1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/dtrace_impl.h> 30 #include <sys/atomic.h> 31 #include <sys/model.h> 32 #include <sys/frame.h> 33 #include <sys/stack.h> 34 #include <sys/machpcb.h> 35 #include <sys/procfs_isa.h> 36 #include <sys/cmn_err.h> 37 #include <sys/sysmacros.h> 38 39 #define DTRACE_FMT3OP3_MASK 0x81000000 40 #define DTRACE_FMT3OP3 0x80000000 41 #define DTRACE_FMT3RS1_SHIFT 14 42 #define DTRACE_FMT3RD_SHIFT 25 43 #define DTRACE_DISP22_SHIFT 10 44 #define DTRACE_RMASK 0x1f 45 #define DTRACE_REG_L0 16 46 #define DTRACE_REG_O7 15 47 #define DTRACE_REG_I0 24 48 #define DTRACE_REG_I6 30 49 #define DTRACE_RET 0x81c7e008 50 #define DTRACE_RETL 0x81c3e008 51 #define DTRACE_SAVE_MASK 0xc1f80000 52 #define DTRACE_SAVE 0x81e00000 53 #define DTRACE_RESTORE 0x81e80000 54 #define DTRACE_CALL_MASK 0xc0000000 55 #define DTRACE_CALL 0x40000000 56 #define DTRACE_JMPL_MASK 0x81f10000 57 #define DTRACE_JMPL 0x81c00000 58 #define DTRACE_BA_MASK 0xdfc00000 59 #define DTRACE_BA 0x10800000 60 #define DTRACE_BA_MAX 10 61 62 extern int dtrace_getupcstack_top(uint64_t *, int, uintptr_t *); 63 extern int dtrace_getustackdepth_top(uintptr_t *); 64 extern ulong_t dtrace_getreg_win(uint_t, uint_t); 65 extern void dtrace_putreg_win(uint_t, ulong_t); 66 extern int dtrace_fish(int, int, uintptr_t *); 67 68 int dtrace_ustackdepth_max = 2048; 69 70 /* 71 * This is similar in principle to getpcstack(), but there are several marked 72 * differences in implementation: 73 * 74 * (a) dtrace_getpcstack() is called from probe context. Thus, the call 75 * to flush_windows() from getpcstack() is a call to the probe-safe 76 * equivalent here. 77 * 78 * (b) dtrace_getpcstack() is willing to sacrifice some performance to get 79 * a correct stack. While consumers of getpcstack() are largely 80 * subsystem-specific in-kernel debugging facilities, DTrace consumers 81 * are arbitrary user-level analysis tools; dtrace_getpcstack() must 82 * deliver as correct a stack as possible. Details on the issues 83 * surrounding stack correctness are found below. 84 * 85 * (c) dtrace_getpcstack() _always_ fills in pcstack_limit pc_t's -- filling 86 * in the difference between the stack depth and pcstack_limit with NULLs. 87 * Due to this behavior dtrace_getpcstack() returns void. 88 * 89 * (d) dtrace_getpcstack() takes a third parameter, aframes, that 90 * denotes the number of _artificial frames_ on the bottom of the 91 * stack. An artificial frame is one induced by the provider; all 92 * artificial frames are stripped off before frames are stored to 93 * pcstack. 94 * 95 * (e) dtrace_getpcstack() takes a fourth parameter, pc, that indicates 96 * an interrupted program counter (if any). This should be a non-NULL 97 * value if and only if the hit probe is unanchored. (Anchored probes 98 * don't fire through an interrupt source.) This parameter is used to 99 * assure (b), above. 100 */ 101 void 102 dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes, uint32_t *pc) 103 { 104 struct frame *fp, *nextfp, *minfp, *stacktop; 105 int depth = 0; 106 int on_intr, j = 0; 107 uint32_t i, r; 108 109 fp = (struct frame *)((caddr_t)dtrace_getfp() + STACK_BIAS); 110 dtrace_flush_windows(); 111 112 if (pc != NULL) { 113 /* 114 * If we've been passed a non-NULL pc, we need to determine 115 * whether or not the specified program counter falls in a leaf 116 * function. If it falls within a leaf function, we know that 117 * %o7 is valid in its frame (and we can just drive on). If 118 * it's a non-leaf, however, we know that %o7 is garbage in the 119 * bottom frame. To trim this frame, we simply increment 120 * aframes and drop into the stack-walking loop. 121 * 122 * To quickly determine if the specified program counter is in 123 * a leaf function, we exploit the fact that leaf functions 124 * tend to be short and non-leaf functions tend to frequently 125 * perform operations that are only permitted in a non-leaf 126 * function (e.g., using the %i's or %l's; calling a function; 127 * performing a restore). We exploit these tendencies by 128 * simply scanning forward from the specified %pc -- if we see 129 * an operation only permitted in a non-leaf, we know we're in 130 * a non-leaf; if we see a retl, we know we're in a leaf. 131 * Fortunately, one need not perform anywhere near full 132 * disassembly to effectively determine the former: determining 133 * that an instruction is a format-3 instruction and decoding 134 * its rd and rs1 fields, for example, requires very little 135 * manipulation. Overall, this method of leaf determination 136 * performs quite well: on average, we only examine between 137 * 1.5 and 2.5 instructions before making the determination. 138 * (Outliers do exist, however; of note is the non-leaf 139 * function ip_sioctl_not_ours() which -- as of this writing -- 140 * has a whopping 455 straight instructions that manipulate 141 * only %g's and %o's.) 142 */ 143 int delay = 0, branches = 0, taken = 0; 144 145 if (depth < pcstack_limit) 146 pcstack[depth++] = (pc_t)(uintptr_t)pc; 147 148 /* 149 * Our heuristic is exactly that -- a heuristic -- and there 150 * exists a possibility that we could be either be vectored 151 * off into the weeds (by following a bogus branch) or could 152 * wander off the end of the function and off the end of a 153 * text mapping (by not following a conditional branch at the 154 * end of the function that is effectively always taken). So 155 * as a precautionary measure, we set the NOFAULT flag. 156 */ 157 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 158 159 for (;;) { 160 i = pc[j++]; 161 162 if ((i & DTRACE_FMT3OP3_MASK) == DTRACE_FMT3OP3) { 163 /* 164 * This is a format-3 instruction. We can 165 * look at rd and rs1. 166 */ 167 r = (i >> DTRACE_FMT3RS1_SHIFT) & DTRACE_RMASK; 168 169 if (r >= DTRACE_REG_L0) 170 goto nonleaf; 171 172 r = (i >> DTRACE_FMT3RD_SHIFT) & DTRACE_RMASK; 173 174 if (r >= DTRACE_REG_L0) 175 goto nonleaf; 176 177 if ((i & DTRACE_JMPL_MASK) == DTRACE_JMPL) { 178 delay = 1; 179 continue; 180 } 181 182 /* 183 * If we see explicit manipulation with %o7 184 * as a destination register, we know that 185 * %o7 is likely bogus -- and we treat this 186 * function as a non-leaf. 187 */ 188 if (r == DTRACE_REG_O7) { 189 if (delay) 190 goto leaf; 191 192 i &= DTRACE_JMPL_MASK; 193 194 if (i == DTRACE_JMPL) { 195 delay = 1; 196 continue; 197 } 198 199 goto nonleaf; 200 } 201 } else { 202 /* 203 * If this is a call, it may or may not be 204 * a leaf; we need to check the delay slot. 205 */ 206 if ((i & DTRACE_CALL_MASK) == DTRACE_CALL) { 207 delay = 1; 208 continue; 209 } 210 211 /* 212 * If we see a ret it's not a leaf; if we 213 * see a retl, it is a leaf. 214 */ 215 if (i == DTRACE_RET) 216 goto nonleaf; 217 218 if (i == DTRACE_RETL) 219 goto leaf; 220 221 /* 222 * If this is a ba (annulled or not), then we 223 * need to actually follow the branch. No, we 224 * don't look at the delay slot -- hopefully 225 * anything that can be gleaned from the delay 226 * slot can also be gleaned from the branch 227 * target. To prevent ourselves from iterating 228 * infinitely, we clamp the number of branches 229 * that we'll follow, and we refuse to follow 230 * the same branch twice consecutively. In 231 * both cases, we abort by deciding that we're 232 * looking at a leaf. While in theory this 233 * could be wrong (we could be in the middle of 234 * a loop in a non-leaf that ends with a ba and 235 * only manipulates outputs and globals in the 236 * body of the loop -- therefore leading us to 237 * the wrong conclusion), this doesn't seem to 238 * crop up in practice. (Or rather, this 239 * condition could not be deliberately induced, 240 * despite concerted effort.) 241 */ 242 if ((i & DTRACE_BA_MASK) == DTRACE_BA) { 243 if (++branches == DTRACE_BA_MAX || 244 taken == j) 245 goto nonleaf; 246 247 taken = j; 248 j += ((int)(i << DTRACE_DISP22_SHIFT) >> 249 DTRACE_DISP22_SHIFT) - 1; 250 continue; 251 } 252 253 /* 254 * Finally, if it's a save, it should be 255 * treated as a leaf; if it's a restore it 256 * should not be treated as a leaf. 257 */ 258 if ((i & DTRACE_SAVE_MASK) == DTRACE_SAVE) 259 goto leaf; 260 261 if ((i & DTRACE_SAVE_MASK) == DTRACE_RESTORE) 262 goto nonleaf; 263 } 264 265 if (delay) { 266 /* 267 * If this was a delay slot instruction and 268 * we didn't pick it up elsewhere, this is a 269 * non-leaf. 270 */ 271 goto nonleaf; 272 } 273 } 274 nonleaf: 275 aframes++; 276 leaf: 277 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 278 } 279 280 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 281 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); 282 else 283 stacktop = (struct frame *)curthread->t_stk; 284 minfp = fp; 285 286 while (depth < pcstack_limit) { 287 nextfp = (struct frame *)((caddr_t)fp->fr_savfp + STACK_BIAS); 288 if (nextfp <= minfp || nextfp >= stacktop) { 289 if (!on_intr && nextfp == stacktop && aframes != 0) { 290 /* 291 * If we are exactly at the top of the stack 292 * with a non-zero number of artificial frames, 293 * it must be that the stack is filled with 294 * nothing _but_ artificial frames. In this 295 * case, we assert that this is so, zero 296 * pcstack, and return. 297 */ 298 ASSERT(aframes == 1); 299 ASSERT(depth == 0); 300 301 while (depth < pcstack_limit) 302 pcstack[depth++] = NULL; 303 return; 304 } 305 306 if (on_intr) { 307 /* 308 * Hop from interrupt stack to thread stack. 309 */ 310 stacktop = (struct frame *)curthread->t_stk; 311 minfp = (struct frame *)curthread->t_stkbase; 312 313 on_intr = 0; 314 315 if (nextfp > minfp && nextfp < stacktop) 316 continue; 317 } else { 318 /* 319 * High-level interrupts may occur when %sp is 320 * not necessarily contained in the stack 321 * bounds implied by %g7 -- interrupt thread 322 * management runs with %pil at DISP_LEVEL, 323 * and high-level interrupts may thus occur 324 * in windows when %sp and %g7 are not self- 325 * consistent. If we call dtrace_getpcstack() 326 * from a high-level interrupt that has occurred 327 * in such a window, we will fail the above test 328 * of nextfp against minfp/stacktop. If the 329 * high-level interrupt has in turn interrupted 330 * a non-passivated interrupt thread, we 331 * will execute the below code with non-zero 332 * aframes. We therefore want to assert that 333 * aframes is zero _or_ we are in a high-level 334 * interrupt -- but because cpu_intr_actv is 335 * updated with high-level interrupts enabled, 336 * we must reduce this to only asserting that 337 * %pil is greater than DISP_LEVEL. 338 */ 339 ASSERT(aframes == 0 || 340 dtrace_getipl() > DISP_LEVEL); 341 pcstack[depth++] = (pc_t)fp->fr_savpc; 342 } 343 344 while (depth < pcstack_limit) 345 pcstack[depth++] = NULL; 346 return; 347 } 348 349 if (aframes > 0) { 350 aframes--; 351 } else { 352 pcstack[depth++] = (pc_t)fp->fr_savpc; 353 } 354 355 fp = nextfp; 356 minfp = fp; 357 } 358 } 359 360 static int 361 dtrace_getustack_common(uint64_t *pcstack, int pcstack_limit, uintptr_t sp) 362 { 363 proc_t *p = curproc; 364 int ret = 0; 365 uintptr_t oldsp; 366 volatile uint16_t *flags = 367 (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 368 369 ASSERT(pcstack == NULL || pcstack_limit > 0); 370 ASSERT(dtrace_ustackdepth_max > 0); 371 372 if (p->p_model == DATAMODEL_NATIVE) { 373 for (;;) { 374 struct frame *fr = (struct frame *)(sp + STACK_BIAS); 375 uintptr_t pc; 376 377 if (sp == 0 || fr == NULL || 378 !IS_P2ALIGNED((uintptr_t)fr, STACK_ALIGN)) 379 break; 380 381 oldsp = sp; 382 383 pc = dtrace_fulword(&fr->fr_savpc); 384 sp = dtrace_fulword(&fr->fr_savfp); 385 386 if (pc == 0) 387 break; 388 389 /* 390 * We limit the number of times we can go around this 391 * loop to account for a circular stack. 392 */ 393 if (sp == oldsp || ret++ >= dtrace_ustackdepth_max) { 394 *flags |= CPU_DTRACE_BADSTACK; 395 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = sp; 396 break; 397 } 398 399 if (pcstack != NULL) { 400 *pcstack++ = pc; 401 pcstack_limit--; 402 if (pcstack_limit == 0) 403 break; 404 } 405 } 406 } else { 407 /* 408 * Truncate the stack pointer to 32-bits as there may be 409 * garbage in the upper bits which would normally be ignored 410 * by the processor in 32-bit mode. 411 */ 412 sp = (uint32_t)sp; 413 414 for (;;) { 415 struct frame32 *fr = (struct frame32 *)sp; 416 uint32_t pc; 417 418 if (sp == 0 || 419 !IS_P2ALIGNED((uintptr_t)fr, STACK_ALIGN32)) 420 break; 421 422 oldsp = sp; 423 424 pc = dtrace_fuword32(&fr->fr_savpc); 425 sp = dtrace_fuword32(&fr->fr_savfp); 426 427 if (pc == 0) 428 break; 429 430 if (sp == oldsp || ret++ >= dtrace_ustackdepth_max) { 431 *flags |= CPU_DTRACE_BADSTACK; 432 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = sp; 433 break; 434 } 435 436 if (pcstack != NULL) { 437 *pcstack++ = pc; 438 pcstack_limit--; 439 if (pcstack_limit == 0) 440 break; 441 } 442 } 443 } 444 445 return (ret); 446 } 447 448 void 449 dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit) 450 { 451 klwp_t *lwp = ttolwp(curthread); 452 proc_t *p = curproc; 453 struct regs *rp; 454 uintptr_t sp; 455 int n; 456 457 if (pcstack_limit <= 0) 458 return; 459 460 /* 461 * If there's no user context we still need to zero the stack. 462 */ 463 if (lwp == NULL || p == NULL || (rp = lwp->lwp_regs) == NULL) 464 goto zero; 465 466 *pcstack++ = (uint64_t)p->p_pid; 467 pcstack_limit--; 468 469 if (pcstack_limit <= 0) 470 return; 471 472 *pcstack++ = (uint64_t)rp->r_pc; 473 pcstack_limit--; 474 475 if (pcstack_limit <= 0) 476 return; 477 478 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { 479 *pcstack++ = (uint64_t)rp->r_o7; 480 pcstack_limit--; 481 if (pcstack_limit <= 0) 482 return; 483 } 484 485 sp = rp->r_sp; 486 487 n = dtrace_getupcstack_top(pcstack, pcstack_limit, &sp); 488 ASSERT(n >= 0); 489 ASSERT(n <= pcstack_limit); 490 491 pcstack += n; 492 pcstack_limit -= n; 493 if (pcstack_limit <= 0) 494 return; 495 496 n = dtrace_getustack_common(pcstack, pcstack_limit, sp); 497 ASSERT(n >= 0); 498 ASSERT(n <= pcstack_limit); 499 500 pcstack += n; 501 pcstack_limit -= n; 502 503 zero: 504 while (pcstack_limit-- > 0) 505 *pcstack++ = NULL; 506 } 507 508 int 509 dtrace_getustackdepth(void) 510 { 511 klwp_t *lwp = ttolwp(curthread); 512 proc_t *p = curproc; 513 struct regs *rp; 514 uintptr_t sp; 515 int n = 1; 516 517 if (lwp == NULL || p == NULL || (rp = lwp->lwp_regs) == NULL) 518 return (0); 519 520 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 521 return (-1); 522 523 sp = rp->r_sp; 524 525 n += dtrace_getustackdepth_top(&sp); 526 n += dtrace_getustack_common(NULL, 0, sp); 527 528 /* 529 * Add one more to the stack depth if we're in an entry probe as long 530 * as the return address is non-NULL or there are additional frames 531 * beyond that NULL return address. 532 */ 533 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY) && 534 (rp->r_o7 != NULL || n != 1)) 535 n++; 536 537 return (n); 538 } 539 540 void 541 dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit) 542 { 543 klwp_t *lwp = ttolwp(curthread); 544 proc_t *p = ttoproc(curthread); 545 struct regs *rp; 546 uintptr_t sp; 547 548 if (pcstack_limit <= 0) 549 return; 550 551 /* 552 * If there's no user context we still need to zero the stack. 553 */ 554 if (lwp == NULL || p == NULL || (rp = lwp->lwp_regs) == NULL) 555 goto zero; 556 557 *pcstack++ = (uint64_t)p->p_pid; 558 pcstack_limit--; 559 560 if (pcstack_limit <= 0) 561 return; 562 563 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { 564 *fpstack++ = 0; 565 *pcstack++ = (uint64_t)rp->r_pc; 566 pcstack_limit--; 567 if (pcstack_limit <= 0) 568 return; 569 570 *fpstack++ = (uint64_t)rp->r_sp; 571 *pcstack++ = (uint64_t)rp->r_o7; 572 pcstack_limit--; 573 } else { 574 *fpstack++ = (uint64_t)rp->r_sp; 575 *pcstack++ = (uint64_t)rp->r_pc; 576 pcstack_limit--; 577 } 578 579 if (pcstack_limit <= 0) 580 return; 581 582 sp = rp->r_sp; 583 584 dtrace_flush_user_windows(); 585 586 if (p->p_model == DATAMODEL_NATIVE) { 587 while (pcstack_limit > 0) { 588 struct frame *fr = (struct frame *)(sp + STACK_BIAS); 589 uintptr_t pc; 590 591 if (sp == 0 || fr == NULL || 592 ((uintptr_t)&fr->fr_savpc & 3) != 0 || 593 ((uintptr_t)&fr->fr_savfp & 3) != 0) 594 break; 595 596 pc = dtrace_fulword(&fr->fr_savpc); 597 sp = dtrace_fulword(&fr->fr_savfp); 598 599 if (pc == 0) 600 break; 601 602 *fpstack++ = sp; 603 *pcstack++ = pc; 604 pcstack_limit--; 605 } 606 } else { 607 /* 608 * Truncate the stack pointer to 32-bits as there may be 609 * garbage in the upper bits which would normally be ignored 610 * by the processor in 32-bit mode. 611 */ 612 sp = (uint32_t)sp; 613 614 while (pcstack_limit > 0) { 615 struct frame32 *fr = (struct frame32 *)sp; 616 uint32_t pc; 617 618 if (sp == 0 || 619 ((uintptr_t)&fr->fr_savpc & 3) != 0 || 620 ((uintptr_t)&fr->fr_savfp & 3) != 0) 621 break; 622 623 pc = dtrace_fuword32(&fr->fr_savpc); 624 sp = dtrace_fuword32(&fr->fr_savfp); 625 626 if (pc == 0) 627 break; 628 629 *fpstack++ = sp; 630 *pcstack++ = pc; 631 pcstack_limit--; 632 } 633 } 634 635 zero: 636 while (pcstack_limit-- > 0) 637 *pcstack++ = NULL; 638 } 639 640 uint64_t 641 dtrace_getarg(int arg, int aframes) 642 { 643 uintptr_t val; 644 struct frame *fp; 645 uint64_t rval; 646 647 /* 648 * Account for the fact that dtrace_getarg() consumes an additional 649 * stack frame. 650 */ 651 aframes++; 652 653 if (arg < 6) { 654 if (dtrace_fish(aframes, DTRACE_REG_I0 + arg, &val) == 0) 655 return (val); 656 } else { 657 if (dtrace_fish(aframes, DTRACE_REG_I6, &val) == 0) { 658 /* 659 * We have a stack pointer; grab the argument. 660 */ 661 fp = (struct frame *)(val + STACK_BIAS); 662 663 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 664 rval = fp->fr_argx[arg - 6]; 665 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 666 667 return (rval); 668 } 669 } 670 671 /* 672 * There are other ways to do this. But the slow, painful way works 673 * just fine. Because this requires some loads, we need to set 674 * CPU_DTRACE_NOFAULT to protect against looking for an argument that 675 * isn't there. 676 */ 677 fp = (struct frame *)((caddr_t)dtrace_getfp() + STACK_BIAS); 678 dtrace_flush_windows(); 679 680 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 681 682 for (aframes -= 1; aframes; aframes--) 683 fp = (struct frame *)((caddr_t)fp->fr_savfp + STACK_BIAS); 684 685 if (arg < 6) { 686 rval = fp->fr_arg[arg]; 687 } else { 688 fp = (struct frame *)((caddr_t)fp->fr_savfp + STACK_BIAS); 689 rval = fp->fr_argx[arg - 6]; 690 } 691 692 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 693 694 return (rval); 695 } 696 697 int 698 dtrace_getstackdepth(int aframes) 699 { 700 struct frame *fp, *nextfp, *minfp, *stacktop; 701 int depth = 0; 702 int on_intr; 703 704 fp = (struct frame *)((caddr_t)dtrace_getfp() + STACK_BIAS); 705 dtrace_flush_windows(); 706 707 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 708 stacktop = (struct frame *)CPU->cpu_intr_stack + SA(MINFRAME); 709 else 710 stacktop = (struct frame *)curthread->t_stk; 711 minfp = fp; 712 713 for (;;) { 714 nextfp = (struct frame *)((caddr_t)fp->fr_savfp + STACK_BIAS); 715 if (nextfp <= minfp || nextfp >= stacktop) { 716 if (on_intr) { 717 /* 718 * Hop from interrupt stack to thread stack. 719 */ 720 stacktop = (struct frame *)curthread->t_stk; 721 minfp = (struct frame *)curthread->t_stkbase; 722 on_intr = 0; 723 continue; 724 } 725 726 return (++depth); 727 } 728 729 if (aframes > 0) { 730 aframes--; 731 } else { 732 depth++; 733 } 734 735 fp = nextfp; 736 minfp = fp; 737 } 738 } 739 740 /* 741 * This uses the same register numbering scheme as in sys/procfs_isa.h. 742 */ 743 ulong_t 744 dtrace_getreg(struct regs *rp, uint_t reg) 745 { 746 ulong_t value; 747 uintptr_t fp; 748 struct machpcb *mpcb; 749 750 if (reg == R_G0) 751 return (0); 752 753 if (reg <= R_G7) 754 return ((&rp->r_g1)[reg - 1]); 755 756 if (reg > R_I7) { 757 switch (reg) { 758 case R_CCR: 759 return ((rp->r_tstate >> TSTATE_CCR_SHIFT) & 760 TSTATE_CCR_MASK); 761 case R_PC: 762 return (rp->r_pc); 763 case R_nPC: 764 return (rp->r_npc); 765 case R_Y: 766 return (rp->r_y); 767 case R_ASI: 768 return ((rp->r_tstate >> TSTATE_ASI_SHIFT) & 769 TSTATE_ASI_MASK); 770 case R_FPRS: 771 return (dtrace_getfprs()); 772 default: 773 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 774 return (0); 775 } 776 } 777 778 /* 779 * We reach go to the fake restore case if the probe we hit was a pid 780 * return probe on a restore instruction. We partially emulate the 781 * restore in the kernel and then execute a simple restore 782 * instruction that we've secreted away to do the actual register 783 * window manipulation. We need to go one register window further 784 * down to get at the %ls, and %is and we need to treat %os like %is 785 * to pull them out of the topmost user frame. 786 */ 787 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAKERESTORE)) { 788 if (reg > R_O7) 789 goto fake_restore; 790 else 791 reg += R_I0 - R_O0; 792 793 } else if (reg <= R_O7) { 794 return ((&rp->r_g1)[reg - 1]); 795 } 796 797 if (dtrace_getotherwin() > 0) 798 return (dtrace_getreg_win(reg, 1)); 799 800 mpcb = (struct machpcb *)((caddr_t)rp - REGOFF); 801 802 if (curproc->p_model == DATAMODEL_NATIVE) { 803 struct frame *fr = (void *)(rp->r_sp + STACK_BIAS); 804 805 if (mpcb->mpcb_wbcnt > 0) { 806 struct rwindow *rwin = (void *)mpcb->mpcb_wbuf; 807 int i = mpcb->mpcb_wbcnt; 808 do { 809 i--; 810 if ((long)mpcb->mpcb_spbuf[i] == rp->r_sp) 811 return (rwin[i].rw_local[reg - 16]); 812 } while (i > 0); 813 } 814 815 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 816 value = dtrace_fulword(&fr->fr_local[reg - 16]); 817 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 818 } else { 819 struct frame32 *fr = (void *)(uintptr_t)(caddr32_t)rp->r_sp; 820 821 if (mpcb->mpcb_wbcnt > 0) { 822 struct rwindow32 *rwin = (void *)mpcb->mpcb_wbuf; 823 int i = mpcb->mpcb_wbcnt; 824 do { 825 i--; 826 if ((long)mpcb->mpcb_spbuf[i] == rp->r_sp) 827 return (rwin[i].rw_local[reg - 16]); 828 } while (i > 0); 829 } 830 831 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 832 value = dtrace_fuword32(&fr->fr_local[reg - 16]); 833 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 834 } 835 836 return (value); 837 838 fake_restore: 839 ASSERT(R_L0 <= reg && reg <= R_I7); 840 841 /* 842 * We first look two user windows down to see if we can dig out 843 * the register we're looking for. 844 */ 845 if (dtrace_getotherwin() > 1) 846 return (dtrace_getreg_win(reg, 2)); 847 848 /* 849 * First we need to get the frame pointer and then we perform 850 * the same computation as in the non-fake-o-restore case. 851 */ 852 853 mpcb = (struct machpcb *)((caddr_t)rp - REGOFF); 854 855 if (dtrace_getotherwin() > 0) { 856 fp = dtrace_getreg_win(R_FP, 1); 857 goto got_fp; 858 } 859 860 if (curproc->p_model == DATAMODEL_NATIVE) { 861 struct frame *fr = (void *)(rp->r_sp + STACK_BIAS); 862 863 if (mpcb->mpcb_wbcnt > 0) { 864 struct rwindow *rwin = (void *)mpcb->mpcb_wbuf; 865 int i = mpcb->mpcb_wbcnt; 866 do { 867 i--; 868 if ((long)mpcb->mpcb_spbuf[i] == rp->r_sp) { 869 fp = rwin[i].rw_fp; 870 goto got_fp; 871 } 872 } while (i > 0); 873 } 874 875 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 876 fp = dtrace_fulword(&fr->fr_savfp); 877 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 878 if (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & CPU_DTRACE_FAULT) 879 return (0); 880 } else { 881 struct frame32 *fr = (void *)(uintptr_t)(caddr32_t)rp->r_sp; 882 883 if (mpcb->mpcb_wbcnt > 0) { 884 struct rwindow32 *rwin = (void *)mpcb->mpcb_wbuf; 885 int i = mpcb->mpcb_wbcnt; 886 do { 887 i--; 888 if ((long)mpcb->mpcb_spbuf[i] == rp->r_sp) { 889 fp = rwin[i].rw_fp; 890 goto got_fp; 891 } 892 } while (i > 0); 893 } 894 895 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 896 fp = dtrace_fuword32(&fr->fr_savfp); 897 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 898 if (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & CPU_DTRACE_FAULT) 899 return (0); 900 } 901 got_fp: 902 903 if (curproc->p_model == DATAMODEL_NATIVE) { 904 struct frame *fr = (void *)(fp + STACK_BIAS); 905 906 if (mpcb->mpcb_wbcnt > 0) { 907 struct rwindow *rwin = (void *)mpcb->mpcb_wbuf; 908 int i = mpcb->mpcb_wbcnt; 909 do { 910 i--; 911 if ((long)mpcb->mpcb_spbuf[i] == fp) 912 return (rwin[i].rw_local[reg - 16]); 913 } while (i > 0); 914 } 915 916 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 917 value = dtrace_fulword(&fr->fr_local[reg - 16]); 918 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 919 } else { 920 struct frame32 *fr = (void *)(uintptr_t)(caddr32_t)fp; 921 922 if (mpcb->mpcb_wbcnt > 0) { 923 struct rwindow32 *rwin = (void *)mpcb->mpcb_wbuf; 924 int i = mpcb->mpcb_wbcnt; 925 do { 926 i--; 927 if ((long)mpcb->mpcb_spbuf[i] == fp) 928 return (rwin[i].rw_local[reg - 16]); 929 } while (i > 0); 930 } 931 932 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 933 value = dtrace_fuword32(&fr->fr_local[reg - 16]); 934 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 935 } 936 937 return (value); 938 } 939