1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright 2019 Joyent, Inc. 29 */ 30 31 #include <sys/sysmacros.h> 32 #include <sys/prom_plat.h> 33 #include <sys/prom_debug.h> 34 #include <vm/hat_sfmmu.h> 35 #include <vm/seg_kp.h> 36 #include <vm/seg_kmem.h> 37 #include <sys/machsystm.h> 38 #include <sys/callb.h> 39 #include <sys/cpu_module.h> 40 #include <sys/pg.h> 41 #include <sys/cmt.h> 42 #include <sys/dtrace.h> 43 #include <sys/reboot.h> 44 #include <sys/kdi.h> 45 #include <sys/traptrace.h> 46 #ifdef TRAPTRACE 47 #include <sys/bootconf.h> 48 #endif /* TRAPTRACE */ 49 #include <sys/cpu_sgnblk_defs.h> 50 51 extern int cpu_intrq_setup(struct cpu *); 52 extern void cpu_intrq_cleanup(struct cpu *); 53 extern void cpu_intrq_register(struct cpu *); 54 55 struct cpu *cpus; /* pointer to other cpus; dynamically allocate */ 56 struct cpu *cpu[NCPU]; /* pointers to all CPUs */ 57 uint64_t cpu_pa[NCPU]; /* pointers to all CPUs in PA */ 58 cpu_core_t cpu_core[NCPU]; /* cpu_core structures */ 59 60 #ifdef TRAPTRACE 61 caddr_t ttrace_buf; /* kmem64 traptrace for all cpus except 0 */ 62 #endif /* TRAPTRACE */ 63 64 /* bit mask of cpus ready for x-calls, protected by cpu_lock */ 65 cpuset_t cpu_ready_set; 66 67 /* bit mask used to communicate with cpus during bringup */ 68 static cpuset_t proxy_ready_set; 69 70 static void slave_startup(void); 71 72 /* 73 * Defined in $KARCH/os/mach_mp_startup.c 74 */ 75 #pragma weak init_cpu_info 76 77 /* 78 * Amount of time (in milliseconds) we should wait before giving up on CPU 79 * initialization and assuming that the CPU we're trying to wake up is dead 80 * or out of control. 81 */ 82 #define CPU_WAKEUP_GRACE_MSEC 1000 83 84 #ifdef TRAPTRACE 85 /* 86 * This function sets traptrace buffers for all cpus 87 * other than boot cpu. 88 */ 89 size_t 90 calc_traptrace_sz(void) 91 { 92 return (TRAP_TSIZE * (max_ncpus - 1)); 93 } 94 #endif /* TRAPTRACE */ 95 96 97 /* 98 * common slave cpu initialization code 99 */ 100 void 101 common_startup_init(cpu_t *cp, int cpuid) 102 { 103 kthread_id_t tp; 104 sfmmu_t *sfmmup; 105 caddr_t sp; 106 107 /* 108 * Allocate and initialize the startup thread for this CPU. 109 */ 110 tp = thread_create(NULL, 0, slave_startup, NULL, 0, &p0, 111 TS_STOPPED, maxclsyspri); 112 113 /* 114 * Set state to TS_ONPROC since this thread will start running 115 * as soon as the CPU comes online. 116 * 117 * All the other fields of the thread structure are setup by 118 * thread_create(). 119 */ 120 THREAD_ONPROC(tp, cp); 121 tp->t_preempt = 1; 122 tp->t_bound_cpu = cp; 123 tp->t_affinitycnt = 1; 124 tp->t_cpu = cp; 125 tp->t_disp_queue = cp->cpu_disp; 126 127 sfmmup = astosfmmu(&kas); 128 CPUSET_ADD(sfmmup->sfmmu_cpusran, cpuid); 129 130 /* 131 * Setup thread to start in slave_startup. 132 */ 133 sp = tp->t_stk; 134 tp->t_pc = (uintptr_t)slave_startup - 8; 135 tp->t_sp = (uintptr_t)((struct rwindow *)sp - 1) - STACK_BIAS; 136 137 cp->cpu_id = cpuid; 138 cp->cpu_self = cp; 139 cp->cpu_thread = tp; 140 cp->cpu_lwp = NULL; 141 cp->cpu_dispthread = tp; 142 cp->cpu_dispatch_pri = DISP_PRIO(tp); 143 cp->cpu_startup_thread = tp; 144 145 /* 146 * The dispatcher may discover the CPU before it is in cpu_ready_set 147 * and attempt to poke it. Before the CPU is in cpu_ready_set, any 148 * cross calls to it will be dropped. We initialize 149 * poke_cpu_outstanding to true so that poke_cpu will ignore any poke 150 * requests for this CPU. Pokes that come in before the CPU is in 151 * cpu_ready_set can be ignored because the CPU is about to come 152 * online. 153 */ 154 cp->cpu_m.poke_cpu_outstanding = B_TRUE; 155 } 156 157 /* 158 * parametric flag setting functions. these routines set the cpu 159 * state just prior to releasing the slave cpu. 160 */ 161 void 162 cold_flag_set(int cpuid) 163 { 164 cpu_t *cp; 165 166 ASSERT(MUTEX_HELD(&cpu_lock)); 167 168 cp = cpu[cpuid]; 169 170 if (!(cpu->cpu_flags & CPU_ENABLE)) 171 ncpus_intr_enabled++; 172 173 cp->cpu_flags |= CPU_RUNNING | CPU_ENABLE | CPU_EXISTS; 174 cpu_add_active(cp); 175 /* 176 * Add CPU_READY after the cpu_add_active() call 177 * to avoid pausing cp. 178 */ 179 cp->cpu_flags |= CPU_READY; /* ready */ 180 cpu_set_state(cp); 181 } 182 183 static void 184 warm_flag_set(int cpuid) 185 { 186 cpu_t *cp; 187 188 ASSERT(MUTEX_HELD(&cpu_lock)); 189 190 /* 191 * warm start activates cpus into the OFFLINE state 192 */ 193 cp = cpu[cpuid]; 194 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS 195 | CPU_OFFLINE | CPU_QUIESCED; 196 cpu_set_state(cp); 197 } 198 199 /* 200 * Internal cpu startup sequencer 201 * The sequence is as follows: 202 * 203 * MASTER SLAVE 204 * ------- ---------- 205 * assume the kernel data is initialized 206 * clear the proxy bit 207 * start the slave cpu 208 * wait for the slave cpu to set the proxy 209 * 210 * the slave runs slave_startup and then sets the proxy 211 * the slave waits for the master to add slave to the ready set 212 * 213 * the master finishes the initialization and 214 * adds the slave to the ready set 215 * 216 * the slave exits the startup thread and is running 217 */ 218 void 219 start_cpu(int cpuid, void(*flag_func)(int)) 220 { 221 extern void cpu_startup(int); 222 int timout; 223 224 ASSERT(MUTEX_HELD(&cpu_lock)); 225 226 /* 227 * Before we begin the dance, tell DTrace that we're about to start 228 * a CPU. 229 */ 230 if (dtrace_cpustart_init != NULL) 231 (*dtrace_cpustart_init)(); 232 233 /* start the slave cpu */ 234 CPUSET_DEL(proxy_ready_set, cpuid); 235 if (prom_test("SUNW,start-cpu-by-cpuid") == 0) { 236 (void) prom_startcpu_bycpuid(cpuid, (caddr_t)&cpu_startup, 237 cpuid); 238 } else { 239 /* "by-cpuid" interface didn't exist. Do it the old way */ 240 pnode_t nodeid = cpunodes[cpuid].nodeid; 241 242 ASSERT(nodeid != (pnode_t)0); 243 (void) prom_startcpu(nodeid, (caddr_t)&cpu_startup, cpuid); 244 } 245 246 /* wait for the slave cpu to check in. */ 247 for (timout = CPU_WAKEUP_GRACE_MSEC; timout; timout--) { 248 if (CPU_IN_SET(proxy_ready_set, cpuid)) 249 break; 250 DELAY(1000); 251 } 252 if (timout == 0) { 253 panic("cpu%d failed to start (2)", cpuid); 254 } 255 256 /* 257 * The slave has started; we can tell DTrace that it's safe again. 258 */ 259 if (dtrace_cpustart_fini != NULL) 260 (*dtrace_cpustart_fini)(); 261 262 /* run the master side of stick synchronization for the slave cpu */ 263 sticksync_master(); 264 265 /* 266 * deal with the cpu flags in a phase-specific manner 267 * for various reasons, this needs to run after the slave 268 * is checked in but before the slave is released. 269 */ 270 (*flag_func)(cpuid); 271 272 /* release the slave */ 273 CPUSET_ADD(cpu_ready_set, cpuid); 274 } 275 276 #ifdef TRAPTRACE 277 int trap_tr0_inuse = 1; /* it is always used on the boot cpu */ 278 int trap_trace_inuse[NCPU]; 279 #endif /* TRAPTRACE */ 280 281 #define cpu_next_free cpu_prev 282 283 /* 284 * Routine to set up a CPU to prepare for starting it up. 285 */ 286 int 287 setup_cpu_common(int cpuid) 288 { 289 struct cpu *cp = NULL; 290 kthread_id_t tp; 291 #ifdef TRAPTRACE 292 int tt_index; 293 TRAP_TRACE_CTL *ctlp; 294 caddr_t newbuf; 295 #endif /* TRAPTRACE */ 296 297 extern void idle(); 298 int rval; 299 300 ASSERT(MUTEX_HELD(&cpu_lock)); 301 ASSERT(cpu[cpuid] == NULL); 302 303 ASSERT(ncpus <= max_ncpus); 304 305 #ifdef TRAPTRACE 306 /* 307 * allocate a traptrace buffer for this CPU. 308 */ 309 ctlp = &trap_trace_ctl[cpuid]; 310 if (!trap_tr0_inuse) { 311 trap_tr0_inuse = 1; 312 newbuf = trap_tr0; 313 tt_index = -1; 314 } else { 315 for (tt_index = 0; tt_index < (max_ncpus-1); tt_index++) 316 if (!trap_trace_inuse[tt_index]) 317 break; 318 ASSERT(tt_index < max_ncpus - 1); 319 trap_trace_inuse[tt_index] = 1; 320 newbuf = (caddr_t)(ttrace_buf + (tt_index * TRAP_TSIZE)); 321 } 322 ctlp->d.vaddr_base = newbuf; 323 ctlp->d.offset = ctlp->d.last_offset = 0; 324 ctlp->d.limit = trap_trace_bufsize; 325 ctlp->d.paddr_base = va_to_pa(newbuf); 326 ASSERT(ctlp->d.paddr_base != (uint64_t)-1); 327 #endif /* TRAPTRACE */ 328 /* 329 * initialize hv traptrace buffer for this CPU 330 */ 331 mach_htraptrace_setup(cpuid); 332 333 /* 334 * Obtain pointer to the appropriate cpu structure. 335 */ 336 if (cpu0.cpu_flags == 0) { 337 cp = &cpu0; 338 } else { 339 /* 340 * When dynamically allocating cpu structs, 341 * cpus is used as a pointer to a list of freed 342 * cpu structs. 343 */ 344 if (cpus) { 345 /* grab the first cpu struct on the free list */ 346 cp = cpus; 347 if (cp->cpu_next_free) 348 cpus = cp->cpu_next_free; 349 else 350 cpus = NULL; 351 } 352 } 353 354 if (cp == NULL) 355 cp = vmem_xalloc(static_alloc_arena, CPU_ALLOC_SIZE, 356 CPU_ALLOC_SIZE, 0, 0, NULL, NULL, VM_SLEEP); 357 358 bzero(cp, sizeof (*cp)); 359 360 cp->cpu_id = cpuid; 361 cp->cpu_self = cp; 362 363 /* 364 * Initialize ptl1_panic stack 365 */ 366 ptl1_init_cpu(cp); 367 368 /* 369 * Initialize the dispatcher for this CPU. 370 */ 371 disp_cpu_init(cp); 372 373 /* 374 * Bootstrap the CPU's PG data 375 */ 376 pg_cpu_bootstrap(cp); 377 378 cpu_vm_data_init(cp); 379 380 /* 381 * Now, initialize per-CPU idle thread for this CPU. 382 */ 383 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_ONPROC, -1); 384 385 cp->cpu_idle_thread = tp; 386 387 tp->t_preempt = 1; 388 tp->t_bound_cpu = cp; 389 tp->t_affinitycnt = 1; 390 tp->t_cpu = cp; 391 tp->t_disp_queue = cp->cpu_disp; 392 393 /* 394 * Registering a thread in the callback table is usually 395 * done in the initialization code of the thread. In this 396 * case, we do it right after thread creation to avoid 397 * blocking idle thread while registering itself. It also 398 * avoids the possibility of reregistration in case a CPU 399 * restarts its idle thread. 400 */ 401 CALLB_CPR_INIT_SAFE(tp, "idle"); 402 403 init_cpu_info(cp); 404 405 /* 406 * Initialize the interrupt threads for this CPU 407 */ 408 cpu_intr_alloc(cp, NINTR_THREADS); 409 410 /* 411 * Add CPU to list of available CPUs. 412 * It'll be on the active list after it is started. 413 */ 414 cpu_add_unit(cp); 415 416 /* 417 * Allocate and init cpu module private data structures, 418 * including scrubber. 419 */ 420 cpu_init_private(cp); 421 populate_idstr(cp); 422 423 /* 424 * Initialize the CPUs physical ID cache, and processor groups 425 */ 426 pghw_physid_create(cp); 427 (void) pg_cpu_init(cp, B_FALSE); 428 429 if ((rval = cpu_intrq_setup(cp)) != 0) { 430 return (rval); 431 } 432 433 /* 434 * Initialize MMU context domain information. 435 */ 436 sfmmu_cpu_init(cp); 437 438 return (0); 439 } 440 441 /* 442 * Routine to clean up a CPU after shutting it down. 443 */ 444 int 445 cleanup_cpu_common(int cpuid) 446 { 447 struct cpu *cp; 448 #ifdef TRAPTRACE 449 int i; 450 TRAP_TRACE_CTL *ctlp; 451 caddr_t newbuf; 452 #endif /* TRAPTRACE */ 453 454 ASSERT(MUTEX_HELD(&cpu_lock)); 455 ASSERT(cpu[cpuid] != NULL); 456 457 cp = cpu[cpuid]; 458 459 /* Free cpu module private data structures, including scrubber. */ 460 cpu_uninit_private(cp); 461 462 /* Free cpu ID string and brand string. */ 463 if (cp->cpu_idstr) 464 kmem_free(cp->cpu_idstr, strlen(cp->cpu_idstr) + 1); 465 if (cp->cpu_brandstr) 466 kmem_free(cp->cpu_brandstr, strlen(cp->cpu_brandstr) + 1); 467 468 cpu_vm_data_destroy(cp); 469 470 /* 471 * Remove CPU from list of available CPUs. 472 */ 473 cpu_del_unit(cpuid); 474 475 /* 476 * Clean any machine specific interrupt states. 477 */ 478 cpu_intrq_cleanup(cp); 479 480 /* 481 * At this point, the only threads bound to this CPU should be 482 * special per-cpu threads: it's idle thread, it's pause thread, 483 * and it's interrupt threads. Clean these up. 484 */ 485 cpu_destroy_bound_threads(cp); 486 487 /* 488 * Free the interrupt stack. 489 */ 490 segkp_release(segkp, cp->cpu_intr_stack); 491 492 /* 493 * Free hv traptrace buffer for this CPU. 494 */ 495 mach_htraptrace_cleanup(cpuid); 496 #ifdef TRAPTRACE 497 /* 498 * Free the traptrace buffer for this CPU. 499 */ 500 ctlp = &trap_trace_ctl[cpuid]; 501 newbuf = ctlp->d.vaddr_base; 502 i = (newbuf - ttrace_buf) / (TRAP_TSIZE); 503 if (((newbuf - ttrace_buf) % (TRAP_TSIZE) == 0) && 504 ((i >= 0) && (i < (max_ncpus-1)))) { 505 /* 506 * This CPU got it's trap trace buffer from the 507 * boot-alloc'd bunch of them. 508 */ 509 trap_trace_inuse[i] = 0; 510 bzero(newbuf, (TRAP_TSIZE)); 511 } else if (newbuf == trap_tr0) { 512 trap_tr0_inuse = 0; 513 bzero(trap_tr0, (TRAP_TSIZE)); 514 } else { 515 cmn_err(CE_WARN, "failed to free trap trace buffer from cpu%d", 516 cpuid); 517 } 518 bzero(ctlp, sizeof (*ctlp)); 519 #endif /* TRAPTRACE */ 520 521 /* 522 * There is a race condition with mutex_vector_enter() which 523 * caches a cpu pointer. The race is detected by checking cpu_next. 524 */ 525 disp_cpu_fini(cp); 526 cpu_pa[cpuid] = 0; 527 if (CPU_MMU_CTXP(cp)) 528 sfmmu_cpu_cleanup(cp); 529 bzero(cp, sizeof (*cp)); 530 531 /* 532 * Place the freed cpu structure on the list of freed cpus. 533 */ 534 if (cp != &cpu0) { 535 if (cpus) { 536 cp->cpu_next_free = cpus; 537 cpus = cp; 538 } 539 else 540 cpus = cp; 541 } 542 543 return (0); 544 } 545 546 /* 547 * This routine is used to start a previously powered off processor. 548 * Note that restarted cpus are initialized into the offline state. 549 */ 550 void 551 restart_other_cpu(int cpuid) 552 { 553 struct cpu *cp; 554 kthread_id_t tp; 555 caddr_t sp; 556 extern void idle(); 557 558 ASSERT(MUTEX_HELD(&cpu_lock)); 559 ASSERT(cpuid < NCPU && cpu[cpuid] != NULL); 560 561 /* 562 * Obtain pointer to the appropriate cpu structure. 563 */ 564 cp = cpu[cpuid]; 565 566 common_startup_init(cp, cpuid); 567 568 /* 569 * idle thread t_lock is held when the idle thread is suspended. 570 * Manually unlock the t_lock of idle loop so that we can resume 571 * the suspended idle thread. 572 * Also adjust the PC of idle thread for re-retry. 573 */ 574 cp->cpu_intr_actv = 0; /* clear the value from previous life */ 575 cp->cpu_m.mutex_ready = 0; /* we are not ready yet */ 576 lock_clear(&cp->cpu_idle_thread->t_lock); 577 tp = cp->cpu_idle_thread; 578 579 sp = tp->t_stk; 580 tp->t_sp = (uintptr_t)((struct rwindow *)sp - 1) - STACK_BIAS; 581 tp->t_pc = (uintptr_t)idle - 8; 582 583 /* 584 * restart the cpu now 585 */ 586 promsafe_pause_cpus(); 587 start_cpu(cpuid, warm_flag_set); 588 start_cpus(); 589 590 /* call cmn_err outside pause_cpus/start_cpus to avoid deadlock */ 591 cmn_err(CE_CONT, "!cpu%d initialization complete - restarted\n", 592 cpuid); 593 } 594 595 /* 596 * Startup function executed on 'other' CPUs. This is the first 597 * C function after cpu_start sets up the cpu registers. 598 */ 599 static void 600 slave_startup(void) 601 { 602 struct cpu *cp = CPU; 603 ushort_t original_flags = cp->cpu_flags; 604 605 mach_htraptrace_configure(cp->cpu_id); 606 cpu_intrq_register(CPU); 607 cp->cpu_m.mutex_ready = 1; 608 609 /* acknowledge that we are done with initialization */ 610 CPUSET_ADD(proxy_ready_set, cp->cpu_id); 611 612 /* synchronize STICK */ 613 sticksync_slave(); 614 615 if (boothowto & RB_DEBUG) 616 kdi_dvec_cpu_init(cp); 617 618 /* 619 * the slave will wait here forever -- assuming that the master 620 * will get back to us. if it doesn't we've got bigger problems 621 * than a master not replying to this slave. 622 * the small delay improves the slave's responsiveness to the 623 * master's ack and decreases the time window between master and 624 * slave operations. 625 */ 626 while (!CPU_IN_SET(cpu_ready_set, cp->cpu_id)) 627 DELAY(1); 628 629 /* 630 * The CPU is now in cpu_ready_set, safely able to take pokes. 631 */ 632 cp->cpu_m.poke_cpu_outstanding = B_FALSE; 633 634 /* enable interrupts */ 635 (void) spl0(); 636 637 /* 638 * Signature block update to indicate that this CPU is in OS now. 639 * This needs to be done after the PIL is lowered since on 640 * some platforms the update code may block. 641 */ 642 CPU_SIGNATURE(OS_SIG, SIGST_RUN, SIGSUBST_NULL, cp->cpu_id); 643 644 /* 645 * park the slave thread in a safe/quiet state and wait for the master 646 * to finish configuring this CPU before proceeding to thread_exit(). 647 */ 648 while (((volatile ushort_t)cp->cpu_flags) & CPU_QUIESCED) 649 DELAY(1); 650 651 /* 652 * Initialize CPC CPU state. 653 */ 654 kcpc_hw_startup_cpu(original_flags); 655 656 /* 657 * Notify the PG subsystem that the CPU has started 658 */ 659 pg_cmt_cpu_startup(CPU); 660 661 /* 662 * Now we are done with the startup thread, so free it up. 663 */ 664 thread_exit(); 665 cmn_err(CE_PANIC, "slave_startup: cannot return"); 666 /*NOTREACHED*/ 667 } 668 669 extern struct cpu *cpu[NCPU]; /* pointers to all CPUs */ 670 671 /* 672 * cpu_bringup_set is a tunable (via /etc/system, debugger, etc.) that 673 * can be used during debugging to control which processors are brought 674 * online at boot time. The variable represents a bitmap of the id's 675 * of the processors that will be brought online. The initialization 676 * of this variable depends on the type of cpuset_t, which varies 677 * depending on the number of processors supported (see cpuvar.h). 678 */ 679 cpuset_t cpu_bringup_set; 680 681 682 /* 683 * Generic start-all cpus entry. Typically used during cold initialization. 684 * Note that cold start cpus are initialized into the online state. 685 */ 686 /*ARGSUSED*/ 687 void 688 start_other_cpus(int flag) 689 { 690 int cpuid; 691 extern void idlestop_init(void); 692 int bootcpu; 693 694 /* 695 * Check if cpu_bringup_set has been explicitly set before 696 * initializing it. 697 */ 698 if (CPUSET_ISNULL(cpu_bringup_set)) { 699 CPUSET_ALL(cpu_bringup_set); 700 } 701 702 if (&cpu_feature_init) 703 cpu_feature_init(); 704 705 /* 706 * Initialize CPC. 707 */ 708 kcpc_hw_init(); 709 710 mutex_enter(&cpu_lock); 711 712 /* 713 * Initialize our own cpu_info. 714 */ 715 init_cpu_info(CPU); 716 717 /* 718 * Initialize CPU 0 cpu module private data area, including scrubber. 719 */ 720 cpu_init_private(CPU); 721 populate_idstr(CPU); 722 723 /* 724 * perform such initialization as is needed 725 * to be able to take CPUs on- and off-line. 726 */ 727 cpu_pause_init(); 728 xc_init(); /* initialize processor crosscalls */ 729 idlestop_init(); 730 731 if (!use_mp) { 732 mutex_exit(&cpu_lock); 733 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 734 return; 735 } 736 /* 737 * should we be initializing this cpu? 738 */ 739 bootcpu = getprocessorid(); 740 741 /* 742 * launch all the slave cpus now 743 */ 744 for (cpuid = 0; cpuid < NCPU; cpuid++) { 745 pnode_t nodeid = cpunodes[cpuid].nodeid; 746 747 if (nodeid == (pnode_t)0) 748 continue; 749 750 if (cpuid == bootcpu) { 751 if (!CPU_IN_SET(cpu_bringup_set, cpuid)) { 752 cmn_err(CE_WARN, "boot cpu not a member " 753 "of cpu_bringup_set, adding it"); 754 CPUSET_ADD(cpu_bringup_set, cpuid); 755 } 756 continue; 757 } 758 if (!CPU_IN_SET(cpu_bringup_set, cpuid)) 759 continue; 760 761 ASSERT(cpu[cpuid] == NULL); 762 763 if (setup_cpu_common(cpuid)) { 764 cmn_err(CE_PANIC, "cpu%d: setup failed", cpuid); 765 } 766 767 common_startup_init(cpu[cpuid], cpuid); 768 769 start_cpu(cpuid, cold_flag_set); 770 /* 771 * Because slave_startup() gets fired off after init() 772 * starts, we can't use the '?' trick to do 'boot -v' 773 * printing - so we always direct the 'cpu .. online' 774 * messages to the log. 775 */ 776 cmn_err(CE_CONT, "!cpu%d initialization complete - online\n", 777 cpuid); 778 779 cpu_state_change_notify(cpuid, CPU_SETUP); 780 781 if (dtrace_cpu_init != NULL) 782 (*dtrace_cpu_init)(cpuid); 783 } 784 785 /* 786 * since all the cpus are online now, redistribute interrupts to them. 787 */ 788 intr_redist_all_cpus(); 789 790 mutex_exit(&cpu_lock); 791 792 /* 793 * Start the Ecache scrubber. Must be done after all calls to 794 * cpu_init_private for every cpu (including CPU 0). 795 */ 796 cpu_init_cache_scrub(); 797 798 if (&cpu_mp_init) 799 cpu_mp_init(); 800 } 801