xref: /illumos-gate/usr/src/uts/sun4/io/su_driver.c (revision 1bff1300cebf1ea8e11ce928b10e208097e67f24)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.	*/
22 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T	*/
23 /*	  All Rights Reserved					*/
24 
25 /*
26  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  * Copyright (c) 2016 by Delphix. All rights reserved.
29  * Copyright (c) 2019 Peter Tribble.
30  */
31 
32 
33 /*
34  *	Serial I/O driver for 82510/8250/16450/16550AF/16C554D chips.
35  *	Modified as sparc keyboard/mouse driver.
36  */
37 #define	SU_REGISTER_FILE_NO 0
38 #define	SU_REGOFFSET 0
39 #define	SU_REGISTER_LEN 8
40 
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/signal.h>
44 #include <sys/stream.h>
45 #include <sys/termio.h>
46 #include <sys/errno.h>
47 #include <sys/file.h>
48 #include <sys/cmn_err.h>
49 #include <sys/stropts.h>
50 #include <sys/strsubr.h>
51 #include <sys/strsun.h>
52 #include <sys/strtty.h>
53 #include <sys/debug.h>
54 #include <sys/kbio.h>
55 #include <sys/cred.h>
56 #include <sys/modctl.h>
57 #include <sys/stat.h>
58 #include <sys/consdev.h>
59 #include <sys/mkdev.h>
60 #include <sys/kmem.h>
61 #include <sys/cred.h>
62 #ifdef DEBUG
63 #include <sys/promif.h>
64 #endif
65 #include <sys/ddi.h>
66 #include <sys/sunddi.h>
67 #include <sys/sudev.h>
68 #include <sys/note.h>
69 #include <sys/timex.h>
70 #include <sys/policy.h>
71 
72 #define	async_stopc	async_ttycommon.t_stopc
73 #define	async_startc	async_ttycommon.t_startc
74 
75 #define	ASY_INIT	1
76 #define	ASY_NOINIT	0
77 
78 #ifdef DEBUG
79 #define	ASY_DEBUG_INIT	0x001
80 #define	ASY_DEBUG_INPUT	0x002
81 #define	ASY_DEBUG_EOT	0x004
82 #define	ASY_DEBUG_CLOSE	0x008
83 #define	ASY_DEBUG_HFLOW	0x010
84 #define	ASY_DEBUG_PROCS	0x020
85 #define	ASY_DEBUG_STATE	0x040
86 #define	ASY_DEBUG_INTR	0x080
87 static	int asydebug = 0;
88 #endif
89 static	int su_log = 0;
90 
91 int su_drain_check = 15000000;		/* tunable: exit drain check time */
92 
93 static	struct ppsclockev asy_ppsev;
94 
95 static	int max_asy_instance = -1;
96 static	void	*su_asycom;	/* soft state asycom pointer */
97 static	void	*su_asyncline;	/* soft state asyncline pointer */
98 static	boolean_t abort_charseq_recognize(uchar_t ch);
99 
100 static	uint_t	asysoftintr(caddr_t intarg);
101 static	uint_t	asyintr(caddr_t argasy);
102 
103 /* The async interrupt entry points */
104 static void	async_txint(struct asycom *asy, uchar_t lsr);
105 static void	async_rxint(struct asycom *asy, uchar_t lsr);
106 static void	async_msint(struct asycom *asy);
107 static int	async_softint(struct asycom *asy);
108 
109 static void	async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp,
110     boolean_t iswput);
111 static void	async_reioctl(void *);
112 static void	async_iocdata(queue_t *q, mblk_t *mp);
113 static void	async_restart(void *);
114 static void	async_start(struct asyncline *async);
115 static void	async_nstart(struct asyncline *async, int mode);
116 static void	async_resume(struct asyncline *async);
117 static int	asy_program(struct asycom *asy, int mode);
118 
119 /* Polled mode functions */
120 static void	asyputchar(cons_polledio_arg_t, uchar_t c);
121 static int	asygetchar(cons_polledio_arg_t);
122 static boolean_t	asyischar(cons_polledio_arg_t);
123 static void	asy_polled_enter(cons_polledio_arg_t);
124 static void	asy_polled_exit(cons_polledio_arg_t);
125 
126 static int	asymctl(struct asycom *, int, int);
127 static int	asytodm(int, int);
128 static int	dmtoasy(int);
129 static void	asycheckflowcontrol_hw(struct asycom *asy);
130 static boolean_t asycheckflowcontrol_sw(struct asycom *asy);
131 static void	asy_ppsevent(struct asycom *asy, int msr);
132 
133 extern kcondvar_t lbolt_cv;
134 extern int ddi_create_internal_pathname(dev_info_t *dip, char *name,
135 		int spec_type, minor_t minor_num);
136 
137 
138 /*
139  * Baud rate table. Indexed by #defines found in sys/termios.h
140  */
141 ushort_t asyspdtab[] = {
142 	0,	/* 0 baud rate */
143 	0x900,	/* 50 baud rate */
144 	0x600,	/* 75 baud rate */
145 	0x417,	/* 110 baud rate (%0.026) */
146 	0x359,	/* 134 baud rate (%0.058) */
147 	0x300,	/* 150 baud rate */
148 	0x240,	/* 200 baud rate */
149 	0x180,	/* 300 baud rate */
150 	0x0c0,	/* 600 baud rate */
151 	0x060,	/* 1200 baud rate */
152 	0x040,	/* 1800 baud rate */
153 	0x030,	/* 2400 baud rate */
154 	0x018,	/* 4800 baud rate */
155 	0x00c,	/* 9600 baud rate */
156 	0x006,	/* 19200 baud rate */
157 	0x003,	/* 38400 baud rate */
158 	0x002,	/* 57600 baud rate */
159 	0,	/* 76800 baud rate - not supported */
160 	0x001,	/* 115200 baud rate */
161 	0,	/* 153600 baud rate - not supported */
162 	0x8002,	/* 230400 baud rate - supported on specific platforms */
163 	0,	/* 307200 baud rate - not supported */
164 	0x8001	/* 460800 baud rate - supported on specific platforms */
165 };
166 
167 /*
168  * Number of speeds supported is the number of entries in
169  * the above table.
170  */
171 #define	N_SU_SPEEDS	(sizeof (asyspdtab)/sizeof (ushort_t))
172 
173 /*
174  * Human-readable baud rate table.
175  * Indexed by #defines found in sys/termios.h
176  */
177 int baudtable[] = {
178 	0,	/* 0 baud rate */
179 	50,	/* 50 baud rate */
180 	75,	/* 75 baud rate */
181 	110,	/* 110 baud rate */
182 	134,	/* 134 baud rate */
183 	150,	/* 150 baud rate */
184 	200,	/* 200 baud rate */
185 	300,	/* 300 baud rate */
186 	600,	/* 600 baud rate */
187 	1200,	/* 1200 baud rate */
188 	1800,	/* 1800 baud rate */
189 	2400,	/* 2400 baud rate */
190 	4800,	/* 4800 baud rate */
191 	9600,	/* 9600 baud rate */
192 	19200,	/* 19200 baud rate */
193 	38400,	/* 38400 baud rate */
194 	57600,	/* 57600 baud rate */
195 	76800,	/* 76800 baud rate */
196 	115200,	/* 115200 baud rate */
197 	153600,	/* 153600 baud rate */
198 	230400,	/* 230400 baud rate */
199 	307200,	/* 307200 baud rate */
200 	460800	/* 460800 baud rate */
201 };
202 
203 static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr);
204 static int asyclose(queue_t *q, int flag, cred_t *cr);
205 static void asywput(queue_t *q, mblk_t *mp);
206 static void asyrsrv(queue_t *q);
207 
208 struct module_info asy_info = {
209 	0,
210 	"su",
211 	0,
212 	INFPSZ,
213 	32*4096,
214 	4096
215 };
216 
217 static struct qinit asy_rint = {
218 	putq,
219 	(int (*)())asyrsrv,
220 	asyopen,
221 	asyclose,
222 	NULL,
223 	&asy_info,
224 	NULL
225 };
226 
227 static struct qinit asy_wint = {
228 	(int (*)())asywput,
229 	NULL,
230 	NULL,
231 	NULL,
232 	NULL,
233 	&asy_info,
234 	NULL
235 };
236 
237 struct streamtab asy_str_info = {
238 	&asy_rint,
239 	&asy_wint,
240 	NULL,
241 	NULL
242 };
243 
244 static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
245 		void **result);
246 static int asyprobe(dev_info_t *);
247 static int asyattach(dev_info_t *, ddi_attach_cmd_t);
248 static int asydetach(dev_info_t *, ddi_detach_cmd_t);
249 
250 static 	struct cb_ops cb_asy_ops = {
251 	nodev,			/* cb_open */
252 	nodev,			/* cb_close */
253 	nodev,			/* cb_strategy */
254 	nodev,			/* cb_print */
255 	nodev,			/* cb_dump */
256 	nodev,			/* cb_read */
257 	nodev,			/* cb_write */
258 	nodev,			/* cb_ioctl */
259 	nodev,			/* cb_devmap */
260 	nodev,			/* cb_mmap */
261 	nodev,			/* cb_segmap */
262 	nochpoll,		/* cb_chpoll */
263 	ddi_prop_op,		/* cb_prop_op */
264 	&asy_str_info,		/* cb_stream */
265 	D_MP			/* cb_flag */
266 };
267 
268 struct dev_ops asy_ops = {
269 	DEVO_REV,		/* devo_rev */
270 	0,			/* devo_refcnt */
271 	asyinfo,		/* devo_getinfo */
272 	nulldev,		/* devo_identify */
273 	asyprobe,		/* devo_probe */
274 	asyattach,		/* devo_attach */
275 	asydetach,		/* devo_detach */
276 	nodev,			/* devo_reset */
277 	&cb_asy_ops,		/* devo_cb_ops */
278 	NULL,			/* devo_bus_ops */
279 	NULL,			/* devo_power */
280 	ddi_quiesce_not_supported,	/* devo_quiesce */
281 };
282 
283 /*
284  * Module linkage information for the kernel.
285  */
286 
287 static struct modldrv modldrv = {
288 	&mod_driverops, /* Type of module.  This one is a driver */
289 	"su driver",
290 	&asy_ops,	/* driver ops */
291 };
292 
293 static struct modlinkage modlinkage = {
294 	MODREV_1,
295 	&modldrv,
296 	NULL
297 };
298 
299 int
300 _init(void)
301 {
302 	int status;
303 
304 	status = ddi_soft_state_init(&su_asycom, sizeof (struct asycom),
305 	    SU_INITIAL_SOFT_ITEMS);
306 	if (status != 0)
307 		return (status);
308 	status = ddi_soft_state_init(&su_asyncline, sizeof (struct asyncline),
309 	    SU_INITIAL_SOFT_ITEMS);
310 	if (status != 0) {
311 		ddi_soft_state_fini(&su_asycom);
312 		return (status);
313 	}
314 
315 	if ((status = mod_install(&modlinkage)) != 0) {
316 		ddi_soft_state_fini(&su_asycom);
317 		ddi_soft_state_fini(&su_asyncline);
318 	}
319 
320 	return (status);
321 }
322 
323 int
324 _fini(void)
325 {
326 	int i;
327 
328 	i = mod_remove(&modlinkage);
329 	if (i == 0) {
330 		ddi_soft_state_fini(&su_asycom);
331 		ddi_soft_state_fini(&su_asyncline);
332 	}
333 
334 	return (i);
335 }
336 
337 int
338 _info(struct modinfo *modinfop)
339 {
340 	return (mod_info(&modlinkage, modinfop));
341 }
342 
343 static int
344 asyprobe(dev_info_t *devi)
345 {
346 	int		instance;
347 	ddi_acc_handle_t handle;
348 	uchar_t *addr;
349 	ddi_device_acc_attr_t attr;
350 
351 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
352 	attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
353 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
354 	if (ddi_regs_map_setup(devi, SU_REGISTER_FILE_NO, (caddr_t *)&addr,
355 	    SU_REGOFFSET, SU_REGISTER_LEN, &attr, &handle) != DDI_SUCCESS) {
356 		cmn_err(CE_WARN, "asyprobe regs map setup failed");
357 		return (DDI_PROBE_FAILURE);
358 	}
359 #ifdef DEBUG
360 	if (asydebug)
361 		printf("Probe address mapped %p\n", (void *)addr);
362 #endif
363 
364 	/*
365 	 * Probe for the device:
366 	 * 	Ser. int. uses bits 0,1,2; FIFO uses 3,6,7; 4,5 wired low.
367 	 * 	If bit 4 or 5 appears on inb() ISR, board is not there.
368 	 */
369 	if (ddi_get8(handle, addr+ISR) & 0x30) {
370 		ddi_regs_map_free(&handle);
371 		return (DDI_PROBE_FAILURE);
372 	}
373 
374 	instance = ddi_get_instance(devi);
375 	if (max_asy_instance < instance)
376 		max_asy_instance = instance;
377 	ddi_regs_map_free(&handle);
378 
379 	return (DDI_PROBE_SUCCESS); /* hw is present */
380 }
381 
382 static int
383 asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
384 {
385 	register int	instance;
386 	struct asycom	*asy;
387 	struct asyncline *async;
388 	char		name[16];
389 
390 	instance = ddi_get_instance(devi);	/* find out which unit */
391 
392 	asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance);
393 	async = (struct asyncline *)ddi_get_soft_state(su_asyncline, instance);
394 
395 	switch (cmd) {
396 		case DDI_DETACH:
397 			break;
398 		case DDI_SUSPEND:
399 			/* grab both mutex locks */
400 			mutex_enter(asy->asy_excl);
401 			mutex_enter(asy->asy_excl_hi);
402 			if (asy->suspended) {
403 				mutex_exit(asy->asy_excl_hi);
404 				mutex_exit(asy->asy_excl);
405 				return (DDI_SUCCESS);
406 			}
407 			asy->suspended = B_TRUE;
408 
409 			/*
410 			 * The quad UART ST16C554D, version D2 (made by EXAR)
411 			 * has an anomaly of generating spurious interrupts
412 			 * when the ICR is loaded with zero. The workaround
413 			 * would be to read/write any register with DATA1 bit
414 			 * set to 0 before such write.
415 			 */
416 			if (asy->asy_hwtype == ASY16C554D)
417 				OUTB(SPR, 0);
418 
419 			/* Disable further interrupts */
420 			OUTB(ICR, 0);
421 			mutex_exit(asy->asy_excl_hi);
422 			mutex_exit(asy->asy_excl);
423 			return (DDI_SUCCESS);
424 
425 		default:
426 			return (DDI_FAILURE);
427 	}
428 
429 #ifdef DEBUG
430 	if (asydebug & ASY_DEBUG_INIT)
431 		cmn_err(CE_NOTE, "su%d: ASY%s shutdown.", instance,
432 		    asy->asy_hwtype == ASY82510 ? "82510" :
433 		    asy->asy_hwtype == ASY16550AF ? "16550AF" :
434 		    asy->asy_hwtype == ASY16C554D ? "16C554D" :
435 		    "8250");
436 #endif
437 	/*
438 	 * Before removing interrupts it is always better to disable
439 	 * interrupts if the chip gives a provision to disable the
440 	 * serial port interrupts.
441 	 */
442 	mutex_enter(asy->asy_excl);
443 	mutex_enter(asy->asy_excl_hi);
444 	/* disable interrupts, see EXAR bug */
445 	if (asy->asy_hwtype == ASY16C554D)
446 		OUTB(SPR, 0);
447 	OUTB(ICR, 0);
448 	mutex_exit(asy->asy_excl_hi);
449 	mutex_exit(asy->asy_excl);
450 
451 	/* remove minor device node(s) for this device */
452 	(void) sprintf(name, "%c", (instance+'a'));	/* serial-port */
453 	ddi_remove_minor_node(devi, name);
454 	(void) sprintf(name, "%c,cu", (instance+'a')); /* serial-port:dailout */
455 	ddi_remove_minor_node(devi, name);
456 
457 	mutex_destroy(asy->asy_excl);
458 	mutex_destroy(asy->asy_excl_hi);
459 	kmem_free(asy->asy_excl, sizeof (kmutex_t));
460 	kmem_free(asy->asy_excl_hi, sizeof (kmutex_t));
461 	cv_destroy(&async->async_flags_cv);
462 	kstat_delete(asy->sukstat);
463 	ddi_remove_intr(devi, 0, asy->asy_iblock);
464 	ddi_regs_map_free(&asy->asy_handle);
465 	ddi_remove_softintr(asy->asy_softintr_id);
466 	mutex_destroy(asy->asy_soft_lock);
467 	kmem_free(asy->asy_soft_lock, sizeof (kmutex_t));
468 	ddi_soft_state_free(su_asycom, instance);
469 	ddi_soft_state_free(su_asyncline, instance);
470 	return (DDI_SUCCESS);
471 }
472 
473 static int
474 asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
475 {
476 	register int	instance;
477 	struct asycom	*asy;
478 	struct asyncline *async;
479 	char		name[40];
480 	ddi_device_acc_attr_t attr;
481 	enum states { EMPTY, SOFTSTATE, REGSMAP, MUTEXES, ADDINTR,
482 	    SOFTINTR, ASYINIT, KSTAT, MINORNODE };
483 	enum states state = EMPTY;
484 	char *hwtype;
485 
486 	instance = ddi_get_instance(devi);	/* find out which unit */
487 
488 	/* cannot attach a device that has not been probed first */
489 	if (instance > max_asy_instance)
490 		return (DDI_FAILURE);
491 
492 	if (cmd != DDI_RESUME) {
493 		/* Allocate soft state space */
494 		if (ddi_soft_state_zalloc(su_asycom, instance) != DDI_SUCCESS) {
495 			cmn_err(CE_WARN, "su%d: cannot allocate soft state",
496 			    instance);
497 			goto error;
498 		}
499 	}
500 	state = SOFTSTATE;
501 
502 	asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance);
503 
504 	if (asy == NULL) {
505 		cmn_err(CE_WARN, "su%d: cannot get soft state", instance);
506 		goto error;
507 	}
508 
509 	switch (cmd) {
510 		case DDI_ATTACH:
511 			break;
512 		case DDI_RESUME: {
513 			struct asyncline *async;
514 
515 			/* grab both mutex locks */
516 			mutex_enter(asy->asy_excl);
517 			mutex_enter(asy->asy_excl_hi);
518 			if (!asy->suspended) {
519 				mutex_exit(asy->asy_excl_hi);
520 				mutex_exit(asy->asy_excl);
521 				return (DDI_SUCCESS);
522 			}
523 			/*
524 			 * re-setup all the registers and enable interrupts if
525 			 * needed
526 			 */
527 			async = (struct asyncline *)asy->asy_priv;
528 			if ((async) && (async->async_flags & ASYNC_ISOPEN))
529 				(void) asy_program(asy, ASY_INIT);
530 			asy->suspended = B_FALSE;
531 			mutex_exit(asy->asy_excl_hi);
532 			mutex_exit(asy->asy_excl);
533 			return (DDI_SUCCESS);
534 		}
535 		default:
536 			goto error;
537 	}
538 
539 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
540 	attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
541 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
542 
543 	if (ddi_regs_map_setup(devi, SU_REGISTER_FILE_NO,
544 	    (caddr_t *)&asy->asy_ioaddr, SU_REGOFFSET, SU_REGISTER_LEN,
545 	    &attr, &asy->asy_handle) != DDI_SUCCESS) {
546 		cmn_err(CE_WARN, "asyprobe regs map setup failed");
547 		goto error;
548 	}
549 	state = REGSMAP;
550 
551 #ifdef DEBUG
552 	if (asydebug)
553 		printf("su attach mapped %p\n", (void *)asy->asy_ioaddr);
554 #endif
555 
556 	/*
557 	 * Initialize the port with default settings.
558 	 */
559 	asy->asy_fifo_buf = 1;
560 	asy->asy_use_fifo = FIFO_OFF;
561 
562 	/*
563 	 * Check for baudrate generator's "baud-divisor-factor" property setup
564 	 * by OBP, since different UART chips might have different baudrate
565 	 * generator divisor. e.g., in case of NSPG's Sputnik platform, the
566 	 * baud-divisor-factor is 13, it uses dedicated 16552 "DUART" chip
567 	 * instead of SuperIO. Since the baud-divisor-factor must be a positive
568 	 * integer, the divisors will always be at least as large as the values
569 	 * in asyspdtab[].  Make the default factor 1.
570 	 */
571 	asy->asy_baud_divisor_factor = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
572 	    DDI_PROP_DONTPASS, "baud-divisor-factor", 1);
573 
574 	/* set speed cap */
575 	asy->asy_speed_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
576 	    DDI_PROP_DONTPASS, "serial-speed-cap", 115200);
577 
578 	/* check for ASY82510 chip */
579 	OUTB(ISR, 0x20);
580 	if (INB(ISR) & 0x20) { /* 82510 chip is present */
581 		/*
582 		 * Since most of the general operation of the 82510 chip
583 		 * can be done from BANK 0 (8250A/16450 compatable mode)
584 		 * we will default to BANK 0.
585 		 */
586 		asy->asy_hwtype = ASY82510;
587 		OUTB(DAT+7, 0x04); /* clear status */
588 		OUTB(ISR, 0x40); /* set to bank 2 */
589 		OUTB(MCR, 0x08); /* IMD */
590 		OUTB(DAT, 0x21); /* FMD */
591 		OUTB(ISR, 0x00); /* set to bank 0 */
592 		asy->asy_trig_level = 0;
593 	} else { /* Set the UART in FIFO mode if it has FIFO buffers */
594 		asy->asy_hwtype = ASY16550AF;
595 		OUTB(FIFOR, 0x00); /* clear fifo register */
596 		asy->asy_trig_level = 0x00; /* sets the fifo Threshold to 1 */
597 
598 		/* set/Enable FIFO */
599 		OUTB(FIFOR, FIFO_ON | FIFODMA | FIFOTXFLSH | FIFORXFLSH |
600 		    (asy->asy_trig_level & 0xff));
601 
602 		if ((INB(ISR) & 0xc0) == 0xc0)
603 			asy->asy_use_fifo = FIFO_ON;
604 		else {
605 			asy->asy_hwtype = ASY8250;
606 			OUTB(FIFOR, 0x00); /* NO FIFOs */
607 			asy->asy_trig_level = 0;
608 		}
609 	}
610 
611 	/* check for ST16C554D chip */
612 	if ((ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, DDI_PROP_NOTPROM |
613 	    DDI_PROP_DONTPASS, "hwtype", &hwtype)) == DDI_PROP_SUCCESS) {
614 		if (strcmp(hwtype, "ST16C554D") == 0)
615 			asy->asy_hwtype = ASY16C554D;
616 		ddi_prop_free(hwtype);
617 	}
618 
619 	/* disable interrupts, see EXAR bug */
620 	if (asy->asy_hwtype == ASY16C554D)
621 		OUTB(SPR, 0);
622 	OUTB(ICR, 0);
623 	OUTB(LCR, DLAB); /* select baud rate generator */
624 	/* Set the baud rate to 9600 */
625 	OUTB(DAT+DLL, (ASY9600*asy->asy_baud_divisor_factor) & 0xff);
626 	OUTB(DAT+DLH, ((ASY9600*asy->asy_baud_divisor_factor) >> 8) & 0xff);
627 	OUTB(LCR, STOP1|BITS8);
628 	OUTB(MCR, (DTR | RTS| OUT2));
629 
630 	/*
631 	 * Set up the other components of the asycom structure for this port.
632 	 */
633 	asy->asy_excl = (kmutex_t *)
634 	    kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
635 	asy->asy_excl_hi = (kmutex_t *)
636 	    kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
637 	asy->asy_soft_lock = (kmutex_t *)
638 	    kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
639 	asy->asy_unit = instance;
640 	asy->asy_dip = devi;
641 
642 	if (ddi_get_iblock_cookie(devi, 0, &asy->asy_iblock) != DDI_SUCCESS) {
643 		cmn_err(CE_NOTE,
644 		    "Get iblock_cookie failed-Device interrupt%x\n", instance);
645 		goto error;
646 	}
647 
648 	if (ddi_get_soft_iblock_cookie(devi, DDI_SOFTINT_HIGH,
649 	    &asy->asy_soft_iblock) != DDI_SUCCESS) {
650 		cmn_err(CE_NOTE, "Get iblock_cookie failed -soft interrupt%x\n",
651 		    instance);
652 		goto error;
653 	}
654 
655 	mutex_init(asy->asy_soft_lock, NULL, MUTEX_DRIVER,
656 	    (void *)asy->asy_soft_iblock);
657 	mutex_init(asy->asy_excl, NULL, MUTEX_DRIVER, NULL);
658 	mutex_init(asy->asy_excl_hi, NULL, MUTEX_DRIVER,
659 	    (void *)asy->asy_iblock);
660 	state = MUTEXES;
661 
662 	/*
663 	 * Install interrupt handlers for this device.
664 	 */
665 	if (ddi_add_intr(devi, 0, &(asy->asy_iblock), 0, asyintr,
666 	    (caddr_t)asy) != DDI_SUCCESS) {
667 		cmn_err(CE_CONT,
668 		    "Cannot set device interrupt for su driver\n");
669 		goto error;
670 	}
671 	state = ADDINTR;
672 
673 	if (ddi_add_softintr(devi, DDI_SOFTINT_HIGH, &(asy->asy_softintr_id),
674 	    &asy->asy_soft_iblock, 0, asysoftintr, (caddr_t)asy)
675 	    != DDI_SUCCESS) {
676 		cmn_err(CE_CONT, "Cannot set soft interrupt for su driver\n");
677 		goto error;
678 	}
679 	state = SOFTINTR;
680 
681 	/* initialize the asyncline structure */
682 	if (ddi_soft_state_zalloc(su_asyncline, instance) != DDI_SUCCESS) {
683 		cmn_err(CE_CONT, "su%d: cannot allocate soft state", instance);
684 		goto error;
685 	}
686 	state = ASYINIT;
687 
688 	async = (struct asyncline *)ddi_get_soft_state(su_asyncline, instance);
689 
690 	mutex_enter(asy->asy_excl);
691 	async->async_common = asy;
692 	cv_init(&async->async_flags_cv, NULL, CV_DEFAULT, NULL);
693 	mutex_exit(asy->asy_excl);
694 
695 	if ((asy->sukstat = kstat_create("su", instance, "serialstat",
696 	    "misc", KSTAT_TYPE_NAMED, 2, KSTAT_FLAG_VIRTUAL)) != NULL) {
697 		asy->sukstat->ks_data = &asy->kstats;
698 		kstat_named_init(&asy->kstats.ringover, "ring buffer overflow",
699 		    KSTAT_DATA_UINT64);
700 		kstat_named_init(&asy->kstats.siloover, "silo overflow",
701 		    KSTAT_DATA_UINT64);
702 		kstat_install(asy->sukstat);
703 	}
704 	state = KSTAT;
705 
706 	if (strcmp(ddi_node_name(devi), "rsc-console") == 0) {
707 		/*
708 		 * If the device is configured as the 'rsc-console'
709 		 * create the minor device for this node.
710 		 */
711 		if (ddi_create_minor_node(devi, "ssp", S_IFCHR,
712 		    asy->asy_unit | RSC_DEVICE, DDI_PSEUDO, NULL)
713 		    == DDI_FAILURE) {
714 			cmn_err(CE_WARN,
715 			    "%s%d: Failed to create node rsc-console",
716 			    ddi_get_name(devi), ddi_get_instance(devi));
717 			goto error;
718 		}
719 
720 		asy->asy_lom_console = 0;
721 		asy->asy_rsc_console = 1;
722 		asy->asy_rsc_control = 0;
723 		asy->asy_device_type = ASY_SERIAL;
724 		asy->asy_flags |= ASY_IGNORE_CD;
725 
726 	} else if (strcmp(ddi_node_name(devi), "lom-console") == 0) {
727 		/*
728 		 * If the device is configured as the 'lom-console'
729 		 * create the minor device for this node.
730 		 * Do not create a dialout device.
731 		 * Use the same minor numbers as would be used for standard
732 		 * serial instances.
733 		 */
734 		if (ddi_create_minor_node(devi, "lom-console", S_IFCHR,
735 		    instance, DDI_NT_SERIAL_LOMCON, NULL) == DDI_FAILURE) {
736 			cmn_err(CE_WARN,
737 			    "%s%d: Failed to create node lom-console",
738 			    ddi_get_name(devi), ddi_get_instance(devi));
739 			goto error;
740 		}
741 		asy->asy_lom_console = 1;
742 		asy->asy_rsc_console = 0;
743 		asy->asy_rsc_control = 0;
744 		asy->asy_device_type = ASY_SERIAL;
745 		asy->asy_flags |= ASY_IGNORE_CD;
746 
747 	} else if (strcmp(ddi_node_name(devi), "rsc-control") == 0) {
748 		/*
749 		 * If the device is configured as the 'rsc-control'
750 		 * create the minor device for this node.
751 		 */
752 		if (ddi_create_minor_node(devi, "sspctl", S_IFCHR,
753 		    asy->asy_unit | RSC_DEVICE, DDI_PSEUDO, NULL)
754 		    == DDI_FAILURE) {
755 			cmn_err(CE_WARN, "%s%d: Failed to create rsc-control",
756 			    ddi_get_name(devi), ddi_get_instance(devi));
757 			goto error;
758 		}
759 
760 		asy->asy_lom_console = 0;
761 		asy->asy_rsc_console = 0;
762 		asy->asy_rsc_control = 1;
763 		asy->asy_device_type = ASY_SERIAL;
764 		asy->asy_flags |= ASY_IGNORE_CD;
765 
766 	} else if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
767 	    "keyboard", 0)) {
768 		/*
769 		 * If the device is a keyboard, then create an internal
770 		 * pathname so that the dacf code will link the node into
771 		 * the keyboard console stream.  See dacf.conf.
772 		 */
773 		if (ddi_create_internal_pathname(devi, "keyboard",
774 		    S_IFCHR, instance) == DDI_FAILURE) {
775 			goto error;
776 		}
777 		asy->asy_flags |= ASY_IGNORE_CD;	/* ignore cd */
778 		asy->asy_device_type = ASY_KEYBOARD; 	/* Device type */
779 	} else if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
780 	    "mouse", 0)) {
781 		/*
782 		 * If the device is a mouse, then create an internal
783 		 * pathname so that the dacf code will link the node into
784 		 * the mouse stream.  See dacf.conf.
785 		 */
786 		if (ddi_create_internal_pathname(devi, "mouse", S_IFCHR,
787 		    instance) == DDI_FAILURE) {
788 			goto error;
789 		}
790 		asy->asy_flags |= ASY_IGNORE_CD;	/* ignore cd */
791 		asy->asy_device_type = ASY_MOUSE;
792 	} else {
793 		/*
794 		 * If not used for keyboard/mouse, create minor devices nodes
795 		 * for this device
796 		 */
797 		/* serial-port */
798 		(void) sprintf(name, "%c", (instance+'a'));
799 		if (ddi_create_minor_node(devi, name, S_IFCHR, instance,
800 		    DDI_NT_SERIAL_MB, NULL) == DDI_FAILURE) {
801 			goto error;
802 		}
803 		state = MINORNODE;
804 		/* serial-port:dailout */
805 		(void) sprintf(name, "%c,cu", (instance+'a'));
806 		if (ddi_create_minor_node(devi, name, S_IFCHR, instance|OUTLINE,
807 		    DDI_NT_SERIAL_MB_DO, NULL) == DDI_FAILURE) {
808 			goto error;
809 		}
810 		/* Property for ignoring DCD */
811 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
812 		    "ignore-cd", 0)) {
813 			asy->asy_flags |= ASY_IGNORE_CD;  /* ignore cd */
814 		} else {
815 			asy->asy_flags &= ~ASY_IGNORE_CD;
816 			/*
817 			 * if ignore-cd is not available it could be
818 			 * some old legacy platform, try to see
819 			 * whether the old legacy property exists
820 			 */
821 			(void) sprintf(name,
822 			    "port-%c-ignore-cd", (instance+ 'a'));
823 			if (ddi_getprop(DDI_DEV_T_ANY, devi,
824 			    DDI_PROP_DONTPASS, name, 0))
825 				asy->asy_flags |= ASY_IGNORE_CD;
826 		}
827 		asy->asy_device_type = ASY_SERIAL;
828 	}
829 
830 	/*
831 	 * Fill in the polled I/O structure
832 	 */
833 	asy->polledio.cons_polledio_version = CONSPOLLEDIO_V0;
834 	asy->polledio.cons_polledio_argument = (cons_polledio_arg_t)asy;
835 	asy->polledio.cons_polledio_putchar =  asyputchar;
836 	asy->polledio.cons_polledio_getchar = asygetchar;
837 	asy->polledio.cons_polledio_ischar = asyischar;
838 	asy->polledio.cons_polledio_enter = asy_polled_enter;
839 	asy->polledio.cons_polledio_exit = asy_polled_exit;
840 
841 	/* Initialize saved ICR and polled_enter */
842 	asy->polled_icr = 0;
843 	asy->polled_enter = B_FALSE;
844 
845 	ddi_report_dev(devi);
846 	return (DDI_SUCCESS);
847 
848 error:
849 	if (state == MINORNODE) {
850 		(void) sprintf(name, "%c", (instance+'a'));
851 		ddi_remove_minor_node(devi, name);
852 	}
853 	if (state >= KSTAT)
854 		kstat_delete(asy->sukstat);
855 	if (state >= ASYINIT) {
856 		cv_destroy(&async->async_flags_cv);
857 		ddi_soft_state_free(su_asyncline, instance);
858 	}
859 	if (state >= SOFTINTR)
860 		ddi_remove_softintr(asy->asy_softintr_id);
861 	if (state >= ADDINTR)
862 		ddi_remove_intr(devi, 0, asy->asy_iblock);
863 	if (state >= MUTEXES) {
864 		mutex_destroy(asy->asy_excl_hi);
865 		mutex_destroy(asy->asy_excl);
866 		mutex_destroy(asy->asy_soft_lock);
867 		kmem_free(asy->asy_excl_hi, sizeof (kmutex_t));
868 		kmem_free(asy->asy_excl, sizeof (kmutex_t));
869 		kmem_free(asy->asy_soft_lock, sizeof (kmutex_t));
870 	}
871 	if (state >= REGSMAP)
872 		ddi_regs_map_free(&asy->asy_handle);
873 	if (state >= SOFTSTATE)
874 		ddi_soft_state_free(su_asycom, instance);
875 	/* no action for EMPTY state */
876 	return (DDI_FAILURE);
877 }
878 
879 static int
880 asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
881     void **result)
882 {
883 	_NOTE(ARGUNUSED(dip))
884 	register dev_t dev = (dev_t)arg;
885 	register int instance, error;
886 	struct asycom *asy;
887 
888 	if ((instance = UNIT(dev)) > max_asy_instance)
889 		return (DDI_FAILURE);
890 
891 	switch (infocmd) {
892 		case DDI_INFO_DEVT2DEVINFO:
893 			asy = (struct asycom *)ddi_get_soft_state(su_asycom,
894 			    instance);
895 			if (asy->asy_dip == NULL)
896 				error = DDI_FAILURE;
897 			else {
898 				*result = (void *) asy->asy_dip;
899 				error = DDI_SUCCESS;
900 			}
901 			break;
902 		case DDI_INFO_DEVT2INSTANCE:
903 			*result = (void *)(uintptr_t)instance;
904 			error = DDI_SUCCESS;
905 			break;
906 		default:
907 			error = DDI_FAILURE;
908 	}
909 	return (error);
910 }
911 
912 static int
913 asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr)
914 {
915 	_NOTE(ARGUNUSED(sflag))
916 	struct asycom	*asy;
917 	struct asyncline *async;
918 	int		mcr;
919 	int		unit;
920 	int 		len;
921 	struct termios 	*termiosp;
922 
923 #ifdef DEBUG
924 	if (asydebug & ASY_DEBUG_CLOSE)
925 		printf("open\n");
926 #endif
927 	unit = UNIT(*dev);
928 	if (unit > max_asy_instance)
929 		return (ENXIO);		/* unit not configured */
930 
931 	async = (struct asyncline *)ddi_get_soft_state(su_asyncline, unit);
932 	if (async == NULL)
933 		return (ENXIO);
934 
935 	asy = async->async_common;
936 	if (asy == NULL)
937 		return (ENXIO);		/* device not found by autoconfig */
938 
939 	mutex_enter(asy->asy_excl);
940 	asy->asy_priv = (caddr_t)async;
941 
942 again:
943 	mutex_enter(asy->asy_excl_hi);
944 	/*
945 	 * Block waiting for carrier to come up, unless this is a no-delay open.
946 	 */
947 	if (!(async->async_flags & ASYNC_ISOPEN)) {
948 		/*
949 		 * If this port is for a RSC console or control
950 		 * use the following termio info
951 		 */
952 		if (asy->asy_rsc_console || asy->asy_rsc_control) {
953 			async->async_ttycommon.t_cflag = CIBAUDEXT | CBAUDEXT |
954 			    (B115200 & CBAUD);
955 			async->async_ttycommon.t_cflag |= ((B115200 << IBSHIFT)
956 			    & CIBAUD);
957 			async->async_ttycommon.t_cflag |= CS8 | CREAD | CLOCAL;
958 		} else if (asy->asy_lom_console) {
959 			async->async_ttycommon.t_cflag = B9600 & CBAUD;
960 			async->async_ttycommon.t_cflag |= ((B9600 << IBSHIFT)
961 			    & CIBAUD);
962 			async->async_ttycommon.t_cflag |= CS8 | CREAD | CLOCAL;
963 		} else {
964 
965 			/*
966 			 * Set the default termios settings (cflag).
967 			 * Others are set in ldterm.  Release the spin
968 			 * mutex as we can block here, reaquire before
969 			 * calling asy_program.
970 			 */
971 			mutex_exit(asy->asy_excl_hi);
972 			if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(),
973 			    0, "ttymodes", (caddr_t)&termiosp, &len)
974 			    == DDI_PROP_SUCCESS &&
975 			    len == sizeof (struct termios)) {
976 				async->async_ttycommon.t_cflag =
977 				    termiosp->c_cflag;
978 				kmem_free(termiosp, len);
979 			} else {
980 				cmn_err(CE_WARN,
981 					"su: couldn't get ttymodes property!");
982 			}
983 			mutex_enter(asy->asy_excl_hi);
984 		}
985 		async->async_ttycommon.t_iflag = 0;
986 		async->async_ttycommon.t_iocpending = NULL;
987 		async->async_ttycommon.t_size.ws_row = 0;
988 		async->async_ttycommon.t_size.ws_col = 0;
989 		async->async_ttycommon.t_size.ws_xpixel = 0;
990 		async->async_ttycommon.t_size.ws_ypixel = 0;
991 		async->async_dev = *dev;
992 		async->async_wbufcid = 0;
993 
994 		async->async_startc = CSTART;
995 		async->async_stopc = CSTOP;
996 		(void) asy_program(asy, ASY_INIT);
997 	} else if ((async->async_ttycommon.t_flags & TS_XCLUDE) &&
998 	    secpolicy_excl_open(cr) != 0) {
999 		mutex_exit(asy->asy_excl_hi);
1000 		mutex_exit(asy->asy_excl);
1001 		return (EBUSY);
1002 	} else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) {
1003 		mutex_exit(asy->asy_excl_hi);
1004 		mutex_exit(asy->asy_excl);
1005 		return (EBUSY);
1006 	}
1007 
1008 	if (*dev & OUTLINE)
1009 		async->async_flags |= ASYNC_OUT;
1010 
1011 	/* Raise DTR on every open */
1012 	mcr = INB(MCR);
1013 	OUTB(MCR, mcr|DTR);
1014 
1015 	/*
1016 	 * Check carrier.
1017 	 */
1018 	if (asy->asy_flags & ASY_IGNORE_CD)
1019 		async->async_ttycommon.t_flags |= TS_SOFTCAR;
1020 	if ((async->async_ttycommon.t_flags & TS_SOFTCAR) ||
1021 	    (INB(MSR) & DCD))
1022 		async->async_flags |= ASYNC_CARR_ON;
1023 	else
1024 		async->async_flags &= ~ASYNC_CARR_ON;
1025 	mutex_exit(asy->asy_excl_hi);
1026 
1027 	/*
1028 	 * If FNDELAY and FNONBLOCK are clear, block until carrier up.
1029 	 * Quit on interrupt.
1030 	 */
1031 	if (!(flag & (FNDELAY|FNONBLOCK)) &&
1032 	    !(async->async_ttycommon.t_cflag & CLOCAL)) {
1033 		if (!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) ||
1034 		    ((async->async_flags & ASYNC_OUT) &&
1035 		    !(*dev & OUTLINE))) {
1036 				async->async_flags |= ASYNC_WOPEN;
1037 				if (cv_wait_sig(&async->async_flags_cv,
1038 				    asy->asy_excl) == 0) {
1039 					async->async_flags &= ~ASYNC_WOPEN;
1040 					mutex_exit(asy->asy_excl);
1041 					return (EINTR);
1042 				}
1043 				async->async_flags &= ~ASYNC_WOPEN;
1044 				goto again;
1045 		}
1046 	} else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) {
1047 		mutex_exit(asy->asy_excl);
1048 		return (EBUSY);
1049 	}
1050 
1051 	if (asy->suspended) {
1052 		mutex_exit(asy->asy_excl);
1053 		(void) ddi_dev_is_needed(asy->asy_dip, 0, 1);
1054 		mutex_enter(asy->asy_excl);
1055 	}
1056 
1057 	async->async_ttycommon.t_readq = rq;
1058 	async->async_ttycommon.t_writeq = WR(rq);
1059 	rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async;
1060 	mutex_exit(asy->asy_excl);
1061 	qprocson(rq);
1062 	async->async_flags |= ASYNC_ISOPEN;
1063 	async->async_polltid = 0;
1064 	return (0);
1065 }
1066 
1067 static void
1068 async_progress_check(void *arg)
1069 {
1070 	struct asyncline *async = arg;
1071 	struct asycom	 *asy = async->async_common;
1072 	mblk_t *bp;
1073 
1074 	/*
1075 	 * We define "progress" as either waiting on a timed break or delay, or
1076 	 * having had at least one transmitter interrupt.  If none of these are
1077 	 * true, then just terminate the output and wake up that close thread.
1078 	 */
1079 	mutex_enter(asy->asy_excl);
1080 	mutex_enter(asy->asy_excl_hi);
1081 	if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) {
1082 		async->async_ocnt = 0;
1083 		async->async_flags &= ~ASYNC_BUSY;
1084 		async->async_timer = 0;
1085 		bp = async->async_xmitblk;
1086 		async->async_xmitblk = NULL;
1087 		mutex_exit(asy->asy_excl_hi);
1088 		if (bp != NULL)
1089 			freeb(bp);
1090 		/*
1091 		 * Since this timer is running, we know that we're in exit(2).
1092 		 * That means that the user can't possibly be waiting on any
1093 		 * valid ioctl(2) completion anymore, and we should just flush
1094 		 * everything.
1095 		 */
1096 		flushq(async->async_ttycommon.t_writeq, FLUSHALL);
1097 		cv_broadcast(&async->async_flags_cv);
1098 	} else {
1099 		async->async_flags &= ~ASYNC_PROGRESS;
1100 		async->async_timer = timeout(async_progress_check, async,
1101 		    drv_usectohz(su_drain_check));
1102 		mutex_exit(asy->asy_excl_hi);
1103 	}
1104 	mutex_exit(asy->asy_excl);
1105 }
1106 
1107 /*
1108  * Close routine.
1109  */
1110 static int
1111 asyclose(queue_t *q, int flag, cred_t *cr __unused)
1112 {
1113 	struct asyncline *async;
1114 	struct asycom	 *asy;
1115 	int icr, lcr;
1116 	int		nohupcl;
1117 
1118 
1119 #ifdef DEBUG
1120 	if (asydebug & ASY_DEBUG_CLOSE)
1121 		printf("close\n");
1122 #endif
1123 	async = q->q_ptr;
1124 	ASSERT(async != NULL);
1125 	asy = async->async_common;
1126 
1127 	/* get the nohupcl OBP property of this device */
1128 	nohupcl = ddi_getprop(DDI_DEV_T_ANY, asy->asy_dip, DDI_PROP_DONTPASS,
1129 	    "nohupcl", 0);
1130 
1131 	mutex_enter(asy->asy_excl);
1132 	async->async_flags |= ASYNC_CLOSING;
1133 
1134 	/*
1135 	 * Turn off PPS handling early to avoid events occuring during
1136 	 * close.  Also reset the DCD edge monitoring bit.
1137 	 */
1138 	mutex_enter(asy->asy_excl_hi);
1139 	asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE);
1140 	mutex_exit(asy->asy_excl_hi);
1141 
1142 	/*
1143 	 * There are two flavors of break -- timed (M_BREAK or TCSBRK) and
1144 	 * untimed (TIOCSBRK).  For the timed case, these are enqueued on our
1145 	 * write queue and there's a timer running, so we don't have to worry
1146 	 * about them.  For the untimed case, though, the user obviously made a
1147 	 * mistake, because these are handled immediately.  We'll terminate the
1148 	 * break now and honor their implicit request by discarding the rest of
1149 	 * the data.
1150 	 */
1151 	if (!(async->async_flags & ASYNC_BREAK)) {
1152 		mutex_enter(asy->asy_excl_hi);
1153 		lcr = INB(LCR);
1154 		if (lcr & SETBREAK) {
1155 			OUTB(LCR, (lcr & ~SETBREAK));
1156 		}
1157 		mutex_exit(asy->asy_excl_hi);
1158 		if (lcr & SETBREAK)
1159 			goto nodrain;
1160 	}
1161 
1162 	/*
1163 	 * If the user told us not to delay the close ("non-blocking"), then
1164 	 * don't bother trying to drain.
1165 	 *
1166 	 * If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever
1167 	 * getting an M_START (since these messages aren't enqueued), and the
1168 	 * only other way to clear the stop condition is by loss of DCD, which
1169 	 * would discard the queue data.  Thus, we drop the output data if
1170 	 * ASYNC_STOPPED is set.
1171 	 */
1172 	if ((flag & (FNDELAY|FNONBLOCK)) ||
1173 	    (async->async_flags & ASYNC_STOPPED)) {
1174 		goto nodrain;
1175 	}
1176 
1177 	/*
1178 	 * If there's any pending output, then we have to try to drain it.
1179 	 * There are two main cases to be handled:
1180 	 *	- called by close(2): need to drain until done or until
1181 	 *	  a signal is received.  No timeout.
1182 	 *	- called by exit(2): need to drain while making progress
1183 	 *	  or until a timeout occurs.  No signals.
1184 	 *
1185 	 * If we can't rely on receiving a signal to get us out of a hung
1186 	 * session, then we have to use a timer.  In this case, we set a timer
1187 	 * to check for progress in sending the output data -- all that we ask
1188 	 * (at each interval) is that there's been some progress made.  Since
1189 	 * the interrupt routine grabs buffers from the write queue, we can't
1190 	 * trust async_ocnt.  Instead, we use a flag.
1191 	 *
1192 	 * Note that loss of carrier will cause the output queue to be flushed,
1193 	 * and we'll wake up again and finish normally.
1194 	 */
1195 	if (!ddi_can_receive_sig() && su_drain_check != 0) {
1196 		async->async_flags &= ~ASYNC_PROGRESS;
1197 		async->async_timer = timeout(async_progress_check, async,
1198 		    drv_usectohz(su_drain_check));
1199 	}
1200 
1201 	while (async->async_ocnt > 0 ||
1202 	    async->async_ttycommon.t_writeq->q_first != NULL ||
1203 	    (async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) {
1204 		if (cv_wait_sig(&async->async_flags_cv, asy->asy_excl) == 0)
1205 			break;
1206 	}
1207 	if (async->async_timer != 0) {
1208 		(void) untimeout(async->async_timer);
1209 		async->async_timer = 0;
1210 	}
1211 
1212 nodrain:
1213 	mutex_enter(asy->asy_excl_hi);
1214 
1215 	/* turn off the loopback mode */
1216 	if ((async->async_dev != rconsdev) &&
1217 	    (async->async_dev != kbddev) &&
1218 	    (async->async_dev != stdindev)) {
1219 		OUTB(MCR, INB(MCR) & ~ ASY_LOOP);
1220 	}
1221 
1222 	async->async_ocnt = 0;
1223 	if (async->async_xmitblk != NULL)
1224 		freeb(async->async_xmitblk);
1225 	async->async_xmitblk = NULL;
1226 
1227 	/*
1228 	 * If the "nohupcl" OBP property is set for this device, do
1229 	 * not turn off DTR and RTS no matter what.  Otherwise, if the
1230 	 * line has HUPCL set or is incompletely opened, turn off DTR
1231 	 * and RTS to fix the modem line.
1232 	 */
1233 	if (!nohupcl && ((async->async_ttycommon.t_cflag & HUPCL) ||
1234 	    (async->async_flags & ASYNC_WOPEN))) {
1235 		/* turn off DTR, RTS but NOT interrupt to 386 */
1236 		OUTB(MCR, OUT2);
1237 		mutex_exit(asy->asy_excl_hi);
1238 		/*
1239 		 * Don't let an interrupt in the middle of close
1240 		 * bounce us back to the top; just continue closing
1241 		 * as if nothing had happened.
1242 		 */
1243 		if (cv_wait_sig(&lbolt_cv, asy->asy_excl) == 0)
1244 			goto out;
1245 		mutex_enter(asy->asy_excl_hi);
1246 	}
1247 
1248 	/*
1249 	 * If nobody's using it now, turn off receiver interrupts.
1250 	 */
1251 	if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0) {
1252 		icr = INB(ICR);
1253 		OUTB(ICR, (icr & ~RIEN));
1254 	}
1255 	mutex_exit(asy->asy_excl_hi);
1256 out:
1257 	/*
1258 	 * Clear out device state.
1259 	 */
1260 	async->async_flags = 0;
1261 	ttycommon_close(&async->async_ttycommon);
1262 	cv_broadcast(&async->async_flags_cv);
1263 
1264 	/*
1265 	 * Clear ASY_DOINGSOFT and ASY_NEEDSOFT in case we were in
1266 	 * async_softint or an interrupt was pending when the process
1267 	 * using the port exited.
1268 	 */
1269 	asy->asy_flags &= ~ASY_DOINGSOFT & ~ASY_NEEDSOFT;
1270 
1271 	/*
1272 	 * Cancel outstanding "bufcall" request.
1273 	 */
1274 	if (async->async_wbufcid) {
1275 		unbufcall(async->async_wbufcid);
1276 		async->async_wbufcid = 0;
1277 	}
1278 
1279 	/*
1280 	 * If inperim is true, it means the port is closing while there's
1281 	 * a pending software interrupt.  async_flags has been zeroed out,
1282 	 * so this instance of leaveq() needs to be called before we call
1283 	 * qprocsoff() to disable services on the q.  If inperim is false,
1284 	 * leaveq() has already been called or we're not in a perimeter.
1285 	 */
1286 	if (asy->inperim == B_TRUE) {
1287 		asy->inperim = B_FALSE;
1288 		mutex_exit(asy->asy_excl);
1289 		leaveq(q);
1290 	} else {
1291 		mutex_exit(asy->asy_excl);
1292 	}
1293 
1294 	/* Note that qprocsoff can't be done until after interrupts are off */
1295 	qprocsoff(q);
1296 	q->q_ptr = WR(q)->q_ptr = NULL;
1297 	async->async_ttycommon.t_readq = NULL;
1298 	async->async_ttycommon.t_writeq = NULL;
1299 
1300 	return (0);
1301 }
1302 
1303 /*
1304  * Checks to see if the serial port is still transmitting
1305  * characters.  It returns true when there are characters
1306  * queued to transmit,  when the holding register contains
1307  * a byte, or when the shifting register still contains
1308  * data to send.
1309  *
1310  */
1311 static boolean_t
1312 asy_isbusy(struct asycom *asy)
1313 {
1314 	struct asyncline *async;
1315 
1316 #ifdef DEBUG
1317 	if (asydebug & ASY_DEBUG_EOT)
1318 		printf("isbusy\n");
1319 #endif
1320 	async = (struct asyncline *)asy->asy_priv;
1321 	ASSERT(mutex_owned(asy->asy_excl));
1322 	ASSERT(mutex_owned(asy->asy_excl_hi));
1323 	return ((async->async_ocnt > 0) ||
1324 	    ((INB(LSR) & XSRE) == 0));
1325 }
1326 
1327 /*
1328  * Program the ASY port. Most of the async operation is based on the values
1329  * of 'c_iflag' and 'c_cflag'.
1330  */
1331 static int
1332 asy_program(struct asycom *asy, int mode)
1333 {
1334 	struct asyncline *async;
1335 	int baudrate, c_flag;
1336 	int icr, lcr;
1337 	int ocflags;
1338 	int error = 0;
1339 
1340 	ASSERT(mutex_owned(asy->asy_excl));
1341 	ASSERT(mutex_owned(asy->asy_excl_hi));
1342 
1343 #ifdef DEBUG
1344 	if (asydebug & ASY_DEBUG_PROCS)
1345 		printf("program\n");
1346 #endif
1347 	async = (struct asyncline *)asy->asy_priv;
1348 
1349 	baudrate = async->async_ttycommon.t_cflag & CBAUD;
1350 	if (async->async_ttycommon.t_cflag & CBAUDEXT)
1351 		baudrate += 16;
1352 
1353 	/* Limit baudrate so it can't index out of baudtable */
1354 	if (baudrate >= N_SU_SPEEDS) baudrate = B9600;
1355 
1356 	/*
1357 	 * If baud rate requested is greater than the speed cap
1358 	 * or is an unsupported baud rate then reset t_cflag baud
1359 	 * to the last valid baud rate.  If this is the initial
1360 	 * pass through asy_program then set it to 9600.
1361 	 */
1362 	if (((baudrate > 0) && (asyspdtab[baudrate] == 0)) ||
1363 	    (baudtable[baudrate] > asy->asy_speed_cap)) {
1364 		async->async_ttycommon.t_cflag &= ~CBAUD & ~CBAUDEXT &
1365 		    ~CIBAUD & ~CIBAUDEXT;
1366 		if (mode == ASY_INIT) {
1367 			async->async_ttycommon.t_cflag |= B9600;
1368 			async->async_ttycommon.t_cflag |= B9600 << IBSHIFT;
1369 			baudrate = B9600;
1370 		} else {
1371 			async->async_ttycommon.t_cflag |=
1372 			    (asy->asy_ocflags & (CBAUD | CBAUDEXT |
1373 			    CIBAUD | CIBAUDEXT));
1374 			error = EINVAL;
1375 			goto end;
1376 		}
1377 	}
1378 
1379 	/*
1380 	 * If CIBAUD and CIBAUDEXT are zero then we should set them to
1381 	 * the equivelant output baud bits.  Else, if CIBAUD and CIBAUDEXT
1382 	 * don't match CBAUD and CBAUDEXT respectively then we should
1383 	 * notify the requestor that we do not support split speeds.
1384 	 */
1385 	if ((async->async_ttycommon.t_cflag  & (CIBAUD|CIBAUDEXT)) == 0) {
1386 		async->async_ttycommon.t_cflag |=
1387 		    (async->async_ttycommon.t_cflag & CBAUD) << IBSHIFT;
1388 		if (async->async_ttycommon.t_cflag & CBAUDEXT)
1389 			async->async_ttycommon.t_cflag |= CIBAUDEXT;
1390 	} else {
1391 		if ((((async->async_ttycommon.t_cflag & CBAUD) << IBSHIFT) !=
1392 		    (async->async_ttycommon.t_cflag & CIBAUD)) ||
1393 		    !(((async->async_ttycommon.t_cflag & (CBAUDEXT |
1394 		    CIBAUDEXT)) == (CBAUDEXT | CIBAUDEXT)) ||
1395 		    ((async->async_ttycommon.t_cflag & (CBAUDEXT |
1396 		    CIBAUDEXT)) == 0))) {
1397 			async->async_ttycommon.t_cflag &= ~CBAUD & ~CBAUDEXT &
1398 			    ~CIBAUD & ~CIBAUDEXT;
1399 			async->async_ttycommon.t_cflag |=
1400 			    (asy->asy_ocflags & (CBAUD | CBAUDEXT |
1401 			    CIBAUD | CIBAUDEXT));
1402 			error = EINVAL;
1403 			goto end;
1404 		}
1405 	}
1406 
1407 	c_flag = async->async_ttycommon.t_cflag &
1408 	    (CLOCAL | CREAD | CSTOPB | CSIZE | PARENB | PARODD | CBAUD |
1409 	    CBAUDEXT | CIBAUD | CIBAUDEXT);
1410 
1411 	/* disable interrupts, see EXAR bug */
1412 	if (asy->asy_hwtype == ASY16C554D)
1413 		OUTB(SPR, 0);
1414 	OUTB(ICR, 0);
1415 
1416 	ocflags = asy->asy_ocflags;
1417 
1418 	/* flush/reset the status registers */
1419 	if (mode == ASY_INIT) {
1420 		(void) INB(DAT);
1421 		(void) INB(ISR);
1422 		(void) INB(LSR);
1423 		(void) INB(MSR);
1424 	}
1425 
1426 	if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) {
1427 		/* Set line control */
1428 		lcr = INB(LCR);
1429 		lcr &= ~(WLS0|WLS1|STB|PEN|EPS);
1430 
1431 		if (c_flag & CSTOPB)
1432 			lcr |= STB;	/* 2 stop bits */
1433 
1434 		if (c_flag & PARENB)
1435 			lcr |= PEN;
1436 
1437 		if ((c_flag & PARODD) == 0)
1438 			lcr |= EPS;
1439 
1440 		switch (c_flag & CSIZE) {
1441 		case CS5:
1442 			lcr |= BITS5;
1443 			break;
1444 		case CS6:
1445 			lcr |= BITS6;
1446 			break;
1447 		case CS7:
1448 			lcr |= BITS7;
1449 			break;
1450 		case CS8:
1451 			lcr |= BITS8;
1452 			break;
1453 		}
1454 
1455 		/* set the baud rate when the rate is NOT B0 */
1456 		if (baudrate != 0) {
1457 			OUTB(LCR, DLAB);
1458 			OUTB(DAT, (asyspdtab[baudrate] *
1459 			    asy->asy_baud_divisor_factor) & 0xff);
1460 			OUTB(ICR, ((asyspdtab[baudrate] *
1461 			    asy->asy_baud_divisor_factor) >> 8) & 0xff);
1462 		}
1463 		/* set the line control modes */
1464 		OUTB(LCR, lcr);
1465 
1466 		/*
1467 		 * if transitioning from CREAD off to CREAD on,
1468 		 * flush the FIFO buffer if we have one.
1469 		 */
1470 		if ((ocflags & CREAD) == 0 && (c_flag & CREAD)) {
1471 			if (asy->asy_use_fifo == FIFO_ON) {
1472 				OUTB(FIFOR, FIFO_ON | FIFODMA | FIFORXFLSH |
1473 				    (asy->asy_trig_level & 0xff));
1474 			}
1475 		}
1476 
1477 		/* remember the new cflags */
1478 		asy->asy_ocflags = c_flag & ~CLOCAL;
1479 	}
1480 
1481 	/* whether or not CLOCAL is set, modify the modem control lines */
1482 	if (baudrate == 0)
1483 		/* B0 has been issued, lower DTR */
1484 		OUTB(MCR, RTS|OUT2);
1485 	else
1486 		/* raise DTR */
1487 		OUTB(MCR, DTR|RTS|OUT2);
1488 
1489 	/*
1490 	 * Call the modem status interrupt handler to check for the carrier
1491 	 * in case CLOCAL was turned off after the carrier came on.
1492 	 * (Note: Modem status interrupt is not enabled if CLOCAL is ON.)
1493 	 */
1494 	async_msint(asy);
1495 
1496 	/* Set interrupt control */
1497 	if ((c_flag & CLOCAL) && !(async->async_ttycommon.t_cflag & CRTSCTS))
1498 		/*
1499 		 * direct-wired line ignores DCD, so we don't enable modem
1500 		 * status interrupts.
1501 		 */
1502 		icr = (TIEN | SIEN);
1503 	else
1504 		icr = (TIEN | SIEN | MIEN);
1505 
1506 	if (c_flag & CREAD)
1507 		icr |= RIEN;
1508 
1509 	OUTB(ICR, icr);
1510 end:
1511 	return (error);
1512 }
1513 
1514 /*
1515  * Polled mode support -- all functions called with interrupts
1516  * disabled.
1517  */
1518 
1519 static void
1520 asyputchar(cons_polledio_arg_t arg, uchar_t c)
1521 {
1522 	struct asycom *asy = (struct asycom *)arg;
1523 
1524 	/*
1525 	 * If we see a line feed make sure to also
1526 	 * put out a carriage return.
1527 	 */
1528 	if (c == '\n')
1529 		asyputchar(arg, '\r');
1530 
1531 	while ((INB(LSR) & XHRE) == 0) {
1532 		/* wait for the transmission to complete */
1533 		drv_usecwait(10);
1534 	}
1535 
1536 	/* ouput the character */
1537 	OUTB(DAT, c);
1538 }
1539 
1540 /*
1541  * Determines if there is a character avaialable for
1542  * reading.
1543  */
1544 static boolean_t
1545 asyischar(cons_polledio_arg_t arg)
1546 {
1547 	struct asycom *asy = (struct asycom *)arg;
1548 	return ((INB(LSR) & RCA) != 0);
1549 }
1550 
1551 static int
1552 asygetchar(cons_polledio_arg_t arg)
1553 {
1554 	struct asycom *asy = (struct asycom *)arg;
1555 
1556 	/*
1557 	 * Spin waiting for a character to be
1558 	 * available to read.
1559 	 */
1560 	while (!asyischar(arg))
1561 		drv_usecwait(10);
1562 
1563 	return (INB(DAT));
1564 }
1565 
1566 /*
1567  * Called when machine is transitioning to polled mode
1568  */
1569 static void
1570 asy_polled_enter(cons_polledio_arg_t arg)
1571 {
1572 	struct asycom *asy = (struct asycom *)arg;
1573 
1574 	mutex_enter(asy->asy_excl);
1575 	mutex_enter(asy->asy_excl_hi);
1576 
1577 	/*
1578 	 * If this is the first time that asy_polled_enter()
1579 	 * has been called, during this transition request,
1580 	 * save the ICR. Clear the software interrupt
1581 	 * flags since we won't be able to handle these when
1582 	 * we are in polled mode.
1583 	 */
1584 	if (!asy->polled_enter) {
1585 		asy->polled_enter = B_TRUE;
1586 		asy->polled_icr = INB(ICR);
1587 
1588 		/* Disable HW interrupts */
1589 		if (asy->asy_hwtype == ASY16C554D)
1590 			OUTB(SPR, 0);
1591 		OUTB(ICR, 0);
1592 
1593 		asy->asy_flags &= ~ASY_DOINGSOFT & ~ASY_NEEDSOFT;
1594 	}
1595 	mutex_exit(asy->asy_excl_hi);
1596 	mutex_exit(asy->asy_excl);
1597 }
1598 
1599 /*
1600  * Called when machine is transitioning from polled mode.
1601  */
1602 static void
1603 asy_polled_exit(cons_polledio_arg_t arg)
1604 {
1605 	struct asycom *asy = (struct asycom *)arg;
1606 
1607 	mutex_enter(asy->asy_excl);
1608 	mutex_enter(asy->asy_excl_hi);
1609 
1610 	/* Restore the ICR */
1611 	OUTB(ICR, asy->polled_icr);
1612 
1613 	/*
1614 	 * We have finished this polled IO transition.
1615 	 * Set polled_enter to B_FALSE to note this.
1616 	 */
1617 	asy->polled_enter = B_FALSE;
1618 	mutex_exit(asy->asy_excl_hi);
1619 	mutex_exit(asy->asy_excl);
1620 }
1621 
1622 /*
1623  * asyintr() is the High Level Interrupt Handler.
1624  *
1625  * There are four different interrupt types indexed by ISR register values:
1626  *		0: modem
1627  *		1: Tx holding register is empty, ready for next char
1628  *		2: Rx register now holds a char to be picked up
1629  *		3: error or break on line
1630  * This routine checks the Bit 0 (interrupt-not-pending) to determine if
1631  * the interrupt is from this port.
1632  */
1633 uint_t
1634 asyintr(caddr_t argasy)
1635 {
1636 	struct asycom		*asy = (struct asycom *)argasy;
1637 	struct asyncline	*async;
1638 	int			ret_status = DDI_INTR_UNCLAIMED;
1639 	uchar_t			interrupt_id, lsr;
1640 
1641 	interrupt_id = INB(ISR) & 0x0F;
1642 	async = (struct asyncline *)asy->asy_priv;
1643 	if ((async == NULL) ||
1644 	    !(async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN))) {
1645 		if (interrupt_id & NOINTERRUPT)  {
1646 			return (DDI_INTR_UNCLAIMED);
1647 		} else {
1648 			lsr = INB(LSR);
1649 			if ((lsr & BRKDET) &&
1650 			    ((abort_enable == KIOCABORTENABLE) &&
1651 			    (async->async_dev == rconsdev)))
1652 				abort_sequence_enter((char *)NULL);
1653 			else {
1654 				/* reset line status */
1655 				(void) INB(LSR);
1656 				/* discard any data */
1657 				(void) INB(DAT);
1658 				/* reset modem status */
1659 				(void) INB(MSR);
1660 				return (DDI_INTR_CLAIMED);
1661 			}
1662 		}
1663 	}
1664 	/*
1665 	 * Spurious interrupts happen in this driver
1666 	 * because of the transmission on serial port not handled
1667 	 * properly.
1668 	 *
1669 	 * The reasons for Spurious interrupts are:
1670 	 *    1. There is a path in async_nstart which transmits
1671 	 *	 characters without going through interrupt services routine
1672 	 *	 which causes spurious interrupts to happen.
1673 	 *    2. In the async_txint more than one character is sent
1674 	 *	 in one interrupt service.
1675 	 *    3. In async_rxint more than one characters are received in
1676 	 *	 in one interrupt service.
1677 	 *
1678 	 * Hence we have flags to indicate that such scenerio has happened.
1679 	 * and claim only such interrupts and others we donot claim it
1680 	 * as it could be a indicator of some hardware problem.
1681 	 *
1682 	 */
1683 	if (interrupt_id & NOINTERRUPT) {
1684 		mutex_enter(asy->asy_excl_hi);
1685 		if ((asy->asy_xmit_count > 1) ||
1686 		    (asy->asy_out_of_band_xmit > 0) ||
1687 		    (asy->asy_rx_count > 1)) {
1688 			asy->asy_xmit_count = 0;
1689 			asy->asy_out_of_band_xmit = 0;
1690 			asy->asy_rx_count = 0;
1691 			mutex_exit(asy->asy_excl_hi);
1692 			return (DDI_INTR_CLAIMED);
1693 		} else {
1694 			mutex_exit(asy->asy_excl_hi);
1695 			return (DDI_INTR_UNCLAIMED);
1696 		}
1697 	}
1698 	ret_status = DDI_INTR_CLAIMED;
1699 	mutex_enter(asy->asy_excl_hi);
1700 	if (asy->asy_hwtype == ASY82510)
1701 		OUTB(ISR, 0x00); /* set bank 0 */
1702 
1703 #ifdef DEBUG
1704 	if (asydebug & ASY_DEBUG_INTR)
1705 		prom_printf("l");
1706 #endif
1707 	lsr = INB(LSR);
1708 	switch (interrupt_id) {
1709 	case RxRDY:
1710 	case RSTATUS:
1711 	case FFTMOUT:
1712 		/* receiver interrupt or receiver errors */
1713 		async_rxint(asy, lsr);
1714 		break;
1715 	case TxRDY:
1716 		/* transmit interrupt */
1717 		async_txint(asy, lsr);
1718 		break;
1719 	case MSTATUS:
1720 		/* modem status interrupt */
1721 		async_msint(asy);
1722 		break;
1723 	}
1724 	mutex_exit(asy->asy_excl_hi);
1725 	return (ret_status);
1726 }
1727 
1728 /*
1729  * Transmitter interrupt service routine.
1730  * If there is more data to transmit in the current pseudo-DMA block,
1731  * send the next character if output is not stopped or draining.
1732  * Otherwise, queue up a soft interrupt.
1733  *
1734  * XXX -  Needs review for HW FIFOs.
1735  */
1736 static void
1737 async_txint(struct asycom *asy, uchar_t lsr)
1738 {
1739 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
1740 	int		fifo_len;
1741 	int		xmit_progress;
1742 
1743 	asycheckflowcontrol_hw(asy);
1744 
1745 	/*
1746 	 * If ASYNC_BREAK has been set, return to asyintr()'s context to
1747 	 * claim the interrupt without performing any action.
1748 	 */
1749 	if (async->async_flags & ASYNC_BREAK)
1750 		return;
1751 
1752 	fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
1753 
1754 	/*
1755 	 * Check for flow control and do the needed action.
1756 	 */
1757 	if (asycheckflowcontrol_sw(asy)) {
1758 		return;
1759 	}
1760 
1761 	if (async->async_ocnt > 0 &&
1762 	    !(async->async_flags & (ASYNC_HW_OUT_FLW|ASYNC_STOPPED))) {
1763 		xmit_progress = 0;
1764 		while (fifo_len > 0 && async->async_ocnt > 0) {
1765 			if (lsr & XHRE) {
1766 				OUTB(DAT, *async->async_optr++);
1767 				fifo_len--;
1768 				async->async_ocnt--;
1769 				xmit_progress++;
1770 			}
1771 			/*
1772 			 * Reading the lsr, (moved reading at the end of
1773 			 * while loop) as already we have read once at
1774 			 * the beginning of interrupt service
1775 			 */
1776 			lsr = INB(LSR);
1777 		}
1778 		asy->asy_xmit_count = xmit_progress;
1779 		if (xmit_progress > 0)
1780 			async->async_flags |= ASYNC_PROGRESS;
1781 	}
1782 
1783 	if (fifo_len == 0) {
1784 		return;
1785 	}
1786 
1787 
1788 	ASYSETSOFT(asy);
1789 }
1790 
1791 /*
1792  * Receiver interrupt: RxRDY interrupt, FIFO timeout interrupt or receive
1793  * error interrupt.
1794  * Try to put the character into the circular buffer for this line; if it
1795  * overflows, indicate a circular buffer overrun. If this port is always
1796  * to be serviced immediately, or the character is a STOP character, or
1797  * more than 15 characters have arrived, queue up a soft interrupt to
1798  * drain the circular buffer.
1799  * XXX - needs review for hw FIFOs support.
1800  */
1801 
1802 static void
1803 async_rxint(struct asycom *asy, uchar_t lsr)
1804 {
1805 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
1806 	uchar_t c = 0;
1807 	uint_t s = 0, needsoft = 0;
1808 	register tty_common_t *tp;
1809 
1810 	tp = &async->async_ttycommon;
1811 	if (!(tp->t_cflag & CREAD)) {
1812 		if (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
1813 			(void) (INB(DAT) & 0xff);
1814 		}
1815 		return; /* line is not open for read? */
1816 	}
1817 	asy->asy_rx_count = 0;
1818 	while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
1819 		c = 0;
1820 		s = 0;
1821 		asy->asy_rx_count++;
1822 		if (lsr & RCA) {
1823 			c = INB(DAT) & 0xff;
1824 			/*
1825 			 * Even a single character is received
1826 			 * we need Soft interrupt to pass it to
1827 			 * higher layers.
1828 			 */
1829 			needsoft = 1;
1830 		}
1831 
1832 		/* Check for character break sequence */
1833 		if ((abort_enable == KIOCABORTALTERNATE) &&
1834 		    (async->async_dev == rconsdev)) {
1835 			if (abort_charseq_recognize(c))
1836 				abort_sequence_enter((char *)NULL);
1837 			}
1838 
1839 		/* Handle framing errors */
1840 		if (lsr & (PARERR|FRMERR|BRKDET|OVRRUN)) {
1841 			if (lsr & PARERR) {
1842 				if (tp->t_iflag & INPCK) /* parity enabled */
1843 					s |= PERROR;
1844 			}
1845 			if (lsr & (FRMERR|BRKDET))
1846 				s |= FRERROR;
1847 			if (lsr & OVRRUN) {
1848 				async->async_hw_overrun = 1;
1849 				s |= OVERRUN;
1850 			}
1851 		}
1852 
1853 		if (s == 0)
1854 			if ((tp->t_iflag & PARMRK) &&
1855 			    !(tp->t_iflag & (IGNPAR|ISTRIP)) &&
1856 			    (c == 0377))
1857 				if (RING_POK(async, 2)) {
1858 					RING_PUT(async, 0377);
1859 					RING_PUT(async, c);
1860 				} else
1861 					async->async_sw_overrun = 1;
1862 			else
1863 				if (RING_POK(async, 1))
1864 					RING_PUT(async, c);
1865 				else
1866 					async->async_sw_overrun = 1;
1867 		else
1868 			if (s & FRERROR) { /* Handle framing errors */
1869 				if (c == 0)  {
1870 		/* Look for break on kbd, stdin, or rconsdev */
1871 					if ((async->async_dev == kbddev) ||
1872 					    ((async->async_dev == rconsdev) ||
1873 					    (async->async_dev == stdindev)) &&
1874 					    (abort_enable !=
1875 					    KIOCABORTALTERNATE))
1876 						abort_sequence_enter((char *)0);
1877 					else
1878 						async->async_break++;
1879 				} else {
1880 					if (RING_POK(async, 1))
1881 						RING_MARK(async, c, s);
1882 					else
1883 						async->async_sw_overrun = 1;
1884 				}
1885 			} else  { /* Parity errors  handled by ldterm */
1886 				if (RING_POK(async, 1))
1887 					RING_MARK(async, c, s);
1888 				else
1889 					async->async_sw_overrun = 1;
1890 			}
1891 		lsr = INB(LSR);
1892 		if (asy->asy_rx_count > 16) break;
1893 	}
1894 	/* Check whether there is a request for hw/sw inbound/input flow ctrl */
1895 	if ((async->async_ttycommon.t_cflag & CRTSXOFF) ||
1896 	    (async->async_ttycommon.t_iflag & IXOFF))
1897 		if ((int)(RING_CNT(async)) > (RINGSIZE * 3)/4) {
1898 #ifdef DEBUG
1899 			if (asydebug & ASY_DEBUG_HFLOW)
1900 				printf("asy%d: hardware flow stop input.\n",
1901 				    UNIT(async->async_dev));
1902 #endif
1903 			async->async_flags |= ASYNC_HW_IN_FLOW;
1904 			async->async_flowc = async->async_stopc;
1905 			async->async_ringbuf_overflow = 1;
1906 		}
1907 
1908 	if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft ||
1909 	    (RING_FRAC(async)) || (async->async_polltid == 0))
1910 		ASYSETSOFT(asy);	/* need a soft interrupt */
1911 }
1912 
1913 /*
1914  * Interrupt on port: handle PPS event.  This function is only called
1915  * for a port on which PPS event handling has been enabled.
1916  */
1917 static void
1918 asy_ppsevent(struct asycom *asy, int msr)
1919 {
1920 	if (asy->asy_flags & ASY_PPS_EDGE) {
1921 		/* Have seen leading edge, now look for and record drop */
1922 		if ((msr & DCD) == 0)
1923 			asy->asy_flags &= ~ASY_PPS_EDGE;
1924 		/*
1925 		 * Waiting for leading edge, look for rise; stamp event and
1926 		 * calibrate kernel clock.
1927 		 */
1928 	} else if (msr & DCD) {
1929 		/*
1930 		 * This code captures a timestamp at the designated
1931 		 * transition of the PPS signal (DCD asserted).  The
1932 		 * code provides a pointer to the timestamp, as well
1933 		 * as the hardware counter value at the capture.
1934 		 *
1935 		 * Note: the kernel has nano based time values while
1936 		 * NTP requires micro based, an in-line fast algorithm
1937 		 * to convert nsec to usec is used here -- see hrt2ts()
1938 		 * in common/os/timers.c for a full description.
1939 		 */
1940 		struct timeval *tvp = &asy_ppsev.tv;
1941 		timestruc_t ts;
1942 		long nsec, usec;
1943 
1944 		asy->asy_flags |= ASY_PPS_EDGE;
1945 		gethrestime(&ts);
1946 		nsec = ts.tv_nsec;
1947 		usec = nsec + (nsec >> 2);
1948 		usec = nsec + (usec >> 1);
1949 		usec = nsec + (usec >> 2);
1950 		usec = nsec + (usec >> 4);
1951 		usec = nsec - (usec >> 3);
1952 		usec = nsec + (usec >> 2);
1953 		usec = nsec + (usec >> 3);
1954 		usec = nsec + (usec >> 4);
1955 		usec = nsec + (usec >> 1);
1956 		usec = nsec + (usec >> 6);
1957 		tvp->tv_usec = usec >> 10;
1958 		tvp->tv_sec = ts.tv_sec;
1959 
1960 		++asy_ppsev.serial;
1961 
1962 		/*
1963 		 * Because the kernel keeps a high-resolution time,
1964 		 * pass the current highres timestamp in tvp and zero
1965 		 * in usec.
1966 		 */
1967 		ddi_hardpps(tvp, 0);
1968 	}
1969 }
1970 
1971 /*
1972  * Modem status interrupt.
1973  *
1974  * (Note: It is assumed that the MSR hasn't been read by asyintr().)
1975  */
1976 
1977 static void
1978 async_msint(struct asycom *asy)
1979 {
1980 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
1981 	int msr;
1982 
1983 	msr = INB(MSR);	/* this resets the interrupt */
1984 	asy->asy_cached_msr = msr;
1985 #ifdef DEBUG
1986 	if (asydebug & ASY_DEBUG_STATE) {
1987 		printf("   transition: %3s %3s %3s %3s\n"
1988 		    "current state: %3s %3s %3s %3s\n",
1989 		    (msr & DCTS) ? "CTS" : "   ",
1990 		    (msr & DDSR) ? "DSR" : "   ",
1991 		    (msr & DRI) ?  "RI " : "   ",
1992 		    (msr & DDCD) ? "DCD" : "   ",
1993 		    (msr & CTS) ?  "CTS" : "   ",
1994 		    (msr & DSR) ?  "DSR" : "   ",
1995 		    (msr & RI) ?   "RI " : "   ",
1996 		    (msr & DCD) ?  "DCD" : "   ");
1997 	}
1998 #endif
1999 	if (async->async_ttycommon.t_cflag & CRTSCTS && !(msr & CTS)) {
2000 #ifdef DEBUG
2001 		if (asydebug & ASY_DEBUG_HFLOW)
2002 			printf("asy%d: hflow start\n",
2003 			    UNIT(async->async_dev));
2004 #endif
2005 		async->async_flags |= ASYNC_HW_OUT_FLW;
2006 	}
2007 	if (asy->asy_hwtype == ASY82510)
2008 		OUTB(MSR, (msr & 0xF0));
2009 
2010 	/* Handle PPS event */
2011 	if (asy->asy_flags & ASY_PPS)
2012 		asy_ppsevent(asy, msr);
2013 
2014 	async->async_ext++;
2015 	ASYSETSOFT(asy);
2016 }
2017 
2018 /*
2019  * Handle a second-stage interrupt.
2020  */
2021 uint_t
2022 asysoftintr(caddr_t intarg)
2023 {
2024 	struct asycom *asy = (struct asycom *)intarg;
2025 	struct asyncline *async;
2026 	int rv;
2027 	int cc;
2028 	/*
2029 	 * Test and clear soft interrupt.
2030 	 */
2031 	mutex_enter(asy->asy_soft_lock);
2032 #ifdef DEBUG
2033 	if (asydebug & ASY_DEBUG_PROCS)
2034 		printf("softintr\n");
2035 #endif
2036 	rv = asy->asysoftpend;
2037 	if (rv != 0)
2038 		asy->asysoftpend = 0;
2039 	mutex_exit(asy->asy_soft_lock);
2040 
2041 	if (rv) {
2042 		if (asy->asy_priv == NULL)
2043 			return (rv);
2044 		async = (struct asyncline *)asy->asy_priv;
2045 		mutex_enter(asy->asy_excl_hi);
2046 		if (asy->asy_flags & ASY_NEEDSOFT) {
2047 			asy->asy_flags &= ~ASY_NEEDSOFT;
2048 			mutex_exit(asy->asy_excl_hi);
2049 			(void) async_softint(asy);
2050 			mutex_enter(asy->asy_excl_hi);
2051 		}
2052 		/*
2053 		 * There are some instances where the softintr is not
2054 		 * scheduled and hence not called. It so happened that makes
2055 		 * the last few characters to be stuck in ringbuffer.
2056 		 * Hence, call once again the  handler so that the last few
2057 		 * characters are cleared.
2058 		 */
2059 		cc = RING_CNT(async);
2060 		mutex_exit(asy->asy_excl_hi);
2061 		if (cc > 0) {
2062 			(void) async_softint(asy);
2063 		}
2064 	}
2065 	return (rv);
2066 }
2067 
2068 /*
2069  * Handle a software interrupt.
2070  */
2071 static int
2072 async_softint(struct asycom *asy)
2073 {
2074 	struct asyncline *async = (struct asyncline *)asy->asy_priv;
2075 	uint_t	cc;
2076 	mblk_t	*bp;
2077 	queue_t	*q;
2078 	uchar_t	val;
2079 	uchar_t	c;
2080 	tty_common_t	*tp;
2081 
2082 #ifdef DEBUG
2083 	if (asydebug & ASY_DEBUG_PROCS)
2084 		printf("process\n");
2085 #endif
2086 	mutex_enter(asy->asy_excl);
2087 	if (asy->asy_flags & ASY_DOINGSOFT) {
2088 		mutex_exit(asy->asy_excl);
2089 		return (0);
2090 	}
2091 	tp = &async->async_ttycommon;
2092 	q = tp->t_readq;
2093 	if (q != NULL) {
2094 		mutex_exit(asy->asy_excl);
2095 		enterq(q);
2096 		mutex_enter(asy->asy_excl);
2097 	}
2098 	mutex_enter(asy->asy_excl_hi);
2099 	asy->asy_flags |= ASY_DOINGSOFT;
2100 
2101 	if (INB(ICR) & MIEN)
2102 		val = asy->asy_cached_msr & 0xFF;
2103 	else
2104 		val = INB(MSR) & 0xFF;
2105 
2106 	if (async->async_ttycommon.t_cflag & CRTSCTS) {
2107 		if ((val & CTS) && (async->async_flags & ASYNC_HW_OUT_FLW)) {
2108 #ifdef DEBUG
2109 			if (asydebug & ASY_DEBUG_HFLOW)
2110 				printf("asy%d: hflow start\n",
2111 				    UNIT(async->async_dev));
2112 #endif
2113 			async->async_flags &= ~ASYNC_HW_OUT_FLW;
2114 			mutex_exit(asy->asy_excl_hi);
2115 			if (async->async_ocnt > 0) {
2116 				mutex_enter(asy->asy_excl_hi);
2117 				async_resume(async);
2118 				mutex_exit(asy->asy_excl_hi);
2119 			} else {
2120 				async_start(async);
2121 			}
2122 			mutex_enter(asy->asy_excl_hi);
2123 		}
2124 	}
2125 	if (async->async_ext) {
2126 		async->async_ext = 0;
2127 		/* check for carrier up */
2128 		if ((val & DCD) || (tp->t_flags & TS_SOFTCAR)) {
2129 			/* carrier present */
2130 			if ((async->async_flags & ASYNC_CARR_ON) == 0) {
2131 				async->async_flags |= ASYNC_CARR_ON;
2132 				mutex_exit(asy->asy_excl_hi);
2133 				mutex_exit(asy->asy_excl);
2134 				if (async->async_flags & ASYNC_ISOPEN)
2135 					(void) putctl(q, M_UNHANGUP);
2136 				cv_broadcast(&async->async_flags_cv);
2137 				mutex_enter(asy->asy_excl);
2138 				mutex_enter(asy->asy_excl_hi);
2139 			}
2140 		} else {
2141 			if ((async->async_flags & ASYNC_CARR_ON) &&
2142 			    !(tp->t_cflag & CLOCAL)) {
2143 				int flushflag;
2144 
2145 				/*
2146 				 * Carrier went away.
2147 				 * Drop DTR, abort any output in
2148 				 * progress, indicate that output is
2149 				 * not stopped, and send a hangup
2150 				 * notification upstream.
2151 				 *
2152 				 * If we're in the midst of close, then flush
2153 				 * everything.  Don't leave stale ioctls lying
2154 				 * about.
2155 				 */
2156 				val = INB(MCR);
2157 				OUTB(MCR, (val & ~DTR));
2158 				flushflag = (async->async_flags &
2159 				    ASYNC_CLOSING) ? FLUSHALL : FLUSHDATA;
2160 				if (tp->t_writeq != NULL) {
2161 					flushq(tp->t_writeq, flushflag);
2162 				}
2163 				if (async->async_xmitblk != NULL) {
2164 					freeb(async->async_xmitblk);
2165 					async->async_xmitblk = NULL;
2166 				}
2167 				if (async->async_flags & ASYNC_BUSY) {
2168 					async->async_ocnt = 0;
2169 					async->async_flags &= ~ASYNC_BUSY;
2170 				}
2171 				async->async_flags &= ~ASYNC_STOPPED;
2172 				if (async->async_flags & ASYNC_ISOPEN) {
2173 					mutex_exit(asy->asy_excl_hi);
2174 					mutex_exit(asy->asy_excl);
2175 					(void) putctl(q, M_HANGUP);
2176 					mutex_enter(asy->asy_excl);
2177 					mutex_enter(asy->asy_excl_hi);
2178 				}
2179 				async->async_flags &= ~ASYNC_CARR_ON;
2180 				mutex_exit(asy->asy_excl_hi);
2181 				cv_broadcast(&async->async_flags_cv);
2182 				mutex_enter(asy->asy_excl_hi);
2183 			}
2184 		}
2185 	}
2186 
2187 	/*
2188 	 * If data has been added to the circular buffer, remove
2189 	 * it from the buffer, and send it up the stream if there's
2190 	 * somebody listening. Try to do it 16 bytes at a time. If we
2191 	 * have more than 16 bytes to move, move 16 byte chunks and
2192 	 * leave the rest for next time around (maybe it will grow).
2193 	 */
2194 	if (!(async->async_flags & ASYNC_ISOPEN)) {
2195 		RING_INIT(async);
2196 		goto rv;
2197 	}
2198 	if ((cc = RING_CNT(async)) == 0) {
2199 		goto rv;
2200 	}
2201 	mutex_exit(asy->asy_excl_hi);
2202 
2203 	if (!canput(q)) {
2204 		if ((async->async_flags & ASYNC_HW_IN_FLOW) == 0) {
2205 #ifdef DEBUG
2206 			if (!(asydebug & ASY_DEBUG_HFLOW)) {
2207 				printf("asy%d: hflow stop input.\n",
2208 				    UNIT(async->async_dev));
2209 				if (canputnext(q))
2210 					printf("asy%d: next queue is "
2211 					    "ready\n",
2212 					    UNIT(async->async_dev));
2213 			}
2214 #endif
2215 			mutex_enter(asy->asy_excl_hi);
2216 			async->async_flags |= ASYNC_HW_IN_FLOW;
2217 			async->async_flowc = async->async_stopc;
2218 		} else mutex_enter(asy->asy_excl_hi);
2219 		goto rv;
2220 	}
2221 
2222 	if (async->async_ringbuf_overflow) {
2223 		if ((async->async_flags & ASYNC_HW_IN_FLOW) &&
2224 		    ((int)(RING_CNT(async)) < (RINGSIZE/4))) {
2225 #ifdef DEBUG
2226 			if (asydebug & ASY_DEBUG_HFLOW)
2227 				printf("asy%d: hflow start input.\n",
2228 				    UNIT(async->async_dev));
2229 #endif
2230 			mutex_enter(asy->asy_excl_hi);
2231 			async->async_flags &= ~ASYNC_HW_IN_FLOW;
2232 			async->async_flowc = async->async_startc;
2233 			async->async_ringbuf_overflow = 0;
2234 			goto rv;
2235 		}
2236 	}
2237 #ifdef DEBUG
2238 	if (asydebug & ASY_DEBUG_INPUT)
2239 		printf("asy%d: %d char(s) in queue.\n",
2240 		    UNIT(async->async_dev), cc);
2241 #endif
2242 	/*
2243 	 * Before you pull the characters from the RING BUF
2244 	 * Check whether you can put into the queue again
2245 	 */
2246 	if ((!canputnext(q)) || (!canput(q))) {
2247 		mutex_enter(asy->asy_excl_hi);
2248 		if ((async->async_flags & ASYNC_HW_IN_FLOW) == 0) {
2249 			async->async_flags |= ASYNC_HW_IN_FLOW;
2250 			async->async_flowc = async->async_stopc;
2251 			async->async_queue_full = 1;
2252 		}
2253 		goto rv;
2254 	}
2255 	mutex_enter(asy->asy_excl_hi);
2256 	if (async->async_queue_full) {
2257 		/*
2258 		 * Last time the Stream queue didnot allow
2259 		 * now it allows so, relax, the flow control
2260 		 */
2261 		if (async->async_flags & ASYNC_HW_IN_FLOW) {
2262 			async->async_flags &= ~ASYNC_HW_IN_FLOW;
2263 			async->async_queue_full = 0;
2264 			async->async_flowc = async->async_startc;
2265 			goto rv;
2266 		} else
2267 			async->async_queue_full = 0;
2268 	}
2269 	mutex_exit(asy->asy_excl_hi);
2270 	if (!(bp = allocb(cc, BPRI_MED))) {
2271 		ttycommon_qfull(&async->async_ttycommon, q);
2272 		mutex_enter(asy->asy_excl_hi);
2273 		goto rv;
2274 	}
2275 	mutex_enter(asy->asy_excl_hi);
2276 	do {
2277 		if (RING_ERR(async, S_ERRORS)) {
2278 			RING_UNMARK(async);
2279 			c = RING_GET(async);
2280 			break;
2281 		} else {
2282 			*bp->b_wptr++ = RING_GET(async);
2283 		}
2284 	} while (--cc);
2285 
2286 	mutex_exit(asy->asy_excl_hi);
2287 	mutex_exit(asy->asy_excl);
2288 	if (bp->b_wptr > bp->b_rptr) {
2289 		if (!canputnext(q)) {
2290 			if (!canput(q)) {
2291 				/*
2292 				 * Even after taking all precautions that
2293 				 * Still we are unable to queue, then we
2294 				 * cannot do anything, just drop the block
2295 				 */
2296 				cmn_err(CE_NOTE,
2297 				    "su%d: local queue full\n",
2298 				    UNIT(async->async_dev));
2299 				freemsg(bp);
2300 				mutex_enter(asy->asy_excl_hi);
2301 				if ((async->async_flags &
2302 				    ASYNC_HW_IN_FLOW) == 0) {
2303 					async->async_flags |=
2304 					    ASYNC_HW_IN_FLOW;
2305 					async->async_flowc =
2306 					    async->async_stopc;
2307 					async->async_queue_full = 1;
2308 				}
2309 				mutex_exit(asy->asy_excl_hi);
2310 			} else {
2311 				(void) putq(q, bp);
2312 			}
2313 		} else {
2314 			putnext(q, bp);
2315 		}
2316 	} else {
2317 		freemsg(bp);
2318 	}
2319 	/*
2320 	 * If we have a parity error, then send
2321 	 * up an M_BREAK with the "bad"
2322 	 * character as an argument. Let ldterm
2323 	 * figure out what to do with the error.
2324 	 */
2325 	if (cc)
2326 		(void) putctl1(q, M_BREAK, c);
2327 	mutex_enter(asy->asy_excl);
2328 	mutex_enter(asy->asy_excl_hi);
2329 rv:
2330 	/*
2331 	 * If a transmission has finished, indicate that it's finished,
2332 	 * and start that line up again.
2333 	 */
2334 	if (async->async_break) {
2335 		async->async_break = 0;
2336 		if (async->async_flags & ASYNC_ISOPEN) {
2337 			mutex_exit(asy->asy_excl_hi);
2338 			mutex_exit(asy->asy_excl);
2339 			(void) putctl(q, M_BREAK);
2340 			mutex_enter(asy->asy_excl);
2341 			mutex_enter(asy->asy_excl_hi);
2342 		}
2343 	}
2344 	if ((async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) ||
2345 	    (async->async_flowc != '\0')) {
2346 		async->async_flags &= ~ASYNC_BUSY;
2347 		mutex_exit(asy->asy_excl_hi);
2348 		if (async->async_xmitblk)
2349 			freeb(async->async_xmitblk);
2350 		async->async_xmitblk = NULL;
2351 		if (async->async_flags & ASYNC_ISOPEN) {
2352 			asy->inperim = B_TRUE;
2353 			mutex_exit(asy->asy_excl);
2354 			enterq(async->async_ttycommon.t_writeq);
2355 			mutex_enter(asy->asy_excl);
2356 		}
2357 		async_start(async);
2358 		/*
2359 		 * We need to check for inperim and ISOPEN due to
2360 		 * multi-threading implications; it's possible to close the
2361 		 * port and nullify async_flags while completing the software
2362 		 * interrupt.  If the port is closed, leaveq() will have already
2363 		 * been called.  We don't want to call it twice.
2364 		 */
2365 		if ((asy->inperim) && (async->async_flags & ASYNC_ISOPEN)) {
2366 			mutex_exit(asy->asy_excl);
2367 			leaveq(async->async_ttycommon.t_writeq);
2368 			mutex_enter(asy->asy_excl);
2369 			asy->inperim = B_FALSE;
2370 		}
2371 		if (!(async->async_flags & ASYNC_BUSY))
2372 			cv_broadcast(&async->async_flags_cv);
2373 		mutex_enter(asy->asy_excl_hi);
2374 	}
2375 	/*
2376 	 * A note about these overrun bits: all they do is *tell* someone
2377 	 * about an error- They do not track multiple errors. In fact,
2378 	 * you could consider them latched register bits if you like.
2379 	 * We are only interested in printing the error message once for
2380 	 * any cluster of overrun errors.
2381 	 */
2382 	if (async->async_hw_overrun) {
2383 		if (async->async_flags & ASYNC_ISOPEN) {
2384 			if (su_log > 0) {
2385 				mutex_exit(asy->asy_excl_hi);
2386 				mutex_exit(asy->asy_excl);
2387 				cmn_err(CE_NOTE, "su%d: silo overflow\n",
2388 				    UNIT(async->async_dev));
2389 				mutex_enter(asy->asy_excl);
2390 				mutex_enter(asy->asy_excl_hi);
2391 			}
2392 			INC64_KSTAT(asy, siloover);
2393 		}
2394 		async->async_hw_overrun = 0;
2395 	}
2396 	if (async->async_sw_overrun) {
2397 		if (async->async_flags & ASYNC_ISOPEN) {
2398 			if (su_log > 0) {
2399 				mutex_exit(asy->asy_excl_hi);
2400 				mutex_exit(asy->asy_excl);
2401 				cmn_err(CE_NOTE, "su%d: ring buffer overflow\n",
2402 				    UNIT(async->async_dev));
2403 				mutex_enter(asy->asy_excl);
2404 				mutex_enter(asy->asy_excl_hi);
2405 			}
2406 			INC64_KSTAT(asy, ringover);
2407 		}
2408 		async->async_sw_overrun = 0;
2409 	}
2410 	asy->asy_flags &= ~ASY_DOINGSOFT;
2411 	mutex_exit(asy->asy_excl_hi);
2412 	mutex_exit(asy->asy_excl);
2413 	if (q != NULL)
2414 		leaveq(q);
2415 	return (0);
2416 }
2417 
2418 /*
2419  * Restart output on a line after a delay or break timer expired.
2420  */
2421 static void
2422 async_restart(void *arg)
2423 {
2424 	struct asyncline *async = arg;
2425 	struct asycom *asy = async->async_common;
2426 	queue_t *q;
2427 	uchar_t lcr;
2428 
2429 	/*
2430 	 * If break timer expired, turn off the break bit.
2431 	 */
2432 #ifdef DEBUG
2433 	if (asydebug & ASY_DEBUG_PROCS)
2434 		printf("restart\n");
2435 #endif
2436 	mutex_enter(asy->asy_excl);
2437 	if (async->async_flags & ASYNC_BREAK) {
2438 		unsigned int rate;
2439 
2440 		mutex_enter(asy->asy_excl_hi);
2441 		lcr = INB(LCR);
2442 		OUTB(LCR, (lcr & ~SETBREAK));
2443 
2444 		/*
2445 		 * Go to sleep for the time it takes for at least one
2446 		 * stop bit to be received by the device at the other
2447 		 * end of the line as stated in the RS-232 specification.
2448 		 * The wait period is equal to:
2449 		 * 2 clock cycles * (1 MICROSEC / baud rate)
2450 		 */
2451 		rate = async->async_ttycommon.t_cflag & CBAUD;
2452 		if (async->async_ttycommon.t_cflag & CBAUDEXT)
2453 			rate += 16;
2454 		if (rate >= N_SU_SPEEDS || rate == B0) {
2455 			rate = B9600;
2456 		}
2457 
2458 		mutex_exit(asy->asy_excl_hi);
2459 		mutex_exit(asy->asy_excl);
2460 		drv_usecwait(2 * MICROSEC / baudtable[rate]);
2461 		mutex_enter(asy->asy_excl);
2462 	}
2463 	async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK|ASYNC_DRAINING);
2464 	if ((q = async->async_ttycommon.t_writeq) != NULL) {
2465 		mutex_exit(asy->asy_excl);
2466 		enterq(q);
2467 		mutex_enter(asy->asy_excl);
2468 	}
2469 	async_start(async);
2470 	mutex_exit(asy->asy_excl);
2471 	if (q != NULL)
2472 		leaveq(q);
2473 
2474 	/* cleared break or delay flag; may have made some output progress */
2475 	cv_broadcast(&async->async_flags_cv);
2476 }
2477 
2478 static void
2479 async_start(struct asyncline *async)
2480 {
2481 	async_nstart(async, 0);
2482 }
2483 
2484 /*
2485  * Start output on a line, unless it's busy, frozen, or otherwise.
2486  */
2487 static void
2488 async_nstart(struct asyncline *async, int mode)
2489 {
2490 	register struct asycom *asy = async->async_common;
2491 	register int cc;
2492 	register queue_t *q;
2493 	mblk_t *bp, *nbp;
2494 	uchar_t *xmit_addr;
2495 	uchar_t	val;
2496 	int	fifo_len = 1;
2497 	int	xmit_progress;
2498 
2499 #ifdef DEBUG
2500 	if (asydebug & ASY_DEBUG_PROCS)
2501 		printf("start\n");
2502 #endif
2503 	if (asy->asy_use_fifo == FIFO_ON)
2504 		fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
2505 
2506 	ASSERT(mutex_owned(asy->asy_excl));
2507 	mutex_enter(asy->asy_excl_hi);
2508 	asycheckflowcontrol_hw(asy);
2509 
2510 	/*
2511 	 * If the chip is busy (i.e., we're waiting for a break timeout
2512 	 * to expire, or for the current transmission to finish, or for
2513 	 * output to finish draining from chip), don't grab anything new.
2514 	 */
2515 	if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY|ASYNC_DRAINING)) {
2516 		mutex_exit(asy->asy_excl_hi);
2517 #ifdef DEBUG
2518 		if (mode && asydebug & ASY_DEBUG_CLOSE)
2519 			printf("asy%d: start %s.\n",
2520 			    UNIT(async->async_dev),
2521 			    async->async_flags & ASYNC_BREAK
2522 			    ? "break" : "busy");
2523 #endif
2524 		return;
2525 	}
2526 
2527 	/*
2528 	 * If we have a flow-control character to transmit, do it now.
2529 	 */
2530 	if (asycheckflowcontrol_sw(asy)) {
2531 		mutex_exit(asy->asy_excl_hi);
2532 		return;
2533 	}
2534 	mutex_exit(asy->asy_excl_hi);
2535 	/*
2536 	 * If we're waiting for a delay timeout to expire, don't grab
2537 	 * anything new.
2538 	 */
2539 	if (async->async_flags & ASYNC_DELAY) {
2540 #ifdef DEBUG
2541 		if (mode && asydebug & ASY_DEBUG_CLOSE)
2542 			printf("asy%d: start ASYNC_DELAY.\n",
2543 			    UNIT(async->async_dev));
2544 #endif
2545 		return;
2546 	}
2547 
2548 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
2549 #ifdef DEBUG
2550 		if (mode && asydebug & ASY_DEBUG_CLOSE)
2551 			printf("asy%d: start writeq is null.\n",
2552 			    UNIT(async->async_dev));
2553 #endif
2554 		return;	/* not attached to a stream */
2555 	}
2556 
2557 	for (;;) {
2558 		if ((bp = getq(q)) == NULL)
2559 			return;	/* no data to transmit */
2560 
2561 		/*
2562 		 * We have a message block to work on.
2563 		 * Check whether it's a break, a delay, or an ioctl (the latter
2564 		 * occurs if the ioctl in question was waiting for the output
2565 		 * to drain).  If it's one of those, process it immediately.
2566 		 */
2567 		switch (bp->b_datap->db_type) {
2568 
2569 		case M_BREAK:
2570 			/*
2571 			 * Set the break bit, and arrange for "async_restart"
2572 			 * to be called in 1/4 second; it will turn the
2573 			 * break bit off, and call "async_start" to grab
2574 			 * the next message.
2575 			 */
2576 			mutex_enter(asy->asy_excl_hi);
2577 			val = INB(LCR);
2578 			OUTB(LCR, (val | SETBREAK));
2579 			mutex_exit(asy->asy_excl_hi);
2580 			async->async_flags |= ASYNC_BREAK;
2581 			(void) timeout(async_restart, async, hz / 4);
2582 			freemsg(bp);
2583 			return;	/* wait for this to finish */
2584 
2585 		case M_DELAY:
2586 			/*
2587 			 * Arrange for "async_restart" to be called when the
2588 			 * delay expires; it will turn ASYNC_DELAY off,
2589 			 * and call "async_start" to grab the next message.
2590 			 */
2591 			(void) timeout(async_restart, async,
2592 			    (clock_t)(*(unsigned char *)bp->b_rptr + 6));
2593 			async->async_flags |= ASYNC_DELAY;
2594 			freemsg(bp);
2595 			return;	/* wait for this to finish */
2596 
2597 		case M_IOCTL:
2598 			/*
2599 			 * This ioctl needs to wait for the output ahead of
2600 			 * it to drain.  Try to do it, and then either
2601 			 * redo the ioctl at a later time or grab the next
2602 			 * message after it.
2603 			 */
2604 
2605 			mutex_enter(asy->asy_excl_hi);
2606 			if (asy_isbusy(asy)) {
2607 				/*
2608 				 * Get the divisor by calculating the rate
2609 				 */
2610 				unsigned int rate;
2611 
2612 				mutex_exit(asy->asy_excl_hi);
2613 				rate = async->async_ttycommon.t_cflag & CBAUD;
2614 				if (async->async_ttycommon.t_cflag & CBAUDEXT)
2615 					rate += 16;
2616 				if (rate >= N_SU_SPEEDS || rate == B0) {
2617 					rate = B9600;
2618 				}
2619 
2620 				/*
2621 				 * We need to do a callback as the port will
2622 				 * be set to drain
2623 				 */
2624 				async->async_flags |= ASYNC_DRAINING;
2625 
2626 				/*
2627 				 * Put the message we just processed back onto
2628 				 * the end of the queue
2629 				 */
2630 				if (putq(q, bp) == 0)
2631 					freemsg(bp);
2632 
2633 				/*
2634 				 * We need to delay until the TSR and THR
2635 				 * have been exhausted.  We base the delay on
2636 				 * the amount of time it takes to transmit
2637 				 * 2 chars at the current baud rate in
2638 				 * microseconds.
2639 				 *
2640 				 * Therefore, the wait period is:
2641 				 *
2642 				 * (#TSR bits + #THR bits) *
2643 				 * 	1 MICROSEC / baud rate
2644 				 */
2645 				(void) timeout(async_restart, async,
2646 				    drv_usectohz(16 * MICROSEC /
2647 				    baudtable[rate]));
2648 				return;
2649 			}
2650 			mutex_exit(asy->asy_excl_hi);
2651 			mutex_exit(asy->asy_excl);
2652 			async_ioctl(async, q, bp, B_FALSE);
2653 			mutex_enter(asy->asy_excl);
2654 			continue;
2655 		}
2656 
2657 		while (bp != NULL && (cc = bp->b_wptr - bp->b_rptr) == 0) {
2658 			nbp = bp->b_cont;
2659 			freeb(bp);
2660 			bp = nbp;
2661 		}
2662 		if (bp != NULL)
2663 			break;
2664 	}
2665 
2666 	/*
2667 	 * We have data to transmit.  If output is stopped, put
2668 	 * it back and try again later.
2669 	 */
2670 	if (async->async_flags & (ASYNC_HW_OUT_FLW|ASYNC_STOPPED)) {
2671 #ifdef DEBUG
2672 		if (asydebug & ASY_DEBUG_HFLOW &&
2673 		    async->async_flags & ASYNC_HW_OUT_FLW)
2674 			printf("asy%d: output hflow in effect.\n",
2675 			    UNIT(async->async_dev));
2676 #endif
2677 		mutex_exit(asy->asy_excl);
2678 		(void) putbq(q, bp);
2679 		/*
2680 		 * We entered the routine owning the lock, we need to
2681 		 * exit the routine owning the lock.
2682 		 */
2683 		mutex_enter(asy->asy_excl);
2684 		return;
2685 	}
2686 
2687 	async->async_xmitblk = bp;
2688 	xmit_addr = bp->b_rptr;
2689 	bp = bp->b_cont;
2690 	if (bp != NULL) {
2691 		mutex_exit(asy->asy_excl);
2692 		(void) putbq(q, bp);	/* not done with this message yet */
2693 		mutex_enter(asy->asy_excl);
2694 	}
2695 
2696 	/*
2697 	 * In 5-bit mode, the high order bits are used
2698 	 * to indicate character sizes less than five,
2699 	 * so we need to explicitly mask before transmitting
2700 	 */
2701 	if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) {
2702 		register unsigned char *p = xmit_addr;
2703 		register int cnt = cc;
2704 
2705 		while (cnt--)
2706 			*p++ &= (unsigned char) 0x1f;
2707 	}
2708 
2709 	/*
2710 	 * Set up this block for pseudo-DMA.
2711 	 */
2712 	mutex_enter(asy->asy_excl_hi);
2713 	async->async_optr = xmit_addr;
2714 	async->async_ocnt = cc;
2715 	/*
2716 	 * If the transmitter is ready, shove some
2717 	 * characters out.
2718 	 */
2719 	xmit_progress = 0;
2720 	while (fifo_len-- && async->async_ocnt) {
2721 		if (INB(LSR) & XHRE) {
2722 			OUTB(DAT, *async->async_optr++);
2723 			async->async_ocnt--;
2724 			xmit_progress++;
2725 		}
2726 	}
2727 	asy->asy_out_of_band_xmit = xmit_progress;
2728 	if (xmit_progress > 0)
2729 		async->async_flags |= ASYNC_PROGRESS;
2730 	async->async_flags |= ASYNC_BUSY;
2731 	mutex_exit(asy->asy_excl_hi);
2732 }
2733 
2734 /*
2735  * Resume output by poking the transmitter.
2736  */
2737 static void
2738 async_resume(struct asyncline *async)
2739 {
2740 	register struct asycom *asy = async->async_common;
2741 
2742 	ASSERT(mutex_owned(asy->asy_excl_hi));
2743 #ifdef DEBUG
2744 	if (asydebug & ASY_DEBUG_PROCS)
2745 		printf("resume\n");
2746 #endif
2747 
2748 	asycheckflowcontrol_hw(asy);
2749 
2750 	if (INB(LSR) & XHRE) {
2751 		if (asycheckflowcontrol_sw(asy)) {
2752 			return;
2753 		} else if (async->async_ocnt > 0) {
2754 			OUTB(DAT, *async->async_optr++);
2755 			async->async_ocnt--;
2756 			async->async_flags |= ASYNC_PROGRESS;
2757 		}
2758 	}
2759 }
2760 
2761 /*
2762  * Process an "ioctl" message sent down to us.
2763  * Note that we don't need to get any locks until we are ready to access
2764  * the hardware.  Nothing we access until then is going to be altered
2765  * outside of the STREAMS framework, so we should be safe.
2766  */
2767 static void
2768 async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp, boolean_t iswput)
2769 {
2770 	register struct asycom *asy = async->async_common;
2771 	register tty_common_t  *tp = &async->async_ttycommon;
2772 	register struct iocblk *iocp;
2773 	register unsigned datasize;
2774 	size_t ioc_count;
2775 	mblk_t *datamp;
2776 	int error = 0;
2777 	uchar_t val, icr;
2778 #ifdef DEBUG
2779 	if (asydebug & ASY_DEBUG_PROCS)
2780 		printf("ioctl\n");
2781 #endif
2782 
2783 	if (tp->t_iocpending != NULL) {
2784 		/*
2785 		 * We were holding an "ioctl" response pending the
2786 		 * availability of an "mblk" to hold data to be passed up;
2787 		 * another "ioctl" came through, which means that "ioctl"
2788 		 * must have timed out or been aborted.
2789 		 */
2790 		freemsg(async->async_ttycommon.t_iocpending);
2791 		async->async_ttycommon.t_iocpending = NULL;
2792 	}
2793 
2794 	iocp = (struct iocblk *)mp->b_rptr;
2795 
2796 	/*
2797 	 * Save off the ioc count in case we need to restore it
2798 	 * because we are queuing a message block.
2799 	 */
2800 	ioc_count = iocp->ioc_count;
2801 
2802 	/*
2803 	 * For TIOCMGET, TIOCMBIC, TIOCMBIS, TIOCMSET, and PPS, do NOT call
2804 	 * ttycommon_ioctl() because this function frees up the message block
2805 	 * (mp->b_cont) that contains the address of the user variable where
2806 	 * we need to pass back the bit array.
2807 	 *
2808 	 * Similarly, ttycommon_ioctl() does not know about CONSOPENPOLLEDIO
2809 	 * and CONSCLOSEPOLLEDIO, so don't let ttycommon_ioctl() touch them.
2810 	 */
2811 	if (iocp->ioc_cmd == TIOCMGET ||
2812 	    iocp->ioc_cmd == TIOCMBIC ||
2813 	    iocp->ioc_cmd == TIOCMBIS ||
2814 	    iocp->ioc_cmd == TIOCMSET ||
2815 	    iocp->ioc_cmd == TIOCGPPS ||
2816 	    iocp->ioc_cmd == TIOCSPPS ||
2817 	    iocp->ioc_cmd == TIOCGPPSEV ||
2818 	    iocp->ioc_cmd == CONSOPENPOLLEDIO ||
2819 	    iocp->ioc_cmd == CONSCLOSEPOLLEDIO)
2820 		error = -1; /* Do Nothing */
2821 	else
2822 
2823 	/*
2824 	 * The only way in which "ttycommon_ioctl" can fail is if the "ioctl"
2825 	 * requires a response containing data to be returned to the user,
2826 	 * and no mblk could be allocated for the data.
2827 	 * No such "ioctl" alters our state.  Thus, we always go ahead and
2828 	 * do any state-changes the "ioctl" calls for.  If we couldn't allocate
2829 	 * the data, "ttycommon_ioctl" has stashed the "ioctl" away safely, so
2830 	 * we just call "bufcall" to request that we be called back when we
2831 	 * stand a better chance of allocating the data.
2832 	 */
2833 	if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) {
2834 		if (async->async_wbufcid)
2835 			unbufcall(async->async_wbufcid);
2836 		async->async_wbufcid = bufcall(datasize, BPRI_HI, async_reioctl,
2837 		    async);
2838 		return;
2839 	}
2840 
2841 	mutex_enter(asy->asy_excl);
2842 
2843 	if (error == 0) {
2844 		/*
2845 		 * "ttycommon_ioctl" did most of the work; we just use the
2846 		 * data it set up.
2847 		 */
2848 		switch (iocp->ioc_cmd) {
2849 
2850 		case TCSETS:
2851 			if (!(asy->asy_rsc_console || asy->asy_rsc_control ||
2852 			    asy->asy_lom_console)) {
2853 				mutex_enter(asy->asy_excl_hi);
2854 				error = asy_program(asy, ASY_NOINIT);
2855 				mutex_exit(asy->asy_excl_hi);
2856 			}
2857 			break;
2858 		case TCSETSF:
2859 		case TCSETSW:
2860 		case TCSETA:
2861 		case TCSETAW:
2862 		case TCSETAF:
2863 			if (!(asy->asy_rsc_console || asy->asy_rsc_control ||
2864 			    asy->asy_lom_console)) {
2865 				mutex_enter(asy->asy_excl_hi);
2866 				if (iswput && asy_isbusy(asy)) {
2867 					/*
2868 					 * ttycommon_ioctl sets the db_type to
2869 					 * M_IOCACK and ioc_count to zero
2870 					 * we need to undo this when we
2871 					 * queue a control message. This will
2872 					 * allow the control messages to be
2873 					 * processed again when the chip
2874 					 * becomes available.
2875 					 */
2876 					mp->b_datap->db_type = M_IOCTL;
2877 					iocp->ioc_count = ioc_count;
2878 
2879 					if (putq(wq, mp) == 0)
2880 						freemsg(mp);
2881 					mutex_exit(asy->asy_excl_hi);
2882 					mutex_exit(asy->asy_excl);
2883 					return;
2884 				}
2885 
2886 				/*
2887 				 * TCSETA, TCSETAW, and TCSETAF make use of
2888 				 * the termio structure and therefore have
2889 				 * no concept of any speed except what can
2890 				 * be represented by CBAUD. This is because
2891 				 * of legacy SVR4 code. Therefore, if we see
2892 				 * one of the aforementioned IOCTL commands
2893 				 * we should zero out CBAUDEXT, CIBAUD, and
2894 				 * CIBAUDEXT as to not break legacy
2895 				 * functionality. This is because CBAUDEXT,
2896 				 * CIBAUD, and CIBAUDEXT can't be stored in
2897 				 * an unsigned short. By zeroing out CBAUDEXT,
2898 				 * CIBAUD, and CIBAUDEXT in the t_cflag of the
2899 				 * termios structure asy_program() will set the
2900 				 * input baud rate to the output baud rate.
2901 				 */
2902 				if (iocp->ioc_cmd == TCSETA ||
2903 				    iocp->ioc_cmd == TCSETAW ||
2904 				    iocp->ioc_cmd == TCSETAF)
2905 					tp->t_cflag &= ~(CIBAUD |
2906 					    CIBAUDEXT | CBAUDEXT);
2907 
2908 				error = asy_program(asy, ASY_NOINIT);
2909 				mutex_exit(asy->asy_excl_hi);
2910 			}
2911 			break;
2912 		case TIOCSSOFTCAR:
2913 			/* Set the driver state appropriately */
2914 			mutex_enter(asy->asy_excl_hi);
2915 			if (tp->t_flags & TS_SOFTCAR)
2916 				asy->asy_flags |= ASY_IGNORE_CD;
2917 			else
2918 				asy->asy_flags &= ~ASY_IGNORE_CD;
2919 			mutex_exit(asy->asy_excl_hi);
2920 			break;
2921 		}
2922 	} else if (error < 0) {
2923 		/*
2924 		 * "ttycommon_ioctl" didn't do anything; we process it here.
2925 		 */
2926 		error = 0;
2927 		switch (iocp->ioc_cmd) {
2928 
2929 		case TIOCGPPS:
2930 			/*
2931 			 * Get PPS on/off.
2932 			 */
2933 			if (mp->b_cont != NULL)
2934 				freemsg(mp->b_cont);
2935 
2936 			mp->b_cont = allocb(sizeof (int), BPRI_HI);
2937 			if (mp->b_cont == NULL) {
2938 				error = ENOMEM;
2939 				break;
2940 			}
2941 			if (asy->asy_flags & ASY_PPS)
2942 				*(int *)mp->b_cont->b_wptr = 1;
2943 			else
2944 				*(int *)mp->b_cont->b_wptr = 0;
2945 			mp->b_cont->b_wptr += sizeof (int);
2946 			mp->b_datap->db_type = M_IOCACK;
2947 			iocp->ioc_count = sizeof (int);
2948 			break;
2949 
2950 		case TIOCSPPS:
2951 			/*
2952 			 * Set PPS on/off.
2953 			 */
2954 			error = miocpullup(mp, sizeof (int));
2955 			if (error != 0)
2956 				break;
2957 
2958 			mutex_enter(asy->asy_excl_hi);
2959 			if (*(int *)mp->b_cont->b_rptr)
2960 				asy->asy_flags |= ASY_PPS;
2961 			else
2962 				asy->asy_flags &= ~ASY_PPS;
2963 			/* Reset edge sense */
2964 			asy->asy_flags &= ~ASY_PPS_EDGE;
2965 			mutex_exit(asy->asy_excl_hi);
2966 			mp->b_datap->db_type = M_IOCACK;
2967 			break;
2968 
2969 		case TIOCGPPSEV: {
2970 			/*
2971 			 * Get PPS event data.
2972 			 */
2973 			mblk_t *bp;
2974 			void *buf;
2975 #ifdef _SYSCALL32_IMPL
2976 			struct ppsclockev32 p32;
2977 #endif
2978 			struct ppsclockev ppsclockev;
2979 
2980 			if (mp->b_cont != NULL) {
2981 				freemsg(mp->b_cont);
2982 				mp->b_cont = NULL;
2983 			}
2984 
2985 			if ((asy->asy_flags & ASY_PPS) == 0) {
2986 				error = ENXIO;
2987 				break;
2988 			}
2989 
2990 			/* Protect from incomplete asy_ppsev */
2991 			mutex_enter(asy->asy_excl_hi);
2992 			ppsclockev = asy_ppsev;
2993 			mutex_exit(asy->asy_excl_hi);
2994 
2995 #ifdef _SYSCALL32_IMPL
2996 			if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) {
2997 				TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv);
2998 				p32.serial = ppsclockev.serial;
2999 				buf = &p32;
3000 				iocp->ioc_count = sizeof (struct ppsclockev32);
3001 			} else
3002 #endif
3003 			{
3004 				buf = &ppsclockev;
3005 				iocp->ioc_count = sizeof (struct ppsclockev);
3006 			}
3007 
3008 			if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) {
3009 				error = ENOMEM;
3010 				break;
3011 			}
3012 			mp->b_cont = bp;
3013 
3014 			bcopy(buf, bp->b_wptr, iocp->ioc_count);
3015 			bp->b_wptr += iocp->ioc_count;
3016 			mp->b_datap->db_type = M_IOCACK;
3017 			break;
3018 		}
3019 
3020 		case TCSBRK:
3021 			error = miocpullup(mp, sizeof (int));
3022 			if (error != 0)
3023 				break;
3024 
3025 			mutex_enter(asy->asy_excl_hi);
3026 			if (*(int *)mp->b_cont->b_rptr == 0) {
3027 				/*
3028 				 * Get the divisor by calculating the rate
3029 				 */
3030 				unsigned int rate, divisor;
3031 				rate = async->async_ttycommon.t_cflag & CBAUD;
3032 				if (async->async_ttycommon.t_cflag & CBAUDEXT)
3033 					rate += 16;
3034 				if (rate >= N_SU_SPEEDS) rate = B9600;
3035 				divisor = asyspdtab[rate] & 0xfff;
3036 
3037 				/*
3038 				 * To ensure that erroneous characters are
3039 				 * not sent out when the break is set, SB
3040 				 * recommends three steps:
3041 				 *
3042 				 * 1) pad the TSR with 0 bits
3043 				 * 2) When the TSR is full, set break
3044 				 * 3) When the TSR has been flushed, unset
3045 				 *    the break when transmission must be
3046 				 *    restored.
3047 				 *
3048 				 * We loop until the TSR is empty and then
3049 				 * set the break.  ASYNC_BREAK has been set
3050 				 * to ensure that no characters are
3051 				 * transmitted while the TSR is being
3052 				 * flushed and SOUT is being used for the
3053 				 * break signal.
3054 				 *
3055 				 * The wait period is equal to
3056 				 * clock / (baud * 16) * 16 * 2.
3057 				 */
3058 				async->async_flags |= ASYNC_BREAK;
3059 				while ((INB(LSR) & XSRE) == 0) {
3060 					mutex_exit(asy->asy_excl_hi);
3061 					mutex_exit(asy->asy_excl);
3062 					drv_usecwait(32*divisor);
3063 					mutex_enter(asy->asy_excl);
3064 					mutex_enter(asy->asy_excl_hi);
3065 				}
3066 
3067 				/*
3068 				 * Set the break bit, and arrange for
3069 				 * "async_restart" to be called in 1/4 second;
3070 				 * it will turn the break bit off, and call
3071 				 * "async_start" to grab the next message.
3072 				 */
3073 				val = INB(LCR);
3074 				OUTB(LCR, (val | SETBREAK));
3075 				mutex_exit(asy->asy_excl_hi);
3076 				(void) timeout(async_restart, async, hz / 4);
3077 			} else {
3078 #ifdef DEBUG
3079 				if (asydebug & ASY_DEBUG_CLOSE)
3080 					printf("asy%d: wait for flush.\n",
3081 					    UNIT(async->async_dev));
3082 #endif
3083 				if (iswput && asy_isbusy(asy)) {
3084 					if (putq(wq, mp) == 0)
3085 						freemsg(mp);
3086 					mutex_exit(asy->asy_excl_hi);
3087 					mutex_exit(asy->asy_excl);
3088 					return;
3089 				}
3090 				mutex_exit(asy->asy_excl_hi);
3091 #ifdef DEBUG
3092 				if (asydebug & ASY_DEBUG_CLOSE)
3093 					printf("asy%d: ldterm satisfied.\n",
3094 					    UNIT(async->async_dev));
3095 #endif
3096 			}
3097 			break;
3098 
3099 		case TIOCSBRK:
3100 			mutex_enter(asy->asy_excl_hi);
3101 			val = INB(LCR);
3102 			OUTB(LCR, (val | SETBREAK));
3103 			mutex_exit(asy->asy_excl_hi);
3104 			mutex_exit(asy->asy_excl);
3105 			miocack(wq, mp, 0, 0);
3106 			return;
3107 
3108 		case TIOCCBRK:
3109 			mutex_enter(asy->asy_excl_hi);
3110 			val = INB(LCR);
3111 			OUTB(LCR, (val & ~SETBREAK));
3112 			mutex_exit(asy->asy_excl_hi);
3113 			mutex_exit(asy->asy_excl);
3114 			miocack(wq, mp, 0, 0);
3115 			return;
3116 
3117 		case TIOCMSET:
3118 		case TIOCMBIS:
3119 		case TIOCMBIC:
3120 			if (iocp->ioc_count == TRANSPARENT)
3121 				mcopyin(mp, NULL, sizeof (int), NULL);
3122 			else {
3123 				error = miocpullup(mp, sizeof (int));
3124 				if (error != 0)
3125 					break;
3126 
3127 				mutex_enter(asy->asy_excl_hi);
3128 
3129 				(void) asymctl(asy,
3130 				    dmtoasy(*(int *)mp->b_cont->b_rptr),
3131 				    iocp->ioc_cmd);
3132 
3133 				mutex_exit(asy->asy_excl_hi);
3134 				iocp->ioc_error = 0;
3135 				mp->b_datap->db_type = M_IOCACK;
3136 			}
3137 			break;
3138 
3139 		case TIOCSILOOP:
3140 			mutex_enter(asy->asy_excl_hi);
3141 			/*
3142 			 * If somebody misues this Ioctl when used for
3143 			 * driving keyboard and mouse indicate not supported
3144 			 */
3145 			if ((asy->asy_device_type == ASY_KEYBOARD) ||
3146 			    (asy->asy_device_type == ASY_MOUSE)) {
3147 				mutex_exit(asy->asy_excl_hi);
3148 				error = ENOTTY;
3149 				break;
3150 			}
3151 
3152 			/* should not use when we're the console */
3153 			if ((async->async_dev == kbddev) ||
3154 			    (async->async_dev == rconsdev) ||
3155 			    (async->async_dev == stdindev)) {
3156 				mutex_exit(asy->asy_excl_hi);
3157 				error = EINVAL;
3158 				break;
3159 			}
3160 
3161 			val = INB(MCR);
3162 			icr = INB(ICR);
3163 			/*
3164 			 * Disable the Modem Status Interrupt
3165 			 * The reason for disabling is  the status of
3166 			 * modem signal are in the higher 4 bits instead of
3167 			 * lower four bits when in loopback mode,
3168 			 * so, donot worry about Modem interrupt when
3169 			 * you are planning to set
3170 			 * this in loopback mode until it is cleared by
3171 			 * another ioctl to get out of the loopback mode
3172 			 */
3173 			OUTB(ICR, icr & ~ MIEN);
3174 			OUTB(MCR, val | ASY_LOOP);
3175 			mutex_exit(asy->asy_excl_hi);
3176 			iocp->ioc_error = 0;
3177 			mp->b_datap->db_type = M_IOCACK;
3178 			break;
3179 
3180 		case TIOCMGET:
3181 			datamp = allocb(sizeof (int), BPRI_MED);
3182 			if (datamp == NULL) {
3183 				error = EAGAIN;
3184 				break;
3185 			}
3186 
3187 			mutex_enter(asy->asy_excl_hi);
3188 			*(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET);
3189 			mutex_exit(asy->asy_excl_hi);
3190 
3191 			if (iocp->ioc_count == TRANSPARENT) {
3192 				mcopyout(mp, NULL, sizeof (int), NULL, datamp);
3193 			} else {
3194 				if (mp->b_cont != NULL)
3195 					freemsg(mp->b_cont);
3196 				mp->b_cont = datamp;
3197 				mp->b_cont->b_wptr += sizeof (int);
3198 				mp->b_datap->db_type = M_IOCACK;
3199 				iocp->ioc_count = sizeof (int);
3200 			}
3201 			break;
3202 
3203 		case CONSOPENPOLLEDIO:
3204 			/*
3205 			 * If we are driving a keyboard there is nothing
3206 			 * upstream to translate the scan codes. Therefore,
3207 			 * set the error code to ENOTSUP and NAK the request
3208 			 */
3209 			if (asy->asy_device_type == ASY_KEYBOARD) {
3210 				error = ENOTSUP;
3211 				break;
3212 			}
3213 
3214 			error = miocpullup(mp, sizeof (struct cons_polledio *));
3215 			if (error != 0)
3216 				break;
3217 
3218 			/*
3219 			 * send up a message block containing the
3220 			 * cons_polledio structure. This provides
3221 			 * handles to the putchar, getchar, ischar,
3222 			 * polledio_enter and polledio_exit functions.
3223 			 */
3224 			*(struct cons_polledio **)mp->b_cont->b_rptr =
3225 			    &asy->polledio;
3226 
3227 			mp->b_datap->db_type = M_IOCACK;
3228 			break;
3229 
3230 		case CONSCLOSEPOLLEDIO:
3231 			/*
3232 			 * If we are driving a keyboard we never successfully
3233 			 * called CONSOPENPOLLEDIO so set the error to
3234 			 * ENOTSUP and NAK the request.
3235 			 */
3236 			if (asy->asy_device_type == ASY_KEYBOARD) {
3237 				error = ENOTSUP;
3238 				break;
3239 			}
3240 
3241 			mp->b_datap->db_type = M_IOCACK;
3242 			iocp->ioc_error = 0;
3243 			iocp->ioc_rval = 0;
3244 			break;
3245 
3246 		default: /* unexpected ioctl type */
3247 			/*
3248 			 * If we don't understand it, it's an error.  NAK it.
3249 			 */
3250 			error = EINVAL;
3251 			break;
3252 		}
3253 	}
3254 	if (error != 0) {
3255 		iocp->ioc_error = error;
3256 		mp->b_datap->db_type = M_IOCNAK;
3257 	}
3258 	mutex_exit(asy->asy_excl);
3259 	qreply(wq, mp);
3260 }
3261 
3262 static void
3263 asyrsrv(queue_t *q)
3264 {
3265 	mblk_t *bp;
3266 	struct asyncline *async;
3267 
3268 	async = (struct asyncline *)q->q_ptr;
3269 
3270 	while (canputnext(q) && (bp = getq(q)))
3271 		putnext(q, bp);
3272 	ASYSETSOFT(async->async_common);
3273 	async->async_polltid = 0;
3274 }
3275 
3276 /*
3277  * Put procedure for write queue.
3278  * Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here;
3279  * set the flow control character for M_STOPI and M_STARTI messages;
3280  * queue up M_BREAK, M_DELAY, and M_DATA messages for processing
3281  * by the start routine, and then call the start routine; discard
3282  * everything else.  Note that this driver does not incorporate any
3283  * mechanism to negotiate to handle the canonicalization process.
3284  * It expects that these functions are handled in upper module(s),
3285  * as we do in ldterm.
3286  */
3287 static void
3288 asywput(queue_t *q, mblk_t *mp)
3289 {
3290 	register struct asyncline *async;
3291 	register struct asycom *asy;
3292 	int error;
3293 
3294 	async = (struct asyncline *)q->q_ptr;
3295 	asy = async->async_common;
3296 
3297 	switch (mp->b_datap->db_type) {
3298 
3299 	case M_STOP:
3300 		/*
3301 		 * Since we don't do real DMA, we can just let the
3302 		 * chip coast to a stop after applying the brakes.
3303 		 */
3304 		mutex_enter(asy->asy_excl);
3305 		async->async_flags |= ASYNC_STOPPED;
3306 		mutex_exit(asy->asy_excl);
3307 		freemsg(mp);
3308 		break;
3309 
3310 	case M_START:
3311 		mutex_enter(asy->asy_excl);
3312 		if (async->async_flags & ASYNC_STOPPED) {
3313 			async->async_flags &= ~ASYNC_STOPPED;
3314 			/*
3315 			 * If an output operation is in progress,
3316 			 * resume it.  Otherwise, prod the start
3317 			 * routine.
3318 			 */
3319 			if (async->async_ocnt > 0) {
3320 				mutex_enter(asy->asy_excl_hi);
3321 				async_resume(async);
3322 				mutex_exit(asy->asy_excl_hi);
3323 			} else {
3324 				async_start(async);
3325 			}
3326 		}
3327 		mutex_exit(asy->asy_excl);
3328 		freemsg(mp);
3329 		break;
3330 
3331 	case M_IOCTL:
3332 		switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
3333 
3334 		case TCSBRK:
3335 			error = miocpullup(mp, sizeof (int));
3336 			if (error != 0) {
3337 				miocnak(q, mp, 0, error);
3338 				return;
3339 			}
3340 
3341 			if (*(int *)mp->b_cont->b_rptr != 0) {
3342 #ifdef DEBUG
3343 				if (asydebug & ASY_DEBUG_CLOSE)
3344 					printf("asy%d: flush request.\n",
3345 					    UNIT(async->async_dev));
3346 #endif
3347 				(void) putq(q, mp);
3348 				mutex_enter(asy->asy_excl);
3349 				async_nstart(async, 1);
3350 				mutex_exit(asy->asy_excl);
3351 				break;
3352 			}
3353 			/*FALLTHROUGH*/
3354 		case TCSETSW:
3355 		case TCSETSF:
3356 		case TCSETAW:
3357 		case TCSETAF:
3358 			/*
3359 			 * The changes do not take effect until all
3360 			 * output queued before them is drained.
3361 			 * Put this message on the queue, so that
3362 			 * "async_start" will see it when it's done
3363 			 * with the output before it.  Poke the
3364 			 * start routine, just in case.
3365 			 */
3366 			(void) putq(q, mp);
3367 			mutex_enter(asy->asy_excl);
3368 			async_start(async);
3369 			mutex_exit(asy->asy_excl);
3370 			break;
3371 
3372 		default:
3373 			/*
3374 			 * Do it now.
3375 			 */
3376 			async_ioctl(async, q, mp, B_TRUE);
3377 			break;
3378 		}
3379 		break;
3380 
3381 	case M_FLUSH:
3382 		if (*mp->b_rptr & FLUSHW) {
3383 			mutex_enter(asy->asy_excl);
3384 
3385 			/*
3386 			 * Abort any output in progress.
3387 			 */
3388 			mutex_enter(asy->asy_excl_hi);
3389 			if (async->async_flags & ASYNC_BUSY) {
3390 				async->async_ocnt = 0;
3391 				async->async_flags &= ~ASYNC_BUSY;
3392 			}
3393 			mutex_exit(asy->asy_excl_hi);
3394 
3395 			/* Flush FIFO buffers */
3396 			if (asy->asy_use_fifo == FIFO_ON) {
3397 				OUTB(FIFOR, FIFO_ON | FIFODMA | FIFOTXFLSH |
3398 				    (asy->asy_trig_level & 0xff));
3399 			}
3400 
3401 			/*
3402 			 * Flush our write queue.
3403 			 */
3404 			flushq(q, FLUSHDATA);	/* XXX doesn't flush M_DELAY */
3405 			if (async->async_xmitblk != NULL) {
3406 				freeb(async->async_xmitblk);
3407 				async->async_xmitblk = NULL;
3408 			}
3409 
3410 			mutex_exit(asy->asy_excl);
3411 			*mp->b_rptr &= ~FLUSHW;	/* it has been flushed */
3412 		}
3413 		if (*mp->b_rptr & FLUSHR) {
3414 			/* Flush FIFO buffers */
3415 			if (asy->asy_use_fifo == FIFO_ON) {
3416 				OUTB(FIFOR, FIFO_ON | FIFODMA | FIFORXFLSH |
3417 				    (asy->asy_trig_level & 0xff));
3418 			}
3419 			flushq(RD(q), FLUSHDATA);
3420 			qreply(q, mp);	/* give the read queues a crack at it */
3421 		} else {
3422 			freemsg(mp);
3423 		}
3424 
3425 		/*
3426 		 * We must make sure we process messages that survive the
3427 		 * write-side flush.  Without this call, the close protocol
3428 		 * with ldterm can hang forever.  (ldterm will have sent us a
3429 		 * TCSBRK ioctl that it expects a response to.)
3430 		 */
3431 		mutex_enter(asy->asy_excl);
3432 		async_start(async);
3433 		mutex_exit(asy->asy_excl);
3434 		break;
3435 	case M_BREAK:
3436 	case M_DELAY:
3437 	case M_DATA:
3438 		/*
3439 		 * Queue the message up to be transmitted,
3440 		 * and poke the start routine.
3441 		 */
3442 		(void) putq(q, mp);
3443 		mutex_enter(asy->asy_excl);
3444 		async_start(async);
3445 		mutex_exit(asy->asy_excl);
3446 		break;
3447 
3448 	case M_STOPI:
3449 		mutex_enter(asy->asy_excl);
3450 		async->async_flowc = async->async_stopc;
3451 		async_start(async);		/* poke the start routine */
3452 		mutex_exit(asy->asy_excl);
3453 		freemsg(mp);
3454 		break;
3455 
3456 	case M_STARTI:
3457 		mutex_enter(asy->asy_excl);
3458 		async->async_flowc = async->async_startc;
3459 		async_start(async);		/* poke the start routine */
3460 		mutex_exit(asy->asy_excl);
3461 		freemsg(mp);
3462 		break;
3463 
3464 	case M_CTL:
3465 		if (MBLKL(mp) >= sizeof (struct iocblk) &&
3466 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) {
3467 			((struct iocblk *)mp->b_rptr)->ioc_cmd = MC_HAS_POSIX;
3468 			qreply(q, mp);
3469 		} else {
3470 			/*
3471 			 * These MC_SERVICE type messages are used by upper
3472 			 * modules to tell this driver to send input up
3473 			 * immediately, or that it can wait for normal
3474 			 * processing that may or may not be done.  Sun
3475 			 * requires these for the mouse module.
3476 			 * (XXX - for x86?)
3477 			 */
3478 			mutex_enter(asy->asy_excl);
3479 			switch (*mp->b_rptr) {
3480 
3481 			case MC_SERVICEIMM:
3482 				async->async_flags |= ASYNC_SERVICEIMM;
3483 				break;
3484 
3485 			case MC_SERVICEDEF:
3486 				async->async_flags &= ~ASYNC_SERVICEIMM;
3487 				break;
3488 			}
3489 			mutex_exit(asy->asy_excl);
3490 			freemsg(mp);
3491 		}
3492 		break;
3493 
3494 	case M_IOCDATA:
3495 		async_iocdata(q, mp);
3496 		break;
3497 
3498 	default:
3499 		freemsg(mp);
3500 		break;
3501 	}
3502 }
3503 
3504 /*
3505  * Retry an "ioctl", now that "bufcall" claims we may be able to allocate
3506  * the buffer we need.
3507  */
3508 static void
3509 async_reioctl(void *arg)
3510 {
3511 	struct asyncline *async = arg;
3512 	struct asycom *asy = async->async_common;
3513 	queue_t	*q;
3514 	mblk_t		*mp;
3515 
3516 	/*
3517 	 * The bufcall is no longer pending.
3518 	 */
3519 	mutex_enter(asy->asy_excl);
3520 	async->async_wbufcid = 0;
3521 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
3522 		mutex_exit(asy->asy_excl);
3523 		return;
3524 	}
3525 	if ((mp = async->async_ttycommon.t_iocpending) != NULL) {
3526 		/* not pending any more */
3527 		async->async_ttycommon.t_iocpending = NULL;
3528 		mutex_exit(asy->asy_excl);
3529 		/* not in STREAMS queue; we no longer know if we're in wput */
3530 		async_ioctl(async, q, mp, B_TRUE);
3531 	} else
3532 		mutex_exit(asy->asy_excl);
3533 }
3534 
3535 static void
3536 async_iocdata(queue_t *q, mblk_t *mp)
3537 {
3538 	struct asyncline	*async = (struct asyncline *)q->q_ptr;
3539 	struct asycom		*asy;
3540 	struct copyresp *csp;
3541 
3542 	asy = async->async_common;
3543 	csp = (struct copyresp *)mp->b_rptr;
3544 
3545 	if (csp->cp_rval != 0) {
3546 		freemsg(mp);
3547 		return;
3548 	}
3549 
3550 	mutex_enter(asy->asy_excl);
3551 
3552 	switch (csp->cp_cmd) {
3553 	case TIOCMSET:
3554 	case TIOCMBIS:
3555 	case TIOCMBIC:
3556 		if (mp->b_cont == NULL) {
3557 			mutex_exit(asy->asy_excl);
3558 			miocnak(q, mp, 0, EINVAL);
3559 			break;
3560 		}
3561 
3562 		mutex_enter(asy->asy_excl_hi);
3563 		(void) asymctl(asy, dmtoasy(*(int *)mp->b_cont->b_rptr),
3564 		    csp->cp_cmd);
3565 		mutex_exit(asy->asy_excl_hi);
3566 
3567 		freemsg(mp->b_cont);
3568 		mp->b_cont = NULL;
3569 		mutex_exit(asy->asy_excl);
3570 		miocack(q, mp, 0, 0);
3571 		break;
3572 
3573 	case TIOCMGET:
3574 		if (mp->b_cont != NULL) {
3575 			freemsg(mp->b_cont);
3576 			mp->b_cont = NULL;
3577 		}
3578 		mutex_exit(asy->asy_excl);
3579 		miocack(q, mp, 0, 0);
3580 		break;
3581 
3582 	default:
3583 		mutex_exit(asy->asy_excl);
3584 		miocnak(q, mp, 0, EINVAL);
3585 		break;
3586 	}
3587 }
3588 
3589 
3590 /*
3591  * Set or get the modem control status.
3592  */
3593 static int
3594 asymctl(struct asycom *asy, int bits, int how)
3595 {
3596 	register int mcr_r, msr_r;
3597 
3598 	ASSERT(mutex_owned(asy->asy_excl_hi));
3599 	ASSERT(mutex_owned(asy->asy_excl));
3600 
3601 	/* Read Modem Control Registers */
3602 	mcr_r = INB(MCR);
3603 
3604 	switch (how) {
3605 
3606 	case TIOCMSET:
3607 		mcr_r = bits;
3608 		break;
3609 
3610 	case TIOCMBIS:
3611 		mcr_r |= bits;			/* Set bits from input	*/
3612 		break;
3613 
3614 	case TIOCMBIC:
3615 		mcr_r &= ~bits;			/* Set ~bits from input	*/
3616 		break;
3617 
3618 	case TIOCMGET:
3619 		/* Read Modem Status Registers */
3620 		if (INB(ICR) & MIEN)
3621 			msr_r = asy->asy_cached_msr;
3622 		else
3623 			msr_r = INB(MSR);
3624 		return (asytodm(mcr_r, msr_r));
3625 	}
3626 
3627 	OUTB(MCR, mcr_r);
3628 
3629 	return (mcr_r);
3630 }
3631 
3632 static int
3633 asytodm(int mcr_r, int msr_r)
3634 {
3635 	register int b = 0;
3636 
3637 
3638 	/* MCR registers */
3639 	if (mcr_r & RTS)
3640 		b |= TIOCM_RTS;
3641 
3642 	if (mcr_r & DTR)
3643 		b |= TIOCM_DTR;
3644 
3645 	/* MSR registers */
3646 	if (msr_r & DCD)
3647 		b |= TIOCM_CAR;
3648 
3649 	if (msr_r & CTS)
3650 		b |= TIOCM_CTS;
3651 
3652 	if (msr_r & DSR)
3653 		b |= TIOCM_DSR;
3654 
3655 	if (msr_r & RI)
3656 		b |= TIOCM_RNG;
3657 
3658 	return (b);
3659 }
3660 
3661 static int
3662 dmtoasy(int bits)
3663 {
3664 	register int b = 0;
3665 
3666 #ifdef	CAN_NOT_SET	/* only DTR and RTS can be set */
3667 	if (bits & TIOCM_CAR)
3668 		b |= DCD;
3669 	if (bits & TIOCM_CTS)
3670 		b |= CTS;
3671 	if (bits & TIOCM_DSR)
3672 		b |= DSR;
3673 	if (bits & TIOCM_RNG)
3674 		b |= RI;
3675 #endif
3676 
3677 	if (bits & TIOCM_RTS)
3678 		b |= RTS;
3679 	if (bits & TIOCM_DTR)
3680 		b |= DTR;
3681 
3682 	return (b);
3683 }
3684 
3685 static void
3686 asycheckflowcontrol_hw(struct asycom *asy)
3687 {
3688 	struct asyncline *async;
3689 	uchar_t	mcr, flag;
3690 
3691 	ASSERT(mutex_owned(asy->asy_excl_hi));
3692 
3693 	async = (struct asyncline *)asy->asy_priv;
3694 	ASSERT(async != NULL);
3695 
3696 	if (async->async_ttycommon.t_cflag & CRTSXOFF) {
3697 		mcr = INB(MCR);
3698 		flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : RTS;
3699 		if (((mcr ^ flag) & RTS) != 0) {
3700 			OUTB(MCR, (mcr ^ RTS));
3701 		}
3702 	}
3703 }
3704 
3705 static boolean_t
3706 asycheckflowcontrol_sw(struct asycom *asy)
3707 {
3708 	uchar_t		ss;
3709 	struct asyncline *async;
3710 	int rval = B_FALSE;
3711 
3712 	ASSERT(mutex_owned(asy->asy_excl_hi));
3713 
3714 	async = (struct asyncline *)asy->asy_priv;
3715 	ASSERT(async != NULL);
3716 
3717 	if ((ss = async->async_flowc) != '\0' && (INB(LSR) & XHRE)) {
3718 		/*
3719 		 * If we get this far, then we know that flowc is non-zero and
3720 		 * that there's transmit room available.  We've "handled" the
3721 		 * request now, so clear it.  If the user didn't ask for IXOFF,
3722 		 * then don't actually send anything, but wait for the next
3723 		 * opportunity.
3724 		 */
3725 		async->async_flowc = '\0';
3726 		if (async->async_ttycommon.t_iflag & IXOFF) {
3727 			async->async_flags |= ASYNC_BUSY;
3728 			OUTB(DAT, ss);
3729 			rval = B_TRUE;
3730 		}
3731 	}
3732 
3733 	return (rval);
3734 }
3735 
3736 /*
3737  * Check for abort character sequence
3738  */
3739 static boolean_t
3740 abort_charseq_recognize(uchar_t ch)
3741 {
3742 	static int state = 0;
3743 #define	CNTRL(c) ((c)&037)
3744 	static char sequence[] = { '\r', '~', CNTRL('b') };
3745 
3746 	if (ch == sequence[state]) {
3747 		if (++state >= sizeof (sequence)) {
3748 			state = 0;
3749 			return (B_TRUE);
3750 		}
3751 	} else {
3752 		state = (ch == sequence[0]) ? 1 : 0;
3753 	}
3754 	return (B_FALSE);
3755 }
3756