1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright 2019 Joyent, Inc. 29 * Copyright 2019 Peter Tribble. 30 */ 31 32 #include <sys/sysmacros.h> 33 #include <sys/prom_plat.h> 34 #include <sys/prom_debug.h> 35 #include <vm/hat_sfmmu.h> 36 #include <vm/seg_kp.h> 37 #include <vm/seg_kmem.h> 38 #include <sys/machsystm.h> 39 #include <sys/callb.h> 40 #include <sys/cpu_module.h> 41 #include <sys/pg.h> 42 #include <sys/cmt.h> 43 #include <sys/dtrace.h> 44 #include <sys/reboot.h> 45 #include <sys/kdi.h> 46 #include <sys/traptrace.h> 47 #ifdef TRAPTRACE 48 #include <sys/bootconf.h> 49 #endif /* TRAPTRACE */ 50 #include <sys/cpu_sgnblk_defs.h> 51 52 extern int cpu_intrq_setup(struct cpu *); 53 extern void cpu_intrq_cleanup(struct cpu *); 54 extern void cpu_intrq_register(struct cpu *); 55 56 struct cpu *cpus; /* pointer to other cpus; dynamically allocate */ 57 struct cpu *cpu[NCPU]; /* pointers to all CPUs */ 58 uint64_t cpu_pa[NCPU]; /* pointers to all CPUs in PA */ 59 cpu_core_t cpu_core[NCPU]; /* cpu_core structures */ 60 61 #ifdef TRAPTRACE 62 caddr_t ttrace_buf; /* kmem64 traptrace for all cpus except 0 */ 63 #endif /* TRAPTRACE */ 64 65 /* bit mask of cpus ready for x-calls, protected by cpu_lock */ 66 cpuset_t cpu_ready_set; 67 68 /* bit mask used to communicate with cpus during bringup */ 69 static cpuset_t proxy_ready_set; 70 71 static void slave_startup(void); 72 73 /* 74 * Defined in $KARCH/os/mach_mp_startup.c 75 */ 76 #pragma weak init_cpu_info 77 78 /* 79 * Amount of time (in milliseconds) we should wait before giving up on CPU 80 * initialization and assuming that the CPU we're trying to wake up is dead 81 * or out of control. 82 */ 83 #define CPU_WAKEUP_GRACE_MSEC 1000 84 85 #ifdef TRAPTRACE 86 /* 87 * This function sets traptrace buffers for all cpus 88 * other than boot cpu. 89 */ 90 size_t 91 calc_traptrace_sz(void) 92 { 93 return (TRAP_TSIZE * (max_ncpus - 1)); 94 } 95 #endif /* TRAPTRACE */ 96 97 98 /* 99 * common slave cpu initialization code 100 */ 101 void 102 common_startup_init(cpu_t *cp, int cpuid) 103 { 104 kthread_id_t tp; 105 sfmmu_t *sfmmup; 106 caddr_t sp; 107 108 /* 109 * Allocate and initialize the startup thread for this CPU. 110 */ 111 tp = thread_create(NULL, 0, slave_startup, NULL, 0, &p0, 112 TS_STOPPED, maxclsyspri); 113 114 /* 115 * Set state to TS_ONPROC since this thread will start running 116 * as soon as the CPU comes online. 117 * 118 * All the other fields of the thread structure are setup by 119 * thread_create(). 120 */ 121 THREAD_ONPROC(tp, cp); 122 tp->t_preempt = 1; 123 tp->t_bound_cpu = cp; 124 tp->t_affinitycnt = 1; 125 tp->t_cpu = cp; 126 tp->t_disp_queue = cp->cpu_disp; 127 128 sfmmup = astosfmmu(&kas); 129 CPUSET_ADD(sfmmup->sfmmu_cpusran, cpuid); 130 131 /* 132 * Setup thread to start in slave_startup. 133 */ 134 sp = tp->t_stk; 135 tp->t_pc = (uintptr_t)slave_startup - 8; 136 tp->t_sp = (uintptr_t)((struct rwindow *)sp - 1) - STACK_BIAS; 137 138 cp->cpu_id = cpuid; 139 cp->cpu_self = cp; 140 cp->cpu_thread = tp; 141 cp->cpu_lwp = NULL; 142 cp->cpu_dispthread = tp; 143 cp->cpu_dispatch_pri = DISP_PRIO(tp); 144 cp->cpu_startup_thread = tp; 145 146 /* 147 * The dispatcher may discover the CPU before it is in cpu_ready_set 148 * and attempt to poke it. Before the CPU is in cpu_ready_set, any 149 * cross calls to it will be dropped. We initialize 150 * poke_cpu_outstanding to true so that poke_cpu will ignore any poke 151 * requests for this CPU. Pokes that come in before the CPU is in 152 * cpu_ready_set can be ignored because the CPU is about to come 153 * online. 154 */ 155 cp->cpu_m.poke_cpu_outstanding = B_TRUE; 156 } 157 158 /* 159 * parametric flag setting functions. these routines set the cpu 160 * state just prior to releasing the slave cpu. 161 */ 162 void 163 cold_flag_set(int cpuid) 164 { 165 cpu_t *cp; 166 167 ASSERT(MUTEX_HELD(&cpu_lock)); 168 169 cp = cpu[cpuid]; 170 171 if (!(cp->cpu_flags & CPU_ENABLE)) 172 ncpus_intr_enabled++; 173 174 cp->cpu_flags |= CPU_RUNNING | CPU_ENABLE | CPU_EXISTS; 175 cpu_add_active(cp); 176 /* 177 * Add CPU_READY after the cpu_add_active() call 178 * to avoid pausing cp. 179 */ 180 cp->cpu_flags |= CPU_READY; /* ready */ 181 cpu_set_state(cp); 182 } 183 184 static void 185 warm_flag_set(int cpuid) 186 { 187 cpu_t *cp; 188 189 ASSERT(MUTEX_HELD(&cpu_lock)); 190 191 /* 192 * warm start activates cpus into the OFFLINE state 193 */ 194 cp = cpu[cpuid]; 195 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS 196 | CPU_OFFLINE | CPU_QUIESCED; 197 cpu_set_state(cp); 198 } 199 200 /* 201 * Internal cpu startup sequencer 202 * The sequence is as follows: 203 * 204 * MASTER SLAVE 205 * ------- ---------- 206 * assume the kernel data is initialized 207 * clear the proxy bit 208 * start the slave cpu 209 * wait for the slave cpu to set the proxy 210 * 211 * the slave runs slave_startup and then sets the proxy 212 * the slave waits for the master to add slave to the ready set 213 * 214 * the master finishes the initialization and 215 * adds the slave to the ready set 216 * 217 * the slave exits the startup thread and is running 218 */ 219 void 220 start_cpu(int cpuid, void(*flag_func)(int)) 221 { 222 extern void cpu_startup(int); 223 int timout; 224 225 ASSERT(MUTEX_HELD(&cpu_lock)); 226 227 /* 228 * Before we begin the dance, tell DTrace that we're about to start 229 * a CPU. 230 */ 231 if (dtrace_cpustart_init != NULL) 232 (*dtrace_cpustart_init)(); 233 234 /* start the slave cpu */ 235 CPUSET_DEL(proxy_ready_set, cpuid); 236 if (prom_test("SUNW,start-cpu-by-cpuid") == 0) { 237 (void) prom_startcpu_bycpuid(cpuid, (caddr_t)&cpu_startup, 238 cpuid); 239 } else { 240 /* "by-cpuid" interface didn't exist. Do it the old way */ 241 pnode_t nodeid = cpunodes[cpuid].nodeid; 242 243 ASSERT(nodeid != (pnode_t)0); 244 (void) prom_startcpu(nodeid, (caddr_t)&cpu_startup, cpuid); 245 } 246 247 /* wait for the slave cpu to check in. */ 248 for (timout = CPU_WAKEUP_GRACE_MSEC; timout; timout--) { 249 if (CPU_IN_SET(proxy_ready_set, cpuid)) 250 break; 251 DELAY(1000); 252 } 253 if (timout == 0) { 254 panic("cpu%d failed to start (2)", cpuid); 255 } 256 257 /* 258 * The slave has started; we can tell DTrace that it's safe again. 259 */ 260 if (dtrace_cpustart_fini != NULL) 261 (*dtrace_cpustart_fini)(); 262 263 /* run the master side of stick synchronization for the slave cpu */ 264 sticksync_master(); 265 266 /* 267 * deal with the cpu flags in a phase-specific manner 268 * for various reasons, this needs to run after the slave 269 * is checked in but before the slave is released. 270 */ 271 (*flag_func)(cpuid); 272 273 /* release the slave */ 274 CPUSET_ADD(cpu_ready_set, cpuid); 275 } 276 277 #ifdef TRAPTRACE 278 int trap_tr0_inuse = 1; /* it is always used on the boot cpu */ 279 int trap_trace_inuse[NCPU]; 280 #endif /* TRAPTRACE */ 281 282 #define cpu_next_free cpu_prev 283 284 /* 285 * Routine to set up a CPU to prepare for starting it up. 286 */ 287 int 288 setup_cpu_common(int cpuid) 289 { 290 struct cpu *cp = NULL; 291 kthread_id_t tp; 292 #ifdef TRAPTRACE 293 int tt_index; 294 TRAP_TRACE_CTL *ctlp; 295 caddr_t newbuf; 296 #endif /* TRAPTRACE */ 297 298 extern void idle(); 299 int rval; 300 301 ASSERT(MUTEX_HELD(&cpu_lock)); 302 ASSERT(cpu[cpuid] == NULL); 303 304 ASSERT(ncpus <= max_ncpus); 305 306 #ifdef TRAPTRACE 307 /* 308 * allocate a traptrace buffer for this CPU. 309 */ 310 ctlp = &trap_trace_ctl[cpuid]; 311 if (!trap_tr0_inuse) { 312 trap_tr0_inuse = 1; 313 newbuf = trap_tr0; 314 tt_index = -1; 315 } else { 316 for (tt_index = 0; tt_index < (max_ncpus-1); tt_index++) 317 if (!trap_trace_inuse[tt_index]) 318 break; 319 ASSERT(tt_index < max_ncpus - 1); 320 trap_trace_inuse[tt_index] = 1; 321 newbuf = (caddr_t)(ttrace_buf + (tt_index * TRAP_TSIZE)); 322 } 323 ctlp->d.vaddr_base = newbuf; 324 ctlp->d.offset = ctlp->d.last_offset = 0; 325 ctlp->d.limit = trap_trace_bufsize; 326 ctlp->d.paddr_base = va_to_pa(newbuf); 327 ASSERT(ctlp->d.paddr_base != (uint64_t)-1); 328 #endif /* TRAPTRACE */ 329 /* 330 * initialize hv traptrace buffer for this CPU 331 */ 332 mach_htraptrace_setup(cpuid); 333 334 /* 335 * Obtain pointer to the appropriate cpu structure. 336 */ 337 if (cpu0.cpu_flags == 0) { 338 cp = &cpu0; 339 } else { 340 /* 341 * When dynamically allocating cpu structs, 342 * cpus is used as a pointer to a list of freed 343 * cpu structs. 344 */ 345 if (cpus) { 346 /* grab the first cpu struct on the free list */ 347 cp = cpus; 348 if (cp->cpu_next_free) 349 cpus = cp->cpu_next_free; 350 else 351 cpus = NULL; 352 } 353 } 354 355 if (cp == NULL) 356 cp = vmem_xalloc(static_alloc_arena, CPU_ALLOC_SIZE, 357 CPU_ALLOC_SIZE, 0, 0, NULL, NULL, VM_SLEEP); 358 359 bzero(cp, sizeof (*cp)); 360 361 cp->cpu_id = cpuid; 362 cp->cpu_self = cp; 363 364 /* 365 * Initialize ptl1_panic stack 366 */ 367 ptl1_init_cpu(cp); 368 369 /* 370 * Initialize the dispatcher for this CPU. 371 */ 372 disp_cpu_init(cp); 373 374 /* 375 * Bootstrap the CPU's PG data 376 */ 377 pg_cpu_bootstrap(cp); 378 379 cpu_vm_data_init(cp); 380 381 /* 382 * Now, initialize per-CPU idle thread for this CPU. 383 */ 384 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_ONPROC, -1); 385 386 cp->cpu_idle_thread = tp; 387 388 tp->t_preempt = 1; 389 tp->t_bound_cpu = cp; 390 tp->t_affinitycnt = 1; 391 tp->t_cpu = cp; 392 tp->t_disp_queue = cp->cpu_disp; 393 394 /* 395 * Registering a thread in the callback table is usually 396 * done in the initialization code of the thread. In this 397 * case, we do it right after thread creation to avoid 398 * blocking idle thread while registering itself. It also 399 * avoids the possibility of reregistration in case a CPU 400 * restarts its idle thread. 401 */ 402 CALLB_CPR_INIT_SAFE(tp, "idle"); 403 404 init_cpu_info(cp); 405 406 /* 407 * Initialize the interrupt threads for this CPU 408 */ 409 cpu_intr_alloc(cp, NINTR_THREADS); 410 411 /* 412 * Add CPU to list of available CPUs. 413 * It'll be on the active list after it is started. 414 */ 415 cpu_add_unit(cp); 416 417 /* 418 * Allocate and init cpu module private data structures, 419 * including scrubber. 420 */ 421 cpu_init_private(cp); 422 populate_idstr(cp); 423 424 /* 425 * Initialize the CPUs physical ID cache, and processor groups 426 */ 427 pghw_physid_create(cp); 428 (void) pg_cpu_init(cp, B_FALSE); 429 430 if ((rval = cpu_intrq_setup(cp)) != 0) { 431 return (rval); 432 } 433 434 /* 435 * Initialize MMU context domain information. 436 */ 437 sfmmu_cpu_init(cp); 438 439 return (0); 440 } 441 442 /* 443 * Routine to clean up a CPU after shutting it down. 444 */ 445 int 446 cleanup_cpu_common(int cpuid) 447 { 448 struct cpu *cp; 449 #ifdef TRAPTRACE 450 int i; 451 TRAP_TRACE_CTL *ctlp; 452 caddr_t newbuf; 453 #endif /* TRAPTRACE */ 454 455 ASSERT(MUTEX_HELD(&cpu_lock)); 456 ASSERT(cpu[cpuid] != NULL); 457 458 cp = cpu[cpuid]; 459 460 /* Free cpu module private data structures, including scrubber. */ 461 cpu_uninit_private(cp); 462 463 /* Free cpu ID string and brand string. */ 464 if (cp->cpu_idstr) 465 kmem_free(cp->cpu_idstr, strlen(cp->cpu_idstr) + 1); 466 if (cp->cpu_brandstr) 467 kmem_free(cp->cpu_brandstr, strlen(cp->cpu_brandstr) + 1); 468 469 cpu_vm_data_destroy(cp); 470 471 /* 472 * Remove CPU from list of available CPUs. 473 */ 474 cpu_del_unit(cpuid); 475 476 /* 477 * Clean any machine specific interrupt states. 478 */ 479 cpu_intrq_cleanup(cp); 480 481 /* 482 * At this point, the only threads bound to this CPU should be 483 * special per-cpu threads: it's idle thread, it's pause thread, 484 * and it's interrupt threads. Clean these up. 485 */ 486 cpu_destroy_bound_threads(cp); 487 488 /* 489 * Free the interrupt stack. 490 */ 491 segkp_release(segkp, cp->cpu_intr_stack); 492 493 /* 494 * Free hv traptrace buffer for this CPU. 495 */ 496 mach_htraptrace_cleanup(cpuid); 497 #ifdef TRAPTRACE 498 /* 499 * Free the traptrace buffer for this CPU. 500 */ 501 ctlp = &trap_trace_ctl[cpuid]; 502 newbuf = ctlp->d.vaddr_base; 503 i = (newbuf - ttrace_buf) / (TRAP_TSIZE); 504 if (((newbuf - ttrace_buf) % (TRAP_TSIZE) == 0) && 505 ((i >= 0) && (i < (max_ncpus-1)))) { 506 /* 507 * This CPU got it's trap trace buffer from the 508 * boot-alloc'd bunch of them. 509 */ 510 trap_trace_inuse[i] = 0; 511 bzero(newbuf, (TRAP_TSIZE)); 512 } else if (newbuf == trap_tr0) { 513 trap_tr0_inuse = 0; 514 bzero(trap_tr0, (TRAP_TSIZE)); 515 } else { 516 cmn_err(CE_WARN, "failed to free trap trace buffer from cpu%d", 517 cpuid); 518 } 519 bzero(ctlp, sizeof (*ctlp)); 520 #endif /* TRAPTRACE */ 521 522 /* 523 * There is a race condition with mutex_vector_enter() which 524 * caches a cpu pointer. The race is detected by checking cpu_next. 525 */ 526 disp_cpu_fini(cp); 527 cpu_pa[cpuid] = 0; 528 if (CPU_MMU_CTXP(cp)) 529 sfmmu_cpu_cleanup(cp); 530 bzero(cp, sizeof (*cp)); 531 532 /* 533 * Place the freed cpu structure on the list of freed cpus. 534 */ 535 if (cp != &cpu0) { 536 if (cpus) { 537 cp->cpu_next_free = cpus; 538 cpus = cp; 539 } 540 else 541 cpus = cp; 542 } 543 544 return (0); 545 } 546 547 /* 548 * This routine is used to start a previously powered off processor. 549 * Note that restarted cpus are initialized into the offline state. 550 */ 551 void 552 restart_other_cpu(int cpuid) 553 { 554 struct cpu *cp; 555 kthread_id_t tp; 556 caddr_t sp; 557 extern void idle(); 558 559 ASSERT(MUTEX_HELD(&cpu_lock)); 560 ASSERT(cpuid < NCPU && cpu[cpuid] != NULL); 561 562 /* 563 * Obtain pointer to the appropriate cpu structure. 564 */ 565 cp = cpu[cpuid]; 566 567 common_startup_init(cp, cpuid); 568 569 /* 570 * idle thread t_lock is held when the idle thread is suspended. 571 * Manually unlock the t_lock of idle loop so that we can resume 572 * the suspended idle thread. 573 * Also adjust the PC of idle thread for re-retry. 574 */ 575 cp->cpu_intr_actv = 0; /* clear the value from previous life */ 576 cp->cpu_m.mutex_ready = 0; /* we are not ready yet */ 577 lock_clear(&cp->cpu_idle_thread->t_lock); 578 tp = cp->cpu_idle_thread; 579 580 sp = tp->t_stk; 581 tp->t_sp = (uintptr_t)((struct rwindow *)sp - 1) - STACK_BIAS; 582 tp->t_pc = (uintptr_t)idle - 8; 583 584 /* 585 * restart the cpu now 586 */ 587 promsafe_pause_cpus(); 588 start_cpu(cpuid, warm_flag_set); 589 start_cpus(); 590 591 /* call cmn_err outside pause_cpus/start_cpus to avoid deadlock */ 592 cmn_err(CE_CONT, "!cpu%d initialization complete - restarted\n", 593 cpuid); 594 } 595 596 /* 597 * Startup function executed on 'other' CPUs. This is the first 598 * C function after cpu_start sets up the cpu registers. 599 */ 600 static void 601 slave_startup(void) 602 { 603 struct cpu *cp = CPU; 604 ushort_t original_flags = cp->cpu_flags; 605 606 mach_htraptrace_configure(cp->cpu_id); 607 cpu_intrq_register(CPU); 608 cp->cpu_m.mutex_ready = 1; 609 610 /* acknowledge that we are done with initialization */ 611 CPUSET_ADD(proxy_ready_set, cp->cpu_id); 612 613 /* synchronize STICK */ 614 sticksync_slave(); 615 616 if (boothowto & RB_DEBUG) 617 kdi_dvec_cpu_init(cp); 618 619 /* 620 * the slave will wait here forever -- assuming that the master 621 * will get back to us. if it doesn't we've got bigger problems 622 * than a master not replying to this slave. 623 * the small delay improves the slave's responsiveness to the 624 * master's ack and decreases the time window between master and 625 * slave operations. 626 */ 627 while (!CPU_IN_SET(cpu_ready_set, cp->cpu_id)) 628 DELAY(1); 629 630 /* 631 * The CPU is now in cpu_ready_set, safely able to take pokes. 632 */ 633 cp->cpu_m.poke_cpu_outstanding = B_FALSE; 634 635 /* enable interrupts */ 636 (void) spl0(); 637 638 /* 639 * Signature block update to indicate that this CPU is in OS now. 640 * This needs to be done after the PIL is lowered since on 641 * some platforms the update code may block. 642 */ 643 CPU_SIGNATURE(OS_SIG, SIGST_RUN, SIGSUBST_NULL, cp->cpu_id); 644 645 /* 646 * park the slave thread in a safe/quiet state and wait for the master 647 * to finish configuring this CPU before proceeding to thread_exit(). 648 */ 649 while (((volatile ushort_t)cp->cpu_flags) & CPU_QUIESCED) 650 DELAY(1); 651 652 /* 653 * Initialize CPC CPU state. 654 */ 655 kcpc_hw_startup_cpu(original_flags); 656 657 /* 658 * Notify the PG subsystem that the CPU has started 659 */ 660 pg_cmt_cpu_startup(CPU); 661 662 /* 663 * Now we are done with the startup thread, so free it up. 664 */ 665 thread_exit(); 666 cmn_err(CE_PANIC, "slave_startup: cannot return"); 667 /*NOTREACHED*/ 668 } 669 670 extern struct cpu *cpu[NCPU]; /* pointers to all CPUs */ 671 672 /* 673 * cpu_bringup_set is a tunable (via /etc/system, debugger, etc.) that 674 * can be used during debugging to control which processors are brought 675 * online at boot time. The variable represents a bitmap of the id's 676 * of the processors that will be brought online. The initialization 677 * of this variable depends on the type of cpuset_t, which varies 678 * depending on the number of processors supported (see cpuvar.h). 679 */ 680 cpuset_t cpu_bringup_set; 681 682 683 /* 684 * Generic start-all cpus entry. Typically used during cold initialization. 685 * Note that cold start cpus are initialized into the online state. 686 */ 687 /*ARGSUSED*/ 688 void 689 start_other_cpus(int flag) 690 { 691 int cpuid; 692 extern void idlestop_init(void); 693 int bootcpu; 694 695 /* 696 * Check if cpu_bringup_set has been explicitly set before 697 * initializing it. 698 */ 699 if (CPUSET_ISNULL(cpu_bringup_set)) { 700 CPUSET_ALL(cpu_bringup_set); 701 } 702 703 if (&cpu_feature_init) 704 cpu_feature_init(); 705 706 /* 707 * Initialize CPC. 708 */ 709 kcpc_hw_init(); 710 711 mutex_enter(&cpu_lock); 712 713 /* 714 * Initialize our own cpu_info. 715 */ 716 init_cpu_info(CPU); 717 718 /* 719 * Initialize CPU 0 cpu module private data area, including scrubber. 720 */ 721 cpu_init_private(CPU); 722 populate_idstr(CPU); 723 724 /* 725 * perform such initialization as is needed 726 * to be able to take CPUs on- and off-line. 727 */ 728 cpu_pause_init(); 729 xc_init(); /* initialize processor crosscalls */ 730 idlestop_init(); 731 732 if (!use_mp) { 733 mutex_exit(&cpu_lock); 734 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 735 return; 736 } 737 /* 738 * should we be initializing this cpu? 739 */ 740 bootcpu = getprocessorid(); 741 742 /* 743 * launch all the slave cpus now 744 */ 745 for (cpuid = 0; cpuid < NCPU; cpuid++) { 746 pnode_t nodeid = cpunodes[cpuid].nodeid; 747 748 if (nodeid == (pnode_t)0) 749 continue; 750 751 if (cpuid == bootcpu) { 752 if (!CPU_IN_SET(cpu_bringup_set, cpuid)) { 753 cmn_err(CE_WARN, "boot cpu not a member " 754 "of cpu_bringup_set, adding it"); 755 CPUSET_ADD(cpu_bringup_set, cpuid); 756 } 757 continue; 758 } 759 if (!CPU_IN_SET(cpu_bringup_set, cpuid)) 760 continue; 761 762 ASSERT(cpu[cpuid] == NULL); 763 764 if (setup_cpu_common(cpuid)) { 765 cmn_err(CE_PANIC, "cpu%d: setup failed", cpuid); 766 } 767 768 common_startup_init(cpu[cpuid], cpuid); 769 770 start_cpu(cpuid, cold_flag_set); 771 /* 772 * Because slave_startup() gets fired off after init() 773 * starts, we can't use the '?' trick to do 'boot -v' 774 * printing - so we always direct the 'cpu .. online' 775 * messages to the log. 776 */ 777 cmn_err(CE_CONT, "!cpu%d initialization complete - online\n", 778 cpuid); 779 780 cpu_state_change_notify(cpuid, CPU_SETUP); 781 782 if (dtrace_cpu_init != NULL) 783 (*dtrace_cpu_init)(cpuid); 784 } 785 786 /* 787 * since all the cpus are online now, redistribute interrupts to them. 788 */ 789 intr_redist_all_cpus(); 790 791 mutex_exit(&cpu_lock); 792 793 /* 794 * Start the Ecache scrubber. Must be done after all calls to 795 * cpu_init_private for every cpu (including CPU 0). 796 */ 797 cpu_init_cache_scrub(); 798 799 if (&cpu_mp_init) 800 cpu_mp_init(); 801 } 802