1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/sysmacros.h> 30 #include <sys/prom_plat.h> 31 #include <sys/prom_debug.h> 32 #include <vm/hat_sfmmu.h> 33 #include <vm/seg_kp.h> 34 #include <vm/seg_kmem.h> 35 #include <sys/machsystm.h> 36 #include <sys/callb.h> 37 #include <sys/cpu_module.h> 38 #include <sys/chip.h> 39 #include <sys/dtrace.h> 40 #include <sys/reboot.h> 41 #include <sys/kdi.h> 42 #include <sys/traptrace.h> 43 #ifdef TRAPTRACE 44 #include <sys/bootconf.h> 45 #endif /* TRAPTRACE */ 46 #include <sys/cpu_sgnblk_defs.h> 47 48 extern void cpu_intrq_setup(struct cpu *); 49 extern void cpu_intrq_cleanup(struct cpu *); 50 extern void cpu_intrq_register(struct cpu *); 51 52 struct cpu *cpus; /* pointer to other cpus; dynamically allocate */ 53 struct cpu *cpu[NCPU]; /* pointers to all CPUs */ 54 uint64_t cpu_pa[NCPU]; /* pointers to all CPUs in PA */ 55 cpu_core_t cpu_core[NCPU]; /* cpu_core structures */ 56 57 #ifdef TRAPTRACE 58 caddr_t ttrace_buf; /* bop alloced traptrace for all cpus except 0 */ 59 #endif /* TRAPTRACE */ 60 61 /* bit mask of cpus ready for x-calls, protected by cpu_lock */ 62 cpuset_t cpu_ready_set; 63 64 /* bit mask used to communicate with cpus during bringup */ 65 static cpuset_t proxy_ready_set; 66 67 static void slave_startup(void); 68 69 /* 70 * Defined in $KARCH/os/mach_mp_startup.c 71 */ 72 #pragma weak init_cpu_info 73 74 /* 75 * Amount of time (in milliseconds) we should wait before giving up on CPU 76 * initialization and assuming that the CPU we're trying to wake up is dead 77 * or out of control. 78 */ 79 #define CPU_WAKEUP_GRACE_MSEC 1000 80 81 #ifdef TRAPTRACE 82 /* 83 * This function bop allocs traptrace buffers for all cpus 84 * other than boot cpu. 85 */ 86 caddr_t 87 trap_trace_alloc(caddr_t base) 88 { 89 caddr_t vaddr; 90 extern int max_ncpus; 91 92 if (max_ncpus == 1) { 93 return (base); 94 } 95 96 if ((vaddr = (caddr_t)BOP_ALLOC(bootops, base, (TRAP_TSIZE * 97 (max_ncpus - 1)), TRAP_TSIZE)) == NULL) { 98 panic("traptrace_alloc: can't bop alloc"); 99 } 100 ttrace_buf = vaddr; 101 PRM_DEBUG(ttrace_buf); 102 return (vaddr + (TRAP_TSIZE * (max_ncpus - 1))); 103 } 104 #endif /* TRAPTRACE */ 105 106 /* 107 * common slave cpu initialization code 108 */ 109 void 110 common_startup_init(cpu_t *cp, int cpuid) 111 { 112 kthread_id_t tp; 113 sfmmu_t *sfmmup; 114 caddr_t sp; 115 116 /* 117 * Allocate and initialize the startup thread for this CPU. 118 */ 119 tp = thread_create(NULL, 0, slave_startup, NULL, 0, &p0, 120 TS_STOPPED, maxclsyspri); 121 122 /* 123 * Set state to TS_ONPROC since this thread will start running 124 * as soon as the CPU comes online. 125 * 126 * All the other fields of the thread structure are setup by 127 * thread_create(). 128 */ 129 THREAD_ONPROC(tp, cp); 130 tp->t_preempt = 1; 131 tp->t_bound_cpu = cp; 132 tp->t_affinitycnt = 1; 133 tp->t_cpu = cp; 134 tp->t_disp_queue = cp->cpu_disp; 135 136 sfmmup = astosfmmu(&kas); 137 CPUSET_ADD(sfmmup->sfmmu_cpusran, cpuid); 138 139 /* 140 * Setup thread to start in slave_startup. 141 */ 142 sp = tp->t_stk; 143 tp->t_pc = (uintptr_t)slave_startup - 8; 144 tp->t_sp = (uintptr_t)((struct rwindow *)sp - 1) - STACK_BIAS; 145 146 cp->cpu_id = cpuid; 147 cp->cpu_self = cp; 148 cp->cpu_thread = tp; 149 cp->cpu_lwp = NULL; 150 cp->cpu_dispthread = tp; 151 cp->cpu_dispatch_pri = DISP_PRIO(tp); 152 cp->cpu_startup_thread = tp; 153 } 154 155 /* 156 * parametric flag setting functions. these routines set the cpu 157 * state just prior to releasing the slave cpu. 158 */ 159 void 160 cold_flag_set(int cpuid) 161 { 162 cpu_t *cp; 163 164 ASSERT(MUTEX_HELD(&cpu_lock)); 165 166 cp = cpu[cpuid]; 167 cp->cpu_flags |= CPU_RUNNING | CPU_ENABLE | CPU_EXISTS; 168 cpu_add_active(cp); 169 /* 170 * Add CPU_READY after the cpu_add_active() call 171 * to avoid pausing cp. 172 */ 173 cp->cpu_flags |= CPU_READY; /* ready */ 174 cpu_set_state(cp); 175 } 176 177 static void 178 warm_flag_set(int cpuid) 179 { 180 cpu_t *cp; 181 182 ASSERT(MUTEX_HELD(&cpu_lock)); 183 184 /* 185 * warm start activates cpus into the OFFLINE state 186 */ 187 cp = cpu[cpuid]; 188 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS 189 | CPU_OFFLINE | CPU_QUIESCED; 190 cpu_set_state(cp); 191 } 192 193 /* 194 * Internal cpu startup sequencer 195 * The sequence is as follows: 196 * 197 * MASTER SLAVE 198 * ------- ---------- 199 * assume the kernel data is initialized 200 * clear the proxy bit 201 * start the slave cpu 202 * wait for the slave cpu to set the proxy 203 * 204 * the slave runs slave_startup and then sets the proxy 205 * the slave waits for the master to add slave to the ready set 206 * 207 * the master finishes the initialization and 208 * adds the slave to the ready set 209 * 210 * the slave exits the startup thread and is running 211 */ 212 void 213 start_cpu(int cpuid, void(*flag_func)(int)) 214 { 215 extern void cpu_startup(int); 216 int timout; 217 218 ASSERT(MUTEX_HELD(&cpu_lock)); 219 220 /* 221 * Before we begin the dance, tell DTrace that we're about to start 222 * a CPU. 223 */ 224 if (dtrace_cpustart_init != NULL) 225 (*dtrace_cpustart_init)(); 226 227 /* start the slave cpu */ 228 CPUSET_DEL(proxy_ready_set, cpuid); 229 if (prom_test("SUNW,start-cpu-by-cpuid") == 0) { 230 (void) prom_startcpu_bycpuid(cpuid, (caddr_t)&cpu_startup, 231 cpuid); 232 } else { 233 /* "by-cpuid" interface didn't exist. Do it the old way */ 234 pnode_t nodeid = cpunodes[cpuid].nodeid; 235 236 ASSERT(nodeid != (pnode_t)0); 237 (void) prom_startcpu(nodeid, (caddr_t)&cpu_startup, cpuid); 238 } 239 240 /* wait for the slave cpu to check in. */ 241 for (timout = CPU_WAKEUP_GRACE_MSEC; timout; timout--) { 242 if (CPU_IN_SET(proxy_ready_set, cpuid)) 243 break; 244 DELAY(1000); 245 } 246 if (timout == 0) { 247 panic("cpu%d failed to start (2)", cpuid); 248 } 249 250 /* 251 * The slave has started; we can tell DTrace that it's safe again. 252 */ 253 if (dtrace_cpustart_fini != NULL) 254 (*dtrace_cpustart_fini)(); 255 256 /* run the master side of stick synchronization for the slave cpu */ 257 sticksync_master(); 258 259 /* 260 * deal with the cpu flags in a phase-specific manner 261 * for various reasons, this needs to run after the slave 262 * is checked in but before the slave is released. 263 */ 264 (*flag_func)(cpuid); 265 266 /* release the slave */ 267 CPUSET_ADD(cpu_ready_set, cpuid); 268 } 269 270 #ifdef TRAPTRACE 271 int trap_tr0_inuse = 1; /* it is always used on the boot cpu */ 272 int trap_trace_inuse[NCPU]; 273 #endif /* TRAPTRACE */ 274 275 #define cpu_next_free cpu_prev 276 277 /* 278 * Routine to set up a CPU to prepare for starting it up. 279 */ 280 void 281 setup_cpu_common(int cpuid) 282 { 283 struct cpu *cp = NULL; 284 kthread_id_t tp; 285 #ifdef TRAPTRACE 286 int tt_index; 287 TRAP_TRACE_CTL *ctlp; 288 caddr_t newbuf; 289 #endif /* TRAPTRACE */ 290 291 extern void idle(); 292 293 ASSERT(MUTEX_HELD(&cpu_lock)); 294 ASSERT(cpu[cpuid] == NULL); 295 296 ASSERT(ncpus <= max_ncpus); 297 298 #ifdef TRAPTRACE 299 /* 300 * allocate a traptrace buffer for this CPU. 301 */ 302 ctlp = &trap_trace_ctl[cpuid]; 303 if (!trap_tr0_inuse) { 304 trap_tr0_inuse = 1; 305 newbuf = trap_tr0; 306 tt_index = -1; 307 } else { 308 for (tt_index = 0; tt_index < (max_ncpus-1); tt_index++) 309 if (!trap_trace_inuse[tt_index]) 310 break; 311 ASSERT(tt_index < max_ncpus - 1); 312 trap_trace_inuse[tt_index] = 1; 313 newbuf = (caddr_t)(ttrace_buf + (tt_index * TRAP_TSIZE)); 314 } 315 ctlp->d.vaddr_base = newbuf; 316 ctlp->d.offset = ctlp->d.last_offset = 0; 317 ctlp->d.limit = trap_trace_bufsize; 318 ctlp->d.paddr_base = va_to_pa(newbuf); 319 ASSERT(ctlp->d.paddr_base != (uint64_t)-1); 320 #endif /* TRAPTRACE */ 321 /* 322 * initialize hv traptrace buffer for this CPU 323 */ 324 mach_htraptrace_setup(cpuid); 325 326 /* 327 * Obtain pointer to the appropriate cpu structure. 328 */ 329 if (cpu0.cpu_flags == 0) { 330 cp = &cpu0; 331 } else { 332 /* 333 * When dynamically allocating cpu structs, 334 * cpus is used as a pointer to a list of freed 335 * cpu structs. 336 */ 337 if (cpus) { 338 /* grab the first cpu struct on the free list */ 339 cp = cpus; 340 if (cp->cpu_next_free) 341 cpus = cp->cpu_next_free; 342 else 343 cpus = NULL; 344 } 345 } 346 347 if (cp == NULL) 348 cp = vmem_xalloc(static_alloc_arena, CPU_ALLOC_SIZE, 349 CPU_ALLOC_SIZE, 0, 0, NULL, NULL, VM_SLEEP); 350 351 bzero(cp, sizeof (*cp)); 352 353 cp->cpu_id = cpuid; 354 cp->cpu_self = cp; 355 356 /* 357 * Initialize ptl1_panic stack 358 */ 359 ptl1_init_cpu(cp); 360 361 /* 362 * Initialize the dispatcher for this CPU. 363 */ 364 disp_cpu_init(cp); 365 366 cpu_vm_data_init(cp); 367 368 /* 369 * Now, initialize per-CPU idle thread for this CPU. 370 */ 371 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_ONPROC, -1); 372 373 cp->cpu_idle_thread = tp; 374 375 tp->t_preempt = 1; 376 tp->t_bound_cpu = cp; 377 tp->t_affinitycnt = 1; 378 tp->t_cpu = cp; 379 tp->t_disp_queue = cp->cpu_disp; 380 381 /* 382 * Registering a thread in the callback table is usually 383 * done in the initialization code of the thread. In this 384 * case, we do it right after thread creation to avoid 385 * blocking idle thread while registering itself. It also 386 * avoids the possibility of reregistration in case a CPU 387 * restarts its idle thread. 388 */ 389 CALLB_CPR_INIT_SAFE(tp, "idle"); 390 391 init_cpu_info(cp); 392 393 /* 394 * Initialize the interrupt threads for this CPU 395 */ 396 cpu_intr_alloc(cp, NINTR_THREADS); 397 398 /* 399 * Add CPU to list of available CPUs. 400 * It'll be on the active list after it is started. 401 */ 402 cpu_add_unit(cp); 403 404 /* 405 * Allocate and init cpu module private data structures, 406 * including scrubber. 407 */ 408 cpu_init_private(cp); 409 410 /* 411 * Associate this CPU with a physical processor 412 */ 413 chip_cpu_init(cp); 414 415 cpu_intrq_setup(cp); 416 417 /* 418 * Initialize MMU context domain information. 419 */ 420 sfmmu_cpu_init(cp); 421 422 } 423 424 /* 425 * Routine to clean up a CPU after shutting it down. 426 */ 427 int 428 cleanup_cpu_common(int cpuid) 429 { 430 struct cpu *cp; 431 #ifdef TRAPTRACE 432 int i; 433 TRAP_TRACE_CTL *ctlp; 434 caddr_t newbuf; 435 #endif /* TRAPTRACE */ 436 437 ASSERT(MUTEX_HELD(&cpu_lock)); 438 ASSERT(cpu[cpuid] != NULL); 439 440 cp = cpu[cpuid]; 441 442 /* Free cpu module private data structures, including scrubber. */ 443 cpu_uninit_private(cp); 444 445 /* Free cpu ID string and brand string. */ 446 kmem_free(cp->cpu_idstr, strlen(cp->cpu_idstr) + 1); 447 kmem_free(cp->cpu_brandstr, strlen(cp->cpu_brandstr) + 1); 448 449 cpu_vm_data_destroy(cp); 450 451 /* 452 * Remove CPU from list of available CPUs. 453 */ 454 cpu_del_unit(cpuid); 455 456 /* 457 * Clean any machine specific interrupt states. 458 */ 459 cpu_intrq_cleanup(cp); 460 461 /* 462 * At this point, the only threads bound to this CPU should be 463 * special per-cpu threads: it's idle thread, it's pause thread, 464 * and it's interrupt threads. Clean these up. 465 */ 466 cpu_destroy_bound_threads(cp); 467 468 /* 469 * Free the interrupt stack. 470 */ 471 segkp_release(segkp, cp->cpu_intr_stack); 472 473 /* 474 * Free hv traptrace buffer for this CPU. 475 */ 476 mach_htraptrace_cleanup(cpuid); 477 #ifdef TRAPTRACE 478 /* 479 * Free the traptrace buffer for this CPU. 480 */ 481 ctlp = &trap_trace_ctl[cpuid]; 482 newbuf = ctlp->d.vaddr_base; 483 i = (newbuf - ttrace_buf) / (TRAP_TSIZE); 484 if (((newbuf - ttrace_buf) % (TRAP_TSIZE) == 0) && 485 ((i >= 0) && (i < (max_ncpus-1)))) { 486 /* 487 * This CPU got it's trap trace buffer from the 488 * boot-alloc'd bunch of them. 489 */ 490 trap_trace_inuse[i] = 0; 491 bzero(newbuf, (TRAP_TSIZE)); 492 } else if (newbuf == trap_tr0) { 493 trap_tr0_inuse = 0; 494 bzero(trap_tr0, (TRAP_TSIZE)); 495 } else { 496 cmn_err(CE_WARN, "failed to free trap trace buffer from cpu%d", 497 cpuid); 498 } 499 bzero(ctlp, sizeof (*ctlp)); 500 #endif /* TRAPTRACE */ 501 502 /* 503 * There is a race condition with mutex_vector_enter() which 504 * caches a cpu pointer. The race is detected by checking cpu_next. 505 */ 506 disp_cpu_fini(cp); 507 cpu_pa[cpuid] = 0; 508 sfmmu_cpu_cleanup(cp); 509 bzero(cp, sizeof (*cp)); 510 511 /* 512 * Place the freed cpu structure on the list of freed cpus. 513 */ 514 if (cp != &cpu0) { 515 if (cpus) { 516 cp->cpu_next_free = cpus; 517 cpus = cp; 518 } 519 else 520 cpus = cp; 521 } 522 523 return (0); 524 } 525 526 /* 527 * This routine is used to start a previously powered off processor. 528 * Note that restarted cpus are initialized into the offline state. 529 */ 530 void 531 restart_other_cpu(int cpuid) 532 { 533 struct cpu *cp; 534 kthread_id_t tp; 535 caddr_t sp; 536 extern void idle(); 537 538 ASSERT(MUTEX_HELD(&cpu_lock)); 539 ASSERT(cpuid < NCPU && cpu[cpuid] != NULL); 540 541 /* 542 * Obtain pointer to the appropriate cpu structure. 543 */ 544 cp = cpu[cpuid]; 545 546 common_startup_init(cp, cpuid); 547 548 /* 549 * idle thread t_lock is held when the idle thread is suspended. 550 * Manually unlock the t_lock of idle loop so that we can resume 551 * the suspended idle thread. 552 * Also adjust the PC of idle thread for re-retry. 553 */ 554 cp->cpu_intr_actv = 0; /* clear the value from previous life */ 555 cp->cpu_m.mutex_ready = 0; /* we are not ready yet */ 556 lock_clear(&cp->cpu_idle_thread->t_lock); 557 tp = cp->cpu_idle_thread; 558 559 sp = tp->t_stk; 560 tp->t_sp = (uintptr_t)((struct rwindow *)sp - 1) - STACK_BIAS; 561 tp->t_pc = (uintptr_t)idle - 8; 562 563 /* 564 * restart the cpu now 565 */ 566 promsafe_pause_cpus(); 567 start_cpu(cpuid, warm_flag_set); 568 start_cpus(); 569 570 /* call cmn_err outside pause_cpus/start_cpus to avoid deadlock */ 571 cmn_err(CE_CONT, "!cpu%d initialization complete - restarted\n", 572 cpuid); 573 } 574 575 /* 576 * Startup function executed on 'other' CPUs. This is the first 577 * C function after cpu_start sets up the cpu registers. 578 */ 579 static void 580 slave_startup(void) 581 { 582 struct cpu *cp = CPU; 583 ushort_t original_flags = cp->cpu_flags; 584 585 mach_htraptrace_configure(cp->cpu_id); 586 cpu_intrq_register(CPU); 587 cp->cpu_m.mutex_ready = 1; 588 cp->cpu_m.poke_cpu_outstanding = B_FALSE; 589 590 /* acknowledge that we are done with initialization */ 591 CPUSET_ADD(proxy_ready_set, cp->cpu_id); 592 593 /* synchronize STICK */ 594 sticksync_slave(); 595 596 if (boothowto & RB_DEBUG) 597 kdi_dvec_cpu_init(cp); 598 599 /* 600 * the slave will wait here forever -- assuming that the master 601 * will get back to us. if it doesn't we've got bigger problems 602 * than a master not replying to this slave. 603 * the small delay improves the slave's responsiveness to the 604 * master's ack and decreases the time window between master and 605 * slave operations. 606 */ 607 while (!CPU_IN_SET(cpu_ready_set, cp->cpu_id)) 608 DELAY(1); 609 610 /* enable interrupts */ 611 (void) spl0(); 612 613 /* 614 * Signature block update to indicate that this CPU is in OS now. 615 * This needs to be done after the PIL is lowered since on 616 * some platforms the update code may block. 617 */ 618 CPU_SIGNATURE(OS_SIG, SIGST_RUN, SIGSUBST_NULL, cp->cpu_id); 619 620 /* 621 * park the slave thread in a safe/quiet state and wait for the master 622 * to finish configuring this CPU before proceeding to thread_exit(). 623 */ 624 while (((volatile ushort_t)cp->cpu_flags) & CPU_QUIESCED) 625 DELAY(1); 626 627 /* 628 * Initialize CPC CPU state. 629 */ 630 kcpc_hw_startup_cpu(original_flags); 631 632 /* 633 * Notify the CMT subsystem that the slave has started 634 */ 635 chip_cpu_startup(CPU); 636 637 /* 638 * Now we are done with the startup thread, so free it up. 639 */ 640 thread_exit(); 641 cmn_err(CE_PANIC, "slave_startup: cannot return"); 642 /*NOTREACHED*/ 643 } 644 645 extern struct cpu *cpu[NCPU]; /* pointers to all CPUs */ 646 647 extern void setup_cpu_common(int); 648 extern void common_startup_init(cpu_t *, int); 649 extern void start_cpu(int, void(*func)(int)); 650 extern void cold_flag_set(int cpuid); 651 652 /* 653 * cpu_bringup_set is a tunable (via /etc/system, debugger, etc.) that 654 * can be used during debugging to control which processors are brought 655 * online at boot time. The variable represents a bitmap of the id's 656 * of the processors that will be brought online. The initialization 657 * of this variable depends on the type of cpuset_t, which varies 658 * depending on the number of processors supported (see cpuvar.h). 659 */ 660 cpuset_t cpu_bringup_set; 661 662 663 /* 664 * Generic start-all cpus entry. Typically used during cold initialization. 665 * Note that cold start cpus are initialized into the online state. 666 */ 667 /*ARGSUSED*/ 668 void 669 start_other_cpus(int flag) 670 { 671 int cpuid; 672 extern void idlestop_init(void); 673 int bootcpu; 674 675 /* 676 * Check if cpu_bringup_set has been explicitly set before 677 * initializing it. 678 */ 679 if (CPUSET_ISNULL(cpu_bringup_set)) { 680 #ifdef MPSAS 681 /* just CPU 0 */ 682 CPUSET_ADD(cpu_bringup_set, 0); 683 #else 684 CPUSET_ALL(cpu_bringup_set); 685 #endif 686 } 687 688 if (&cpu_feature_init) 689 cpu_feature_init(); 690 691 /* 692 * Initialize CPC. 693 */ 694 kcpc_hw_init(); 695 696 mutex_enter(&cpu_lock); 697 698 /* 699 * Initialize our own cpu_info. 700 */ 701 init_cpu_info(CPU); 702 703 /* 704 * Initialize CPU 0 cpu module private data area, including scrubber. 705 */ 706 cpu_init_private(CPU); 707 708 /* 709 * perform such initialization as is needed 710 * to be able to take CPUs on- and off-line. 711 */ 712 cpu_pause_init(); 713 xc_init(); /* initialize processor crosscalls */ 714 idlestop_init(); 715 716 if (!use_mp) { 717 mutex_exit(&cpu_lock); 718 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 719 return; 720 } 721 /* 722 * should we be initializing this cpu? 723 */ 724 bootcpu = getprocessorid(); 725 726 /* 727 * launch all the slave cpus now 728 */ 729 for (cpuid = 0; cpuid < NCPU; cpuid++) { 730 pnode_t nodeid = cpunodes[cpuid].nodeid; 731 732 if (nodeid == (pnode_t)0) 733 continue; 734 735 if (cpuid == bootcpu) { 736 if (!CPU_IN_SET(cpu_bringup_set, cpuid)) { 737 cmn_err(CE_WARN, "boot cpu not a member " 738 "of cpu_bringup_set, adding it"); 739 CPUSET_ADD(cpu_bringup_set, cpuid); 740 } 741 continue; 742 } 743 if (!CPU_IN_SET(cpu_bringup_set, cpuid)) 744 continue; 745 746 ASSERT(cpu[cpuid] == NULL); 747 748 setup_cpu_common(cpuid); 749 750 common_startup_init(cpu[cpuid], cpuid); 751 752 start_cpu(cpuid, cold_flag_set); 753 /* 754 * Because slave_startup() gets fired off after init() 755 * starts, we can't use the '?' trick to do 'boot -v' 756 * printing - so we always direct the 'cpu .. online' 757 * messages to the log. 758 */ 759 cmn_err(CE_CONT, "!cpu%d initialization complete - online\n", 760 cpuid); 761 762 /* 763 * XXX: register_cpu_setup() callbacks should be called here 764 * with a new setup code, CPU_BOOT (or something). 765 */ 766 if (dtrace_cpu_init != NULL) 767 (*dtrace_cpu_init)(cpuid); 768 } 769 770 /* 771 * since all the cpus are online now, redistribute interrupts to them. 772 */ 773 intr_redist_all_cpus(); 774 775 mutex_exit(&cpu_lock); 776 777 /* 778 * Start the Ecache scrubber. Must be done after all calls to 779 * cpu_init_private for every cpu (including CPU 0). 780 */ 781 cpu_init_cache_scrub(); 782 783 if (&cpu_mp_init) 784 cpu_mp_init(); 785 } 786