT + VNODE_ALIGN_LOG2 + 1),
767 	    highbit(page_hashsz));
768 	page_hashsz = 1 << page_hashsz_shift;
769 	return (page_hashsz * sizeof (struct page *));
770 }
771 
772 int testkmem64_smchunks = 0;
773 
774 int
775 alloc_kmem64(caddr_t base, caddr_t end)
776 {
777 	int i;
778 	caddr_t aligned_end = NULL;
779 
780 	if (testkmem64_smchunks)
781 		return (1);
782 
783 	/*
784 	 * Make one large memory alloc after figuring out the 64-bit size. This
785 	 * will enable use of the largest page size appropriate for the system
786 	 * architecture.
787 	 */
788 	ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K));
789 	ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc)));
790 	for (i = max_bootlp_tteszc; i >= TTE8K; i--) {
791 		size_t alloc_size, alignsize;
792 #if !defined(C_OBP)
793 		unsigned long long pa;
794 #endif	/* !C_OBP */
795 
796 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0)
797 			continue;
798 		alignsize = TTEBYTES(i);
799 		kmem64_szc = i;
800 
801 		/* limit page size for small memory */
802 		if (mmu_btop(alignsize) > (npages >> 2))
803 			continue;
804 
805 		aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize);
806 		alloc_size = aligned_end - base;
807 #if !defined(C_OBP)
808 		if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) {
809 			if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) {
810 				kmem64_pabase = pa;
811 				kmem64_aligned_end = aligned_end;
812 				install_kmem64_tte();
813 				break;
814 			} else {
815 				prom_free_phys(alloc_size, pa);
816 			}
817 		}
818 #else	/* !C_OBP */
819 		if (prom_alloc(base, alloc_size, alignsize) == base) {
820 			kmem64_pabase = va_to_pa(kmem64_base);
821 			kmem64_aligned_end = aligned_end;
822 			break;
823 		}
824 #endif	/* !C_OBP */
825 		if (i == TTE8K) {
826 #ifdef sun4v
827 			/* return failure to try small allocations */
828 			return (1);
829 #else
830 			prom_panic("kmem64 allocation failure");
831 #endif
832 		}
833 	}
834 	ASSERT(aligned_end != NULL);
835 	return (0);
836 }
837 
838 static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
839 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
840 
841 #if !defined(C_OBP)
842 /*
843  * Install a temporary tte handler in OBP for kmem64 area.
844  *
845  * We map kmem64 area with large pages before the trap table is taken
846  * over. Since OBP makes 8K mappings, it can create 8K tlb entries in
847  * the same area. Duplicate tlb entries with different page sizes
848  * cause unpredicatble behavior.  To avoid this, we don't create
849  * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to
850  * OBP).  Instead, we manage translations with a temporary va>tte-data
851  * handler (kmem64-tte).  This handler is replaced by unix-tte when
852  * the trap table is taken over.
853  *
854  * The temporary handler knows the physical address of the kmem64
855  * area. It uses the prom's pgmap@ Forth word for other addresses.
856  *
857  * We have to use BOP_ALLOC() method for C-OBP platforms because
858  * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti
859  * sun4u platforms. On sun4u we flush tlb after trap table is taken
860  * over if we use large pages for kernel heap and kmem64. Since sun4u
861  * prom (unlike sun4v) calls va>tte-data first for client address
862  * translation prom's ttes for kmem64 can't get into TLB even if we
863  * later switch to prom's trap table again. C-OBP uses 4M pages for
864  * client mappings when possible so on all platforms we get the
865  * benefit from large mappings for kmem64 area immediately during
866  * boot.
867  *
868  * pseudo code:
869  * if (context != 0) {
870  * 	return false
871  * } else if (miss_va in range[kmem64_base, kmem64_end)) {
872  *	tte = tte_template +
873  *		(((miss_va & pagemask) - kmem64_base));
874  *	return tte, true
875  * } else {
876  *	return pgmap@ result
877  * }
878  */
879 char kmem64_obp_str[] =
880 	"h# %lx constant kmem64-base "
881 	"h# %lx constant kmem64-end "
882 	"h# %lx constant kmem64-pagemask "
883 	"h# %lx constant kmem64-template "
884 
885 	": kmem64-tte ( addr cnum -- false | tte-data true ) "
886 	"    if                                       ( addr ) "
887 	"       drop false exit then                  ( false ) "
888 	"    dup  kmem64-base kmem64-end  within  if  ( addr ) "
889 	"	kmem64-pagemask and                   ( addr' ) "
890 	"	kmem64-base -                         ( addr' ) "
891 	"	kmem64-template +                     ( tte ) "
892 	"	true                                  ( tte true ) "
893 	"    else                                     ( addr ) "
894 	"	pgmap@                                ( tte ) "
895 	"       dup 0< if true else drop false then   ( tte true  |  false ) "
896 	"    then                                     ( tte true  |  false ) "
897 	"; "
898 
899 	"' kmem64-tte is va>tte-data "
900 ;
901 
902 static void
903 install_kmem64_tte()
904 {
905 	char b[sizeof (kmem64_obp_str) + (4 * 16)];
906 	tte_t tte;
907 
908 	PRM_DEBUG(kmem64_pabase);
909 	PRM_DEBUG(kmem64_szc);
910 	sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT,
911 	    PROC_DATA | HAT_NOSYNC, kmem64_szc);
912 	PRM_DEBUG(tte.ll);
913 	(void) sprintf(b, kmem64_obp_str,
914 	    kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll);
915 	ASSERT(strlen(b) < sizeof (b));
916 	prom_interpret(b, 0, 0, 0, 0, 0);
917 }
918 #endif	/* !C_OBP */
919 
920 /*
921  * As OBP takes up some RAM when the system boots, pages will already be "lost"
922  * to the system and reflected in npages by the time we see it.
923  *
924  * We only want to allocate kernel structures in the 64-bit virtual address
925  * space on systems with enough RAM to make the overhead of keeping track of
926  * an extra kernel memory segment worthwhile.
927  *
928  * Since OBP has already performed its memory allocations by this point, if we
929  * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
930  * memory in the 64-bit virtual address space; otherwise keep allocations
931  * contiguous with we've mapped so far in the 32-bit virtual address space.
932  */
933 #define	MINMOVE_RAM_MB	((size_t)1900)
934 #define	MB_TO_BYTES(mb)	((mb) * 1048576ul)
935 #define	BYTES_TO_MB(b) ((b) / 1048576ul)
936 
937 pgcnt_t	tune_npages = (pgcnt_t)
938 	(MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
939 
940 #pragma weak page_set_colorequiv_arr_cpu
941 extern void page_set_colorequiv_arr_cpu(void);
942 extern void page_set_colorequiv_arr(void);
943 
944 static pgcnt_t ramdisk_npages;
945 static struct memlist *old_phys_avail;
946 
947 kcage_dir_t kcage_startup_dir = KCAGE_DOWN;
948 
949 static void
950 startup_memlist(void)
951 {
952 	size_t hmehash_sz, pagelist_sz, tt_sz;
953 	size_t psetable_sz;
954 	caddr_t alloc_base;
955 	caddr_t memspace;
956 	struct memlist *cur;
957 	size_t syslimit = (size_t)SYSLIMIT;
958 	size_t sysbase = (size_t)SYSBASE;
959 
960 	/*
961 	 * Initialize enough of the system to allow kmem_alloc to work by
962 	 * calling boot to allocate its memory until the time that
963 	 * kvm_init is completed.  The page structs are allocated after
964 	 * rounding up end to the nearest page boundary; the memsegs are
965 	 * initialized and the space they use comes from the kernel heap.
966 	 * With appropriate initialization, they can be reallocated later
967 	 * to a size appropriate for the machine's configuration.
968 	 *
969 	 * At this point, memory is allocated for things that will never
970 	 * need to be freed, this used to be "valloced".  This allows a
971 	 * savings as the pages don't need page structures to describe
972 	 * them because them will not be managed by the vm system.
973 	 */
974 
975 	/*
976 	 * We're loaded by boot with the following configuration (as
977 	 * specified in the sun4u/conf/Mapfile):
978 	 *
979 	 * 	text:		4 MB chunk aligned on a 4MB boundary
980 	 * 	data & bss:	4 MB chunk aligned on a 4MB boundary
981 	 *
982 	 * These two chunks will eventually be mapped by 2 locked 4MB
983 	 * ttes and will represent the nucleus of the kernel.  This gives
984 	 * us some free space that is already allocated, some or all of
985 	 * which is made available to kernel module text.
986 	 *
987 	 * The free space in the data-bss chunk is used for nucleus
988 	 * allocatable data structures and we reserve it using the
989 	 * nalloc_base and nalloc_end variables.  This space is currently
990 	 * being used for hat data structures required for tlb miss
991 	 * handling operations.  We align nalloc_base to a l2 cache
992 	 * linesize because this is the line size the hardware uses to
993 	 * maintain cache coherency.
994 	 * 512K is carved out for module data.
995 	 */
996 
997 	moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
998 	e_moddata = moddata + MODDATA;
999 	nalloc_base = e_moddata;
1000 
1001 	nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
1002 	valloc_base = nalloc_base;
1003 
1004 	/*
1005 	 * Calculate the start of the data segment.
1006 	 */
1007 	if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data)
1008 		prom_panic("nucleus data overflow");
1009 
1010 	PRM_DEBUG(moddata);
1011 	PRM_DEBUG(nalloc_base);
1012 	PRM_DEBUG(nalloc_end);
1013 
1014 	/*
1015 	 * Remember any slop after e_text so we can give it to the modules.
1016 	 */
1017 	PRM_DEBUG(e_text);
1018 	modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
1019 	if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text)
1020 		prom_panic("nucleus text overflow");
1021 	modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
1022 	    modtext;
1023 	PRM_DEBUG(modtext);
1024 	PRM_DEBUG(modtext_sz);
1025 
1026 	init_boot_memlists();
1027 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1028 	    &boot_physavail, &boot_physavail_len,
1029 	    &boot_virtavail, &boot_virtavail_len);
1030 
1031 	/*
1032 	 * Remember what the physically available highest page is
1033 	 * so that dumpsys works properly, and find out how much
1034 	 * memory is installed.
1035 	 */
1036 	installed_top_size_memlist_array(boot_physinstalled,
1037 	    boot_physinstalled_len, &physmax, &physinstalled);
1038 	PRM_DEBUG(physinstalled);
1039 	PRM_DEBUG(physmax);
1040 
1041 	/* Fill out memory nodes config structure */
1042 	startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
1043 
1044 	/*
1045 	 * npages is the maximum of available physical memory possible.
1046 	 * (ie. it will never be more than this)
1047 	 *
1048 	 * When we boot from a ramdisk, the ramdisk memory isn't free, so
1049 	 * using phys_avail will underestimate what will end up being freed.
1050 	 * A better initial guess is just total memory minus the kernel text
1051 	 */
1052 	npages = physinstalled - btop(MMU_PAGESIZE4M);
1053 
1054 	/*
1055 	 * First allocate things that can go in the nucleus data page
1056 	 * (fault status, TSBs, dmv, CPUs)
1057 	 */
1058 	ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
1059 
1060 	if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
1061 		cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
1062 
1063 	if (ndata_alloc_tsbs(&ndata, npages) != 0)
1064 		cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
1065 
1066 	if (ndata_alloc_dmv(&ndata) != 0)
1067 		cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
1068 
1069 	if (ndata_alloc_page_mutexs(&ndata) != 0)
1070 		cmn_err(CE_PANIC,
1071 		    "no more nucleus memory after page free lists alloc");
1072 
1073 	if (ndata_alloc_hat(&ndata) != 0)
1074 		cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
1075 
1076 	if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0)
1077 		cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc");
1078 
1079 	/*
1080 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1081 	 *
1082 	 * There are comments all over the SFMMU code warning of dire
1083 	 * consequences if the TSBs are moved out of 32-bit space.  This
1084 	 * is largely because the asm code uses "sethi %hi(addr)"-type
1085 	 * instructions which will not provide the expected result if the
1086 	 * address is a 64-bit one.
1087 	 *
1088 	 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1089 	 */
1090 	alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
1091 	PRM_DEBUG(alloc_base);
1092 
1093 	alloc_base = sfmmu_ktsb_alloc(alloc_base);
1094 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1095 	PRM_DEBUG(alloc_base);
1096 
1097 	/*
1098 	 * Allocate IOMMU TSB array.  We do this here so that the physical
1099 	 * memory gets deducted from the PROM's physical memory list.
1100 	 */
1101 	alloc_base = iommu_tsb_init(alloc_base);
1102 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1103 	PRM_DEBUG(alloc_base);
1104 
1105 	/*
1106 	 * Allow for an early allocation of physically contiguous memory.
1107 	 */
1108 	alloc_base = contig_mem_prealloc(alloc_base, npages);
1109 
1110 	/*
1111 	 * Platforms like Starcat and OPL need special structures assigned in
1112 	 * 32-bit virtual address space because their probing routines execute
1113 	 * FCode, and FCode can't handle 64-bit virtual addresses...
1114 	 */
1115 	if (&plat_startup_memlist) {
1116 		alloc_base = plat_startup_memlist(alloc_base);
1117 		alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1118 		    ecache_alignsize);
1119 		PRM_DEBUG(alloc_base);
1120 	}
1121 
1122 	/*
1123 	 * Save off where the contiguous allocations to date have ended
1124 	 * in econtig32.
1125 	 */
1126 	econtig32 = alloc_base;
1127 	PRM_DEBUG(econtig32);
1128 	if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1129 		cmn_err(CE_PANIC, "econtig32 too big");
1130 
1131 	pp_sz = calc_pp_sz(npages);
1132 	PRM_DEBUG(pp_sz);
1133 	if (kpm_enable) {
1134 		kpm_pp_sz = calc_kpmpp_sz(npages);
1135 		PRM_DEBUG(kpm_pp_sz);
1136 	}
1137 
1138 	hmehash_sz = calc_hmehash_sz(npages);
1139 	PRM_DEBUG(hmehash_sz);
1140 
1141 	pagehash_sz = calc_pagehash_sz(npages);
1142 	PRM_DEBUG(pagehash_sz);
1143 
1144 	pagelist_sz = calc_free_pagelist_sz();
1145 	PRM_DEBUG(pagelist_sz);
1146 
1147 #ifdef	TRAPTRACE
1148 	tt_sz = calc_traptrace_sz();
1149 	PRM_DEBUG(tt_sz);
1150 #else
1151 	tt_sz = 0;
1152 #endif	/* TRAPTRACE */
1153 
1154 	/*
1155 	 * Place the array that protects pp->p_selock in the kmem64 wad.
1156 	 */
1157 	pse_shift = size_pse_array(npages, max_ncpus);
1158 	PRM_DEBUG(pse_shift);
1159 	pse_table_size = 1 << pse_shift;
1160 	PRM_DEBUG(pse_table_size);
1161 	psetable_sz = roundup(
1162 	    pse_table_size * sizeof (pad_mutex_t), ecache_alignsize);
1163 	PRM_DEBUG(psetable_sz);
1164 
1165 	/*
1166 	 * Now allocate the whole wad
1167 	 */
1168 	kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz +
1169 	    pagelist_sz + tt_sz + psetable_sz;
1170 	kmem64_sz = roundup(kmem64_sz, PAGESIZE);
1171 	kmem64_base = (caddr_t)syslimit;
1172 	kmem64_end = kmem64_base + kmem64_sz;
1173 	if (alloc_kmem64(kmem64_base, kmem64_end)) {
1174 		/*
1175 		 * Attempt for kmem64 to allocate one big
1176 		 * contiguous chunk of memory failed.
1177 		 * We get here because we are sun4v.
1178 		 * We will proceed by breaking up
1179 		 * the allocation into two attempts.
1180 		 * First, we allocate kpm_pp_sz, hmehash_sz,
1181 		 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz as
1182 		 * one contiguous chunk. This is a much smaller
1183 		 * chunk and we should get it, if not we panic.
1184 		 * Note that hmehash and tt need to be physically
1185 		 * (in the real address sense) contiguous.
1186 		 * Next, we use bop_alloc_chunk() to
1187 		 * to allocate the page_t structures.
1188 		 * This will allow the page_t to be allocated
1189 		 * in multiple smaller chunks.
1190 		 * In doing so, the assumption that page_t is
1191 		 * physically contiguous no longer hold, this is ok
1192 		 * for sun4v but not for sun4u.
1193 		 */
1194 		size_t  tmp_size;
1195 		caddr_t tmp_base;
1196 
1197 		pp_sz  = roundup(pp_sz, PAGESIZE);
1198 
1199 		/*
1200 		 * Allocate kpm_pp_sz, hmehash_sz,
1201 		 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz
1202 		 */
1203 		tmp_base = kmem64_base + pp_sz;
1204 		tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz +
1205 		    pagelist_sz + tt_sz + psetable_sz, PAGESIZE);
1206 		if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0)
1207 			prom_panic("kmem64 prom_alloc contig failed");
1208 		PRM_DEBUG(tmp_base);
1209 		PRM_DEBUG(tmp_size);
1210 
1211 		/*
1212 		 * Allocate the page_ts
1213 		 */
1214 		if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0)
1215 			prom_panic("kmem64 bop_alloc_chunk page_t failed");
1216 		PRM_DEBUG(kmem64_base);
1217 		PRM_DEBUG(pp_sz);
1218 
1219 		kmem64_aligned_end = kmem64_base + pp_sz + tmp_size;
1220 		ASSERT(kmem64_aligned_end >= kmem64_end);
1221 
1222 		kmem64_smchunks = 1;
1223 	} else {
1224 
1225 		/*
1226 		 * We need to adjust pp_sz for the normal
1227 		 * case where kmem64 can allocate one large chunk
1228 		 */
1229 		if (kpm_smallpages == 0) {
1230 			npages -= kmem64_sz / (PAGESIZE + sizeof (struct page));
1231 		} else {
1232 			npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) +
1233 			    sizeof (kpm_spage_t));
1234 		}
1235 		pp_sz = npages * sizeof (struct page);
1236 	}
1237 
1238 	if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase))
1239 		cmn_err(CE_PANIC, "not enough kmem64 space");
1240 	PRM_DEBUG(kmem64_base);
1241 	PRM_DEBUG(kmem64_end);
1242 	PRM_DEBUG(kmem64_aligned_end);
1243 
1244 	/*
1245 	 * ... and divy it up
1246 	 */
1247 	alloc_base = kmem64_base;
1248 
1249 	pp_base = (page_t *)alloc_base;
1250 	alloc_base += pp_sz;
1251 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1252 	PRM_DEBUG(pp_base);
1253 	PRM_DEBUG(npages);
1254 
1255 	if (kpm_enable) {
1256 		kpm_pp_base = alloc_base;
1257 		if (kpm_smallpages == 0) {
1258 			/* kpm_npages based on physinstalled, don't reset */
1259 			kpm_pp_sz = kpm_npages * sizeof (kpm_page_t);
1260 		} else {
1261 			kpm_npages = ptokpmpr(npages);
1262 			kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t);
1263 		}
1264 		alloc_base += kpm_pp_sz;
1265 		alloc_base =
1266 		    (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1267 		PRM_DEBUG(kpm_pp_base);
1268 	}
1269 
1270 	alloc_base = alloc_hmehash(alloc_base);
1271 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1272 	PRM_DEBUG(alloc_base);
1273 
1274 	page_hash = (page_t **)alloc_base;
1275 	alloc_base += pagehash_sz;
1276 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1277 	PRM_DEBUG(page_hash);
1278 
1279 	alloc_base = alloc_page_freelists(alloc_base);
1280 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1281 	PRM_DEBUG(alloc_base);
1282 
1283 #ifdef	TRAPTRACE
1284 	ttrace_buf = alloc_base;
1285 	alloc_base += tt_sz;
1286 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1287 	PRM_DEBUG(alloc_base);
1288 #endif	/* TRAPTRACE */
1289 
1290 	pse_mutex = (pad_mutex_t *)alloc_base;
1291 	alloc_base += psetable_sz;
1292 	alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1293 	PRM_DEBUG(alloc_base);
1294 
1295 	/*
1296 	 * Note that if we use small chunk allocations for
1297 	 * kmem64, we need to ensure kmem64_end is the same as
1298 	 * kmem64_aligned_end to prevent subsequent logic from
1299 	 * trying to reuse the overmapping.
1300 	 * Otherwise we adjust kmem64_end to what we really allocated.
1301 	 */
1302 	if (kmem64_smchunks) {
1303 		kmem64_end = kmem64_aligned_end;
1304 	} else {
1305 		kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE);
1306 	}
1307 	kmem64_sz = kmem64_end - kmem64_base;
1308 
1309 	if (&ecache_init_scrub_flush_area) {
1310 		alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end);
1311 		ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase));
1312 	}
1313 
1314 	/*
1315 	 * If physmem is patched to be non-zero, use it instead of
1316 	 * the monitor value unless physmem is larger than the total
1317 	 * amount of memory on hand.
1318 	 */
1319 	if (physmem == 0 || physmem > npages)
1320 		physmem = npages;
1321 
1322 	/*
1323 	 * root_is_ramdisk is set via /etc/system when the ramdisk miniroot
1324 	 * is mounted as root. This memory is held down by OBP and unlike
1325 	 * the stub boot_archive is never released.
1326 	 *
1327 	 * In order to get things sized correctly on lower memory
1328 	 * machines (where the memory used by the ramdisk represents
1329 	 * a significant portion of memory), physmem is adjusted.
1330 	 *
1331 	 * This is done by subtracting the ramdisk_size which is set
1332 	 * to the size of the ramdisk (in Kb) in /etc/system at the
1333 	 * time the miniroot archive is constructed.
1334 	 */
1335 	if (root_is_ramdisk == B_TRUE) {
1336 		ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE;
1337 		physmem -= ramdisk_npages;
1338 	}
1339 
1340 	if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0))
1341 		cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc");
1342 
1343 	/*
1344 	 * Allocate space for the interrupt vector table.
1345 	 */
1346 	memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE);
1347 	if (memspace != (caddr_t)intr_vec_table)
1348 		prom_panic("interrupt vector table allocation failure");
1349 
1350 	/*
1351 	 * Between now and when we finish copying in the memory lists,
1352 	 * allocations happen so the space gets fragmented and the
1353 	 * lists longer.  Leave enough space for lists twice as
1354 	 * long as we have now; then roundup to a pagesize.
1355 	 */
1356 	memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() +
1357 	    prom_phys_avail_len() + prom_virt_avail_len());
1358 	memlist_sz *= 2;
1359 	memlist_sz = roundup(memlist_sz, PAGESIZE);
1360 	memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize);
1361 	if (memspace == NULL)
1362 		cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc");
1363 
1364 	memlist = (struct memlist *)memspace;
1365 	memlist_end = (char *)memspace + memlist_sz;
1366 	PRM_DEBUG(memlist);
1367 	PRM_DEBUG(memlist_end);
1368 
1369 	PRM_DEBUG(sysbase);
1370 	PRM_DEBUG(syslimit);
1371 	kernelheap_init((void *)sysbase, (void *)syslimit,
1372 	    (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1373 
1374 	/*
1375 	 * Take the most current snapshot we can by calling mem-update.
1376 	 */
1377 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1378 	    &boot_physavail, &boot_physavail_len,
1379 	    &boot_virtavail, &boot_virtavail_len);
1380 
1381 	/*
1382 	 * Remove the space used by prom_alloc from the kernel heap
1383 	 * plus the area actually used by the OBP (if any)
1384 	 * ignoring virtual addresses in virt_avail, above syslimit.
1385 	 */
1386 	virt_avail = memlist;
1387 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1388 
1389 	for (cur = virt_avail; cur->ml_next; cur = cur->ml_next) {
1390 		uint64_t range_base, range_size;
1391 
1392 		if ((range_base = cur->ml_address + cur->ml_size) <
1393 		    (uint64_t)sysbase)
1394 			continue;
1395 		if (range_base >= (uint64_t)syslimit)
1396 			break;
1397 		/*
1398 		 * Limit the range to end at syslimit.
1399 		 */
1400 		range_size = MIN(cur->ml_next->ml_address,
1401 		    (uint64_t)syslimit) - range_base;
1402 		(void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1403 		    0, 0, (void *)range_base, (void *)(range_base + range_size),
1404 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1405 	}
1406 
1407 	phys_avail = memlist;
1408 	copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1409 
1410 	/*
1411 	 * Add any extra memory at the end of the ndata region if there's at
1412 	 * least a page to add.  There might be a few more pages available in
1413 	 * the middle of the ndata region, but for now they are ignored.
1414 	 */
1415 	nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end);
1416 	if (nalloc_base == NULL)
1417 		nalloc_base = nalloc_end;
1418 	ndata_remain_sz = nalloc_end - nalloc_base;
1419 
1420 	/*
1421 	 * Copy physinstalled list into kernel space.
1422 	 */
1423 	phys_install = memlist;
1424 	copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1425 
1426 	/*
1427 	 * Create list of physical addrs we don't need pp's for:
1428 	 * kernel text 4M page
1429 	 * kernel data 4M page - ndata_remain_sz
1430 	 * kmem64 pages
1431 	 *
1432 	 * NB if adding any pages here, make sure no kpm page
1433 	 * overlaps can occur (see ASSERTs in kphysm_memsegs)
1434 	 */
1435 	nopp_list = memlist;
1436 	memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist);
1437 	memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz,
1438 	    &memlist, &nopp_list);
1439 
1440 	/* Don't add to nopp_list if kmem64 was allocated in smchunks */
1441 	if (!kmem64_smchunks)
1442 		memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list);
1443 
1444 	if ((caddr_t)memlist > (memspace + memlist_sz))
1445 		prom_panic("memlist overflow");
1446 
1447 	/*
1448 	 * Size the pcf array based on the number of cpus in the box at
1449 	 * boot time.
1450 	 */
1451 	pcf_init();
1452 
1453 	/*
1454 	 * Initialize the page structures from the memory lists.
1455 	 */
1456 	kphysm_init();
1457 
1458 	availrmem_initial = availrmem = freemem;
1459 	PRM_DEBUG(availrmem);
1460 
1461 	/*
1462 	 * Some of the locks depend on page_hashsz being set!
1463 	 * kmem_init() depends on this; so, keep it here.
1464 	 */
1465 	page_lock_init();
1466 
1467 	/*
1468 	 * Initialize kernel memory allocator.
1469 	 */
1470 	kmem_init();
1471 
1472 	/*
1473 	 * Factor in colorequiv to check additional 'equivalent' bins
1474 	 */
1475 	if (&page_set_colorequiv_arr_cpu != NULL)
1476 		page_set_colorequiv_arr_cpu();
1477 	else
1478 		page_set_colorequiv_arr();
1479 
1480 	/*
1481 	 * Initialize bp_mapin().
1482 	 */
1483 	bp_init(shm_alignment, HAT_STRICTORDER);
1484 
1485 	/*
1486 	 * Reserve space for MPO mblock structs from the 32-bit heap.
1487 	 */
1488 
1489 	if (mpo_heap32_bufsz > (size_t)0) {
1490 		(void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz,
1491 		    PAGESIZE, 0, 0, mpo_heap32_buf,
1492 		    mpo_heap32_buf + mpo_heap32_bufsz,
1493 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1494 	}
1495 	mem_config_init();
1496 }
1497 
1498 static void
1499 startup_modules(void)
1500 {
1501 	int nhblk1, nhblk8;
1502 	size_t  nhblksz;
1503 	pgcnt_t pages_per_hblk;
1504 	size_t hme8blk_sz, hme1blk_sz;
1505 
1506 	/*
1507 	 * The system file /etc/system was read already under startup_memlist.
1508 	 */
1509 	if (&set_platform_defaults)
1510 		set_platform_defaults();
1511 
1512 	/*
1513 	 * Calculate default settings of system parameters based upon
1514 	 * maxusers, yet allow to be overridden via the /etc/system file.
1515 	 */
1516 	param_calc(0);
1517 
1518 	mod_setup();
1519 
1520 	/*
1521 	 * If this is a positron, complain and halt.
1522 	 */
1523 	if (&iam_positron && iam_positron()) {
1524 		cmn_err(CE_WARN, "This hardware platform is not supported"
1525 		    " by this release of Solaris.\n");
1526 #ifdef DEBUG
1527 		prom_enter_mon();	/* Type 'go' to resume */
1528 		cmn_err(CE_WARN, "Booting an unsupported platform.\n");
1529 		cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
1530 
1531 #else /* DEBUG */
1532 		halt(0);
1533 #endif /* DEBUG */
1534 	}
1535 
1536 	/*
1537 	 * If we are running firmware that isn't 64-bit ready
1538 	 * then complain and halt.
1539 	 */
1540 	do_prom_version_check();
1541 
1542 	/*
1543 	 * Initialize system parameters
1544 	 */
1545 	param_init();
1546 
1547 	/*
1548 	 * maxmem is the amount of physical memory we're playing with.
1549 	 */
1550 	maxmem = physmem;
1551 
1552 	/* Set segkp limits. */
1553 	ncbase = kdi_segdebugbase;
1554 	ncend = kdi_segdebugbase;
1555 
1556 	/*
1557 	 * Initialize the hat layer.
1558 	 */
1559 	hat_init();
1560 
1561 	/*
1562 	 * Initialize segment management stuff.
1563 	 */
1564 	seg_init();
1565 
1566 	/*
1567 	 * Create the va>tte handler, so the prom can understand
1568 	 * kernel translations.  The handler is installed later, just
1569 	 * as we are about to take over the trap table from the prom.
1570 	 */
1571 	create_va_to_tte();
1572 
1573 	/*
1574 	 * Load the forthdebugger (optional)
1575 	 */
1576 	forthdebug_init();
1577 
1578 	/*
1579 	 * Create OBP node for console input callbacks
1580 	 * if it is needed.
1581 	 */
1582 	startup_create_io_node();
1583 
1584 	if (modloadonly("fs", "specfs") == -1)
1585 		halt("Can't load specfs");
1586 
1587 	if (modloadonly("fs", "devfs") == -1)
1588 		halt("Can't load devfs");
1589 
1590 	if (modloadonly("fs", "procfs") == -1)
1591 		halt("Can't load procfs");
1592 
1593 	if (modloadonly("misc", "swapgeneric") == -1)
1594 		halt("Can't load swapgeneric");
1595 
1596 	(void) modloadonly("sys", "lbl_edition");
1597 
1598 	dispinit();
1599 
1600 	/*
1601 	 * Infer meanings to the members of the idprom buffer.
1602 	 */
1603 	parse_idprom();
1604 
1605 	/* Read cluster configuration data. */
1606 	clconf_init();
1607 
1608 	setup_ddi();
1609 
1610 	/*
1611 	 * Lets take this opportunity to load the root device.
1612 	 */
1613 	if (loadrootmodules() != 0)
1614 		debug_enter("Can't load the root filesystem");
1615 
1616 	/*
1617 	 * Load tod driver module for the tod part found on this system.
1618 	 * Recompute the cpu frequency/delays based on tod as tod part
1619 	 * tends to keep time more accurately.
1620 	 */
1621 	if (&load_tod_module)
1622 		load_tod_module();
1623 
1624 	/*
1625 	 * Allow platforms to load modules which might
1626 	 * be needed after bootops are gone.
1627 	 */
1628 	if (&load_platform_modules)
1629 		load_platform_modules();
1630 
1631 	setcpudelay();
1632 
1633 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1634 	    &boot_physavail, &boot_physavail_len,
1635 	    &boot_virtavail, &boot_virtavail_len);
1636 
1637 	/*
1638 	 * Calculation and allocation of hmeblks needed to remap
1639 	 * the memory allocated by PROM till now.
1640 	 * Overestimate the number of hblk1 elements by assuming
1641 	 * worst case of TTE64K mappings.
1642 	 * sfmmu_hblk_alloc will panic if this calculation is wrong.
1643 	 */
1644 	bop_alloc_pages = btopr(kmem64_end - kmem64_base);
1645 	pages_per_hblk = btop(HMEBLK_SPAN(TTE64K));
1646 	bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1647 	nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min;
1648 
1649 	bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1650 
1651 	/* sfmmu_init_nucleus_hblks expects properly aligned data structures */
1652 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1653 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1654 
1655 	bop_alloc_pages += btopr(nhblk1 * hme1blk_sz);
1656 
1657 	pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1658 	nhblk8 = 0;
1659 	while (bop_alloc_pages > 1) {
1660 		bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1661 		nhblk8 += bop_alloc_pages /= pages_per_hblk;
1662 		bop_alloc_pages *= hme8blk_sz;
1663 		bop_alloc_pages = btopr(bop_alloc_pages);
1664 	}
1665 	nhblk8 += 2;
1666 
1667 	/*
1668 	 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1669 	 * boundary, the number of hblk8's needed to map the entries in the
1670 	 * boot_virtavail list needs to be adjusted to take this into
1671 	 * consideration.  Thus, we need to add additional hblk8's since it
1672 	 * is possible that an hblk8 will not have all 8 slots used due to
1673 	 * alignment constraints.  Since there were boot_virtavail_len entries
1674 	 * in that list, we need to add that many hblk8's to the number
1675 	 * already calculated to make sure we don't underestimate.
1676 	 */
1677 	nhblk8 += boot_virtavail_len;
1678 	nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1679 
1680 	/* Allocate in pagesize chunks */
1681 	nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1682 	hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1683 	sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1684 }
1685 
1686 static void
1687 startup_bop_gone(void)
1688 {
1689 
1690 	/*
1691 	 * Destroy the MD initialized at startup
1692 	 * The startup initializes the MD framework
1693 	 * using prom and BOP alloc free it now.
1694 	 */
1695 	mach_descrip_startup_fini();
1696 
1697 	/*
1698 	 * We're done with prom allocations.
1699 	 */
1700 	bop_fini();
1701 
1702 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1703 	    &boot_physavail, &boot_physavail_len,
1704 	    &boot_virtavail, &boot_virtavail_len);
1705 
1706 	/*
1707 	 * setup physically contiguous area twice as large as the ecache.
1708 	 * this is used while doing displacement flush of ecaches
1709 	 */
1710 	if (&ecache_flush_address) {
1711 		ecache_flushaddr = ecache_flush_address();
1712 		if (ecache_flushaddr == (uint64_t)-1) {
1713 			cmn_err(CE_PANIC,
1714 			    "startup: no memory to set ecache_flushaddr");
1715 		}
1716 	}
1717 
1718 	/*
1719 	 * Virtual available next.
1720 	 */
1721 	ASSERT(virt_avail != NULL);
1722 	memlist_free_list(virt_avail);
1723 	virt_avail = memlist;
1724 	copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1725 
1726 }
1727 
1728 
1729 /*
1730  * startup_fixup_physavail - called from mach_sfmmu.c after the final
1731  * allocations have been performed.  We can't call it in startup_bop_gone
1732  * since later operations can cause obp to allocate more memory.
1733  */
1734 void
1735 startup_fixup_physavail(void)
1736 {
1737 	struct memlist *cur;
1738 	size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end;
1739 
1740 	PRM_DEBUG(kmem64_overmap_size);
1741 
1742 	/*
1743 	 * take the most current snapshot we can by calling mem-update
1744 	 */
1745 	copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1746 	    &boot_physavail, &boot_physavail_len,
1747 	    &boot_virtavail, &boot_virtavail_len);
1748 
1749 	/*
1750 	 * Copy phys_avail list, again.
1751 	 * Both the kernel/boot and the prom have been allocating
1752 	 * from the original list we copied earlier.
1753 	 */
1754 	cur = memlist;
1755 	copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1756 
1757 	/*
1758 	 * Add any unused kmem64 memory from overmapped page
1759 	 * (Note: va_to_pa does not work for kmem64_end)
1760 	 */
1761 	if (kmem64_overmap_size) {
1762 		memlist_add(kmem64_pabase + (kmem64_end - kmem64_base),
1763 		    kmem64_overmap_size, &memlist, &cur);
1764 	}
1765 
1766 	/*
1767 	 * Add any extra memory after e_data we added to the phys_avail list
1768 	 * back to the old list.
1769 	 */
1770 	if (ndata_remain_sz >= MMU_PAGESIZE)
1771 		memlist_add(va_to_pa(nalloc_base),
1772 		    (uint64_t)ndata_remain_sz, &memlist, &cur);
1773 
1774 	/*
1775 	 * There isn't any bounds checking on the memlist area
1776 	 * so ensure it hasn't overgrown.
1777 	 */
1778 	if ((caddr_t)memlist > (caddr_t)memlist_end)
1779 		cmn_err(CE_PANIC, "startup: memlist size exceeded");
1780 
1781 	/*
1782 	 * The kernel removes the pages that were allocated for it from
1783 	 * the freelist, but we now have to find any -extra- pages that
1784 	 * the prom has allocated for it's own book-keeping, and remove
1785 	 * them from the freelist too. sigh.
1786 	 */
1787 	sync_memlists(phys_avail, cur);
1788 
1789 	ASSERT(phys_avail != NULL);
1790 
1791 	old_phys_avail = phys_avail;
1792 	phys_avail = cur;
1793 }
1794 
1795 void
1796 update_kcage_ranges(uint64_t addr, uint64_t len)
1797 {
1798 	pfn_t base = btop(addr);
1799 	pgcnt_t num = btop(len);
1800 	int rv;
1801 
1802 	rv = kcage_range_add(base, num, kcage_startup_dir);
1803 
1804 	if (rv == ENOMEM) {
1805 		cmn_err(CE_WARN, "%ld megabytes not available to kernel cage",
1806 		    (len == 0 ? 0 : BYTES_TO_MB(len)));
1807 	} else if (rv != 0) {
1808 		/* catch this in debug kernels */
1809 		ASSERT(0);
1810 
1811 		cmn_err(CE_WARN, "unexpected kcage_range_add"
1812 		    " return value %d", rv);
1813 	}
1814 }
1815 
1816 static void
1817 startup_vm(void)
1818 {
1819 	size_t	i;
1820 	struct segmap_crargs a;
1821 	struct segkpm_crargs b;
1822 
1823 	uint64_t avmem;
1824 	caddr_t va;
1825 	pgcnt_t	max_phys_segkp;
1826 	int	mnode;
1827 
1828 	extern int use_brk_lpg, use_stk_lpg;
1829 
1830 	/*
1831 	 * get prom's mappings, create hments for them and switch
1832 	 * to the kernel context.
1833 	 */
1834 	hat_kern_setup();
1835 
1836 	/*
1837 	 * Take over trap table
1838 	 */
1839 	setup_trap_table();
1840 
1841 	/*
1842 	 * Install the va>tte handler, so that the prom can handle
1843 	 * misses and understand the kernel table layout in case
1844 	 * we need call into the prom.
1845 	 */
1846 	install_va_to_tte();
1847 
1848 	/*
1849 	 * Set a flag to indicate that the tba has been taken over.
1850 	 */
1851 	tba_taken_over = 1;
1852 
1853 	/* initialize MMU primary context register */
1854 	mmu_init_kcontext();
1855 
1856 	/*
1857 	 * The boot cpu can now take interrupts, x-calls, x-traps
1858 	 */
1859 	CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1860 	CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1861 
1862 	/*
1863 	 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1864 	 */
1865 	tbr_wr_addr_inited = 1;
1866 
1867 	/*
1868 	 * Initialize VM system, and map kernel address space.
1869 	 */
1870 	kvm_init();
1871 
1872 	ASSERT(old_phys_avail != NULL && phys_avail != NULL);
1873 	if (kernel_cage_enable) {
1874 		diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges);
1875 	}
1876 	memlist_free_list(old_phys_avail);
1877 
1878 	/*
1879 	 * If the following is true, someone has patched
1880 	 * phsymem to be less than the number of pages that
1881 	 * the system actually has.  Remove pages until system
1882 	 * memory is limited to the requested amount.  Since we
1883 	 * have allocated page structures for all pages, we
1884 	 * correct the amount of memory we want to remove
1885 	 * by the size of the memory used to hold page structures
1886 	 * for the non-used pages.
1887 	 */
1888 	if (physmem + ramdisk_npages < npages) {
1889 		pgcnt_t diff, off;
1890 		struct page *pp;
1891 		struct seg kseg;
1892 
1893 		cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1894 
1895 		off = 0;
1896 		diff = npages - (physmem + ramdisk_npages);
1897 		diff -= mmu_btopr(diff * sizeof (struct page));
1898 		kseg.s_as = &kas;
1899 		while (diff--) {
1900 			pp = page_create_va(&unused_pages_vp, (offset_t)off,
1901 			    MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1902 			    &kseg, (caddr_t)off);
1903 			if (pp == NULL)
1904 				cmn_err(CE_PANIC, "limited physmem too much!");
1905 			page_io_unlock(pp);
1906 			page_downgrade(pp);
1907 			availrmem--;
1908 			off += MMU_PAGESIZE;
1909 		}
1910 	}
1911 
1912 	/*
1913 	 * When printing memory, show the total as physmem less
1914 	 * that stolen by a debugger.
1915 	 */
1916 	cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1917 	    (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1918 	    (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1919 
1920 	avmem = (uint64_t)freemem << PAGESHIFT;
1921 	cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1922 
1923 	/*
1924 	 * For small memory systems disable automatic large pages.
1925 	 */
1926 	if (physmem < privm_lpg_min_physmem) {
1927 		use_brk_lpg = 0;
1928 		use_stk_lpg = 0;
1929 	}
1930 
1931 	/*
1932 	 * Perform platform specific freelist processing
1933 	 */
1934 	if (&plat_freelist_process) {
1935 		for (mnode = 0; mnode < max_mem_nodes; mnode++)
1936 			if (mem_node_config[mnode].exists)
1937 				plat_freelist_process(mnode);
1938 	}
1939 
1940 	/*
1941 	 * Initialize the segkp segment type.  We position it
1942 	 * after the configured tables and buffers (whose end
1943 	 * is given by econtig) and before V_WKBASE_ADDR.
1944 	 * Also in this area is segkmap (size SEGMAPSIZE).
1945 	 */
1946 
1947 	/* XXX - cache alignment? */
1948 	va = (caddr_t)SEGKPBASE;
1949 	ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
1950 
1951 	max_phys_segkp = (physmem * 2);
1952 
1953 	if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
1954 		segkpsize = btop(SEGKPDEFSIZE);
1955 		cmn_err(CE_WARN, "Illegal value for segkpsize. "
1956 		    "segkpsize has been reset to %ld pages", segkpsize);
1957 	}
1958 
1959 	i = ptob(MIN(segkpsize, max_phys_segkp));
1960 
1961 	rw_enter(&kas.a_lock, RW_WRITER);
1962 	if (seg_attach(&kas, va, i, segkp) < 0)
1963 		cmn_err(CE_PANIC, "startup: cannot attach segkp");
1964 	if (segkp_create(segkp) != 0)
1965 		cmn_err(CE_PANIC, "startup: segkp_create failed");
1966 	rw_exit(&kas.a_lock);
1967 
1968 	/*
1969 	 * kpm segment
1970 	 */
1971 	segmap_kpm = kpm_enable &&
1972 	    segmap_kpm && PAGESIZE == MAXBSIZE;
1973 
1974 	if (kpm_enable) {
1975 		rw_enter(&kas.a_lock, RW_WRITER);
1976 
1977 		/*
1978 		 * The segkpm virtual range range is larger than the
1979 		 * actual physical memory size and also covers gaps in
1980 		 * the physical address range for the following reasons:
1981 		 * . keep conversion between segkpm and physical addresses
1982 		 *   simple, cheap and unambiguous.
1983 		 * . avoid extension/shrink of the the segkpm in case of DR.
1984 		 * . avoid complexity for handling of virtual addressed
1985 		 *   caches, segkpm and the regular mapping scheme must be
1986 		 *   kept in sync wrt. the virtual color of mapped pages.
1987 		 * Any accesses to virtual segkpm ranges not backed by
1988 		 * physical memory will fall through the memseg pfn hash
1989 		 * and will be handled in segkpm_fault.
1990 		 * Additional kpm_size spaces needed for vac alias prevention.
1991 		 */
1992 		if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
1993 		    segkpm) < 0)
1994 			cmn_err(CE_PANIC, "cannot attach segkpm");
1995 
1996 		b.prot = PROT_READ | PROT_WRITE;
1997 		b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
1998 
1999 		if (segkpm_create(segkpm, (caddr_t)&b) != 0)
2000 			panic("segkpm_create segkpm");
2001 
2002 		rw_exit(&kas.a_lock);
2003 
2004 		mach_kpm_init();
2005 	}
2006 
2007 	va = kpm_vbase + (kpm_size * vac_colors);
2008 
2009 	if (!segzio_fromheap) {
2010 		size_t size;
2011 		size_t physmem_b = mmu_ptob(physmem);
2012 
2013 		/* size is in bytes, segziosize is in pages */
2014 		if (segziosize == 0) {
2015 			size = physmem_b;
2016 		} else {
2017 			size = mmu_ptob(segziosize);
2018 		}
2019 
2020 		if (size < SEGZIOMINSIZE) {
2021 			size = SEGZIOMINSIZE;
2022 		} else if (size > SEGZIOMAXSIZE) {
2023 			size = SEGZIOMAXSIZE;
2024 			/*
2025 			 * On 64-bit x86, we only have 2TB of KVA.  This exists
2026 			 * for parity with x86.
2027 			 *
2028 			 * SEGZIOMAXSIZE is capped at 512gb so that segzio
2029 			 * doesn't consume all of KVA.  However, if we have a
2030 			 * system that has more thant 512gb of physical memory,
2031 			 * we can actually consume about half of the difference
2032 			 * between 512gb and the rest of the available physical
2033 			 * memory.
2034 			 */
2035 			if (physmem_b > SEGZIOMAXSIZE) {
2036 				size += (physmem_b - SEGZIOMAXSIZE) / 2;
2037 		}
2038 		}
2039 		segziosize = mmu_btop(roundup(size, MMU_PAGESIZE));
2040 		/* put the base of the ZIO segment after the kpm segment */
2041 		segzio_base = va;
2042 		va += mmu_ptob(segziosize);
2043 		PRM_DEBUG(segziosize);
2044 		PRM_DEBUG(segzio_base);
2045 
2046 		/*
2047 		 * On some platforms, kvm_init is called after the kpm
2048 		 * sizes have been determined.  On SPARC, kvm_init is called
2049 		 * before, so we have to attach the kzioseg after kvm is
2050 		 * initialized, otherwise we'll try to allocate from the boot
2051 		 * area since the kernel heap hasn't yet been configured.
2052 		 */
2053 		rw_enter(&kas.a_lock, RW_WRITER);
2054 
2055 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2056 		    &kzioseg);
2057 		(void) segkmem_zio_create(&kzioseg);
2058 
2059 		/* create zio area covering new segment */
2060 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2061 
2062 		rw_exit(&kas.a_lock);
2063 	}
2064 
2065 	if (ppvm_enable) {
2066 		caddr_t ppvm_max;
2067 
2068 		/*
2069 		 * ppvm refers to the static VA space used to map
2070 		 * the page_t's for dynamically added memory.
2071 		 *
2072 		 * ppvm_base should not cross a potential VA hole.
2073 		 *
2074 		 * ppvm_size should be large enough to map the
2075 		 * page_t's needed to manage all of KPM range.
2076 		 */
2077 		ppvm_size =
2078 		    roundup(mmu_btop(kpm_size * vac_colors) * sizeof (page_t),
2079 		    MMU_PAGESIZE);
2080 		ppvm_max = (caddr_t)(0ull - ppvm_size);
2081 		ppvm_base = (page_t *)va;
2082 
2083 		if ((caddr_t)ppvm_base <= hole_end) {
2084 			cmn_err(CE_WARN,
2085 			    "Memory DR disabled: invalid DR map base: 0x%p\n",
2086 			    (void *)ppvm_base);
2087 			ppvm_enable = 0;
2088 		} else if ((caddr_t)ppvm_base > ppvm_max) {
2089 			uint64_t diff = (caddr_t)ppvm_base - ppvm_max;
2090 
2091 			cmn_err(CE_WARN,
2092 			    "Memory DR disabled: insufficient DR map size:"
2093 			    " 0x%lx (needed 0x%lx)\n",
2094 			    ppvm_size - diff, ppvm_size);
2095 			ppvm_enable = 0;
2096 		}
2097 		PRM_DEBUG(ppvm_size);
2098 		PRM_DEBUG(ppvm_base);
2099 	}
2100 
2101 	/*
2102 	 * Now create generic mapping segment.  This mapping
2103 	 * goes SEGMAPSIZE beyond SEGMAPBASE.  But if the total
2104 	 * virtual address is greater than the amount of free
2105 	 * memory that is available, then we trim back the
2106 	 * segment size to that amount
2107 	 */
2108 	va = (caddr_t)SEGMAPBASE;
2109 
2110 	/*
2111 	 * 1201049: segkmap base address must be MAXBSIZE aligned
2112 	 */
2113 	ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2114 
2115 	/*
2116 	 * Set size of segmap to percentage of freemem at boot,
2117 	 * but stay within the allowable range
2118 	 * Note we take percentage  before converting from pages
2119 	 * to bytes to avoid an overflow on 32-bit kernels.
2120 	 */
2121 	i = mmu_ptob((freemem * segmap_percent) / 100);
2122 
2123 	if (i < MINMAPSIZE)
2124 		i = MINMAPSIZE;
2125 
2126 	if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2127 		i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2128 
2129 	i &= MAXBMASK;	/* 1201049: segkmap size must be MAXBSIZE aligned */
2130 
2131 	rw_enter(&kas.a_lock, RW_WRITER);
2132 	if (seg_attach(&kas, va, i, segkmap) < 0)
2133 		cmn_err(CE_PANIC, "cannot attach segkmap");
2134 
2135 	a.prot = PROT_READ | PROT_WRITE;
2136 	a.shmsize = shm_alignment;
2137 	a.nfreelist = 0;	/* use segmap driver defaults */
2138 
2139 	if (segmap_create(segkmap, (caddr_t)&a) != 0)
2140 		panic("segmap_create segkmap");
2141 	rw_exit(&kas.a_lock);
2142 
2143 	segdev_init();
2144 }
2145 
2146 static void
2147 startup_end(void)
2148 {
2149 	if ((caddr_t)memlist > (caddr_t)memlist_end)
2150 		panic("memlist overflow 2");
2151 	memlist_free_block((caddr_t)memlist,
2152 	    ((caddr_t)memlist_end - (caddr_t)memlist));
2153 	memlist = NULL;
2154 
2155 	/* enable page_relocation since OBP is now done */
2156 	page_relocate_ready = 1;
2157 
2158 	/*
2159 	 * Perform tasks that get done after most of the VM
2160 	 * initialization has been done but before the clock
2161 	 * and other devices get started.
2162 	 */
2163 	kern_setup1();
2164 
2165 	/*
2166 	 * Perform CPC initialization for this CPU.
2167 	 */
2168 	kcpc_hw_init();
2169 
2170 	/*
2171 	 * Intialize the VM arenas for allocating physically
2172 	 * contiguus memory chunk for interrupt queues snd
2173 	 * allocate/register boot cpu's queues, if any and
2174 	 * allocate dump buffer for sun4v systems to store
2175 	 * extra crash information during crash dump
2176 	 */
2177 	contig_mem_init();
2178 	mach_descrip_init();
2179 
2180 	if (cpu_intrq_setup(CPU)) {
2181 		cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id);
2182 	}
2183 	cpu_intrq_register(CPU);
2184 	mach_htraptrace_setup(CPU->cpu_id);
2185 	mach_htraptrace_configure(CPU->cpu_id);
2186 	mach_dump_buffer_init();
2187 
2188 	/*
2189 	 * Initialize interrupt related stuff
2190 	 */
2191 	cpu_intr_alloc(CPU, NINTR_THREADS);
2192 
2193 	(void) splzs();			/* allow hi clock ints but not zs */
2194 
2195 	/*
2196 	 * Initialize errors.
2197 	 */
2198 	error_init();
2199 
2200 	/*
2201 	 * Note that we may have already used kernel bcopy before this
2202 	 * point - but if you really care about this, adb the use_hw_*
2203 	 * variables to 0 before rebooting.
2204 	 */
2205 	mach_hw_copy_limit();
2206 
2207 	/*
2208 	 * Install the "real" preemption guards before DDI services
2209 	 * are available.
2210 	 */
2211 	(void) prom_set_preprom(kern_preprom);
2212 	(void) prom_set_postprom(kern_postprom);
2213 	CPU->cpu_m.mutex_ready = 1;
2214 
2215 	/*
2216 	 * Initialize segnf (kernel support for non-faulting loads).
2217 	 */
2218 	segnf_init();
2219 
2220 	/*
2221 	 * Configure the root devinfo node.
2222 	 */
2223 	configure();		/* set up devices */
2224 	mach_cpu_halt_idle();
2225 }
2226 
2227 
2228 void
2229 post_startup(void)
2230 {
2231 #ifdef	PTL1_PANIC_DEBUG
2232 	extern void init_ptl1_thread(void);
2233 #endif	/* PTL1_PANIC_DEBUG */
2234 	extern void abort_sequence_init(void);
2235 
2236 	/*
2237 	 * Set the system wide, processor-specific flags to be passed
2238 	 * to userland via the aux vector for performance hints and
2239 	 * instruction set extensions.
2240 	 */
2241 	bind_hwcap();
2242 
2243 	/*
2244 	 * Startup memory scrubber (if any)
2245 	 */
2246 	mach_memscrub();
2247 
2248 	/*
2249 	 * Allocate soft interrupt to handle abort sequence.
2250 	 */
2251 	abort_sequence_init();
2252 
2253 	/*
2254 	 * Configure the rest of the system.
2255 	 * Perform forceloading tasks for /etc/system.
2256 	 */
2257 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
2258 	/*
2259 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
2260 	 * ON4.0: This must be fixed or restated in /etc/systems.
2261 	 */
2262 	(void) modload("fs", "procfs");
2263 
2264 	/* load machine class specific drivers */
2265 	load_mach_drivers();
2266 
2267 	/* load platform specific drivers */
2268 	if (&load_platform_drivers)
2269 		load_platform_drivers();
2270 
2271 	/* load vis simulation module, if we are running w/fpu off */
2272 	if (!fpu_exists) {
2273 		if (modload("misc", "vis") == -1)
2274 			halt("Can't load vis");
2275 	}
2276 
2277 	mach_fpras();
2278 
2279 	maxmem = freemem;
2280 
2281 	pg_init();
2282 
2283 #ifdef	PTL1_PANIC_DEBUG
2284 	init_ptl1_thread();
2285 #endif	/* PTL1_PANIC_DEBUG */
2286 }
2287 
2288 #ifdef	PTL1_PANIC_DEBUG
2289 int		ptl1_panic_test = 0;
2290 int		ptl1_panic_xc_one_test = 0;
2291 int		ptl1_panic_xc_all_test = 0;
2292 int		ptl1_panic_xt_one_test = 0;
2293 int		ptl1_panic_xt_all_test = 0;
2294 kthread_id_t	ptl1_thread_p = NULL;
2295 kcondvar_t	ptl1_cv;
2296 kmutex_t	ptl1_mutex;
2297 int		ptl1_recurse_count_threshold = 0x40;
2298 int		ptl1_recurse_trap_threshold = 0x3d;
2299 extern void	ptl1_recurse(int, int);
2300 extern void	ptl1_panic_xt(int, int);
2301 
2302 /*
2303  * Called once per second by timeout() to wake up
2304  * the ptl1_panic thread to see if it should cause
2305  * a trap to the ptl1_panic() code.
2306  */
2307 /* ARGSUSED */
2308 static void
2309 ptl1_wakeup(void *arg)
2310 {
2311 	mutex_enter(&ptl1_mutex);
2312 	cv_signal(&ptl1_cv);
2313 	mutex_exit(&ptl1_mutex);
2314 }
2315 
2316 /*
2317  * ptl1_panic cross call function:
2318  *     Needed because xc_one() and xc_some() can pass
2319  *	64 bit args but ptl1_recurse() expects ints.
2320  */
2321 static void
2322 ptl1_panic_xc(void)
2323 {
2324 	ptl1_recurse(ptl1_recurse_count_threshold,
2325 	    ptl1_recurse_trap_threshold);
2326 }
2327 
2328 /*
2329  * The ptl1 thread waits for a global flag to be set
2330  * and uses the recurse thresholds to set the stack depth
2331  * to cause a ptl1_panic() directly via a call to ptl1_recurse
2332  * or indirectly via the cross call and cross trap functions.
2333  *
2334  * This is useful testing stack overflows and normal
2335  * ptl1_panic() states with a know stack frame.
2336  *
2337  * ptl1_recurse() is an asm function in ptl1_panic.s that
2338  * sets the {In, Local, Out, and Global} registers to a
2339  * know state on the stack and just prior to causing a
2340  * test ptl1_panic trap.
2341  */
2342 static void
2343 ptl1_thread(void)
2344 {
2345 	mutex_enter(&ptl1_mutex);
2346 	while (ptl1_thread_p) {
2347 		cpuset_t	other_cpus;
2348 		int		cpu_id;
2349 		int		my_cpu_id;
2350 		int		target_cpu_id;
2351 		int		target_found;
2352 
2353 		if (ptl1_panic_test) {
2354 			ptl1_recurse(ptl1_recurse_count_threshold,
2355 			    ptl1_recurse_trap_threshold);
2356 		}
2357 
2358 		/*
2359 		 * Find potential targets for x-call and x-trap,
2360 		 * if any exist while preempt is disabled we
2361 		 * start a ptl1_panic if requested via a
2362 		 * globals.
2363 		 */
2364 		kpreempt_disable();
2365 		my_cpu_id = CPU->cpu_id;
2366 		other_cpus = cpu_ready_set;
2367 		CPUSET_DEL(other_cpus, CPU->cpu_id);
2368 		target_found = 0;
2369 		if (!CPUSET_ISNULL(other_cpus)) {
2370 			/*
2371 			 * Pick the first one
2372 			 */
2373 			for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2374 				if (cpu_id == my_cpu_id)
2375 					continue;
2376 
2377 				if (CPU_XCALL_READY(cpu_id)) {
2378 					target_cpu_id = cpu_id;
2379 					target_found = 1;
2380 					break;
2381 				}
2382 			}
2383 			ASSERT(target_found);
2384 
2385 			if (ptl1_panic_xc_one_test) {
2386 				xc_one(target_cpu_id,
2387 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2388 			}
2389 			if (ptl1_panic_xc_all_test) {
2390 				xc_some(other_cpus,
2391 				    (xcfunc_t *)ptl1_panic_xc, 0, 0);
2392 			}
2393 			if (ptl1_panic_xt_one_test) {
2394 				xt_one(target_cpu_id,
2395 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2396 			}
2397 			if (ptl1_panic_xt_all_test) {
2398 				xt_some(other_cpus,
2399 				    (xcfunc_t *)ptl1_panic_xt, 0, 0);
2400 			}
2401 		}
2402 		kpreempt_enable();
2403 		(void) timeout(ptl1_wakeup, NULL, hz);
2404 		(void) cv_wait(&ptl1_cv, &ptl1_mutex);
2405 	}
2406 	mutex_exit(&ptl1_mutex);
2407 }
2408 
2409 /*
2410  * Called during early startup to create the ptl1_thread
2411  */
2412 void
2413 init_ptl1_thread(void)
2414 {
2415 	ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2416 	    &p0, TS_RUN, 0);
2417 }
2418 #endif	/* PTL1_PANIC_DEBUG */
2419 
2420 
2421 static void
2422 memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp)
2423 {
2424 	struct memlist *new;
2425 
2426 	new = *memlistp;
2427 	new->ml_address = start;
2428 	new->ml_size = len;
2429 	*memlistp = new + 1;
2430 }
2431 
2432 /*
2433  * Add to a memory list.
2434  * start = start of new memory segment
2435  * len = length of new memory segment in bytes
2436  * memlistp = pointer to array of available memory segment structures
2437  * curmemlistp = memory list to which to add segment.
2438  */
2439 static void
2440 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2441 	struct memlist **curmemlistp)
2442 {
2443 	struct memlist *new = *memlistp;
2444 
2445 	memlist_new(start, len, memlistp);
2446 	memlist_insert(new, curmemlistp);
2447 }
2448 
2449 static int
2450 ndata_alloc_memseg(struct memlist *ndata, size_t avail)
2451 {
2452 	int nseg;
2453 	size_t memseg_sz;
2454 	struct memseg *msp;
2455 
2456 	/*
2457 	 * The memseg list is for the chunks of physical memory that
2458 	 * will be managed by the vm system.  The number calculated is
2459 	 * a guess as boot may fragment it more when memory allocations
2460 	 * are made before kphysm_init().
2461 	 */
2462 	memseg_sz = (avail + 10) * sizeof (struct memseg);
2463 	memseg_sz = roundup(memseg_sz, PAGESIZE);
2464 	nseg = memseg_sz / sizeof (struct memseg);
2465 	msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize);
2466 	if (msp == NULL)
2467 		return (1);
2468 	PRM_DEBUG(memseg_free);
2469 
2470 	while (nseg--) {
2471 		msp->next = memseg_free;
2472 		memseg_free = msp;
2473 		msp++;
2474 	}
2475 	return (0);
2476 }
2477 
2478 /*
2479  * In the case of architectures that support dynamic addition of
2480  * memory at run-time there are two cases where memsegs need to
2481  * be initialized and added to the memseg list.
2482  * 1) memsegs that are constructed at startup.
2483  * 2) memsegs that are constructed at run-time on
2484  *    hot-plug capable architectures.
2485  * This code was originally part of the function kphysm_init().
2486  */
2487 
2488 static void
2489 memseg_list_add(struct memseg *memsegp)
2490 {
2491 	struct memseg **prev_memsegp;
2492 	pgcnt_t num;
2493 
2494 	/* insert in memseg list, decreasing number of pages order */
2495 
2496 	num = MSEG_NPAGES(memsegp);
2497 
2498 	for (prev_memsegp = &memsegs; *prev_memsegp;
2499 	    prev_memsegp = &((*prev_memsegp)->next)) {
2500 		if (num > MSEG_NPAGES(*prev_memsegp))
2501 			break;
2502 	}
2503 
2504 	memsegp->next = *prev_memsegp;
2505 	*prev_memsegp = memsegp;
2506 
2507 	if (kpm_enable) {
2508 		memsegp->nextpa = (memsegp->next) ?
2509 		    va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2510 
2511 		if (prev_memsegp != &memsegs) {
2512 			struct memseg *msp;
2513 			msp = (struct memseg *)((caddr_t)prev_memsegp -
2514 			    offsetof(struct memseg, next));
2515 			msp->nextpa = va_to_pa(memsegp);
2516 		} else {
2517 			memsegspa = va_to_pa(memsegs);
2518 		}
2519 	}
2520 }
2521 
2522 /*
2523  * PSM add_physmem_cb(). US-II and newer processors have some
2524  * flavor of the prefetch capability implemented. We exploit
2525  * this capability for optimum performance.
2526  */
2527 #define	PREFETCH_BYTES	64
2528 
2529 void
2530 add_physmem_cb(page_t *pp, pfn_t pnum)
2531 {
2532 	extern void	 prefetch_page_w(void *);
2533 
2534 	pp->p_pagenum = pnum;
2535 
2536 	/*
2537 	 * Prefetch one more page_t into E$. To prevent future
2538 	 * mishaps with the sizeof(page_t) changing on us, we
2539 	 * catch this on debug kernels if we can't bring in the
2540 	 * entire hpage with 2 PREFETCH_BYTES reads. See
2541 	 * also, sun4u/cpu/cpu_module.c
2542 	 */
2543 	/*LINTED*/
2544 	ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2545 	prefetch_page_w((char *)pp);
2546 }
2547 
2548 /*
2549  * Find memseg with given pfn
2550  */
2551 static struct memseg *
2552 memseg_find(pfn_t base, pfn_t *next)
2553 {
2554 	struct memseg *seg;
2555 
2556 	if (next != NULL)
2557 		*next = LONG_MAX;
2558 	for (seg = memsegs; seg != NULL; seg = seg->next) {
2559 		if (base >= seg->pages_base && base < seg->pages_end)
2560 			return (seg);
2561 		if (next != NULL && seg->pages_base > base &&
2562 		    seg->pages_base < *next)
2563 			*next = seg->pages_base;
2564 	}
2565 	return (NULL);
2566 }
2567 
2568 /*
2569  * Put page allocated by OBP on prom_ppages
2570  */
2571 static void
2572 kphysm_erase(uint64_t addr, uint64_t len)
2573 {
2574 	struct page *pp;
2575 	struct memseg *seg;
2576 	pfn_t base = btop(addr), next;
2577 	pgcnt_t num = btop(len);
2578 
2579 	while (num != 0) {
2580 		pgcnt_t off, left;
2581 
2582 		seg = memseg_find(base, &next);
2583 		if (seg == NULL) {
2584 			if (next == LONG_MAX)
2585 				break;
2586 			left = MIN(next - base, num);
2587 			base += left, num -= left;
2588 			continue;
2589 		}
2590 		off = base - seg->pages_base;
2591 		pp = seg->pages + off;
2592 		left = num - MIN(num, (seg->pages_end - seg->pages_base) - off);
2593 		while (num != left) {
2594 			/*
2595 			 * init it, lock it, and hashin on prom_pages vp.
2596 			 *
2597 			 * Mark it as NONRELOC to let DR know the page
2598 			 * is locked long term, otherwise DR hangs when
2599 			 * trying to remove those pages.
2600 			 *
2601 			 * XXX	vnode offsets on the prom_ppages vnode
2602 			 *	are page numbers (gack) for >32 bit
2603 			 *	physical memory machines.
2604 			 */
2605 			PP_SETNORELOC(pp);
2606 			add_physmem_cb(pp, base);
2607 			if (page_trylock(pp, SE_EXCL) == 0)
2608 				cmn_err(CE_PANIC, "prom page locked");
2609 			(void) page_hashin(pp, &promvp,
2610 			    (offset_t)base, NULL);
2611 			(void) page_pp_lock(pp, 0, 1);
2612 			pp++, base++, num--;
2613 		}
2614 	}
2615 }
2616 
2617 static page_t *ppnext;
2618 static pgcnt_t ppleft;
2619 
2620 static void *kpm_ppnext;
2621 static pgcnt_t kpm_ppleft;
2622 
2623 /*
2624  * Create a memseg
2625  */
2626 static void
2627 kphysm_memseg(uint64_t addr, uint64_t len)
2628 {
2629 	pfn_t base = btop(addr);
2630 	pgcnt_t num = btop(len);
2631 	struct memseg *seg;
2632 
2633 	seg = memseg_free;
2634 	memseg_free = seg->next;
2635 	ASSERT(seg != NULL);
2636 
2637 	seg->pages = ppnext;
2638 	seg->epages = ppnext + num;
2639 	seg->pages_base = base;
2640 	seg->pages_end = base + num;
2641 	ppnext += num;
2642 	ppleft -= num;
2643 
2644 	if (kpm_enable) {
2645 		pgcnt_t kpnum = ptokpmpr(num);
2646 
2647 		if (kpnum > kpm_ppleft)
2648 			panic("kphysm_memseg: kpm_pp overflow");
2649 		seg->pagespa = va_to_pa(seg->pages);
2650 		seg->epagespa = va_to_pa(seg->epages);
2651 		seg->kpm_pbase = kpmptop(ptokpmp(base));
2652 		seg->kpm_nkpmpgs = kpnum;
2653 		/*
2654 		 * In the kpm_smallpage case, the kpm array
2655 		 * is 1-1 wrt the page array
2656 		 */
2657 		if (kpm_smallpages) {
2658 			kpm_spage_t *kpm_pp = kpm_ppnext;
2659 
2660 			kpm_ppnext = kpm_pp + kpnum;
2661 			seg->kpm_spages = kpm_pp;
2662 			seg->kpm_pagespa = va_to_pa(seg->kpm_spages);
2663 		} else {
2664 			kpm_page_t *kpm_pp = kpm_ppnext;
2665 
2666 			kpm_ppnext = kpm_pp + kpnum;
2667 			seg->kpm_pages = kpm_pp;
2668 			seg->kpm_pagespa = va_to_pa(seg->kpm_pages);
2669 			/* ASSERT no kpm overlaps */
2670 			ASSERT(
2671 			    memseg_find(base - pmodkpmp(base), NULL) == NULL);
2672 			ASSERT(memseg_find(
2673 			    roundup(base + num, kpmpnpgs) - 1, NULL) == NULL);
2674 		}
2675 		kpm_ppleft -= kpnum;
2676 	}
2677 
2678 	memseg_list_add(seg);
2679 }
2680 
2681 /*
2682  * Add range to free list
2683  */
2684 void
2685 kphysm_add(uint64_t addr, uint64_t len, int reclaim)
2686 {
2687 	struct page *pp;
2688 	struct memseg *seg;
2689 	pfn_t base = btop(addr);
2690 	pgcnt_t num = btop(len);
2691 
2692 	seg = memseg_find(base, NULL);
2693 	ASSERT(seg != NULL);
2694 	pp = seg->pages + (base - seg->pages_base);
2695 
2696 	if (reclaim) {
2697 		struct page *rpp = pp;
2698 		struct page *lpp = pp + num;
2699 
2700 		/*
2701 		 * page should be locked on prom_ppages
2702 		 * unhash and unlock it
2703 		 */
2704 		while (rpp < lpp) {
2705 			ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &promvp);
2706 			ASSERT(PP_ISNORELOC(rpp));
2707 			PP_CLRNORELOC(rpp);
2708 			page_pp_unlock(rpp, 0, 1);
2709 			page_hashout(rpp, NULL);
2710 			page_unlock(rpp);
2711 			rpp++;
2712 		}
2713 	}
2714 
2715 	/*
2716 	 * add_physmem() initializes the PSM part of the page
2717 	 * struct by calling the PSM back with add_physmem_cb().
2718 	 * In addition it coalesces pages into larger pages as
2719 	 * it initializes them.
2720 	 */
2721 	add_physmem(pp, num, base);
2722 }
2723 
2724 /*
2725  * kphysm_init() tackles the problem of initializing physical memory.
2726  */
2727 static void
2728 kphysm_init(void)
2729 {
2730 	struct memlist *pmem;
2731 
2732 	ASSERT(page_hash != NULL && page_hashsz != 0);
2733 
2734 	ppnext = pp_base;
2735 	ppleft = npages;
2736 	kpm_ppnext = kpm_pp_base;
2737 	kpm_ppleft = kpm_npages;
2738 
2739 	/*
2740 	 * installed pages not on nopp_memlist go in memseg list
2741 	 */
2742 	diff_memlists(phys_install, nopp_list, kphysm_memseg);
2743 
2744 	/*
2745 	 * Free the avail list
2746 	 */
2747 	for (pmem = phys_avail; pmem != NULL; pmem = pmem->ml_next)
2748 		kphysm_add(pmem->ml_address, pmem->ml_size, 0);
2749 
2750 	/*
2751 	 * Erase pages that aren't available
2752 	 */
2753 	diff_memlists(phys_install, phys_avail, kphysm_erase);
2754 
2755 	build_pfn_hash();
2756 }
2757 
2758 /*
2759  * Kernel VM initialization.
2760  * Assumptions about kernel address space ordering:
2761  *	(1) gap (user space)
2762  *	(2) kernel text
2763  *	(3) kernel data/bss
2764  *	(4) gap
2765  *	(5) kernel data structures
2766  *	(6) gap
2767  *	(7) debugger (optional)
2768  *	(8) monitor
2769  *	(9) gap (possibly null)
2770  *	(10) dvma
2771  *	(11) devices
2772  */
2773 static void
2774 kvm_init(void)
2775 {
2776 	/*
2777 	 * Put the kernel segments in kernel address space.
2778 	 */
2779 	rw_enter(&kas.a_lock, RW_WRITER);
2780 	as_avlinit(&kas);
2781 
2782 	(void) seg_attach(&kas, (caddr_t)KERNELBASE,
2783 	    (size_t)(e_moddata - KERNELBASE), &ktextseg);
2784 	(void) segkmem_create(&ktextseg);
2785 
2786 	(void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2787 	    (size_t)(MMU_PAGESIZE4M), &ktexthole);
2788 	(void) segkmem_create(&ktexthole);
2789 
2790 	(void) seg_attach(&kas, (caddr_t)valloc_base,
2791 	    (size_t)(econtig32 - valloc_base), &kvalloc);
2792 	(void) segkmem_create(&kvalloc);
2793 
2794 	if (kmem64_base) {
2795 		(void) seg_attach(&kas, (caddr_t)kmem64_base,
2796 		    (size_t)(kmem64_end - kmem64_base), &kmem64);
2797 		(void) segkmem_create(&kmem64);
2798 	}
2799 
2800 	/*
2801 	 * We're about to map out /boot.  This is the beginning of the
2802 	 * system resource management transition. We can no longer
2803 	 * call into /boot for I/O or memory allocations.
2804 	 */
2805 	(void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2806 	(void) segkmem_create(&kvseg);
2807 	hblk_alloc_dynamic = 1;
2808 
2809 	/*
2810 	 * we need to preallocate pages for DR operations before enabling large
2811 	 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2812 	 */
2813 	memseg_remap_init();
2814 
2815 	/* at this point we are ready to use large page heap */
2816 	segkmem_heap_lp_init();
2817 
2818 	(void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2819 	    &kvseg32);
2820 	(void) segkmem_create(&kvseg32);
2821 
2822 	/*
2823 	 * Create a segment for the debugger.
2824 	 */
2825 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2826 	(void) segkmem_create(&kdebugseg);
2827 
2828 	rw_exit(&kas.a_lock);
2829 }
2830 
2831 char obp_tte_str[] =
2832 	"h# %x constant MMU_PAGESHIFT "
2833 	"h# %x constant TTE8K "
2834 	"h# %x constant SFHME_SIZE "
2835 	"h# %x constant SFHME_TTE "
2836 	"h# %x constant HMEBLK_TAG "
2837 	"h# %x constant HMEBLK_NEXT "
2838 	"h# %x constant HMEBLK_MISC "
2839 	"h# %x constant HMEBLK_HME1 "
2840 	"h# %x constant NHMENTS "
2841 	"h# %x constant HBLK_SZMASK "
2842 	"h# %x constant HBLK_RANGE_SHIFT "
2843 	"h# %x constant HMEBP_HBLK "
2844 	"h# %x constant HMEBLK_ENDPA "
2845 	"h# %x constant HMEBUCKET_SIZE "
2846 	"h# %x constant HTAG_SFMMUPSZ "
2847 	"h# %x constant HTAG_BSPAGE_SHIFT "
2848 	"h# %x constant HTAG_REHASH_SHIFT "
2849 	"h# %x constant SFMMU_INVALID_SHMERID "
2850 	"h# %x constant mmu_hashcnt "
2851 	"h# %p constant uhme_hash "
2852 	"h# %p constant khme_hash "
2853 	"h# %x constant UHMEHASH_SZ "
2854 	"h# %x constant KHMEHASH_SZ "
2855 	"h# %p constant KCONTEXT "
2856 	"h# %p constant KHATID "
2857 	"h# %x constant ASI_MEM "
2858 
2859 	": PHYS-X@ ( phys -- data ) "
2860 	"   ASI_MEM spacex@ "
2861 	"; "
2862 
2863 	": PHYS-W@ ( phys -- data ) "
2864 	"   ASI_MEM spacew@ "
2865 	"; "
2866 
2867 	": PHYS-L@ ( phys -- data ) "
2868 	"   ASI_MEM spaceL@ "
2869 	"; "
2870 
2871 	": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2872 	"   3 * MMU_PAGESHIFT + "
2873 	"; "
2874 
2875 	": TTE_IS_VALID ( ttep -- flag ) "
2876 	"   PHYS-X@ 0< "
2877 	"; "
2878 
2879 	": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2880 	"   dup TTE8K =  if "
2881 	"      drop HBLK_RANGE_SHIFT "
2882 	"   else "
2883 	"      TTE_PAGE_SHIFT "
2884 	"   then "
2885 	"; "
2886 
2887 	": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2888 	"   tuck >> swap MMU_PAGESHIFT - << "
2889 	"; "
2890 
2891 	": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2892 	"   >> over xor swap                    ( hash sfmmup ) "
2893 	"   KHATID <>  if                       ( hash ) "
2894 	"      UHMEHASH_SZ and                  ( bucket ) "
2895 	"      HMEBUCKET_SIZE * uhme_hash +     ( hmebp ) "
2896 	"   else                                ( hash ) "
2897 	"      KHMEHASH_SZ and                  ( bucket ) "
2898 	"      HMEBUCKET_SIZE * khme_hash +     ( hmebp ) "
2899 	"   then                                ( hmebp ) "
2900 	"; "
2901 
2902 	": HME_HASH_TABLE_SEARCH "
2903 	"       ( sfmmup hmebp hblktag --  sfmmup null | sfmmup hmeblkp ) "
2904 	"   >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2905 	"      dup HMEBLK_ENDPA <> if     ( sfmmup hmeblkp ) ( r: hblktag ) "
2906 	"         dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp )	  "
2907 	"	     dup hmeblk_tag + 8 + phys-x@ 2 pick = if		  "
2908 	"		  true 	( sfmmup hmeblkp true ) ( r: hblktag )	  "
2909 	"	     else						  "
2910 	"	     	  hmeblk_next + phys-x@ false 			  "
2911 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2912 	"	     then  						  "
2913 	"	  else							  "
2914 	"	     hmeblk_next + phys-x@ false 			  "
2915 	"			( sfmmup hmeblkp false ) ( r: hblktag )   "
2916 	"	  then 							  "
2917 	"      else							  "
2918 	"         drop 0 true 						  "
2919 	"      then  							  "
2920 	"   until r> drop 						  "
2921 	"; "
2922 
2923 	": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2924 	"   over HME_HASH_SHIFT HME_HASH_BSPAGE  ( sfmmup rehash bspage ) "
2925 	"   HTAG_BSPAGE_SHIFT <<		 ( sfmmup rehash htag-bspage )"
2926 	"   swap HTAG_REHASH_SHIFT << or	 ( sfmmup htag-bspage-rehash )"
2927 	"   SFMMU_INVALID_SHMERID or nip	 ( hblktag ) "
2928 	"; "
2929 
2930 	": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2931 	"   over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and  ( hmeblkp addr ttesz ) "
2932 	"   TTE8K =  if                            ( hmeblkp addr ) "
2933 	"      MMU_PAGESHIFT >> NHMENTS 1- and     ( hmeblkp hme-index ) "
2934 	"   else                                   ( hmeblkp addr ) "
2935 	"      drop 0                              ( hmeblkp 0 ) "
2936 	"   then                                   ( hmeblkp hme-index ) "
2937 	"   SFHME_SIZE * + HMEBLK_HME1 +           ( hmep ) "
2938 	"   SFHME_TTE +                            ( ttep ) "
2939 	"; "
2940 
2941 	": unix-tte ( addr cnum -- false | tte-data true ) "
2942 	"    KCONTEXT = if                   ( addr ) "
2943 	"	KHATID                       ( addr khatid ) "
2944 	"    else                            ( addr ) "
2945 	"       drop false exit              ( false ) "
2946 	"    then "
2947 	"      ( addr khatid ) "
2948 	"      mmu_hashcnt 1+ 1  do           ( addr sfmmup ) "
2949 	"         2dup swap i HME_HASH_SHIFT  "
2950 					"( addr sfmmup sfmmup addr hmeshift ) "
2951 	"         HME_HASH_FUNCTION           ( addr sfmmup hmebp ) "
2952 	"         over i 4 pick               "
2953 				"( addr sfmmup hmebp sfmmup rehash addr ) "
2954 	"         HME_HASH_TAG                ( addr sfmmup hmebp hblktag ) "
2955 	"         HME_HASH_TABLE_SEARCH       "
2956 					"( addr sfmmup { null | hmeblkp } ) "
2957 	"         ?dup  if                    ( addr sfmmup hmeblkp ) "
2958 	"            nip swap HBLK_TO_TTEP    ( ttep ) "
2959 	"            dup TTE_IS_VALID  if     ( valid-ttep ) "
2960 	"               PHYS-X@ true          ( tte-data true ) "
2961 	"            else                     ( invalid-tte ) "
2962 	"               drop false            ( false ) "
2963 	"            then                     ( false | tte-data true ) "
2964 	"            unloop exit              ( false | tte-data true ) "
2965 	"         then                        ( addr sfmmup ) "
2966 	"      loop                           ( addr sfmmup ) "
2967 	"      2drop false                    ( false ) "
2968 	"; "
2969 ;
2970 
2971 void
2972 create_va_to_tte(void)
2973 {
2974 	char *bp;
2975 	extern int khmehash_num, uhmehash_num;
2976 	extern struct hmehash_bucket *khme_hash, *uhme_hash;
2977 
2978 #define	OFFSET(type, field)	((uintptr_t)(&((type *)0)->field))
2979 
2980 	bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2981 
2982 	/*
2983 	 * Teach obp how to parse our sw ttes.
2984 	 */
2985 	(void) sprintf(bp, obp_tte_str,
2986 	    MMU_PAGESHIFT,
2987 	    TTE8K,
2988 	    sizeof (struct sf_hment),
2989 	    OFFSET(struct sf_hment, hme_tte),
2990 	    OFFSET(struct hme_blk, hblk_tag),
2991 	    OFFSET(struct hme_blk, hblk_nextpa),
2992 	    OFFSET(struct hme_blk, hblk_misc),
2993 	    OFFSET(struct hme_blk, hblk_hme),
2994 	    NHMENTS,
2995 	    HBLK_SZMASK,
2996 	    HBLK_RANGE_SHIFT,
2997 	    OFFSET(struct hmehash_bucket, hmeh_nextpa),
2998 	    HMEBLK_ENDPA,
2999 	    sizeof (struct hmehash_bucket),
3000 	    HTAG_SFMMUPSZ,
3001 	    HTAG_BSPAGE_SHIFT,
3002 	    HTAG_REHASH_SHIFT,
3003 	    SFMMU_INVALID_SHMERID,
3004 	    mmu_hashcnt,
3005 	    (caddr_t)va_to_pa((caddr_t)uhme_hash),
3006 	    (caddr_t)va_to_pa((caddr_t)khme_hash),
3007 	    UHMEHASH_SZ,
3008 	    KHMEHASH_SZ,
3009 	    KCONTEXT,
3010 	    KHATID,
3011 	    ASI_MEM);
3012 	prom_interpret(bp, 0, 0, 0, 0, 0);
3013 
3014 	kobj_free(bp, MMU_PAGESIZE);
3015 }
3016 
3017 void
3018 install_va_to_tte(void)
3019 {
3020 	/*
3021 	 * advise prom that it can use unix-tte
3022 	 */
3023 	prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
3024 }
3025 
3026 /*
3027  * Here we add "device-type=console" for /os-io node, for currently
3028  * our kernel console output only supports displaying text and
3029  * performing cursor-positioning operations (through kernel framebuffer
3030  * driver) and it doesn't support other functionalities required for a
3031  * standard "display" device as specified in 1275 spec. The main missing
3032  * interface defined by the 1275 spec is "draw-logo".
3033  * also see the comments above prom_stdout_is_framebuffer().
3034  */
3035 static char *create_node =
3036 	"\" /\" find-device "
3037 	"new-device "
3038 	"\" os-io\" device-name "
3039 	"\" "OBP_DISPLAY_CONSOLE"\" device-type "
3040 	": cb-r/w  ( adr,len method$ -- #read/#written ) "
3041 	"   2>r swap 2 2r> ['] $callback  catch  if "
3042 	"      2drop 3drop 0 "
3043 	"   then "
3044 	"; "
3045 	": read ( adr,len -- #read ) "
3046 	"       \" read\" ['] cb-r/w catch  if  2drop 2drop -2 exit then "
3047 	"       ( retN ... ret1 N ) "
3048 	"       ?dup  if "
3049 	"               swap >r 1-  0  ?do  drop  loop  r> "
3050 	"       else "
3051 	"               -2 "
3052 	"       then "
3053 	";    "
3054 	": write ( adr,len -- #written ) "
3055 	"       \" write\" ['] cb-r/w catch  if  2drop 2drop 0 exit  then "
3056 	"       ( retN ... ret1 N ) "
3057 	"       ?dup  if "
3058 	"               swap >r 1-  0  ?do  drop  loop  r> "
3059 	"        else "
3060 	"               0 "
3061 	"       then "
3062 	"; "
3063 	": poll-tty ( -- ) ; "
3064 	": install-abort  ( -- )  ['] poll-tty d# 10 alarm ; "
3065 	": remove-abort ( -- )  ['] poll-tty 0 alarm ; "
3066 	": cb-give/take ( $method -- ) "
3067 	"       0 -rot ['] $callback catch  ?dup  if "
3068 	"               >r 2drop 2drop r> throw "
3069 	"       else "
3070 	"               0  ?do  drop  loop "
3071 	"       then "
3072 	"; "
3073 	": give ( -- )  \" exit-input\" cb-give/take ; "
3074 	": take ( -- )  \" enter-input\" cb-give/take ; "
3075 	": open ( -- ok? )  true ; "
3076 	": close ( -- ) ; "
3077 	"finish-device "
3078 	"device-end ";
3079 
3080 /*
3081  * Create the OBP input/output node (FCode serial driver).
3082  * It is needed for both USB console keyboard and for
3083  * the kernel terminal emulator.  It is too early to check for a
3084  * kernel console compatible framebuffer now, so we create this
3085  * so that we're ready if we need to enable kernel terminal emulation.
3086  *
3087  * When the USB software takes over the input device at the time
3088  * consconfig runs, OBP's stdin is redirected to this node.
3089  * Whenever the FORTH user interface is used after this switch,
3090  * the node will call back into the kernel for console input.
3091  * If a serial device such as ttya or a UART with a Type 5 keyboard
3092  * attached is used, OBP takes over the serial device when the system
3093  * goes to the debugger after the system is booted.  This sharing
3094  * of the relatively simple serial device is difficult but possible.
3095  * Sharing the USB host controller is impossible due its complexity.
3096  *
3097  * Similarly to USB keyboard input redirection, after consconfig_dacf
3098  * configures a kernel console framebuffer as the standard output
3099  * device, OBP's stdout is switched to to vector through the
3100  * /os-io node into the kernel terminal emulator.
3101  */
3102 static void
3103 startup_create_io_node(void)
3104 {
3105 	prom_interpret(create_node, 0, 0, 0, 0, 0);
3106 }
3107 
3108 
3109 static void
3110 do_prom_version_check(void)
3111 {
3112 	int i;
3113 	pnode_t node;
3114 	char buf[64];
3115 	static char drev[] = "Down-rev firmware detected%s\n"
3116 	    "\tPlease upgrade to the following minimum version:\n"
3117 	    "\t\t%s\n";
3118 
3119 	i = prom_version_check(buf, sizeof (buf), &node);
3120 
3121 	if (i == PROM_VER64_OK)
3122 		return;
3123 
3124 	if (i == PROM_VER64_UPGRADE) {
3125 		cmn_err(CE_WARN, drev, "", buf);
3126 
3127 #ifdef	DEBUG
3128 		prom_enter_mon();	/* Type 'go' to continue */
3129 		cmn_err(CE_WARN, "Booting with down-rev firmware\n");
3130 		return;
3131 #else
3132 		halt(0);
3133 #endif
3134 	}
3135 
3136 	/*
3137 	 * The other possibility is that this is a server running
3138 	 * good firmware, but down-rev firmware was detected on at
3139 	 * least one other cpu board. We just complain if we see
3140 	 * that.
3141 	 */
3142 	cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
3143 }
3144 
3145 
3146 /*
3147  * Must be defined in platform dependent code.
3148  */
3149 extern caddr_t modtext;
3150 extern size_t modtext_sz;
3151 extern caddr_t moddata;
3152 
3153 #define	HEAPTEXT_ARENA(addr)	\
3154 	((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3155 	(((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3156 	(HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3157 
3158 #define	HEAPTEXT_OVERSIZED(addr)	\
3159 	((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3160 
3161 #define	HEAPTEXT_IN_NUCLEUSDATA(addr) \
3162 	(((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \
3163 	((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M))
3164 
3165 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3166 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3167 kmutex_t texthole_lock;
3168 
3169 char kern_bootargs[OBP_MAXPATHLEN];
3170 char kern_bootfile[OBP_MAXPATHLEN];
3171 
3172 void
3173 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3174 {
3175 	uintptr_t addr, limit;
3176 
3177 	addr = HEAPTEXT_BASE;
3178 	limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3179 
3180 	/*
3181 	 * Before we initialize the text_arena, we want to punch holes in the
3182 	 * underlying heaptext_arena.  This guarantees that for any text
3183 	 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3184 	 */
3185 	for (; addr + HEAPTEXT_UNMAPPED <= limit;
3186 	    addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3187 		(void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3188 		    0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3189 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3190 	}
3191 
3192 	/*
3193 	 * Allocate one page at the oversize to break up the text region
3194 	 * from the oversized region.
3195 	 */
3196 	(void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3197 	    (void *)limit, (void *)(limit + PAGESIZE),
3198 	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3199 
3200 	*text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL,
3201 	    modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3202 	    heaptext_arena, 0, VM_SLEEP);
3203 	*data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3204 	    segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3205 }
3206 
3207 caddr_t
3208 kobj_text_alloc(vmem_t *arena, size_t size)
3209 {
3210 	caddr_t rval, better;
3211 
3212 	/*
3213 	 * First, try a sleeping allocation.
3214 	 */
3215 	rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3216 
3217 	if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3218 		return (rval);
3219 
3220 	/*
3221 	 * We didn't get the area that we wanted.  We're going to try to do an
3222 	 * allocation with explicit constraints.
3223 	 */
3224 	better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3225 	    (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3226 	    VM_NOSLEEP | VM_BESTFIT);
3227 
3228 	if (better != NULL) {
3229 		/*
3230 		 * That worked.  Free our first attempt and return.
3231 		 */
3232 		vmem_free(arena, rval, size);
3233 		return (better);
3234 	}
3235 
3236 	/*
3237 	 * That didn't work; we'll have to return our first attempt.
3238 	 */
3239 	return (rval);
3240 }
3241 
3242 caddr_t
3243 kobj_texthole_alloc(caddr_t addr, size_t size)
3244 {
3245 	int arena = HEAPTEXT_ARENA(addr);
3246 	char c[30];
3247 	uintptr_t base;
3248 
3249 	if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) {
3250 		/*
3251 		 * If this is an oversized allocation or it is allocated in
3252 		 * the nucleus data page, there is no text hole available for
3253 		 * it; return NULL.
3254 		 */
3255 		return (NULL);
3256 	}
3257 
3258 	mutex_enter(&texthole_lock);
3259 
3260 	if (texthole_arena[arena] == NULL) {
3261 		ASSERT(texthole_source[arena] == NULL);
3262 
3263 		if (arena == 0) {
3264 			texthole_source[0] = vmem_create("module_text_holesrc",
3265 			    (void *)(KERNELBASE + MMU_PAGESIZE4M),
3266 			    MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3267 			    0, VM_SLEEP);
3268 		} else {
3269 			base = HEAPTEXT_BASE +
3270 			    (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3271 
3272 			(void) snprintf(c, sizeof (c),
3273 			    "heaptext_holesrc_%d", arena);
3274 
3275 			texthole_source[arena] = vmem_create(c, (void *)base,
3276 			    HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3277 			    0, VM_SLEEP);
3278 		}
3279 
3280 		(void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3281 
3282 		texthole_arena[arena] = vmem_create(c, NULL, 0,
3283 		    sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3284 		    texthole_source[arena], 0, VM_SLEEP);
3285 	}
3286 
3287 	mutex_exit(&texthole_lock);
3288 
3289 	ASSERT(texthole_arena[arena] != NULL);
3290 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3291 	return (vmem_alloc(texthole_arena[arena], size,
3292 	    VM_BESTFIT | VM_NOSLEEP));
3293 }
3294 
3295 void
3296 kobj_texthole_free(caddr_t addr, size_t size)
3297 {
3298 	int arena = HEAPTEXT_ARENA(addr);
3299 
3300 	ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3301 	ASSERT(texthole_arena[arena] != NULL);
3302 	vmem_free(texthole_arena[arena], addr, size);
3303 }
3304 
3305 void
3306 release_bootstrap(void)
3307 {
3308 	if (&cif_init)
3309 		cif_init();
3310 }
3311