1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2016 by Delphix. All rights reserved. 24 * Copyright 2019 Peter Tribble. 25 */ 26 27 28 /* 29 * Intel 82077 Floppy Disk Driver 30 */ 31 32 /* 33 * Notes 34 * 35 * 0. The driver supports two flavors of hardware design: 36 * "SUNW,fdtwo" - sun4m - 82077 with sun4m style Auxio 37 * "fdthree" - sun4u - 82077 with DMA 38 * In addition it supports an apparent bug in some versions of 39 * the 82077 controller. 40 * 41 * 1. The driver is mostly set up for multiple controllers, multiple 42 * drives. However- we *do* assume the use of the AUXIO register, and 43 * if we ever have > 1 fdc, we'll have to see what that means. This 44 * is all intrinsically machine specific, but there isn't much we 45 * can do about it. 46 * 47 * 2. The driver also is structured to deal with one drive active at 48 * a time. This is because the 82072 chip (no longer supported) was 49 * known to be buggy with respect to overlapped seeks. 50 * 51 * 3. The high level interrupt code is in assembler, and runs in a 52 * sparc trap window. It acts as a pseudo-dma engine as well as 53 * handles a couple of other interrupts. When it gets its job done, 54 * it schedules a second stage interrupt (soft interrupt) which 55 * is then fielded here in fd_lointr. When DMA is used, the fdintr_dma 56 * interrupt handler is used. 57 * 58 * 4. Nearly all locking is done on a lower level MUTEX_DRIVER 59 * mutex. The locking is quite conservative, and is generally 60 * established very close to any of the entries into the driver. 61 * There is nearly no locking done of the high level MUTEX_DRIVER 62 * mutex (which generally is a SPIN mutex because the floppy usually 63 * interrupts above LOCK_LEVEL). The assembler high level interrupt 64 * handler grabs the high level mutex, but the code in the driver 65 * here is especially structured to not need to do this. 66 * 67 * 5. Fdrawioctl commands that pass data are not optimized for 68 * speed. If they need to be faster, the driver structure will 69 * have to be redone such that fdrawioctl calls physio after 70 * cons'ing up a uio structure and that fdstart will be able 71 * to detect that a particular buffer is a 'special' buffer. 72 * 73 * 6. Removable media support is not complete. 74 * 75 */ 76 77 #include <sys/param.h> 78 #include <sys/buf.h> 79 #include <sys/ioctl.h> 80 #include <sys/uio.h> 81 #include <sys/open.h> 82 #include <sys/conf.h> 83 #include <sys/file.h> 84 #include <sys/cmn_err.h> 85 #include <sys/debug.h> 86 #include <sys/kmem.h> 87 #include <sys/stat.h> 88 #include <sys/autoconf.h> 89 90 #include <sys/dklabel.h> 91 92 #include <sys/vtoc.h> 93 #include <sys/dkio.h> 94 #include <sys/fdio.h> 95 96 #include <sys/ddi.h> 97 #include <sys/sunddi.h> 98 #include <sys/kstat.h> 99 100 /* 101 * included to check for ELC or SLC which report floppy controller that 102 */ 103 #include <sys/cpu.h> 104 105 #include "sys/fdvar.h" 106 #include "sys/fdreg.h" 107 #include "sys/dma_i8237A.h" 108 109 /* 110 * Defines 111 */ 112 #define KIOSP KSTAT_IO_PTR(un->un_iostat) 113 #define KIOIP KSTAT_INTR_PTR(fdc->c_intrstat) 114 #define MEDIUM_DENSITY 0x40 115 #define SEC_SIZE_CODE (fdctlr.c_csb->csb_unit]->un_chars->medium ? 3 : 2) 116 #define CMD_READ (MT + SK + FDRAW_RDCMD + MFM) 117 #define CMD_WRITE (MT + FDRAW_WRCMD + MFM) 118 #define C CE_CONT 119 #define FD_POLLABLE_PROP "pollable" /* prom property */ 120 #define FD_MANUAL_EJECT "manual" /* prom property */ 121 #define FD_UNIT "unit" /* prom property */ 122 123 /* 124 * Sony MP-F17W-50D Drive Parameters 125 * High Capacity 126 * Capacity unformatted 2Mb 127 * Capacity formatted 1.47Mb 128 * Encoding method MFM 129 * Recording density 17434 bpi 130 * Track density 135 tpi 131 * Cylinders 80 132 * Heads 2 133 * Tracks 160 134 * Rotational speed 300 rpm 135 * Transfer rate 250/500 kbps 136 * Latency (average) 100 ms 137 * Access time 138 * Average 95 ms 139 * Track to track 3 ms 140 * Head settling time 15 ms 141 * Motor start time 500 ms 142 * Head load time ? ms 143 */ 144 145 /* 146 * The max_fd_dma_len is used only when southbridge is present. 147 * It has been observed that when IFB tests are run the floppy dma could get 148 * starved and result in underrun errors. After experimenting it was found that 149 * doing dma in chunks of 2048 works OK. 150 * The reason for making this a global variable is that there could be 151 * situations under which the customer would like to get full performance 152 * from floppy. They may not be having IFB boards that cause underrun errors. 153 * Under those conditions we could set this value to a much higher value 154 * by editing /etc/system file. 155 */ 156 int max_fd_dma_len = 2048; 157 158 static void quiesce_fd_interrupt(struct fdctlr *); 159 160 /* 161 * Character/block entry points function prototypes 162 */ 163 static int fd_open(dev_t *, int, int, cred_t *); 164 static int fd_close(dev_t, int, int, cred_t *); 165 static int fd_strategy(struct buf *); 166 static int fd_read(dev_t, struct uio *, cred_t *); 167 static int fd_write(dev_t, struct uio *, cred_t *); 168 static int fd_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); 169 static int 170 fd_prop_op(dev_t, dev_info_t *, ddi_prop_op_t, int, char *, caddr_t, int *); 171 172 /* 173 * Device operations (dev_ops) entries function prototypes 174 */ 175 static int fd_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 176 void **result); 177 static int fd_attach(dev_info_t *, ddi_attach_cmd_t); 178 static int fd_detach(dev_info_t *, ddi_detach_cmd_t); 179 static int fd_power(dev_info_t *dip, int component, int level); 180 181 /* 182 * Internal functions 183 */ 184 static int fd_attach_check_drive(struct fdctlr *fdc); 185 static int fd_attach_det_ctlr(dev_info_t *dip, struct fdctlr *fdc); 186 static int fd_attach_map_regs(dev_info_t *dip, struct fdctlr *fdc); 187 static int fd_attach_register_interrupts(dev_info_t *dip, struct fdctlr *fdc, 188 int *hard); 189 static int fd_build_label_vtoc(struct fdunit *, struct vtoc *); 190 static void fd_build_user_vtoc(struct fdunit *, struct vtoc *); 191 static int fdcheckdisk(struct fdctlr *fdc, int unit); 192 static int fd_check_media(dev_t dev, enum dkio_state state); 193 static void fd_cleanup(dev_info_t *dip, struct fdctlr *fdc, int hard, 194 int locks); 195 static void fdeject(struct fdctlr *, int unit); 196 static int fdexec(struct fdctlr *fdc, int flags); 197 static void fdexec_turn_on_motor(struct fdctlr *fdc, int flags, uint_t unit); 198 static int fdformat(struct fdctlr *fdc, int unit, int cyl, int hd); 199 static caddr_t fd_getauxiova(); 200 static struct fdctlr *fd_getctlr(dev_t); 201 static void fdgetcsb(struct fdctlr *); 202 static int fdgetlabel(struct fdctlr *fdc, int unit); 203 enum dkio_state fd_get_media_state(struct fdctlr *, int); 204 static uint_t fdintr_dma(); 205 static int fd_isauxiodip(dev_info_t *); 206 static uint_t fd_lointr(caddr_t arg); 207 static void fd_media_watch(void *); 208 static void fdmotoff(void *); 209 static int fd_part_is_open(struct fdunit *un, int part); 210 static int fdrawioctl(struct fdctlr *, int, intptr_t, int); 211 static int fdrecalseek(struct fdctlr *fdc, int unit, int arg, int execflg); 212 static int fdrecover(struct fdctlr *); 213 static void fdretcsb(struct fdctlr *); 214 static int fdreset(struct fdctlr *); 215 static int fdrw(struct fdctlr *fdc, int, int, int, int, int, caddr_t, uint_t); 216 static void fdselect(struct fdctlr *fdc, int unit, int onoff); 217 static int fdsensedrv(struct fdctlr *fdc, int unit); 218 static int fdsense_chng(struct fdctlr *, int unit); 219 static void fdstart(struct fdctlr *); 220 static int fdstart_dma(register struct fdctlr *fdc, caddr_t addr, uint_t len); 221 static int fd_unit_is_open(struct fdunit *); 222 static void fdunpacklabel(struct packed_label *, struct dk_label *); 223 static int fd_unbind_handle(struct fdctlr *); 224 static void fdwatch(void *); 225 static void set_rotational_speed(struct fdctlr *, int); 226 static int fd_get_media_info(struct fdunit *un, caddr_t buf, int flag); 227 static int fd_pm_lower_power(struct fdctlr *fdc); 228 static int fd_pm_raise_power(struct fdctlr *fdc); 229 static void create_pm_components(dev_info_t *dip); 230 static void set_data_count_register(struct fdctlr *fdc, uint32_t count); 231 static uint32_t get_data_count_register(struct fdctlr *fdc); 232 static void reset_dma_controller(struct fdctlr *fdc); 233 static void set_data_address_register(struct fdctlr *fdc, uint32_t address); 234 static uint32_t get_dma_control_register(struct fdctlr *fdc); 235 static void set_dma_mode(struct fdctlr *fdc, int val); 236 static void set_dma_control_register(struct fdctlr *fdc, uint32_t val); 237 static void release_sb_dma(struct fdctlr *fdc); 238 239 /* 240 * External functions 241 */ 242 extern uint_t fd_intr(caddr_t); /* defined in fd_asm.s */ 243 extern void set_auxioreg(); 244 extern void call_debug(); 245 246 247 248 /* 249 * The following macro checks whether the device in a SUSPENDED state. 250 * As per WDD guide lines the I/O requests to a suspended device should 251 * be blocked until the device is resumed. 252 * Here we cv_wait on c_suspend_cv, and there is a cv_broadcast() in 253 * DDI_RESUME to wake up this thread. 254 * 255 * NOTE: This code is not tested because the kernel threads are suspended 256 * before the device is suspended. So there can not be any I/O requests on 257 * a suspended device until the cpr implementation changes.. 258 */ 259 260 #define CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc) \ 261 {\ 262 while (fdc->c_un->un_state == FD_STATE_SUSPENDED) {\ 263 cv_wait(&fdc->c_suspend_cv, \ 264 &fdc->c_lolock);\ 265 }\ 266 } 267 268 /* 269 * bss (uninitialized data) 270 */ 271 struct fdctlr *fdctlrs; /* linked list of controllers */ 272 273 /* 274 * initialized data 275 */ 276 277 static int fd_check_media_time = 5000000; /* 5 second state check */ 278 static int fd_pollable = 0; 279 static uchar_t rwretry = 10; 280 static uchar_t skretry = 5; 281 /* This variable allows the dynamic change of the burst size */ 282 static int fd_burstsize = DCSR_BURST_0 | DCSR_BURST_1; 283 284 static struct driver_minor_data { 285 char *name; 286 int minor; 287 int type; 288 } fd_minor [] = { 289 { "a", 0, S_IFBLK}, 290 { "b", 1, S_IFBLK}, 291 { "c", 2, S_IFBLK}, 292 { "a,raw", 0, S_IFCHR}, 293 { "b,raw", 1, S_IFCHR}, 294 { "c,raw", 2, S_IFCHR}, 295 {0} 296 }; 297 298 /* 299 * If the interrupt handler is invoked and no controllers expect an 300 * interrupt, the kernel panics. The following message is printed out. 301 */ 302 char *panic_msg = "fd_intr: unexpected interrupt\n"; 303 304 /* 305 * Specify/Configure cmd parameters 306 */ 307 static uchar_t fdspec[2] = { 0xc2, 0x33 }; /* "specify" parameters */ 308 static uchar_t fdconf[3] = { 0x64, 0x58, 0x00 }; /* "configure" parameters */ 309 310 /* When DMA is used, set the ND bit to 0 */ 311 #define SPEC_DMA_MODE 0x32 312 313 /* 314 * default characteristics 315 */ 316 static struct fd_char fdtypes[] = { 317 { /* struct fd_char fdchar_1.7MB density */ 318 0, /* medium */ 319 500, /* transfer rate */ 320 80, /* number of cylinders */ 321 2, /* number of heads */ 322 512, /* sector size */ 323 21, /* sectors per track */ 324 -1, /* (NA) # steps per data track */ 325 }, 326 { /* struct fd_char fdchar_highdens */ 327 0, /* medium */ 328 500, /* transfer rate */ 329 80, /* number of cylinders */ 330 2, /* number of heads */ 331 512, /* sector size */ 332 18, /* sectors per track */ 333 -1, /* (NA) # steps per data track */ 334 }, 335 { /* struct fd_char fdchar_meddens */ 336 1, /* medium */ 337 500, /* transfer rate */ 338 77, /* number of cylinders */ 339 2, /* number of heads */ 340 1024, /* sector size */ 341 8, /* sectors per track */ 342 -1, /* (NA) # steps per data track */ 343 }, 344 { /* struct fd_char fdchar_lowdens */ 345 0, /* medium */ 346 250, /* transfer rate */ 347 80, /* number of cylinders */ 348 2, /* number of heads */ 349 512, /* sector size */ 350 9, /* sectors per track */ 351 -1, /* (NA) # steps per data track */ 352 } 353 }; 354 355 356 static int nfdtypes = sizeof (fdtypes) / sizeof (fdtypes[0]); 357 358 359 /* 360 * Default Label & partition maps 361 */ 362 363 static struct packed_label fdlbl_high_21 = { 364 { "3.5\" floppy cyl 80 alt 0 hd 2 sec 21" }, 365 300, /* rotations per minute */ 366 80, /* # physical cylinders */ 367 0, /* alternates per cylinder */ 368 1, /* interleave factor */ 369 80, /* # of data cylinders */ 370 0, /* # of alternate cylinders */ 371 2, /* # of heads in this partition */ 372 21, /* # of 512 byte sectors per track */ 373 { 374 { 0, 79 * 2 * 21 }, /* part 0 - all but last cyl */ 375 { 79, 1 * 2 * 21 }, /* part 1 - just the last cyl */ 376 { 0, 80 * 2 * 21 }, /* part 2 - "the whole thing" */ 377 }, 378 { 0, /* version */ 379 "", /* volume label */ 380 3, /* no. of partitions */ 381 { 0 }, /* partition hdrs, sec 2 */ 382 { 0 }, /* mboot info. unsupported */ 383 VTOC_SANE, /* verify vtoc sanity */ 384 { 0 }, /* reserved space */ 385 0, /* timestamp */ 386 }, 387 }; 388 389 static struct packed_label fdlbl_high_80 = { 390 { "3.5\" floppy cyl 80 alt 0 hd 2 sec 18" }, 391 300, /* rotations per minute */ 392 80, /* # physical cylinders */ 393 0, /* alternates per cylinder */ 394 1, /* interleave factor */ 395 80, /* # of data cylinders */ 396 0, /* # of alternate cylinders */ 397 2, /* # of heads in this partition */ 398 18, /* # of 512 byte sectors per track */ 399 { 400 { 0, 79 * 2 * 18 }, /* part 0 - all but last cyl */ 401 { 79, 1 * 2 * 18 }, /* part 1 - just the last cyl */ 402 { 0, 80 * 2 * 18 }, /* part 2 - "the whole thing" */ 403 }, 404 { 0, /* version */ 405 "", /* volume label */ 406 3, /* no. of partitions */ 407 { 0 }, /* partition hdrs, sec 2 */ 408 { 0 }, /* mboot info. unsupported */ 409 VTOC_SANE, /* verify vtoc sanity */ 410 { 0 }, /* reserved space */ 411 0, /* timestamp */ 412 }, 413 }; 414 415 /* 416 * A medium density diskette has 1024 byte sectors. The dk_label structure 417 * assumes a sector is DEVBSIZE (512) bytes. 418 */ 419 static struct packed_label fdlbl_medium_80 = { 420 { "3.5\" floppy cyl 77 alt 0 hd 2 sec 8" }, 421 360, /* rotations per minute */ 422 77, /* # physical cylinders */ 423 0, /* alternates per cylinder */ 424 1, /* interleave factor */ 425 77, /* # of data cylinders */ 426 0, /* # of alternate cylinders */ 427 2, /* # of heads in this partition */ 428 16, /* # of 512 byte sectors per track */ 429 { 430 { 0, 76 * 2 * 8 * 2 }, /* part 0 - all but last cyl */ 431 { 76, 1 * 2 * 8 * 2 }, /* part 1 - just the last cyl */ 432 { 0, 77 * 2 * 8 * 2 }, /* part 2 - "the whole thing" */ 433 }, 434 { 0, /* version */ 435 "", /* volume label */ 436 3, /* no. of partitions */ 437 { 0 }, /* partition hdrs, sec 2 */ 438 { 0 }, /* mboot info. unsupported */ 439 VTOC_SANE, /* verify vtoc sanity */ 440 { 0 }, /* reserved space */ 441 0, /* timestamp */ 442 }, 443 }; 444 445 static struct packed_label fdlbl_low_80 = { 446 { "3.5\" floppy cyl 80 alt 0 hd 2 sec 9" }, 447 300, /* rotations per minute */ 448 80, /* # physical cylinders */ 449 0, /* alternates per cylinder */ 450 1, /* interleave factor */ 451 80, /* # of data cylinders */ 452 0, /* # of alternate cylinders */ 453 2, /* # of heads in this partition */ 454 9, /* # of 512 byte sectors per track */ 455 { 456 { 0, 79 * 2 * 9 }, /* part 0 - all but last cyl */ 457 { 79, 1 * 2 * 9 }, /* part 1 - just the last cyl */ 458 { 0, 80 * 2 * 9 }, /* part 2 - "the whole thing" */ 459 }, 460 { 0, /* version */ 461 "", /* volume label */ 462 3, /* no. of partitions */ 463 { 0 }, /* partition hdrs, sec 2 */ 464 { 0 }, /* mboot info. unsupported */ 465 VTOC_SANE, /* verify vtoc sanity */ 466 { 0 }, /* reserved space */ 467 0, /* timestamp */ 468 }, 469 }; 470 471 static struct fdcmdinfo { 472 char *cmdname; /* command name */ 473 uchar_t ncmdbytes; /* number of bytes of command */ 474 uchar_t nrsltbytes; /* number of bytes in result */ 475 uchar_t cmdtype; /* characteristics */ 476 } fdcmds[] = { 477 "", 0, 0, 0, /* - */ 478 "", 0, 0, 0, /* - */ 479 "read_track", 9, 7, 1, /* 2 */ 480 "specify", 3, 0, 3, /* 3 */ 481 "sense_drv_status", 2, 1, 3, /* 4 */ 482 "write", 9, 7, 1, /* 5 */ 483 "read", 9, 7, 1, /* 6 */ 484 "recalibrate", 2, 0, 2, /* 7 */ 485 "sense_int_status", 1, 2, 3, /* 8 */ 486 "write_del", 9, 7, 1, /* 9 */ 487 "read_id", 2, 7, 2, /* A */ 488 "motor_on/off", 1, 0, 4, /* B */ 489 "read_del", 9, 7, 1, /* C */ 490 "format_track", 10, 7, 1, /* D */ 491 "dump_reg", 1, 10, 4, /* E */ 492 "seek", 3, 0, 2, /* F */ 493 "", 0, 0, 0, /* - */ 494 "", 0, 0, 0, /* - */ 495 "", 0, 0, 0, /* - */ 496 "configure", 4, 0, 4, /* 13 */ 497 /* relative seek */ 498 }; 499 500 static struct cb_ops fd_cb_ops = { 501 fd_open, /* open */ 502 fd_close, /* close */ 503 fd_strategy, /* strategy */ 504 nodev, /* print */ 505 nodev, /* dump */ 506 fd_read, /* read */ 507 fd_write, /* write */ 508 fd_ioctl, /* ioctl */ 509 nodev, /* devmap */ 510 nodev, /* mmap */ 511 nodev, /* segmap */ 512 nochpoll, /* poll */ 513 fd_prop_op, /* cb_prop_op */ 514 0, /* streamtab */ 515 D_NEW | D_MP /* Driver compatibility flag */ 516 }; 517 518 static struct dev_ops fd_ops = { 519 DEVO_REV, /* devo_rev, */ 520 0, /* refcnt */ 521 fd_info, /* info */ 522 nulldev, /* identify */ 523 nulldev, /* probe */ 524 fd_attach, /* attach */ 525 fd_detach, /* detach */ 526 nodev, /* reset */ 527 &fd_cb_ops, /* driver operations */ 528 (struct bus_ops *)0, /* bus operations */ 529 fd_power, /* power */ 530 ddi_quiesce_not_supported, /* devo_quiesce */ 531 }; 532 533 534 /* 535 * error handling 536 * 537 * for debugging, set rwretry and skretry = 1 538 * set fderrlevel to 1 539 * set fderrmask to 224 or 100644 540 * 541 * after debug set rwretry to 10, skretry to 5, and fderrlevel to 3 542 * set fderrmask to FDEM_ALL 543 * remove the define FD_DEBUG 544 * 545 */ 546 547 static unsigned int fderrmask = (unsigned int)FDEM_ALL; 548 static int fderrlevel = 3; 549 550 static int tosec = 16; /* long timeouts for sundiag for now */ 551 552 /* 553 * loadable module support 554 */ 555 556 #include <sys/modctl.h> 557 558 extern struct mod_ops mod_driverops; 559 static struct modldrv modldrv = { 560 &mod_driverops, /* Type of module. driver here */ 561 "Floppy Driver", /* Name of the module. */ 562 &fd_ops, /* Driver ops vector */ 563 }; 564 565 static struct modlinkage modlinkage = { 566 MODREV_1, 567 &modldrv, 568 NULL 569 }; 570 571 int 572 _init(void) 573 { 574 return (mod_install(&modlinkage)); 575 } 576 577 int 578 _info(struct modinfo *modinfop) 579 { 580 return (mod_info(&modlinkage, modinfop)); 581 } 582 583 int 584 _fini(void) 585 { 586 int e; 587 588 if ((e = mod_remove(&modlinkage)) != 0) 589 return (e); 590 591 /* ddi_soft_state_fini() */ 592 return (0); 593 } 594 595 /* ARGSUSED */ 596 static int 597 fd_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 598 { 599 struct fdctlr *fdc; 600 struct driver_minor_data *dmdp; 601 int instance = ddi_get_instance(dip); 602 int hard_intr_set = 0; 603 604 FDERRPRINT(FDEP_L1, FDEM_ATTA, (C, "fd_attach: start\n")); 605 606 switch (cmd) { 607 case DDI_ATTACH: 608 break; 609 case DDI_RESUME: 610 611 if (!(fdc = fd_getctlr(instance << FDINSTSHIFT))) { 612 return (DDI_FAILURE); 613 } 614 quiesce_fd_interrupt(fdc); 615 if (fdc->c_fdtype & FDCTYPE_SB) 616 if (ddi_add_intr(dip, 0, &fdc->c_block, 0, 617 fdintr_dma, (caddr_t)0) != DDI_SUCCESS) { 618 return (DDI_FAILURE); 619 } 620 621 (void) pm_raise_power(dip, 0, PM_LEVEL_ON); 622 mutex_enter(&fdc->c_lolock); 623 /* 624 * Wake up any thread blocked due to I/O requests 625 * while the device was suspended. 626 */ 627 cv_broadcast(&fdc->c_suspend_cv); 628 mutex_exit(&fdc->c_lolock); 629 return (DDI_SUCCESS); 630 631 default: 632 return (DDI_FAILURE); 633 } 634 635 636 /* 637 * Check for the pollable property 638 * A pollable floppy drive currently only exists on the 639 * Sparcstation Voyager. This drive does not need to 640 * be turned on in order to sense whether or not a diskette 641 * is present. 642 */ 643 if (ddi_getprop(DDI_DEV_T_ANY, dip, 644 DDI_PROP_DONTPASS, FD_POLLABLE_PROP, 0)) 645 fd_pollable = 1; 646 647 fdc = kmem_zalloc(sizeof (*fdc), KM_SLEEP); 648 fdc->c_dip = dip; 649 650 651 fdc->c_next = fdctlrs; 652 fdctlrs = fdc; 653 654 /* Determine which type of controller is present and initialize it */ 655 if (fd_attach_det_ctlr(dip, fdc) == DDI_FAILURE) { 656 fd_cleanup(dip, fdc, hard_intr_set, 0); 657 return (DDI_FAILURE); 658 } 659 /* Finish mapping the device registers & setting up structures */ 660 if (fd_attach_map_regs(dip, fdc) == DDI_FAILURE) { 661 fd_cleanup(dip, fdc, hard_intr_set, 0); 662 return (DDI_FAILURE); 663 } 664 665 /* 666 * Initialize the DMA limit structures if it's being used. 667 */ 668 if (fdc->c_fdtype & FDCTYPE_DMA) { 669 fdc->c_fd_dma_lim.dma_attr_version = DMA_ATTR_V0; 670 fdc->c_fd_dma_lim.dma_attr_addr_lo = 0x00000000ull; 671 fdc->c_fd_dma_lim.dma_attr_addr_hi = 0xfffffffeull; 672 fdc->c_fd_dma_lim.dma_attr_count_max = 0xffffff; 673 if (fdc->c_fdtype & FDCTYPE_SB) { 674 fdc->c_fd_dma_lim.dma_attr_align = FD_SB_DMA_ALIGN; 675 } else { 676 fdc->c_fd_dma_lim.dma_attr_align = 1; 677 } 678 fdc->c_fd_dma_lim.dma_attr_burstsizes = 0x0; 679 fdc->c_fd_dma_lim.dma_attr_minxfer = 1; 680 fdc->c_fd_dma_lim.dma_attr_maxxfer = 0xffff; 681 fdc->c_fd_dma_lim.dma_attr_seg = 0xffff; 682 fdc->c_fd_dma_lim.dma_attr_sgllen = 1; 683 fdc->c_fd_dma_lim.dma_attr_granular = 512; 684 685 if (ddi_dma_alloc_handle(dip, &fdc->c_fd_dma_lim, 686 DDI_DMA_DONTWAIT, 0, &fdc->c_dmahandle) != DDI_SUCCESS) { 687 fd_cleanup(dip, fdc, hard_intr_set, 0); 688 return (DDI_FAILURE); 689 } 690 691 if (fdc->c_fdtype & FDCTYPE_SB) { 692 ddi_device_acc_attr_t dev_attr; 693 size_t rlen; 694 695 dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 696 dev_attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC; 697 dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 698 699 if (ddi_dma_mem_alloc(fdc->c_dmahandle, 700 (size_t)(32*1024), &dev_attr, DDI_DMA_CONSISTENT, 701 DDI_DMA_SLEEP, NULL, (caddr_t *)&fdc->dma_buf, 702 &rlen, &fdc->c_dma_buf_handle) != DDI_SUCCESS) { 703 fd_cleanup(dip, fdc, hard_intr_set, 0); 704 return (DDI_FAILURE); 705 } 706 707 } 708 } 709 710 711 /* Register the interrupts */ 712 if (fd_attach_register_interrupts(dip, fdc, 713 &hard_intr_set) == DDI_FAILURE) { 714 fd_cleanup(dip, fdc, hard_intr_set, 0); 715 FDERRPRINT(FDEP_L1, FDEM_ATTA, 716 (C, "fd_attach: registering interrupts failed\n")); 717 return (DDI_FAILURE); 718 } 719 720 721 /* 722 * set initial controller/drive/disk "characteristics/geometry" 723 * 724 * NOTE: The driver only supports one floppy drive. The hardware 725 * only supports one drive because there is only one auxio register 726 * for one drive. 727 */ 728 fdc->c_un = kmem_zalloc(sizeof (struct fdunit), KM_SLEEP); 729 fdc->c_un->un_chars = kmem_alloc(sizeof (struct fd_char), KM_SLEEP); 730 fdc->c_un->un_iostat = kstat_create("fd", 0, "fd0", "disk", 731 KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 732 if (fdc->c_un->un_iostat) { 733 fdc->c_un->un_iostat->ks_lock = &fdc->c_lolock; 734 kstat_install(fdc->c_un->un_iostat); 735 } 736 737 fdc->c_un->un_drive = kmem_zalloc(sizeof (struct fd_drive), KM_SLEEP); 738 739 /* check for the manual eject property */ 740 if (ddi_getprop(DDI_DEV_T_ANY, dip, 741 DDI_PROP_DONTPASS, FD_MANUAL_EJECT, 0)) { 742 fdc->c_un->un_drive->fdd_ejectable = 0; 743 } else { 744 /* an absence of the property indicates auto eject */ 745 fdc->c_un->un_drive->fdd_ejectable = -1; 746 } 747 748 FDERRPRINT(FDEP_L1, FDEM_ATTA, (C, "fd_attach: ejectable? %d\n", 749 fdc->c_un->un_drive->fdd_ejectable)); 750 751 /* 752 * Check for the drive id. If the drive id property doesn't exist 753 * then the drive id is set to 0 754 */ 755 fdc->c_un->un_unit_no = ddi_getprop(DDI_DEV_T_ANY, dip, 756 DDI_PROP_DONTPASS, FD_UNIT, 0); 757 758 759 if (fdc->c_fdtype & FDCTYPE_SB) { 760 fdc->sb_dma_channel = ddi_getprop(DDI_DEV_T_ANY, dip, 761 DDI_PROP_DONTPASS, "dma-channel", 0); 762 } 763 764 765 FDERRPRINT(FDEP_L1, FDEM_ATTA, (C, "fd_attach: unit %d\n", 766 fdc->c_un->un_unit_no)); 767 768 /* Initially set the characteristics to high density */ 769 fdc->c_un->un_curfdtype = 1; 770 *fdc->c_un->un_chars = fdtypes[fdc->c_un->un_curfdtype]; 771 fdunpacklabel(&fdlbl_high_80, &fdc->c_un->un_label); 772 773 /* Make sure drive is present */ 774 if (fd_attach_check_drive(fdc) == DDI_FAILURE) { 775 fd_cleanup(dip, fdc, hard_intr_set, 1); 776 return (DDI_FAILURE); 777 } 778 779 for (dmdp = fd_minor; dmdp->name != NULL; dmdp++) { 780 if (ddi_create_minor_node(dip, dmdp->name, dmdp->type, 781 (instance << FDINSTSHIFT) | dmdp->minor, 782 DDI_NT_FD, 0) == DDI_FAILURE) { 783 fd_cleanup(dip, fdc, hard_intr_set, 1); 784 return (DDI_FAILURE); 785 } 786 } 787 788 create_pm_components(dip); 789 790 /* 791 * Add a zero-length attribute to tell the world we support 792 * kernel ioctls (for layered drivers) 793 */ 794 (void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 795 DDI_KERNEL_IOCTL, NULL, 0); 796 797 ddi_report_dev(dip); 798 799 FDERRPRINT(FDEP_L1, FDEM_ATTA, 800 (C, "attached 0x%x\n", ddi_get_instance(dip))); 801 802 return (DDI_SUCCESS); 803 } 804 805 /* 806 * Finish mapping the registers and initializing structures 807 */ 808 static int 809 fd_attach_map_regs(dev_info_t *dip, struct fdctlr *fdc) 810 { 811 ddi_device_acc_attr_t attr; 812 813 attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 814 attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; 815 attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 816 817 /* Map the DMA registers of the platform supports DMA */ 818 if (fdc->c_fdtype & FDCTYPE_SB) { 819 if (ddi_regs_map_setup(dip, 1, (caddr_t *)&fdc->c_dma_regs, 820 0, sizeof (struct sb_dma_reg), &attr, 821 &fdc->c_handlep_dma)) { 822 return (DDI_FAILURE); 823 } 824 825 826 } else if (fdc->c_fdtype & FDCTYPE_CHEERIO) { 827 if (ddi_regs_map_setup(dip, 1, (caddr_t *)&fdc->c_dma_regs, 828 0, sizeof (struct cheerio_dma_reg), &attr, 829 &fdc->c_handlep_dma)) { 830 return (DDI_FAILURE); 831 } 832 } 833 834 /* Reset the DMA engine and enable floppy interrupts */ 835 reset_dma_controller(fdc); 836 set_dma_control_register(fdc, DCSR_INIT_BITS); 837 838 /* Finish initializing structures associated with the device regs */ 839 switch (fdc->c_fdtype & FDCTYPE_CTRLMASK) { 840 case FDCTYPE_82077: 841 FDERRPRINT(FDEP_L1, FDEM_ATTA, (C, "type is 82077\n")); 842 /* 843 * Initialize addrs of key registers 844 */ 845 fdc->c_control = 846 (uchar_t *)&fdc->c_reg->fdc_82077_reg.fdc_control; 847 fdc->c_fifo = (uchar_t *)&fdc->c_reg->fdc_82077_reg.fdc_fifo; 848 fdc->c_dor = (uchar_t *)&fdc->c_reg->fdc_82077_reg.fdc_dor; 849 fdc->c_dir = (uchar_t *)&fdc->c_reg->fdc_82077_reg.fdc_dir; 850 851 852 FDERRPRINT(FDEP_L1, FDEM_ATTA, ((int)C, 853 (char *)"fdattach: msr/dsr at %p\n", 854 (void *)fdc->c_control)); 855 856 /* 857 * The 82077 doesn't use the first configuration parameter 858 * so let's adjust that while we know we're an 82077. 859 */ 860 fdconf[0] = 0; 861 862 quiesce_fd_interrupt(fdc); 863 break; 864 default: 865 break; 866 } 867 868 return (0); 869 } 870 871 /* 872 * Determine which type of floppy controller is present and 873 * initialize the registers accordingly 874 */ 875 static int 876 fd_attach_det_ctlr(dev_info_t *dip, struct fdctlr *fdc) 877 { 878 ddi_device_acc_attr_t attr; 879 attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 880 /* DDI_NEVERSWAP_ACC since the controller has a byte interface. */ 881 attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; 882 attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 883 884 FDERRPRINT(FDEP_L1, FDEM_ATTA, 885 (C, "fdattach_det_cltr: start \n")); 886 887 /* 888 * First, map in the controller's registers 889 * The controller has an 8-bit interface, so byte 890 * swapping isn't needed 891 */ 892 893 if (ddi_regs_map_setup(dip, 0, (caddr_t *)&fdc->c_reg, 894 0, sizeof (union fdcreg), 895 &attr, 896 &fdc->c_handlep_cont)) { 897 return (DDI_FAILURE); 898 } 899 900 FDERRPRINT(FDEP_L1, FDEM_ATTA, 901 (C, "fdattach_det_cltr: mapped floppy regs\n")); 902 903 904 /* 905 * Set platform specific characteristics based on the device-tree 906 * node name. 907 */ 908 909 910 if (strcmp(ddi_get_name(dip), "SUNW,fdtwo") == 0) { 911 fdc->c_fdtype |= FDCTYPE_SLAVIO; 912 fdc->c_fdtype |= FDCTYPE_82077; 913 fdc->c_auxiova = fd_getauxiova(dip); 914 fdc->c_auxiodata = (uchar_t)(AUX_MBO4M|AUX_TC4M); 915 fdc->c_auxiodata2 = (uchar_t)AUX_TC4M; 916 FDERRPRINT(FDEP_L1, FDEM_ATTA, 917 (C, "fdattach: slavio will be used!\n")); 918 919 920 /* 921 * Check the binding name to identify whether it is a South bridge based 922 * system or not. 923 */ 924 } else if (strcmp(ddi_get_name(dip), "pnpALI,1533,0") == 0) { 925 926 fdc->c_fdtype |= FDCTYPE_SB; 927 fdc->c_fdtype |= FDCTYPE_82077; 928 fdc->c_fdtype |= FDCTYPE_DMA; 929 930 FDERRPRINT(FDEP_L1, FDEM_ATTA, 931 (C, "fdattach: southbridge will be used!\n")); 932 933 /* 934 * The driver assumes high density characteristics until 935 * the diskette is looked at. 936 */ 937 938 fdc->c_fdtype |= FDCTYPE_DMA8237; 939 FDERRPRINT(FDEP_L1, FDEM_ATTA, (C, "fd_attach: DMA used\n")); 940 941 942 } else if (strcmp(ddi_get_name(dip), "fdthree") == 0) { 943 944 fdc->c_fdtype |= FDCTYPE_CHEERIO; 945 fdc->c_fdtype |= FDCTYPE_82077; 946 947 FDERRPRINT(FDEP_L1, FDEM_ATTA, 948 (C, "fdattach: cheerio will be used!\n")); 949 /* 950 * The cheerio auxio register should be memory mapped. The 951 * auxio register on other platforms is shared and mapped 952 * elsewhere in the kernel 953 */ 954 if (ddi_regs_map_setup(dip, 2, (caddr_t *)&fdc->c_auxio_reg, 955 0, sizeof (uint_t), &attr, &fdc->c_handlep_aux)) { 956 return (DDI_FAILURE); 957 } 958 959 /* 960 * The driver assumes high density characteristics until 961 * the diskette is looked at. 962 */ 963 Set_auxio(fdc, AUX_HIGH_DENSITY); 964 FDERRPRINT(FDEP_L1, FDEM_ATTA, 965 (C, "fdattach: auxio register 0x%x\n", 966 *fdc->c_auxio_reg)); 967 968 fdc->c_fdtype |= FDCTYPE_DMA; 969 FDERRPRINT(FDEP_L1, FDEM_ATTA, (C, "fd_attach: DMA used\n")); 970 971 } 972 973 if (fdc->c_fdtype == 0) { 974 FDERRPRINT(FDEP_L1, FDEM_ATTA, 975 (C, "fdattach: no controller!\n")); 976 return (DDI_FAILURE); 977 } else { 978 return (0); 979 } 980 } 981 982 983 /* 984 * Register the floppy interrupts 985 */ 986 static int 987 fd_attach_register_interrupts(dev_info_t *dip, struct fdctlr *fdc, int *hard) 988 { 989 ddi_iblock_cookie_t iblock_cookie_soft; 990 int status; 991 992 /* 993 * First call ddi_get_iblock_cookie() to retrieve the 994 * the interrupt block cookie so that the mutexes may 995 * be initialized before adding the interrupt. If the 996 * mutexes are initialized after adding the interrupt, there 997 * could be a race condition. 998 */ 999 if (ddi_get_iblock_cookie(dip, 0, &fdc->c_block) != DDI_SUCCESS) { 1000 FDERRPRINT(FDEP_L1, FDEM_ATTA, 1001 (C, "fdattach: ddi_get_iblock_cookie failed\n")); 1002 return (DDI_FAILURE); 1003 1004 } 1005 1006 /* Initialize high level mutex */ 1007 mutex_init(&fdc->c_hilock, NULL, MUTEX_DRIVER, fdc->c_block); 1008 1009 /* 1010 * Try to register fast trap handler, if unable try standard 1011 * interrupt handler, else bad 1012 */ 1013 1014 if (fdc->c_fdtype & FDCTYPE_DMA) { 1015 if (ddi_add_intr(dip, 0, &fdc->c_block, 0, 1016 fdintr_dma, (caddr_t)0) == DDI_SUCCESS) { 1017 FDERRPRINT(FDEP_L1, FDEM_ATTA, 1018 (C, "fdattach: standard intr\n")); 1019 1020 /* 1021 * When DMA is used, the low level lock 1022 * is used in the hard interrupt handler. 1023 */ 1024 mutex_init(&fdc->c_lolock, NULL, 1025 MUTEX_DRIVER, fdc->c_block); 1026 1027 *hard = 1; 1028 } else { 1029 FDERRPRINT(FDEP_L1, FDEM_ATTA, 1030 (C, "fdattach: can't add dma intr\n")); 1031 1032 mutex_destroy(&fdc->c_hilock); 1033 1034 return (DDI_FAILURE); 1035 } 1036 } else { 1037 /* 1038 * Platforms that don't support DMA have both hard 1039 * and soft interrupts. 1040 */ 1041 if (ddi_add_intr(dip, 0, &fdc->c_block, 0, 1042 fd_intr, (caddr_t)0) == DDI_SUCCESS) { 1043 FDERRPRINT(FDEP_L1, FDEM_ATTA, 1044 (C, "fdattach: standard intr\n")); 1045 *hard = 1; 1046 1047 /* fast traps are not enabled */ 1048 fdc->c_fasttrap = 0; 1049 1050 } else { 1051 FDERRPRINT(FDEP_L1, FDEM_ATTA, 1052 (C, "fdattach: can't add intr\n")); 1053 1054 mutex_destroy(&fdc->c_hilock); 1055 1056 return (DDI_FAILURE); 1057 } 1058 1059 1060 /* 1061 * Initialize the soft interrupt handler. First call 1062 * ddi_get_soft_iblock_cookie() so that the mutex may 1063 * be initialized before the handler is added. 1064 */ 1065 status = ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_LOW, 1066 &iblock_cookie_soft); 1067 1068 1069 if (status != DDI_SUCCESS) { 1070 mutex_destroy(&fdc->c_hilock); 1071 return (DDI_FAILURE); 1072 } 1073 1074 /* 1075 * Initialize low level mutex which is used in the soft 1076 * interrupt handler 1077 */ 1078 mutex_init(&fdc->c_lolock, NULL, MUTEX_DRIVER, 1079 iblock_cookie_soft); 1080 1081 if (ddi_add_softintr(dip, DDI_SOFTINT_LOW, &fdc->c_softid, 1082 NULL, NULL, 1083 fd_lointr, 1084 (caddr_t)fdc) != DDI_SUCCESS) { 1085 1086 mutex_destroy(&fdc->c_hilock); 1087 mutex_destroy(&fdc->c_lolock); 1088 1089 return (DDI_FAILURE); 1090 } 1091 } 1092 1093 fdc->c_intrstat = kstat_create("fd", 0, "fdc0", "controller", 1094 KSTAT_TYPE_INTR, 1, KSTAT_FLAG_PERSISTENT); 1095 if (fdc->c_intrstat) { 1096 fdc->c_hiintct = &KIOIP->intrs[KSTAT_INTR_HARD]; 1097 kstat_install(fdc->c_intrstat); 1098 } 1099 1100 /* condition variable to wait on while an io transaction occurs */ 1101 cv_init(&fdc->c_iocv, NULL, CV_DRIVER, NULL); 1102 1103 /* condition variable for the csb */ 1104 cv_init(&fdc->c_csbcv, NULL, CV_DRIVER, NULL); 1105 1106 /* condition variable for motor on waiting period */ 1107 cv_init(&fdc->c_motoncv, NULL, CV_DRIVER, NULL); 1108 1109 /* semaphore to serialize opens and closes */ 1110 sema_init(&fdc->c_ocsem, 1, NULL, SEMA_DRIVER, NULL); 1111 1112 /* condition variable to wait on suspended floppy controller. */ 1113 cv_init(&fdc->c_suspend_cv, NULL, CV_DRIVER, NULL); 1114 1115 return (0); 1116 } 1117 1118 /* 1119 * Make sure the drive is present 1120 * - acquires the low level lock 1121 */ 1122 static int 1123 fd_attach_check_drive(struct fdctlr *fdc) 1124 { 1125 int tmp_fderrlevel; 1126 int unit = fdc->c_un->un_unit_no; 1127 1128 FDERRPRINT(FDEP_L1, FDEM_ATTA, 1129 (C, "fd_attach_check_drive\n")); 1130 1131 1132 mutex_enter(&fdc->c_lolock); 1133 switch (fdc->c_fdtype & FDCTYPE_CTRLMASK) { 1134 1135 /* insure that the eject line is reset */ 1136 case FDCTYPE_82077: 1137 1138 /* 1139 * Everything but the motor enable, drive select, 1140 * and reset bits are turned off. These three 1141 * bits remain as they are. 1142 */ 1143 /* LINTED */ 1144 Set_dor(fdc, ~((MOTEN(unit))|DRVSEL|RESET), 0); 1145 1146 FDERRPRINT(FDEP_L1, FDEM_ATTA, 1147 (C, "fdattach: Dor 0x%x\n", Dor(fdc))); 1148 1149 drv_usecwait(5); 1150 if (unit == 0) { 1151 /* LINTED */ 1152 Set_dor(fdc, RESET|DRVSEL, 1); 1153 } else { 1154 1155 /* LINTED */ 1156 Set_dor(fdc, DRVSEL, 0); 1157 /* LINTED */ 1158 Set_dor(fdc, RESET, 1); 1159 } 1160 1161 drv_usecwait(5); 1162 1163 FDERRPRINT(FDEP_L1, FDEM_ATTA, 1164 (C, "fdattach: Dor 0x%x\n", Dor(fdc))); 1165 1166 if (!((fdc->c_fdtype & FDCTYPE_CHEERIO) || 1167 (fdc->c_fdtype & FDCTYPE_SB))) { 1168 set_auxioreg(AUX_TC4M, 0); 1169 } 1170 break; 1171 default: 1172 break; 1173 } 1174 1175 1176 fdgetcsb(fdc); 1177 if (fdreset(fdc) != 0) { 1178 mutex_exit(&fdc->c_lolock); 1179 return (DDI_FAILURE); 1180 } 1181 1182 1183 /* check for drive present */ 1184 1185 tmp_fderrlevel = fderrlevel; 1186 1187 1188 fderrlevel = FDEP_LMAX; 1189 1190 FDERRPRINT(FDEP_L1, FDEM_ATTA, 1191 (C, "fdattach: call fdrecalseek\n")); 1192 1193 /* Make sure the drive is present */ 1194 if (fdrecalseek(fdc, unit, -1, 0) != 0) { 1195 timeout_id_t timeid = fdc->c_mtimeid; 1196 fderrlevel = tmp_fderrlevel; 1197 fdc->c_mtimeid = 0; 1198 mutex_exit(&fdc->c_lolock); 1199 1200 1201 /* Do not hold the mutex over the call to untimeout */ 1202 if (timeid) { 1203 (void) untimeout(timeid); 1204 } 1205 1206 FDERRPRINT(FDEP_L2, FDEM_ATTA, 1207 (C, "fd_attach: no drive?\n")); 1208 1209 return (DDI_FAILURE); 1210 } 1211 1212 fderrlevel = tmp_fderrlevel; 1213 1214 fdselect(fdc, unit, 0); /* deselect drive zero (used in fdreset) */ 1215 fdretcsb(fdc); 1216 mutex_exit(&fdc->c_lolock); 1217 1218 return (0); 1219 } 1220 1221 /* 1222 * Clean up routine used by fd_detach and fd_attach 1223 * 1224 * Note: if the soft id is non-zero, then ddi_add_softintr() completed 1225 * successfully. I can not make the same assumption about the iblock_cookie 1226 * for the high level interrupt handler. So, the hard parameter indicates 1227 * whether or not a high level interrupt handler has been added. 1228 * 1229 * If the locks parameter is nonzero, then all mutexes, semaphores and 1230 * condition variables will be destroyed. 1231 * 1232 * Does not assume the low level mutex is held. 1233 * 1234 */ 1235 static void 1236 fd_cleanup(dev_info_t *dip, struct fdctlr *fdc, int hard, int locks) 1237 { 1238 1239 1240 FDERRPRINT(FDEP_L1, FDEM_ATTA, 1241 (C, "fd_cleanup instance: %d ctlr: 0x%p\n", 1242 ddi_get_instance(dip), (void *)fdc)); 1243 1244 1245 if (fdc == NULL) { 1246 return; 1247 } 1248 1249 /* 1250 * Remove interrupt handlers first before anything else 1251 * is deallocated. 1252 */ 1253 1254 /* Remove hard interrupt if one is registered */ 1255 if (hard) { 1256 ddi_remove_intr(dip, (uint_t)0, fdc->c_block); 1257 } 1258 1259 /* Remove soft interrupt if one is registered */ 1260 if (fdc->c_softid != NULL) 1261 ddi_remove_softintr(fdc->c_softid); 1262 1263 1264 /* Remove timers */ 1265 if (fdc->c_fdtype & FDCTYPE_82077) { 1266 if (fdc->c_mtimeid) 1267 (void) untimeout(fdc->c_mtimeid); 1268 /* 1269 * Need to turn off motor (includes select/LED for South Bridge 1270 * chipset) just in case it was on when timer was removed 1271 */ 1272 if (fdc->c_un != (struct fdunit *)NULL) 1273 fdmotoff(fdc); 1274 } 1275 if (fdc->c_timeid) 1276 (void) untimeout(fdc->c_timeid); 1277 1278 1279 /* Remove memory handles */ 1280 if (fdc->c_handlep_cont) 1281 ddi_regs_map_free(&fdc->c_handlep_cont); 1282 1283 if (fdc->c_handlep_aux) 1284 ddi_regs_map_free(&fdc->c_handlep_aux); 1285 1286 if (fdc->c_handlep_dma) 1287 ddi_regs_map_free(&fdc->c_handlep_dma); 1288 1289 if (fdc->c_dma_buf_handle != NULL) 1290 ddi_dma_mem_free(&fdc->c_dma_buf_handle); 1291 1292 if (fdc->c_dmahandle != NULL) 1293 ddi_dma_free_handle(&fdc->c_dmahandle); 1294 1295 1296 /* Remove all minor nodes */ 1297 ddi_remove_minor_node(dip, NULL); 1298 1299 1300 1301 /* Remove unit structure if one exists */ 1302 if (fdc->c_un != (struct fdunit *)NULL) { 1303 1304 ASSERT(!mutex_owned(&fdc->c_lolock)); 1305 1306 if (fdc->c_un->un_iostat) 1307 kstat_delete(fdc->c_un->un_iostat); 1308 fdc->c_un->un_iostat = NULL; 1309 1310 if (fdc->c_un->un_chars) 1311 kmem_free(fdc->c_un->un_chars, sizeof (struct fd_char)); 1312 1313 if (fdc->c_un->un_drive) 1314 kmem_free(fdc->c_un->un_drive, 1315 sizeof (struct fd_drive)); 1316 1317 kmem_free((caddr_t)fdc->c_un, sizeof (struct fdunit)); 1318 } 1319 1320 if (fdc->c_intrstat) { 1321 FDERRPRINT(FDEP_L1, FDEM_ATTA, 1322 (C, "fd_cleanup: delete intrstat\n")); 1323 1324 kstat_delete(fdc->c_intrstat); 1325 } 1326 1327 fdc->c_intrstat = NULL; 1328 1329 if (locks) { 1330 cv_destroy(&fdc->c_iocv); 1331 cv_destroy(&fdc->c_csbcv); 1332 cv_destroy(&fdc->c_motoncv); 1333 cv_destroy(&fdc->c_suspend_cv); 1334 sema_destroy(&fdc->c_ocsem); 1335 mutex_destroy(&fdc->c_hilock); 1336 mutex_destroy(&fdc->c_lolock); 1337 } 1338 1339 1340 fdctlrs = fdc->c_next; 1341 kmem_free(fdc, sizeof (*fdc)); 1342 1343 1344 } 1345 1346 1347 static int 1348 fd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 1349 { 1350 int instance = ddi_get_instance(dip); 1351 struct fdctlr *fdc = fd_getctlr(instance << FDINSTSHIFT); 1352 timeout_id_t c_mtimeid; 1353 1354 FDERRPRINT(FDEP_L1, FDEM_ATTA, (C, "fd_detach\n")); 1355 1356 switch (cmd) { 1357 1358 case DDI_DETACH: 1359 /* 1360 * The hard parameter is set to 1. If detach is called, then 1361 * attach must have passed meaning that the high level 1362 * interrupt handler was successfully added. 1363 * Similarly, the locks parameter is also set to 1. 1364 */ 1365 fd_cleanup(dip, fdc, 1, 1); 1366 1367 ddi_prop_remove_all(dip); 1368 1369 return (DDI_SUCCESS); 1370 1371 case DDI_SUSPEND: 1372 if (!fdc) 1373 return (DDI_FAILURE); 1374 1375 1376 mutex_enter(&fdc->c_lolock); 1377 fdgetcsb(fdc); /* Wait for I/O to finish */ 1378 c_mtimeid = fdc->c_mtimeid; 1379 fdretcsb(fdc); 1380 mutex_exit(&fdc->c_lolock); 1381 1382 (void) untimeout(c_mtimeid); 1383 /* 1384 * After suspend, the system could be powered off. 1385 * When it is later powered on the southbridge floppy 1386 * controller will tristate the interrupt line causing 1387 * continuous dma interrupts. 1388 * To avoid getting continuous fd interrupts we will remove the 1389 * dma interrupt handler installed. We will re-install the 1390 * handler when we RESUME. 1391 */ 1392 if (fdc->c_fdtype & FDCTYPE_SB) 1393 ddi_remove_intr(dip, 0, fdc->c_block); 1394 1395 fdc->c_un->un_state = FD_STATE_SUSPENDED; 1396 1397 return (DDI_SUCCESS); 1398 1399 default: 1400 return (DDI_FAILURE); 1401 } 1402 } 1403 1404 /* ARGSUSED */ 1405 static int 1406 fd_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 1407 { 1408 register struct fdctlr *fdc; 1409 register int error; 1410 1411 switch (infocmd) { 1412 1413 case DDI_INFO_DEVT2DEVINFO: 1414 if ((fdc = fd_getctlr((dev_t)arg)) == NULL) { 1415 error = DDI_FAILURE; 1416 } else { 1417 *result = fdc->c_dip; 1418 error = DDI_SUCCESS; 1419 } 1420 break; 1421 1422 case DDI_INFO_DEVT2INSTANCE: 1423 *result = 0; 1424 error = DDI_SUCCESS; 1425 break; 1426 1427 default: 1428 error = DDI_FAILURE; 1429 } 1430 return (error); 1431 } 1432 1433 /* 1434 * property operation routine. return the number of blocks for the partition 1435 * in question or forward the request to the property facilities. 1436 */ 1437 static int 1438 fd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 1439 char *name, caddr_t valuep, int *lengthp) 1440 { 1441 struct fdunit *un; 1442 struct fdctlr *fdc; 1443 uint64_t nblocks64; 1444 1445 /* 1446 * Our dynamic properties are all device specific and size oriented. 1447 * Requests issued under conditions where size is valid are passed 1448 * to ddi_prop_op_nblocks with the size information, otherwise the 1449 * request is passed to ddi_prop_op. 1450 */ 1451 if (dev == DDI_DEV_T_ANY) { 1452 pass: return (ddi_prop_op(dev, dip, prop_op, mod_flags, 1453 name, valuep, lengthp)); 1454 } else { 1455 fdc = fd_getctlr(dev); 1456 if (fdc == NULL) 1457 goto pass; 1458 1459 /* we have size if diskette opened and label read */ 1460 un = fdc->c_un; 1461 if ((un == NULL) || !fd_unit_is_open(fdc->c_un)) 1462 goto pass; 1463 1464 /* get nblocks value */ 1465 nblocks64 = (ulong_t) 1466 un->un_label.dkl_map[FDPARTITION(dev)].dkl_nblk; 1467 1468 return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags, 1469 name, valuep, lengthp, nblocks64)); 1470 } 1471 } 1472 1473 /* ARGSUSED3 */ 1474 static int 1475 fd_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 1476 { 1477 dev_t dev; 1478 int part; 1479 struct fdctlr *fdc; 1480 struct fdunit *un; 1481 struct dk_map32 *dkm; 1482 uchar_t pbit; 1483 int err, part_is_open; 1484 int unit; 1485 1486 dev = *devp; 1487 fdc = fd_getctlr(dev); 1488 if ((fdc == NULL) || ((un = fdc->c_un) == NULL)) { 1489 return (ENXIO); 1490 } 1491 1492 unit = fdc->c_un->un_unit_no; 1493 1494 /* 1495 * Serialize opens/closes 1496 */ 1497 1498 sema_p(&fdc->c_ocsem); 1499 1500 /* check partition */ 1501 part = FDPARTITION(dev); 1502 pbit = 1 << part; 1503 dkm = &un->un_label.dkl_map[part]; 1504 if (dkm->dkl_nblk == 0) { 1505 sema_v(&fdc->c_ocsem); 1506 return (ENXIO); 1507 } 1508 1509 FDERRPRINT(FDEP_L1, FDEM_OPEN, 1510 (C, "fdopen: ctlr %d unit %d part %d\n", 1511 ddi_get_instance(fdc->c_dip), unit, part)); 1512 1513 FDERRPRINT(FDEP_L1, FDEM_OPEN, 1514 (C, "fdopen: flag 0x%x", flag)); 1515 1516 1517 /* 1518 * Insure that drive is present with a recalibrate on first open. 1519 */ 1520 (void) pm_busy_component(fdc->c_dip, 0); 1521 1522 mutex_enter(&fdc->c_lolock); 1523 1524 CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc); 1525 1526 if (fdc->c_un->un_state == FD_STATE_STOPPED) { 1527 mutex_exit(&fdc->c_lolock); 1528 if ((pm_raise_power(fdc->c_dip, 0, PM_LEVEL_ON)) 1529 != DDI_SUCCESS) { 1530 FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "Power change \ 1531 failed. \n")); 1532 1533 sema_v(&fdc->c_ocsem); 1534 (void) pm_idle_component(fdc->c_dip, 0); 1535 return (EIO); 1536 } 1537 mutex_enter(&fdc->c_lolock); 1538 } 1539 if (fd_unit_is_open(un) == 0) { 1540 fdgetcsb(fdc); 1541 /* 1542 * no check changed! 1543 */ 1544 err = fdrecalseek(fdc, unit, -1, 0); 1545 fdretcsb(fdc); 1546 if (err) { 1547 FDERRPRINT(FDEP_L3, FDEM_OPEN, 1548 (C, "fd%d: drive not ready\n", 0)); 1549 /* deselect drv on last close */ 1550 fdselect(fdc, unit, 0); 1551 mutex_exit(&fdc->c_lolock); 1552 sema_v(&fdc->c_ocsem); 1553 (void) pm_idle_component(fdc->c_dip, 0); 1554 return (EIO); 1555 } 1556 } 1557 1558 /* 1559 * Check for previous exclusive open, or trying to exclusive open 1560 */ 1561 if (otyp == OTYP_LYR) { 1562 part_is_open = (un->un_lyropen[part] != 0); 1563 } else { 1564 part_is_open = fd_part_is_open(un, part); 1565 } 1566 if ((un->un_exclmask & pbit) || ((flag & FEXCL) && part_is_open)) { 1567 mutex_exit(&fdc->c_lolock); 1568 sema_v(&fdc->c_ocsem); 1569 FDERRPRINT(FDEP_L2, FDEM_OPEN, (C, "fd:just return\n")); 1570 (void) pm_idle_component(fdc->c_dip, 0); 1571 return (EBUSY); 1572 } 1573 1574 /* don't attempt access, just return successfully */ 1575 if (flag & (FNDELAY | FNONBLOCK)) { 1576 FDERRPRINT(FDEP_L2, FDEM_OPEN, 1577 (C, "fd: return busy..\n")); 1578 goto out; 1579 } 1580 1581 fdc->c_csb.csb_unit = (uchar_t)unit; 1582 if (fdgetlabel(fdc, unit)) { 1583 /* didn't find label (couldn't read anything) */ 1584 FDERRPRINT(FDEP_L3, FDEM_OPEN, 1585 (C, 1586 "fd%d: unformatted diskette or no diskette in the drive\n", 1587 0)); 1588 if (fd_unit_is_open(un) == 0) { 1589 /* deselect drv on last close */ 1590 fdselect(fdc, unit, 0); 1591 } 1592 1593 mutex_exit(&fdc->c_lolock); 1594 sema_v(&fdc->c_ocsem); 1595 (void) pm_idle_component(fdc->c_dip, 0); 1596 return (EIO); 1597 } 1598 1599 /* 1600 * if opening for writing, check write protect on diskette 1601 */ 1602 if (flag & FWRITE) { 1603 fdgetcsb(fdc); 1604 err = fdsensedrv(fdc, unit) & WP_SR3; 1605 fdretcsb(fdc); 1606 if (err) { 1607 if (fd_unit_is_open(un) == 0) 1608 fdselect(fdc, unit, 0); 1609 mutex_exit(&fdc->c_lolock); 1610 sema_v(&fdc->c_ocsem); 1611 (void) pm_idle_component(fdc->c_dip, 0); 1612 return (EROFS); 1613 } 1614 } 1615 1616 out: 1617 /* 1618 * mark open as having succeeded 1619 */ 1620 if (flag & FEXCL) { 1621 un->un_exclmask |= pbit; 1622 } 1623 if (otyp == OTYP_LYR) { 1624 un->un_lyropen[part]++; 1625 } else { 1626 un->un_regopen[otyp] |= pbit; 1627 } 1628 mutex_exit(&fdc->c_lolock); 1629 sema_v(&fdc->c_ocsem); 1630 (void) pm_idle_component(fdc->c_dip, 0); 1631 return (0); 1632 } 1633 /* 1634 * fd_part_is_open 1635 * return 1 if the partition is open 1636 * return 0 otherwise 1637 */ 1638 static int 1639 fd_part_is_open(struct fdunit *un, int part) 1640 { 1641 int i; 1642 for (i = 0; i < OTYPCNT - 1; i++) 1643 if (un->un_regopen[i] & (1 << part)) 1644 return (1); 1645 return (0); 1646 } 1647 1648 1649 /* ARGSUSED */ 1650 static int 1651 fd_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 1652 { 1653 int unit, part_is_closed, part; 1654 register struct fdctlr *fdc; 1655 register struct fdunit *un; 1656 1657 fdc = fd_getctlr(dev); 1658 if (!fdc || !(un = fdc->c_un)) 1659 return (ENXIO); 1660 1661 1662 unit = fdc->c_un->un_unit_no; 1663 FDERRPRINT(FDEP_L1, FDEM_CLOS, (C, "fd_close\n")); 1664 part = FDPARTITION(dev); 1665 1666 sema_p(&fdc->c_ocsem); 1667 mutex_enter(&fdc->c_lolock); 1668 1669 if (otyp == OTYP_LYR) { 1670 un->un_lyropen[part]--; 1671 part_is_closed = (un->un_lyropen[part] == 0); 1672 } else { 1673 un->un_regopen[otyp] &= ~(1<<part); 1674 part_is_closed = 1; 1675 } 1676 if (part_is_closed) 1677 un->un_exclmask &= ~(1<<part); 1678 1679 if (fd_unit_is_open(un) == 0) { 1680 /* deselect drive on last close */ 1681 fdselect(fdc, unit, 0); 1682 un->un_flags &= ~FDUNIT_CHANGED; 1683 } 1684 mutex_exit(&fdc->c_lolock); 1685 sema_v(&fdc->c_ocsem); 1686 1687 return (0); 1688 } 1689 1690 /* 1691 * fd_strategy 1692 * checks operation, hangs buf struct off fdctlr, calls fdstart 1693 * if not already busy. Note that if we call start, then the operation 1694 * will already be done on return (start sleeps). 1695 */ 1696 static int 1697 fd_strategy(register struct buf *bp) 1698 { 1699 struct fdctlr *fdc; 1700 struct fdunit *un; 1701 uint_t phys_blkno; 1702 struct dk_map32 *dkm; 1703 1704 FDERRPRINT(FDEP_L1, FDEM_STRA, 1705 (C, "fd_strategy: bp = 0x%p, dev = 0x%lx\n", 1706 (void *)bp, bp->b_edev)); 1707 FDERRPRINT(FDEP_L1, FDEM_STRA, 1708 (C, "b_blkno=%x b_flags=%x b_count=%x\n", 1709 (int)bp->b_blkno, bp->b_flags, (int)bp->b_bcount)); 1710 fdc = fd_getctlr(bp->b_edev); 1711 un = fdc->c_un; 1712 dkm = &un->un_label.dkl_map[FDPARTITION(bp->b_edev)]; 1713 1714 /* 1715 * If it's medium density and the block no. isn't a multiple 1716 * of 1K, then return an error. 1717 */ 1718 if (un->un_chars->fdc_medium) { 1719 phys_blkno = (uint_t)bp->b_blkno >> 1; 1720 if (bp->b_blkno & 1) { 1721 FDERRPRINT(FDEP_L3, FDEM_STRA, 1722 (C, "b_blkno=0x%lx is not 1k aligned\n", 1723 (long)bp->b_blkno)); 1724 bp->b_error = EINVAL; 1725 bp->b_resid = bp->b_bcount; 1726 bp->b_flags |= B_ERROR; 1727 biodone(bp); 1728 return (0); 1729 } 1730 } else { 1731 phys_blkno = (uint_t)bp->b_blkno; 1732 } 1733 1734 1735 /* If the block number is past the end, return an error */ 1736 if ((phys_blkno > dkm->dkl_nblk)) { 1737 FDERRPRINT(FDEP_L3, FDEM_STRA, 1738 (C, "fd%d: block %ld is past the end! (nblk=%d)\n", 1739 0, (long)bp->b_blkno, dkm->dkl_nblk)); 1740 bp->b_error = ENOSPC; 1741 bp->b_resid = bp->b_bcount; 1742 bp->b_flags |= B_ERROR; 1743 biodone(bp); 1744 return (0); 1745 } 1746 1747 /* if at end of file, skip out now */ 1748 if (phys_blkno == dkm->dkl_nblk) { 1749 FDERRPRINT(FDEP_L1, FDEM_STRA, 1750 (C, "b_blkno is at the end!\n")); 1751 1752 if ((bp->b_flags & B_READ) == 0) { 1753 /* a write needs to get an error! */ 1754 bp->b_error = ENOSPC; 1755 bp->b_flags |= B_ERROR; 1756 1757 FDERRPRINT(FDEP_L1, FDEM_STRA, 1758 (C, "block is at end and this is a write\n")); 1759 1760 } 1761 1762 bp->b_resid = bp->b_bcount; 1763 biodone(bp); 1764 return (0); 1765 } 1766 1767 /* if operation not a multiple of sector size, is error! */ 1768 if (bp->b_bcount % un->un_chars->fdc_sec_size) { 1769 FDERRPRINT(FDEP_L3, FDEM_STRA, 1770 (C, "fd%d: requested transfer size(0x%lx) is not" 1771 " multiple of sector size(0x%x)\n", 0, 1772 bp->b_bcount, un->un_chars->fdc_sec_size)); 1773 FDERRPRINT(FDEP_L3, FDEM_STRA, 1774 (C, " b_blkno=0x%lx b_flags=0x%x\n", 1775 (long)bp->b_blkno, bp->b_flags)); 1776 bp->b_error = EINVAL; 1777 bp->b_resid = bp->b_bcount; 1778 bp->b_flags |= B_ERROR; 1779 biodone(bp); 1780 return (0); 1781 1782 } 1783 1784 /* 1785 * Put the buf request in the controller's queue, FIFO. 1786 */ 1787 bp->av_forw = 0; 1788 sema_p(&fdc->c_ocsem); 1789 1790 (void) pm_busy_component(fdc->c_dip, 0); 1791 1792 mutex_enter(&fdc->c_lolock); 1793 1794 CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc); 1795 1796 if (fdc->c_un->un_state == FD_STATE_STOPPED) { 1797 mutex_exit(&fdc->c_lolock); 1798 if ((pm_raise_power(fdc->c_dip, 0, PM_LEVEL_ON)) 1799 != DDI_SUCCESS) { 1800 sema_v(&fdc->c_ocsem); 1801 (void) pm_idle_component(fdc->c_dip, 0); 1802 bp->b_error = EIO; 1803 bp->b_resid = bp->b_bcount; 1804 bp->b_flags |= B_ERROR; 1805 biodone(bp); 1806 return (0); 1807 } else { 1808 mutex_enter(&fdc->c_lolock); 1809 } 1810 } 1811 if (un->un_iostat) { 1812 kstat_waitq_enter(KIOSP); 1813 } 1814 if (fdc->c_actf) 1815 fdc->c_actl->av_forw = bp; 1816 else 1817 fdc->c_actf = bp; 1818 fdc->c_actl = bp; 1819 1820 1821 /* call fdstart to start the transfer */ 1822 fdstart(fdc); 1823 1824 mutex_exit(&fdc->c_lolock); 1825 sema_v(&fdc->c_ocsem); 1826 (void) pm_idle_component(fdc->c_dip, 0); 1827 return (0); 1828 } 1829 1830 /* ARGSUSED2 */ 1831 static int 1832 fd_read(dev_t dev, struct uio *uio, cred_t *cred_p) 1833 { 1834 FDERRPRINT(FDEP_L1, FDEM_RDWR, (C, "fd_read\n")); 1835 return (physio(fd_strategy, NULL, dev, B_READ, minphys, uio)); 1836 } 1837 1838 /* ARGSUSED2 */ 1839 static int 1840 fd_write(dev_t dev, struct uio *uio, cred_t *cred_p) 1841 { 1842 FDERRPRINT(FDEP_L1, FDEM_RDWR, (C, "fd_write\n")); 1843 return (physio(fd_strategy, NULL, dev, B_WRITE, minphys, uio)); 1844 } 1845 1846 static void 1847 fdmotoff(void *arg) 1848 { 1849 struct fdctlr *fdc = arg; 1850 int unit = fdc->c_un->un_unit_no; 1851 1852 mutex_enter(&fdc->c_lolock); 1853 1854 /* Just return if we're about to call untimeout */ 1855 if (fdc->c_mtimeid == 0) { 1856 mutex_exit(&fdc->c_lolock); 1857 return; 1858 } 1859 1860 FDERRPRINT(FDEP_L1, FDEM_MOFF, (C, "fdmotoff\n")); 1861 1862 fdc->c_mtimeid = 0; 1863 1864 if (!(Msr(fdc) & CB) && (Dor(fdc) & (MOTEN(unit)))) { 1865 /* LINTED */ 1866 Set_dor(fdc, MOTEN(unit), 0); 1867 } 1868 1869 mutex_exit(&fdc->c_lolock); 1870 } 1871 1872 /* ARGSUSED */ 1873 static int 1874 fd_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, 1875 cred_t *cred_p, int *rval_p) 1876 { 1877 union { 1878 struct dk_cinfo dki; 1879 struct dk_geom dkg; 1880 struct dk_allmap32 dka; 1881 struct fd_char fdchar; 1882 struct fd_drive drvchar; 1883 int temp; 1884 } cpy; 1885 1886 struct vtoc vtoc; 1887 struct fdunit *un; 1888 struct fdctlr *fdc; 1889 int unit, dkunit; 1890 int err = 0; 1891 uint_t sec_size; 1892 enum dkio_state state; 1893 int transfer_rate; 1894 1895 FDERRPRINT(FDEP_L1, FDEM_IOCT, 1896 (C, "fd_ioctl: cmd 0x%x, arg 0x%lx\n", cmd, (long)arg)); 1897 1898 /* The minor number should always be 0 */ 1899 if (FDUNIT(dev) != 0) 1900 return (ENXIO); 1901 1902 fdc = fd_getctlr(dev); 1903 unit = fdc->c_un->un_unit_no; 1904 un = fdc->c_un; 1905 sec_size = un->un_chars->fdc_sec_size; 1906 bzero(&cpy, sizeof (cpy)); 1907 1908 switch (cmd) { 1909 case DKIOCINFO: 1910 cpy.dki.dki_addr = 0; 1911 1912 /* 1913 * The meaning of the dki_slave and dki_unit fields 1914 * is unclear. The sparc floppy driver follows the same 1915 * convention as sd.c in that the instance number is 1916 * returned in the dki_cnum field. The dki_slave field is 1917 * ignored. 1918 * 1919 * The dki_cnum contains the controller instance 1920 * and its value can be any positive number. Even 1921 * though currently Sparc platforms only support 1922 * one controller, the controller instance number 1923 * can be any number since it is assigned by the 1924 * system depending on the device properties. 1925 */ 1926 1927 cpy.dki.dki_cnum = FDCTLR(dev); 1928 1929 /* 1930 * Sparc platforms support only one floppy drive. 1931 * The device node for the controller is the same as 1932 * the device node for the drive. The x86 driver is 1933 * different in that it has a node for the controller 1934 * and a child node for each drive. Since Sparc supports 1935 * only one drive, the unit number will always be zero. 1936 */ 1937 1938 cpy.dki.dki_unit = FDUNIT(dev); 1939 1940 /* 1941 * The meaning of the dki_slave field is unclear. 1942 * So, I will leave it set to 0. 1943 */ 1944 1945 cpy.dki.dki_slave = 0; 1946 1947 cpy.dki.dki_ctype = (ushort_t)-1; 1948 if (fdc->c_fdtype & FDCTYPE_82077) 1949 cpy.dki.dki_ctype = DKC_INTEL82077; 1950 cpy.dki.dki_flags = DKI_FMTTRK; 1951 cpy.dki.dki_partition = FDPARTITION(dev); 1952 cpy.dki.dki_maxtransfer = maxphys / DEV_BSIZE; 1953 if (ddi_copyout((caddr_t)&cpy.dki, (caddr_t)arg, 1954 sizeof (cpy.dki), flag)) 1955 err = EFAULT; 1956 break; 1957 case DKIOCGGEOM: 1958 cpy.dkg.dkg_ncyl = un->un_chars->fdc_ncyl; 1959 cpy.dkg.dkg_nhead = un->un_chars->fdc_nhead; 1960 cpy.dkg.dkg_nsect = un->un_chars->fdc_secptrack; 1961 cpy.dkg.dkg_intrlv = un->un_label.dkl_intrlv; 1962 cpy.dkg.dkg_rpm = un->un_label.dkl_rpm; 1963 cpy.dkg.dkg_pcyl = un->un_chars->fdc_ncyl; 1964 cpy.dkg.dkg_read_reinstruct = 1965 (int)(cpy.dkg.dkg_nsect * cpy.dkg.dkg_rpm * 4) / 60000; 1966 cpy.dkg.dkg_write_reinstruct = cpy.dkg.dkg_read_reinstruct; 1967 if (ddi_copyout((caddr_t)&cpy.dkg, (caddr_t)arg, 1968 sizeof (cpy.dkg), flag)) 1969 err = EFAULT; 1970 break; 1971 case DKIOCSGEOM: 1972 FDERRPRINT(FDEP_L3, FDEM_IOCT, 1973 (C, "fd_ioctl: DKIOCSGEOM not supported\n")); 1974 err = ENOTTY; 1975 break; 1976 1977 /* 1978 * return the map of all logical partitions 1979 */ 1980 case DKIOCGAPART: 1981 /* 1982 * We don't have anything to do if the application is ILP32 1983 * because the label map has a 32-bit format. Otherwise 1984 * convert. 1985 */ 1986 if ((flag & DATAMODEL_MASK) == DATAMODEL_ILP32) { 1987 if (ddi_copyout(&un->un_label.dkl_map, 1988 (void *)arg, sizeof (struct dk_allmap32), flag)) 1989 err = EFAULT; 1990 } 1991 #ifdef _MULTI_DATAMODEL 1992 else { 1993 struct dk_allmap dk_allmap; 1994 1995 ASSERT((flag & DATAMODEL_MASK) == DATAMODEL_LP64); 1996 for (dkunit = 0; dkunit < NDKMAP; dkunit++) { 1997 dk_allmap.dka_map[dkunit].dkl_cylno = 1998 un->un_label.dkl_map[dkunit].dkl_cylno; 1999 dk_allmap.dka_map[dkunit].dkl_nblk = 2000 un->un_label.dkl_map[dkunit].dkl_nblk; 2001 } 2002 if (ddi_copyout(&dk_allmap, (void *)arg, 2003 sizeof (struct dk_allmap), flag)) 2004 err = EFAULT; 2005 } 2006 #endif /* _MULTI_DATAMODEL */ 2007 break; 2008 2009 /* 2010 * Set the map of all logical partitions 2011 */ 2012 case DKIOCSAPART: 2013 if ((flag & DATAMODEL_MASK) == DATAMODEL_ILP32) { 2014 if (ddi_copyin((const void *)arg, &cpy.dka, 2015 sizeof (cpy.dka), flag)) 2016 return (EFAULT); 2017 else { 2018 mutex_enter(&fdc->c_lolock); 2019 for (dkunit = 0; dkunit < NDKMAP; dkunit++) { 2020 un->un_label.dkl_map[dkunit] = 2021 cpy.dka.dka_map[dkunit]; 2022 } 2023 mutex_exit(&fdc->c_lolock); 2024 } 2025 } 2026 #ifdef _MULTI_DATAMODEL 2027 else { 2028 struct dk_allmap dk_allmap; 2029 2030 ASSERT((flag & DATAMODEL_MASK) == DATAMODEL_LP64); 2031 if (ddi_copyin((const void *)arg, &dk_allmap, 2032 sizeof (dk_allmap), flag)) 2033 return (EFAULT); 2034 else { 2035 mutex_enter(&fdc->c_lolock); 2036 for (dkunit = 0; dkunit < NDKMAP; dkunit++) { 2037 un->un_label.dkl_map[dkunit].dkl_cylno = 2038 dk_allmap.dka_map[dkunit].dkl_cylno; 2039 un->un_label.dkl_map[dkunit].dkl_nblk = 2040 dk_allmap.dka_map[dkunit].dkl_nblk; 2041 } 2042 mutex_exit(&fdc->c_lolock); 2043 } 2044 } 2045 #endif /* _MULTI_DATAMODEL */ 2046 break; 2047 2048 case DKIOCGVTOC: 2049 mutex_enter(&fdc->c_lolock); 2050 2051 /* 2052 * Exit if the diskette has no label. 2053 * Also, get the label to make sure the 2054 * correct one is being used since the diskette 2055 * may have changed 2056 */ 2057 if (fdgetlabel(fdc, unit)) { 2058 mutex_exit(&fdc->c_lolock); 2059 err = EINVAL; 2060 break; 2061 } 2062 2063 /* Build a vtoc from the diskette's label */ 2064 fd_build_user_vtoc(un, &vtoc); 2065 mutex_exit(&fdc->c_lolock); 2066 2067 #ifdef _MULTI_DATAMODEL 2068 switch (ddi_model_convert_from(flag & FMODELS)) { 2069 case DDI_MODEL_ILP32: { 2070 struct vtoc32 vtoc32; 2071 2072 vtoctovtoc32(vtoc, vtoc32); 2073 if (ddi_copyout(&vtoc32, (void *)arg, 2074 sizeof (struct vtoc32), flag)) 2075 return (EFAULT); 2076 break; 2077 } 2078 2079 case DDI_MODEL_NONE: 2080 if (ddi_copyout(&vtoc, (void *)arg, 2081 sizeof (vtoc), flag)) 2082 return (EFAULT); 2083 break; 2084 } 2085 #else /* ! _MULTI_DATAMODEL */ 2086 if (ddi_copyout(&vtoc, (void *)arg, sizeof (vtoc), flag)) 2087 return (EFAULT); 2088 #endif /* _MULTI_DATAMODEL */ 2089 break; 2090 2091 case DKIOCSVTOC: 2092 2093 #ifdef _MULTI_DATAMODEL 2094 switch (ddi_model_convert_from(flag & FMODELS)) { 2095 case DDI_MODEL_ILP32: { 2096 struct vtoc32 vtoc32; 2097 2098 if (ddi_copyin((const void *)arg, &vtoc32, 2099 sizeof (struct vtoc32), flag)) { 2100 return (EFAULT); 2101 } 2102 vtoc32tovtoc(vtoc32, vtoc); 2103 break; 2104 } 2105 2106 case DDI_MODEL_NONE: 2107 if (ddi_copyin((const void *)arg, &vtoc, 2108 sizeof (vtoc), flag)) { 2109 return (EFAULT); 2110 } 2111 break; 2112 } 2113 #else /* ! _MULTI_DATAMODEL */ 2114 if (ddi_copyin((const void *)arg, &vtoc, sizeof (vtoc), flag)) 2115 return (EFAULT); 2116 #endif /* _MULTI_DATAMODEL */ 2117 2118 mutex_enter(&fdc->c_lolock); 2119 2120 /* 2121 * The characteristics structure must be filled in because 2122 * it helps build the vtoc. 2123 */ 2124 if ((un->un_chars->fdc_ncyl == 0) || 2125 (un->un_chars->fdc_nhead == 0) || 2126 (un->un_chars->fdc_secptrack == 0)) { 2127 mutex_exit(&fdc->c_lolock); 2128 err = EINVAL; 2129 break; 2130 } 2131 2132 if ((err = fd_build_label_vtoc(un, &vtoc)) != 0) { 2133 mutex_exit(&fdc->c_lolock); 2134 break; 2135 } 2136 2137 (void) pm_busy_component(fdc->c_dip, 0); 2138 2139 err = fdrw(fdc, unit, FDWRITE, 0, 0, 1, 2140 (caddr_t)&un->un_label, sizeof (struct dk_label)); 2141 mutex_exit(&fdc->c_lolock); 2142 (void) pm_idle_component(fdc->c_dip, 0); 2143 break; 2144 2145 case DKIOCSTATE: 2146 if (ddi_copyin((caddr_t)arg, (caddr_t)&state, 2147 sizeof (int), flag)) { 2148 err = EFAULT; 2149 break; 2150 } 2151 (void) pm_busy_component(fdc->c_dip, 0); 2152 2153 err = fd_check_media(dev, state); 2154 (void) pm_idle_component(fdc->c_dip, 0); 2155 2156 if (ddi_copyout((caddr_t)&un->un_media_state, 2157 (caddr_t)arg, sizeof (int), flag)) 2158 err = EFAULT; 2159 break; 2160 2161 case FDIOGCHAR: 2162 if (ddi_copyout((caddr_t)un->un_chars, (caddr_t)arg, 2163 sizeof (struct fd_char), flag)) 2164 err = EFAULT; 2165 break; 2166 2167 case FDIOSCHAR: 2168 if (ddi_copyin((caddr_t)arg, (caddr_t)&cpy.fdchar, 2169 sizeof (struct fd_char), flag)) { 2170 err = EFAULT; 2171 break; 2172 } 2173 2174 /* 2175 * Check the fields in the fdchar structure that are either 2176 * driver or controller dependent. 2177 */ 2178 2179 transfer_rate = cpy.fdchar.fdc_transfer_rate; 2180 if ((transfer_rate != 500) && (transfer_rate != 300) && 2181 (transfer_rate != 250) && (transfer_rate != 1000)) { 2182 FDERRPRINT(FDEP_L3, FDEM_IOCT, 2183 (C, "fd_ioctl: FDIOSCHAR odd transfer rate %d\n", 2184 cpy.fdchar.fdc_transfer_rate)); 2185 err = EINVAL; 2186 break; 2187 } 2188 2189 if ((cpy.fdchar.fdc_nhead < 1) || 2190 (cpy.fdchar.fdc_nhead > 2)) { 2191 FDERRPRINT(FDEP_L3, FDEM_IOCT, 2192 (C, "fd_ioctl: FDIOSCHAR bad no. of heads %d\n", 2193 cpy.fdchar.fdc_nhead)); 2194 err = EINVAL; 2195 break; 2196 } 2197 2198 /* 2199 * The number of cylinders must be between 0 and 255 2200 */ 2201 if ((cpy.fdchar.fdc_ncyl < 0) || (cpy.fdchar.fdc_ncyl > 255)) { 2202 FDERRPRINT(FDEP_L3, FDEM_IOCT, 2203 (C, "fd_ioctl: FDIOSCHAR bad cyl no %d\n", 2204 cpy.fdchar.fdc_ncyl)); 2205 err = EINVAL; 2206 break; 2207 } 2208 2209 /* Copy the fdchar structure */ 2210 2211 mutex_enter(&fdc->c_lolock); 2212 *(un->un_chars) = cpy.fdchar; 2213 2214 un->un_curfdtype = -1; 2215 2216 mutex_exit(&fdc->c_lolock); 2217 2218 break; 2219 case FDEJECT: /* eject disk */ 2220 case DKIOCEJECT: 2221 2222 /* 2223 * Fail the ioctl if auto-eject isn't supported 2224 */ 2225 if (fdc->c_un->un_drive->fdd_ejectable == 0) { 2226 2227 err = ENOSYS; 2228 2229 } else { 2230 (void) pm_busy_component(fdc->c_dip, 0); 2231 2232 mutex_enter(&fdc->c_lolock); 2233 2234 CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc); 2235 2236 if (fdc->c_un->un_state == FD_STATE_STOPPED) { 2237 mutex_exit(&fdc->c_lolock); 2238 if ((pm_raise_power(fdc->c_dip, 0, 2239 PM_LEVEL_ON)) != DDI_SUCCESS) { 2240 (void) pm_idle_component(fdc->c_dip, 0); 2241 err = EIO; 2242 } 2243 mutex_enter(&fdc->c_lolock); 2244 } 2245 } 2246 if (err == 0) { 2247 fdselect(fdc, unit, 1); 2248 fdeject(fdc, unit); 2249 mutex_exit(&fdc->c_lolock); 2250 } 2251 2252 (void) pm_idle_component(fdc->c_dip, 0); 2253 2254 /* 2255 * Make sure the drive is turned off 2256 */ 2257 if (fdc->c_fdtype & FDCTYPE_82077) { 2258 if (fdc->c_mtimeid == 0) { 2259 fdc->c_mtimeid = timeout(fdmotoff, fdc, 2260 Motoff_delay); 2261 } 2262 } 2263 2264 break; 2265 case FDGETCHANGE: /* disk changed */ 2266 2267 if (ddi_copyin((caddr_t)arg, (caddr_t)&cpy.temp, 2268 sizeof (int), flag)) { 2269 err = EFAULT; 2270 break; 2271 } 2272 2273 /* zero out the user's parameter */ 2274 cpy.temp = 0; 2275 2276 (void) pm_busy_component(fdc->c_dip, 0); 2277 2278 mutex_enter(&fdc->c_lolock); 2279 2280 CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc); 2281 2282 if (fdc->c_un->un_state == FD_STATE_STOPPED) { 2283 mutex_exit(&fdc->c_lolock); 2284 if ((pm_raise_power(fdc->c_dip, 0, PM_LEVEL_ON)) 2285 != DDI_SUCCESS) { 2286 FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "Power \ 2287 change failed. \n")); 2288 (void) pm_idle_component(fdc->c_dip, 0); 2289 return (EIO); 2290 } 2291 2292 mutex_enter(&fdc->c_lolock); 2293 } 2294 if (un->un_flags & FDUNIT_CHANGED) 2295 cpy.temp |= FDGC_HISTORY; 2296 else 2297 cpy.temp &= ~FDGC_HISTORY; 2298 un->un_flags &= ~FDUNIT_CHANGED; 2299 2300 if (fd_pollable) { 2301 /* 2302 * If it's a "pollable" floppy, then we don't 2303 * have to do all the fdcheckdisk nastyness to 2304 * figure out if the thing is still there. 2305 */ 2306 if (fdsense_chng(fdc, unit)) { 2307 cpy.temp |= FDGC_CURRENT; 2308 } else { 2309 cpy.temp &= ~FDGC_CURRENT; 2310 } 2311 } else { 2312 2313 if (fdsense_chng(fdc, unit)) { 2314 /* 2315 * check disk change signal is asserted. 2316 * Now find out if the floppy is 2317 * inserted 2318 */ 2319 if (fdcheckdisk(fdc, unit)) { 2320 cpy.temp |= FDGC_CURRENT; 2321 } else { 2322 /* 2323 * Yes, the floppy was 2324 * reinserted. Implies 2325 * floppy change. 2326 */ 2327 cpy.temp &= ~FDGC_CURRENT; 2328 cpy.temp |= FDGC_HISTORY; 2329 } 2330 } else { 2331 cpy.temp &= ~FDGC_CURRENT; 2332 } 2333 } 2334 2335 /* 2336 * For a pollable floppy, the floppy_change signal 2337 * reflects whether the floppy is in there or not. 2338 * We can not detect a floppy change if we don't poll 2339 * this signal when the floppy is being changed. 2340 * Because as soon as the floppy is put back, the 2341 * signal is reset. 2342 * BUT the pollable floppies are available only on 2343 * Sparcstation Voyager Voyagers (Gypsy) only and 2344 * those are motorized floppies. For motorized floppies, 2345 * the floppy can only (assuming the user doesn't use a 2346 * pin to take out the floppy) be taken out by 2347 * issuing 'eject' command which sets the 2348 * un->un_ejected flag. So, if the following 2349 * condition is true, we can assume there 2350 * was a floppy change. 2351 */ 2352 if (un->un_ejected && !(cpy.temp & FDGC_CURRENT)) { 2353 cpy.temp |= FDGC_HISTORY; 2354 } 2355 un->un_ejected = 0; 2356 2357 2358 /* return the write-protection status */ 2359 fdgetcsb(fdc); 2360 if (fdsensedrv(fdc, unit) & WP_SR3) { 2361 cpy.temp |= FDGC_CURWPROT; 2362 } 2363 fdretcsb(fdc); 2364 mutex_exit(&fdc->c_lolock); 2365 2366 if (ddi_copyout((caddr_t)&cpy.temp, (caddr_t)arg, 2367 sizeof (int), flag)) 2368 err = EFAULT; 2369 (void) pm_idle_component(fdc->c_dip, 0); 2370 break; 2371 2372 case FDGETDRIVECHAR: 2373 2374 if (ddi_copyin((caddr_t)arg, (caddr_t)&cpy.drvchar, 2375 sizeof (struct fd_drive), flag)) { 2376 err = EFAULT; 2377 break; 2378 } 2379 2380 /* 2381 * Return the ejectable value based on the FD_MANUAL_EJECT 2382 * property 2383 */ 2384 cpy.drvchar.fdd_ejectable = fdc->c_un->un_drive->fdd_ejectable; 2385 cpy.drvchar.fdd_maxsearch = nfdtypes; /* 3 - hi m lo density */ 2386 if (fd_pollable) /* pollable device */ 2387 cpy.drvchar.fdd_flags |= FDD_POLLABLE; 2388 2389 /* the rest of the fd_drive struct is meaningless to us */ 2390 2391 if (ddi_copyout((caddr_t)&cpy.drvchar, (caddr_t)arg, 2392 sizeof (struct fd_drive), flag)) 2393 err = EFAULT; 2394 break; 2395 2396 case FDSETDRIVECHAR: 2397 FDERRPRINT(FDEP_L3, FDEM_IOCT, 2398 (C, "fd_ioctl: FDSETDRIVECHAR not supportedn\n")); 2399 err = ENOTTY; 2400 break; 2401 2402 case DKIOCREMOVABLE: { 2403 int i = 1; 2404 2405 /* no brainer: floppies are always removable */ 2406 if (ddi_copyout((caddr_t)&i, (caddr_t)arg, sizeof (int), 2407 flag)) { 2408 err = EFAULT; 2409 } 2410 break; 2411 } 2412 case DKIOCGMEDIAINFO: 2413 err = fd_get_media_info(un, (caddr_t)arg, flag); 2414 break; 2415 2416 2417 case FDIOCMD: 2418 { 2419 struct fd_cmd fc; 2420 int cyl, hd, spc, spt; 2421 int nblks; /* total no. of blocks */ 2422 2423 #ifdef _MULTI_DATAMODEL 2424 switch (ddi_model_convert_from(flag & FMODELS)) { 2425 case DDI_MODEL_ILP32: { 2426 struct fd_cmd32 fc32; 2427 2428 if (ddi_copyin((const void *)arg, &fc32, 2429 sizeof (fc32), flag)) { 2430 return (EFAULT); 2431 } 2432 fc.fdc_cmd = fc32.fdc_cmd; 2433 fc.fdc_flags = fc32.fdc_flags; 2434 fc.fdc_blkno = (daddr_t)fc32.fdc_blkno; 2435 fc.fdc_secnt = fc32.fdc_secnt; 2436 fc.fdc_bufaddr = (caddr_t)(uintptr_t)fc32.fdc_bufaddr; 2437 fc.fdc_buflen = fc32.fdc_buflen; 2438 fc.fdc_cmd = fc32.fdc_cmd; 2439 2440 break; 2441 } 2442 2443 case DDI_MODEL_NONE: 2444 if (ddi_copyin((const void *)arg, &fc, 2445 sizeof (fc), flag)) { 2446 return (EFAULT); 2447 } 2448 break; 2449 } 2450 #else /* ! _MULTI_DATAMODEL */ 2451 if (ddi_copyin((const void *)arg, &fc, sizeof (fc), flag)) { 2452 return (EFAULT); 2453 } 2454 #endif /* _MULTI_DATAMODEL */ 2455 2456 if (fc.fdc_cmd == FDCMD_READ || fc.fdc_cmd == FDCMD_WRITE) { 2457 auto struct iovec aiov; 2458 auto struct uio auio; 2459 struct uio *uio = &auio; 2460 2461 spc = (fc.fdc_cmd == FDCMD_READ)? B_READ: B_WRITE; 2462 2463 bzero(&auio, sizeof (struct uio)); 2464 bzero(&aiov, sizeof (struct iovec)); 2465 aiov.iov_base = fc.fdc_bufaddr; 2466 aiov.iov_len = (uint_t)fc.fdc_secnt * sec_size; 2467 uio->uio_iov = &aiov; 2468 2469 uio->uio_iovcnt = 1; 2470 uio->uio_resid = aiov.iov_len; 2471 uio->uio_segflg = UIO_USERSPACE; 2472 FDERRPRINT(FDEP_L2, FDEM_IOCT, 2473 (C, "fd_ioctl: call physio\n")); 2474 err = physio(fd_strategy, NULL, dev, 2475 spc, minphys, uio); 2476 break; 2477 } else if (fc.fdc_cmd != FDCMD_FORMAT_TRACK) { 2478 2479 /* 2480 * The manpage states that only the FDCMD_WRITE, 2481 * FDCMD_READ, and the FDCMD_FORMAT_TR are available. 2482 */ 2483 FDERRPRINT(FDEP_L1, FDEM_IOCT, 2484 (C, "fd_ioctl: FDIOCMD invalid command\n")); 2485 err = EINVAL; 2486 break; 2487 } 2488 2489 /* The command is FDCMD_FORMAT_TRACK */ 2490 2491 spt = un->un_chars->fdc_secptrack; /* sec/trk */ 2492 spc = un->un_chars->fdc_nhead * spt; /* sec/cyl */ 2493 cyl = fc.fdc_blkno / spc; 2494 hd = (fc.fdc_blkno % spc) / spt; 2495 2496 /* 2497 * Make sure the specified block number is in the correct 2498 * range. (block numbers start at 0) 2499 */ 2500 nblks = spc * un->un_chars->fdc_ncyl; 2501 2502 if (fc.fdc_blkno < 0 || fc.fdc_blkno > (nblks - 1)) { 2503 err = EINVAL; 2504 break; 2505 } 2506 2507 (void) pm_busy_component(fdc->c_dip, 0); 2508 2509 mutex_enter(&fdc->c_lolock); 2510 CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc); 2511 if (fdc->c_un->un_state == FD_STATE_STOPPED) { 2512 mutex_exit(&fdc->c_lolock); 2513 if ((pm_raise_power(fdc->c_dip, 0, PM_LEVEL_ON)) 2514 != DDI_SUCCESS) { 2515 FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "Power \ 2516 change failed. \n")); 2517 (void) pm_idle_component(fdc->c_dip, 0); 2518 return (EIO); 2519 } 2520 2521 mutex_enter(&fdc->c_lolock); 2522 } 2523 2524 if (fdformat(fdc, unit, cyl, hd)) 2525 err = EIO; 2526 2527 mutex_exit(&fdc->c_lolock); 2528 (void) pm_idle_component(fdc->c_dip, 0); 2529 2530 break; 2531 } 2532 2533 case FDRAW: 2534 2535 (void) pm_busy_component(fdc->c_dip, 0); 2536 err = fdrawioctl(fdc, unit, arg, flag); 2537 2538 (void) pm_idle_component(fdc->c_dip, 0); 2539 2540 break; 2541 #ifdef FD_DEBUG 2542 case IOCTL_DEBUG: 2543 fderrlevel--; 2544 if (fderrlevel < 0) 2545 fderrlevel = 3; 2546 cmn_err(C, "fdioctl: CHANGING debug to %d", fderrlevel); 2547 return (0); 2548 #endif /* FD_DEBUG */ 2549 default: 2550 FDERRPRINT(FDEP_L2, FDEM_IOCT, 2551 (C, "fd_ioctl: invalid ioctl 0x%x\n", cmd)); 2552 err = ENOTTY; 2553 break; 2554 } 2555 2556 return (err); 2557 } 2558 2559 /* 2560 * fdrawioctl 2561 * 2562 * - acquires the low level lock 2563 */ 2564 2565 static int 2566 fdrawioctl(struct fdctlr *fdc, int unit, intptr_t arg, int mode) 2567 { 2568 struct fd_raw fdr; 2569 #ifdef _MULTI_DATAMODEL 2570 struct fd_raw32 fdr32; 2571 #endif 2572 struct fdcsb *csb; 2573 int i, err, flag; 2574 caddr_t fa; 2575 uint_t fc; 2576 size_t real_length; 2577 int res; 2578 ddi_device_acc_attr_t attr; 2579 ddi_acc_handle_t mem_handle; 2580 2581 attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 2582 attr.devacc_attr_endian_flags = DDI_STRUCTURE_BE_ACC; 2583 attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 2584 2585 ASSERT(fdc->c_un->un_unit_no == unit); 2586 2587 flag = B_READ; 2588 err = 0; 2589 fa = NULL; 2590 fc = (uint_t)0; 2591 2592 /* Copy in the arguments */ 2593 switch (ddi_model_convert_from(mode)) { 2594 #ifdef _MULTI_DATAMODEL 2595 case DDI_MODEL_ILP32: 2596 if (ddi_copyin((caddr_t)arg, (caddr_t)&fdr32, 2597 sizeof (fdr32), mode)) { 2598 FDERRPRINT(FDEP_L1, FDEM_RAWI, 2599 (C, "fdrawioctl: copyin error, args32\n")); 2600 return (EFAULT); 2601 } 2602 bcopy(fdr32.fdr_cmd, fdr.fdr_cmd, sizeof (fdr.fdr_cmd)); 2603 fdr.fdr_cnum = fdr32.fdr_cnum; 2604 bcopy(fdr32.fdr_result, fdr.fdr_result, 2605 sizeof (fdr.fdr_result)); 2606 fdr.fdr_nbytes = fdr32.fdr_nbytes; 2607 fdr.fdr_addr = (caddr_t)(uintptr_t)fdr32.fdr_addr; 2608 break; 2609 #endif 2610 default: 2611 case DDI_MODEL_NONE: 2612 if (ddi_copyin((caddr_t)arg, (caddr_t)&fdr, 2613 sizeof (fdr), mode)) { 2614 FDERRPRINT(FDEP_L1, FDEM_RAWI, 2615 (C, "fdrawioctl: copyin error, args\n")); 2616 return (EFAULT); 2617 } 2618 break; 2619 } 2620 2621 FDERRPRINT(FDEP_L1, FDEM_RAWI, 2622 (C, "fdrawioctl: cmd[0]=0x%x\n", fdr.fdr_cmd[0])); 2623 2624 mutex_enter(&fdc->c_lolock); 2625 2626 CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc); 2627 2628 if (fdc->c_un->un_state == FD_STATE_STOPPED) { 2629 mutex_exit(&fdc->c_lolock); 2630 if ((pm_raise_power(fdc->c_dip, 0, PM_LEVEL_ON)) 2631 != DDI_SUCCESS) { 2632 FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "Power change \ 2633 failed. \n")); 2634 2635 (void) pm_idle_component(fdc->c_dip, 0); 2636 return (EIO); 2637 } 2638 mutex_enter(&fdc->c_lolock); 2639 } 2640 2641 fdgetcsb(fdc); 2642 csb = &fdc->c_csb; 2643 csb->csb_unit = (uchar_t)unit; 2644 2645 /* copy cmd bytes into csb */ 2646 for (i = 0; i <= fdr.fdr_cnum; i++) 2647 csb->csb_cmds[i] = fdr.fdr_cmd[i]; 2648 csb->csb_ncmds = (uchar_t)fdr.fdr_cnum; 2649 2650 csb->csb_maxretry = 0; /* let the application deal with errors */ 2651 csb->csb_retrys = 0; 2652 2653 switch (fdr.fdr_cmd[0] & 0x0f) { 2654 2655 case FDRAW_SPECIFY: 2656 /* 2657 * Ensure that the right DMA mode is selected. There is 2658 * currently no way for the user to tell if DMA is 2659 * happening so set the value for the user. 2660 */ 2661 2662 if (fdc->c_fdtype & FDCTYPE_DMA) 2663 csb->csb_cmds[2] = csb->csb_cmds[2] & 0xFE; 2664 else 2665 csb->csb_cmds[2] = csb->csb_cmds[2] | 0x1; 2666 2667 csb->csb_opflags = CSB_OFNORESULTS; 2668 csb->csb_nrslts = 0; 2669 break; 2670 2671 case FDRAW_SENSE_DRV: 2672 /* Insert the appropriate drive number */ 2673 csb->csb_cmds[1] = csb->csb_cmds[1] | (unit & DRV_MASK); 2674 csb->csb_opflags = CSB_OFIMMEDIATE; 2675 csb->csb_nrslts = 1; 2676 break; 2677 2678 case FDRAW_REZERO: 2679 case FDRAW_SEEK: 2680 /* Insert the appropriate drive number */ 2681 csb->csb_cmds[1] = csb->csb_cmds[1] | (unit & DRV_MASK); 2682 csb->csb_opflags = CSB_OFSEEKOPS + CSB_OFTIMEIT; 2683 csb->csb_nrslts = 2; 2684 break; 2685 2686 case FDRAW_FORMAT: 2687 FDERRPRINT(FDEP_L1, FDEM_RAWI, 2688 (C, "fdrawioctl: cmd is fdfraw format\n")); 2689 2690 /* Insert the appropriate drive number */ 2691 csb->csb_cmds[1] = csb->csb_cmds[1] | (unit & DRV_MASK); 2692 csb->csb_opflags = CSB_OFXFEROPS + CSB_OFTIMEIT; 2693 csb->csb_nrslts = NRBRW; 2694 flag = B_WRITE; 2695 2696 /* 2697 * Allocate memory for the command. 2698 * If PIO is being used, then add an extra 16 bytes 2699 */ 2700 if (fdc->c_fdtype & FDCTYPE_DMA) { 2701 2702 fc = (uint_t)(fdr.fdr_nbytes); 2703 mutex_enter(&fdc->c_hilock); 2704 2705 res = ddi_dma_mem_alloc(fdc->c_dmahandle, fc, 2706 &attr, DDI_DMA_STREAMING, 2707 DDI_DMA_DONTWAIT, 0, &fa, &real_length, 2708 &mem_handle); 2709 2710 if (res != DDI_SUCCESS) { 2711 fdretcsb(fdc); 2712 mutex_exit(&fdc->c_lolock); 2713 mutex_exit(&fdc->c_hilock); 2714 return (EIO); 2715 } 2716 2717 fdc->c_csb.csb_read = CSB_WRITE; 2718 if (fdstart_dma(fdc, fa, fc) != 0) { 2719 ddi_dma_mem_free(&mem_handle); 2720 fdretcsb(fdc); 2721 mutex_exit(&fdc->c_lolock); 2722 mutex_exit(&fdc->c_hilock); 2723 return (EIO); 2724 } 2725 mutex_exit(&fdc->c_hilock); 2726 2727 } else { 2728 fc = (uint_t)(fdr.fdr_nbytes + 16); 2729 fa = kmem_zalloc(fc, KM_SLEEP); 2730 } 2731 2732 /* copy in the user's command bytes */ 2733 if (ddi_copyin(fdr.fdr_addr, fa, 2734 (uint_t)fdr.fdr_nbytes, mode)) { 2735 fdretcsb(fdc); 2736 mutex_exit(&fdc->c_lolock); 2737 2738 if (fdc->c_fdtype & FDCTYPE_DMA) { 2739 ddi_dma_mem_free(&mem_handle); 2740 FDERRPRINT(FDEP_L1, FDEM_RAWI, 2741 (C, "fdrawioctl: (err)free dma memory\n")); 2742 } else { 2743 kmem_free(fa, fc); 2744 } 2745 2746 FDERRPRINT(FDEP_L1, FDEM_RAWI, 2747 (C, "fdrawioctl: ddi_copyin error\n")); 2748 return (EFAULT); 2749 } 2750 2751 break; 2752 case FDRAW_WRCMD: 2753 case FDRAW_WRITEDEL: 2754 flag = B_WRITE; 2755 /* FALLTHROUGH */ 2756 case FDRAW_RDCMD: 2757 case FDRAW_READDEL: 2758 case FDRAW_READTRACK: 2759 /* Insert the appropriate drive number */ 2760 csb->csb_cmds[1] = csb->csb_cmds[1] | (unit & DRV_MASK); 2761 if (fdc->c_fdtype & FDCTYPE_SB) 2762 csb->csb_cmds[1] |= IPS; 2763 csb->csb_opflags = CSB_OFXFEROPS + CSB_OFTIMEIT; 2764 csb->csb_nrslts = NRBRW; 2765 break; 2766 2767 default: 2768 fdretcsb(fdc); 2769 mutex_exit(&fdc->c_lolock); 2770 return (EINVAL); 2771 } 2772 2773 if ((csb->csb_opflags & CSB_OFXFEROPS) && (fdr.fdr_nbytes == 0)) { 2774 fdretcsb(fdc); 2775 mutex_exit(&fdc->c_lolock); 2776 return (EINVAL); 2777 } 2778 csb->csb_opflags |= CSB_OFRAWIOCTL; 2779 2780 FDERRPRINT(FDEP_L1, FDEM_RAWI, 2781 (C, "fdrawioctl: nbytes = %u\n", fdr.fdr_nbytes)); 2782 2783 if ((fdr.fdr_cmd[0] & 0x0f) != FDRAW_FORMAT) { 2784 if ((fc = (uint_t)fdr.fdr_nbytes) > 0) { 2785 /* 2786 * In SunOS 4.X, we used to as_fault things in. 2787 * We really cannot do this in 5.0/SVr4. Unless 2788 * someone really believes that speed is of the 2789 * essence here, it is just much simpler to do 2790 * this in kernel space and use copyin/copyout. 2791 */ 2792 if (fdc->c_fdtype & FDCTYPE_DMA) { 2793 mutex_enter(&fdc->c_hilock); 2794 res = ddi_dma_mem_alloc(fdc->c_dmahandle, fc, 2795 &attr, DDI_DMA_STREAMING, 2796 DDI_DMA_DONTWAIT, 0, &fa, &real_length, 2797 &mem_handle); 2798 2799 if (res != DDI_SUCCESS) { 2800 fdretcsb(fdc); 2801 mutex_exit(&fdc->c_lolock); 2802 mutex_exit(&fdc->c_hilock); 2803 return (EIO); 2804 } 2805 2806 if (flag == B_WRITE) 2807 fdc->c_csb.csb_read = CSB_WRITE; 2808 else 2809 fdc->c_csb.csb_read = CSB_READ; 2810 2811 if (fdstart_dma(fdc, fa, fc) != 0) { 2812 ddi_dma_mem_free(&mem_handle); 2813 fdretcsb(fdc); 2814 mutex_exit(&fdc->c_lolock); 2815 mutex_exit(&fdc->c_hilock); 2816 return (EIO); 2817 } 2818 mutex_exit(&fdc->c_hilock); 2819 2820 } else { 2821 fa = kmem_zalloc(fc, KM_SLEEP); 2822 } 2823 2824 if (flag == B_WRITE) { 2825 if (ddi_copyin(fdr.fdr_addr, fa, fc, mode)) { 2826 if (fdc->c_fdtype & FDCTYPE_DMA) 2827 ddi_dma_mem_free(&mem_handle); 2828 else 2829 kmem_free(fa, fc); 2830 fdretcsb(fdc); 2831 mutex_exit(&fdc->c_lolock); 2832 FDERRPRINT(FDEP_L1, FDEM_RAWI, (C, 2833 "fdrawioctl: can't copy data\n")); 2834 2835 return (EFAULT); 2836 } 2837 } 2838 csb->csb_addr = fa; 2839 csb->csb_len = fc; 2840 } else { 2841 csb->csb_addr = 0; 2842 csb->csb_len = 0; 2843 } 2844 } else { 2845 csb->csb_addr = fa; 2846 csb->csb_len = fc; 2847 } 2848 2849 FDERRPRINT(FDEP_L1, FDEM_RAWI, 2850 (C, "cmd: %x %x %x %x %x %x %x %x %x %x\n", csb->csb_cmds[0], 2851 csb->csb_cmds[1], csb->csb_cmds[2], csb->csb_cmds[3], 2852 csb->csb_cmds[4], csb->csb_cmds[5], csb->csb_cmds[6], 2853 csb->csb_cmds[7], csb->csb_cmds[8], csb->csb_cmds[9])); 2854 FDERRPRINT(FDEP_L1, FDEM_RAWI, 2855 (C, "nbytes: %x, opflags: %x, addr: %p, len: %x\n", 2856 csb->csb_ncmds, csb->csb_opflags, (void *)csb->csb_addr, 2857 csb->csb_len)); 2858 2859 2860 /* 2861 * Note that we ignore any error return s from fdexec. 2862 * This is the way the driver has been, and it may be 2863 * that the raw ioctl senders simply don't want to 2864 * see any errors returned in this fashion. 2865 */ 2866 2867 if ((csb->csb_opflags & CSB_OFNORESULTS) || 2868 (csb->csb_opflags & CSB_OFIMMEDIATE)) { 2869 (void) fdexec(fdc, 0); /* don't sleep, don't check change */ 2870 } else { 2871 (void) fdexec(fdc, FDXC_SLEEP | FDXC_CHECKCHG); 2872 } 2873 2874 2875 FDERRPRINT(FDEP_L1, FDEM_RAWI, 2876 (C, "rslt: %x %x %x %x %x %x %x %x %x %x\n", csb->csb_rslt[0], 2877 csb->csb_rslt[1], csb->csb_rslt[2], csb->csb_rslt[3], 2878 csb->csb_rslt[4], csb->csb_rslt[5], csb->csb_rslt[6], 2879 csb->csb_rslt[7], csb->csb_rslt[8], csb->csb_rslt[9])); 2880 2881 if ((fdr.fdr_cmd[0] & 0x0f) != FDRAW_FORMAT && fc && 2882 flag == B_READ && err == 0) { 2883 if (ddi_copyout(fa, fdr.fdr_addr, fc, mode)) { 2884 FDERRPRINT(FDEP_L1, FDEM_RAWI, 2885 (C, "fdrawioctl: can't copy read data\n")); 2886 2887 err = EFAULT; 2888 } 2889 } 2890 2891 2892 if (fc) { 2893 if (fdc->c_fdtype & FDCTYPE_DMA) { 2894 ddi_dma_mem_free(&mem_handle); 2895 FDERRPRINT(FDEP_L1, FDEM_RAWI, 2896 (C, "fdrawioctl: free dma memory\n")); 2897 } else { 2898 kmem_free(fa, fc); 2899 } 2900 } 2901 2902 2903 /* copy cmd results into fdr */ 2904 for (i = 0; (int)i <= (int)csb->csb_nrslts; i++) 2905 fdr.fdr_result[i] = csb->csb_rslt[i]; 2906 fdr.fdr_nbytes = fdc->c_csb.csb_rlen; /* return resid */ 2907 2908 switch (ddi_model_convert_from(mode)) { 2909 #ifdef _MULTI_DATAMODEL 2910 case DDI_MODEL_ILP32: 2911 bcopy(fdr.fdr_cmd, fdr32.fdr_cmd, sizeof (fdr32.fdr_cmd)); 2912 fdr32.fdr_cnum = fdr.fdr_cnum; 2913 bcopy(fdr.fdr_result, fdr32.fdr_result, 2914 sizeof (fdr32.fdr_result)); 2915 fdr32.fdr_nbytes = fdr.fdr_nbytes; 2916 fdr32.fdr_addr = (caddr32_t)(uintptr_t)fdr.fdr_addr; 2917 if (ddi_copyout(&fdr32, (caddr_t)arg, sizeof (fdr32), mode)) { 2918 FDERRPRINT(FDEP_L1, FDEM_RAWI, 2919 (C, "fdrawioctl: can't copy results32\n")); 2920 err = EFAULT; 2921 } 2922 break; 2923 #endif 2924 case DDI_MODEL_NONE: 2925 default: 2926 if (ddi_copyout(&fdr, (caddr_t)arg, sizeof (fdr), mode)) { 2927 FDERRPRINT(FDEP_L1, FDEM_RAWI, 2928 (C, "fdrawioctl: can't copy results\n")); 2929 err = EFAULT; 2930 } 2931 break; 2932 } 2933 2934 fdretcsb(fdc); 2935 mutex_exit(&fdc->c_lolock); 2936 return (0); 2937 } 2938 2939 /* 2940 * fdformat 2941 * format a track 2942 * For PIO, builds a table of sector data values with 16 bytes 2943 * (sizeof fdc's fifo) of dummy on end. This is so than when fdc->c_len 2944 * goes to 0 and fd_intr sends a TC that all the real formatting will 2945 * have already been done. 2946 * 2947 * - called with the low level lock held 2948 */ 2949 static int 2950 fdformat(struct fdctlr *fdc, int unit, int cyl, int hd) 2951 { 2952 struct fdcsb *csb; 2953 struct fdunit *un; 2954 struct fd_char *ch; 2955 int cmdresult; 2956 uchar_t *fmthdrs; 2957 caddr_t fd; 2958 int i; 2959 size_t real_length; 2960 ddi_device_acc_attr_t attr; 2961 ddi_acc_handle_t mem_handle; 2962 2963 FDERRPRINT(FDEP_L1, FDEM_FORM, 2964 (C, "fdformat cyl %d, hd %d\n", cyl, hd)); 2965 fdgetcsb(fdc); 2966 2967 ASSERT(fdc->c_un->un_unit_no == unit); 2968 2969 csb = &fdc->c_csb; 2970 un = fdc->c_un; 2971 ch = un->un_chars; 2972 2973 /* setup common things in csb */ 2974 csb->csb_unit = (uchar_t)unit; 2975 2976 /* 2977 * The controller needs to do a seek before 2978 * each format to get to right cylinder. 2979 */ 2980 if (fdrecalseek(fdc, unit, cyl, FDXC_CHECKCHG)) { 2981 fdretcsb(fdc); 2982 return (EIO); 2983 } 2984 2985 /* 2986 * now do the format itself 2987 */ 2988 csb->csb_nrslts = NRBRW; 2989 csb->csb_opflags = CSB_OFXFEROPS | CSB_OFTIMEIT; 2990 2991 csb->csb_cmds[0] = FDRAW_FORMAT; 2992 /* always or in MFM bit */ 2993 csb->csb_cmds[0] |= MFM; 2994 csb->csb_cmds[1] = (hd << 2) | (unit & 0x03); 2995 csb->csb_cmds[2] = ch->fdc_medium ? 3 : 2; 2996 csb->csb_cmds[3] = ch->fdc_secptrack; 2997 csb->csb_cmds[4] = GPLF; 2998 csb->csb_cmds[5] = FDATA; 2999 csb->csb_ncmds = 6; 3000 csb->csb_maxretry = rwretry; 3001 csb->csb_retrys = 0; 3002 3003 /* 3004 * NOTE: have to add size of fifo also - for dummy format action 3005 * if PIO is being used. 3006 */ 3007 3008 3009 if (fdc->c_fdtype & FDCTYPE_DMA) { 3010 3011 csb->csb_len = (uint_t)4 * ch->fdc_secptrack; 3012 3013 attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 3014 attr.devacc_attr_endian_flags = DDI_STRUCTURE_BE_ACC; 3015 attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 3016 3017 mutex_enter(&fdc->c_hilock); 3018 3019 cmdresult = ddi_dma_mem_alloc(fdc->c_dmahandle, csb->csb_len, 3020 &attr, DDI_DMA_STREAMING, 3021 DDI_DMA_DONTWAIT, 0, &fd, &real_length, 3022 &mem_handle); 3023 3024 if (cmdresult != DDI_SUCCESS) { 3025 mutex_exit(&fdc->c_hilock); 3026 return (cmdresult); 3027 } 3028 3029 fdc->c_csb.csb_read = CSB_WRITE; 3030 if (fdstart_dma(fdc, fd, csb->csb_len) != 0) { 3031 ddi_dma_mem_free(&mem_handle); 3032 mutex_exit(&fdc->c_hilock); 3033 return (-1); 3034 } 3035 mutex_exit(&fdc->c_hilock); 3036 3037 3038 } else { 3039 csb->csb_len = (uint_t)4 * ch->fdc_secptrack + 16; 3040 fd = kmem_zalloc(csb->csb_len, KM_SLEEP); 3041 fmthdrs = (uchar_t *)fd; 3042 } 3043 3044 csb->csb_addr = (caddr_t)fd; 3045 3046 for (i = 1; i <= ch->fdc_secptrack; i++) { 3047 *fd++ = (uchar_t)cyl; /* cylinder */ 3048 *fd++ = (uchar_t)hd; /* head */ 3049 *fd++ = (uchar_t)i; /* sector number */ 3050 *fd++ = ch->fdc_medium ? 3 : 2; /* sec_size code */ 3051 } 3052 3053 if ((cmdresult = fdexec(fdc, FDXC_SLEEP | FDXC_CHECKCHG)) == 0) { 3054 if (csb->csb_cmdstat) 3055 cmdresult = EIO; /* XXX TBD NYD for now */ 3056 } 3057 3058 if (fdc->c_fdtype & FDCTYPE_DMA) { 3059 ddi_dma_mem_free(&mem_handle); 3060 } else { 3061 kmem_free((caddr_t)fmthdrs, csb->csb_len); 3062 } 3063 3064 fdretcsb(fdc); 3065 3066 return (cmdresult); 3067 } 3068 3069 /* 3070 * fdstart 3071 * called from fd_strategy() or from fdXXXX() to setup and 3072 * start operations of read or write only (using buf structs). 3073 * Because the chip doesn't handle crossing cylinder boundaries on 3074 * the fly, this takes care of those boundary conditions. Note that 3075 * it sleeps until the operation is done *within fdstart* - so that 3076 * when fdstart returns, the operation is already done. 3077 * 3078 * - called with the low level lock held 3079 * 3080 */ 3081 3082 static int slavio_index_pulse_work_around = 0; 3083 3084 static void 3085 fdstart(struct fdctlr *fdc) 3086 { 3087 struct buf *bp; 3088 struct fdcsb *csb; 3089 struct fdunit *un; 3090 struct fd_char *ch; 3091 struct dk_map32 *dkm; 3092 uint_t part; /* partition number for the transfer */ 3093 uint_t start_part; /* starting block of the partition */ 3094 uint_t last_part; /* last block of the partition */ 3095 uint_t blk; /* starting block of transfer on diskette */ 3096 uint_t sect; /* starting block's offset into track */ 3097 uint_t cyl; /* starting cylinder of the transfer */ 3098 uint_t bincyl; /* starting blocks's offset into cylinder */ 3099 uint_t secpcyl; /* number of sectors per cylinder */ 3100 uint_t phys_blkno; /* no. of blocks on the diskette */ 3101 uint_t head; /* one of two diskette heads */ 3102 uint_t unit; 3103 uint_t len, tlen; 3104 caddr_t addr; 3105 caddr_t temp_addr; 3106 uint_t partial_read = 0; 3107 int sb_temp_buf_used = 0; 3108 3109 bp = fdc->c_actf; 3110 3111 while (bp != NULL) { 3112 3113 fdc->c_actf = bp->av_forw; 3114 fdc->c_current = bp; 3115 3116 /* 3117 * Initialize the buf structure. The residual count is 3118 * initially the number of bytes to be read or written 3119 */ 3120 bp->b_flags &= ~B_ERROR; 3121 bp->b_error = 0; 3122 bp->b_resid = bp->b_bcount; 3123 bp_mapin(bp); /* map in buffers */ 3124 3125 addr = bp->b_un.b_addr; /* assign buffer address */ 3126 3127 /* 3128 * Find the unit and partition numbers. 3129 */ 3130 unit = fdc->c_un->un_unit_no; 3131 un = fdc->c_un; 3132 ch = un->un_chars; 3133 part = FDPARTITION(bp->b_edev); 3134 dkm = &un->un_label.dkl_map[part]; 3135 3136 if (un->un_chars->fdc_medium) { 3137 phys_blkno = bp->b_blkno >> 1; 3138 } else { 3139 phys_blkno = bp->b_blkno; 3140 } 3141 3142 if (un->un_iostat) { 3143 kstat_waitq_to_runq(KIOSP); 3144 } 3145 3146 FDERRPRINT(FDEP_L1, FDEM_STRT, 3147 (C, "fdstart: bp=0x%p blkno=0x%x bcount=0x%x\n", 3148 (void *)bp, (int)bp->b_blkno, (int)bp->b_bcount)); 3149 3150 /* 3151 * Get the csb and initialize the values that are the same 3152 * for DMA and PIO. 3153 */ 3154 fdgetcsb(fdc); /* get csb (maybe wait for it) */ 3155 csb = &fdc->c_csb; 3156 csb->csb_unit = unit; /* floppy unit number */ 3157 3158 3159 /* 3160 * bugID:4133425 : If the controller is SLAVIO, and 3161 * the read does not reach end of track, then modify 3162 * the tlen to read until the end of track to a temp 3163 * buffer and disable MT. After the read is over, 3164 * copy the useful portion of the data to 'addr'. 3165 * Enable this feature only when 3166 * slavio_index_pulse_work_aound variable is 3167 * set in /etc/system. 3168 */ 3169 3170 3171 if (bp->b_flags & B_READ) { 3172 if (((fdc->c_fdtype & FDCTYPE_SLAVIO) && 3173 slavio_index_pulse_work_around) || 3174 (fdc->c_fdtype & FDCTYPE_TCBUG)) 3175 csb->csb_cmds[0] = SK | FDRAW_RDCMD | MFM; 3176 else 3177 csb->csb_cmds[0] = MT | SK | FDRAW_RDCMD | MFM; 3178 } else { 3179 if (fdc->c_fdtype & FDCTYPE_TCBUG) 3180 csb->csb_cmds[0] = FDRAW_WRCMD | MFM; 3181 else 3182 csb->csb_cmds[0] = MT | FDRAW_WRCMD | MFM; 3183 } 3184 3185 3186 if (bp->b_flags & B_READ) 3187 fdc->c_csb.csb_read = CSB_READ; 3188 else 3189 fdc->c_csb.csb_read = CSB_WRITE; 3190 3191 3192 csb->csb_cmds[5] = ch->fdc_medium ? 3 : 2; /* sector size */ 3193 csb->csb_cmds[6] = ch->fdc_secptrack; /* EOT-# of sectors/trk */ 3194 csb->csb_cmds[7] = GPLN; /* GPL - gap 3 size code */ 3195 csb->csb_cmds[8] = SSSDTL; /* DTL - be 0xFF if N != 0 */ 3196 3197 csb->csb_ncmds = NCBRW; /* number of command bytes */ 3198 csb->csb_nrslts = NRBRW; /* number of result bytes */ 3199 3200 3201 /* 3202 * opflags for interrupt handler, et.al. 3203 */ 3204 csb->csb_opflags = CSB_OFXFEROPS | CSB_OFTIMEIT; 3205 3206 3207 /* 3208 * Make sure the transfer does not go off the end 3209 * of the partition. Limit the actual amount transferred 3210 * to fit the partition. 3211 */ 3212 3213 blk = phys_blkno; 3214 start_part = (dkm->dkl_cylno * ch->fdc_secptrack 3215 * ch->fdc_nhead); 3216 blk = blk + start_part; 3217 last_part = start_part + dkm->dkl_nblk; 3218 3219 if ((blk + (bp->b_bcount / ch->fdc_sec_size)) > last_part) 3220 len = (last_part - blk) * ch->fdc_sec_size; 3221 else 3222 len = (uint_t)bp->b_bcount; 3223 3224 /* 3225 * now we have the real start blk, 3226 * addr and len for xfer op 3227 * sectors per cylinder 3228 */ 3229 secpcyl = ch->fdc_nhead * ch->fdc_secptrack; 3230 3231 /* 3232 * The controller can transfer up to a cylinder at a time. 3233 * Early revs of the 82077 have a bug that causes the chip to 3234 * fail to respond to the Terminal Count signal. Due to this 3235 * bug, controllers with type FDCTYPE_TCBUG, only transfer up 3236 * to a track at a time. 3237 * See earlier comment for bugID:4133425 for index pulse 3238 * work around. 3239 */ 3240 3241 while (len != 0) { 3242 3243 cyl = blk / secpcyl; /* cylinder of transfer */ 3244 bincyl = blk % secpcyl; /* blk within cylinder */ 3245 head = bincyl / ch->fdc_secptrack; 3246 sect = (bincyl % ch->fdc_secptrack) + 1; 3247 /* sect w/in track */ 3248 3249 /* 3250 * If the desired block and length will go beyond the 3251 * cylinder end, limit it to the cylinder end. 3252 */ 3253 3254 if ((fdc->c_fdtype & FDCTYPE_SLAVIO) && 3255 slavio_index_pulse_work_around && 3256 (fdc->c_csb.csb_read == CSB_READ)) { 3257 3258 tlen = (ch->fdc_secptrack - sect + 1) * 3259 ch->fdc_sec_size; 3260 if (len < tlen) { 3261 partial_read = 1; 3262 temp_addr = (caddr_t)kmem_alloc(tlen, 3263 KM_SLEEP); 3264 } 3265 3266 } else if (fdc->c_fdtype & FDCTYPE_TCBUG) { 3267 tlen = len; 3268 if (len > ((ch->fdc_secptrack - sect + 1) * 3269 ch->fdc_sec_size)) 3270 tlen = (ch->fdc_secptrack - sect + 1) 3271 * ch->fdc_sec_size; 3272 } else { 3273 if (len > ((secpcyl - bincyl) 3274 * ch->fdc_sec_size)) 3275 tlen = (secpcyl - bincyl) 3276 * ch->fdc_sec_size; 3277 3278 else 3279 tlen = len; 3280 } 3281 if (fdc->c_fdtype & FDCTYPE_SB) { 3282 /* 3283 * To avoid underrun errors during IFB activity. 3284 */ 3285 if (tlen > max_fd_dma_len) 3286 tlen = max_fd_dma_len; 3287 } 3288 3289 FDERRPRINT(FDEP_L1, FDEM_STRT, 3290 (C, " blk 0x%x, addr 0x%p, len 0x%x\n", 3291 blk, (void *)addr, len)); 3292 FDERRPRINT(FDEP_L1, FDEM_STRT, 3293 (C, "cyl:%x, head:%x, sec:%x\n", 3294 cyl, head, sect)); 3295 3296 FDERRPRINT(FDEP_L1, FDEM_STRT, 3297 (C, " resid 0x%lx, tlen %d\n", 3298 bp->b_resid, tlen)); 3299 3300 /* 3301 * Finish programming the command 3302 */ 3303 csb->csb_cmds[1] = (head << 2) | unit; 3304 if (fdc->c_fdtype & FDCTYPE_SB) 3305 csb->csb_cmds[1] |= IPS; 3306 3307 csb->csb_cmds[2] = cyl; /* C - cylinder address */ 3308 csb->csb_cmds[3] = head; /* H - head number */ 3309 csb->csb_cmds[4] = sect; /* R - sector number */ 3310 if (fdc->c_fdtype & FDCTYPE_TCBUG) 3311 csb->csb_cmds[6] = sect + 3312 (tlen / ch->fdc_sec_size) - 1; 3313 3314 csb->csb_len = tlen; 3315 if (partial_read) 3316 csb->csb_addr = temp_addr; 3317 else 3318 csb->csb_addr = addr; 3319 3320 /* retry this many times max */ 3321 csb->csb_maxretry = rwretry; 3322 csb->csb_retrys = 0; 3323 3324 /* If platform supports DMA, set up DMA resources */ 3325 if (fdc->c_fdtype & FDCTYPE_DMA) { 3326 if ((fdc->c_fdtype & FDCTYPE_SB) && 3327 (((uint32_t)(uintptr_t)addr & 0xFFFF0000) != 3328 (((uint32_t)(uintptr_t)addr + tlen) & 3329 0xFFFF0000))) { 3330 csb->csb_addr = fdc->dma_buf; 3331 sb_temp_buf_used = 1; 3332 if (csb->csb_read != CSB_READ) { 3333 bcopy(addr, fdc->dma_buf, tlen); 3334 } 3335 } 3336 mutex_enter(&fdc->c_hilock); 3337 3338 if (fdstart_dma(fdc, csb->csb_addr, 3339 tlen) != 0) { 3340 3341 bp->b_flags |= B_ERROR; 3342 bp->b_error = EAGAIN; 3343 3344 mutex_exit(&fdc->c_hilock); 3345 FDERRPRINT(FDEP_L1, FDEM_STRT, 3346 (C, "fdstart: no dma resources\n")); 3347 3348 break; 3349 } 3350 mutex_exit(&fdc->c_hilock); 3351 3352 } 3353 3354 bp->b_error = fdexec(fdc, FDXC_SLEEP|FDXC_CHECKCHG); 3355 if (bp->b_error != 0) { 3356 /* 3357 * error in fdexec 3358 */ 3359 FDERRPRINT(FDEP_L1, FDEM_STRT, (C, 3360 "fdstart: bad exec of bp: 0x%p, err %d\n", 3361 (void *)bp, bp->b_error)); 3362 3363 bp->b_flags |= B_ERROR; 3364 if (partial_read) { 3365 partial_read = 0; 3366 kmem_free(temp_addr, tlen); 3367 } 3368 break; 3369 } 3370 3371 /* 3372 * If it was a partial read, copy the useful 3373 * portion of data to 'addr'. 3374 */ 3375 if (partial_read) { 3376 partial_read = 0; 3377 bcopy(temp_addr, addr, len); 3378 kmem_free(temp_addr, tlen); 3379 tlen = len; 3380 } 3381 if ((fdc->c_fdtype & FDCTYPE_SB) && 3382 (csb->csb_read == CSB_READ)) { 3383 if (sb_temp_buf_used) { 3384 bcopy(fdc->dma_buf, addr, tlen); 3385 sb_temp_buf_used = 0; 3386 } 3387 } 3388 3389 blk += tlen / ch->fdc_sec_size; 3390 len -= tlen; 3391 addr += tlen; 3392 bp->b_resid -= tlen; 3393 3394 } 3395 3396 FDERRPRINT(FDEP_L1, FDEM_STRT, 3397 (C, "fdstart done: b_resid %lu, b_count %lu, csb_rlen %d\n", 3398 bp->b_resid, bp->b_bcount, fdc->c_csb.csb_rlen)); 3399 3400 fdc->c_current = 0; 3401 fdretcsb(fdc); 3402 if (un->un_iostat) { 3403 if (bp->b_flags & B_READ) { 3404 KIOSP->reads++; 3405 KIOSP->nread += 3406 (bp->b_bcount - bp->b_resid); 3407 } else { 3408 KIOSP->writes++; 3409 KIOSP->nwritten += (bp->b_bcount - bp->b_resid); 3410 } 3411 kstat_runq_exit(KIOSP); 3412 } 3413 biodone(bp); 3414 3415 /* 3416 * Look at the next buffer 3417 */ 3418 bp = fdc->c_actf; 3419 3420 } 3421 } 3422 3423 /* 3424 * Set up DMA resources 3425 * The DMA handle was initialized in fd_attach() 3426 * Assumes the handle has already been allocated by fd_attach() 3427 */ 3428 static int 3429 fdstart_dma(struct fdctlr *fdc, caddr_t addr, uint_t len) 3430 { 3431 int flags; /* flags for setting up resources */ 3432 int res; 3433 3434 FDERRPRINT(FDEP_L1, FDEM_SDMA, (C, "fdstart_dma: start\n")); 3435 3436 if (fdc->c_csb.csb_read == CSB_READ) { 3437 flags = DDI_DMA_READ; 3438 } else { 3439 flags = DDI_DMA_WRITE; 3440 } 3441 3442 3443 /* allow partial mapping to maximize the portability of the driver */ 3444 flags = flags | DDI_DMA_PARTIAL; 3445 3446 FDERRPRINT(FDEP_L1, FDEM_SDMA, (C, "fdstart_dma: amt. asked for %d\n", 3447 len)); 3448 3449 /* 3450 * Zero out the current cookie. This is done to ensure that 3451 * the previous transfers cookie information can in no way be 3452 * used. 3453 */ 3454 bzero((char *)&fdc->c_csb.csb_dmacookie, 3455 sizeof (fdc->c_csb.csb_dmacookie)); 3456 fdc->c_csb.csb_nwin = 0; 3457 fdc->c_csb.csb_windex = 0; 3458 fdc->c_csb.csb_ccount = 0; 3459 3460 res = ddi_dma_addr_bind_handle(fdc->c_dmahandle, NULL, addr, len, 3461 flags, DDI_DMA_DONTWAIT, 0, &fdc->c_csb.csb_dmacookie, 3462 &fdc->c_csb.csb_ccount); 3463 3464 switch (res) { 3465 case DDI_DMA_MAPPED: 3466 /* 3467 * There is one window. csb_windex is the index 3468 * into the array of windows. If there are n 3469 * windows then, (0 <= windex <= n-1). csb_windex 3470 * represents the index of the next window 3471 * to be processed. 3472 */ 3473 fdc->c_csb.csb_nwin = 1; 3474 fdc->c_csb.csb_windex = 1; 3475 3476 3477 FDERRPRINT(FDEP_L1, FDEM_SDMA, 3478 (C, "fdstart_dma: DDI_DMA_MAPPED\n")); 3479 3480 break; 3481 case DDI_DMA_PARTIAL_MAP: 3482 3483 /* 3484 * obtain the number of DMA windows 3485 */ 3486 if (ddi_dma_numwin(fdc->c_dmahandle, 3487 &fdc->c_csb.csb_nwin) != DDI_SUCCESS) { 3488 return (-1); 3489 } 3490 3491 3492 FDERRPRINT(FDEP_L1, FDEM_SDMA, 3493 (C, "fdstart_dma: partially mapped %d windows\n", 3494 fdc->c_csb.csb_nwin)); 3495 3496 /* 3497 * The DMA window currently in use is window number 3498 * one. 3499 */ 3500 fdc->c_csb.csb_windex = 1; 3501 3502 break; 3503 case DDI_DMA_NORESOURCES: 3504 FDERRPRINT(FDEP_L1, FDEM_SDMA, 3505 (C, "fdstart_dma: no resources\n")); 3506 return (-1); 3507 case DDI_DMA_NOMAPPING: 3508 FDERRPRINT(FDEP_L1, FDEM_SDMA, 3509 (C, "fdstart_dma: no mapping\n")); 3510 return (-1); 3511 case DDI_DMA_TOOBIG: 3512 FDERRPRINT(FDEP_L1, FDEM_SDMA, 3513 (C, "fdstart_dma: too big\n")); 3514 return (-1); 3515 3516 case DDI_DMA_INUSE: 3517 FDERRPRINT(FDEP_L1, FDEM_SDMA, 3518 (C, "fdstart_dma: dma inuse\n")); 3519 return (-1); 3520 default: 3521 FDERRPRINT(FDEP_L1, FDEM_SDMA, 3522 (C, "fdstart_dma: result is 0x%x\n", res)); 3523 return (-1); 3524 3525 }; 3526 3527 FDERRPRINT(FDEP_L1, FDEM_SDMA, 3528 (C, "fdstart_dma: bound the handle\n")); 3529 3530 ASSERT(fdc->c_csb.csb_dmacookie.dmac_size); 3531 3532 FDERRPRINT(FDEP_L1, FDEM_SDMA, (C, "fdstart_dma: done\n")); 3533 return (0); 3534 } 3535 3536 3537 /* 3538 * fd_unbind_handle: unbind a dma handle if one exists 3539 * return EIO if unbind failes 3540 */ 3541 static int 3542 fd_unbind_handle(struct fdctlr *fdc) 3543 { 3544 if ((fdc->c_fdtype & FDCTYPE_DMA) && 3545 ((fdc->c_csb.csb_read == CSB_READ) || 3546 (fdc->c_csb.csb_read == CSB_WRITE))) { 3547 mutex_enter(&fdc->c_hilock); 3548 3549 if (fdc->c_fdtype & FDCTYPE_SB) { 3550 if (fdc->sb_dma_lock) { 3551 release_sb_dma(fdc); 3552 } 3553 } 3554 3555 /* 3556 * If the byte count isn't zero, then the DMA engine is 3557 * still doing a transfer. If the byte count is nonzero, 3558 * reset the DMA engine to cause it to drain. 3559 */ 3560 3561 if (get_data_count_register(fdc) != 0) { 3562 FDERRPRINT(FDEP_L1, FDEM_EXEC, 3563 (C, "unbind & byte count isn't zero\n")); 3564 3565 reset_dma_controller(fdc); 3566 set_dma_control_register(fdc, DCSR_INIT_BITS); 3567 } 3568 3569 if (ddi_dma_unbind_handle(fdc->c_dmahandle) != DDI_SUCCESS) { 3570 FDERRPRINT(FDEP_L1, FDEM_EXEC, 3571 (C, "problem unbinding the handle\n")); 3572 mutex_exit(&fdc->c_hilock); 3573 return (EIO); 3574 } 3575 mutex_exit(&fdc->c_hilock); 3576 } 3577 return (0); 3578 } 3579 3580 /* 3581 * fdexec 3582 * all commands go through here. Assumes the command block 3583 * fdctlr.c_csb is filled in. The bytes are sent to the 3584 * controller and then we do whatever else the csb says - 3585 * like wait for immediate results, etc. 3586 * 3587 * All waiting for operations done is in here - to allow retrys 3588 * and checking for disk changed - so we don't have to worry 3589 * about sleeping at interrupt level. 3590 * 3591 * RETURNS: 0 if all ok, 3592 * ENXIO - diskette not in drive 3593 * EBUSY - if chip is locked or busy 3594 * EIO - for timeout during sending cmds to chip 3595 * 3596 * to sleep: set FDXC_SLEEP, to check for disk 3597 * changed: set FDXC_CHECKCHG 3598 * 3599 * - called with the lock held 3600 */ 3601 static int 3602 fdexec(struct fdctlr *fdc, int flags) 3603 { 3604 struct fdcsb *csb; 3605 int i; 3606 int to, unit; 3607 uchar_t tmp; 3608 caddr_t a = (caddr_t)fdc; 3609 3610 FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "fdexec: flags:%x\n", flags)); 3611 3612 ASSERT(mutex_owned(&fdc->c_lolock)); 3613 3614 csb = &fdc->c_csb; 3615 unit = csb->csb_unit; 3616 3617 3618 ASSERT(unit == fdc->c_un->un_unit_no); 3619 3620 retry: 3621 FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "fdexec: cmd is %s\n", 3622 fdcmds[csb->csb_cmds[0] & 0x1f].cmdname)); 3623 FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "fdexec: transfer rate = %d\n", 3624 fdc->c_un->un_chars->fdc_transfer_rate)); 3625 FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "fdexec: sec size = %d\n", 3626 fdc->c_un->un_chars->fdc_sec_size)); 3627 FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "fdexec: nblocks (512) = %d\n", 3628 fdc->c_un->un_label.dkl_map[2].dkl_nblk)); 3629 3630 if ((fdc->c_fdtype & FDCTYPE_CTRLMASK) == FDCTYPE_82077) { 3631 fdexec_turn_on_motor(fdc, flags, unit); 3632 } 3633 3634 3635 fdselect(fdc, unit, 1); /* select drive */ 3636 3637 /* 3638 * select data rate for this unit/command 3639 */ 3640 switch (fdc->c_un->un_chars->fdc_transfer_rate) { 3641 case 500: 3642 Dsr(fdc, 0); 3643 break; 3644 case 300: 3645 Dsr(fdc, 1); 3646 break; 3647 case 250: 3648 Dsr(fdc, 2); 3649 break; 3650 } 3651 drv_usecwait(2); 3652 3653 3654 /* 3655 * If checking for changed is enabled (i.e., not seeking in checkdisk), 3656 * we sample the DSKCHG line to see if the diskette has wandered away. 3657 */ 3658 if ((flags & FDXC_CHECKCHG) && fdsense_chng(fdc, unit)) { 3659 FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "diskette changed\n")); 3660 fdc->c_un->un_flags |= FDUNIT_CHANGED; 3661 3662 if (fdcheckdisk(fdc, unit)) { 3663 3664 (void) fd_unbind_handle(fdc); 3665 return (ENXIO); 3666 3667 } 3668 } 3669 3670 /* 3671 * gather some statistics 3672 */ 3673 switch (csb->csb_cmds[0] & 0x1f) { 3674 case FDRAW_RDCMD: 3675 fdc->fdstats.rd++; 3676 break; 3677 case FDRAW_WRCMD: 3678 fdc->fdstats.wr++; 3679 break; 3680 case FDRAW_REZERO: 3681 fdc->fdstats.recal++; 3682 break; 3683 case FDRAW_FORMAT: 3684 fdc->fdstats.form++; 3685 break; 3686 default: 3687 fdc->fdstats.other++; 3688 break; 3689 } 3690 3691 /* 3692 * Always set the opmode *prior* to poking the chip. 3693 * This way we don't have to do any locking at high level. 3694 */ 3695 csb->csb_raddr = 0; 3696 csb->csb_rlen = 0; 3697 if (csb->csb_opflags & CSB_OFSEEKOPS) { 3698 csb->csb_opmode = 2; 3699 } else if (csb->csb_opflags & CSB_OFIMMEDIATE) { 3700 csb->csb_opmode = 0; 3701 } else { 3702 csb->csb_opmode = 1; /* normal data xfer commands */ 3703 csb->csb_raddr = csb->csb_addr; 3704 csb->csb_rlen = csb->csb_len; 3705 } 3706 3707 bzero((caddr_t)csb->csb_rslt, 10); 3708 csb->csb_status = 0; 3709 csb->csb_cmdstat = 0; 3710 3711 3712 /* 3713 * Program the DMA engine with the length and address of the transfer 3714 * (DMA is only used on a read or a write) 3715 */ 3716 if ((fdc->c_fdtype & FDCTYPE_DMA) && 3717 ((fdc->c_csb.csb_read == CSB_READ) || 3718 (fdc->c_csb.csb_read == CSB_WRITE))) { 3719 mutex_enter(&fdc->c_hilock); 3720 3721 /* Reset the dcsr to clear it of all errors */ 3722 3723 reset_dma_controller(fdc); 3724 3725 FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "cookie addr 0x%p\n", 3726 (void *)fdc->c_csb.csb_dmacookie.dmac_laddress)); 3727 3728 FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "cookie length %ld\n", 3729 fdc->c_csb.csb_dmacookie.dmac_size)); 3730 ASSERT(fdc->c_csb.csb_dmacookie.dmac_size); 3731 3732 set_data_count_register(fdc, 3733 fdc->c_csb.csb_dmacookie.dmac_size); 3734 set_data_address_register(fdc, 3735 fdc->c_csb.csb_dmacookie.dmac_laddress); 3736 3737 /* Program the DCSR */ 3738 3739 if (fdc->c_csb.csb_read == CSB_READ) 3740 set_dma_mode(fdc, CSB_READ); 3741 else 3742 set_dma_mode(fdc, CSB_WRITE); 3743 mutex_exit(&fdc->c_hilock); 3744 } 3745 3746 /* 3747 * I saw this (chip unexpectedly busy) happen when i shoved the 3748 * floppy into the drive while 3749 * running a dd if= /dev/rfd0c. so it *is* possible for this to happen. 3750 * we need to do a ctlr reset ... 3751 */ 3752 3753 if (Msr(fdc) & CB) { 3754 /* tried to give command to chip when it is busy! */ 3755 FDERRPRINT(FDEP_L3, FDEM_EXEC, 3756 (C, "fdc: unexpectedly busy-stat 0x%x\n", Msr(fdc))); 3757 csb->csb_cmdstat = 1; /* XXX TBD ERRS NYD for now */ 3758 3759 (void) fd_unbind_handle(fdc); 3760 return (EBUSY); 3761 } 3762 3763 /* Give command to the controller */ 3764 for (i = 0; i < (int)csb->csb_ncmds; i++) { 3765 3766 /* Test the readiness of the controller to receive the cmd */ 3767 for (to = FD_CRETRY; to; to--) { 3768 if ((Msr(fdc) & (DIO|RQM)) == RQM) 3769 break; 3770 } 3771 if (to == 0) { 3772 FDERRPRINT(FDEP_L2, FDEM_EXEC, 3773 (C, "fdc: no RQM - stat 0x%x\n", Msr(fdc))); 3774 csb->csb_cmdstat = 1; 3775 3776 (void) fd_unbind_handle(fdc); 3777 return (EIO); 3778 } 3779 3780 Set_Fifo(fdc, csb->csb_cmds[i]); 3781 3782 FDERRPRINT(FDEP_L1, FDEM_EXEC, 3783 (C, "fdexec: sent 0x%x, Msr 0x%x\n", csb->csb_cmds[i], 3784 Msr(fdc))); 3785 3786 } 3787 3788 3789 /* 3790 * Start watchdog timer on data transfer type commands - required 3791 * in case a diskette is not present or is unformatted 3792 */ 3793 if (csb->csb_opflags & CSB_OFTIMEIT) { 3794 fdc->c_timeid = timeout(fdwatch, a, 3795 tosec * drv_usectohz(1000000)); 3796 } 3797 3798 FDERRPRINT(FDEP_L1, FDEM_EXEC, 3799 (C, "fdexec: cmd sent, Msr 0x%x\n", Msr(fdc))); 3800 3801 /* If the operation has no results - then just return */ 3802 if (csb->csb_opflags & CSB_OFNORESULTS) { 3803 if (fdc->c_fdtype & FDCTYPE_82077) { 3804 if (fdc->c_mtimeid == 0) { 3805 fdc->c_mtimeid = timeout(fdmotoff, a, 3806 Motoff_delay); 3807 } 3808 } 3809 FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "fdexec: O K ..\n")); 3810 3811 /* 3812 * Make sure the last byte is received well by the 3813 * controller. On faster CPU, it may still be busy 3814 * by the time another command comes here. 3815 */ 3816 for (to = FD_CRETRY; to; to--) { 3817 if ((Msr(fdc) & (DIO|RQM)) == RQM) 3818 break; 3819 } 3820 if (to == 0) { 3821 csb->csb_cmdstat = 1; 3822 return (EIO); 3823 } 3824 3825 /* 3826 * An operation that has no results isn't doing DMA so, 3827 * there is no reason to try to unbind a handle 3828 */ 3829 return (0); 3830 } 3831 3832 /* 3833 * If this operation has no interrupt AND an immediate result 3834 * then we just busy wait for the results and stuff them into 3835 * the csb 3836 */ 3837 if (csb->csb_opflags & CSB_OFIMMEDIATE) { 3838 to = FD_RRETRY; 3839 csb->csb_nrslts = 0; 3840 /* 3841 * Wait while this command is still going on. 3842 */ 3843 while ((tmp = Msr(fdc)) & CB) { 3844 /* 3845 * If RQM + DIO, then a result byte is at hand. 3846 */ 3847 if ((tmp & (RQM|DIO|CB)) == (RQM|DIO|CB)) { 3848 csb->csb_rslt[csb->csb_nrslts++] = 3849 Fifo(fdc); 3850 /* 3851 * FDERRPRINT(FDEP_L4, FDEM_EXEC, 3852 * (C, "fdexec: got result 0x%x\n", 3853 * csb->csb_nrslts)); 3854 */ 3855 } else if (--to == 0) { 3856 FDERRPRINT(FDEP_L4, FDEM_EXEC, 3857 (C, "fdexec: timeout, Msr%x, nr%x\n", 3858 Msr(fdc), csb->csb_nrslts)); 3859 3860 csb->csb_status = 2; 3861 if (fdc->c_fdtype & FDCTYPE_82077) { 3862 if (fdc->c_mtimeid == 0) { 3863 fdc->c_mtimeid = timeout( 3864 fdmotoff, a, Motoff_delay); 3865 } 3866 } 3867 /* 3868 * There is no DMA happening. No need to 3869 * try freeing a handle. 3870 */ 3871 3872 return (EIO); 3873 } 3874 } 3875 } 3876 3877 /* 3878 * If told to sleep here, well then sleep! 3879 */ 3880 3881 if (flags & FDXC_SLEEP) { 3882 fdc->c_flags |= FDCFLG_WAITING; 3883 while (fdc->c_flags & FDCFLG_WAITING) { 3884 cv_wait(&fdc->c_iocv, &fdc->c_lolock); 3885 } 3886 } 3887 3888 /* 3889 * kludge for end-of-cylinder error which must be ignored!!! 3890 */ 3891 3892 if ((fdc->c_fdtype & FDCTYPE_TCBUG) && 3893 ((csb->csb_rslt[0] & IC_SR0) == 0x40) && 3894 (csb->csb_rslt[1] & EN_SR1)) 3895 csb->csb_rslt[0] &= ~IC_SR0; 3896 3897 /* 3898 * See if there was an error detected, if so, fdrecover() 3899 * will check it out and say what to do. 3900 * 3901 * Don't do this, though, if this was the Sense Drive Status 3902 * or the Dump Registers command. 3903 */ 3904 if (((csb->csb_rslt[0] & IC_SR0) || (fdc->c_csb.csb_dcsr_rslt) || 3905 (csb->csb_status)) && 3906 ((csb->csb_cmds[0] != FDRAW_SENSE_DRV) && 3907 (csb->csb_cmds[0] != DUMPREG))) { 3908 /* if it can restarted OK, then do so, else return error */ 3909 if (fdrecover(fdc) != 0) { 3910 if (fdc->c_fdtype & FDCTYPE_82077) { 3911 if (fdc->c_mtimeid == 0) { 3912 fdc->c_mtimeid = timeout(fdmotoff, 3913 a, Motoff_delay); 3914 } 3915 } 3916 3917 /* 3918 * If this was a dma transfer, unbind the handle so 3919 * that other transfers may use it. 3920 */ 3921 3922 (void) fd_unbind_handle(fdc); 3923 return (EIO); 3924 } else { 3925 /* ASSUMES that cmd is still intact in csb */ 3926 goto retry; 3927 } 3928 } 3929 3930 /* things went ok */ 3931 if (fdc->c_fdtype & FDCTYPE_82077) { 3932 if (fdc->c_mtimeid == 0) { 3933 fdc->c_mtimeid = timeout(fdmotoff, a, Motoff_delay); 3934 } 3935 } 3936 FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "fdexec: O K ..........\n")); 3937 3938 if (fd_unbind_handle(fdc)) 3939 return (EIO); 3940 3941 return (0); 3942 } 3943 3944 /* 3945 * Turn on the drive's motor 3946 * 3947 * - called with the low level lock held 3948 */ 3949 static void 3950 fdexec_turn_on_motor(struct fdctlr *fdc, int flags, uint_t unit) 3951 { 3952 clock_t local_lbolt; 3953 timeout_id_t timeid; 3954 3955 /* 3956 * The low level mutex may not be held over the call to 3957 * untimeout(). See the manpage for details. 3958 */ 3959 timeid = fdc->c_mtimeid; 3960 fdc->c_mtimeid = 0; 3961 if (timeid) { 3962 mutex_exit(&fdc->c_lolock); 3963 (void) untimeout(timeid); 3964 mutex_enter(&fdc->c_lolock); 3965 } 3966 3967 ASSERT(fdc->c_un->un_unit_no == unit); 3968 3969 3970 set_rotational_speed(fdc, unit); 3971 3972 if (!(Dor(fdc) & (MOTEN(unit)))) { 3973 /* 3974 * Turn on the motor 3975 */ 3976 FDERRPRINT(FDEP_L1, FDEM_EXEC, 3977 (C, "fdexec: turning on motor\n")); 3978 3979 /* LINTED */ 3980 Set_dor(fdc, (MOTEN(unit)), 1); 3981 3982 if (flags & FDXC_SLEEP) { 3983 local_lbolt = ddi_get_lbolt(); 3984 (void) cv_timedwait(&fdc->c_motoncv, 3985 &fdc->c_lolock, local_lbolt + Moton_delay); 3986 } else { 3987 drv_usecwait(1000000); 3988 } 3989 } 3990 3991 } 3992 3993 /* 3994 * fdrecover 3995 * see if possible to retry an operation. 3996 * All we can do is restart the operation. If we are out of allowed 3997 * retries - return non-zero so that the higher levels will be notified. 3998 * 3999 * RETURNS: 0 if ok to restart, !0 if can't or out of retries 4000 * - called with the low level lock held 4001 */ 4002 static int 4003 fdrecover(struct fdctlr *fdc) 4004 { 4005 struct fdcsb *csb; 4006 4007 FDERRPRINT(FDEP_L1, FDEM_RECO, (C, "fdrecover\n")); 4008 csb = &fdc->c_csb; 4009 4010 if (fdc->c_flags & FDCFLG_TIMEDOUT) { 4011 struct fdcsb savecsb; 4012 4013 fdc->c_flags ^= FDCFLG_TIMEDOUT; 4014 csb->csb_rslt[1] |= TO_SR1; 4015 FDERRPRINT(FDEP_L1, FDEM_RECO, 4016 (C, "fd%d: %s timed out\n", csb->csb_unit, 4017 fdcmds[csb->csb_cmds[0] & 0x1f].cmdname)); 4018 4019 /* use private csb */ 4020 savecsb = fdc->c_csb; 4021 bzero(&fdc->c_csb, sizeof (struct fdcsb)); 4022 FDERRPRINT(FDEP_L1, FDEM_RECO, (C, "fdc: resetting\n")); 4023 4024 (void) fdreset(fdc); 4025 4026 if (fdc->c_fdtype & FDCTYPE_DMA) { 4027 mutex_enter(&fdc->c_hilock); 4028 /* Reset the DMA engine as well */ 4029 reset_dma_controller(fdc); 4030 set_dma_control_register(fdc, DCSR_INIT_BITS); 4031 mutex_exit(&fdc->c_hilock); 4032 } 4033 4034 4035 /* check change first?? */ 4036 /* don't ckchg in fdexec, too convoluted */ 4037 (void) fdrecalseek(fdc, savecsb.csb_unit, -1, 0); 4038 fdc->c_csb = savecsb; /* restore original csb */ 4039 } 4040 4041 /* 4042 * gather statistics on errors 4043 */ 4044 if (csb->csb_rslt[1] & DE_SR1) { 4045 fdc->fdstats.de++; 4046 } 4047 if (csb->csb_rslt[1] & OR_SR1) { 4048 fdc->fdstats.run++; 4049 } 4050 if (csb->csb_rslt[1] & (ND_SR1+MA_SR1)) { 4051 fdc->fdstats.bfmt++; 4052 } 4053 if (csb->csb_rslt[1] & TO_SR1) { 4054 fdc->fdstats.to++; 4055 } 4056 4057 /* 4058 * If raw ioctl don't examine results just pass status 4059 * back via fdraw. Raw commands are timed too, so put this 4060 * after the above check. 4061 */ 4062 if (csb->csb_opflags & CSB_OFRAWIOCTL) { 4063 return (1); 4064 } 4065 4066 4067 /* 4068 * if there was a pci bus error, do not retry 4069 */ 4070 4071 if (csb->csb_dcsr_rslt == 1) { 4072 FDERRPRINT(FDEP_L3, FDEM_RECO, 4073 (C, "fd%d: host bus error\n", 0)); 4074 return (1); 4075 } 4076 4077 /* 4078 * If there was an error with the DMA functions, do not retry 4079 */ 4080 if (csb->csb_dma_rslt == 1) { 4081 FDERRPRINT(FDEP_L1, FDEM_RECO, 4082 (C, "fd%d: DMA interface error\n", csb->csb_unit)); 4083 return (1); 4084 } 4085 4086 4087 /* 4088 * if we have run out of retries, return an error 4089 * XXX need better status interp 4090 */ 4091 4092 csb->csb_retrys++; 4093 if (csb->csb_retrys > csb->csb_maxretry) { 4094 FDERRPRINT(FDEP_L3, FDEM_RECO, 4095 (C, "fd%d: %s failed (%x %x %x)\n", 4096 0, fdcmds[csb->csb_cmds[0] & 0x1f].cmdname, 4097 csb->csb_rslt[0], csb->csb_rslt[1], csb->csb_rslt[2])); 4098 if (csb->csb_rslt[1] & NW_SR1) { 4099 FDERRPRINT(FDEP_L3, FDEM_RECO, 4100 (C, "fd%d: not writable\n", 0)); 4101 } 4102 if (csb->csb_rslt[1] & DE_SR1) { 4103 FDERRPRINT(FDEP_L3, FDEM_RECO, 4104 (C, "fd%d: crc error blk %d\n", 0, 4105 (int)fdc->c_current->b_blkno)); 4106 } 4107 if (csb->csb_rslt[1] & OR_SR1) { 4108 if (fdc->c_fdtype & FDCTYPE_SB) { 4109 /* 4110 * When using southbridge chip we need to 4111 * retry atleast 10 times to shake off the 4112 * underrun err. 4113 */ 4114 if (csb->csb_retrys <= rwretry) 4115 return (0); 4116 } 4117 FDERRPRINT(FDEP_L3, FDEM_RECO, 4118 (C, "fd%d: over/underrun\n", 0)); 4119 } 4120 4121 if (csb->csb_rslt[1] & (ND_SR1+MA_SR1)) { 4122 FDERRPRINT(FDEP_L3, FDEM_RECO, 4123 (C, "fd%d: bad format\n", 0)); 4124 } 4125 4126 if (csb->csb_rslt[1] & TO_SR1) { 4127 FDERRPRINT(FDEP_L3, FDEM_RECO, 4128 (C, "fd%d: timeout\n", 0)); 4129 } 4130 4131 csb->csb_cmdstat = 1; /* failed - give up */ 4132 return (1); 4133 } 4134 4135 if (csb->csb_opflags & CSB_OFSEEKOPS) { 4136 /* seek, recal type commands - just look at st0 */ 4137 FDERRPRINT(FDEP_L2, FDEM_RECO, 4138 (C, "fd%d: %s error : st0 0x%x\n", csb->csb_unit, 4139 fdcmds[csb->csb_cmds[0] & 0x1f].cmdname, 4140 csb->csb_rslt[0])); 4141 } 4142 if (csb->csb_opflags & CSB_OFXFEROPS) { 4143 /* rd, wr, fmt type commands - look at st0, st1, st2 */ 4144 FDERRPRINT(FDEP_L2, FDEM_RECO, 4145 (C, "fd%d: %s error : st0=0x%x st1=0x%x st2=0x%x\n", 4146 csb->csb_unit, fdcmds[csb->csb_cmds[0] & 0x1f].cmdname, 4147 csb->csb_rslt[0], csb->csb_rslt[1], csb->csb_rslt[2])); 4148 } 4149 4150 return (0); /* tell fdexec to retry */ 4151 } 4152 4153 /* 4154 * Interrupt handle for DMA 4155 */ 4156 4157 static uint_t 4158 fdintr_dma() 4159 { 4160 struct fdctlr *fdc; 4161 off_t off; 4162 size_t len; 4163 uint_t ccount; 4164 uint_t windex; 4165 uint_t done = 0; 4166 int tmp_dcsr; 4167 int to; 4168 uchar_t tmp; 4169 int i = 0; 4170 int res = DDI_INTR_UNCLAIMED; 4171 int not_cheerio = 1; 4172 4173 /* search for a controller that's expecting an interrupt */ 4174 fdc = fdctlrs; 4175 4176 if (fdc->c_fdtype & FDCTYPE_CHEERIO) { 4177 tmp_dcsr = get_dma_control_register(fdc); 4178 if (!(tmp_dcsr & DCSR_INT_PEND) && !(DCSR_ERR_PEND & tmp_dcsr)) 4179 return (res); 4180 not_cheerio = 0; 4181 } 4182 4183 mutex_enter(&fdc->c_hilock); 4184 4185 if (fdc->c_csb.csb_opmode == 0x0) { 4186 fdc->c_csb.csb_opmode = 2; 4187 } 4188 if (fdc->sb_dma_lock) { 4189 release_sb_dma(fdc); 4190 } 4191 4192 /* 4193 * An interrupt can come from either the floppy controller or 4194 * or the DMA engine. The DMA engine will only issue an 4195 * interrupt if there was an error. 4196 */ 4197 4198 switch (fdc->c_csb.csb_opmode) { 4199 case 0x1: 4200 /* read/write/format data-xfer case */ 4201 4202 FDERRPRINT(FDEP_L1, FDEM_INTR, 4203 (C, "fdintr_dma: opmode 1\n")); 4204 4205 /* 4206 * See if the interrupt is from the floppy 4207 * controller. If there is, take out the status bytes. 4208 */ 4209 4210 if (not_cheerio || (tmp_dcsr & DCSR_INT_PEND)) { 4211 4212 FDERRPRINT(FDEP_L1, FDEM_INTR, 4213 (C, "fdintr_dma: INT_PEND \n")); 4214 4215 res = DDI_INTR_CLAIMED; 4216 4217 to = FD_RRETRY; 4218 fdc->c_csb.csb_nrslts = 0; 4219 4220 /* check status */ 4221 i = 0; 4222 4223 /* 4224 * CB turns off once all the result bytes are 4225 * read. 4226 * 4227 * NOTE: the counters are there so that the 4228 * handler will never get stuck in a loop. 4229 * If the counters do reach their maximum 4230 * values, then a catastrophic error has 4231 * occurred. This should never be the case. 4232 * The counters only came into play during 4233 * development. 4234 */ 4235 while (((tmp = Msr(fdc)) & CB) && 4236 (i < 1000001)) { 4237 4238 /* 4239 * If RQM + DIO, then a result byte 4240 * is at hand. 4241 */ 4242 if ((tmp & (RQM|DIO|CB)) == 4243 (RQM|DIO|CB)) { 4244 fdc->c_csb.csb_rslt 4245 [fdc->c_csb.csb_nrslts++] 4246 = Fifo(fdc); 4247 4248 FDERRPRINT(FDEP_L1, FDEM_INTR, 4249 (C, 4250 "fdintr_dma: res 0x%x\n", 4251 fdc->c_csb.csb_rslt 4252 [fdc->c_csb.csb_nrslts 4253 - 1])); 4254 4255 } else if (--to == 0) { 4256 /* 4257 * controller was never 4258 * ready to give results 4259 */ 4260 fdc->c_csb.csb_status = 2; 4261 break; 4262 } 4263 i++; 4264 } 4265 if (i == 10000) { 4266 FDERRPRINT(FDEP_L1, FDEM_INTR, 4267 (C, "First loop overran\n")); 4268 } 4269 } 4270 4271 /* 4272 * See if the interrupt is from the DMA engine, 4273 * which will only interrupt on an error 4274 */ 4275 if ((!not_cheerio) && (tmp_dcsr & DCSR_ERR_PEND)) { 4276 4277 res = DDI_INTR_CLAIMED; 4278 4279 done = 1; 4280 fdc->c_csb.csb_dcsr_rslt = 1; 4281 FDERRPRINT(FDEP_L1, FDEM_INTR, 4282 (C, "fdintr_dma: Error pending\n")); 4283 reset_dma_controller(fdc); 4284 set_dma_control_register(fdc, DCSR_INIT_BITS); 4285 break; 4286 } 4287 4288 /* TCBUG kludge */ 4289 if ((fdc->c_fdtype & FDCTYPE_TCBUG) && 4290 ((fdc->c_csb.csb_rslt[0] & IC_SR0) == 0x40) && 4291 (fdc->c_csb.csb_rslt[1] & EN_SR1)) { 4292 4293 fdc->c_csb.csb_rslt[0] &= ~IC_SR0; 4294 4295 fdc->c_csb.csb_rslt[1] &= ~EN_SR1; 4296 4297 4298 } 4299 4300 4301 /* Exit if there were errors in the DMA */ 4302 if (((fdc->c_csb.csb_rslt[0] & IC_SR0) != 0) || 4303 (fdc->c_csb.csb_rslt[1] != 0) || 4304 (fdc->c_csb.csb_rslt[2] != 0)) { 4305 done = 1; 4306 FDERRPRINT(FDEP_L1, FDEM_INTR, 4307 (C, "fdintr_dma: errors in command\n")); 4308 4309 4310 break; 4311 } 4312 4313 4314 FDERRPRINT(FDEP_L1, FDEM_INTR, 4315 (C, "fdintr_dma: dbcr 0x%x\n", 4316 get_data_count_register(fdc))); 4317 /* 4318 * The csb_ccount is the number of cookies that still 4319 * need to be processed. A cookie was just processed 4320 * so decrement the cookie counter. 4321 */ 4322 if (fdc->c_csb.csb_ccount == 0) { 4323 done = 1; 4324 break; 4325 } 4326 fdc->c_csb.csb_ccount--; 4327 ccount = fdc->c_csb.csb_ccount; 4328 4329 windex = fdc->c_csb.csb_windex; 4330 4331 /* 4332 * If there are no more cookies and all the windows 4333 * have been DMA'd, then DMA is done. 4334 * 4335 */ 4336 if ((ccount == 0) && (windex == fdc->c_csb.csb_nwin)) { 4337 4338 done = 1; 4339 4340 /* 4341 * The handle is unbound in fdexec 4342 */ 4343 4344 break; 4345 } 4346 4347 if (ccount != 0) { 4348 /* process the next cookie */ 4349 ddi_dma_nextcookie(fdc->c_dmahandle, 4350 &fdc->c_csb.csb_dmacookie); 4351 4352 FDERRPRINT(FDEP_L1, FDEM_INTR, 4353 (C, "cookie addr 0x%" PRIx64 "\n", 4354 fdc->c_csb.csb_dmacookie.dmac_laddress)); 4355 4356 FDERRPRINT(FDEP_L1, FDEM_INTR, 4357 (C, "cookie length %lu\n", 4358 fdc->c_csb.csb_dmacookie.dmac_size)); 4359 4360 } else { 4361 4362 (void) ddi_dma_getwin(fdc->c_dmahandle, 4363 fdc->c_csb.csb_windex, 4364 &off, &len, 4365 &fdc->c_csb.csb_dmacookie, 4366 &fdc->c_csb.csb_ccount); 4367 fdc->c_csb.csb_windex++; 4368 4369 FDERRPRINT(FDEP_L1, FDEM_INTR, 4370 (C, "fdintr_dma: process %d window\n", 4371 fdc->c_csb.csb_windex)); 4372 4373 FDERRPRINT(FDEP_L1, FDEM_INTR, 4374 (C, "fdintr_dma: process no. cookies %d\n", 4375 fdc->c_csb.csb_ccount)); 4376 4377 FDERRPRINT(FDEP_L1, FDEM_INTR, 4378 (C, "cookie addr 0x%" PRIx64 "\n", 4379 fdc->c_csb.csb_dmacookie.dmac_laddress)); 4380 4381 FDERRPRINT(FDEP_L1, FDEM_INTR, 4382 (C, "cookie length %lu\n", 4383 fdc->c_csb.csb_dmacookie.dmac_size)); 4384 } 4385 4386 /* 4387 * Program the DMA engine with the length and 4388 * the address of the transfer 4389 */ 4390 4391 ASSERT(fdc->c_csb.csb_dmacookie.dmac_size); 4392 4393 set_data_count_register(fdc, 4394 fdc->c_csb.csb_dmacookie.dmac_size); 4395 set_data_address_register(fdc, 4396 fdc->c_csb.csb_dmacookie.dmac_laddress); 4397 4398 FDERRPRINT(FDEP_L1, FDEM_INTR, (C, 4399 "fdintr_dma: size 0x%lx\n", 4400 fdc->c_csb.csb_dmacookie.dmac_size)); 4401 4402 4403 /* reprogram the controller */ 4404 fdc->c_csb.csb_cmds[2] = fdc->c_csb.csb_rslt[3]; 4405 fdc->c_csb.csb_cmds[3] = fdc->c_csb.csb_rslt[4]; 4406 fdc->c_csb.csb_cmds[4] = fdc->c_csb.csb_rslt[5]; 4407 fdc->c_csb.csb_cmds[1] = (fdc->c_csb.csb_cmds[1] 4408 & ~0x04) | (fdc->c_csb.csb_rslt[4] << 2); 4409 4410 for (i = 0; i < (int)fdc->c_csb.csb_ncmds; i++) { 4411 4412 /* 4413 * Test the readiness of the controller 4414 * to receive the cmd 4415 */ 4416 for (to = FD_CRETRY; to; to--) { 4417 if ((Msr(fdc) & (DIO|RQM)) == RQM) 4418 break; 4419 } 4420 if (to == 0) { 4421 FDERRPRINT(FDEP_L2, FDEM_EXEC, 4422 (C, 4423 "fdc: no RQM - stat 0x%x\n", 4424 Msr(fdc))); 4425 /* stop the DMA from happening */ 4426 fdc->c_csb.csb_status = 2; 4427 done = 1; 4428 break; 4429 } 4430 4431 Set_Fifo(fdc, fdc->c_csb.csb_cmds[i]); 4432 4433 FDERRPRINT(FDEP_L1, FDEM_INTR, 4434 (C, 4435 "fdintr_dma: sent 0x%x, Msr 0x%x\n", 4436 fdc->c_csb.csb_cmds[i], Msr(fdc))); 4437 } 4438 4439 /* reenable DMA */ 4440 if ((!not_cheerio) && (!done)) 4441 set_dma_control_register(fdc, tmp_dcsr | 4442 DCSR_EN_DMA); 4443 break; 4444 4445 case 0x2: 4446 /* seek/recal type cmd */ 4447 FDERRPRINT(FDEP_L1, FDEM_INTR, 4448 (C, "fintr_dma: opmode 2\n")); 4449 4450 /* 4451 * See if the interrupt is from the DMA engine, 4452 * which will only interrupt if there was an error. 4453 */ 4454 if ((!not_cheerio) && (tmp_dcsr & DCSR_ERR_PEND)) { 4455 res = DDI_INTR_CLAIMED; 4456 done = 1; 4457 fdc->c_csb.csb_dcsr_rslt = 1; 4458 reset_dma_controller(fdc); 4459 set_dma_control_register(fdc, DCSR_INIT_BITS); 4460 4461 break; 4462 } 4463 4464 4465 /* See if the interrupt is from the floppy controller */ 4466 if (not_cheerio || (tmp_dcsr & DCSR_INT_PEND)) { 4467 4468 res = DDI_INTR_CLAIMED; 4469 4470 4471 /* 4472 * Wait until there's no longer a command 4473 * in progress 4474 */ 4475 4476 FDERRPRINT(FDEP_L1, FDEM_INTR, 4477 (C, "fdintr_dma: interrupt pending\n")); 4478 i = 0; 4479 while (((Msr(fdc) & CB)) && (i < 10000)) { 4480 i++; 4481 } 4482 4483 if (i == 10000) 4484 FDERRPRINT(FDEP_L1, FDEM_INTR, 4485 (C, "2nd loop overran !!!\n")); 4486 4487 /* 4488 * Check the RQM bit to see if the controller is 4489 * ready to transfer status of the command. 4490 */ 4491 i = 0; 4492 while ((!(Msr(fdc) & RQM)) && (i < 10000)) { 4493 i++; 4494 } 4495 4496 if (i == 10000) 4497 FDERRPRINT(FDEP_L1, FDEM_INTR, 4498 (C, "3rd loop overran !!!\n")); 4499 4500 /* 4501 * Issue the Sense Interrupt Status Command 4502 */ 4503 Set_Fifo(fdc, SNSISTAT); 4504 4505 i = 0; 4506 while ((!(Msr(fdc) & RQM)) && (i < 10000)) { 4507 i++; 4508 } 4509 if (i == 10000) 4510 FDERRPRINT(FDEP_L1, FDEM_INTR, 4511 (C, "4th loop overran !!!\n")); 4512 4513 /* Store the first result byte */ 4514 fdc->c_csb.csb_rslt[0] = Fifo(fdc); 4515 4516 i = 0; 4517 while ((!(Msr(fdc) & RQM)) && (i < 10000)) { 4518 i++; 4519 } 4520 if (i == 10000) 4521 FDERRPRINT(FDEP_L1, FDEM_INTR, 4522 (C, "5th loop overran !!!\n")); 4523 4524 /* Store the second result byte */ 4525 fdc->c_csb.csb_rslt[1] = Fifo(fdc); 4526 4527 done = 1; 4528 } 4529 4530 } 4531 4532 /* 4533 * We are done with the actual interrupt handling here. 4534 * The portion below should be actually be done by fd_lointr(). 4535 * We should be triggering the fd_lointr here and exiting. 4536 * However for want of time this will be done in the next FIX. 4537 * 4538 * Hence for now we will release hilock only and keep the remaining 4539 * code as it is. 4540 * Releasing of hilock ensures that we don't hold on to the 4541 * lolock and hilock at the same time. 4542 * hilock is acquired each time dma related registers are accessed. 4543 */ 4544 mutex_exit(&fdc->c_hilock); 4545 /* Make signal and get out of interrupt handler */ 4546 if (done) { 4547 mutex_enter(&fdc->c_lolock); 4548 4549 fdc->c_csb.csb_opmode = 0; 4550 4551 /* reset watchdog timer if armed and not already triggered */ 4552 4553 4554 if (fdc->c_timeid) { 4555 timeout_id_t timeid = fdc->c_timeid; 4556 fdc->c_timeid = 0; 4557 mutex_exit(&fdc->c_lolock); 4558 (void) untimeout(timeid); 4559 mutex_enter(&fdc->c_lolock); 4560 } 4561 4562 4563 if (fdc->c_flags & FDCFLG_WAITING) { 4564 /* 4565 * somebody's waiting on finish of fdctlr/csb, 4566 * wake them 4567 */ 4568 4569 FDERRPRINT(FDEP_L1, FDEM_INTR, 4570 (C, "fdintr_dma: signal the waiter\n")); 4571 4572 fdc->c_flags ^= FDCFLG_WAITING; 4573 cv_signal(&fdc->c_iocv); 4574 4575 /* 4576 * FDCFLG_BUSY is NOT cleared, NOR is the csb given 4577 * back; the operation just finished can look at the csb 4578 */ 4579 } else { 4580 FDERRPRINT(FDEP_L1, FDEM_INTR, 4581 (C, "fdintr_dma: nobody sleeping (%x %x %x)\n", 4582 fdc->c_csb.csb_rslt[0], fdc->c_csb.csb_rslt[1], 4583 fdc->c_csb.csb_rslt[2])); 4584 } 4585 mutex_exit(&fdc->c_lolock); 4586 } 4587 /* update high level interrupt counter */ 4588 if (fdc->c_intrstat) 4589 KIOIP->intrs[KSTAT_INTR_HARD]++; 4590 4591 4592 FDERRPRINT(FDEP_L1, FDEM_INTR, (C, "fdintr_dma: done\n")); 4593 return (res); 4594 } 4595 4596 /* 4597 * fd_lointr 4598 * This is the low level SW interrupt handler triggered by the high 4599 * level interrupt handler (or by fdwatch). 4600 */ 4601 static uint_t 4602 fd_lointr(caddr_t arg) 4603 { 4604 struct fdctlr *fdc = (struct fdctlr *)arg; 4605 struct fdcsb *csb; 4606 4607 csb = &fdc->c_csb; 4608 FDERRPRINT(FDEP_L1, FDEM_INTR, (C, "fdintr: opmode %d\n", 4609 csb->csb_opmode)); 4610 /* 4611 * Check that lowlevel interrupt really meant to trigger us. 4612 */ 4613 if (csb->csb_opmode != 4) { 4614 /* 4615 * This should probably be protected, but, what the 4616 * heck...the cost isn't worth the accuracy for this 4617 * statistic. 4618 */ 4619 if (fdc->c_intrstat) 4620 KIOIP->intrs[KSTAT_INTR_SPURIOUS]++; 4621 return (DDI_INTR_UNCLAIMED); 4622 } 4623 4624 mutex_enter(&fdc->c_lolock); 4625 csb->csb_opmode = 0; 4626 4627 /* reset watchdog timer if armed and not already triggered */ 4628 if (fdc->c_timeid) { 4629 timeout_id_t timeid = fdc->c_timeid; 4630 fdc->c_timeid = 0; 4631 mutex_exit(&fdc->c_lolock); 4632 (void) untimeout(timeid); 4633 mutex_enter(&fdc->c_lolock); 4634 4635 } 4636 4637 if (fdc->c_flags & FDCFLG_WAITING) { 4638 /* 4639 * somebody's waiting on finish of fdctlr/csb, wake them 4640 */ 4641 fdc->c_flags ^= FDCFLG_WAITING; 4642 cv_signal(&fdc->c_iocv); 4643 4644 /* 4645 * FDCFLG_BUSY is NOT cleared, NOR is the csb given back; so 4646 * the operation just finished can look at the csb 4647 */ 4648 } else { 4649 FDERRPRINT(FDEP_L3, FDEM_INTR, 4650 (C, "fdintr: nobody sleeping (%x %x %x)\n", 4651 csb->csb_rslt[0], csb->csb_rslt[1], csb->csb_rslt[2])); 4652 } 4653 if (fdc->c_intrstat) 4654 KIOIP->intrs[KSTAT_INTR_SOFT]++; 4655 mutex_exit(&fdc->c_lolock); 4656 return (DDI_INTR_CLAIMED); 4657 } 4658 4659 /* 4660 * fdwatch 4661 * is called from timein() when a floppy operation has expired. 4662 */ 4663 static void 4664 fdwatch(void *arg) 4665 { 4666 struct fdctlr *fdc = arg; 4667 int old_opmode; 4668 struct fdcsb *csb; 4669 4670 FDERRPRINT(FDEP_L1, FDEM_WATC, (C, "fdwatch\n")); 4671 4672 mutex_enter(&fdc->c_lolock); 4673 if (fdc->c_timeid == 0) { 4674 /* 4675 * fdintr got here first, ergo, no timeout condition.. 4676 */ 4677 4678 FDERRPRINT(FDEP_L1, FDEM_WATC, 4679 (C, "fdwatch: no timeout\n")); 4680 4681 mutex_exit(&fdc->c_lolock); 4682 return; 4683 } 4684 fdc->c_timeid = 0; 4685 csb = &fdc->c_csb; 4686 4687 mutex_enter(&fdc->c_hilock); 4688 /* 4689 * XXXX: We should probably reset the bloody chip 4690 */ 4691 old_opmode = csb->csb_opmode; 4692 4693 FDERRPRINT(FDEP_L1, FDEM_WATC, 4694 (C, "fd%d: timeout, opmode:%d\n", csb->csb_unit, old_opmode)); 4695 4696 csb->csb_opmode = 4; 4697 mutex_exit(&fdc->c_hilock); 4698 4699 FDERRPRINT(FDEP_L1, FDEM_WATC, (C, "fdwatch: cmd %s timed out\n", 4700 fdcmds[csb->csb_cmds[0] & 0x1f].cmdname)); 4701 fdc->c_flags |= FDCFLG_TIMEDOUT; 4702 csb->csb_status = CSB_CMDTO; 4703 4704 if ((fdc->c_fdtype & FDCTYPE_DMA) == 0) { 4705 ddi_trigger_softintr(fdc->c_softid); 4706 KIOIP->intrs[KSTAT_INTR_WATCHDOG]++; 4707 mutex_exit(&fdc->c_lolock); 4708 } else { 4709 mutex_exit(&fdc->c_lolock); 4710 (void) fd_lointr((caddr_t)fdctlrs); 4711 } 4712 } 4713 4714 /* 4715 * fdgetcsb 4716 * wait until the csb is free 4717 */ 4718 static void 4719 fdgetcsb(struct fdctlr *fdc) 4720 { 4721 FDERRPRINT(FDEP_L1, FDEM_GETC, (C, "fdgetcsb\n")); 4722 ASSERT(mutex_owned(&fdc->c_lolock)); 4723 while (fdc->c_flags & FDCFLG_BUSY) { 4724 fdc->c_flags |= FDCFLG_WANT; 4725 cv_wait(&fdc->c_csbcv, &fdc->c_lolock); 4726 } 4727 fdc->c_flags |= FDCFLG_BUSY; /* got it! */ 4728 } 4729 4730 /* 4731 * fdretcsb 4732 * return csb 4733 */ 4734 static void 4735 fdretcsb(struct fdctlr *fdc) 4736 { 4737 4738 ASSERT(mutex_owned(&fdc->c_lolock)); 4739 FDERRPRINT(FDEP_L1, FDEM_RETC, (C, "fdretcsb\n")); 4740 fdc->c_flags &= ~FDCFLG_BUSY; /* let go */ 4741 4742 fdc->c_csb.csb_read = 0; 4743 4744 if (fdc->c_flags & FDCFLG_WANT) { 4745 fdc->c_flags ^= FDCFLG_WANT; 4746 /* 4747 * broadcast the signal. One thread will wake up and 4748 * set the flags to FDCFLG_BUSY. If more than one thread is 4749 * waiting then each thread will wake up in turn. The first 4750 * thread to wake-up will set the FDCFLG_BUSY flag and the 4751 * subsequent threads will will wake-up, but reset the 4752 * flag to FDCFLG_WANT because the FDCFLG_BUSY bit is set. 4753 */ 4754 cv_broadcast(&fdc->c_csbcv); 4755 } 4756 } 4757 4758 4759 /* 4760 * fdreset 4761 * reset THE controller, and configure it to be 4762 * the way it ought to be 4763 * ASSUMES: that it already owns the csb/fdctlr! 4764 * 4765 * - called with the low level lock held 4766 */ 4767 static int 4768 fdreset(struct fdctlr *fdc) 4769 { 4770 struct fdcsb *csb; 4771 clock_t local_lbolt = 0; 4772 timeout_id_t timeid; 4773 4774 FDERRPRINT(FDEP_L1, FDEM_RESE, (C, "fdreset\n")); 4775 4776 ASSERT(mutex_owned(&fdc->c_lolock)); 4777 4778 /* count resets */ 4779 fdc->fdstats.reset++; 4780 4781 /* 4782 * On the 82077, the DSR will clear itself after a reset. Upon exiting 4783 * the reset, a polling interrupt will be generated. If the floppy 4784 * interrupt is enabled, it's possible for cv_signal() to be called 4785 * before cv_wait(). This will cause the system to hang. Turn off 4786 * the floppy interrupt to avoid this race condition 4787 */ 4788 if ((fdc->c_fdtype & FDCTYPE_CTRLMASK) == FDCTYPE_82077) { 4789 /* 4790 * We need to perform any timeouts before we Reset the 4791 * controller. We cannot afford to drop the c_lolock mutex after 4792 * Resetting the controller. The reason is that we get a spate 4793 * of interrupts until we take the controller out of reset. 4794 * The way we avoid this spate of continuous interrupts is by 4795 * holding on to the c_lolock and forcing the fdintr_dma routine 4796 * to go to sleep waiting for this mutex. 4797 */ 4798 /* Do not hold the mutex across the untimeout call */ 4799 timeid = fdc->c_mtimeid; 4800 fdc->c_mtimeid = 0; 4801 if (timeid) { 4802 mutex_exit(&fdc->c_lolock); 4803 (void) untimeout(timeid); 4804 mutex_enter(&fdc->c_lolock); 4805 } 4806 /* LINTED */ 4807 Set_dor(fdc, DMAGATE, 0); 4808 FDERRPRINT(FDEP_L1, FDEM_RESE, (C, "fdreset: set dor\n")); 4809 } 4810 4811 /* toggle software reset */ 4812 Dsr(fdc, SWR); 4813 4814 drv_usecwait(5); 4815 4816 FDERRPRINT(FDEP_L1, FDEM_RESE, 4817 (C, "fdreset: toggled software reset\n")); 4818 4819 /* 4820 * This sets the data rate to 500Kbps (for high density) 4821 * XXX should use current characteristics instead XXX 4822 */ 4823 Dsr(fdc, 0); 4824 drv_usecwait(5); 4825 switch (fdc->c_fdtype & FDCTYPE_CTRLMASK) { 4826 case FDCTYPE_82077: 4827 /* 4828 * when we bring the controller out of reset it will generate 4829 * a polling interrupt. fdintr() will field it and schedule 4830 * fd_lointr(). There will be no one sleeping but we are 4831 * expecting an interrupt so.... 4832 */ 4833 fdc->c_flags |= FDCFLG_WAITING; 4834 4835 /* 4836 * The reset bit must be cleared to take the 077 out of 4837 * reset state and the DMAGATE bit must be high to enable 4838 * interrupts. 4839 */ 4840 /* LINTED */ 4841 Set_dor(fdc, DMAGATE|RESET, 1); 4842 4843 FDERRPRINT(FDEP_L1, FDEM_ATTA, 4844 (C, "fdattach: Dor 0x%x\n", Dor(fdc))); 4845 4846 local_lbolt = ddi_get_lbolt(); 4847 if (cv_timedwait(&fdc->c_iocv, &fdc->c_lolock, 4848 local_lbolt + drv_usectohz(1000000)) == -1) { 4849 return (-1); 4850 } 4851 break; 4852 4853 default: 4854 fdc->c_flags |= FDCFLG_WAITING; 4855 4856 /* 4857 * A timed wait is not used because it's possible for the timer 4858 * to go off before the controller has a chance to interrupt. 4859 */ 4860 cv_wait(&fdc->c_iocv, &fdc->c_lolock); 4861 break; 4862 } 4863 csb = &fdc->c_csb; 4864 4865 /* setup common things in csb */ 4866 csb->csb_unit = fdc->c_un->un_unit_no; 4867 csb->csb_nrslts = 0; 4868 csb->csb_opflags = CSB_OFNORESULTS; 4869 csb->csb_maxretry = 0; 4870 csb->csb_retrys = 0; 4871 4872 csb->csb_read = CSB_NULL; 4873 4874 /* send SPECIFY command to fdc */ 4875 /* csb->unit is don't care */ 4876 csb->csb_cmds[0] = FDRAW_SPECIFY; 4877 csb->csb_cmds[1] = fdspec[0]; /* step rate, head unload time */ 4878 if (fdc->c_fdtype & FDCTYPE_DMA) 4879 csb->csb_cmds[2] = SPEC_DMA_MODE; 4880 else 4881 csb->csb_cmds[2] = fdspec[1]; /* head load time, DMA mode */ 4882 4883 csb->csb_ncmds = 3; 4884 4885 /* XXX for now ignore errors, they "CAN'T HAPPEN" */ 4886 (void) fdexec(fdc, 0); /* no FDXC_CHECKCHG, ... */ 4887 /* no results */ 4888 4889 /* send CONFIGURE command to fdc */ 4890 /* csb->unit is don't care */ 4891 csb->csb_cmds[0] = CONFIGURE; 4892 csb->csb_cmds[1] = fdconf[0]; /* motor info, motor delays */ 4893 csb->csb_cmds[2] = fdconf[1]; /* enaimplsk, disapoll, fifothru */ 4894 csb->csb_cmds[3] = fdconf[2]; /* track precomp */ 4895 csb->csb_ncmds = 4; 4896 4897 csb->csb_read = CSB_NULL; 4898 4899 csb->csb_retrys = 0; 4900 4901 /* XXX for now ignore errors, they "CAN'T HAPPEN" */ 4902 (void) fdexec(fdc, 0); /* no FDXC_CHECKCHG, ... */ 4903 return (0); 4904 } 4905 4906 /* 4907 * fdrecalseek 4908 * performs recalibrates or seeks if the "arg" is -1 does a 4909 * recalibrate on a drive, else it seeks to the cylinder of 4910 * the drive. The recalibrate is also used to find a drive, 4911 * ie if the drive is not there, the controller says "error" 4912 * on the operation 4913 * NOTE: that there is special handling of this operation in the hardware 4914 * interrupt routine - it causes the operation to appear to have results; 4915 * ie the results of the SENSE INTERRUPT STATUS that the hardware interrupt 4916 * function did for us. 4917 * NOTE: because it uses sleep/wakeup it must be protected in a critical 4918 * section so create one before calling it! 4919 * 4920 * RETURNS: 0 for ok, 4921 * else errno from fdexec, 4922 * or ENODEV if error (infers hardware type error) 4923 * 4924 * - called with the low level lock held 4925 */ 4926 static int 4927 fdrecalseek(struct fdctlr *fdc, int unit, int arg, int execflg) 4928 { 4929 struct fdcsb *csb; 4930 int result; 4931 4932 ASSERT(fdc->c_un->un_unit_no == unit); 4933 4934 FDERRPRINT(FDEP_L1, FDEM_RECA, (C, "fdrecalseek to %d\n", arg)); 4935 4936 /* XXX TODO: check see argument for <= num cyls OR < 256 */ 4937 4938 csb = &fdc->c_csb; 4939 csb->csb_unit = (uchar_t)unit; 4940 csb->csb_cmds[1] = unit & 0x03; 4941 4942 if (arg == -1) { /* is recal... */ 4943 csb->csb_cmds[0] = FDRAW_REZERO; 4944 csb->csb_ncmds = 2; 4945 } else { 4946 csb->csb_cmds[0] = FDRAW_SEEK; 4947 csb->csb_cmds[2] = (uchar_t)arg; 4948 csb->csb_ncmds = 3; 4949 } 4950 csb->csb_nrslts = 2; /* 2 for SENSE INTERRUPTS */ 4951 csb->csb_opflags = CSB_OFSEEKOPS | CSB_OFTIMEIT; 4952 /* 4953 * MAYBE NYD need to set retries to different values? - depending on 4954 * drive characteristics - if we get to high capacity drives 4955 */ 4956 csb->csb_maxretry = skretry; 4957 csb->csb_retrys = 0; 4958 4959 /* send cmd off to fdexec */ 4960 if (result = fdexec(fdc, FDXC_SLEEP | execflg)) { 4961 goto out; 4962 } 4963 4964 /* 4965 * if recal, test for equipment check error 4966 * ASSUMES result = 0 from above call 4967 */ 4968 if (arg == -1) { 4969 result = 0; 4970 } else { 4971 /* for seeks, any old error will do */ 4972 if ((csb->csb_rslt[0] & IC_SR0) || csb->csb_cmdstat) 4973 result = ENODEV; 4974 } 4975 4976 out: 4977 return (result); 4978 } 4979 4980 /* 4981 * fdsensedrv 4982 * do a sense_drive command. used by fdopen and fdcheckdisk. 4983 * 4984 * - called with the lock held 4985 */ 4986 static int 4987 fdsensedrv(struct fdctlr *fdc, int unit) 4988 { 4989 struct fdcsb *csb; 4990 4991 ASSERT(fdc->c_un->un_unit_no == unit); 4992 4993 csb = &fdc->c_csb; 4994 4995 /* setup common things in csb */ 4996 csb->csb_unit = (uchar_t)unit; 4997 csb->csb_opflags = CSB_OFIMMEDIATE; 4998 csb->csb_cmds[0] = FDRAW_SENSE_DRV; 4999 /* MOT bit set means don't delay */ 5000 csb->csb_cmds[1] = MOT | (unit & 0x03); 5001 csb->csb_ncmds = 2; 5002 csb->csb_nrslts = 1; 5003 csb->csb_maxretry = skretry; 5004 csb->csb_retrys = 0; 5005 5006 /* XXX for now ignore errors, they "CAN'T HAPPEN" */ 5007 (void) fdexec(fdc, 0); /* DON't check changed!, no sleep */ 5008 5009 FDERRPRINT(FDEP_L1, FDEM_CHEK, 5010 (C, "fdsensedrv: result 0x%x", csb->csb_rslt[0])); 5011 5012 return (csb->csb_rslt[0]); /* return status byte 3 */ 5013 } 5014 5015 /* 5016 * fdcheckdisk 5017 * check to see if the disk is still there - do a recalibrate, 5018 * then see if DSKCHG line went away, if so, diskette is in; else 5019 * it's (still) out. 5020 */ 5021 5022 static int 5023 fdcheckdisk(struct fdctlr *fdc, int unit) 5024 { 5025 auto struct fdcsb savecsb; 5026 struct fdcsb *csb; 5027 int err, st3; 5028 int seekto; /* where to seek for reset of DSKCHG */ 5029 5030 FDERRPRINT(FDEP_L1, FDEM_CHEK, 5031 (C, "fdcheckdisk, unit %d\n", unit)); 5032 5033 ASSERT(fdc->c_un->un_unit_no == unit); 5034 5035 /* 5036 * save old csb 5037 */ 5038 5039 csb = &fdc->c_csb; 5040 savecsb = fdc->c_csb; 5041 bzero((caddr_t)csb, sizeof (*csb)); 5042 5043 /* 5044 * Read drive status to see if at TRK0, if so, seek to cyl 1, 5045 * else seek to cyl 0. We do this because the controller is 5046 * "smart" enough to not send any step pulses (which are how 5047 * the DSKCHG line gets reset) if it sees TRK0 'cause it 5048 * knows the drive is already recalibrated. 5049 */ 5050 st3 = fdsensedrv(fdc, unit); 5051 5052 /* check TRK0 bit in status */ 5053 if (st3 & T0_SR3) 5054 seekto = 1; /* at TRK0, seek out */ 5055 else 5056 seekto = 0; 5057 5058 /* 5059 * DON'T recurse check changed 5060 */ 5061 err = fdrecalseek(fdc, unit, seekto, 0); 5062 5063 /* "restore" old csb, check change state */ 5064 fdc->c_csb = savecsb; 5065 5066 /* any recal/seek errors are too serious to attend to */ 5067 if (err) { 5068 FDERRPRINT(FDEP_L2, FDEM_CHEK, 5069 (C, "fdcheckdisk err %d\n", err)); 5070 return (err); 5071 } 5072 5073 /* 5074 * if disk change still asserted, no diskette in drive! 5075 */ 5076 if (fdsense_chng(fdc, csb->csb_unit)) { 5077 FDERRPRINT(FDEP_L2, FDEM_CHEK, 5078 (C, "fdcheckdisk no disk\n")); 5079 return (1); 5080 } 5081 return (0); 5082 } 5083 5084 /* 5085 * fdselect() - select drive, needed for external to chip select logic 5086 * fdeject() - ejects drive, must be previously selected 5087 * fdsense_chng() - sense disk changed line from previously selected drive 5088 * return s 1 is signal asserted, else 0 5089 */ 5090 /* ARGSUSED */ 5091 static void 5092 fdselect(struct fdctlr *fdc, int unit, int on) 5093 { 5094 5095 ASSERT(fdc->c_un->un_unit_no == unit); 5096 5097 FDERRPRINT(FDEP_L1, FDEM_DSEL, 5098 (C, "fdselect, unit %d, on = %d\n", unit, on)); 5099 5100 switch (fdc->c_fdtype & FDCTYPE_AUXIOMASK) { 5101 case FDCTYPE_MACHIO: 5102 set_auxioreg(AUX_DRVSELECT, on); 5103 break; 5104 5105 case FDCTYPE_SLAVIO: 5106 case FDCTYPE_CHEERIO: 5107 FDERRPRINT(FDEP_L1, FDEM_ATTA, 5108 (C, "fdselect: (before) Dor 0x%x\n", Dor(fdc))); 5109 5110 if (unit == 0) { 5111 Set_dor(fdc, DRVSEL, !on); 5112 } else { 5113 Set_dor(fdc, DRVSEL, on); 5114 } 5115 5116 FDERRPRINT(FDEP_L1, FDEM_ATTA, 5117 (C, "fdselect: Dor 0x%x\n", Dor(fdc))); 5118 5119 break; 5120 5121 default: 5122 break; 5123 } 5124 } 5125 5126 /* ARGSUSED */ 5127 static void 5128 fdeject(struct fdctlr *fdc, int unit) 5129 { 5130 struct fdunit *un; 5131 5132 ASSERT(fdc->c_un->un_unit_no == unit); 5133 5134 un = fdc->c_un; 5135 5136 FDERRPRINT(FDEP_L1, FDEM_EJEC, (C, "fdeject\n")); 5137 /* 5138 * assume delay of function calling sufficient settling time 5139 * eject line is NOT driven by inverter so it is true low 5140 */ 5141 switch (fdc->c_fdtype & FDCTYPE_AUXIOMASK) { 5142 case FDCTYPE_MACHIO: 5143 set_auxioreg(AUX_EJECT, 0); 5144 drv_usecwait(2); 5145 set_auxioreg(AUX_EJECT, 1); 5146 break; 5147 5148 case FDCTYPE_SLAVIO: 5149 if (!(Dor(fdc) & MOTEN(unit))) { 5150 /* LINTED */ 5151 Set_dor(fdc, MOTEN(unit), 1); 5152 } 5153 drv_usecwait(2); /* just to settle */ 5154 /* LINTED */ 5155 Set_dor(fdc, EJECT, 1); 5156 drv_usecwait(2); 5157 /* LINTED */ 5158 Set_dor(fdc, EJECT, 0); 5159 break; 5160 case FDCTYPE_CHEERIO: 5161 if (!(Dor(fdc) & MOTEN(unit))) { 5162 /* LINTED */ 5163 Set_dor(fdc, MOTEN(unit), 1); 5164 } 5165 drv_usecwait(2); /* just to settle */ 5166 /* LINTED */ 5167 Set_dor(fdc, EJECT_DMA, 1); 5168 drv_usecwait(2); 5169 /* LINTED */ 5170 Set_dor(fdc, EJECT_DMA, 0); 5171 break; 5172 } 5173 /* 5174 * XXX set ejected state? 5175 */ 5176 un->un_ejected = 1; 5177 } 5178 5179 /* ARGSUSED */ 5180 static int 5181 fdsense_chng(struct fdctlr *fdc, int unit) 5182 { 5183 int changed = 0; 5184 5185 FDERRPRINT(FDEP_L1, FDEM_SCHG, (C, "fdsense_chng:start\n")); 5186 5187 ASSERT(fdc->c_un->un_unit_no == unit); 5188 5189 /* 5190 * Do not turn on the motor of a pollable drive 5191 */ 5192 if (fd_pollable) { 5193 FDERRPRINT(FDEP_L1, FDEM_SCHG, (C, "pollable: don't turn on motor\n")); 5194 /* 5195 * Invert the sense of the DSKCHG for pollable drives 5196 */ 5197 if (Dir(fdc) & DSKCHG) 5198 changed = 0; 5199 else 5200 changed = 1; 5201 5202 return (changed); 5203 } 5204 5205 switch (fdc->c_fdtype & FDCTYPE_AUXIOMASK) { 5206 case FDCTYPE_MACHIO: 5207 if (*fdc->c_auxiova & AUX_DISKCHG) 5208 changed = 1; 5209 break; 5210 5211 case FDCTYPE_SB: 5212 case FDCTYPE_SLAVIO: 5213 case FDCTYPE_CHEERIO: 5214 if (!(Dor(fdc) & MOTEN(unit))) { 5215 /* LINTED */ 5216 Set_dor(fdc, MOTEN(unit), 1); 5217 } 5218 drv_usecwait(2); /* just to settle */ 5219 if (Dir(fdc) & DSKCHG) 5220 changed = 1; 5221 break; 5222 } 5223 5224 FDERRPRINT(FDEP_L1, FDEM_SCHG, (C, "fdsense_chng:end\n")); 5225 5226 return (changed); 5227 } 5228 5229 /* 5230 * if it can read a valid label it does so, else it will use a 5231 * default. If it can`t read the diskette - that is an error. 5232 * 5233 * RETURNS: 0 for ok - meaning that it could at least read the device, 5234 * !0 for error XXX TBD NYD error codes 5235 * 5236 * - called with the low level lock held 5237 */ 5238 static int 5239 fdgetlabel(struct fdctlr *fdc, int unit) 5240 { 5241 struct dk_label *label = NULL; 5242 struct fdunit *un; 5243 short *sp; 5244 short count; 5245 short xsum; /* checksum */ 5246 int i, tries; 5247 int err = 0; 5248 short oldlvl; 5249 5250 FDERRPRINT(FDEP_L1, FDEM_GETL, 5251 (C, "fdgetlabel: unit %d\n", unit)); 5252 5253 un = fdc->c_un; 5254 un->un_flags &= ~(FDUNIT_UNLABELED); 5255 5256 ASSERT(fdc->c_un->un_unit_no == unit); 5257 5258 /* Do not print errors since this is a private cmd */ 5259 5260 oldlvl = fderrlevel; 5261 5262 5263 fderrlevel = FDEP_L4; 5264 5265 label = (struct dk_label *) 5266 kmem_zalloc(sizeof (struct dk_label), KM_SLEEP); 5267 5268 /* 5269 * try different characteristics (ie densities) by attempting to read 5270 * from the diskette. The diskette may not be present or 5271 * is unformatted. 5272 * 5273 * First, the last sector of the first track is read. If this 5274 * passes, attempt to read the last sector + 1 of the first track. 5275 * For example, for a high density diskette, sector 18 is read. If 5276 * the diskette is high density, this will pass. Next, try to 5277 * read sector 19 of the first track. This should fail. If it 5278 * passes, this is not a high density diskette. Finally, read 5279 * the first sector which should contain a label. 5280 * 5281 * if un->un_curfdtype is -1 then the current characteristics 5282 * were set by FDIOSCHAR and need to try it as well as everything 5283 * in the table 5284 */ 5285 if (un->un_curfdtype == -1) { 5286 tries = nfdtypes+1; 5287 FDERRPRINT(FDEP_L1, FDEM_GETL, 5288 (C, "fdgetl: un_curfdtype is -1\n")); 5289 5290 } else { 5291 tries = nfdtypes; 5292 5293 /* Always start with the highest density (1.7MB) */ 5294 un->un_curfdtype = 0; 5295 *(un->un_chars) = fdtypes[un->un_curfdtype]; 5296 } 5297 5298 FDERRPRINT(FDEP_L1, FDEM_GETL, 5299 (C, "fdgetl: no. of tries %d\n", tries)); 5300 FDERRPRINT(FDEP_L1, FDEM_GETL, 5301 (C, "fdgetl: no. of curfdtype %d\n", un->un_curfdtype)); 5302 5303 for (i = 0; i < tries; i++) { 5304 FDERRPRINT(FDEP_L1, FDEM_GETL, 5305 (C, "fdgetl: trying %d\n", i)); 5306 5307 if (!(err = fdrw(fdc, unit, FDREAD, 0, 0, 5308 un->un_chars->fdc_secptrack, (caddr_t)label, 5309 sizeof (struct dk_label))) && 5310 5311 fdrw(fdc, unit, FDREAD, 0, 0, 5312 un->un_chars->fdc_secptrack + 1, 5313 (caddr_t)label, sizeof (struct dk_label)) && 5314 5315 !(err = fdrw(fdc, unit, FDREAD, 0, 0, 1, (caddr_t)label, 5316 sizeof (struct dk_label)))) { 5317 5318 FDERRPRINT(FDEP_L1, FDEM_GETL, 5319 (C, "fdgetl: succeeded\n")); 5320 5321 break; 5322 } 5323 5324 /* 5325 * try the next entry in the characteristics tbl 5326 * If curfdtype is -1, the nxt entry in tbl is 0 (the first). 5327 */ 5328 5329 un->un_curfdtype = (un->un_curfdtype + 1) % nfdtypes; 5330 *(un->un_chars) = fdtypes[un->un_curfdtype]; 5331 5332 5333 } 5334 5335 /* print errors again */ 5336 fderrlevel = oldlvl; 5337 5338 /* Couldn't read anything */ 5339 if (err) { 5340 5341 /* The default characteristics are high density (1.4MB) */ 5342 un->un_curfdtype = 1; 5343 *(un->un_chars) = fdtypes[un->un_curfdtype]; 5344 5345 fdunpacklabel(&fdlbl_high_80, &un->un_label); 5346 5347 FDERRPRINT(FDEP_L1, FDEM_GETL, 5348 (C, "fdgetl: Can't autosense diskette\n")); 5349 5350 goto out; 5351 } 5352 5353 FDERRPRINT(FDEP_L1, FDEM_GETL, 5354 (C, "fdgetl: fdtype=%d !!!\n", un->un_curfdtype)); 5355 FDERRPRINT(FDEP_L1, FDEM_GETL, 5356 (C, "fdgetl: rate=%d ssize=%d !!!\n", 5357 un->un_chars->fdc_transfer_rate, un->un_chars->fdc_sec_size)); 5358 5359 /* 5360 * _something_ was read - look for unixtype label 5361 */ 5362 if (label->dkl_magic != DKL_MAGIC) { 5363 5364 /* 5365 * The label isn't a unix label. However, the diskette 5366 * is formatted because we were able to read the first 5367 * cylinder. 5368 */ 5369 5370 FDERRPRINT(FDEP_L1, FDEM_GETL, 5371 (C, "fdgetl: not unix label\n")); 5372 5373 goto nolabel; 5374 } 5375 5376 /* 5377 * Checksum the label 5378 */ 5379 count = sizeof (struct dk_label)/sizeof (short); 5380 sp = (short *)label; 5381 xsum = 0; 5382 while (count--) 5383 xsum ^= *sp++; /* should add up to 0 */ 5384 if (xsum) { 5385 5386 /* 5387 * The checksum fails. However, the diskette is formatted 5388 * because we were able to read the first cylinder 5389 */ 5390 5391 FDERRPRINT(FDEP_L1, FDEM_GETL, 5392 (C, "fdgetl: bad cksum\n")); 5393 5394 goto nolabel; 5395 } 5396 5397 /* 5398 * The diskette has a unix label with a correct checksum. 5399 * Copy the label into the unit structure 5400 */ 5401 un->un_label = *label; 5402 5403 goto out; 5404 5405 nolabel: 5406 /* 5407 * The diskette doesn't have a correct unix label, but it is formatted. 5408 * Use a default label according to the diskette's density 5409 * (mark default used) 5410 */ 5411 FDERRPRINT(FDEP_L1, FDEM_GETL, 5412 (C, "fdgetlabel: unit %d\n", unit)); 5413 un->un_flags |= FDUNIT_UNLABELED; 5414 switch (un->un_chars->fdc_secptrack) { 5415 case 9: 5416 fdunpacklabel(&fdlbl_low_80, &un->un_label); 5417 break; 5418 case 8: 5419 fdunpacklabel(&fdlbl_medium_80, &un->un_label); 5420 break; 5421 case 18: 5422 fdunpacklabel(&fdlbl_high_80, &un->un_label); 5423 break; 5424 case 21: 5425 fdunpacklabel(&fdlbl_high_21, &un->un_label); 5426 break; 5427 default: 5428 fdunpacklabel(&fdlbl_high_80, &un->un_label); 5429 break; 5430 } 5431 5432 out: 5433 if (label != NULL) 5434 kmem_free((caddr_t)label, sizeof (struct dk_label)); 5435 return (err); 5436 } 5437 5438 /* 5439 * fdrw- used only for reading labels and for DKIOCSVTOC ioctl 5440 * which reads the 1 sector. 5441 */ 5442 static int 5443 fdrw(struct fdctlr *fdc, int unit, int rw, int cyl, int head, 5444 int sector, caddr_t bufp, uint_t len) 5445 { 5446 struct fdcsb *csb; 5447 struct fd_char *ch; 5448 int cmdresult = 0; 5449 caddr_t dma_addr; 5450 size_t real_length; 5451 int res; 5452 ddi_device_acc_attr_t attr; 5453 ddi_acc_handle_t mem_handle = NULL; 5454 5455 FDERRPRINT(FDEP_L1, FDEM_RW, (C, "fdrw\n")); 5456 5457 ASSERT(fdc->c_un->un_unit_no == unit); 5458 5459 CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc); 5460 5461 if (fdc->c_un->un_state == FD_STATE_STOPPED) { 5462 mutex_exit(&fdc->c_lolock); 5463 if ((pm_raise_power(fdc->c_dip, 0, PM_LEVEL_ON)) 5464 != DDI_SUCCESS) { 5465 FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "Power change \ 5466 failed. \n")); 5467 mutex_enter(&fdc->c_lolock); 5468 return (EIO); 5469 } 5470 5471 mutex_enter(&fdc->c_lolock); 5472 } 5473 5474 fdgetcsb(fdc); 5475 csb = &fdc->c_csb; 5476 ch = fdc->c_un->un_chars; 5477 if (rw == FDREAD) { 5478 if (fdc->c_fdtype & FDCTYPE_TCBUG) { 5479 /* 5480 * kludge for lack of Multitrack functionality 5481 */ 5482 csb->csb_cmds[0] = SK + FDRAW_RDCMD; 5483 } else 5484 csb->csb_cmds[0] = MT + SK + FDRAW_RDCMD; 5485 } else { /* write */ 5486 if (fdc->c_fdtype & FDCTYPE_TCBUG) { 5487 /* 5488 * kludge for lack of Multitrack functionality 5489 */ 5490 csb->csb_cmds[0] = FDRAW_WRCMD; 5491 } else 5492 csb->csb_cmds[0] = MT + FDRAW_WRCMD; 5493 } 5494 5495 if (rw == FDREAD) 5496 fdc->c_csb.csb_read = CSB_READ; 5497 else 5498 fdc->c_csb.csb_read = CSB_WRITE; 5499 5500 /* always or in MFM bit */ 5501 csb->csb_cmds[0] |= MFM; 5502 csb->csb_cmds[1] = (uchar_t)(unit | ((head & 0x1) << 2)); 5503 if (fdc->c_fdtype & FDCTYPE_SB) 5504 csb->csb_cmds[1] |= IPS; 5505 csb->csb_cmds[2] = (uchar_t)cyl; 5506 csb->csb_cmds[3] = (uchar_t)head; 5507 csb->csb_cmds[4] = (uchar_t)sector; 5508 csb->csb_cmds[5] = ch->fdc_medium ? 3 : 2; /* sector size code */ 5509 /* 5510 * kludge for end-of-cylinder error. 5511 */ 5512 if (fdc->c_fdtype & FDCTYPE_TCBUG) 5513 csb->csb_cmds[6] = sector + (len / ch->fdc_sec_size) - 1; 5514 else 5515 csb->csb_cmds[6] = 5516 (uchar_t)max(fdc->c_un->un_chars->fdc_secptrack, sector); 5517 csb->csb_len = len; 5518 csb->csb_cmds[7] = GPLN; 5519 csb->csb_cmds[8] = SSSDTL; 5520 csb->csb_ncmds = NCBRW; 5521 csb->csb_len = len; 5522 csb->csb_maxretry = 2; 5523 csb->csb_retrys = 0; 5524 bzero(csb->csb_rslt, NRBRW); 5525 csb->csb_nrslts = NRBRW; 5526 csb->csb_opflags = CSB_OFXFEROPS | CSB_OFTIMEIT; 5527 5528 /* If platform supports DMA, set up DMA resources */ 5529 if (fdc->c_fdtype & FDCTYPE_DMA) { 5530 5531 mutex_enter(&fdc->c_hilock); 5532 5533 attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 5534 attr.devacc_attr_endian_flags = DDI_STRUCTURE_BE_ACC; 5535 attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 5536 5537 res = ddi_dma_mem_alloc(fdc->c_dmahandle, len, 5538 &attr, DDI_DMA_STREAMING, 5539 DDI_DMA_DONTWAIT, 0, &dma_addr, &real_length, 5540 &mem_handle); 5541 5542 if (res != DDI_SUCCESS) { 5543 FDERRPRINT(FDEP_L1, FDEM_RW, 5544 (C, "fdrw: dma mem alloc failed\n")); 5545 5546 fdretcsb(fdc); 5547 mutex_exit(&fdc->c_hilock); 5548 return (EIO); 5549 } 5550 5551 FDERRPRINT(FDEP_L1, FDEM_RW, (C, "fdrw: allocated memory")); 5552 5553 if (fdstart_dma(fdc, dma_addr, len) != 0) { 5554 fdretcsb(fdc); 5555 ddi_dma_mem_free(&mem_handle); 5556 mutex_exit(&fdc->c_hilock); 5557 return (-1); 5558 5559 } 5560 5561 /* 5562 * If the command is a write, copy the data to be written to 5563 * dma_addr. 5564 */ 5565 5566 if (fdc->c_csb.csb_read == CSB_WRITE) { 5567 bcopy((char *)bufp, (char *)dma_addr, len); 5568 } 5569 5570 csb->csb_addr = dma_addr; 5571 mutex_exit(&fdc->c_hilock); 5572 } else { 5573 csb->csb_addr = bufp; 5574 } 5575 5576 5577 FDERRPRINT(FDEP_L1, FDEM_RW, (C, "fdrw: call fdexec\n")); 5578 5579 if (fdexec(fdc, FDXC_SLEEP | FDXC_CHECKCHG) != 0) { 5580 fdretcsb(fdc); 5581 5582 if (mem_handle) 5583 ddi_dma_mem_free(&mem_handle); 5584 5585 return (EIO); 5586 5587 } 5588 5589 FDERRPRINT(FDEP_L1, FDEM_RW, (C, "fdrw: fdexec returned\n")); 5590 5591 /* 5592 * if DMA was used and the command was a read 5593 * copy the results into bufp 5594 */ 5595 if (fdc->c_fdtype & FDCTYPE_DMA) { 5596 if (fdc->c_csb.csb_read == CSB_READ) { 5597 bcopy((char *)dma_addr, (char *)bufp, len); 5598 } 5599 ddi_dma_mem_free(&mem_handle); 5600 } 5601 5602 if (csb->csb_cmdstat) 5603 cmdresult = EIO; /* XXX TBD NYD for now */ 5604 5605 fdretcsb(fdc); 5606 return (cmdresult); 5607 } 5608 5609 /* 5610 * fdunpacklabel 5611 * this unpacks a (packed) struct dk_label into a standard dk_label. 5612 */ 5613 static void 5614 fdunpacklabel(struct packed_label *from, struct dk_label *to) 5615 { 5616 FDERRPRINT(FDEP_L1, FDEM_PACK, (C, "fdpacklabel\n")); 5617 bzero((caddr_t)to, sizeof (*to)); 5618 bcopy((caddr_t)&from->dkl_vname, (caddr_t)to->dkl_asciilabel, 5619 sizeof (to->dkl_asciilabel)); 5620 to->dkl_rpm = from->dkl_rpm; /* rotations per minute */ 5621 to->dkl_pcyl = from->dkl_pcyl; /* # physical cylinders */ 5622 to->dkl_apc = from->dkl_apc; /* alternates per cylinder */ 5623 to->dkl_intrlv = from->dkl_intrlv; /* interleave factor */ 5624 to->dkl_ncyl = from->dkl_ncyl; /* # of data cylinders */ 5625 to->dkl_acyl = from->dkl_acyl; /* # of alternate cylinders */ 5626 to->dkl_nhead = from->dkl_nhead; /* # of heads in this partition */ 5627 to->dkl_nsect = from->dkl_nsect; /* # of 512 byte sectors per track */ 5628 /* logical partitions */ 5629 bcopy((caddr_t)from->dkl_map, (caddr_t)to->dkl_map, 5630 sizeof (struct dk_map32) * NDKMAP); 5631 to->dkl_vtoc = from->dkl_vtoc; 5632 } 5633 5634 static struct fdctlr * 5635 fd_getctlr(dev_t dev) 5636 { 5637 5638 struct fdctlr *fdc = fdctlrs; 5639 int ctlr = FDCTLR(dev); 5640 5641 while (fdc) { 5642 if (ddi_get_instance(fdc->c_dip) == ctlr) 5643 return (fdc); 5644 fdc = fdc->c_next; 5645 } 5646 return (fdc); 5647 } 5648 5649 static int 5650 fd_unit_is_open(struct fdunit *un) 5651 { 5652 int i; 5653 for (i = 0; i < NDKMAP; i++) 5654 if (un->un_lyropen[i]) 5655 return (1); 5656 for (i = 0; i < OTYPCNT - 1; i++) 5657 if (un->un_regopen[i]) 5658 return (1); 5659 return (0); 5660 } 5661 5662 /* 5663 * Return the a vtoc structure in *vtoc. 5664 * The vtoc is built from information in 5665 * the diskette's label. 5666 */ 5667 static void 5668 fd_build_user_vtoc(struct fdunit *un, struct vtoc *vtoc) 5669 { 5670 int i; 5671 int nblks; /* DEV_BSIZE sectors per cylinder */ 5672 struct dk_map2 *lpart; 5673 struct dk_map32 *lmap; 5674 struct partition *vpart; 5675 5676 bzero(vtoc, sizeof (struct vtoc)); 5677 5678 /* Initialize info. needed by mboot. (unsupported) */ 5679 vtoc->v_bootinfo[0] = un->un_label.dkl_vtoc.v_bootinfo[0]; 5680 vtoc->v_bootinfo[1] = un->un_label.dkl_vtoc.v_bootinfo[1]; 5681 vtoc->v_bootinfo[2] = un->un_label.dkl_vtoc.v_bootinfo[2]; 5682 5683 /* Fill in vtoc sanity and version information */ 5684 vtoc->v_sanity = un->un_label.dkl_vtoc.v_sanity; 5685 vtoc->v_version = un->un_label.dkl_vtoc.v_version; 5686 5687 /* Copy the volume name */ 5688 bcopy(un->un_label.dkl_vtoc.v_volume, 5689 vtoc->v_volume, LEN_DKL_VVOL); 5690 5691 /* 5692 * The dk_map32 structure is based on DEV_BSIZE byte blocks. 5693 * However, medium density diskettes have 1024 byte blocks. 5694 * The number of sectors per partition listed in the dk_map32 structure 5695 * accounts for this by multiplying the number of 1024 byte 5696 * blocks by 2. (See the packed_label initializations.) The 5697 * 1024 byte block size can not be listed for medium density 5698 * diskettes because the kernel is hard coded for DEV_BSIZE 5699 * blocks. 5700 */ 5701 vtoc->v_sectorsz = DEV_BSIZE; 5702 vtoc->v_nparts = un->un_label.dkl_vtoc.v_nparts; 5703 5704 /* Copy the reserved space */ 5705 bcopy(un->un_label.dkl_vtoc.v_reserved, 5706 vtoc->v_reserved, sizeof (un->un_label.dkl_vtoc.v_reserved)); 5707 /* 5708 * Convert partitioning information. 5709 * 5710 * Note the conversion from starting cylinder number 5711 * to starting sector number. 5712 */ 5713 lmap = un->un_label.dkl_map; 5714 lpart = un->un_label.dkl_vtoc.v_part; 5715 vpart = vtoc->v_part; 5716 5717 nblks = (un->un_chars->fdc_nhead * un->un_chars->fdc_secptrack * 5718 un->un_chars->fdc_sec_size) / DEV_BSIZE; 5719 5720 for (i = 0; i < V_NUMPAR; i++) { 5721 vpart->p_tag = lpart->p_tag; 5722 vpart->p_flag = lpart->p_flag; 5723 vpart->p_start = lmap->dkl_cylno * nblks; 5724 vpart->p_size = lmap->dkl_nblk; 5725 5726 lmap++; 5727 lpart++; 5728 vpart++; 5729 } 5730 5731 /* Initialize timestamp and label */ 5732 bcopy(un->un_label.dkl_vtoc.v_timestamp, 5733 vtoc->timestamp, sizeof (vtoc->timestamp)); 5734 5735 bcopy(un->un_label.dkl_asciilabel, 5736 vtoc->v_asciilabel, LEN_DKL_ASCII); 5737 } 5738 5739 /* 5740 * Build a label out of a vtoc structure. 5741 */ 5742 static int 5743 fd_build_label_vtoc(struct fdunit *un, struct vtoc *vtoc) 5744 { 5745 struct dk_map32 *lmap; 5746 struct dk_map2 *lpart; 5747 struct partition *vpart; 5748 int nblks; /* no. blocks per cylinder */ 5749 int ncyl; 5750 int i; 5751 short sum, *sp; 5752 5753 /* Sanity-check the vtoc */ 5754 if ((vtoc->v_sanity != VTOC_SANE) || 5755 (vtoc->v_nparts > NDKMAP) || (vtoc->v_nparts <= 0)) { 5756 FDERRPRINT(FDEP_L1, FDEM_IOCT, 5757 (C, "fd_build_label: sanity check on vtoc failed\n")); 5758 return (EINVAL); 5759 } 5760 5761 nblks = (un->un_chars->fdc_nhead * un->un_chars->fdc_secptrack * 5762 un->un_chars->fdc_sec_size) / DEV_BSIZE; 5763 5764 vpart = vtoc->v_part; 5765 5766 /* 5767 * Check the partition information in the vtoc. The starting sectors 5768 * must lie along partition boundaries. (NDKMAP entries are checked 5769 * to ensure that the unused entries are set to 0 if vtoc->v_nparts 5770 * is less than NDKMAP) 5771 */ 5772 5773 for (i = 0; i < NDKMAP; i++) { 5774 if ((vpart->p_start % nblks) != 0) { 5775 return (EINVAL); 5776 } 5777 ncyl = vpart->p_start % nblks; 5778 ncyl += vpart->p_size % nblks; 5779 if ((vpart->p_size % nblks) != 0) 5780 ncyl++; 5781 if (ncyl > un->un_chars->fdc_ncyl) { 5782 return (EINVAL); 5783 } 5784 vpart++; 5785 } 5786 5787 /* 5788 * reinitialize the existing label 5789 */ 5790 bzero(&un->un_label, sizeof (un->un_label)); 5791 5792 /* Put appropriate vtoc structure fields into the disk label */ 5793 un->un_label.dkl_vtoc.v_bootinfo[0] = (uint32_t)vtoc->v_bootinfo[0]; 5794 un->un_label.dkl_vtoc.v_bootinfo[1] = (uint32_t)vtoc->v_bootinfo[1]; 5795 un->un_label.dkl_vtoc.v_bootinfo[2] = (uint32_t)vtoc->v_bootinfo[2]; 5796 5797 un->un_label.dkl_vtoc.v_sanity = vtoc->v_sanity; 5798 un->un_label.dkl_vtoc.v_version = vtoc->v_version; 5799 5800 bcopy(vtoc->v_volume, un->un_label.dkl_vtoc.v_volume, LEN_DKL_VVOL); 5801 5802 un->un_label.dkl_vtoc.v_nparts = vtoc->v_nparts; 5803 5804 bcopy(vtoc->v_reserved, un->un_label.dkl_vtoc.v_reserved, 5805 sizeof (un->un_label.dkl_vtoc.v_reserved)); 5806 5807 /* 5808 * Initialize cylinder information in the label. 5809 * Note the conversion from starting sector number 5810 * to starting cylinder number. 5811 * Return error if division results in a remainder. 5812 */ 5813 lmap = un->un_label.dkl_map; 5814 lpart = un->un_label.dkl_vtoc.v_part; 5815 vpart = vtoc->v_part; 5816 5817 for (i = 0; i < (int)vtoc->v_nparts; i++) { 5818 lpart->p_tag = vtoc->v_part[i].p_tag; 5819 lpart->p_flag = vtoc->v_part[i].p_flag; 5820 lmap->dkl_cylno = vpart->p_start / nblks; 5821 lmap->dkl_nblk = vpart->p_size; 5822 5823 lmap++; 5824 lpart++; 5825 vpart++; 5826 } 5827 5828 /* Copy the timestamp and ascii label */ 5829 for (i = 0; i < NDKMAP; i++) { 5830 un->un_label.dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i]; 5831 } 5832 5833 5834 bcopy(vtoc->v_asciilabel, un->un_label.dkl_asciilabel, LEN_DKL_ASCII); 5835 5836 FDERRPRINT(FDEP_L1, FDEM_IOCT, 5837 (C, "fd_build_label: asciilabel %s\n", 5838 un->un_label.dkl_asciilabel)); 5839 5840 /* Initialize the magic number */ 5841 un->un_label.dkl_magic = DKL_MAGIC; 5842 5843 un->un_label.dkl_pcyl = un->un_chars->fdc_ncyl; 5844 5845 /* 5846 * The fdc_secptrack filed of the fd_char structure is the number 5847 * of sectors per track where the sectors are fdc_sec_size. The 5848 * dkl_nsect field of the dk_label structure is the number of 5849 * 512 (DEVBSIZE) byte sectors per track. 5850 */ 5851 un->un_label.dkl_nsect = (un->un_chars->fdc_secptrack * 5852 un->un_chars->fdc_sec_size) / DEV_BSIZE; 5853 5854 5855 un->un_label.dkl_ncyl = un->un_label.dkl_pcyl; 5856 un->un_label.dkl_nhead = un->un_chars->fdc_nhead; 5857 un->un_label.dkl_rpm = un->un_chars->fdc_medium ? 360 : 300; 5858 un->un_label.dkl_intrlv = 1; 5859 5860 /* Create the checksum */ 5861 sum = 0; 5862 un->un_label.dkl_cksum = 0; 5863 sp = (short *)&un->un_label; 5864 i = sizeof (struct dk_label)/sizeof (short); 5865 while (i--) { 5866 sum ^= *sp++; 5867 } 5868 un->un_label.dkl_cksum = sum; 5869 5870 return (0); 5871 } 5872 5873 /* 5874 * Check for auxio register node 5875 */ 5876 5877 int 5878 fd_isauxiodip(dev_info_t *dip) 5879 { 5880 if (strcmp(ddi_get_name(dip), "auxio") == 0 || 5881 strcmp(ddi_get_name(dip), "auxiliary-io") == 0) { 5882 return (1); 5883 } 5884 return (0); 5885 } 5886 5887 /* 5888 * Search for auxio register node, then for address property 5889 */ 5890 5891 caddr_t 5892 fd_getauxiova(dev_info_t *dip) 5893 { 5894 dev_info_t *auxdip; 5895 caddr_t addr; 5896 5897 /* 5898 * Search sibling list, which happens to be safe inside attach 5899 */ 5900 auxdip = ddi_get_child(ddi_get_parent(dip)); 5901 while (auxdip) { 5902 if (fd_isauxiodip(auxdip)) 5903 break; 5904 auxdip = ddi_get_next_sibling(auxdip); 5905 } 5906 5907 if (auxdip == NULL) 5908 return (NULL); 5909 5910 addr = (caddr_t)(uintptr_t)(caddr32_t)ddi_getprop(DDI_DEV_T_ANY, 5911 auxdip, DDI_PROP_DONTPASS, "address", 0); 5912 5913 return (addr); 5914 } 5915 5916 5917 /* 5918 * set_rotational speed 5919 * 300 rpm for high and low density. 5920 * 360 rpm for medium density. 5921 * for now, we assume that 3rd density is supported only for Sun4M, 5922 * not for Clones. (else we would have to check for 82077, and do 5923 * specific things for the MEDIUM_DENSITY BIT for clones. 5924 * this code should not break CLONES. 5925 * 5926 * REMARK: there is a SOny requirement, to deselect the drive then 5927 * select it again after the medium density change, since the 5928 * leading edge of the select line latches the rotational Speed. 5929 * then after that, we have to wait 500 ms for the rotation to 5930 * stabilize. 5931 * 5932 */ 5933 static void 5934 set_rotational_speed(struct fdctlr *fdc, int unit) 5935 { 5936 int check; 5937 int is_medium; 5938 5939 ASSERT(fdc->c_un->un_unit_no == unit); 5940 5941 /* 5942 * if we do not have a Sun4m, medium density is not supported. 5943 */ 5944 if (fdc->c_fdtype & FDCTYPE_MACHIO) 5945 return; 5946 5947 /* 5948 * if FDUNIT_SET_SPEED is set, set the speed. 5949 * else, 5950 * if there is a change, do it, if not leave it alone. 5951 * there is a change if un->un_chars->fdc_medium does not match 5952 * un->un_flags & FDUNIT_MEDIUM 5953 * un->un_flags & FDUNIT_MEDIUM specifies the last setting. 5954 * un->un_chars->fdc_medium specifies next setting. 5955 * if there is a change, wait 500ms according to Sony spec. 5956 */ 5957 5958 is_medium = fdc->c_un->un_chars->fdc_medium; 5959 5960 if (fdc->c_un->un_flags & FDUNIT_SET_SPEED) { 5961 check = 1; 5962 } else { 5963 check = is_medium ^ 5964 ((fdc->c_un->un_flags & FDUNIT_MEDIUM) ? 1 : 0); 5965 5966 /* Set the un_flags if necessary */ 5967 5968 if (check) 5969 fdc->c_un->un_flags ^= FDUNIT_MEDIUM; 5970 } 5971 5972 fdc->c_un->un_flags &= ~FDUNIT_SET_SPEED; 5973 5974 5975 if (check) { 5976 5977 fdselect(fdc, unit, 0); 5978 drv_usecwait(5); 5979 5980 if ((fdc->c_fdtype & FDCTYPE_AUXIOMASK) == FDCTYPE_SLAVIO) { 5981 Set_dor(fdc, MEDIUM_DENSITY, is_medium); 5982 } 5983 5984 if ((fdc->c_fdtype & FDCTYPE_AUXIOMASK) == FDCTYPE_CHEERIO) { 5985 if (is_medium) { 5986 Set_auxio(fdc, AUX_MEDIUM_DENSITY); 5987 } else { 5988 Set_auxio(fdc, AUX_HIGH_DENSITY); 5989 } 5990 5991 } 5992 5993 if (is_medium) { 5994 drv_usecwait(5); 5995 } 5996 5997 fdselect(fdc, unit, 1); /* Sony requirement */ 5998 FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "rotation:medium\n")); 5999 drv_usecwait(500000); 6000 } 6001 } 6002 6003 static void 6004 fd_media_watch(void *arg) 6005 { 6006 dev_t dev; 6007 struct fdunit *un; 6008 struct fdctlr *fdc; 6009 int unit; 6010 6011 dev = (dev_t)arg; 6012 fdc = fd_getctlr(dev); 6013 unit = fdc->c_un->un_unit_no; 6014 un = fdc->c_un; 6015 6016 mutex_enter(&fdc->c_lolock); 6017 6018 if (un->un_media_timeout_id == 0) { 6019 /* 6020 * Untimeout is about to be called. 6021 * Don't call fd_get_media_state again 6022 */ 6023 mutex_exit(&fdc->c_lolock); 6024 return; 6025 } 6026 6027 6028 un->un_media_state = fd_get_media_state(fdc, unit); 6029 cv_broadcast(&fdc->c_statecv); 6030 6031 mutex_exit(&fdc->c_lolock); 6032 6033 if (un->un_media_timeout) { 6034 un->un_media_timeout_id = timeout(fd_media_watch, 6035 (void *)(ulong_t)dev, un->un_media_timeout); 6036 } 6037 } 6038 6039 enum dkio_state 6040 fd_get_media_state(struct fdctlr *fdc, int unit) 6041 { 6042 enum dkio_state state; 6043 6044 ASSERT(fdc->c_un->un_unit_no == unit); 6045 6046 if (fdsense_chng(fdc, unit)) { 6047 /* check disk only if DSKCHG "high" */ 6048 if (fdcheckdisk(fdc, unit)) { 6049 state = DKIO_EJECTED; 6050 } else { 6051 state = DKIO_INSERTED; 6052 } 6053 } else { 6054 state = DKIO_INSERTED; 6055 } 6056 return (state); 6057 } 6058 6059 static int 6060 fd_check_media(dev_t dev, enum dkio_state state) 6061 { 6062 struct fdunit *un; 6063 struct fdctlr *fdc; 6064 int unit; 6065 6066 FDERRPRINT(FDEP_L1, FDEM_RW, (C, "fd_check_media: start\n")); 6067 6068 fdc = fd_getctlr(dev); 6069 unit = fdc->c_un->un_unit_no; 6070 un = fdc->c_un; 6071 6072 mutex_enter(&fdc->c_lolock); 6073 6074 CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc); 6075 6076 if (fdc->c_un->un_state == FD_STATE_STOPPED) { 6077 mutex_exit(&fdc->c_lolock); 6078 if ((pm_raise_power(fdc->c_dip, 0, PM_LEVEL_ON)) 6079 != DDI_SUCCESS) { 6080 FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "Power change \ 6081 failed. \n")); 6082 6083 (void) pm_idle_component(fdc->c_dip, 0); 6084 return (EIO); 6085 } 6086 6087 mutex_enter(&fdc->c_lolock); 6088 } 6089 6090 un->un_media_state = fd_get_media_state(fdc, unit); 6091 6092 /* turn on timeout */ 6093 un->un_media_timeout = drv_usectohz(fd_check_media_time); 6094 un->un_media_timeout_id = timeout(fd_media_watch, 6095 (void *)(ulong_t)dev, un->un_media_timeout); 6096 6097 while (un->un_media_state == state) { 6098 if (cv_wait_sig(&fdc->c_statecv, &fdc->c_lolock) == 0) { 6099 un->un_media_timeout = 0; 6100 mutex_exit(&fdc->c_lolock); 6101 return (EINTR); 6102 } 6103 } 6104 6105 if (un->un_media_timeout_id) { 6106 timeout_id_t timeid = un->un_media_timeout_id; 6107 un->un_media_timeout_id = 0; 6108 6109 mutex_exit(&fdc->c_lolock); 6110 (void) untimeout(timeid); 6111 mutex_enter(&fdc->c_lolock); 6112 } 6113 6114 if (un->un_media_state == DKIO_INSERTED) { 6115 if (fdgetlabel(fdc, unit)) { 6116 mutex_exit(&fdc->c_lolock); 6117 return (EIO); 6118 } 6119 } 6120 mutex_exit(&fdc->c_lolock); 6121 6122 FDERRPRINT(FDEP_L1, FDEM_RW, (C, "fd_check_media: end\n")); 6123 return (0); 6124 } 6125 6126 /* 6127 * fd_get_media_info : 6128 * Collects medium information for 6129 * DKIOCGMEDIAINFO ioctl. 6130 */ 6131 6132 static int 6133 fd_get_media_info(struct fdunit *un, caddr_t buf, int flag) 6134 { 6135 struct dk_minfo media_info; 6136 int err = 0; 6137 6138 media_info.dki_media_type = DK_FLOPPY; 6139 media_info.dki_lbsize = un->un_chars->fdc_sec_size; 6140 media_info.dki_capacity = un->un_chars->fdc_ncyl * 6141 un->un_chars->fdc_secptrack * un->un_chars->fdc_nhead; 6142 6143 if (ddi_copyout((caddr_t)&media_info, buf, 6144 sizeof (struct dk_minfo), flag)) 6145 err = EFAULT; 6146 return (err); 6147 } 6148 6149 /* 6150 * fd_power : 6151 * Power entry point of fd driver. 6152 */ 6153 6154 static int 6155 fd_power(dev_info_t *dip, int component, int level) 6156 { 6157 6158 struct fdctlr *fdc; 6159 int instance; 6160 int rval; 6161 6162 if ((level < PM_LEVEL_OFF) || (level > PM_LEVEL_ON) || 6163 (component != 0)) { 6164 return (DDI_FAILURE); 6165 } 6166 6167 instance = ddi_get_instance(dip); 6168 fdc = fd_getctlr(instance << FDINSTSHIFT); 6169 if (fdc->c_un == NULL) 6170 return (DDI_FAILURE); 6171 6172 if (level == PM_LEVEL_OFF) { 6173 rval = fd_pm_lower_power(fdc); 6174 } 6175 if (level == PM_LEVEL_ON) { 6176 rval = fd_pm_raise_power(fdc); 6177 } 6178 return (rval); 6179 } 6180 6181 /* 6182 * fd_pm_lower_power : 6183 * This function is called only during pm suspend. At this point, 6184 * the power management framework thinks the device is idle for 6185 * long enough to go to a low power mode. If the device is busy, 6186 * then this function returns DDI_FAILURE. 6187 */ 6188 6189 static int 6190 fd_pm_lower_power(struct fdctlr *fdc) 6191 { 6192 6193 mutex_enter(&fdc->c_lolock); 6194 6195 if ((fdc->c_un->un_state == FD_STATE_SUSPENDED) || 6196 (fdc->c_un->un_state == FD_STATE_STOPPED)) { 6197 mutex_exit(&fdc->c_lolock); 6198 return (DDI_SUCCESS); 6199 } 6200 6201 6202 FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "fd_pm_lower_power called\n")); 6203 6204 /* if the device is busy then we fail the lower power request */ 6205 if (fdc->c_flags & FDCFLG_BUSY) { 6206 FDERRPRINT(FDEP_L2, FDEM_PWR, (C, "fd_pm_lower_power : \ 6207 controller is busy.\n")); 6208 mutex_exit(&fdc->c_lolock); 6209 return (DDI_FAILURE); 6210 } 6211 6212 fdc->c_un->un_state = FD_STATE_STOPPED; 6213 6214 mutex_exit(&fdc->c_lolock); 6215 return (DDI_SUCCESS); 6216 } 6217 6218 /* 6219 * fd_pm_raise_power : 6220 * This function performs the necessary steps for resuming a 6221 * device, either from pm suspend or CPR. Here the controller 6222 * is reset, initialized and the state is set to FD_STATE_NORMAL. 6223 */ 6224 6225 static int 6226 fd_pm_raise_power(struct fdctlr *fdc) 6227 { 6228 6229 struct fdunit *un = fdc->c_un; 6230 int unit; 6231 6232 FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "fd_pm_raise_power called\n")); 6233 mutex_enter(&fdc->c_lolock); 6234 fdgetcsb(fdc); 6235 6236 /* Reset the dma engine */ 6237 if (fdc->c_fdtype & FDCTYPE_DMA) { 6238 mutex_enter(&fdc->c_hilock); 6239 reset_dma_controller(fdc); 6240 set_dma_control_register(fdc, DCSR_INIT_BITS); 6241 mutex_exit(&fdc->c_hilock); 6242 } 6243 6244 /* 6245 * Force a rotational speed set in the next 6246 * call to set_rotational_speed(). 6247 */ 6248 6249 fdc->c_un->un_flags |= FDUNIT_SET_SPEED; 6250 6251 /* Reset and configure the controller */ 6252 (void) fdreset(fdc); 6253 6254 unit = fdc->c_un->un_unit_no; 6255 6256 /* Recalibrate the drive */ 6257 if (fdrecalseek(fdc, unit, -1, 0) != 0) { 6258 FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "raise_power : recalibrate \ 6259 failed\n")); 6260 fdretcsb(fdc); 6261 mutex_exit(&fdc->c_lolock); 6262 return (DDI_FAILURE); 6263 } 6264 6265 /* Select the drive through the AUXIO registers */ 6266 fdselect(fdc, unit, 0); 6267 un->un_state = FD_STATE_NORMAL; 6268 fdretcsb(fdc); 6269 mutex_exit(&fdc->c_lolock); 6270 return (DDI_SUCCESS); 6271 } 6272 6273 /* 6274 * create_pm_components : 6275 * creates the power management components for auto pm framework. 6276 */ 6277 6278 static void 6279 create_pm_components(dev_info_t *dip) 6280 { 6281 char *un_pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on"}; 6282 6283 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, dip, 6284 "pm-components", un_pm_comp, 3) == DDI_PROP_SUCCESS) { 6285 6286 (void) pm_raise_power(dip, 0, PM_LEVEL_ON); 6287 } 6288 } 6289 6290 /* 6291 * set_data_count_register(struct fdctlr *fdc, uint32_t count) 6292 * Set the data count in appropriate dma register. 6293 */ 6294 6295 static void 6296 set_data_count_register(struct fdctlr *fdc, uint32_t count) 6297 { 6298 if (fdc->c_fdtype & FDCTYPE_CHEERIO) { 6299 struct cheerio_dma_reg *dma_reg; 6300 dma_reg = (struct cheerio_dma_reg *)fdc->c_dma_regs; 6301 ddi_put32(fdc->c_handlep_dma, &dma_reg->fdc_dbcr, count); 6302 } else if (fdc->c_fdtype & FDCTYPE_SB) { 6303 struct sb_dma_reg *dma_reg; 6304 count = count - 1; /* 8237 needs it */ 6305 dma_reg = (struct sb_dma_reg *)fdc->c_dma_regs; 6306 switch (fdc->sb_dma_channel) { 6307 case 0 : 6308 ddi_put16(fdc->c_handlep_dma, 6309 (ushort_t *)&dma_reg->sb_dma_regs[DMA_0WCNT], 6310 count & 0xFFFF); 6311 break; 6312 case 1 : 6313 ddi_put16(fdc->c_handlep_dma, 6314 (ushort_t *)&dma_reg->sb_dma_regs[DMA_1WCNT], 6315 count & 0xFFFF); 6316 break; 6317 case 2 : 6318 ddi_put16(fdc->c_handlep_dma, 6319 (ushort_t *)&dma_reg->sb_dma_regs[DMA_2WCNT], 6320 count & 0xFFFF); 6321 break; 6322 case 3 : 6323 ddi_put16(fdc->c_handlep_dma, 6324 (ushort_t *)&dma_reg->sb_dma_regs[DMA_3WCNT], 6325 count & 0xFFFF); 6326 break; 6327 default : 6328 FDERRPRINT(FDEP_L3, FDEM_SDMA, 6329 (C, "set_data_count: wrong channel %x\n", 6330 fdc->sb_dma_channel)); 6331 break; 6332 } 6333 } 6334 } 6335 6336 /* 6337 * get_data_count_register(struct fdctlr *fdc) 6338 * Read the data count from appropriate dma register. 6339 */ 6340 6341 static uint32_t 6342 get_data_count_register(struct fdctlr *fdc) 6343 { 6344 uint32_t retval = 0; 6345 if (fdc->c_fdtype & FDCTYPE_CHEERIO) { 6346 struct cheerio_dma_reg *dma_reg; 6347 dma_reg = (struct cheerio_dma_reg *)fdc->c_dma_regs; 6348 retval = ddi_get32(fdc->c_handlep_dma, &dma_reg->fdc_dbcr); 6349 } else if (fdc->c_fdtype & FDCTYPE_SB) { 6350 struct sb_dma_reg *dma_reg; 6351 dma_reg = (struct sb_dma_reg *)fdc->c_dma_regs; 6352 switch (fdc->sb_dma_channel) { 6353 case 0 : 6354 retval = ddi_get16(fdc->c_handlep_dma, 6355 (ushort_t *)&dma_reg->sb_dma_regs[DMA_0WCNT]); 6356 break; 6357 case 1 : 6358 retval = ddi_get16(fdc->c_handlep_dma, 6359 (ushort_t *)&dma_reg->sb_dma_regs[DMA_1WCNT]); 6360 break; 6361 case 2 : 6362 retval = ddi_get16(fdc->c_handlep_dma, 6363 (ushort_t *)&dma_reg->sb_dma_regs[DMA_2WCNT]); 6364 break; 6365 case 3 : 6366 retval = ddi_get16(fdc->c_handlep_dma, 6367 (ushort_t *)&dma_reg->sb_dma_regs[DMA_3WCNT]); 6368 break; 6369 default : 6370 FDERRPRINT(FDEP_L3, FDEM_SDMA, 6371 (C, "get_data_count: wrong channel %x\n", 6372 fdc->sb_dma_channel)); 6373 break; 6374 } 6375 retval = (uint32_t)((uint16_t)(retval +1)); 6376 } 6377 6378 return (retval); 6379 6380 } 6381 6382 /* 6383 * reset_dma_controller(struct fdctlr *fdc) 6384 * Reset and initialize the dma controller. 6385 */ 6386 6387 static void 6388 reset_dma_controller(struct fdctlr *fdc) 6389 { 6390 if (fdc->c_fdtype & FDCTYPE_CHEERIO) { 6391 struct cheerio_dma_reg *dma_reg; 6392 dma_reg = (struct cheerio_dma_reg *)fdc->c_dma_regs; 6393 ddi_put32(fdc->c_handlep_dma, &dma_reg->fdc_dcsr, DCSR_RESET); 6394 while (get_dma_control_register(fdc) & DCSR_CYC_PEND) 6395 ; 6396 ddi_put32(fdc->c_handlep_dma, &dma_reg->fdc_dcsr, 0); 6397 } else if (fdc->c_fdtype & FDCTYPE_SB) { 6398 struct sb_dma_reg *dma_reg; 6399 dma_reg = (struct sb_dma_reg *)fdc->c_dma_regs; 6400 ddi_put8(fdc->c_handlep_dma, &dma_reg->sb_dma_regs[DMAC1_MASK], 6401 (fdc->sb_dma_channel & 0x3)); 6402 6403 } 6404 } 6405 6406 /* 6407 * Get the DMA control register for CHEERIO. 6408 * For SouthBridge 8237 DMA controller, this register is not valid. 6409 * So, just return 0. 6410 */ 6411 static uint32_t 6412 get_dma_control_register(struct fdctlr *fdc) 6413 { 6414 uint32_t retval = 0; 6415 if (fdc->c_fdtype & FDCTYPE_CHEERIO) { 6416 struct cheerio_dma_reg *dma_reg; 6417 dma_reg = (struct cheerio_dma_reg *)fdc->c_dma_regs; 6418 retval = ddi_get32(fdc->c_handlep_dma, &dma_reg->fdc_dcsr); 6419 } 6420 6421 return (retval); 6422 } 6423 6424 6425 /* 6426 * set_data_address_register(struct fdctlr *fdc) 6427 * Set the data address in appropriate dma register. 6428 */ 6429 static void 6430 set_data_address_register(struct fdctlr *fdc, uint32_t address) 6431 { 6432 if (fdc->c_fdtype & FDCTYPE_CHEERIO) { 6433 struct cheerio_dma_reg *dma_reg; 6434 dma_reg = (struct cheerio_dma_reg *)fdc->c_dma_regs; 6435 ddi_put32(fdc->c_handlep_dma, &dma_reg->fdc_dacr, address); 6436 } else if (fdc->c_fdtype & FDCTYPE_SB) { 6437 struct sb_dma_reg *dma_reg; 6438 dma_reg = (struct sb_dma_reg *)fdc->c_dma_regs; 6439 switch (fdc->sb_dma_channel) { 6440 case 0 : 6441 ddi_put8(fdc->c_handlep_dma, 6442 &dma_reg->sb_dma_regs[DMA_0PAGE], 6443 (address & 0xFF0000) >>16); 6444 ddi_put8(fdc->c_handlep_dma, 6445 &dma_reg->sb_dma_regs[DMA_0HPG], 6446 (address & 0xFF000000) >>24); 6447 ddi_put16(fdc->c_handlep_dma, 6448 (ushort_t *)&dma_reg->sb_dma_regs[DMA_0ADR], 6449 address & 0xFFFF); 6450 break; 6451 case 1 : 6452 ddi_put8(fdc->c_handlep_dma, 6453 &dma_reg->sb_dma_regs[DMA_1PAGE], 6454 (address & 0xFF0000) >>16); 6455 ddi_put8(fdc->c_handlep_dma, 6456 &dma_reg->sb_dma_regs[DMA_1HPG], 6457 (address & 0xFF000000) >>24); 6458 ddi_put16(fdc->c_handlep_dma, 6459 (ushort_t *)&dma_reg->sb_dma_regs[DMA_1ADR], 6460 address & 0xFFFF); 6461 break; 6462 case 2 : 6463 ddi_put8(fdc->c_handlep_dma, 6464 &dma_reg->sb_dma_regs[DMA_2PAGE], 6465 (address & 0xFF0000) >>16); 6466 ddi_put8(fdc->c_handlep_dma, 6467 &dma_reg->sb_dma_regs[DMA_2HPG], 6468 (address & 0xFF000000) >>24); 6469 ddi_put16(fdc->c_handlep_dma, 6470 (ushort_t *)&dma_reg->sb_dma_regs[DMA_2ADR], 6471 address & 0xFFFF); 6472 break; 6473 case 3 : 6474 ddi_put8(fdc->c_handlep_dma, 6475 &dma_reg->sb_dma_regs[DMA_3PAGE], 6476 (address & 0xFF0000) >>16); 6477 ddi_put8(fdc->c_handlep_dma, 6478 &dma_reg->sb_dma_regs[DMA_3HPG], 6479 (address & 0xFF000000) >>24); 6480 ddi_put16(fdc->c_handlep_dma, 6481 (ushort_t *)&dma_reg->sb_dma_regs[DMA_3ADR], 6482 address & 0xFFFF); 6483 break; 6484 default : 6485 FDERRPRINT(FDEP_L3, FDEM_SDMA, 6486 (C, "set_data_address: wrong channel %x\n", 6487 fdc->sb_dma_channel)); 6488 break; 6489 } 6490 } 6491 6492 } 6493 6494 6495 /* 6496 * set_dma_mode(struct fdctlr *fdc, int val) 6497 * Set the appropriate dma direction and registers. 6498 */ 6499 static void 6500 set_dma_mode(struct fdctlr *fdc, int val) 6501 { 6502 if (fdc->c_fdtype & FDCTYPE_CHEERIO) { 6503 struct cheerio_dma_reg *dma_reg; 6504 dma_reg = (struct cheerio_dma_reg *)fdc->c_dma_regs; 6505 if (val == CSB_READ) 6506 ddi_put32(fdc->c_handlep_dma, &dma_reg->fdc_dcsr, 6507 DCSR_INIT_BITS|DCSR_WRITE); 6508 else 6509 ddi_put32(fdc->c_handlep_dma, &dma_reg->fdc_dcsr, 6510 DCSR_INIT_BITS); 6511 6512 } else if (fdc->c_fdtype & FDCTYPE_SB) { 6513 uint8_t mode_reg_val, chn_mask; 6514 struct sb_dma_reg *dma_reg; 6515 dma_reg = (struct sb_dma_reg *)fdc->c_dma_regs; 6516 6517 if (val == CSB_READ) { 6518 mode_reg_val = fdc->sb_dma_channel | DMAMODE_READ 6519 | DMAMODE_SINGLE; 6520 } else { /* Read operation */ 6521 mode_reg_val = fdc->sb_dma_channel | DMAMODE_WRITE 6522 | DMAMODE_SINGLE; 6523 } 6524 ddi_put8(fdc->c_handlep_dma, &dma_reg->sb_dma_regs[DMAC1_MODE], 6525 mode_reg_val); 6526 chn_mask = 1 << (fdc->sb_dma_channel & 0x3); 6527 ddi_put8(fdc->c_handlep_dma, 6528 &dma_reg->sb_dma_regs[DMAC1_ALLMASK], ~chn_mask); 6529 fdc->sb_dma_lock = 1; 6530 } 6531 } 6532 6533 /* 6534 * This function is valid only for CHEERIO/RIO based 6535 * controllers. The control register for the dma channel 6536 * is initialized by this function. 6537 */ 6538 6539 static void 6540 set_dma_control_register(struct fdctlr *fdc, uint32_t val) 6541 { 6542 if (fdc->c_fdtype & FDCTYPE_CHEERIO) { 6543 struct cheerio_dma_reg *dma_reg; 6544 dma_reg = (struct cheerio_dma_reg *)fdc->c_dma_regs; 6545 ddi_put32(fdc->c_handlep_dma, &dma_reg->fdc_dcsr, val); 6546 } 6547 } 6548 6549 static void 6550 release_sb_dma(struct fdctlr *fdc) 6551 { 6552 struct sb_dma_reg *dma_reg; 6553 dma_reg = (struct sb_dma_reg *)fdc->c_dma_regs; 6554 /* Unmask all the channels to release the DMA controller */ 6555 ddi_put8(fdc->c_handlep_dma, 6556 &dma_reg->sb_dma_regs[DMAC1_ALLMASK], NULL); 6557 fdc->sb_dma_lock = 0; 6558 } 6559 6560 static void 6561 quiesce_fd_interrupt(struct fdctlr *fdc) 6562 { 6563 /* 6564 * The following code is put here to take care of HW problem. 6565 * The HW problem is as follows: 6566 * 6567 * After poweron the Southbridge floppy controller asserts the 6568 * interrupt in tristate. This causes continuous interrupts to 6569 * be generated. 6570 * Until the Hardware is FIXED we will have to use the following code 6571 * to set the interrupt line to proper state after poweron. 6572 */ 6573 if (fdc->c_fdtype & FDCTYPE_SB) { 6574 ddi_put8(fdc->c_handlep_cont, ((uint8_t *)fdc->c_dor), 6575 0x0); 6576 drv_usecwait(200); 6577 ddi_put8(fdc->c_handlep_cont, ((uint8_t *)fdc->c_dor), 6578 0xC); 6579 drv_usecwait(200); 6580 Set_Fifo(fdc, 0xE6); 6581 drv_usecwait(200); 6582 } 6583 } 6584