1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/sysmacros.h> 29 #include <sys/prom_plat.h> 30 #include <sys/prom_debug.h> 31 #include <vm/hat_sfmmu.h> 32 #include <vm/seg_kp.h> 33 #include <vm/seg_kmem.h> 34 #include <sys/machsystm.h> 35 #include <sys/callb.h> 36 #include <sys/cpu_module.h> 37 #include <sys/chip.h> 38 #include <sys/dtrace.h> 39 #include <sys/reboot.h> 40 #include <sys/kdi.h> 41 #include <sys/traptrace.h> 42 #ifdef TRAPTRACE 43 #include <sys/bootconf.h> 44 #endif /* TRAPTRACE */ 45 #include <sys/cpu_sgnblk_defs.h> 46 47 extern void cpu_intrq_setup(struct cpu *); 48 extern void cpu_intrq_register(struct cpu *); 49 50 struct cpu *cpus; /* pointer to other cpus; dynamically allocate */ 51 struct cpu *cpu[NCPU]; /* pointers to all CPUs */ 52 uint64_t cpu_pa[NCPU]; /* pointers to all CPUs in PA */ 53 cpu_core_t cpu_core[NCPU]; /* cpu_core structures */ 54 55 #ifdef TRAPTRACE 56 caddr_t ttrace_buf; /* bop alloced traptrace for all cpus except 0 */ 57 #endif /* TRAPTRACE */ 58 59 /* bit mask of cpus ready for x-calls, protected by cpu_lock */ 60 cpuset_t cpu_ready_set; 61 62 /* bit mask used to communicate with cpus during bringup */ 63 static cpuset_t proxy_ready_set; 64 65 static void slave_startup(void); 66 67 /* 68 * Defined in $KARCH/os/mach_mp_startup.c 69 */ 70 #pragma weak init_cpu_info 71 72 /* 73 * Amount of time (in milliseconds) we should wait before giving up on CPU 74 * initialization and assuming that the CPU we're trying to wake up is dead 75 * or out of control. 76 */ 77 #define CPU_WAKEUP_GRACE_MSEC 1000 78 79 /* 80 * MP configurations may reserve additional interrupt request entries. 81 * intr_add_{div,max} can be modified to tune memory usage. 82 */ 83 84 uint_t intr_add_div = 1; /* 1=worst case memory usage */ 85 size_t intr_add_max = 0; 86 87 /* intr_add_{pools,head,tail} calculated based on intr_add_{div,max} */ 88 89 size_t intr_add_pools = 0; /* additional pools per cpu */ 90 struct intr_req *intr_add_head = (struct intr_req *)NULL; 91 #ifdef DEBUG 92 struct intr_req *intr_add_tail = (struct intr_req *)NULL; 93 #endif /* DEBUG */ 94 95 96 #ifdef TRAPTRACE 97 /* 98 * This function bop allocs traptrace buffers for all cpus 99 * other than boot cpu. 100 */ 101 caddr_t 102 trap_trace_alloc(caddr_t base) 103 { 104 caddr_t vaddr; 105 extern int max_ncpus; 106 107 if (max_ncpus == 1) { 108 return (base); 109 } 110 111 if ((vaddr = (caddr_t)BOP_ALLOC(bootops, base, (TRAP_TSIZE * 112 (max_ncpus - 1)), TRAP_TSIZE)) == NULL) { 113 panic("traptrace_alloc: can't bop alloc"); 114 } 115 ttrace_buf = vaddr; 116 PRM_DEBUG(ttrace_buf); 117 return (vaddr + (TRAP_TSIZE * (max_ncpus - 1))); 118 } 119 #endif /* TRAPTRACE */ 120 121 /* 122 * common slave cpu initialization code 123 */ 124 void 125 common_startup_init(cpu_t *cp, int cpuid) 126 { 127 kthread_id_t tp; 128 sfmmu_t *sfmmup; 129 caddr_t sp; 130 131 /* 132 * Allocate and initialize the startup thread for this CPU. 133 */ 134 tp = thread_create(NULL, 0, slave_startup, NULL, 0, &p0, 135 TS_STOPPED, maxclsyspri); 136 137 /* 138 * Set state to TS_ONPROC since this thread will start running 139 * as soon as the CPU comes online. 140 * 141 * All the other fields of the thread structure are setup by 142 * thread_create(). 143 */ 144 THREAD_ONPROC(tp, cp); 145 tp->t_preempt = 1; 146 tp->t_bound_cpu = cp; 147 tp->t_affinitycnt = 1; 148 tp->t_cpu = cp; 149 tp->t_disp_queue = cp->cpu_disp; 150 151 sfmmup = astosfmmu(&kas); 152 CPUSET_ADD(sfmmup->sfmmu_cpusran, cpuid); 153 154 /* 155 * Setup thread to start in slave_startup. 156 */ 157 sp = tp->t_stk; 158 tp->t_pc = (uintptr_t)slave_startup - 8; 159 tp->t_sp = (uintptr_t)((struct rwindow *)sp - 1) - STACK_BIAS; 160 161 cp->cpu_id = cpuid; 162 cp->cpu_self = cp; 163 cp->cpu_thread = tp; 164 cp->cpu_lwp = NULL; 165 cp->cpu_dispthread = tp; 166 cp->cpu_dispatch_pri = DISP_PRIO(tp); 167 cp->cpu_startup_thread = tp; 168 } 169 170 /* 171 * parametric flag setting functions. these routines set the cpu 172 * state just prior to releasing the slave cpu. 173 */ 174 void 175 cold_flag_set(int cpuid) 176 { 177 cpu_t *cp; 178 179 ASSERT(MUTEX_HELD(&cpu_lock)); 180 181 cp = cpu[cpuid]; 182 cp->cpu_flags |= CPU_RUNNING | CPU_ENABLE | CPU_EXISTS; 183 cpu_add_active(cp); 184 /* 185 * Add CPU_READY after the cpu_add_active() call 186 * to avoid pausing cp. 187 */ 188 cp->cpu_flags |= CPU_READY; /* ready */ 189 cpu_set_state(cp); 190 } 191 192 static void 193 warm_flag_set(int cpuid) 194 { 195 cpu_t *cp; 196 197 ASSERT(MUTEX_HELD(&cpu_lock)); 198 199 /* 200 * warm start activates cpus into the OFFLINE state 201 */ 202 cp = cpu[cpuid]; 203 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS 204 | CPU_OFFLINE | CPU_QUIESCED; 205 cpu_set_state(cp); 206 } 207 208 /* 209 * Internal cpu startup sequencer 210 * The sequence is as follows: 211 * 212 * MASTER SLAVE 213 * ------- ---------- 214 * assume the kernel data is initialized 215 * clear the proxy bit 216 * start the slave cpu 217 * wait for the slave cpu to set the proxy 218 * 219 * the slave runs slave_startup and then sets the proxy 220 * the slave waits for the master to add slave to the ready set 221 * 222 * the master finishes the initialization and 223 * adds the slave to the ready set 224 * 225 * the slave exits the startup thread and is running 226 */ 227 void 228 start_cpu(int cpuid, void(*flag_func)(int)) 229 { 230 extern caddr_t cpu_startup; 231 int timout; 232 233 ASSERT(MUTEX_HELD(&cpu_lock)); 234 235 /* 236 * Before we begin the dance, tell DTrace that we're about to start 237 * a CPU. 238 */ 239 if (dtrace_cpustart_init != NULL) 240 (*dtrace_cpustart_init)(); 241 242 /* start the slave cpu */ 243 CPUSET_DEL(proxy_ready_set, cpuid); 244 if (prom_test("SUNW,start-cpu-by-cpuid") == 0) { 245 (void) prom_startcpu_bycpuid(cpuid, (caddr_t)&cpu_startup, 246 cpuid); 247 } else { 248 /* "by-cpuid" interface didn't exist. Do it the old way */ 249 pnode_t nodeid = cpunodes[cpuid].nodeid; 250 251 ASSERT(nodeid != (pnode_t)0); 252 (void) prom_startcpu(nodeid, (caddr_t)&cpu_startup, cpuid); 253 } 254 255 /* wait for the slave cpu to check in. */ 256 for (timout = CPU_WAKEUP_GRACE_MSEC; timout; timout--) { 257 if (CPU_IN_SET(proxy_ready_set, cpuid)) 258 break; 259 DELAY(1000); 260 } 261 if (timout == 0) { 262 panic("cpu%d failed to start (2)", cpuid); 263 } 264 265 /* 266 * The slave has started; we can tell DTrace that it's safe again. 267 */ 268 if (dtrace_cpustart_fini != NULL) 269 (*dtrace_cpustart_fini)(); 270 271 /* run the master side of stick synchronization for the slave cpu */ 272 sticksync_master(); 273 274 /* 275 * deal with the cpu flags in a phase-specific manner 276 * for various reasons, this needs to run after the slave 277 * is checked in but before the slave is released. 278 */ 279 (*flag_func)(cpuid); 280 281 /* release the slave */ 282 CPUSET_ADD(cpu_ready_set, cpuid); 283 } 284 285 #ifdef TRAPTRACE 286 int trap_tr0_inuse = 1; /* it is always used on the boot cpu */ 287 int trap_trace_inuse[NCPU]; 288 #endif /* TRAPTRACE */ 289 290 #define cpu_next_free cpu_prev 291 292 /* 293 * Routine to set up a CPU to prepare for starting it up. 294 */ 295 void 296 setup_cpu_common(int cpuid) 297 { 298 struct cpu *cp = NULL; 299 kthread_id_t tp; 300 #ifdef TRAPTRACE 301 int tt_index; 302 TRAP_TRACE_CTL *ctlp; 303 caddr_t newbuf; 304 #endif /* TRAPTRACE */ 305 306 extern void idle(); 307 308 ASSERT(MUTEX_HELD(&cpu_lock)); 309 ASSERT(cpu[cpuid] == NULL); 310 311 ASSERT(ncpus <= max_ncpus); 312 313 #ifdef TRAPTRACE 314 /* 315 * allocate a traptrace buffer for this CPU. 316 */ 317 ctlp = &trap_trace_ctl[cpuid]; 318 if (!trap_tr0_inuse) { 319 trap_tr0_inuse = 1; 320 newbuf = trap_tr0; 321 tt_index = -1; 322 } else { 323 for (tt_index = 0; tt_index < (max_ncpus-1); tt_index++) 324 if (!trap_trace_inuse[tt_index]) 325 break; 326 ASSERT(tt_index < max_ncpus - 1); 327 trap_trace_inuse[tt_index] = 1; 328 newbuf = (caddr_t)(ttrace_buf + (tt_index * TRAP_TSIZE)); 329 } 330 ctlp->d.vaddr_base = newbuf; 331 ctlp->d.offset = ctlp->d.last_offset = 0; 332 ctlp->d.limit = trap_trace_bufsize; 333 ctlp->d.paddr_base = va_to_pa(newbuf); 334 ASSERT(ctlp->d.paddr_base != (uint64_t)-1); 335 #endif /* TRAPTRACE */ 336 /* 337 * initialize hv traptrace buffer for this CPU 338 */ 339 mach_htraptrace_setup(cpuid); 340 341 /* 342 * Obtain pointer to the appropriate cpu structure. 343 */ 344 if (cpu0.cpu_flags == 0) { 345 cp = &cpu0; 346 } else { 347 /* 348 * When dynamically allocating cpu structs, 349 * cpus is used as a pointer to a list of freed 350 * cpu structs. 351 */ 352 if (cpus) { 353 /* grab the first cpu struct on the free list */ 354 cp = cpus; 355 if (cp->cpu_next_free) 356 cpus = cp->cpu_next_free; 357 else 358 cpus = NULL; 359 } 360 } 361 362 if (cp == NULL) 363 cp = vmem_xalloc(static_alloc_arena, CPU_ALLOC_SIZE, 364 CPU_ALLOC_SIZE, 0, 0, NULL, NULL, VM_SLEEP); 365 366 bzero(cp, sizeof (*cp)); 367 368 cp->cpu_id = cpuid; 369 cp->cpu_self = cp; 370 371 /* 372 * Initialize ptl1_panic stack 373 */ 374 ptl1_init_cpu(cp); 375 376 /* 377 * Initialize the dispatcher for this CPU. 378 */ 379 disp_cpu_init(cp); 380 381 cpu_vm_data_init(cp); 382 383 /* 384 * Now, initialize per-CPU idle thread for this CPU. 385 */ 386 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_ONPROC, -1); 387 388 cp->cpu_idle_thread = tp; 389 390 tp->t_preempt = 1; 391 tp->t_bound_cpu = cp; 392 tp->t_affinitycnt = 1; 393 tp->t_cpu = cp; 394 tp->t_disp_queue = cp->cpu_disp; 395 396 /* 397 * Registering a thread in the callback table is usually 398 * done in the initialization code of the thread. In this 399 * case, we do it right after thread creation to avoid 400 * blocking idle thread while registering itself. It also 401 * avoids the possibility of reregistration in case a CPU 402 * restarts its idle thread. 403 */ 404 CALLB_CPR_INIT_SAFE(tp, "idle"); 405 406 init_cpu_info(cp); 407 408 /* 409 * Initialize the interrupt threads for this CPU 410 */ 411 init_intr_pool(cp); 412 cpu_intr_alloc(cp, NINTR_THREADS); 413 414 /* 415 * Add CPU to list of available CPUs. 416 * It'll be on the active list after it is started. 417 */ 418 cpu_add_unit(cp); 419 420 /* 421 * Allocate and init cpu module private data structures, 422 * including scrubber. 423 */ 424 cpu_init_private(cp); 425 426 /* 427 * Associate this CPU with a physical processor 428 */ 429 chip_cpu_init(cp); 430 431 cpu_intrq_setup(cp); 432 } 433 434 /* 435 * Routine to clean up a CPU after shutting it down. 436 */ 437 int 438 cleanup_cpu_common(int cpuid) 439 { 440 struct cpu *cp; 441 #ifdef TRAPTRACE 442 int i; 443 TRAP_TRACE_CTL *ctlp; 444 caddr_t newbuf; 445 #endif /* TRAPTRACE */ 446 447 ASSERT(MUTEX_HELD(&cpu_lock)); 448 ASSERT(cpu[cpuid] != NULL); 449 450 cp = cpu[cpuid]; 451 452 /* Free cpu module private data structures, including scrubber. */ 453 cpu_uninit_private(cp); 454 455 cpu_vm_data_destroy(cp); 456 457 /* 458 * Remove CPU from list of available CPUs. 459 */ 460 cpu_del_unit(cpuid); 461 462 /* 463 * Clean up the interrupt pool. 464 */ 465 cleanup_intr_pool(cp); 466 467 /* 468 * At this point, the only threads bound to this CPU should be 469 * special per-cpu threads: it's idle thread, it's pause thread, 470 * and it's interrupt threads. Clean these up. 471 */ 472 cpu_destroy_bound_threads(cp); 473 474 /* 475 * Free the interrupt stack. 476 */ 477 segkp_release(segkp, cp->cpu_intr_stack); 478 479 /* 480 * Free hv traptrace buffer for this CPU. 481 */ 482 mach_htraptrace_cleanup(cpuid); 483 #ifdef TRAPTRACE 484 /* 485 * Free the traptrace buffer for this CPU. 486 */ 487 ctlp = &trap_trace_ctl[cpuid]; 488 newbuf = ctlp->d.vaddr_base; 489 i = (newbuf - ttrace_buf) / (TRAP_TSIZE); 490 if (((newbuf - ttrace_buf) % (TRAP_TSIZE) == 0) && 491 ((i >= 0) && (i < (max_ncpus-1)))) { 492 /* 493 * This CPU got it's trap trace buffer from the 494 * boot-alloc'd bunch of them. 495 */ 496 trap_trace_inuse[i] = 0; 497 bzero(newbuf, (TRAP_TSIZE)); 498 } else if (newbuf == trap_tr0) { 499 trap_tr0_inuse = 0; 500 bzero(trap_tr0, (TRAP_TSIZE)); 501 } else { 502 cmn_err(CE_WARN, "failed to free trap trace buffer from cpu%d", 503 cpuid); 504 } 505 bzero(ctlp, sizeof (*ctlp)); 506 #endif /* TRAPTRACE */ 507 508 /* 509 * There is a race condition with mutex_vector_enter() which 510 * caches a cpu pointer. The race is detected by checking cpu_next. 511 */ 512 disp_cpu_fini(cp); 513 cpu_pa[cpuid] = 0; 514 bzero(cp, sizeof (*cp)); 515 516 /* 517 * Place the freed cpu structure on the list of freed cpus. 518 */ 519 if (cp != &cpu0) { 520 if (cpus) { 521 cp->cpu_next_free = cpus; 522 cpus = cp; 523 } 524 else 525 cpus = cp; 526 } 527 528 return (0); 529 } 530 531 /* 532 * This routine is used to start a previously powered off processor. 533 * Note that restarted cpus are initialized into the offline state. 534 */ 535 void 536 restart_other_cpu(int cpuid) 537 { 538 struct cpu *cp; 539 kthread_id_t tp; 540 caddr_t sp; 541 extern void idle(); 542 543 ASSERT(MUTEX_HELD(&cpu_lock)); 544 ASSERT(cpuid < NCPU && cpu[cpuid] != NULL); 545 546 /* 547 * Obtain pointer to the appropriate cpu structure. 548 */ 549 cp = cpu[cpuid]; 550 551 common_startup_init(cp, cpuid); 552 553 /* 554 * idle thread t_lock is held when the idle thread is suspended. 555 * Manually unlock the t_lock of idle loop so that we can resume 556 * the suspended idle thread. 557 * Also adjust the PC of idle thread for re-retry. 558 */ 559 cp->cpu_intr_actv = 0; /* clear the value from previous life */ 560 cp->cpu_m.mutex_ready = 0; /* we are not ready yet */ 561 lock_clear(&cp->cpu_idle_thread->t_lock); 562 tp = cp->cpu_idle_thread; 563 564 sp = tp->t_stk; 565 tp->t_sp = (uintptr_t)((struct rwindow *)sp - 1) - STACK_BIAS; 566 tp->t_pc = (uintptr_t)idle - 8; 567 568 /* 569 * restart the cpu now 570 */ 571 promsafe_pause_cpus(); 572 start_cpu(cpuid, warm_flag_set); 573 start_cpus(); 574 575 /* call cmn_err outside pause_cpus/start_cpus to avoid deadlock */ 576 cmn_err(CE_CONT, "!cpu%d initialization complete - restarted\n", 577 cpuid); 578 } 579 580 /* 581 * Startup function executed on 'other' CPUs. This is the first 582 * C function after cpu_start sets up the cpu registers. 583 */ 584 static void 585 slave_startup(void) 586 { 587 struct cpu *cp = CPU; 588 ushort_t original_flags = cp->cpu_flags; 589 590 mach_htraptrace_configure(cp->cpu_id); 591 cpu_intrq_register(CPU); 592 cp->cpu_m.mutex_ready = 1; 593 cp->cpu_m.poke_cpu_outstanding = B_FALSE; 594 595 /* acknowledge that we are done with initialization */ 596 CPUSET_ADD(proxy_ready_set, cp->cpu_id); 597 598 /* synchronize STICK */ 599 sticksync_slave(); 600 601 if (boothowto & RB_DEBUG) 602 kdi_dvec_cpu_init(cp); 603 604 /* 605 * the slave will wait here forever -- assuming that the master 606 * will get back to us. if it doesn't we've got bigger problems 607 * than a master not replying to this slave. 608 * the small delay improves the slave's responsiveness to the 609 * master's ack and decreases the time window between master and 610 * slave operations. 611 */ 612 while (!CPU_IN_SET(cpu_ready_set, cp->cpu_id)) 613 DELAY(1); 614 615 /* enable interrupts */ 616 (void) spl0(); 617 618 /* 619 * Signature block update to indicate that this CPU is in OS now. 620 * This needs to be done after the PIL is lowered since on 621 * some platforms the update code may block. 622 */ 623 CPU_SIGNATURE(OS_SIG, SIGST_RUN, SIGSUBST_NULL, cp->cpu_id); 624 625 /* 626 * park the slave thread in a safe/quiet state and wait for the master 627 * to finish configuring this CPU before proceeding to thread_exit(). 628 */ 629 while (((volatile ushort_t)cp->cpu_flags) & CPU_QUIESCED) 630 DELAY(1); 631 632 /* 633 * Initialize CPC CPU state. 634 */ 635 kcpc_hw_startup_cpu(original_flags); 636 637 /* 638 * Notify the CMT subsystem that the slave has started 639 */ 640 chip_cpu_startup(CPU); 641 642 /* 643 * Now we are done with the startup thread, so free it up. 644 */ 645 thread_exit(); 646 cmn_err(CE_PANIC, "slave_startup: cannot return"); 647 /*NOTREACHED*/ 648 } 649 650 /* 651 * 4163850 changes the allocation method for cpu structs. cpu structs 652 * are dynamically allocated. This routine now determines if additional 653 * per-cpu intr_req entries need to be allocated. 654 */ 655 int 656 ndata_alloc_cpus(struct memlist *ndata) 657 { 658 size_t real_sz; 659 extern int niobus; 660 661 if (niobus > 1) { 662 663 /* 664 * Allocate additional intr_req entries if we have more than 665 * one io bus. The memory to allocate is calculated from four 666 * variables: niobus, max_ncpus, intr_add_div, and intr_add_max. 667 * Allocate multiple of INTR_POOL_SIZE bytes (512). Each cpu 668 * already reserves 512 bytes in its machcpu structure, so the 669 * worst case is (512 * (niobus - 1) * max_ncpus) add'l bytes. 670 * 671 * While niobus and max_ncpus reflect the h/w, the following 672 * may be tuned (before boot): 673 * 674 * intr_add_div - divisor for scaling the number of 675 * additional intr_req entries. use '1' 676 * for worst case memory, '2' for half, 677 * etc. 678 * 679 * intr_add_max - upper limit on bytes of memory to reserve 680 */ 681 682 real_sz = INTR_POOL_SIZE * (niobus - 1) * max_ncpus; 683 684 /* tune memory usage by applying divisor and maximum */ 685 686 if (intr_add_max == 0) 687 intr_add_max = max_ncpus * INTR_POOL_SIZE; 688 real_sz = MIN(intr_add_max, real_sz / MAX(intr_add_div, 1)); 689 690 /* round down to multiple of (max_ncpus * INTR_POOL_SIZE) */ 691 692 intr_add_pools = real_sz / (max_ncpus * INTR_POOL_SIZE); 693 real_sz = intr_add_pools * (max_ncpus * INTR_POOL_SIZE); 694 695 /* actually reserve the space */ 696 697 intr_add_head = ndata_alloc(ndata, real_sz, ecache_alignsize); 698 if (intr_add_head == NULL) 699 return (-1); 700 701 PRM_DEBUG(intr_add_head); 702 #ifdef DEBUG 703 intr_add_tail = (struct intr_req *) 704 ((uintptr_t)intr_add_head + real_sz); 705 #endif /* DEBUG */ 706 } 707 708 return (0); 709 } 710 711 712 extern struct cpu *cpu[NCPU]; /* pointers to all CPUs */ 713 714 extern void setup_cpu_common(int); 715 extern void common_startup_init(cpu_t *, int); 716 extern void start_cpu(int, void(*func)(int)); 717 extern void cold_flag_set(int cpuid); 718 719 /* 720 * cpu_bringup_set is a tunable (via /etc/system, debugger, etc.) that 721 * can be used during debugging to control which processors are brought 722 * online at boot time. The variable represents a bitmap of the id's 723 * of the processors that will be brought online. The initialization 724 * of this variable depends on the type of cpuset_t, which varies 725 * depending on the number of processors supported (see cpuvar.h). 726 */ 727 cpuset_t cpu_bringup_set; 728 729 730 /* 731 * Generic start-all cpus entry. Typically used during cold initialization. 732 * Note that cold start cpus are initialized into the online state. 733 */ 734 /*ARGSUSED*/ 735 void 736 start_other_cpus(int flag) 737 { 738 int cpuid; 739 extern void idlestop_init(void); 740 int bootcpu; 741 742 /* 743 * Check if cpu_bringup_set has been explicitly set before 744 * initializing it. 745 */ 746 if (CPUSET_ISNULL(cpu_bringup_set)) { 747 #ifdef MPSAS 748 /* just CPU 0 */ 749 CPUSET_ADD(cpu_bringup_set, 0); 750 #else 751 CPUSET_ALL(cpu_bringup_set); 752 #endif 753 } 754 755 if (&cpu_feature_init) 756 cpu_feature_init(); 757 758 /* 759 * Initialize CPC. 760 */ 761 kcpc_hw_init(); 762 763 mutex_enter(&cpu_lock); 764 765 /* 766 * Initialize our own cpu_info. 767 */ 768 init_cpu_info(CPU); 769 770 /* 771 * Initialize CPU 0 cpu module private data area, including scrubber. 772 */ 773 cpu_init_private(CPU); 774 775 /* 776 * perform such initialization as is needed 777 * to be able to take CPUs on- and off-line. 778 */ 779 cpu_pause_init(); 780 xc_init(); /* initialize processor crosscalls */ 781 idlestop_init(); 782 783 if (!use_mp) { 784 mutex_exit(&cpu_lock); 785 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 786 return; 787 } 788 /* 789 * should we be initializing this cpu? 790 */ 791 bootcpu = getprocessorid(); 792 793 /* 794 * launch all the slave cpus now 795 */ 796 for (cpuid = 0; cpuid < NCPU; cpuid++) { 797 pnode_t nodeid = cpunodes[cpuid].nodeid; 798 799 if (nodeid == (pnode_t)0) 800 continue; 801 802 if (cpuid == bootcpu) { 803 if (!CPU_IN_SET(cpu_bringup_set, cpuid)) { 804 cmn_err(CE_WARN, "boot cpu not a member " 805 "of cpu_bringup_set, adding it"); 806 CPUSET_ADD(cpu_bringup_set, cpuid); 807 } 808 continue; 809 } 810 if (!CPU_IN_SET(cpu_bringup_set, cpuid)) 811 continue; 812 813 ASSERT(cpu[cpuid] == NULL); 814 815 setup_cpu_common(cpuid); 816 817 common_startup_init(cpu[cpuid], cpuid); 818 819 start_cpu(cpuid, cold_flag_set); 820 /* 821 * Because slave_startup() gets fired off after init() 822 * starts, we can't use the '?' trick to do 'boot -v' 823 * printing - so we always direct the 'cpu .. online' 824 * messages to the log. 825 */ 826 cmn_err(CE_CONT, "!cpu%d initialization complete - online\n", 827 cpuid); 828 829 /* 830 * XXX: register_cpu_setup() callbacks should be called here 831 * with a new setup code, CPU_BOOT (or something). 832 */ 833 if (dtrace_cpu_init != NULL) 834 (*dtrace_cpu_init)(cpuid); 835 } 836 837 /* 838 * since all the cpus are online now, redistribute interrupts to them. 839 */ 840 intr_redist_all_cpus(); 841 842 mutex_exit(&cpu_lock); 843 844 /* 845 * Start the Ecache scrubber. Must be done after all calls to 846 * cpu_init_private for every cpu (including CPU 0). 847 */ 848 cpu_init_cache_scrub(); 849 850 if (&cpu_mp_init) 851 cpu_mp_init(); 852 } 853