xref: /illumos-gate/usr/src/uts/sun4/io/px/px_msi.c (revision 5bbb4db2c3f208d12bf0fd11769728f9e5ba66a2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * px_msi.c
28  */
29 
30 #include <sys/types.h>
31 #include <sys/kmem.h>
32 #include <sys/conf.h>
33 #include <sys/ddi.h>
34 #include <sys/sunddi.h>
35 #include <sys/sunndi.h>
36 #include <sys/modctl.h>
37 #include <sys/disp.h>
38 #include <sys/stat.h>
39 #include <sys/ddi_impldefs.h>
40 #include <sys/pci_impl.h>
41 #include "px_obj.h"
42 
43 static int px_msi_get_props(px_t *px_p);
44 
45 /*
46  * msi_attach()
47  */
48 int
49 px_msi_attach(px_t *px_p)
50 {
51 	dev_info_t		*dip = px_p->px_dip;
52 	px_msi_state_t		*msi_state_p = &px_p->px_ib_p->ib_msi_state;
53 	ddi_irm_pool_t		*irm_pool_p = NULL;
54 	ddi_irm_params_t	irm_params;
55 	msinum_t		msi_num;
56 	int			i, ret;
57 
58 	DBG(DBG_MSIQ, dip, "px_msi_attach\n");
59 
60 	mutex_init(&msi_state_p->msi_mutex, NULL, MUTEX_DRIVER, NULL);
61 
62 	/*
63 	 * Check for all MSI related properties and
64 	 * save all information.
65 	 */
66 	if (px_msi_get_props(px_p) != DDI_SUCCESS) {
67 		px_msi_detach(px_p);
68 		return (DDI_FAILURE);
69 	}
70 
71 	msi_state_p->msi_p = kmem_zalloc(msi_state_p->msi_cnt *
72 	    sizeof (px_msi_t), KM_SLEEP);
73 
74 	for (i = 0, msi_num = msi_state_p->msi_1st_msinum;
75 	    i < msi_state_p->msi_cnt; i++, msi_num++) {
76 		msi_state_p->msi_p[i].msi_msinum = msi_num;
77 		msi_state_p->msi_p[i].msi_state = MSI_STATE_FREE;
78 	}
79 
80 	/*
81 	 * Create IRM pool to manage interrupt allocations.
82 	 */
83 	bzero(&irm_params, sizeof (ddi_irm_params_t));
84 	irm_params.iparams_types = msi_state_p->msi_type;
85 	irm_params.iparams_total = msi_state_p->msi_cnt;
86 	if (ndi_irm_create(dip, &irm_params, &irm_pool_p) == DDI_SUCCESS) {
87 		msi_state_p->msi_pool_p = irm_pool_p;
88 	} else {
89 		DBG(DBG_MSIQ, dip, "ndi_irm_create() failed\n");
90 	}
91 
92 	if ((ret = px_lib_msi_init(dip)) != DDI_SUCCESS)
93 		px_msi_detach(px_p);
94 
95 	return (ret);
96 }
97 
98 
99 /*
100  * msi_detach()
101  */
102 void
103 px_msi_detach(px_t *px_p)
104 {
105 	dev_info_t	*dip = px_p->px_dip;
106 	px_msi_state_t	*msi_state_p = &px_p->px_ib_p->ib_msi_state;
107 
108 	DBG(DBG_MSIQ, dip, "px_msi_detach\n");
109 
110 	if (msi_state_p->msi_pool_p) {
111 		(void) ndi_irm_destroy(msi_state_p->msi_pool_p);
112 	}
113 
114 	if (msi_state_p->msi_addr64 && msi_state_p->msi_mem_flg) {
115 		ndi_ra_free(dip, msi_state_p->msi_addr64,
116 		    msi_state_p->msi_addr64_len,
117 		    NDI_RA_TYPE_MEM, NDI_RA_PASS);
118 	}
119 
120 	if (msi_state_p->msi_addr32 && msi_state_p->msi_mem_flg) {
121 		ndi_ra_free(dip, msi_state_p->msi_addr32,
122 		    msi_state_p->msi_addr32_len,
123 		    NDI_RA_TYPE_MEM, NDI_RA_PASS);
124 
125 		pci_resource_destroy(dip);
126 	}
127 
128 	if (msi_state_p->msi_p) {
129 		kmem_free(msi_state_p->msi_p,
130 		    msi_state_p->msi_cnt * sizeof (px_msi_t));
131 	}
132 
133 	mutex_destroy(&msi_state_p->msi_mutex);
134 	bzero(&px_p->px_ib_p->ib_msi_state, sizeof (px_msi_state_t));
135 }
136 
137 
138 /*
139  * msi_alloc()
140  */
141 /* ARGSUSED */
142 int
143 px_msi_alloc(px_t *px_p, dev_info_t *rdip, int type, int inum, int msi_count,
144     int flag, int *actual_msi_count_p)
145 {
146 	px_msi_state_t	*msi_state_p = &px_p->px_ib_p->ib_msi_state;
147 	int		first, count, i, n;
148 
149 	DBG(DBG_A_MSIX, px_p->px_dip, "px_msi_alloc: rdip %s:%d "
150 	    "type 0x%x inum 0x%x msi_count 0x%x\n", ddi_driver_name(rdip),
151 	    ddi_get_instance(rdip), type, inum, msi_count);
152 
153 	mutex_enter(&msi_state_p->msi_mutex);
154 
155 	*actual_msi_count_p = 0;
156 
157 	/*
158 	 * MSI interrupts are allocated as contiguous ranges at
159 	 * power of 2 boundaries from the start of the MSI array.
160 	 */
161 	if (type == DDI_INTR_TYPE_MSI) {
162 
163 		/* Search for a range of available interrupts */
164 		for (count = msi_count; count; count >>= 1) {
165 			for (first = 0; (first + count) < msi_state_p->msi_cnt;
166 			    first += count) {
167 				for (i = first; i < (first + count); i++) {
168 					if (msi_state_p->msi_p[i].msi_state
169 					    != MSI_STATE_FREE) {
170 						break;
171 					}
172 				}
173 				if (i == (first + count)) {
174 					goto found_msi;
175 				}
176 			}
177 			DBG(DBG_A_MSIX, px_p->px_dip, "px_msi_alloc: failed\n");
178 			if (count > 1) {
179 				DBG(DBG_A_MSIX, px_p->px_dip, "px_msi_alloc: "
180 				    "Retry MSI allocation with new msi_count "
181 				    "0x%x\n", count >> 1);
182 			}
183 		}
184 
185 found_msi:
186 		/* Set number of available interrupts */
187 		*actual_msi_count_p = count;
188 
189 		/* Check if successful, and enforce strict behavior */
190 		if ((count == 0) ||
191 		    ((flag == DDI_INTR_ALLOC_STRICT) && (count != msi_count))) {
192 			mutex_exit(&msi_state_p->msi_mutex);
193 			return (DDI_EAGAIN);
194 		}
195 
196 		/* Allocate the interrupts */
197 		for (i = first; i < (first + count); i++, inum++) {
198 			msi_state_p->msi_p[i].msi_state = MSI_STATE_INUSE;
199 			msi_state_p->msi_p[i].msi_dip = rdip;
200 			msi_state_p->msi_p[i].msi_inum = inum;
201 		}
202 	}
203 
204 	/*
205 	 * MSI-X interrupts are allocated from the end of the MSI
206 	 * array.  There are no concerns about power of 2 boundaries
207 	 * and the allocated interrupts do not have to be contiguous.
208 	 */
209 	if (type == DDI_INTR_TYPE_MSIX) {
210 
211 		/* Count available interrupts, up to count requested */
212 		for (count = 0, i = (msi_state_p->msi_cnt - 1); i >= 0; i--) {
213 			if (msi_state_p->msi_p[i].msi_state == MSI_STATE_FREE) {
214 				if (count == 0)
215 					first = i;
216 				count++;
217 				if (count == msi_count)
218 					break;
219 			}
220 		}
221 
222 		/* Set number of available interrupts */
223 		*actual_msi_count_p = count;
224 
225 		/* Check if successful, and enforce strict behavior */
226 		if ((count == 0) ||
227 		    ((flag == DDI_INTR_ALLOC_STRICT) && (count != msi_count))) {
228 			mutex_exit(&msi_state_p->msi_mutex);
229 			return (DDI_EAGAIN);
230 		}
231 
232 		/* Allocate the interrupts */
233 		for (n = 0, i = first; n < count; i--) {
234 			if (msi_state_p->msi_p[i].msi_state != MSI_STATE_FREE)
235 				continue;
236 			msi_state_p->msi_p[i].msi_state = MSI_STATE_INUSE;
237 			msi_state_p->msi_p[i].msi_dip = rdip;
238 			msi_state_p->msi_p[i].msi_inum = inum;
239 			inum++;
240 			n++;
241 		}
242 	}
243 
244 	DBG(DBG_A_MSIX, px_p->px_dip, "px_msi_alloc: rdip %s:%d "
245 	    "msi_num 0x%x count 0x%x\n", ddi_driver_name(rdip),
246 	    ddi_get_instance(rdip), first, count);
247 
248 	mutex_exit(&msi_state_p->msi_mutex);
249 
250 	return (DDI_SUCCESS);
251 }
252 
253 
254 /*
255  * msi_free()
256  */
257 int
258 px_msi_free(px_t *px_p, dev_info_t *rdip, int inum, int msi_count)
259 {
260 	px_msi_state_t	*msi_state_p = &px_p->px_ib_p->ib_msi_state;
261 	int		i, n;
262 
263 	DBG(DBG_R_MSIX, px_p->px_dip, "px_msi_free: rdip 0x%p "
264 	    "inum 0x%x msi_count 0x%x\n", rdip, inum, msi_count);
265 
266 	mutex_enter(&msi_state_p->msi_mutex);
267 
268 	/*
269 	 * Find and release the specified MSI/X numbers.
270 	 *
271 	 * Because the allocations are not always contiguous, perform
272 	 * a full linear search of the MSI/X table looking for MSI/X
273 	 * vectors owned by the device with inum values in the range
274 	 * [inum .. (inum + msi_count - 1)].
275 	 */
276 	for (i = 0, n = 0; (i < msi_state_p->msi_cnt) && (n < msi_count); i++) {
277 		if ((msi_state_p->msi_p[i].msi_dip == rdip) &&
278 		    (msi_state_p->msi_p[i].msi_inum >= inum) &&
279 		    (msi_state_p->msi_p[i].msi_inum < (inum + msi_count))) {
280 			msi_state_p->msi_p[i].msi_dip = NULL;
281 			msi_state_p->msi_p[i].msi_inum = 0;
282 			msi_state_p->msi_p[i].msi_msiq_id = 0;
283 			msi_state_p->msi_p[i].msi_state = MSI_STATE_FREE;
284 			n++;
285 		}
286 	}
287 
288 	mutex_exit(&msi_state_p->msi_mutex);
289 
290 	/* Fail if the MSI/X numbers were not found */
291 	if (n < msi_count)
292 		return (DDI_FAILURE);
293 
294 	return (DDI_SUCCESS);
295 }
296 
297 /*
298  * msi_get_msinum()
299  */
300 int
301 px_msi_get_msinum(px_t *px_p, dev_info_t *rdip, int inum, msinum_t *msi_num_p)
302 {
303 	px_msi_state_t	*msi_state_p = &px_p->px_ib_p->ib_msi_state;
304 	int		i;
305 
306 	DBG(DBG_A_MSIX, px_p->px_dip, "px_msi_get_msinum: "
307 	    "rdip 0x%p inum 0x%x\n", rdip, inum);
308 
309 	mutex_enter(&msi_state_p->msi_mutex);
310 
311 	for (i = 0; i < msi_state_p->msi_cnt; i++) {
312 		if ((msi_state_p->msi_p[i].msi_inum == inum) &&
313 		    (msi_state_p->msi_p[i].msi_dip == rdip)) {
314 
315 			*msi_num_p = msi_state_p->msi_p[i].msi_msinum;
316 
317 			DBG(DBG_A_MSIX, px_p->px_dip, "px_msi_get_msinum: "
318 			    "inum 0x%x msi 0x%x\n", inum, *msi_num_p);
319 
320 			mutex_exit(&msi_state_p->msi_mutex);
321 			return (DDI_SUCCESS);
322 		}
323 	}
324 
325 	if (i >= msi_state_p->msi_cnt)
326 		DBG(DBG_A_MSIX, px_p->px_dip, "px_msi_get_msinum: "
327 		    "no msi for inum 0x%x\n", inum);
328 
329 	mutex_exit(&msi_state_p->msi_mutex);
330 	return (DDI_FAILURE);
331 }
332 
333 /*
334  * px_msi_get_props()
335  */
336 static int
337 px_msi_get_props(px_t *px_p)
338 {
339 	dev_info_t		*dip = px_p->px_dip;
340 	px_msi_state_t		*msi_state_p = &px_p->px_ib_p->ib_msi_state;
341 	int			ret = DDI_SUCCESS;
342 	int			length = sizeof (int);
343 	int			*valuep = NULL;
344 	uint64_t		msi_addr_hi, msi_addr_lo;
345 	uint64_t		mem_answer, mem_alen;
346 	ndi_ra_request_t	request;
347 
348 	DBG(DBG_MSIQ, dip, "px_msi_get_props\n");
349 
350 	/* #msi */
351 	msi_state_p->msi_cnt = ddi_getprop(DDI_DEV_T_ANY, dip,
352 	    DDI_PROP_DONTPASS, "#msi", PX_DEFAULT_MSI_CNT);
353 
354 	DBG(DBG_MSIQ, dip, "obp: #msi=%d\n",
355 	    msi_state_p->msi_cnt);
356 
357 	/* msi-ranges: msi# field */
358 	ret = ddi_prop_op(DDI_DEV_T_ANY, dip, PROP_LEN_AND_VAL_ALLOC,
359 	    DDI_PROP_DONTPASS, "msi-ranges", (caddr_t)&valuep, &length);
360 
361 	if (ret == DDI_PROP_SUCCESS) {
362 		msi_state_p->msi_1st_msinum =
363 		    ((px_msi_ranges_t *)valuep)->msi_no;
364 		kmem_free(valuep, (size_t)length);
365 	} else
366 		msi_state_p->msi_1st_msinum = PX_DEFAULT_MSI_1ST_MSINUM;
367 
368 	DBG(DBG_MSIQ, dip, "obp: msi_1st_msinum=%d\n",
369 	    msi_state_p->msi_1st_msinum);
370 
371 	/* msi-data-mask */
372 	msi_state_p->msi_data_mask = ddi_getprop(DDI_DEV_T_ANY, dip,
373 	    DDI_PROP_DONTPASS, "msi-data-mask", PX_DEFAULT_MSI_DATA_MASK);
374 
375 	DBG(DBG_MSIQ, dip, "obp: msi-data-mask=0x%x\n",
376 	    msi_state_p->msi_data_mask);
377 
378 	/* msi-data-width */
379 	msi_state_p->msi_data_width = ddi_getprop(DDI_DEV_T_ANY, dip,
380 	    DDI_PROP_DONTPASS, "msix-data-width", PX_DEFAULT_MSI_DATA_WIDTH);
381 
382 	DBG(DBG_MSIQ, dip, "obp: msix-data-width=%d\n",
383 	    msi_state_p->msi_data_width);
384 
385 	/*
386 	 * Assume MSI is always supported, but also check if MSIX is supported
387 	 */
388 	if (msi_state_p->msi_data_width) {
389 		msi_state_p->msi_type = DDI_INTR_TYPE_MSI;
390 		if (msi_state_p->msi_data_width == PX_MSIX_WIDTH)
391 			msi_state_p->msi_type |= DDI_INTR_TYPE_MSIX;
392 	}
393 
394 	/* msi-address-ranges */
395 	ret = ddi_prop_op(DDI_DEV_T_ANY, dip, PROP_LEN_AND_VAL_ALLOC,
396 	    DDI_PROP_DONTPASS, "msi-address-ranges", (caddr_t)&valuep,
397 	    &length);
398 
399 	if (ret == DDI_PROP_SUCCESS) {
400 		msi_addr_hi =
401 		    ((px_msi_address_ranges_t *)valuep)->msi_addr32_hi;
402 		msi_addr_lo =
403 		    ((px_msi_address_ranges_t *)valuep)->msi_addr32_lo;
404 		msi_state_p->msi_addr32 =
405 		    (msi_addr_hi << 32) | msi_addr_lo;
406 
407 		msi_state_p->msi_addr32_len =
408 		    ((px_msi_address_ranges_t *)valuep)->msi_addr32_len;
409 
410 		msi_addr_hi =
411 		    ((px_msi_address_ranges_t *)valuep)->msi_addr64_hi;
412 		msi_addr_lo =
413 		    ((px_msi_address_ranges_t *)valuep)->msi_addr64_lo;
414 		msi_state_p->msi_addr64 =
415 		    (msi_addr_hi << 32) | msi_addr_lo;
416 
417 		msi_state_p->msi_addr64_len =
418 		    ((px_msi_address_ranges_t *)valuep)->msi_addr64_len;
419 
420 		kmem_free(valuep, (size_t)length);
421 
422 		msi_state_p->msi_mem_flg = B_FALSE;
423 
424 		DBG(DBG_MSIQ, dip, "obp: msi_addr32=0x%llx\n",
425 		    msi_state_p->msi_addr32);
426 
427 		DBG(DBG_MSIQ, dip, "obp: msi_addr64=0x%llx\n",
428 		    msi_state_p->msi_addr64);
429 
430 		return (ret);
431 	}
432 
433 	/*
434 	 * If msi-address-ranges property does not exist in OBP, Fire
435 	 * driver will need to allocate memory.
436 	 *
437 	 * Allocate 64KB of memory from unused PCI-E address space for the MSI
438 	 * transactions and program MSI 32-bit address register.
439 	 *
440 	 * This register is used by the Fire hardware to compare against the
441 	 * address of incoming PCI-E 32-bit addressed memory write commands.
442 	 * If the address matches bits 31:16 then PCI-E command is considered
443 	 * to be MSI transaction.
444 	 *
445 	 * pci_resource_setup() is called in context of PCI hotplug
446 	 * initialization.
447 	 *
448 	 * Setup resource maps for this bus node.
449 	 */
450 	if (pci_resource_setup(dip) != NDI_SUCCESS) {
451 		DBG(DBG_MSIQ, dip, "px_msi_getprops: dip=%s%d"
452 		    "pci_resource_setup failed\n",
453 		    ddi_driver_name(dip), ddi_get_instance(dip));
454 
455 		return (DDI_FAILURE);
456 	}
457 
458 	msi_state_p->msi_mem_flg = B_TRUE;
459 
460 	/*
461 	 * Reserve PCI MEM 32 resources to perform 32 bit MSI transactions.
462 	 */
463 	bzero((caddr_t)&request, sizeof (ndi_ra_request_t));
464 	request.ra_flags = NDI_RA_ALLOC_BOUNDED;
465 	request.ra_boundbase = 0;
466 	request.ra_boundlen = PX_MSI_4GIG_LIMIT;
467 	request.ra_len = PX_MSI_ADDR_LEN;
468 	request.ra_align_mask = 0;
469 
470 	if (ndi_ra_alloc(dip, &request, &mem_answer, &mem_alen,
471 	    NDI_RA_TYPE_MEM, NDI_RA_PASS) != NDI_SUCCESS) {
472 		DBG(DBG_MSIQ, dip, "px_msi_getprops: Failed to allocate "
473 		    "64KB mem\n");
474 
475 		return (DDI_FAILURE);
476 	}
477 
478 	msi_state_p->msi_addr32 = mem_answer;
479 	msi_state_p->msi_addr32_len = mem_alen;
480 
481 	DBG(DBG_MSIQ, dip, "px_msi_getprops: 32 Addr 0x%llx\n",
482 	    msi_state_p->msi_addr32);
483 
484 	/*
485 	 * Reserve PCI MEM 64 resources to perform 64 bit MSI transactions.
486 	 *
487 	 * NOTE:
488 	 *
489 	 * Currently OBP do not export any "available" property or range in
490 	 * the MEM64 space. Hence ndi_ra_alloc() request will return failure.
491 	 * So, for time being ignore this failure.
492 	 */
493 	bzero((caddr_t)&request, sizeof (ndi_ra_request_t));
494 	request.ra_flags = NDI_RA_ALLOC_BOUNDED;
495 	request.ra_boundbase = PX_MSI_4GIG_LIMIT + 1;
496 	request.ra_boundlen = PX_MSI_4GIG_LIMIT;
497 	request.ra_len = PX_MSI_ADDR_LEN;
498 	request.ra_align_mask = 0;
499 
500 	if (ndi_ra_alloc(dip, &request, &mem_answer, &mem_alen,
501 	    NDI_RA_TYPE_MEM, NDI_RA_PASS) != NDI_SUCCESS) {
502 		DBG(DBG_MSIQ, dip, "px_msi_getprops: Failed to allocate "
503 		    "64KB mem\n");
504 
505 		return (DDI_SUCCESS);
506 	}
507 
508 	msi_state_p->msi_addr64 = mem_answer;
509 	msi_state_p->msi_addr64_len = mem_alen;
510 
511 	DBG(DBG_MSIQ, dip, "px_msi_getprops: 64 Addr 0x%llx\n",
512 	    msi_state_p->msi_addr64);
513 
514 	return (DDI_SUCCESS);
515 }
516