1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/sysmacros.h> 28 #include <sys/prom_plat.h> 29 #include <sys/prom_debug.h> 30 #include <vm/hat_sfmmu.h> 31 #include <vm/seg_kp.h> 32 #include <vm/seg_kmem.h> 33 #include <sys/machsystm.h> 34 #include <sys/callb.h> 35 #include <sys/cpu_module.h> 36 #include <sys/pg.h> 37 #include <sys/cmt.h> 38 #include <sys/dtrace.h> 39 #include <sys/reboot.h> 40 #include <sys/kdi.h> 41 #include <sys/traptrace.h> 42 #ifdef TRAPTRACE 43 #include <sys/bootconf.h> 44 #endif /* TRAPTRACE */ 45 #include <sys/cpu_sgnblk_defs.h> 46 47 extern int cpu_intrq_setup(struct cpu *); 48 extern void cpu_intrq_cleanup(struct cpu *); 49 extern void cpu_intrq_register(struct cpu *); 50 51 struct cpu *cpus; /* pointer to other cpus; dynamically allocate */ 52 struct cpu *cpu[NCPU]; /* pointers to all CPUs */ 53 uint64_t cpu_pa[NCPU]; /* pointers to all CPUs in PA */ 54 cpu_core_t cpu_core[NCPU]; /* cpu_core structures */ 55 56 #ifdef TRAPTRACE 57 caddr_t ttrace_buf; /* kmem64 traptrace for all cpus except 0 */ 58 #endif /* TRAPTRACE */ 59 60 /* bit mask of cpus ready for x-calls, protected by cpu_lock */ 61 cpuset_t cpu_ready_set; 62 63 /* bit mask used to communicate with cpus during bringup */ 64 static cpuset_t proxy_ready_set; 65 66 static void slave_startup(void); 67 68 /* 69 * Defined in $KARCH/os/mach_mp_startup.c 70 */ 71 #pragma weak init_cpu_info 72 73 /* 74 * Amount of time (in milliseconds) we should wait before giving up on CPU 75 * initialization and assuming that the CPU we're trying to wake up is dead 76 * or out of control. 77 */ 78 #define CPU_WAKEUP_GRACE_MSEC 1000 79 80 #ifdef TRAPTRACE 81 /* 82 * This function sets traptrace buffers for all cpus 83 * other than boot cpu. 84 */ 85 size_t 86 calc_traptrace_sz(void) 87 { 88 return (TRAP_TSIZE * (max_ncpus - 1)); 89 } 90 #endif /* TRAPTRACE */ 91 92 93 /* 94 * common slave cpu initialization code 95 */ 96 void 97 common_startup_init(cpu_t *cp, int cpuid) 98 { 99 kthread_id_t tp; 100 sfmmu_t *sfmmup; 101 caddr_t sp; 102 103 /* 104 * Allocate and initialize the startup thread for this CPU. 105 */ 106 tp = thread_create(NULL, 0, slave_startup, NULL, 0, &p0, 107 TS_STOPPED, maxclsyspri); 108 109 /* 110 * Set state to TS_ONPROC since this thread will start running 111 * as soon as the CPU comes online. 112 * 113 * All the other fields of the thread structure are setup by 114 * thread_create(). 115 */ 116 THREAD_ONPROC(tp, cp); 117 tp->t_preempt = 1; 118 tp->t_bound_cpu = cp; 119 tp->t_affinitycnt = 1; 120 tp->t_cpu = cp; 121 tp->t_disp_queue = cp->cpu_disp; 122 123 sfmmup = astosfmmu(&kas); 124 CPUSET_ADD(sfmmup->sfmmu_cpusran, cpuid); 125 126 /* 127 * Setup thread to start in slave_startup. 128 */ 129 sp = tp->t_stk; 130 tp->t_pc = (uintptr_t)slave_startup - 8; 131 tp->t_sp = (uintptr_t)((struct rwindow *)sp - 1) - STACK_BIAS; 132 133 cp->cpu_id = cpuid; 134 cp->cpu_self = cp; 135 cp->cpu_thread = tp; 136 cp->cpu_lwp = NULL; 137 cp->cpu_dispthread = tp; 138 cp->cpu_dispatch_pri = DISP_PRIO(tp); 139 cp->cpu_startup_thread = tp; 140 } 141 142 /* 143 * parametric flag setting functions. these routines set the cpu 144 * state just prior to releasing the slave cpu. 145 */ 146 void 147 cold_flag_set(int cpuid) 148 { 149 cpu_t *cp; 150 151 ASSERT(MUTEX_HELD(&cpu_lock)); 152 153 cp = cpu[cpuid]; 154 cp->cpu_flags |= CPU_RUNNING | CPU_ENABLE | CPU_EXISTS; 155 cpu_add_active(cp); 156 /* 157 * Add CPU_READY after the cpu_add_active() call 158 * to avoid pausing cp. 159 */ 160 cp->cpu_flags |= CPU_READY; /* ready */ 161 cpu_set_state(cp); 162 } 163 164 static void 165 warm_flag_set(int cpuid) 166 { 167 cpu_t *cp; 168 169 ASSERT(MUTEX_HELD(&cpu_lock)); 170 171 /* 172 * warm start activates cpus into the OFFLINE state 173 */ 174 cp = cpu[cpuid]; 175 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS 176 | CPU_OFFLINE | CPU_QUIESCED; 177 cpu_set_state(cp); 178 } 179 180 /* 181 * Internal cpu startup sequencer 182 * The sequence is as follows: 183 * 184 * MASTER SLAVE 185 * ------- ---------- 186 * assume the kernel data is initialized 187 * clear the proxy bit 188 * start the slave cpu 189 * wait for the slave cpu to set the proxy 190 * 191 * the slave runs slave_startup and then sets the proxy 192 * the slave waits for the master to add slave to the ready set 193 * 194 * the master finishes the initialization and 195 * adds the slave to the ready set 196 * 197 * the slave exits the startup thread and is running 198 */ 199 void 200 start_cpu(int cpuid, void(*flag_func)(int)) 201 { 202 extern void cpu_startup(int); 203 int timout; 204 205 ASSERT(MUTEX_HELD(&cpu_lock)); 206 207 /* 208 * Before we begin the dance, tell DTrace that we're about to start 209 * a CPU. 210 */ 211 if (dtrace_cpustart_init != NULL) 212 (*dtrace_cpustart_init)(); 213 214 /* start the slave cpu */ 215 CPUSET_DEL(proxy_ready_set, cpuid); 216 if (prom_test("SUNW,start-cpu-by-cpuid") == 0) { 217 (void) prom_startcpu_bycpuid(cpuid, (caddr_t)&cpu_startup, 218 cpuid); 219 } else { 220 /* "by-cpuid" interface didn't exist. Do it the old way */ 221 pnode_t nodeid = cpunodes[cpuid].nodeid; 222 223 ASSERT(nodeid != (pnode_t)0); 224 (void) prom_startcpu(nodeid, (caddr_t)&cpu_startup, cpuid); 225 } 226 227 /* wait for the slave cpu to check in. */ 228 for (timout = CPU_WAKEUP_GRACE_MSEC; timout; timout--) { 229 if (CPU_IN_SET(proxy_ready_set, cpuid)) 230 break; 231 DELAY(1000); 232 } 233 if (timout == 0) { 234 panic("cpu%d failed to start (2)", cpuid); 235 } 236 237 /* 238 * The slave has started; we can tell DTrace that it's safe again. 239 */ 240 if (dtrace_cpustart_fini != NULL) 241 (*dtrace_cpustart_fini)(); 242 243 /* run the master side of stick synchronization for the slave cpu */ 244 sticksync_master(); 245 246 /* 247 * deal with the cpu flags in a phase-specific manner 248 * for various reasons, this needs to run after the slave 249 * is checked in but before the slave is released. 250 */ 251 (*flag_func)(cpuid); 252 253 /* release the slave */ 254 CPUSET_ADD(cpu_ready_set, cpuid); 255 } 256 257 #ifdef TRAPTRACE 258 int trap_tr0_inuse = 1; /* it is always used on the boot cpu */ 259 int trap_trace_inuse[NCPU]; 260 #endif /* TRAPTRACE */ 261 262 #define cpu_next_free cpu_prev 263 264 /* 265 * Routine to set up a CPU to prepare for starting it up. 266 */ 267 int 268 setup_cpu_common(int cpuid) 269 { 270 struct cpu *cp = NULL; 271 kthread_id_t tp; 272 #ifdef TRAPTRACE 273 int tt_index; 274 TRAP_TRACE_CTL *ctlp; 275 caddr_t newbuf; 276 #endif /* TRAPTRACE */ 277 278 extern void idle(); 279 int rval; 280 281 ASSERT(MUTEX_HELD(&cpu_lock)); 282 ASSERT(cpu[cpuid] == NULL); 283 284 ASSERT(ncpus <= max_ncpus); 285 286 #ifdef TRAPTRACE 287 /* 288 * allocate a traptrace buffer for this CPU. 289 */ 290 ctlp = &trap_trace_ctl[cpuid]; 291 if (!trap_tr0_inuse) { 292 trap_tr0_inuse = 1; 293 newbuf = trap_tr0; 294 tt_index = -1; 295 } else { 296 for (tt_index = 0; tt_index < (max_ncpus-1); tt_index++) 297 if (!trap_trace_inuse[tt_index]) 298 break; 299 ASSERT(tt_index < max_ncpus - 1); 300 trap_trace_inuse[tt_index] = 1; 301 newbuf = (caddr_t)(ttrace_buf + (tt_index * TRAP_TSIZE)); 302 } 303 ctlp->d.vaddr_base = newbuf; 304 ctlp->d.offset = ctlp->d.last_offset = 0; 305 ctlp->d.limit = trap_trace_bufsize; 306 ctlp->d.paddr_base = va_to_pa(newbuf); 307 ASSERT(ctlp->d.paddr_base != (uint64_t)-1); 308 #endif /* TRAPTRACE */ 309 /* 310 * initialize hv traptrace buffer for this CPU 311 */ 312 mach_htraptrace_setup(cpuid); 313 314 /* 315 * Obtain pointer to the appropriate cpu structure. 316 */ 317 if (cpu0.cpu_flags == 0) { 318 cp = &cpu0; 319 } else { 320 /* 321 * When dynamically allocating cpu structs, 322 * cpus is used as a pointer to a list of freed 323 * cpu structs. 324 */ 325 if (cpus) { 326 /* grab the first cpu struct on the free list */ 327 cp = cpus; 328 if (cp->cpu_next_free) 329 cpus = cp->cpu_next_free; 330 else 331 cpus = NULL; 332 } 333 } 334 335 if (cp == NULL) 336 cp = vmem_xalloc(static_alloc_arena, CPU_ALLOC_SIZE, 337 CPU_ALLOC_SIZE, 0, 0, NULL, NULL, VM_SLEEP); 338 339 bzero(cp, sizeof (*cp)); 340 341 cp->cpu_id = cpuid; 342 cp->cpu_self = cp; 343 344 /* 345 * Initialize ptl1_panic stack 346 */ 347 ptl1_init_cpu(cp); 348 349 /* 350 * Initialize the dispatcher for this CPU. 351 */ 352 disp_cpu_init(cp); 353 354 /* 355 * Bootstrap the CPU's PG data 356 */ 357 pg_cpu_bootstrap(cp); 358 359 cpu_vm_data_init(cp); 360 361 /* 362 * Now, initialize per-CPU idle thread for this CPU. 363 */ 364 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_ONPROC, -1); 365 366 cp->cpu_idle_thread = tp; 367 368 tp->t_preempt = 1; 369 tp->t_bound_cpu = cp; 370 tp->t_affinitycnt = 1; 371 tp->t_cpu = cp; 372 tp->t_disp_queue = cp->cpu_disp; 373 374 /* 375 * Registering a thread in the callback table is usually 376 * done in the initialization code of the thread. In this 377 * case, we do it right after thread creation to avoid 378 * blocking idle thread while registering itself. It also 379 * avoids the possibility of reregistration in case a CPU 380 * restarts its idle thread. 381 */ 382 CALLB_CPR_INIT_SAFE(tp, "idle"); 383 384 init_cpu_info(cp); 385 386 /* 387 * Initialize the interrupt threads for this CPU 388 */ 389 cpu_intr_alloc(cp, NINTR_THREADS); 390 391 /* 392 * Add CPU to list of available CPUs. 393 * It'll be on the active list after it is started. 394 */ 395 cpu_add_unit(cp); 396 397 /* 398 * Allocate and init cpu module private data structures, 399 * including scrubber. 400 */ 401 cpu_init_private(cp); 402 populate_idstr(cp); 403 404 /* 405 * Initialize the CPUs physical ID cache, and processor groups 406 */ 407 pghw_physid_create(cp); 408 pg_cpu_init(cp); 409 410 if ((rval = cpu_intrq_setup(cp)) != 0) { 411 return (rval); 412 } 413 414 /* 415 * Initialize MMU context domain information. 416 */ 417 sfmmu_cpu_init(cp); 418 419 return (0); 420 } 421 422 /* 423 * Routine to clean up a CPU after shutting it down. 424 */ 425 int 426 cleanup_cpu_common(int cpuid) 427 { 428 struct cpu *cp; 429 #ifdef TRAPTRACE 430 int i; 431 TRAP_TRACE_CTL *ctlp; 432 caddr_t newbuf; 433 #endif /* TRAPTRACE */ 434 435 ASSERT(MUTEX_HELD(&cpu_lock)); 436 ASSERT(cpu[cpuid] != NULL); 437 438 cp = cpu[cpuid]; 439 440 /* Free cpu module private data structures, including scrubber. */ 441 cpu_uninit_private(cp); 442 443 /* Free cpu ID string and brand string. */ 444 if (cp->cpu_idstr) 445 kmem_free(cp->cpu_idstr, strlen(cp->cpu_idstr) + 1); 446 if (cp->cpu_brandstr) 447 kmem_free(cp->cpu_brandstr, strlen(cp->cpu_brandstr) + 1); 448 449 cpu_vm_data_destroy(cp); 450 451 /* 452 * Remove CPU from list of available CPUs. 453 */ 454 cpu_del_unit(cpuid); 455 456 /* 457 * Clean any machine specific interrupt states. 458 */ 459 cpu_intrq_cleanup(cp); 460 461 /* 462 * At this point, the only threads bound to this CPU should be 463 * special per-cpu threads: it's idle thread, it's pause thread, 464 * and it's interrupt threads. Clean these up. 465 */ 466 cpu_destroy_bound_threads(cp); 467 468 /* 469 * Free the interrupt stack. 470 */ 471 segkp_release(segkp, cp->cpu_intr_stack); 472 473 /* 474 * Free hv traptrace buffer for this CPU. 475 */ 476 mach_htraptrace_cleanup(cpuid); 477 #ifdef TRAPTRACE 478 /* 479 * Free the traptrace buffer for this CPU. 480 */ 481 ctlp = &trap_trace_ctl[cpuid]; 482 newbuf = ctlp->d.vaddr_base; 483 i = (newbuf - ttrace_buf) / (TRAP_TSIZE); 484 if (((newbuf - ttrace_buf) % (TRAP_TSIZE) == 0) && 485 ((i >= 0) && (i < (max_ncpus-1)))) { 486 /* 487 * This CPU got it's trap trace buffer from the 488 * boot-alloc'd bunch of them. 489 */ 490 trap_trace_inuse[i] = 0; 491 bzero(newbuf, (TRAP_TSIZE)); 492 } else if (newbuf == trap_tr0) { 493 trap_tr0_inuse = 0; 494 bzero(trap_tr0, (TRAP_TSIZE)); 495 } else { 496 cmn_err(CE_WARN, "failed to free trap trace buffer from cpu%d", 497 cpuid); 498 } 499 bzero(ctlp, sizeof (*ctlp)); 500 #endif /* TRAPTRACE */ 501 502 /* 503 * There is a race condition with mutex_vector_enter() which 504 * caches a cpu pointer. The race is detected by checking cpu_next. 505 */ 506 disp_cpu_fini(cp); 507 cpu_pa[cpuid] = 0; 508 if (CPU_MMU_CTXP(cp)) 509 sfmmu_cpu_cleanup(cp); 510 bzero(cp, sizeof (*cp)); 511 512 /* 513 * Place the freed cpu structure on the list of freed cpus. 514 */ 515 if (cp != &cpu0) { 516 if (cpus) { 517 cp->cpu_next_free = cpus; 518 cpus = cp; 519 } 520 else 521 cpus = cp; 522 } 523 524 return (0); 525 } 526 527 /* 528 * This routine is used to start a previously powered off processor. 529 * Note that restarted cpus are initialized into the offline state. 530 */ 531 void 532 restart_other_cpu(int cpuid) 533 { 534 struct cpu *cp; 535 kthread_id_t tp; 536 caddr_t sp; 537 extern void idle(); 538 539 ASSERT(MUTEX_HELD(&cpu_lock)); 540 ASSERT(cpuid < NCPU && cpu[cpuid] != NULL); 541 542 /* 543 * Obtain pointer to the appropriate cpu structure. 544 */ 545 cp = cpu[cpuid]; 546 547 common_startup_init(cp, cpuid); 548 549 /* 550 * idle thread t_lock is held when the idle thread is suspended. 551 * Manually unlock the t_lock of idle loop so that we can resume 552 * the suspended idle thread. 553 * Also adjust the PC of idle thread for re-retry. 554 */ 555 cp->cpu_intr_actv = 0; /* clear the value from previous life */ 556 cp->cpu_m.mutex_ready = 0; /* we are not ready yet */ 557 lock_clear(&cp->cpu_idle_thread->t_lock); 558 tp = cp->cpu_idle_thread; 559 560 sp = tp->t_stk; 561 tp->t_sp = (uintptr_t)((struct rwindow *)sp - 1) - STACK_BIAS; 562 tp->t_pc = (uintptr_t)idle - 8; 563 564 /* 565 * restart the cpu now 566 */ 567 promsafe_pause_cpus(); 568 start_cpu(cpuid, warm_flag_set); 569 start_cpus(); 570 571 /* call cmn_err outside pause_cpus/start_cpus to avoid deadlock */ 572 cmn_err(CE_CONT, "!cpu%d initialization complete - restarted\n", 573 cpuid); 574 } 575 576 /* 577 * Startup function executed on 'other' CPUs. This is the first 578 * C function after cpu_start sets up the cpu registers. 579 */ 580 static void 581 slave_startup(void) 582 { 583 struct cpu *cp = CPU; 584 ushort_t original_flags = cp->cpu_flags; 585 586 mach_htraptrace_configure(cp->cpu_id); 587 cpu_intrq_register(CPU); 588 cp->cpu_m.mutex_ready = 1; 589 cp->cpu_m.poke_cpu_outstanding = B_FALSE; 590 591 /* acknowledge that we are done with initialization */ 592 CPUSET_ADD(proxy_ready_set, cp->cpu_id); 593 594 /* synchronize STICK */ 595 sticksync_slave(); 596 597 if (boothowto & RB_DEBUG) 598 kdi_dvec_cpu_init(cp); 599 600 /* 601 * the slave will wait here forever -- assuming that the master 602 * will get back to us. if it doesn't we've got bigger problems 603 * than a master not replying to this slave. 604 * the small delay improves the slave's responsiveness to the 605 * master's ack and decreases the time window between master and 606 * slave operations. 607 */ 608 while (!CPU_IN_SET(cpu_ready_set, cp->cpu_id)) 609 DELAY(1); 610 611 /* enable interrupts */ 612 (void) spl0(); 613 614 /* 615 * Signature block update to indicate that this CPU is in OS now. 616 * This needs to be done after the PIL is lowered since on 617 * some platforms the update code may block. 618 */ 619 CPU_SIGNATURE(OS_SIG, SIGST_RUN, SIGSUBST_NULL, cp->cpu_id); 620 621 /* 622 * park the slave thread in a safe/quiet state and wait for the master 623 * to finish configuring this CPU before proceeding to thread_exit(). 624 */ 625 while (((volatile ushort_t)cp->cpu_flags) & CPU_QUIESCED) 626 DELAY(1); 627 628 /* 629 * Initialize CPC CPU state. 630 */ 631 kcpc_hw_startup_cpu(original_flags); 632 633 /* 634 * Notify the PG subsystem that the CPU has started 635 */ 636 pg_cmt_cpu_startup(CPU); 637 638 /* 639 * Now we are done with the startup thread, so free it up. 640 */ 641 thread_exit(); 642 cmn_err(CE_PANIC, "slave_startup: cannot return"); 643 /*NOTREACHED*/ 644 } 645 646 extern struct cpu *cpu[NCPU]; /* pointers to all CPUs */ 647 648 /* 649 * cpu_bringup_set is a tunable (via /etc/system, debugger, etc.) that 650 * can be used during debugging to control which processors are brought 651 * online at boot time. The variable represents a bitmap of the id's 652 * of the processors that will be brought online. The initialization 653 * of this variable depends on the type of cpuset_t, which varies 654 * depending on the number of processors supported (see cpuvar.h). 655 */ 656 cpuset_t cpu_bringup_set; 657 658 659 /* 660 * Generic start-all cpus entry. Typically used during cold initialization. 661 * Note that cold start cpus are initialized into the online state. 662 */ 663 /*ARGSUSED*/ 664 void 665 start_other_cpus(int flag) 666 { 667 int cpuid; 668 extern void idlestop_init(void); 669 int bootcpu; 670 671 /* 672 * Check if cpu_bringup_set has been explicitly set before 673 * initializing it. 674 */ 675 if (CPUSET_ISNULL(cpu_bringup_set)) { 676 #ifdef MPSAS 677 /* just CPU 0 */ 678 CPUSET_ADD(cpu_bringup_set, 0); 679 #else 680 CPUSET_ALL(cpu_bringup_set); 681 #endif 682 } 683 684 if (&cpu_feature_init) 685 cpu_feature_init(); 686 687 /* 688 * Initialize CPC. 689 */ 690 kcpc_hw_init(); 691 692 mutex_enter(&cpu_lock); 693 694 /* 695 * Initialize our own cpu_info. 696 */ 697 init_cpu_info(CPU); 698 699 /* 700 * Initialize CPU 0 cpu module private data area, including scrubber. 701 */ 702 cpu_init_private(CPU); 703 populate_idstr(CPU); 704 705 /* 706 * perform such initialization as is needed 707 * to be able to take CPUs on- and off-line. 708 */ 709 cpu_pause_init(); 710 xc_init(); /* initialize processor crosscalls */ 711 idlestop_init(); 712 713 if (!use_mp) { 714 mutex_exit(&cpu_lock); 715 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 716 return; 717 } 718 /* 719 * should we be initializing this cpu? 720 */ 721 bootcpu = getprocessorid(); 722 723 /* 724 * launch all the slave cpus now 725 */ 726 for (cpuid = 0; cpuid < NCPU; cpuid++) { 727 pnode_t nodeid = cpunodes[cpuid].nodeid; 728 729 if (nodeid == (pnode_t)0) 730 continue; 731 732 if (cpuid == bootcpu) { 733 if (!CPU_IN_SET(cpu_bringup_set, cpuid)) { 734 cmn_err(CE_WARN, "boot cpu not a member " 735 "of cpu_bringup_set, adding it"); 736 CPUSET_ADD(cpu_bringup_set, cpuid); 737 } 738 continue; 739 } 740 if (!CPU_IN_SET(cpu_bringup_set, cpuid)) 741 continue; 742 743 ASSERT(cpu[cpuid] == NULL); 744 745 if (setup_cpu_common(cpuid)) { 746 cmn_err(CE_PANIC, "cpu%d: setup failed", cpuid); 747 } 748 749 common_startup_init(cpu[cpuid], cpuid); 750 751 start_cpu(cpuid, cold_flag_set); 752 /* 753 * Because slave_startup() gets fired off after init() 754 * starts, we can't use the '?' trick to do 'boot -v' 755 * printing - so we always direct the 'cpu .. online' 756 * messages to the log. 757 */ 758 cmn_err(CE_CONT, "!cpu%d initialization complete - online\n", 759 cpuid); 760 761 cpu_state_change_notify(cpuid, CPU_SETUP); 762 763 if (dtrace_cpu_init != NULL) 764 (*dtrace_cpu_init)(cpuid); 765 } 766 767 /* 768 * since all the cpus are online now, redistribute interrupts to them. 769 */ 770 intr_redist_all_cpus(); 771 772 mutex_exit(&cpu_lock); 773 774 /* 775 * Start the Ecache scrubber. Must be done after all calls to 776 * cpu_init_private for every cpu (including CPU 0). 777 */ 778 cpu_init_cache_scrub(); 779 780 if (&cpu_mp_init) 781 cpu_mp_init(); 782 } 783