1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2017, Joyent, Inc. All rights reserved. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/kstat.h> 28 #include <sys/param.h> 29 #include <sys/stack.h> 30 #include <sys/regset.h> 31 #include <sys/thread.h> 32 #include <sys/proc.h> 33 #include <sys/procfs_isa.h> 34 #include <sys/kmem.h> 35 #include <sys/cpuvar.h> 36 #include <sys/systm.h> 37 #include <sys/machpcb.h> 38 #include <sys/machasi.h> 39 #include <sys/vis.h> 40 #include <sys/fpu/fpusystm.h> 41 #include <sys/cpu_module.h> 42 #include <sys/privregs.h> 43 #include <sys/archsystm.h> 44 #include <sys/atomic.h> 45 #include <sys/cmn_err.h> 46 #include <sys/time.h> 47 #include <sys/clock.h> 48 #include <sys/cmp.h> 49 #include <sys/platform_module.h> 50 #include <sys/bl.h> 51 #include <sys/nvpair.h> 52 #include <sys/kdi_impl.h> 53 #include <sys/machsystm.h> 54 #include <sys/sysmacros.h> 55 #include <sys/promif.h> 56 #include <sys/pool_pset.h> 57 #include <sys/mem.h> 58 #include <sys/dumphdr.h> 59 #include <vm/seg_kmem.h> 60 #include <sys/hold_page.h> 61 #include <sys/cpu.h> 62 #include <sys/ivintr.h> 63 #include <sys/clock_impl.h> 64 #include <sys/machclock.h> 65 66 int maxphys = MMU_PAGESIZE * 16; /* 128k */ 67 int klustsize = MMU_PAGESIZE * 16; /* 128k */ 68 69 /* 70 * Initialize kernel thread's stack. 71 */ 72 caddr_t 73 thread_stk_init(caddr_t stk) 74 { 75 kfpu_t *fp; 76 ulong_t align; 77 78 /* allocate extra space for floating point state */ 79 stk -= SA(sizeof (kfpu_t) + GSR_SIZE); 80 align = (uintptr_t)stk & 0x3f; 81 stk -= align; /* force v9_fpu to be 16 byte aligned */ 82 fp = (kfpu_t *)stk; 83 fp->fpu_fprs = 0; 84 85 stk -= SA(MINFRAME); 86 return (stk); 87 } 88 89 #define WIN32_SIZE (MAXWIN * sizeof (struct rwindow32)) 90 #define WIN64_SIZE (MAXWIN * sizeof (struct rwindow64)) 91 92 kmem_cache_t *wbuf32_cache; 93 kmem_cache_t *wbuf64_cache; 94 95 void 96 lwp_stk_cache_init(void) 97 { 98 /* 99 * Window buffers are allocated from the static arena 100 * because they are accessed at TL>0. We also must use 101 * KMC_NOHASH to prevent them from straddling page 102 * boundaries as they are accessed by physical address. 103 */ 104 wbuf32_cache = kmem_cache_create("wbuf32_cache", WIN32_SIZE, 105 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH); 106 wbuf64_cache = kmem_cache_create("wbuf64_cache", WIN64_SIZE, 107 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH); 108 } 109 110 /* 111 * Initialize lwp's kernel stack. 112 * Note that now that the floating point register save area (kfpu_t) 113 * has been broken out from machpcb and aligned on a 64 byte boundary so that 114 * we can do block load/stores to/from it, there are a couple of potential 115 * optimizations to save stack space. 1. The floating point register save 116 * area could be aligned on a 16 byte boundary, and the floating point code 117 * changed to (a) check the alignment and (b) use different save/restore 118 * macros depending upon the alignment. 2. The lwp_stk_init code below 119 * could be changed to calculate if less space would be wasted if machpcb 120 * was first instead of second. However there is a REGOFF macro used in 121 * locore, syscall_trap, machdep and mlsetup that assumes that the saved 122 * register area is a fixed distance from the %sp, and would have to be 123 * changed to a pointer or something...JJ said later. 124 */ 125 caddr_t 126 lwp_stk_init(klwp_t *lwp, caddr_t stk) 127 { 128 struct machpcb *mpcb; 129 kfpu_t *fp; 130 uintptr_t aln; 131 132 stk -= SA(sizeof (kfpu_t) + GSR_SIZE); 133 aln = (uintptr_t)stk & 0x3F; 134 stk -= aln; 135 fp = (kfpu_t *)stk; 136 stk -= SA(sizeof (struct machpcb)); 137 mpcb = (struct machpcb *)stk; 138 bzero(mpcb, sizeof (struct machpcb)); 139 bzero(fp, sizeof (kfpu_t) + GSR_SIZE); 140 lwp->lwp_regs = (void *)&mpcb->mpcb_regs; 141 lwp->lwp_fpu = (void *)fp; 142 mpcb->mpcb_fpu = fp; 143 mpcb->mpcb_fpu->fpu_q = mpcb->mpcb_fpu_q; 144 mpcb->mpcb_thread = lwp->lwp_thread; 145 mpcb->mpcb_wbcnt = 0; 146 if (lwp->lwp_procp->p_model == DATAMODEL_ILP32) { 147 mpcb->mpcb_wstate = WSTATE_USER32; 148 mpcb->mpcb_wbuf = kmem_cache_alloc(wbuf32_cache, KM_SLEEP); 149 } else { 150 mpcb->mpcb_wstate = WSTATE_USER64; 151 mpcb->mpcb_wbuf = kmem_cache_alloc(wbuf64_cache, KM_SLEEP); 152 } 153 ASSERT(((uintptr_t)mpcb->mpcb_wbuf & 7) == 0); 154 mpcb->mpcb_wbuf_pa = va_to_pa(mpcb->mpcb_wbuf); 155 mpcb->mpcb_pa = va_to_pa(mpcb); 156 return (stk); 157 } 158 159 void 160 lwp_stk_fini(klwp_t *lwp) 161 { 162 struct machpcb *mpcb = lwptompcb(lwp); 163 164 /* 165 * there might be windows still in the wbuf due to unmapped 166 * stack, misaligned stack pointer, etc. We just free it. 167 */ 168 mpcb->mpcb_wbcnt = 0; 169 if (mpcb->mpcb_wstate == WSTATE_USER32) 170 kmem_cache_free(wbuf32_cache, mpcb->mpcb_wbuf); 171 else 172 kmem_cache_free(wbuf64_cache, mpcb->mpcb_wbuf); 173 mpcb->mpcb_wbuf = NULL; 174 mpcb->mpcb_wbuf_pa = -1; 175 } 176 177 /*ARGSUSED*/ 178 void 179 lwp_fp_init(klwp_t *lwp) 180 { 181 } 182 183 /* 184 * Copy regs from parent to child. 185 */ 186 void 187 lwp_forkregs(klwp_t *lwp, klwp_t *clwp) 188 { 189 kthread_t *t, *pt = lwptot(lwp); 190 struct machpcb *mpcb = lwptompcb(clwp); 191 struct machpcb *pmpcb = lwptompcb(lwp); 192 kfpu_t *fp, *pfp = lwptofpu(lwp); 193 caddr_t wbuf; 194 uint_t wstate; 195 196 t = mpcb->mpcb_thread; 197 /* 198 * remember child's fp and wbuf since they will get erased during 199 * the bcopy. 200 */ 201 fp = mpcb->mpcb_fpu; 202 wbuf = mpcb->mpcb_wbuf; 203 wstate = mpcb->mpcb_wstate; 204 /* 205 * Don't copy mpcb_frame since we hand-crafted it 206 * in thread_load(). 207 */ 208 bcopy(lwp->lwp_regs, clwp->lwp_regs, sizeof (struct machpcb) - REGOFF); 209 mpcb->mpcb_thread = t; 210 mpcb->mpcb_fpu = fp; 211 fp->fpu_q = mpcb->mpcb_fpu_q; 212 213 /* 214 * It is theoretically possibly for the lwp's wstate to 215 * be different from its value assigned in lwp_stk_init, 216 * since lwp_stk_init assumed the data model of the process. 217 * Here, we took on the data model of the cloned lwp. 218 */ 219 if (mpcb->mpcb_wstate != wstate) { 220 if (wstate == WSTATE_USER32) { 221 kmem_cache_free(wbuf32_cache, wbuf); 222 wbuf = kmem_cache_alloc(wbuf64_cache, KM_SLEEP); 223 wstate = WSTATE_USER64; 224 } else { 225 kmem_cache_free(wbuf64_cache, wbuf); 226 wbuf = kmem_cache_alloc(wbuf32_cache, KM_SLEEP); 227 wstate = WSTATE_USER32; 228 } 229 } 230 231 mpcb->mpcb_pa = va_to_pa(mpcb); 232 mpcb->mpcb_wbuf = wbuf; 233 mpcb->mpcb_wbuf_pa = va_to_pa(wbuf); 234 235 ASSERT(mpcb->mpcb_wstate == wstate); 236 237 if (mpcb->mpcb_wbcnt != 0) { 238 bcopy(pmpcb->mpcb_wbuf, mpcb->mpcb_wbuf, 239 mpcb->mpcb_wbcnt * ((mpcb->mpcb_wstate == WSTATE_USER32) ? 240 sizeof (struct rwindow32) : sizeof (struct rwindow64))); 241 } 242 243 if (pt == curthread) 244 pfp->fpu_fprs = _fp_read_fprs(); 245 if ((pfp->fpu_en) || (pfp->fpu_fprs & FPRS_FEF)) { 246 if (pt == curthread && fpu_exists) { 247 save_gsr(clwp->lwp_fpu); 248 } else { 249 uint64_t gsr; 250 gsr = get_gsr(lwp->lwp_fpu); 251 set_gsr(gsr, clwp->lwp_fpu); 252 } 253 fp_fork(lwp, clwp); 254 } 255 } 256 257 /* 258 * Free lwp fpu regs. 259 */ 260 void 261 lwp_freeregs(klwp_t *lwp, int isexec) 262 { 263 kfpu_t *fp = lwptofpu(lwp); 264 265 if (lwptot(lwp) == curthread) 266 fp->fpu_fprs = _fp_read_fprs(); 267 if ((fp->fpu_en) || (fp->fpu_fprs & FPRS_FEF)) 268 fp_free(fp, isexec); 269 } 270 271 /* 272 * These function are currently unused on sparc. 273 */ 274 /*ARGSUSED*/ 275 void 276 lwp_attach_brand_hdlrs(klwp_t *lwp) 277 {} 278 279 /*ARGSUSED*/ 280 void 281 lwp_detach_brand_hdlrs(klwp_t *lwp) 282 {} 283 284 /* 285 * fill in the extra register state area specified with the 286 * specified lwp's platform-dependent non-floating-point extra 287 * register state information 288 */ 289 /* ARGSUSED */ 290 void 291 xregs_getgfiller(klwp_id_t lwp, caddr_t xrp) 292 { 293 /* for sun4u nothing to do here, added for symmetry */ 294 } 295 296 /* 297 * fill in the extra register state area specified with the specified lwp's 298 * platform-dependent floating-point extra register state information. 299 * NOTE: 'lwp' might not correspond to 'curthread' since this is 300 * called from code in /proc to get the registers of another lwp. 301 */ 302 void 303 xregs_getfpfiller(klwp_id_t lwp, caddr_t xrp) 304 { 305 prxregset_t *xregs = (prxregset_t *)xrp; 306 kfpu_t *fp = lwptofpu(lwp); 307 uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); 308 uint64_t gsr; 309 310 /* 311 * fp_fksave() does not flush the GSR register into 312 * the lwp area, so do it now 313 */ 314 kpreempt_disable(); 315 if (ttolwp(curthread) == lwp && fpu_exists) { 316 fp->fpu_fprs = _fp_read_fprs(); 317 if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { 318 _fp_write_fprs(fprs); 319 fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; 320 } 321 save_gsr(fp); 322 } 323 gsr = get_gsr(fp); 324 kpreempt_enable(); 325 PRXREG_GSR(xregs) = gsr; 326 } 327 328 /* 329 * set the specified lwp's platform-dependent non-floating-point 330 * extra register state based on the specified input 331 */ 332 /* ARGSUSED */ 333 void 334 xregs_setgfiller(klwp_id_t lwp, caddr_t xrp) 335 { 336 /* for sun4u nothing to do here, added for symmetry */ 337 } 338 339 /* 340 * set the specified lwp's platform-dependent floating-point 341 * extra register state based on the specified input 342 */ 343 void 344 xregs_setfpfiller(klwp_id_t lwp, caddr_t xrp) 345 { 346 prxregset_t *xregs = (prxregset_t *)xrp; 347 kfpu_t *fp = lwptofpu(lwp); 348 uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); 349 uint64_t gsr = PRXREG_GSR(xregs); 350 351 kpreempt_disable(); 352 set_gsr(gsr, lwptofpu(lwp)); 353 354 if ((lwp == ttolwp(curthread)) && fpu_exists) { 355 fp->fpu_fprs = _fp_read_fprs(); 356 if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { 357 _fp_write_fprs(fprs); 358 fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; 359 } 360 restore_gsr(lwptofpu(lwp)); 361 } 362 kpreempt_enable(); 363 } 364 365 /* 366 * fill in the sun4u asrs, ie, the lwp's platform-dependent 367 * non-floating-point extra register state information 368 */ 369 /* ARGSUSED */ 370 void 371 getasrs(klwp_t *lwp, asrset_t asr) 372 { 373 /* for sun4u nothing to do here, added for symmetry */ 374 } 375 376 /* 377 * fill in the sun4u asrs, ie, the lwp's platform-dependent 378 * floating-point extra register state information 379 */ 380 void 381 getfpasrs(klwp_t *lwp, asrset_t asr) 382 { 383 kfpu_t *fp = lwptofpu(lwp); 384 uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); 385 386 kpreempt_disable(); 387 if (ttolwp(curthread) == lwp) 388 fp->fpu_fprs = _fp_read_fprs(); 389 if ((fp->fpu_en) || (fp->fpu_fprs & FPRS_FEF)) { 390 if (fpu_exists && ttolwp(curthread) == lwp) { 391 if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { 392 _fp_write_fprs(fprs); 393 fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; 394 } 395 save_gsr(fp); 396 } 397 asr[ASR_GSR] = (int64_t)get_gsr(fp); 398 } 399 kpreempt_enable(); 400 } 401 402 /* 403 * set the sun4u asrs, ie, the lwp's platform-dependent 404 * non-floating-point extra register state information 405 */ 406 /* ARGSUSED */ 407 void 408 setasrs(klwp_t *lwp, asrset_t asr) 409 { 410 /* for sun4u nothing to do here, added for symmetry */ 411 } 412 413 void 414 setfpasrs(klwp_t *lwp, asrset_t asr) 415 { 416 kfpu_t *fp = lwptofpu(lwp); 417 uint32_t fprs = (FPRS_FEF|FPRS_DU|FPRS_DL); 418 419 kpreempt_disable(); 420 if (ttolwp(curthread) == lwp) 421 fp->fpu_fprs = _fp_read_fprs(); 422 if ((fp->fpu_en) || (fp->fpu_fprs & FPRS_FEF)) { 423 set_gsr(asr[ASR_GSR], fp); 424 if (fpu_exists && ttolwp(curthread) == lwp) { 425 if ((fp->fpu_fprs & FPRS_FEF) != FPRS_FEF) { 426 _fp_write_fprs(fprs); 427 fp->fpu_fprs = (V9_FPU_FPRS_TYPE)fprs; 428 } 429 restore_gsr(fp); 430 } 431 } 432 kpreempt_enable(); 433 } 434 435 /* 436 * Create interrupt kstats for this CPU. 437 */ 438 void 439 cpu_create_intrstat(cpu_t *cp) 440 { 441 int i; 442 kstat_t *intr_ksp; 443 kstat_named_t *knp; 444 char name[KSTAT_STRLEN]; 445 zoneid_t zoneid; 446 447 ASSERT(MUTEX_HELD(&cpu_lock)); 448 449 if (pool_pset_enabled()) 450 zoneid = GLOBAL_ZONEID; 451 else 452 zoneid = ALL_ZONES; 453 454 intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", 455 KSTAT_TYPE_NAMED, PIL_MAX * 2, 0, zoneid); 456 457 /* 458 * Initialize each PIL's named kstat 459 */ 460 if (intr_ksp != NULL) { 461 intr_ksp->ks_update = cpu_kstat_intrstat_update; 462 knp = (kstat_named_t *)intr_ksp->ks_data; 463 intr_ksp->ks_private = cp; 464 for (i = 0; i < PIL_MAX; i++) { 465 (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", 466 i + 1); 467 kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); 468 (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", 469 i + 1); 470 kstat_named_init(&knp[(i * 2) + 1], name, 471 KSTAT_DATA_UINT64); 472 } 473 kstat_install(intr_ksp); 474 } 475 } 476 477 /* 478 * Delete interrupt kstats for this CPU. 479 */ 480 void 481 cpu_delete_intrstat(cpu_t *cp) 482 { 483 kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); 484 } 485 486 /* 487 * Convert interrupt statistics from CPU ticks to nanoseconds and 488 * update kstat. 489 */ 490 int 491 cpu_kstat_intrstat_update(kstat_t *ksp, int rw) 492 { 493 kstat_named_t *knp = ksp->ks_data; 494 cpu_t *cpup = (cpu_t *)ksp->ks_private; 495 int i; 496 497 if (rw == KSTAT_WRITE) 498 return (EACCES); 499 500 /* 501 * We use separate passes to copy and convert the statistics to 502 * nanoseconds. This assures that the snapshot of the data is as 503 * self-consistent as possible. 504 */ 505 506 for (i = 0; i < PIL_MAX; i++) { 507 knp[i * 2].value.ui64 = cpup->cpu_m.intrstat[i + 1][0]; 508 knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; 509 } 510 511 for (i = 0; i < PIL_MAX; i++) { 512 knp[i * 2].value.ui64 = 513 (uint64_t)tick2ns((hrtime_t)knp[i * 2].value.ui64, 514 cpup->cpu_id); 515 } 516 517 return (0); 518 } 519 520 /* 521 * Called by common/os/cpu.c for psrinfo(8) kstats 522 */ 523 char * 524 cpu_fru_fmri(cpu_t *cp) 525 { 526 return (cpunodes[cp->cpu_id].fru_fmri); 527 } 528 529 /* 530 * An interrupt thread is ending a time slice, so compute the interval it 531 * ran for and update the statistic for its PIL. 532 */ 533 void 534 cpu_intr_swtch_enter(kthread_id_t t) 535 { 536 uint64_t interval; 537 uint64_t start; 538 cpu_t *cpu; 539 540 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 541 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 542 543 /* 544 * We could be here with a zero timestamp. This could happen if: 545 * an interrupt thread which no longer has a pinned thread underneath 546 * it (i.e. it blocked at some point in its past) has finished running 547 * its handler. intr_thread() updated the interrupt statistic for its 548 * PIL and zeroed its timestamp. Since there was no pinned thread to 549 * return to, swtch() gets called and we end up here. 550 * 551 * It can also happen if an interrupt thread in intr_thread() calls 552 * preempt. It will have already taken care of updating stats. In 553 * this event, the interrupt thread will be runnable. 554 */ 555 if (t->t_intr_start) { 556 do { 557 start = t->t_intr_start; 558 interval = CLOCK_TICK_COUNTER() - start; 559 } while (atomic_cas_64(&t->t_intr_start, start, 0) != start); 560 cpu = CPU; 561 if (cpu->cpu_m.divisor > 1) 562 interval *= cpu->cpu_m.divisor; 563 cpu->cpu_m.intrstat[t->t_pil][0] += interval; 564 565 atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate], 566 interval); 567 } else 568 ASSERT(t->t_intr == NULL || t->t_state == TS_RUN); 569 } 570 571 572 /* 573 * An interrupt thread is returning from swtch(). Place a starting timestamp 574 * in its thread structure. 575 */ 576 void 577 cpu_intr_swtch_exit(kthread_id_t t) 578 { 579 uint64_t ts; 580 581 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 582 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 583 584 do { 585 ts = t->t_intr_start; 586 } while (atomic_cas_64(&t->t_intr_start, ts, CLOCK_TICK_COUNTER()) != 587 ts); 588 } 589 590 591 int 592 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 593 { 594 if (&plat_blacklist) 595 return (plat_blacklist(cmd, scheme, fmri, class)); 596 597 return (ENOTSUP); 598 } 599 600 int 601 kdi_pread(caddr_t buf, size_t nbytes, uint64_t addr, size_t *ncopiedp) 602 { 603 extern void kdi_flush_caches(void); 604 size_t nread = 0; 605 uint32_t word; 606 int slop, i; 607 608 kdi_flush_caches(); 609 membar_enter(); 610 611 /* We might not begin on a word boundary. */ 612 if ((slop = addr & 3) != 0) { 613 word = ldphys(addr & ~3); 614 for (i = slop; i < 4 && nbytes > 0; i++, nbytes--, nread++) 615 *buf++ = ((uchar_t *)&word)[i]; 616 addr = roundup(addr, 4); 617 } 618 619 while (nbytes > 0) { 620 word = ldphys(addr); 621 for (i = 0; i < 4 && nbytes > 0; i++, nbytes--, nread++, addr++) 622 *buf++ = ((uchar_t *)&word)[i]; 623 } 624 625 kdi_flush_caches(); 626 627 *ncopiedp = nread; 628 return (0); 629 } 630 631 int 632 kdi_pwrite(caddr_t buf, size_t nbytes, uint64_t addr, size_t *ncopiedp) 633 { 634 extern void kdi_flush_caches(void); 635 size_t nwritten = 0; 636 uint32_t word; 637 int slop, i; 638 639 kdi_flush_caches(); 640 641 /* We might not begin on a word boundary. */ 642 if ((slop = addr & 3) != 0) { 643 word = ldphys(addr & ~3); 644 for (i = slop; i < 4 && nbytes > 0; i++, nbytes--, nwritten++) 645 ((uchar_t *)&word)[i] = *buf++; 646 stphys(addr & ~3, word); 647 addr = roundup(addr, 4); 648 } 649 650 while (nbytes > 3) { 651 for (word = 0, i = 0; i < 4; i++, nbytes--, nwritten++) 652 ((uchar_t *)&word)[i] = *buf++; 653 stphys(addr, word); 654 addr += 4; 655 } 656 657 /* We might not end with a whole word. */ 658 if (nbytes > 0) { 659 word = ldphys(addr); 660 for (i = 0; nbytes > 0; i++, nbytes--, nwritten++) 661 ((uchar_t *)&word)[i] = *buf++; 662 stphys(addr, word); 663 } 664 665 membar_enter(); 666 kdi_flush_caches(); 667 668 *ncopiedp = nwritten; 669 return (0); 670 } 671 672 static void 673 kdi_kernpanic(struct regs *regs, uint_t tt) 674 { 675 sync_reg_buf = *regs; 676 sync_tt = tt; 677 678 sync_handler(); 679 } 680 681 static void 682 kdi_plat_call(void (*platfn)(void)) 683 { 684 if (platfn != NULL) { 685 prom_suspend_prepost(); 686 platfn(); 687 prom_resume_prepost(); 688 } 689 } 690 691 /* 692 * kdi_system_claim and release are defined here for all sun4 platforms and 693 * pointed to by mach_kdi_init() to provide default callbacks for such systems. 694 * Specific sun4u or sun4v platforms may implement their own claim and release 695 * routines, at which point their respective callbacks will be updated. 696 */ 697 static void 698 kdi_system_claim(void) 699 { 700 lbolt_debug_entry(); 701 } 702 703 static void 704 kdi_system_release(void) 705 { 706 lbolt_debug_return(); 707 } 708 709 void 710 mach_kdi_init(kdi_t *kdi) 711 { 712 kdi->kdi_plat_call = kdi_plat_call; 713 kdi->kdi_kmdb_enter = kmdb_enter; 714 kdi->pkdi_system_claim = kdi_system_claim; 715 kdi->pkdi_system_release = kdi_system_release; 716 kdi->mkdi_cpu_index = kdi_cpu_index; 717 kdi->mkdi_trap_vatotte = kdi_trap_vatotte; 718 kdi->mkdi_kernpanic = kdi_kernpanic; 719 } 720 721 722 /* 723 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 724 * long, and it fills in the array with the time spent on cpu in 725 * each of the mstates, where time is returned in nsec. 726 * 727 * No guarantee is made that the returned values in times[] will 728 * monotonically increase on sequential calls, although this will 729 * be true in the long run. Any such guarantee must be handled by 730 * the caller, if needed. This can happen if we fail to account 731 * for elapsed time due to a generation counter conflict, yet we 732 * did account for it on a prior call (see below). 733 * 734 * The complication is that the cpu in question may be updating 735 * its microstate at the same time that we are reading it. 736 * Because the microstate is only updated when the CPU's state 737 * changes, the values in cpu_intracct[] can be indefinitely out 738 * of date. To determine true current values, it is necessary to 739 * compare the current time with cpu_mstate_start, and add the 740 * difference to times[cpu_mstate]. 741 * 742 * This can be a problem if those values are changing out from 743 * under us. Because the code path in new_cpu_mstate() is 744 * performance critical, we have not added a lock to it. Instead, 745 * we have added a generation counter. Before beginning 746 * modifications, the counter is set to 0. After modifications, 747 * it is set to the old value plus one. 748 * 749 * get_cpu_mstate() will not consider the values of cpu_mstate 750 * and cpu_mstate_start to be usable unless the value of 751 * cpu_mstate_gen is both non-zero and unchanged, both before and 752 * after reading the mstate information. Note that we must 753 * protect against out-of-order loads around accesses to the 754 * generation counter. Also, this is a best effort approach in 755 * that we do not retry should the counter be found to have 756 * changed. 757 * 758 * cpu_intracct[] is used to identify time spent in each CPU 759 * mstate while handling interrupts. Such time should be reported 760 * against system time, and so is subtracted out from its 761 * corresponding cpu_acct[] time and added to 762 * cpu_acct[CMS_SYSTEM]. Additionally, intracct time is stored in 763 * %ticks, but acct time may be stored as %sticks, thus requiring 764 * different conversions before they can be compared. 765 */ 766 767 void 768 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 769 { 770 int i; 771 hrtime_t now, start; 772 uint16_t gen; 773 uint16_t state; 774 hrtime_t intracct[NCMSTATES]; 775 776 /* 777 * Load all volatile state under the protection of membar. 778 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 779 * of (now - cpu_mstate_start) by a change in CPU mstate that 780 * arrives after we make our last check of cpu_mstate_gen. 781 */ 782 783 now = gethrtime_unscaled(); 784 gen = cpu->cpu_mstate_gen; 785 786 membar_consumer(); /* guarantee load ordering */ 787 start = cpu->cpu_mstate_start; 788 state = cpu->cpu_mstate; 789 for (i = 0; i < NCMSTATES; i++) { 790 intracct[i] = cpu->cpu_intracct[i]; 791 times[i] = cpu->cpu_acct[i]; 792 } 793 membar_consumer(); /* guarantee load ordering */ 794 795 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 796 times[state] += now - start; 797 798 for (i = 0; i < NCMSTATES; i++) { 799 scalehrtime(×[i]); 800 intracct[i] = tick2ns((hrtime_t)intracct[i], cpu->cpu_id); 801 } 802 803 for (i = 0; i < NCMSTATES; i++) { 804 if (i == CMS_SYSTEM) 805 continue; 806 times[i] -= intracct[i]; 807 if (times[i] < 0) { 808 intracct[i] += times[i]; 809 times[i] = 0; 810 } 811 times[CMS_SYSTEM] += intracct[i]; 812 } 813 } 814 815 void 816 mach_cpu_pause(volatile char *safe) 817 { 818 /* 819 * This cpu is now safe. 820 */ 821 *safe = PAUSE_WAIT; 822 membar_enter(); /* make sure stores are flushed */ 823 824 /* 825 * Now we wait. When we are allowed to continue, safe 826 * will be set to PAUSE_IDLE. 827 */ 828 while (*safe != PAUSE_IDLE) 829 SMT_PAUSE(); 830 } 831 832 /*ARGSUSED*/ 833 int 834 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 835 { 836 return (ENOTSUP); 837 } 838 839 /* cpu threshold for compressed dumps */ 840 #ifdef sun4v 841 uint_t dump_plat_mincpu_default = DUMP_PLAT_SUN4V_MINCPU; 842 #else 843 uint_t dump_plat_mincpu_default = DUMP_PLAT_SUN4U_MINCPU; 844 #endif 845 846 int 847 dump_plat_addr() 848 { 849 return (0); 850 } 851 852 void 853 dump_plat_pfn() 854 { 855 } 856 857 /* ARGSUSED */ 858 int 859 dump_plat_data(void *dump_cdata) 860 { 861 return (0); 862 } 863 864 /* ARGSUSED */ 865 int 866 plat_hold_page(pfn_t pfn, int lock, page_t **pp_ret) 867 { 868 return (PLAT_HOLD_OK); 869 } 870 871 /* ARGSUSED */ 872 void 873 plat_release_page(page_t *pp) 874 { 875 } 876 877 /* ARGSUSED */ 878 void 879 progressbar_key_abort(ldi_ident_t li) 880 { 881 } 882 883 /* 884 * We need to post a soft interrupt to reprogram the lbolt cyclic when 885 * switching from event to cyclic driven lbolt. The following code adds 886 * and posts the softint for sun4 platforms. 887 */ 888 static uint64_t lbolt_softint_inum; 889 890 void 891 lbolt_softint_add(void) 892 { 893 lbolt_softint_inum = add_softintr(LOCK_LEVEL, 894 (softintrfunc)lbolt_ev_to_cyclic, NULL, SOFTINT_MT); 895 } 896 897 void 898 lbolt_softint_post(void) 899 { 900 setsoftint(lbolt_softint_inum); 901 } 902 903 void 904 do_hotinlines(struct module *mp __unused) 905 { 906 } 907