1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/systm.h> 29 #include <sys/platform_module.h> 30 #include <sys/sysmacros.h> 31 #include <sys/atomic.h> 32 #include <sys/memlist.h> 33 #include <sys/memnode.h> 34 #include <vm/vm_dep.h> 35 36 int max_mem_nodes = 1; /* max memory nodes on this system */ 37 38 struct mem_node_conf mem_node_config[MAX_MEM_NODES]; 39 int mem_node_pfn_shift; 40 /* 41 * num_memnodes should be updated atomically and always >= 42 * the number of bits in memnodes_mask or the algorithm may fail. 43 */ 44 uint16_t num_memnodes; 45 mnodeset_t memnodes_mask; /* assumes 8*(sizeof(mnodeset_t)) >= MAX_MEM_NODES */ 46 47 /* 48 * If set, mem_node_physalign should be a power of two, and 49 * should reflect the minimum address alignment of each node. 50 */ 51 uint64_t mem_node_physalign; 52 53 /* 54 * Platform hooks we will need. 55 */ 56 57 #pragma weak plat_build_mem_nodes 58 #pragma weak plat_slice_add 59 #pragma weak plat_slice_del 60 61 /* 62 * Adjust the memnode config after a DR operation. 63 * 64 * It is rather tricky to do these updates since we can't 65 * protect the memnode structures with locks, so we must 66 * be mindful of the order in which updates and reads to 67 * these values can occur. 68 */ 69 void 70 mem_node_add_slice(pfn_t start, pfn_t end) 71 { 72 int mnode; 73 mnodeset_t newmask, oldmask; 74 75 /* 76 * DR will pass us the first pfn that is allocatable. 77 * We need to round down to get the real start of 78 * the slice. 79 */ 80 if (mem_node_physalign) { 81 start &= ~(btop(mem_node_physalign) - 1); 82 end = roundup(end, btop(mem_node_physalign)) - 1; 83 } 84 85 if (&plat_slice_add != NULL) 86 plat_slice_add(start, end); 87 88 mnode = PFN_2_MEM_NODE(start); 89 ASSERT(mnode < max_mem_nodes); 90 91 if (cas32((uint32_t *)&mem_node_config[mnode].exists, 0, 1)) { 92 /* 93 * Add slice to existing node. 94 */ 95 if (start < mem_node_config[mnode].physbase) 96 mem_node_config[mnode].physbase = start; 97 if (end > mem_node_config[mnode].physmax) 98 mem_node_config[mnode].physmax = end; 99 } else { 100 mem_node_config[mnode].physbase = start; 101 mem_node_config[mnode].physmax = end; 102 atomic_add_16(&num_memnodes, 1); 103 do { 104 oldmask = memnodes_mask; 105 newmask = memnodes_mask | (1ull << mnode); 106 } while (cas64(&memnodes_mask, oldmask, newmask) != oldmask); 107 } 108 /* 109 * Let the common lgrp framework know about the new memory 110 */ 111 lgrp_config(LGRP_CONFIG_MEM_ADD, mnode, MEM_NODE_2_LGRPHAND(mnode)); 112 } 113 114 /* ARGSUSED */ 115 void 116 mem_node_pre_del_slice(pfn_t start, pfn_t end) 117 { 118 int mnode = PFN_2_MEM_NODE(start); 119 120 ASSERT(mnode < max_mem_nodes); 121 ASSERT(mem_node_config[mnode].exists == 1); 122 } 123 124 /* 125 * Remove a PFN range from a memnode. On some platforms, 126 * the memnode will be created with physbase at the first 127 * allocatable PFN, but later deleted with the MC slice 128 * base address converted to a PFN, in which case we need 129 * to assume physbase and up. 130 */ 131 void 132 mem_node_post_del_slice(pfn_t start, pfn_t end, int cancelled) 133 { 134 int mnode; 135 pgcnt_t delta_pgcnt, node_size; 136 mnodeset_t omask, nmask; 137 138 if (mem_node_physalign) { 139 start &= ~(btop(mem_node_physalign) - 1); 140 end = roundup(end, btop(mem_node_physalign)) - 1; 141 } 142 mnode = PFN_2_MEM_NODE(start); 143 144 ASSERT(mnode < max_mem_nodes); 145 ASSERT(mem_node_config[mnode].exists == 1); 146 147 if (!cancelled) { 148 delta_pgcnt = end - start; 149 node_size = mem_node_config[mnode].physmax - 150 mem_node_config[mnode].physbase; 151 152 if (node_size > delta_pgcnt) { 153 /* 154 * Subtract the slice from the memnode. 155 */ 156 if (start <= mem_node_config[mnode].physbase) 157 mem_node_config[mnode].physbase = end + 1; 158 ASSERT(end <= mem_node_config[mnode].physmax); 159 if (end == mem_node_config[mnode].physmax) 160 mem_node_config[mnode].physmax = start - 1; 161 } else { 162 163 /* 164 * Let the common lgrp framework know the mnode is 165 * leaving 166 */ 167 lgrp_config(LGRP_CONFIG_MEM_DEL, mnode, 168 MEM_NODE_2_LGRPHAND(mnode)); 169 170 /* 171 * Delete the whole node. 172 */ 173 ASSERT(MNODE_PGCNT(mnode) == 0); 174 do { 175 omask = memnodes_mask; 176 nmask = omask & ~(1ull << mnode); 177 } while (cas64(&memnodes_mask, omask, nmask) != omask); 178 atomic_add_16(&num_memnodes, -1); 179 mem_node_config[mnode].exists = 0; 180 } 181 182 if (&plat_slice_del != NULL) 183 plat_slice_del(start, end); 184 } 185 } 186 187 void 188 startup_build_mem_nodes(prom_memlist_t *list, size_t nelems) 189 { 190 size_t elem; 191 pfn_t basepfn; 192 pgcnt_t npgs; 193 194 /* LINTED: ASSERT will always true or false */ 195 ASSERT(NBBY * sizeof (mnodeset_t) >= max_mem_nodes); 196 197 if (&plat_build_mem_nodes != NULL) { 198 plat_build_mem_nodes(list, nelems); 199 } else { 200 /* 201 * Boot install lists are arranged <addr, len>, ... 202 */ 203 for (elem = 0; elem < nelems; list++, elem++) { 204 basepfn = btop(list->addr); 205 npgs = btop(list->size); 206 mem_node_add_slice(basepfn, basepfn + npgs - 1); 207 } 208 } 209 } 210 211 /* 212 * Allocate an unassigned memnode. 213 */ 214 int 215 mem_node_alloc() 216 { 217 int mnode; 218 mnodeset_t newmask, oldmask; 219 220 /* 221 * Find an unused memnode. Update it atomically to prevent 222 * a first time memnode creation race. 223 */ 224 for (mnode = 0; mnode < max_mem_nodes; mnode++) 225 if (cas32((uint32_t *)&mem_node_config[mnode].exists, 226 0, 1) == 0) 227 break; 228 229 if (mnode >= max_mem_nodes) 230 panic("Out of free memnodes\n"); 231 232 mem_node_config[mnode].physbase = (uint64_t)-1; 233 mem_node_config[mnode].physmax = 0; 234 atomic_add_16(&num_memnodes, 1); 235 do { 236 oldmask = memnodes_mask; 237 newmask = memnodes_mask | (1ull << mnode); 238 } while (cas64(&memnodes_mask, oldmask, newmask) != oldmask); 239 240 return (mnode); 241 } 242 243 /* 244 * Find the intersection between a memnode and a memlist 245 * and returns the number of pages that overlap. 246 * 247 * Grab the memlist lock to protect the list from DR operations. 248 */ 249 pgcnt_t 250 mem_node_memlist_pages(int mnode, struct memlist *mlist) 251 { 252 pfn_t base, end; 253 pfn_t cur_base, cur_end; 254 pgcnt_t npgs = 0; 255 pgcnt_t pages; 256 struct memlist *pmem; 257 258 if (&plat_mem_node_intersect_range != NULL) { 259 memlist_read_lock(); 260 261 for (pmem = mlist; pmem; pmem = pmem->next) { 262 plat_mem_node_intersect_range(btop(pmem->address), 263 btop(pmem->size), mnode, &pages); 264 npgs += pages; 265 } 266 267 memlist_read_unlock(); 268 return (npgs); 269 } 270 271 base = mem_node_config[mnode].physbase; 272 end = mem_node_config[mnode].physmax; 273 274 memlist_read_lock(); 275 276 for (pmem = mlist; pmem; pmem = pmem->next) { 277 cur_base = btop(pmem->address); 278 cur_end = cur_base + btop(pmem->size) - 1; 279 if (end < cur_base || base > cur_end) 280 continue; 281 npgs = npgs + (MIN(cur_end, end) - 282 MAX(cur_base, base)) + 1; 283 } 284 285 memlist_read_unlock(); 286 287 return (npgs); 288 } 289 290 /* 291 * Find MIN(physbase) and MAX(physmax) over all mnodes 292 * 293 * Called during startup and DR to find hpm_counters limits when 294 * interleaved_mnodes is set. 295 * NOTE: there is a race condition with DR if it tries to change more than 296 * one mnode in parallel. Sizing shared hpm_counters depends on finding the 297 * min(physbase) and max(physmax) across all mnodes. Therefore, the caller of 298 * page_ctrs_adjust must ensure that mem_node_config does not change while it 299 * is running. 300 */ 301 void 302 mem_node_max_range(pfn_t *basep, pfn_t *maxp) 303 { 304 int mnode; 305 pfn_t max = 0; 306 pfn_t base = (pfn_t)-1; 307 308 for (mnode = 0; mnode < max_mem_nodes; mnode++) { 309 if (mem_node_config[mnode].exists == 0) 310 continue; 311 if (max < mem_node_config[mnode].physmax) 312 max = mem_node_config[mnode].physmax; 313 if (base > mem_node_config[mnode].physbase) 314 base = mem_node_config[mnode].physbase; 315 } 316 ASSERT(base != (pfn_t)-1 && max != 0); 317 *basep = base; 318 *maxp = max; 319 } 320