xref: /illumos-gate/usr/src/uts/sun4/os/mp_startup.c (revision 66582b606a8194f7f3ba5b3a3a6dca5b0d346361)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright 2019 Joyent, Inc.
29  * Copyright 2019 Peter Tribble.
30  */
31 
32 #include <sys/sysmacros.h>
33 #include <sys/prom_plat.h>
34 #include <sys/prom_debug.h>
35 #include <vm/hat_sfmmu.h>
36 #include <vm/seg_kp.h>
37 #include <vm/seg_kmem.h>
38 #include <sys/machsystm.h>
39 #include <sys/callb.h>
40 #include <sys/cpu_module.h>
41 #include <sys/pg.h>
42 #include <sys/cmt.h>
43 #include <sys/dtrace.h>
44 #include <sys/reboot.h>
45 #include <sys/kdi.h>
46 #include <sys/traptrace.h>
47 #ifdef TRAPTRACE
48 #include <sys/bootconf.h>
49 #endif /* TRAPTRACE */
50 #include <sys/cpu_sgnblk_defs.h>
51 
52 extern int cpu_intrq_setup(struct cpu *);
53 extern void cpu_intrq_cleanup(struct cpu *);
54 extern void cpu_intrq_register(struct cpu *);
55 
56 struct cpu	*cpus;	/* pointer to other cpus; dynamically allocate */
57 struct cpu	*cpu[NCPU];	/* pointers to all CPUs */
58 uint64_t	cpu_pa[NCPU];	/* pointers to all CPUs in PA */
59 cpu_core_t	cpu_core[NCPU];	/* cpu_core structures */
60 
61 #ifdef TRAPTRACE
62 caddr_t	ttrace_buf;	/* kmem64 traptrace for all cpus except 0 */
63 #endif /* TRAPTRACE */
64 
65 /* bit mask of cpus ready for x-calls, protected by cpu_lock */
66 cpuset_t cpu_ready_set;
67 
68 /* bit mask used to communicate with cpus during bringup */
69 static cpuset_t proxy_ready_set;
70 
71 static void	slave_startup(void);
72 
73 /*
74  * Defined in $KARCH/os/mach_mp_startup.c
75  */
76 #pragma weak init_cpu_info
77 
78 /*
79  * Amount of time (in milliseconds) we should wait before giving up on CPU
80  * initialization and assuming that the CPU we're trying to wake up is dead
81  * or out of control.
82  */
83 #define	CPU_WAKEUP_GRACE_MSEC 1000
84 
85 #ifdef	TRAPTRACE
86 /*
87  * This function sets traptrace buffers for all cpus
88  * other than boot cpu.
89  */
90 size_t
91 calc_traptrace_sz(void)
92 {
93 	return (TRAP_TSIZE * (max_ncpus - 1));
94 }
95 #endif	/* TRAPTRACE */
96 
97 
98 /*
99  * common slave cpu initialization code
100  */
101 void
102 common_startup_init(cpu_t *cp, int cpuid)
103 {
104 	kthread_id_t tp;
105 	sfmmu_t *sfmmup;
106 	caddr_t	sp;
107 
108 	/*
109 	 * Allocate and initialize the startup thread for this CPU.
110 	 */
111 	tp = thread_create(NULL, 0, slave_startup, NULL, 0, &p0,
112 	    TS_STOPPED, maxclsyspri);
113 
114 	/*
115 	 * Set state to TS_ONPROC since this thread will start running
116 	 * as soon as the CPU comes online.
117 	 *
118 	 * All the other fields of the thread structure are setup by
119 	 * thread_create().
120 	 */
121 	THREAD_ONPROC(tp, cp);
122 	tp->t_preempt = 1;
123 	tp->t_bound_cpu = cp;
124 	tp->t_affinitycnt = 1;
125 	tp->t_cpu = cp;
126 	tp->t_disp_queue = cp->cpu_disp;
127 
128 	sfmmup = astosfmmu(&kas);
129 	CPUSET_ADD(sfmmup->sfmmu_cpusran, cpuid);
130 
131 	/*
132 	 * Setup thread to start in slave_startup.
133 	 */
134 	sp = tp->t_stk;
135 	tp->t_pc = (uintptr_t)slave_startup - 8;
136 	tp->t_sp = (uintptr_t)((struct rwindow *)sp - 1) - STACK_BIAS;
137 
138 	cp->cpu_id = cpuid;
139 	cp->cpu_self = cp;
140 	cp->cpu_thread = tp;
141 	cp->cpu_lwp = NULL;
142 	cp->cpu_dispthread = tp;
143 	cp->cpu_dispatch_pri = DISP_PRIO(tp);
144 	cp->cpu_startup_thread = tp;
145 
146 	/*
147 	 * The dispatcher may discover the CPU before it is in cpu_ready_set
148 	 * and attempt to poke it. Before the CPU is in cpu_ready_set, any
149 	 * cross calls to it will be dropped. We initialize
150 	 * poke_cpu_outstanding to true so that poke_cpu will ignore any poke
151 	 * requests for this CPU. Pokes that come in before the CPU is in
152 	 * cpu_ready_set can be ignored because the CPU is about to come
153 	 * online.
154 	 */
155 	cp->cpu_m.poke_cpu_outstanding = B_TRUE;
156 }
157 
158 /*
159  * parametric flag setting functions.  these routines set the cpu
160  * state just prior to releasing the slave cpu.
161  */
162 void
163 cold_flag_set(int cpuid)
164 {
165 	cpu_t *cp;
166 
167 	ASSERT(MUTEX_HELD(&cpu_lock));
168 
169 	cp = cpu[cpuid];
170 
171 	if (!(cp->cpu_flags & CPU_ENABLE))
172 		ncpus_intr_enabled++;
173 
174 	cp->cpu_flags |= CPU_RUNNING | CPU_ENABLE | CPU_EXISTS;
175 	cpu_add_active(cp);
176 	/*
177 	 * Add CPU_READY after the cpu_add_active() call
178 	 * to avoid pausing cp.
179 	 */
180 	cp->cpu_flags |= CPU_READY;		/* ready */
181 	cpu_set_state(cp);
182 }
183 
184 static void
185 warm_flag_set(int cpuid)
186 {
187 	cpu_t *cp;
188 
189 	ASSERT(MUTEX_HELD(&cpu_lock));
190 
191 	/*
192 	 * warm start activates cpus into the OFFLINE state
193 	 */
194 	cp = cpu[cpuid];
195 	cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS
196 	    | CPU_OFFLINE | CPU_QUIESCED;
197 	cpu_set_state(cp);
198 }
199 
200 /*
201  * Internal cpu startup sequencer
202  * The sequence is as follows:
203  *
204  * MASTER	SLAVE
205  * -------	----------
206  * assume the kernel data is initialized
207  * clear the proxy bit
208  * start the slave cpu
209  * wait for the slave cpu to set the proxy
210  *
211  *		the slave runs slave_startup and then sets the proxy
212  *		the slave waits for the master to add slave to the ready set
213  *
214  * the master finishes the initialization and
215  * adds the slave to the ready set
216  *
217  *		the slave exits the startup thread and is running
218  */
219 void
220 start_cpu(int cpuid, void(*flag_func)(int))
221 {
222 	extern void cpu_startup(int);
223 	int timout;
224 
225 	ASSERT(MUTEX_HELD(&cpu_lock));
226 
227 	/*
228 	 * Before we begin the dance, tell DTrace that we're about to start
229 	 * a CPU.
230 	 */
231 	if (dtrace_cpustart_init != NULL)
232 		(*dtrace_cpustart_init)();
233 
234 	/* start the slave cpu */
235 	CPUSET_DEL(proxy_ready_set, cpuid);
236 	if (prom_test("SUNW,start-cpu-by-cpuid") == 0) {
237 		(void) prom_startcpu_bycpuid(cpuid, (caddr_t)&cpu_startup,
238 		    cpuid);
239 	} else {
240 		/* "by-cpuid" interface didn't exist.  Do it the old way */
241 		pnode_t nodeid = cpunodes[cpuid].nodeid;
242 
243 		ASSERT(nodeid != (pnode_t)0);
244 		(void) prom_startcpu(nodeid, (caddr_t)&cpu_startup, cpuid);
245 	}
246 
247 	/* wait for the slave cpu to check in. */
248 	for (timout = CPU_WAKEUP_GRACE_MSEC; timout; timout--) {
249 		if (CPU_IN_SET(proxy_ready_set, cpuid))
250 			break;
251 		DELAY(1000);
252 	}
253 	if (timout == 0) {
254 		panic("cpu%d failed to start (2)", cpuid);
255 	}
256 
257 	/*
258 	 * The slave has started; we can tell DTrace that it's safe again.
259 	 */
260 	if (dtrace_cpustart_fini != NULL)
261 		(*dtrace_cpustart_fini)();
262 
263 	/* run the master side of stick synchronization for the slave cpu */
264 	sticksync_master();
265 
266 	/*
267 	 * deal with the cpu flags in a phase-specific manner
268 	 * for various reasons, this needs to run after the slave
269 	 * is checked in but before the slave is released.
270 	 */
271 	(*flag_func)(cpuid);
272 
273 	/* release the slave */
274 	CPUSET_ADD(cpu_ready_set, cpuid);
275 }
276 
277 #ifdef TRAPTRACE
278 int trap_tr0_inuse = 1;	/* it is always used on the boot cpu */
279 int trap_trace_inuse[NCPU];
280 #endif /* TRAPTRACE */
281 
282 #define	cpu_next_free	cpu_prev
283 
284 /*
285  * Routine to set up a CPU to prepare for starting it up.
286  */
287 int
288 setup_cpu_common(int cpuid)
289 {
290 	struct cpu *cp = NULL;
291 	kthread_id_t tp;
292 #ifdef TRAPTRACE
293 	int tt_index;
294 	TRAP_TRACE_CTL	*ctlp;
295 	caddr_t	newbuf;
296 #endif /* TRAPTRACE */
297 
298 	extern void idle();
299 	int	rval;
300 
301 	ASSERT(MUTEX_HELD(&cpu_lock));
302 	ASSERT(cpu[cpuid] == NULL);
303 
304 	ASSERT(ncpus <= max_ncpus);
305 
306 #ifdef TRAPTRACE
307 	/*
308 	 * allocate a traptrace buffer for this CPU.
309 	 */
310 	ctlp = &trap_trace_ctl[cpuid];
311 	if (!trap_tr0_inuse) {
312 		trap_tr0_inuse = 1;
313 		newbuf = trap_tr0;
314 		tt_index = -1;
315 	} else {
316 		for (tt_index = 0; tt_index < (max_ncpus-1); tt_index++)
317 			if (!trap_trace_inuse[tt_index])
318 				break;
319 		ASSERT(tt_index < max_ncpus - 1);
320 		trap_trace_inuse[tt_index] = 1;
321 		newbuf = (caddr_t)(ttrace_buf + (tt_index * TRAP_TSIZE));
322 	}
323 	ctlp->d.vaddr_base = newbuf;
324 	ctlp->d.offset = ctlp->d.last_offset = 0;
325 	ctlp->d.limit = trap_trace_bufsize;
326 	ctlp->d.paddr_base = va_to_pa(newbuf);
327 	ASSERT(ctlp->d.paddr_base != (uint64_t)-1);
328 #endif /* TRAPTRACE */
329 	/*
330 	 * initialize hv traptrace buffer for this CPU
331 	 */
332 	mach_htraptrace_setup(cpuid);
333 
334 	/*
335 	 * Obtain pointer to the appropriate cpu structure.
336 	 */
337 	if (cpu0.cpu_flags == 0) {
338 		cp = &cpu0;
339 	} else {
340 		/*
341 		 *  When dynamically allocating cpu structs,
342 		 *  cpus is used as a pointer to a list of freed
343 		 *  cpu structs.
344 		 */
345 		if (cpus) {
346 			/* grab the first cpu struct on the free list */
347 			cp = cpus;
348 			if (cp->cpu_next_free)
349 				cpus = cp->cpu_next_free;
350 			else
351 				cpus = NULL;
352 		}
353 	}
354 
355 	if (cp == NULL)
356 		cp = vmem_xalloc(static_alloc_arena, CPU_ALLOC_SIZE,
357 		    CPU_ALLOC_SIZE, 0, 0, NULL, NULL, VM_SLEEP);
358 
359 	bzero(cp, sizeof (*cp));
360 
361 	cp->cpu_id = cpuid;
362 	cp->cpu_self = cp;
363 
364 	/*
365 	 * Initialize ptl1_panic stack
366 	 */
367 	ptl1_init_cpu(cp);
368 
369 	/*
370 	 * Initialize the dispatcher for this CPU.
371 	 */
372 	disp_cpu_init(cp);
373 
374 	/*
375 	 * Bootstrap the CPU's PG data
376 	 */
377 	pg_cpu_bootstrap(cp);
378 
379 	cpu_vm_data_init(cp);
380 
381 	/*
382 	 * Now, initialize per-CPU idle thread for this CPU.
383 	 */
384 	tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_ONPROC, -1);
385 
386 	cp->cpu_idle_thread = tp;
387 
388 	tp->t_preempt = 1;
389 	tp->t_bound_cpu = cp;
390 	tp->t_affinitycnt = 1;
391 	tp->t_cpu = cp;
392 	tp->t_disp_queue = cp->cpu_disp;
393 
394 	/*
395 	 * Registering a thread in the callback table is usually
396 	 * done in the initialization code of the thread. In this
397 	 * case, we do it right after thread creation to avoid
398 	 * blocking idle thread while registering itself. It also
399 	 * avoids the possibility of reregistration in case a CPU
400 	 * restarts its idle thread.
401 	 */
402 	CALLB_CPR_INIT_SAFE(tp, "idle");
403 
404 	init_cpu_info(cp);
405 
406 	/*
407 	 * Initialize the interrupt threads for this CPU
408 	 */
409 	cpu_intr_alloc(cp, NINTR_THREADS);
410 
411 	/*
412 	 * Add CPU to list of available CPUs.
413 	 * It'll be on the active list after it is started.
414 	 */
415 	cpu_add_unit(cp);
416 
417 	/*
418 	 * Allocate and init cpu module private data structures,
419 	 * including scrubber.
420 	 */
421 	cpu_init_private(cp);
422 	populate_idstr(cp);
423 
424 	/*
425 	 * Initialize the CPUs physical ID cache, and processor groups
426 	 */
427 	pghw_physid_create(cp);
428 	(void) pg_cpu_init(cp, B_FALSE);
429 
430 	if ((rval = cpu_intrq_setup(cp)) != 0) {
431 		return (rval);
432 	}
433 
434 	/*
435 	 * Initialize MMU context domain information.
436 	 */
437 	sfmmu_cpu_init(cp);
438 
439 	return (0);
440 }
441 
442 /*
443  * Routine to clean up a CPU after shutting it down.
444  */
445 int
446 cleanup_cpu_common(int cpuid)
447 {
448 	struct cpu *cp;
449 #ifdef TRAPTRACE
450 	int i;
451 	TRAP_TRACE_CTL	*ctlp;
452 	caddr_t	newbuf;
453 #endif /* TRAPTRACE */
454 
455 	ASSERT(MUTEX_HELD(&cpu_lock));
456 	ASSERT(cpu[cpuid] != NULL);
457 
458 	cp = cpu[cpuid];
459 
460 	/* Free cpu module private data structures, including scrubber. */
461 	cpu_uninit_private(cp);
462 
463 	/* Free cpu ID string and brand string. */
464 	if (cp->cpu_idstr)
465 		kmem_free(cp->cpu_idstr, strlen(cp->cpu_idstr) + 1);
466 	if (cp->cpu_brandstr)
467 		kmem_free(cp->cpu_brandstr, strlen(cp->cpu_brandstr) + 1);
468 
469 	cpu_vm_data_destroy(cp);
470 
471 	/*
472 	 * Remove CPU from list of available CPUs.
473 	 */
474 	cpu_del_unit(cpuid);
475 
476 	/*
477 	 * Clean any machine specific interrupt states.
478 	 */
479 	cpu_intrq_cleanup(cp);
480 
481 	/*
482 	 * At this point, the only threads bound to this CPU should be
483 	 * special per-cpu threads: it's idle thread, it's pause thread,
484 	 * and it's interrupt threads.  Clean these up.
485 	 */
486 	cpu_destroy_bound_threads(cp);
487 
488 	/*
489 	 * Free the interrupt stack.
490 	 */
491 	segkp_release(segkp, cp->cpu_intr_stack);
492 
493 	/*
494 	 * Free hv traptrace buffer for this CPU.
495 	 */
496 	mach_htraptrace_cleanup(cpuid);
497 #ifdef TRAPTRACE
498 	/*
499 	 * Free the traptrace buffer for this CPU.
500 	 */
501 	ctlp = &trap_trace_ctl[cpuid];
502 	newbuf = ctlp->d.vaddr_base;
503 	i = (newbuf - ttrace_buf) / (TRAP_TSIZE);
504 	if (((newbuf - ttrace_buf) % (TRAP_TSIZE) == 0) &&
505 	    ((i >= 0) && (i < (max_ncpus-1)))) {
506 		/*
507 		 * This CPU got it's trap trace buffer from the
508 		 * boot-alloc'd bunch of them.
509 		 */
510 		trap_trace_inuse[i] = 0;
511 		bzero(newbuf, (TRAP_TSIZE));
512 	} else if (newbuf == trap_tr0) {
513 		trap_tr0_inuse = 0;
514 		bzero(trap_tr0, (TRAP_TSIZE));
515 	} else {
516 		cmn_err(CE_WARN, "failed to free trap trace buffer from cpu%d",
517 		    cpuid);
518 	}
519 	bzero(ctlp, sizeof (*ctlp));
520 #endif /* TRAPTRACE */
521 
522 	/*
523 	 * There is a race condition with mutex_vector_enter() which
524 	 * caches a cpu pointer. The race is detected by checking cpu_next.
525 	 */
526 	disp_cpu_fini(cp);
527 	cpu_pa[cpuid] = 0;
528 	if (CPU_MMU_CTXP(cp))
529 		sfmmu_cpu_cleanup(cp);
530 	bzero(cp, sizeof (*cp));
531 
532 	/*
533 	 * Place the freed cpu structure on the list of freed cpus.
534 	 */
535 	if (cp != &cpu0) {
536 		if (cpus) {
537 			cp->cpu_next_free = cpus;
538 			cpus = cp;
539 		}
540 		else
541 			cpus = cp;
542 	}
543 
544 	return (0);
545 }
546 
547 /*
548  * This routine is used to start a previously powered off processor.
549  * Note that restarted cpus are initialized into the offline state.
550  */
551 void
552 restart_other_cpu(int cpuid)
553 {
554 	struct cpu *cp;
555 	kthread_id_t tp;
556 	caddr_t	sp;
557 	extern void idle();
558 
559 	ASSERT(MUTEX_HELD(&cpu_lock));
560 	ASSERT(cpuid < NCPU && cpu[cpuid] != NULL);
561 
562 	/*
563 	 * Obtain pointer to the appropriate cpu structure.
564 	 */
565 	cp = cpu[cpuid];
566 
567 	common_startup_init(cp, cpuid);
568 
569 	/*
570 	 * idle thread t_lock is held when the idle thread is suspended.
571 	 * Manually unlock the t_lock of idle loop so that we can resume
572 	 * the suspended idle thread.
573 	 * Also adjust the PC of idle thread for re-retry.
574 	 */
575 	cp->cpu_intr_actv = 0;	/* clear the value from previous life */
576 	cp->cpu_m.mutex_ready = 0; /* we are not ready yet */
577 	lock_clear(&cp->cpu_idle_thread->t_lock);
578 	tp = cp->cpu_idle_thread;
579 
580 	sp = tp->t_stk;
581 	tp->t_sp = (uintptr_t)((struct rwindow *)sp - 1) - STACK_BIAS;
582 	tp->t_pc = (uintptr_t)idle - 8;
583 
584 	/*
585 	 * restart the cpu now
586 	 */
587 	promsafe_pause_cpus();
588 	start_cpu(cpuid, warm_flag_set);
589 	start_cpus();
590 
591 	/* call cmn_err outside pause_cpus/start_cpus to avoid deadlock */
592 	cmn_err(CE_CONT, "!cpu%d initialization complete - restarted\n",
593 	    cpuid);
594 }
595 
596 /*
597  * Startup function executed on 'other' CPUs.  This is the first
598  * C function after cpu_start sets up the cpu registers.
599  */
600 static void
601 slave_startup(void)
602 {
603 	struct cpu	*cp = CPU;
604 	ushort_t	original_flags = cp->cpu_flags;
605 
606 	mach_htraptrace_configure(cp->cpu_id);
607 	cpu_intrq_register(CPU);
608 	cp->cpu_m.mutex_ready = 1;
609 
610 	/* acknowledge that we are done with initialization */
611 	CPUSET_ADD(proxy_ready_set, cp->cpu_id);
612 
613 	/* synchronize STICK */
614 	sticksync_slave();
615 
616 	if (boothowto & RB_DEBUG)
617 		kdi_dvec_cpu_init(cp);
618 
619 	/*
620 	 * the slave will wait here forever -- assuming that the master
621 	 * will get back to us.  if it doesn't we've got bigger problems
622 	 * than a master not replying to this slave.
623 	 * the small delay improves the slave's responsiveness to the
624 	 * master's ack and decreases the time window between master and
625 	 * slave operations.
626 	 */
627 	while (!CPU_IN_SET(cpu_ready_set, cp->cpu_id))
628 		DELAY(1);
629 
630 	/*
631 	 * The CPU is now in cpu_ready_set, safely able to take pokes.
632 	 */
633 	cp->cpu_m.poke_cpu_outstanding = B_FALSE;
634 
635 	/* enable interrupts */
636 	(void) spl0();
637 
638 	/*
639 	 * Signature block update to indicate that this CPU is in OS now.
640 	 * This needs to be done after the PIL is lowered since on
641 	 * some platforms the update code may block.
642 	 */
643 	CPU_SIGNATURE(OS_SIG, SIGST_RUN, SIGSUBST_NULL, cp->cpu_id);
644 
645 	/*
646 	 * park the slave thread in a safe/quiet state and wait for the master
647 	 * to finish configuring this CPU before proceeding to thread_exit().
648 	 */
649 	while (((volatile ushort_t)cp->cpu_flags) & CPU_QUIESCED)
650 		DELAY(1);
651 
652 	/*
653 	 * Initialize CPC CPU state.
654 	 */
655 	kcpc_hw_startup_cpu(original_flags);
656 
657 	/*
658 	 * Notify the PG subsystem that the CPU  has started
659 	 */
660 	pg_cmt_cpu_startup(CPU);
661 
662 	/*
663 	 * Now we are done with the startup thread, so free it up.
664 	 */
665 	thread_exit();
666 	cmn_err(CE_PANIC, "slave_startup: cannot return");
667 	/*NOTREACHED*/
668 }
669 
670 extern struct cpu	*cpu[NCPU];	/* pointers to all CPUs */
671 
672 /*
673  * cpu_bringup_set is a tunable (via /etc/system, debugger, etc.) that
674  * can be used during debugging to control which processors are brought
675  * online at boot time.  The variable represents a bitmap of the id's
676  * of the processors that will be brought online.  The initialization
677  * of this variable depends on the type of cpuset_t, which varies
678  * depending on the number of processors supported (see cpuvar.h).
679  */
680 cpuset_t cpu_bringup_set;
681 
682 
683 /*
684  * Generic start-all cpus entry.  Typically used during cold initialization.
685  * Note that cold start cpus are initialized into the online state.
686  */
687 /*ARGSUSED*/
688 void
689 start_other_cpus(int flag)
690 {
691 	int cpuid;
692 	extern void idlestop_init(void);
693 	int bootcpu;
694 
695 	/*
696 	 * Check if cpu_bringup_set has been explicitly set before
697 	 * initializing it.
698 	 */
699 	if (CPUSET_ISNULL(cpu_bringup_set)) {
700 		CPUSET_ALL(cpu_bringup_set);
701 	}
702 
703 	if (&cpu_feature_init)
704 		cpu_feature_init();
705 
706 	/*
707 	 * Initialize CPC.
708 	 */
709 	kcpc_hw_init();
710 
711 	mutex_enter(&cpu_lock);
712 
713 	/*
714 	 * Initialize our own cpu_info.
715 	 */
716 	init_cpu_info(CPU);
717 
718 	/*
719 	 * Initialize CPU 0 cpu module private data area, including scrubber.
720 	 */
721 	cpu_init_private(CPU);
722 	populate_idstr(CPU);
723 
724 	/*
725 	 * perform such initialization as is needed
726 	 * to be able to take CPUs on- and off-line.
727 	 */
728 	cpu_pause_init();
729 	xc_init();		/* initialize processor crosscalls */
730 	idlestop_init();
731 
732 	if (!use_mp) {
733 		mutex_exit(&cpu_lock);
734 		cmn_err(CE_CONT, "?***** Not in MP mode\n");
735 		return;
736 	}
737 	/*
738 	 * should we be initializing this cpu?
739 	 */
740 	bootcpu = getprocessorid();
741 
742 	/*
743 	 * launch all the slave cpus now
744 	 */
745 	for (cpuid = 0; cpuid < NCPU; cpuid++) {
746 		pnode_t nodeid = cpunodes[cpuid].nodeid;
747 
748 		if (nodeid == (pnode_t)0)
749 			continue;
750 
751 		if (cpuid == bootcpu) {
752 			if (!CPU_IN_SET(cpu_bringup_set, cpuid)) {
753 				cmn_err(CE_WARN, "boot cpu not a member "
754 				    "of cpu_bringup_set, adding it");
755 				CPUSET_ADD(cpu_bringup_set, cpuid);
756 			}
757 			continue;
758 		}
759 		if (!CPU_IN_SET(cpu_bringup_set, cpuid))
760 			continue;
761 
762 		ASSERT(cpu[cpuid] == NULL);
763 
764 		if (setup_cpu_common(cpuid)) {
765 			cmn_err(CE_PANIC, "cpu%d: setup failed", cpuid);
766 		}
767 
768 		common_startup_init(cpu[cpuid], cpuid);
769 
770 		start_cpu(cpuid, cold_flag_set);
771 		/*
772 		 * Because slave_startup() gets fired off after init()
773 		 * starts, we can't use the '?' trick to do 'boot -v'
774 		 * printing - so we always direct the 'cpu .. online'
775 		 * messages to the log.
776 		 */
777 		cmn_err(CE_CONT, "!cpu%d initialization complete - online\n",
778 		    cpuid);
779 
780 		cpu_state_change_notify(cpuid, CPU_SETUP);
781 
782 		if (dtrace_cpu_init != NULL)
783 			(*dtrace_cpu_init)(cpuid);
784 	}
785 
786 	/*
787 	 * since all the cpus are online now, redistribute interrupts to them.
788 	 */
789 	intr_redist_all_cpus();
790 
791 	mutex_exit(&cpu_lock);
792 
793 	/*
794 	 * Start the Ecache scrubber.  Must be done after all calls to
795 	 * cpu_init_private for every cpu (including CPU 0).
796 	 */
797 	cpu_init_cache_scrub();
798 
799 	if (&cpu_mp_init)
800 		cpu_mp_init();
801 }
802