xref: /illumos-gate/usr/src/uts/sfmmu/vm/hat_sfmmu.h (revision bea83d026ee1bd1b2a2419e1d0232f107a5d7d9b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * VM - Hardware Address Translation management.
28  *
29  * This file describes the contents of the sun-reference-mmu(sfmmu)-
30  * specific hat data structures and the sfmmu-specific hat procedures.
31  * The machine-independent interface is described in <vm/hat.h>.
32  */
33 
34 #ifndef	_VM_HAT_SFMMU_H
35 #define	_VM_HAT_SFMMU_H
36 
37 #pragma ident	"%Z%%M%	%I%	%E% SMI"
38 
39 #ifdef	__cplusplus
40 extern "C" {
41 #endif
42 
43 #ifndef _ASM
44 
45 #include <sys/types.h>
46 
47 #endif /* _ASM */
48 
49 #ifdef	_KERNEL
50 
51 #include <sys/pte.h>
52 #include <vm/mach_sfmmu.h>
53 #include <sys/mmu.h>
54 
55 /*
56  * Don't alter these without considering changes to ism_map_t.
57  */
58 #define	DEFAULT_ISM_PAGESIZE		MMU_PAGESIZE4M
59 #define	ISM_PG_SIZE(ism_vbshift)	(1 << ism_vbshift)
60 #define	ISM_SZ_MASK(ism_vbshift)	(ISM_PG_SIZE(ism_vbshift) - 1)
61 #define	ISM_MAP_SLOTS	8	/* Change this carefully. */
62 
63 #ifndef _ASM
64 
65 #include <sys/t_lock.h>
66 #include <vm/hat.h>
67 #include <vm/seg.h>
68 #include <sys/machparam.h>
69 #include <sys/systm.h>
70 #include <sys/x_call.h>
71 #include <vm/page.h>
72 #include <sys/ksynch.h>
73 
74 typedef struct hat sfmmu_t;
75 typedef struct sf_scd sf_scd_t;
76 
77 /*
78  * SFMMU attributes for hat_memload/hat_devload
79  */
80 #define	SFMMU_UNCACHEPTTE	0x01000000	/* unencache in physical $ */
81 #define	SFMMU_UNCACHEVTTE	0x02000000	/* unencache in virtual $ */
82 #define	SFMMU_SIDEFFECT		0x04000000	/* set side effect bit */
83 #define	SFMMU_LOAD_ALLATTR	(HAT_PROT_MASK | HAT_ORDER_MASK |	\
84 		HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC |		\
85 		SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT)
86 
87 
88 /*
89  * sfmmu flags for hat_memload/hat_devload
90  */
91 #define	SFMMU_NO_TSBLOAD	0x08000000	/* do not preload tsb */
92 #define	SFMMU_LOAD_ALLFLAG	(HAT_LOAD | HAT_LOAD_LOCK |		\
93 		HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST |	\
94 		HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD |	\
95 		HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT)
96 
97 /*
98  * sfmmu internal flag to hat_pageunload that spares locked mappings
99  */
100 #define	SFMMU_KERNEL_RELOC	0x8000
101 
102 /*
103  * mode for sfmmu_chgattr
104  */
105 #define	SFMMU_SETATTR	0x0
106 #define	SFMMU_CLRATTR	0x1
107 #define	SFMMU_CHGATTR	0x2
108 
109 /*
110  * sfmmu specific flags for page_t
111  */
112 #define	P_PNC	0x8		/* non-caching is permanent bit */
113 #define	P_TNC	0x10		/* non-caching is temporary bit */
114 #define	P_KPMS	0x20		/* kpm mapped small (vac alias prevention) */
115 #define	P_KPMC	0x40		/* kpm conflict page (vac alias prevention) */
116 
117 #define	PP_GENERIC_ATTR(pp)	((pp)->p_nrm & (P_MOD | P_REF | P_RO))
118 #define	PP_ISMOD(pp)		((pp)->p_nrm & P_MOD)
119 #define	PP_ISREF(pp)		((pp)->p_nrm & P_REF)
120 #define	PP_ISRO(pp)		((pp)->p_nrm & P_RO)
121 #define	PP_ISNC(pp)		((pp)->p_nrm & (P_PNC|P_TNC))
122 #define	PP_ISPNC(pp)		((pp)->p_nrm & P_PNC)
123 #ifdef VAC
124 #define	PP_ISTNC(pp)		((pp)->p_nrm & P_TNC)
125 #endif
126 #define	PP_ISKPMS(pp)		((pp)->p_nrm & P_KPMS)
127 #define	PP_ISKPMC(pp)		((pp)->p_nrm & P_KPMC)
128 
129 #define	PP_SETMOD(pp)		((pp)->p_nrm |= P_MOD)
130 #define	PP_SETREF(pp)		((pp)->p_nrm |= P_REF)
131 #define	PP_SETREFMOD(pp)	((pp)->p_nrm |= (P_REF|P_MOD))
132 #define	PP_SETRO(pp)		((pp)->p_nrm |= P_RO)
133 #define	PP_SETREFRO(pp)		((pp)->p_nrm |= (P_REF|P_RO))
134 #define	PP_SETPNC(pp)		((pp)->p_nrm |= P_PNC)
135 #ifdef VAC
136 #define	PP_SETTNC(pp)		((pp)->p_nrm |= P_TNC)
137 #endif
138 #define	PP_SETKPMS(pp)		((pp)->p_nrm |= P_KPMS)
139 #define	PP_SETKPMC(pp)		((pp)->p_nrm |= P_KPMC)
140 
141 #define	PP_CLRMOD(pp)		((pp)->p_nrm &= ~P_MOD)
142 #define	PP_CLRREF(pp)		((pp)->p_nrm &= ~P_REF)
143 #define	PP_CLRREFMOD(pp)	((pp)->p_nrm &= ~(P_REF|P_MOD))
144 #define	PP_CLRRO(pp)		((pp)->p_nrm &= ~P_RO)
145 #define	PP_CLRPNC(pp)		((pp)->p_nrm &= ~P_PNC)
146 #ifdef VAC
147 #define	PP_CLRTNC(pp)		((pp)->p_nrm &= ~P_TNC)
148 #endif
149 #define	PP_CLRKPMS(pp)		((pp)->p_nrm &= ~P_KPMS)
150 #define	PP_CLRKPMC(pp)		((pp)->p_nrm &= ~P_KPMC)
151 
152 /*
153  * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM)
154  * will be constrained to a 4M, 32M or 256M alignment. Also since every newly-
155  * created ISM segment is created out of a new address space at base va
156  * of 0 we don't need to store it.
157  */
158 #define	ISM_ALIGN(shift)	(1 << shift)	/* base va aligned to <n>M  */
159 #define	ISM_ALIGNED(shift, va)	(((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0)
160 #define	ISM_SHIFT(shift, x)	((uintptr_t)x >> (shift))
161 
162 /*
163  * Pad locks out to cache sub-block boundaries to prevent
164  * false sharing, so several processes don't contend for
165  * the same line if they aren't using the same lock.  Since
166  * this is a typedef we also have a bit of freedom in
167  * changing lock implementations later if we decide it
168  * is necessary.
169  */
170 typedef struct hat_lock {
171 	kmutex_t hl_mutex;
172 	uchar_t hl_pad[64 - sizeof (kmutex_t)];
173 } hatlock_t;
174 
175 #define	HATLOCK_MUTEXP(hatlockp)	(&((hatlockp)->hl_mutex))
176 
177 /*
178  * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned.
179  * Also size is guaranteed to be in 4M, 32M or 256M chunks.
180  * ism_seg consists of the following members:
181  * [XX..22] base address of ism segment. XX is 63 or 31 depending whether
182  *	caddr_t is 64 bits or 32 bits.
183  * [21..0] size of segment.
184  *
185  * NOTE: Don't alter this structure without changing defines above and
186  * the tsb_miss and protection handlers.
187  */
188 typedef struct ism_map {
189 	uintptr_t	imap_seg;  	/* base va + sz of ISM segment */
190 	uchar_t		imap_vb_shift;	/* mmu_pageshift for ism page size */
191 	uchar_t		imap_rid;	/* region id for ism */
192 	ushort_t	imap_hatflags;	/* primary ism page size */
193 	uint_t		imap_sz_mask;	/* mmu_pagemask for ism page size */
194 	sfmmu_t		*imap_ismhat; 	/* hat id of dummy ISM as */
195 	struct ism_ment	*imap_ment;	/* pointer to mapping list entry */
196 } ism_map_t;
197 
198 #define	ism_start(map)	((caddr_t)((map).imap_seg & \
199 				~ISM_SZ_MASK((map).imap_vb_shift)))
200 #define	ism_size(map)	((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift))
201 #define	ism_end(map)	((caddr_t)(ism_start(map) + (ism_size(map) * \
202 				ISM_PG_SIZE((map).imap_vb_shift))))
203 /*
204  * ISM mapping entry. Used to link all hat's sharing a ism_hat.
205  * Same function as the p_mapping list for a page.
206  */
207 typedef struct ism_ment {
208 	sfmmu_t		*iment_hat;	/* back pointer to hat_share() hat */
209 	caddr_t		iment_base_va;	/* hat's va base for this ism seg */
210 	struct ism_ment	*iment_next;	/* next ism map entry */
211 	struct ism_ment	*iment_prev;	/* prev ism map entry */
212 } ism_ment_t;
213 
214 /*
215  * ISM segment block. One will be hung off the sfmmu structure if a
216  * a process uses ISM.  More will be linked using ismblk_next if more
217  * than ISM_MAP_SLOTS segments are attached to this proc.
218  *
219  * All modifications to fields in this structure will be protected
220  * by the hat mutex.  In order to avoid grabbing this lock in low level
221  * routines (tsb miss/protection handlers and vatopfn) while not
222  * introducing any race conditions with hat_unshare, we will set
223  * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur
224  * for this ctx while this bit is set will be handled in sfmmu_tsb_excption
225  * where it will synchronize behind the hat mutex.
226  */
227 typedef struct ism_blk {
228 	ism_map_t		iblk_maps[ISM_MAP_SLOTS];
229 	struct ism_blk		*iblk_next;
230 	uint64_t		iblk_nextpa;
231 } ism_blk_t;
232 
233 /*
234  * TSB access information.  All fields are protected by the process's
235  * hat lock.
236  */
237 
238 struct tsb_info {
239 	caddr_t		tsb_va;		/* tsb base virtual address */
240 	uint64_t	tsb_pa;		/* tsb base physical address */
241 	struct tsb_info	*tsb_next;	/* next tsb used by this process */
242 	uint16_t	tsb_szc;	/* tsb size code */
243 	uint16_t	tsb_flags;	/* flags for this tsb; see below */
244 	uint_t		tsb_ttesz_mask;	/* page size masks; see below */
245 
246 	tte_t		tsb_tte;	/* tte to lock into DTLB */
247 	sfmmu_t		*tsb_sfmmu;	/* sfmmu */
248 	kmem_cache_t	*tsb_cache;	/* cache from which mem allocated */
249 	vmem_t		*tsb_vmp;	/* vmem arena from which mem alloc'd */
250 };
251 
252 /*
253  * Values for "tsb_ttesz_mask" bitmask.
254  */
255 #define	TSB8K	(1 << TTE8K)
256 #define	TSB64K  (1 << TTE64K)
257 #define	TSB512K (1 << TTE512K)
258 #define	TSB4M   (1 << TTE4M)
259 #define	TSB32M  (1 << TTE32M)
260 #define	TSB256M (1 << TTE256M)
261 
262 /*
263  * Values for "tsb_flags" field.
264  */
265 #define	TSB_RELOC_FLAG		0x1
266 #define	TSB_FLUSH_NEEDED	0x2
267 #define	TSB_SWAPPED	0x4
268 #define	TSB_SHAREDCTX		0x8
269 
270 #endif	/* !_ASM */
271 
272 /*
273  * Data structures for shared hmeblk support.
274  */
275 
276 /*
277  * Do not increase the maximum number of ism/hme regions without checking first
278  * the impact on ism_map_t, TSB miss area, hblk tag and region id type in
279  * sf_region structure.
280  * Initially, shared hmes will only be used for the main text segment
281  * therefore this value will be set to 64, it will be increased when shared
282  * libraries are included.
283  */
284 
285 #define	SFMMU_MAX_HME_REGIONS		(64)
286 #define	SFMMU_HMERGNMAP_WORDS		BT_BITOUL(SFMMU_MAX_HME_REGIONS)
287 
288 #define	SFMMU_PRIVATE	0
289 #define	SFMMU_SHARED	1
290 
291 #ifndef _ASM
292 
293 #define	SFMMU_MAX_ISM_REGIONS		(64)
294 #define	SFMMU_ISMRGNMAP_WORDS		BT_BITOUL(SFMMU_MAX_ISM_REGIONS)
295 
296 #define	SFMMU_RGNMAP_WORDS	(SFMMU_HMERGNMAP_WORDS + SFMMU_ISMRGNMAP_WORDS)
297 
298 #define	SFMMU_MAX_REGION_BUCKETS	(128)
299 #define	SFMMU_MAX_SRD_BUCKETS		(2048)
300 
301 typedef struct sf_hmeregion_map {
302 	ulong_t	bitmap[SFMMU_HMERGNMAP_WORDS];
303 } sf_hmeregion_map_t;
304 
305 typedef struct sf_ismregion_map {
306 	ulong_t	bitmap[SFMMU_ISMRGNMAP_WORDS];
307 } sf_ismregion_map_t;
308 
309 typedef union sf_region_map_u {
310 	struct _h_rmap_s {
311 		sf_hmeregion_map_t hmeregion_map;
312 		sf_ismregion_map_t ismregion_map;
313 	} h_rmap_s;
314 	ulong_t	bitmap[SFMMU_RGNMAP_WORDS];
315 } sf_region_map_t;
316 
317 #define	SF_RGNMAP_ZERO(map) {				\
318 	int _i;						\
319 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {	\
320 		(map).bitmap[_i] = 0;			\
321 	}						\
322 }
323 
324 /*
325  * Returns 1 if map1 and map2 are equal.
326  */
327 #define	SF_RGNMAP_EQUAL(map1, map2, rval)	{		\
328 	int _i;							\
329 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {		\
330 		if ((map1)->bitmap[_i] != (map2)->bitmap[_i])	\
331 			break;					\
332 	}							\
333 	if (_i < SFMMU_RGNMAP_WORDS)				\
334 		rval = 0;					\
335 	else							\
336 		rval = 1;					\
337 }
338 
339 #define	SF_RGNMAP_ADD(map, r)		BT_SET((map).bitmap, r)
340 #define	SF_RGNMAP_DEL(map, r)		BT_CLEAR((map).bitmap, r)
341 #define	SF_RGNMAP_TEST(map, r)		BT_TEST((map).bitmap, r)
342 
343 /*
344  * Tests whether map2 is a subset of map1, returns 1 if
345  * this assertion is true.
346  */
347 #define	SF_RGNMAP_IS_SUBSET(map1, map2, rval)	{		\
348 	int _i;							\
349 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {		\
350 		if (((map1)->bitmap[_i]	& (map2)->bitmap[_i])	\
351 		    != (map2)->bitmap[_i])  {	 		\
352 			break;					\
353 		}						\
354 	}							\
355 	if (_i < SFMMU_RGNMAP_WORDS)		 		\
356 		rval = 0;					\
357 	else							\
358 		rval = 1;					\
359 }
360 
361 #define	SF_SCD_INCR_REF(scdp) {						\
362 	atomic_add_32((volatile uint32_t *)&(scdp)->scd_refcnt, 1);	\
363 }
364 
365 #define	SF_SCD_DECR_REF(srdp, scdp) {				\
366 	sf_region_map_t _scd_rmap = (scdp)->scd_region_map;	\
367 	if (!atomic_add_32_nv(					\
368 	    (volatile uint32_t *)&(scdp)->scd_refcnt, -1)) {	\
369 		sfmmu_destroy_scd((srdp), (scdp), &_scd_rmap);	\
370 	}							\
371 }
372 
373 /*
374  * A sfmmup link in the link list of sfmmups that share the same region.
375  */
376 typedef struct sf_rgn_link {
377 	sfmmu_t	*next;
378 	sfmmu_t *prev;
379 } sf_rgn_link_t;
380 
381 /*
382  * rgn_flags values.
383  */
384 #define	SFMMU_REGION_HME	0x1
385 #define	SFMMU_REGION_ISM	0x2
386 #define	SFMMU_REGION_FREE	0x8
387 
388 #define	SFMMU_REGION_TYPE_MASK	(0x3)
389 
390 /*
391  * sf_region defines a text or (D)ISM segment which map
392  * the same underlying physical object.
393  */
394 typedef struct sf_region {
395 	caddr_t			rgn_saddr;   /* base addr of attached seg */
396 	size_t			rgn_size;    /* size of attached seg */
397 	void			*rgn_obj;    /* the underlying object id */
398 	u_offset_t		rgn_objoff;  /* offset in the object mapped */
399 	uchar_t			rgn_perm;    /* PROT_READ/WRITE/EXEC */
400 	uchar_t			rgn_pgszc;   /* page size of the region */
401 	uchar_t			rgn_flags;   /* region type, free flag */
402 	uchar_t			rgn_id;
403 	int			rgn_refcnt;  /* # of hats sharing the region */
404 	/* callback function for hat_unload_callback */
405 	hat_rgn_cb_func_t	rgn_cb_function;
406 	struct sf_region	*rgn_hash;   /* hash chain linking the rgns */
407 	kmutex_t		rgn_mutex;   /* protect region sfmmu list */
408 	/* A link list of processes attached to this region */
409 	sfmmu_t			*rgn_sfmmu_head;
410 	ulong_t			rgn_ttecnt[MMU_PAGE_SIZES];
411 	uint16_t		rgn_hmeflags; /* rgn tte size flags */
412 } sf_region_t;
413 
414 #define	rgn_next	rgn_hash
415 
416 /* srd */
417 typedef struct sf_shared_region_domain {
418 	vnode_t			*srd_evp;	/* executable vnode */
419 	/* hme region table */
420 	sf_region_t		*srd_hmergnp[SFMMU_MAX_HME_REGIONS];
421 	/* ism region table */
422 	sf_region_t		*srd_ismrgnp[SFMMU_MAX_ISM_REGIONS];
423 	/* hash chain linking srds */
424 	struct sf_shared_region_domain *srd_hash;
425 	/* pointer to the next free hme region */
426 	sf_region_t		*srd_hmergnfree;
427 	/* pointer to the next free ism region */
428 	sf_region_t		*srd_ismrgnfree;
429 	/* id of next ism region created */
430 	uint16_t		srd_next_ismrid;
431 	/* id of next hme region created */
432 	uint16_t		srd_next_hmerid;
433 	uint16_t		srd_ismbusyrgns; /* # of ism rgns in use */
434 	uint16_t		srd_hmebusyrgns; /* # of hme rgns in use */
435 	int			srd_refcnt;	 /* # of procs in the srd */
436 	kmutex_t		srd_mutex;	 /* sync add/remove rgns */
437 	kmutex_t		srd_scd_mutex;
438 	sf_scd_t		*srd_scdp;	 /* list of scds in srd */
439 	/* hash of regions associated with the same executable */
440 	sf_region_t		*srd_rgnhash[SFMMU_MAX_REGION_BUCKETS];
441 } sf_srd_t;
442 
443 typedef struct sf_srd_bucket {
444 	kmutex_t	srdb_lock;
445 	sf_srd_t	*srdb_srdp;
446 } sf_srd_bucket_t;
447 
448 /*
449  * The value of SFMMU_L1_HMERLINKS and SFMMU_L2_HMERLINKS will be increased
450  * to 16 when the use of shared hmes for shared libraries is enabled.
451  */
452 
453 #define	SFMMU_L1_HMERLINKS		(8)
454 #define	SFMMU_L2_HMERLINKS		(8)
455 #define	SFMMU_L1_HMERLINKS_SHIFT	(3)
456 #define	SFMMU_L1_HMERLINKS_MASK		(SFMMU_L1_HMERLINKS - 1)
457 #define	SFMMU_L2_HMERLINKS_MASK		(SFMMU_L2_HMERLINKS - 1)
458 #define	SFMMU_L1_HMERLINKS_SIZE		\
459 	(SFMMU_L1_HMERLINKS * sizeof (sf_rgn_link_t *))
460 #define	SFMMU_L2_HMERLINKS_SIZE		\
461 	(SFMMU_L2_HMERLINKS * sizeof (sf_rgn_link_t))
462 
463 #if (SFMMU_L1_HMERLINKS * SFMMU_L2_HMERLINKS < SFMMU_MAX_HME_REGIONS)
464 #error Not Enough HMERLINKS
465 #endif
466 
467 /*
468  * This macro grabs hat lock and allocates level 2 hat chain
469  * associated with a shme rgn. In the majority of cases, the macro
470  * is called with alloc = 0, and lock = 0.
471  * A pointer to the level 2 sf_rgn_link_t structure is returned in the lnkp
472  * parameter.
473  */
474 #define	SFMMU_HMERID2RLINKP(sfmmup, rid, lnkp, alloc, lock)		\
475 {									\
476 	int _l1ix = ((rid) >> SFMMU_L1_HMERLINKS_SHIFT) &		\
477 	    SFMMU_L1_HMERLINKS_MASK;					\
478 	int _l2ix = ((rid) & SFMMU_L2_HMERLINKS_MASK);			\
479 	hatlock_t *_hatlockp;						\
480 	lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix];			\
481 	if (lnkp != NULL) {						\
482 		lnkp = &lnkp[_l2ix];					\
483 	} else if (alloc && lock) {					\
484 		lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP);	\
485 		_hatlockp = sfmmu_hat_enter(sfmmup);			\
486 		if ((sfmmup)->sfmmu_hmeregion_links[_l1ix] != NULL) {	\
487 			sfmmu_hat_exit(_hatlockp);			\
488 			kmem_free(lnkp, SFMMU_L2_HMERLINKS_SIZE);	\
489 			lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix];	\
490 			ASSERT(lnkp != NULL);				\
491 		} else {						\
492 			(sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp;	\
493 			sfmmu_hat_exit(_hatlockp);			\
494 		}							\
495 		lnkp = &lnkp[_l2ix];					\
496 	} else if (alloc) {						\
497 		lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP);	\
498 		ASSERT((sfmmup)->sfmmu_hmeregion_links[_l1ix] == NULL);	\
499 		(sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp;		\
500 		lnkp = &lnkp[_l2ix];					\
501 	}								\
502 }
503 
504 /*
505  * Per-MMU context domain kstats.
506  *
507  * TSB Miss Exceptions
508  *	Number of times a TSB miss exception is handled in an MMU. See
509  *	sfmmu_tsbmiss_exception() for more details.
510  * TSB Raise Exception
511  *	Number of times the CPUs within an MMU are cross-called
512  *	to invalidate either a specific process context (when the process
513  *	switches MMU contexts) or the context of any process that is
514  *	running on those CPUs (as part of the MMU context wrap-around).
515  * Wrap Around
516  *	The number of times a wrap-around of MMU context happens.
517  */
518 typedef enum mmu_ctx_stat_types {
519 	MMU_CTX_TSB_EXCEPTIONS,		/* TSB miss exceptions handled */
520 	MMU_CTX_TSB_RAISE_EXCEPTION,	/* ctx invalidation cross calls */
521 	MMU_CTX_WRAP_AROUND,		/* wraparounds */
522 	MMU_CTX_NUM_STATS
523 } mmu_ctx_stat_t;
524 
525 /*
526  * Per-MMU context domain structure. This is instantiated the first time a CPU
527  * belonging to the MMU context domain is configured into the system, at boot
528  * time or at DR time.
529  *
530  * mmu_gnum
531  *	The current generation number for the context IDs on this MMU context
532  *	domain. It is protected by mmu_lock.
533  * mmu_cnum
534  *	The current cnum to be allocated on this MMU context domain. It
535  *	is protected via CAS.
536  * mmu_nctxs
537  *	The max number of context IDs supported on every CPU in this
538  *	MMU context domain. It is 8K except for Rock where it is 64K.
539  *      This is needed here in case the system supports mixed type of
540  *      processors/MMUs. It also helps to make ctx switch code access
541  *      fewer cache lines i.e. no need to retrieve it from some global nctxs.
542  * mmu_lock
543  *	The mutex spin lock used to serialize context ID wrap around
544  * mmu_idx
545  *	The index for this MMU context domain structure in the global array
546  *	mmu_ctxdoms.
547  * mmu_ncpus
548  *	The actual number of CPUs that have been configured in this
549  *	MMU context domain. This also acts as a reference count for the
550  *	structure. When the last CPU in an MMU context domain is unconfigured,
551  *	the structure is freed. It is protected by mmu_lock.
552  * mmu_cpuset
553  *	The CPU set of configured CPUs for this MMU context domain. Used
554  *	to cross-call all the CPUs in the MMU context domain to invalidate
555  *	context IDs during a wraparound operation. It is protected by mmu_lock.
556  */
557 
558 typedef struct mmu_ctx {
559 	uint64_t	mmu_gnum;
560 	uint_t		mmu_cnum;
561 	uint_t		mmu_nctxs;
562 	kmutex_t	mmu_lock;
563 	uint_t		mmu_idx;
564 	uint_t		mmu_ncpus;
565 	cpuset_t	mmu_cpuset;
566 	kstat_t		*mmu_kstat;
567 	kstat_named_t	mmu_kstat_data[MMU_CTX_NUM_STATS];
568 } mmu_ctx_t;
569 
570 #define	mmu_tsb_exceptions	\
571 		mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64
572 #define	mmu_tsb_raise_exception	\
573 		mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64
574 #define	mmu_wrap_around		\
575 		mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64
576 
577 extern uint_t		max_mmu_ctxdoms;
578 extern mmu_ctx_t	**mmu_ctxs_tbl;
579 
580 extern void	sfmmu_cpu_init(cpu_t *);
581 extern void	sfmmu_cpu_cleanup(cpu_t *);
582 
583 /*
584  * The following structure is used to get MMU context domain information for
585  * a CPU from the platform.
586  *
587  * mmu_idx
588  *	The MMU context domain index within the global array mmu_ctxs
589  * mmu_nctxs
590  *	The number of context IDs supported in the MMU context domain
591  *	(64K for Rock)
592  */
593 typedef struct mmu_ctx_info {
594 	uint_t		mmu_idx;
595 	uint_t		mmu_nctxs;
596 } mmu_ctx_info_t;
597 
598 #pragma weak plat_cpuid_to_mmu_ctx_info
599 
600 extern void	plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *);
601 
602 /*
603  * Each address space has an array of sfmmu_ctx_t structures, one structure
604  * per MMU context domain.
605  *
606  * cnum
607  *	The context ID allocated for an address space on an MMU context domain
608  * gnum
609  *	The generation number for the context ID in the MMU context domain.
610  *
611  * This structure needs to be a power-of-two in size.
612  */
613 typedef struct sfmmu_ctx {
614 	uint64_t	gnum:48;
615 	uint64_t	cnum:16;
616 } sfmmu_ctx_t;
617 
618 
619 /*
620  * The platform dependent hat structure.
621  * tte counts should be protected by cas.
622  * cpuset is protected by cas.
623  *
624  * ttecnt accounting for mappings which do not use shared hme is carried out
625  * during pagefault handling. In the shared hme case, only the first process
626  * to access a mapping generates a pagefault, subsequent processes simply
627  * find the shared hme entry during trap handling and therefore there is no
628  * corresponding event to initiate ttecnt accounting. Currently, as shared
629  * hmes are only used for text segments, when joining a region we assume the
630  * worst case and add the the number of ttes required to map the entire region
631  * to the ttecnt corresponding to the region pagesize. However, if the region
632  * has a 4M pagesize, and memory is low, the allocation of 4M pages may fail
633  * then 8K pages will be allocated instead and the first TSB which stores 8K
634  * mappings will potentially be undersized. To compensate for the potential
635  * underaccounting in this case we always add 1/4 of the region size to the 8K
636  * ttecnt.
637  *
638  * Note that sfmmu_xhat_provider MUST be the first element.
639  */
640 
641 struct hat {
642 	void		*sfmmu_xhat_provider;	/* NULL for CPU hat */
643 	cpuset_t	sfmmu_cpusran;	/* cpu bit mask for efficient xcalls */
644 	struct	as	*sfmmu_as;	/* as this hat provides mapping for */
645 	/* per pgsz private ttecnt + shme rgns ttecnt for rgns not in SCD */
646 	ulong_t		sfmmu_ttecnt[MMU_PAGE_SIZES];
647 	/* shme rgns ttecnt for rgns in SCD */
648 	ulong_t		sfmmu_scdrttecnt[MMU_PAGE_SIZES];
649 	/* est. ism ttes that are NOT in a SCD */
650 	ulong_t		sfmmu_ismttecnt[MMU_PAGE_SIZES];
651 	/* ttecnt for isms that are in a SCD */
652 	ulong_t		sfmmu_scdismttecnt[MMU_PAGE_SIZES];
653 	/* inflate tsb0 to allow for large page alloc failure in region */
654 	ulong_t		sfmmu_tsb0_4minflcnt;
655 	union _h_un {
656 		ism_blk_t	*sfmmu_iblkp;  /* maps to ismhat(s) */
657 		ism_ment_t	*sfmmu_imentp; /* ism hat's mapping list */
658 	} h_un;
659 	uint_t		sfmmu_free:1;	/* hat to be freed - set on as_free */
660 	uint_t		sfmmu_ismhat:1;	/* hat is dummy ism hatid */
661 	uint_t		sfmmu_scdhat:1;	/* hat is dummy scd hatid */
662 	uchar_t		sfmmu_rmstat;	/* refmod stats refcnt */
663 	ushort_t	sfmmu_clrstart;	/* start color bin for page coloring */
664 	ushort_t	sfmmu_clrbin;	/* per as phys page coloring bin */
665 	ushort_t	sfmmu_flags;	/* flags */
666 	uchar_t		sfmmu_tteflags;	/* pgsz flags */
667 	uchar_t		sfmmu_rtteflags; /* pgsz flags for SRD hmes */
668 	struct tsb_info	*sfmmu_tsb;	/* list of per as tsbs */
669 	uint64_t	sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */
670 	lock_t		sfmmu_ctx_lock;	/* sync ctx alloc and invalidation */
671 	kcondvar_t	sfmmu_tsb_cv;	/* signals TSB swapin or relocation */
672 	uchar_t		sfmmu_cext;	/* context page size encoding */
673 	uint8_t		sfmmu_pgsz[MMU_PAGE_SIZES];  /* ranking for MMU */
674 	sf_srd_t	*sfmmu_srdp;
675 	sf_scd_t	*sfmmu_scdp;	/* scd this address space belongs to */
676 	sf_region_map_t	sfmmu_region_map;
677 	sf_rgn_link_t	*sfmmu_hmeregion_links[SFMMU_L1_HMERLINKS];
678 	sf_rgn_link_t	sfmmu_scd_link;	/* link to scd or pending queue */
679 #ifdef sun4v
680 	struct hv_tsb_block sfmmu_hvblock;
681 #endif
682 	/*
683 	 * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of
684 	 * elements. max_mmu_ctxdoms is determined at run-time.
685 	 * sfmmu_ctxs[1] is just the fist element of an array, it always
686 	 * has to be the last field to ensure that the memory allocated
687 	 * for sfmmu_ctxs is consecutive with the memory of the rest of
688 	 * the hat data structure.
689 	 */
690 	sfmmu_ctx_t	sfmmu_ctxs[1];
691 
692 };
693 
694 #define	sfmmu_iblk	h_un.sfmmu_iblkp
695 #define	sfmmu_iment	h_un.sfmmu_imentp
696 
697 #define	sfmmu_hmeregion_map	sfmmu_region_map.h_rmap_s.hmeregion_map
698 #define	sfmmu_ismregion_map	sfmmu_region_map.h_rmap_s.ismregion_map
699 
700 #define	SF_RGNMAP_ISNULL(sfmmup)	\
701 	(sfrgnmap_isnull(&(sfmmup)->sfmmu_region_map))
702 #define	SF_HMERGNMAP_ISNULL(sfmmup)	\
703 	(sfhmergnmap_isnull(&(sfmmup)->sfmmu_hmeregion_map))
704 
705 struct sf_scd {
706 	sfmmu_t		*scd_sfmmup;	/* shared context hat */
707 	/* per pgsz ttecnt for shme rgns in SCD */
708 	ulong_t		scd_rttecnt[MMU_PAGE_SIZES];
709 	uint_t		scd_refcnt;	/* address spaces attached to scd */
710 	sf_region_map_t scd_region_map; /* bit mask of attached segments */
711 	sf_scd_t	*scd_next;	/* link pointers for srd_scd list */
712 	sf_scd_t	*scd_prev;
713 	sfmmu_t 	*scd_sf_list;	/* list of doubly linked hat structs */
714 	kmutex_t 	scd_mutex;
715 	/*
716 	 * Link used to add an scd to the sfmmu_iment list.
717 	 */
718 	ism_ment_t	scd_ism_links[SFMMU_MAX_ISM_REGIONS];
719 };
720 
721 #define	scd_hmeregion_map	scd_region_map.h_rmap_s.hmeregion_map
722 #define	scd_ismregion_map	scd_region_map.h_rmap_s.ismregion_map
723 
724 extern int disable_shctx;
725 extern int shctx_on;
726 
727 /*
728  * bit mask for managing vac conflicts on large pages.
729  * bit 1 is for uncache flag.
730  * bits 2 through min(num of cache colors + 1,31) are
731  * for cache colors that have already been flushed.
732  */
733 #ifdef VAC
734 #define	CACHE_NUM_COLOR		(shm_alignment >> MMU_PAGESHIFT)
735 #else
736 #define	CACHE_NUM_COLOR		1
737 #endif
738 
739 #define	CACHE_VCOLOR_MASK(vcolor)	(2 << (vcolor & (CACHE_NUM_COLOR - 1)))
740 
741 #define	CacheColor_IsFlushed(flag, vcolor) \
742 					((flag) & CACHE_VCOLOR_MASK(vcolor))
743 
744 #define	CacheColor_SetFlushed(flag, vcolor) \
745 					((flag) |= CACHE_VCOLOR_MASK(vcolor))
746 /*
747  * Flags passed to sfmmu_page_cache to flush page from vac or not.
748  */
749 #define	CACHE_FLUSH	0
750 #define	CACHE_NO_FLUSH	1
751 
752 /*
753  * Flags passed to sfmmu_tlbcache_demap
754  */
755 #define	FLUSH_NECESSARY_CPUS	0
756 #define	FLUSH_ALL_CPUS		1
757 
758 #ifdef	DEBUG
759 /*
760  * For debugging purpose only. Maybe removed later.
761  */
762 struct ctx_trace {
763 	sfmmu_t		*sc_sfmmu_stolen;
764 	sfmmu_t		*sc_sfmmu_stealing;
765 	clock_t		sc_time;
766 	ushort_t	sc_type;
767 	ushort_t	sc_cnum;
768 };
769 #define	CTX_TRC_STEAL	0x1
770 #define	CTX_TRC_FREE	0x0
771 #define	TRSIZE	0x400
772 #define	NEXT_CTXTR(ptr)	(((ptr) >= ctx_trace_last) ? \
773 		ctx_trace_first : ((ptr) + 1))
774 #define	TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \
775 	mutex_enter(mutex);						\
776 	(ptr)->sc_sfmmu_stolen = (stolen_sfmmu);			\
777 	(ptr)->sc_sfmmu_stealing = (stealing_sfmmu);			\
778 	(ptr)->sc_cnum = (cnum);					\
779 	(ptr)->sc_type = (type);					\
780 	(ptr)->sc_time = lbolt;						\
781 	(ptr) = NEXT_CTXTR(ptr);					\
782 	num_ctx_stolen += (type);					\
783 	mutex_exit(mutex);
784 #else
785 
786 #define	TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type)
787 
788 #endif	/* DEBUG */
789 
790 #endif	/* !_ASM */
791 
792 /*
793  * Macros for sfmmup->sfmmu_flags access.  The macros that change the flags
794  * ASSERT() that we're holding the HAT lock before changing the flags;
795  * however callers that read the flags may do so without acquiring the lock
796  * in a fast path, and then recheck the flag after acquiring the lock in
797  * a slow path.
798  */
799 #define	SFMMU_FLAGS_ISSET(sfmmup, flags) \
800 	(((sfmmup)->sfmmu_flags & (flags)) == (flags))
801 
802 #define	SFMMU_FLAGS_CLEAR(sfmmup, flags) \
803 	(ASSERT(sfmmu_hat_lock_held((sfmmup))), \
804 	(sfmmup)->sfmmu_flags &= ~(flags))
805 
806 #define	SFMMU_FLAGS_SET(sfmmup, flags) \
807 	(ASSERT(sfmmu_hat_lock_held((sfmmup))), \
808 	(sfmmup)->sfmmu_flags |= (flags))
809 
810 #define	SFMMU_TTEFLAGS_ISSET(sfmmup, flags) \
811 	((((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) & (flags)) == \
812 	    (flags))
813 
814 
815 /*
816  * sfmmu tte HAT flags, must fit in 8 bits
817  */
818 #define	HAT_CHKCTX1_FLAG 0x1
819 #define	HAT_64K_FLAG	(0x1 << TTE64K)
820 #define	HAT_512K_FLAG	(0x1 << TTE512K)
821 #define	HAT_4M_FLAG	(0x1 << TTE4M)
822 #define	HAT_32M_FLAG	(0x1 << TTE32M)
823 #define	HAT_256M_FLAG	(0x1 << TTE256M)
824 
825 /*
826  * sfmmu HAT flags, 16 bits at the moment.
827  */
828 #define	HAT_4MTEXT_FLAG		0x01
829 #define	HAT_32M_ISM		0x02
830 #define	HAT_256M_ISM		0x04
831 #define	HAT_SWAPPED		0x08 /* swapped out */
832 #define	HAT_SWAPIN		0x10 /* swapping in */
833 #define	HAT_BUSY		0x20 /* replacing TSB(s) */
834 #define	HAT_ISMBUSY		0x40 /* adding/removing/traversing ISM maps */
835 
836 #define	HAT_CTX1_FLAG   	0x100 /* ISM imap hatflag for ctx1 */
837 #define	HAT_JOIN_SCD		0x200 /* region is joining scd */
838 #define	HAT_ALLCTX_INVALID	0x400 /* all per-MMU ctxs are invalidated */
839 
840 #define	SFMMU_LGPGS_INUSE(sfmmup)					\
841 	(((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) ||	\
842 	    ((sfmmup)->sfmmu_iblk != NULL))
843 
844 /*
845  * Starting with context 0, the first NUM_LOCKED_CTXS contexts
846  * are locked so that sfmmu_getctx can't steal any of these
847  * contexts.  At the time this software was being developed, the
848  * only context that needs to be locked is context 0 (the kernel
849  * context), and context 1 (reserved for stolen context). So this constant
850  * was originally defined to be 2.
851  *
852  * For sun4v only, USER_CONTEXT_TYPE represents any user context.  Many
853  * routines only care whether the context is kernel, invalid or user.
854  */
855 
856 #define	NUM_LOCKED_CTXS 2
857 #define	INVALID_CONTEXT	1
858 
859 #ifdef sun4v
860 #define	USER_CONTEXT_TYPE	NUM_LOCKED_CTXS
861 #endif
862 
863 #ifndef	_ASM
864 
865 /*
866  * Kernel page relocation stuff.
867  */
868 struct sfmmu_callback {
869 	int key;
870 	int (*prehandler)(caddr_t, uint_t, uint_t, void *);
871 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t);
872 	int (*errhandler)(caddr_t, uint_t, uint_t, void *);
873 	int capture_cpus;
874 };
875 
876 extern int sfmmu_max_cb_id;
877 extern struct sfmmu_callback *sfmmu_cb_table;
878 
879 extern int hat_kpr_enabled;
880 
881 struct pa_hment;
882 
883 /*
884  * RFE: With multihat gone we gain back an int.  We could use this to
885  * keep ref bits on a per cpu basis to eliminate xcalls.
886  */
887 struct sf_hment {
888 	tte_t hme_tte;			/* tte for this hment */
889 
890 	union {
891 		struct page *page;	/* what page this maps */
892 		struct pa_hment *data;	/* pa_hment */
893 	} sf_hment_un;
894 
895 	struct	sf_hment *hme_next;	/* next hment */
896 	struct	sf_hment *hme_prev;	/* prev hment */
897 };
898 
899 struct pa_hment {
900 	caddr_t		addr;		/* va */
901 	uint_t		len;		/* bytes */
902 	ushort_t	flags;		/* internal flags */
903 	ushort_t	refcnt;		/* reference count */
904 	id_t		cb_id;		/* callback id, table index */
905 	void		*pvt;		/* handler's private data */
906 	struct sf_hment	sfment;		/* corresponding dummy sf_hment */
907 };
908 
909 #define	hme_page		sf_hment_un.page
910 #define	hme_data		sf_hment_un.data
911 #define	hme_size(sfhmep)	((int)(TTE_CSZ(&(sfhmep)->hme_tte)))
912 #define	PAHME_SZ		(sizeof (struct pa_hment))
913 #define	SFHME_SZ		(sizeof (struct sf_hment))
914 
915 #define	IS_PAHME(hme)	((hme)->hme_tte.ll == 0)
916 
917 /*
918  * hmeblk_tag structure
919  * structure used to obtain a match on a hme_blk.  Currently consists of
920  * the address of the sfmmu struct (or hatid), the base page address of the
921  * hme_blk, and the rehash count.  The rehash count is actually only 2 bits
922  * and has the following meaning:
923  * 1 = 8k or 64k hash sequence.
924  * 2 = 512k hash sequence.
925  * 3 = 4M hash sequence.
926  * We require this count because we don't want to get a false hit on a 512K or
927  * 4M rehash with a base address corresponding to a 8k or 64k hmeblk.
928  * Note:  The ordering and size of the hmeblk_tag members are implictly known
929  * by the tsb miss handlers written in assembly.  Do not change this structure
930  * without checking those routines.  See HTAG_SFMMUPSZ define.
931  */
932 
933 /*
934  * In private hmeblks hblk_rid field must be SFMMU_INVALID_RID.
935  */
936 typedef union {
937 	struct {
938 		uint64_t	hblk_basepg: 51,	/* hme_blk base pg # */
939 				hblk_rehash: 3,		/* rehash number */
940 				hblk_rid: 10;		/* hme_blk region id */
941 		void		*hblk_id;
942 	} hblk_tag_un;
943 	uint64_t		htag_tag[2];
944 } hmeblk_tag;
945 
946 #define	htag_id		hblk_tag_un.hblk_id
947 #define	htag_bspage	hblk_tag_un.hblk_basepg
948 #define	htag_rehash	hblk_tag_un.hblk_rehash
949 #define	htag_rid	hblk_tag_un.hblk_rid
950 
951 #endif /* !_ASM */
952 
953 #define	HTAG_REHASH_SHIFT	10
954 #define	HTAG_MAX_RID	(((0x1 << HTAG_REHASH_SHIFT) - 1))
955 #define	HTAG_RID_MASK	HTAG_MAX_RID
956 
957 /* used for tagging all per sfmmu (i.e. non SRD) private hmeblks */
958 #define	SFMMU_INVALID_SHMERID	HTAG_MAX_RID
959 
960 #if SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS
961 #error SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS
962 #endif
963 
964 #define	SFMMU_IS_SHMERID_VALID(rid)	((rid) != SFMMU_INVALID_SHMERID)
965 
966 /* ISM regions */
967 #define	SFMMU_INVALID_ISMRID	0xff
968 
969 #if SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS
970 #error SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS
971 #endif
972 
973 #define	SFMMU_IS_ISMRID_VALID(rid)	((rid) != SFMMU_INVALID_ISMRID)
974 
975 
976 #define	HTAGS_EQ(tag1, tag2)	(((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \
977 				(tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0)
978 
979 /*
980  * this macro must only be used for comparing tags in shared hmeblks.
981  */
982 #define	HTAGS_EQ_SHME(hmetag, tag, hrmap)				\
983 	(((hmetag).htag_rid != SFMMU_INVALID_SHMERID) &&	        \
984 	(((((hmetag).htag_tag[0] ^ (tag).htag_tag[0]) &			\
985 		~HTAG_RID_MASK) |	        			\
986 	    ((hmetag).htag_tag[1] ^ (tag).htag_tag[1])) == 0) &&	\
987 	SF_RGNMAP_TEST(hrmap, hmetag.htag_rid))
988 
989 #define	HME_REHASH(sfmmup)						\
990 	((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 ||			\
991 	(sfmmup)->sfmmu_ttecnt[TTE4M] != 0 ||				\
992 	(sfmmup)->sfmmu_ttecnt[TTE32M] != 0 ||				\
993 	(sfmmup)->sfmmu_ttecnt[TTE256M] != 0)
994 
995 #define	NHMENTS		8		/* # of hments in an 8k hme_blk */
996 					/* needs to be multiple of 2 */
997 
998 #ifndef	_ASM
999 
1000 #ifdef	HBLK_TRACE
1001 
1002 #define	HBLK_LOCK		1
1003 #define	HBLK_UNLOCK		0
1004 #define	HBLK_STACK_DEPTH	6
1005 #define	HBLK_AUDIT_CACHE_SIZE	16
1006 #define	HBLK_LOCK_PATTERN	0xaaaaaaaa
1007 #define	HBLK_UNLOCK_PATTERN	0xbbbbbbbb
1008 
1009 struct hblk_lockcnt_audit {
1010 	int		flag;		/* lock or unlock */
1011 	kthread_id_t	thread;
1012 	int		depth;
1013 	pc_t		stack[HBLK_STACK_DEPTH];
1014 };
1015 
1016 #endif	/* HBLK_TRACE */
1017 
1018 
1019 /*
1020  * Hment block structure.
1021  * The hme_blk is the node data structure which the hash structure
1022  * mantains. An hme_blk can have 2 different sizes depending on the
1023  * number of hments it implicitly contains.  When dealing with 64K, 512K,
1024  * or 4M hments there is one hment per hme_blk.  When dealing with
1025  * 8k hments we allocate an hme_blk plus an additional 7 hments to
1026  * give us a total of 8 (NHMENTS) hments that can be referenced through a
1027  * hme_blk.
1028  *
1029  * The hmeblk structure contains 2 tte reference counters used to determine if
1030  * it is ok to free up the hmeblk.  Both counters have to be zero in order
1031  * to be able to free up hmeblk.  They are protected by cas.
1032  * hblk_hmecnt is the number of hments present on pp mapping lists.
1033  * hblk_vcnt reflects number of valid ttes in hmeblk.
1034  *
1035  * The hmeblk now also has per tte lock cnts.  This is required because
1036  * the counts can be high and there are not enough bits in the tte. When
1037  * physio is fixed to not lock the translations we should be able to move
1038  * the lock cnt back to the tte.  See bug id 1198554.
1039  *
1040  * Note that xhat_hme_blk's layout follows this structure: hme_blk_misc
1041  * and sf_hment are at the same offsets in both structures. Whenever
1042  * hme_blk is changed, xhat_hme_blk may need to be updated as well.
1043  */
1044 
1045 struct hme_blk_misc {
1046 	uint_t	notused:25;
1047 	uint_t	shared_bit:1;	/* set for SRD shared hmeblk */
1048 	uint_t	xhat_bit:1;	/* set for an xhat hme_blk */
1049 	uint_t	shadow_bit:1;	/* set for a shadow hme_blk */
1050 	uint_t	nucleus_bit:1;	/* set for a nucleus hme_blk */
1051 	uint_t	ttesize:3;	/* contains ttesz of hmeblk */
1052 };
1053 
1054 struct hme_blk {
1055 	uint64_t	hblk_nextpa;	/* physical address for hash list */
1056 
1057 	hmeblk_tag	hblk_tag;	/* tag used to obtain an hmeblk match */
1058 
1059 	struct hme_blk	*hblk_next;	/* on free list or on hash list */
1060 					/* protected by hash lock */
1061 
1062 	struct hme_blk	*hblk_shadow;	/* pts to shadow hblk */
1063 					/* protected by hash lock */
1064 	uint_t		hblk_span;	/* span of memory hmeblk maps */
1065 
1066 	struct hme_blk_misc	hblk_misc;
1067 
1068 	union {
1069 		struct {
1070 			ushort_t hblk_hmecount;	/* hment on mlists counter */
1071 			ushort_t hblk_validcnt;	/* valid tte reference count */
1072 		} hblk_counts;
1073 		uint_t		hblk_shadow_mask;
1074 	} hblk_un;
1075 
1076 	uint_t		hblk_lckcnt;
1077 
1078 #ifdef	HBLK_TRACE
1079 	kmutex_t	hblk_audit_lock;	/* lock to protect index */
1080 	uint_t		hblk_audit_index;	/* index into audit_cache */
1081 	struct	hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE];
1082 #endif	/* HBLK_AUDIT */
1083 
1084 	struct sf_hment hblk_hme[1];	/* hment array */
1085 };
1086 
1087 #define	hblk_shared	hblk_misc.shared_bit
1088 #define	hblk_xhat_bit   hblk_misc.xhat_bit
1089 #define	hblk_shw_bit	hblk_misc.shadow_bit
1090 #define	hblk_nuc_bit	hblk_misc.nucleus_bit
1091 #define	hblk_ttesz	hblk_misc.ttesize
1092 #define	hblk_hmecnt	hblk_un.hblk_counts.hblk_hmecount
1093 #define	hblk_vcnt	hblk_un.hblk_counts.hblk_validcnt
1094 #define	hblk_shw_mask	hblk_un.hblk_shadow_mask
1095 
1096 #define	MAX_HBLK_LCKCNT	0xFFFFFFFF
1097 #define	HMEBLK_ALIGN	0x8		/* hmeblk has to be double aligned */
1098 
1099 #ifdef	HBLK_TRACE
1100 
1101 #define	HBLK_STACK_TRACE(hmeblkp, lock)					\
1102 {									\
1103 	int flag = lock;	/* to pacify lint */			\
1104 	int audit_index;						\
1105 									\
1106 	mutex_enter(&hmeblkp->hblk_audit_lock);				\
1107 	audit_index = hmeblkp->hblk_audit_index;			\
1108 	hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) &	\
1109 	    (HBLK_AUDIT_CACHE_SIZE - 1));				\
1110 	mutex_exit(&hmeblkp->hblk_audit_lock);				\
1111 									\
1112 	if (flag)							\
1113 		hmeblkp->hblk_audit_cache[audit_index].flag =		\
1114 		    HBLK_LOCK_PATTERN;					\
1115 	else								\
1116 		hmeblkp->hblk_audit_cache[audit_index].flag =		\
1117 		    HBLK_UNLOCK_PATTERN;				\
1118 									\
1119 	hmeblkp->hblk_audit_cache[audit_index].thread = curthread;	\
1120 	hmeblkp->hblk_audit_cache[audit_index].depth =			\
1121 	    getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack,	\
1122 	    HBLK_STACK_DEPTH);						\
1123 }
1124 
1125 #else
1126 
1127 #define	HBLK_STACK_TRACE(hmeblkp, lock)
1128 
1129 #endif	/* HBLK_TRACE */
1130 
1131 #define	HMEHASH_FACTOR	16	/* used to calc # of buckets in hme hash */
1132 
1133 /*
1134  * A maximum number of user hmeblks is defined in order to place an upper
1135  * limit on how much nucleus memory is required and to avoid overflowing the
1136  * tsbmiss uhashsz and khashsz data areas. The number below corresponds to
1137  * the number of buckets required, for an average hash chain length of 4 on
1138  * a 16TB machine.
1139  */
1140 
1141 #define	MAX_UHME_BUCKETS	(0x1 << 30)
1142 #define	MAX_KHME_BUCKETS	(0x1 << 30)
1143 
1144 /*
1145  * The minimum number of kernel hash buckets.
1146  */
1147 #define	MIN_KHME_BUCKETS	0x800
1148 
1149 /*
1150  * The number of hash buckets must be a power of 2. If the initial calculated
1151  * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater
1152  * power of 2, otherwise we round down to avoid huge over allocations.
1153  */
1154 #define	USER_BUCKETS_THRESHOLD	(1<<22)
1155 
1156 #define	MAX_NUCUHME_BUCKETS	0x4000
1157 #define	MAX_NUCKHME_BUCKETS	0x2000
1158 
1159 /*
1160  * There are 2 locks in the hmehash bucket.  The hmehash_mutex is
1161  * a regular mutex used to make sure operations on a hash link are only
1162  * done by one thread.  Any operation which comes into the hat with
1163  * a <vaddr, as> will grab the hmehash_mutex.  Normally one would expect
1164  * the tsb miss handlers to grab the hash lock to make sure the hash list
1165  * is consistent while we traverse it.  Unfortunately this can lead to
1166  * deadlocks or recursive mutex enters since it is possible for
1167  * someone holding the lock to take a tlb/tsb miss.
1168  * To solve this problem we have added the hmehash_listlock.  This lock
1169  * is only grabbed by the tsb miss handlers, vatopfn, and while
1170  * adding/removing a hmeblk from the hash list. The code is written to
1171  * guarantee we won't take a tlb miss while holding this lock.
1172  */
1173 struct hmehash_bucket {
1174 	kmutex_t	hmehash_mutex;
1175 	uint64_t	hmeh_nextpa;	/* physical address for hash list */
1176 	struct hme_blk *hmeblkp;
1177 	uint_t		hmeh_listlock;
1178 };
1179 
1180 #endif /* !_ASM */
1181 
1182 #define	SFMMU_PGCNT_MASK	0x3f
1183 #define	SFMMU_PGCNT_SHIFT	6
1184 #define	INVALID_MMU_ID		-1
1185 #define	SFMMU_MMU_GNUM_RSHIFT	16
1186 #define	SFMMU_MMU_CNUM_LSHIFT	(64 - SFMMU_MMU_GNUM_RSHIFT)
1187 #define	MAX_SFMMU_CTX_VAL	((1 << 16) - 1) /* for sanity check */
1188 #define	MAX_SFMMU_GNUM_VAL	((0x1UL << 48) - 1)
1189 
1190 /*
1191  * The tsb miss handlers written in assembly know that sfmmup
1192  * is a 64 bit ptr.
1193  *
1194  * The bspage and re-hash part is 64 bits, with the sfmmup being another 64
1195  * bits.
1196  */
1197 #define	HTAG_SFMMUPSZ		0	/* Not really used for LP64 */
1198 #define	HTAG_BSPAGE_SHIFT	13
1199 
1200 /*
1201  * Assembly routines need to be able to get to ttesz
1202  */
1203 #define	HBLK_SZMASK		0x7
1204 
1205 #ifndef _ASM
1206 
1207 /*
1208  * Returns the number of bytes that an hmeblk spans given its tte size
1209  */
1210 #define	get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span)
1211 #define	get_hblk_ttesz(hmeblkp)	((hmeblkp)->hblk_ttesz)
1212 #define	get_hblk_cache(hmeblkp)	(((hmeblkp)->hblk_ttesz == TTE8K) ? \
1213 	sfmmu8_cache : sfmmu1_cache)
1214 #define	HMEBLK_SPAN(ttesz)						\
1215 	((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz))
1216 
1217 #define	set_hblk_sz(hmeblkp, ttesz)				\
1218 	(hmeblkp)->hblk_ttesz = (ttesz);			\
1219 	(hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz)
1220 
1221 #define	get_hblk_base(hmeblkp)					\
1222 	((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT)
1223 
1224 #define	get_hblk_endaddr(hmeblkp)				\
1225 	((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp)))
1226 
1227 #define	in_hblk_range(hmeblkp, vaddr)					\
1228 	(((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) &&		\
1229 	((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) +			\
1230 	get_hblk_span(hmeblkp))))
1231 
1232 #define	tte_to_vaddr(hmeblkp, tte)	((caddr_t)(get_hblk_base(hmeblkp) \
1233 	+ (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum)))
1234 
1235 #define	tte_to_evaddr(hmeblkp, ttep)	((caddr_t)(get_hblk_base(hmeblkp) \
1236 	+ (TTEBYTES(TTE_CSZ(ttep)) * ((ttep)->tte_hmenum + 1))))
1237 
1238 #define	vaddr_to_vshift(hblktag, vaddr, shwsz)				\
1239 	((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\
1240 	TTE_BSZS_SHIFT((shwsz) - 1))
1241 
1242 #define	HME8BLK_SZ	(sizeof (struct hme_blk) + \
1243 			(NHMENTS - 1) * sizeof (struct sf_hment))
1244 #define	HME1BLK_SZ	(sizeof (struct hme_blk))
1245 #define	H1MIN		(2 + MAX_BIGKTSB_TTES)	/* nucleus text+data, ktsb */
1246 
1247 /*
1248  * Hme_blk hash structure
1249  * Active mappings are kept in a hash structure of hme_blks.  The hash
1250  * function is based on (ctx, vaddr) The size of the hash table size is a
1251  * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN.
1252  * The hash actually consists of 2 separate hashes.  One hash is for the user
1253  * address space and the other hash is for the kernel address space.
1254  * The number of buckets are calculated at boot time and stored in the global
1255  * variables "uhmehash_num" and "khmehash_num".  By making the hash table size
1256  * a power of 2 we can use a simply & function to derive an index instead of
1257  * a divide.
1258  *
1259  * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash
1260  * bucket.
1261  * An hme hash bucket contains a pointer to an hme_blk and the mutex that
1262  * protects the link list.
1263  * Spitfire supports 4 page sizes.  8k and 64K pages only need one hash.
1264  * 512K pages need 2 hashes and 4M pages need 3 hashes.
1265  * The 'shift' parameter controls how many bits the vaddr will be shifted in
1266  * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function
1267  * and it varies depending on the page size as follows:
1268  *	8k pages:  	HBLK_RANGE_SHIFT
1269  *	64k pages:	MMU_PAGESHIFT64K
1270  *	512K pages:	MMU_PAGESHIFT512K
1271  *	4M pages:	MMU_PAGESHIFT4M
1272  * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All
1273  * changes should be reflected in both versions.  This function and the TSB
1274  * miss handlers are the only places which know about the two hashes.
1275  *
1276  * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall
1277  * into the same bucket for a particular process.  It is currently set to
1278  * be equivalent to 64K range or one hme_blk.
1279  *
1280  * The hme_blks in the hash are protected by a per hash bucket mutex
1281  * known as SFMMU_HASH_LOCK.
1282  * You need to acquire this lock before traversing the hash bucket link
1283  * list, while adding/removing a hme_blk to the list, and while
1284  * modifying an hme_blk.  A possible optimization is to replace these
1285  * mutexes by readers/writer lock but right now it is not clear whether
1286  * this is a win or not.
1287  *
1288  * The HME_HASH_TABLE_SEARCH will search the hash table for the
1289  * hme_blk that contains the hment that corresponds to the passed
1290  * ctx and vaddr.  It assumed the SFMMU_HASH_LOCK is held.
1291  */
1292 
1293 #endif /* ! _ASM */
1294 
1295 #define	KHATID			ksfmmup
1296 #define	UHMEHASH_SZ		uhmehash_num
1297 #define	KHMEHASH_SZ		khmehash_num
1298 #define	HMENT_HASHAVELEN	4
1299 #define	HBLK_RANGE_SHIFT	MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */
1300 #define	HBLK_MIN_TTESZ		1
1301 #define	HBLK_MIN_BYTES		MMU_PAGESIZE64K
1302 #define	HBLK_MIN_SHIFT		MMU_PAGESHIFT64K
1303 #define	MAX_HASHCNT		5
1304 #define	DEFAULT_MAX_HASHCNT	3
1305 
1306 #ifndef _ASM
1307 
1308 #define	HASHADDR_MASK(hashno)	TTE_PAGEMASK(hashno)
1309 
1310 #define	HME_HASH_SHIFT(ttesz)						\
1311 	((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz))
1312 
1313 #define	HME_HASH_ADDR(vaddr, hmeshift)					\
1314 	((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift)))
1315 
1316 #define	HME_HASH_BSPAGE(vaddr, hmeshift)				\
1317 	(((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT))
1318 
1319 #define	HME_HASH_REHASH(ttesz)						\
1320 	(((ttesz) < TTE512K)? 1 : (ttesz))
1321 
1322 #define	HME_HASH_FUNCTION(hatid, vaddr, shift)				     \
1323 	((((void *)hatid) != ((void *)KHATID)) ?			     \
1324 	(&uhme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \
1325 	    UHMEHASH_SZ) ]):						     \
1326 	(&khme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \
1327 	    KHMEHASH_SZ) ]))
1328 
1329 /*
1330  * This macro will traverse a hmeblk hash link list looking for an hme_blk
1331  * that owns the specified vaddr and hatid.  If if doesn't find one , hmeblkp
1332  * will be set to NULL, otherwise it will point to the correct hme_blk.
1333  * This macro also cleans empty hblks.
1334  */
1335 #define	HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, hblkpa,		\
1336 	pr_hblk, prevpa, listp)						\
1337 {									\
1338 	struct hme_blk *nx_hblk;					\
1339 	uint64_t 	nx_pa;						\
1340 									\
1341 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));				\
1342 	hblkp = hmebp->hmeblkp;						\
1343 	hblkpa = hmebp->hmeh_nextpa;					\
1344 	prevpa = 0;							\
1345 	pr_hblk = NULL;							\
1346 	while (hblkp) {							\
1347 		if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) {		\
1348 			/* found hme_blk */				\
1349 			break;						\
1350 		}							\
1351 		nx_hblk = hblkp->hblk_next;				\
1352 		nx_pa = hblkp->hblk_nextpa;				\
1353 		if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) {		\
1354 			sfmmu_hblk_hash_rm(hmebp, hblkp, prevpa, pr_hblk); \
1355 			sfmmu_hblk_free(hmebp, hblkp, hblkpa, listp);   \
1356 		} else {						\
1357 			pr_hblk = hblkp;				\
1358 			prevpa = hblkpa;				\
1359 		}							\
1360 		hblkp = nx_hblk;					\
1361 		hblkpa = nx_pa;						\
1362 	}								\
1363 }
1364 
1365 #define	HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp)			\
1366 {									\
1367 	struct hme_blk *pr_hblk;					\
1368 	uint64_t hblkpa, prevpa;					\
1369 									\
1370 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, hblkpa, pr_hblk,	\
1371 		prevpa, listp);						\
1372 }
1373 
1374 /*
1375  * This macro will traverse a hmeblk hash link list looking for an hme_blk
1376  * that owns the specified vaddr and hatid.  If if doesn't find one , hmeblkp
1377  * will be set to NULL, otherwise it will point to the correct hme_blk.
1378  * It doesn't remove empty hblks.
1379  */
1380 #define	HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp)			\
1381 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));				\
1382 	for (hblkp = hmebp->hmeblkp; hblkp;				\
1383 	    hblkp = hblkp->hblk_next) {					\
1384 		if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) {		\
1385 			/* found hme_blk */				\
1386 			break;						\
1387 		}							\
1388 	}
1389 
1390 #define	SFMMU_HASH_LOCK(hmebp)						\
1391 		(mutex_enter(&hmebp->hmehash_mutex))
1392 
1393 #define	SFMMU_HASH_UNLOCK(hmebp)					\
1394 		(mutex_exit(&hmebp->hmehash_mutex))
1395 
1396 #define	SFMMU_HASH_LOCK_TRYENTER(hmebp)					\
1397 		(mutex_tryenter(&hmebp->hmehash_mutex))
1398 
1399 #define	SFMMU_HASH_LOCK_ISHELD(hmebp)					\
1400 		(mutex_owned(&hmebp->hmehash_mutex))
1401 
1402 #define	SFMMU_XCALL_STATS(sfmmup)					\
1403 {									\
1404 	if (sfmmup == ksfmmup) {					\
1405 		SFMMU_STAT(sf_kernel_xcalls);				\
1406 	} else {							\
1407 		SFMMU_STAT(sf_user_xcalls);				\
1408 	}								\
1409 }
1410 
1411 #define	astosfmmu(as)		((as)->a_hat)
1412 #define	hblktosfmmu(hmeblkp)	((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id)
1413 #define	hblktosrd(hmeblkp)	((sf_srd_t *)(hmeblkp)->hblk_tag.htag_id)
1414 #define	sfmmutoas(sfmmup)	((sfmmup)->sfmmu_as)
1415 
1416 #define	sfmmutohtagid(sfmmup, rid)			   \
1417 	(((rid) == SFMMU_INVALID_SHMERID) ? (void *)(sfmmup) : \
1418 	(void *)((sfmmup)->sfmmu_srdp))
1419 
1420 /*
1421  * We use the sfmmu data structure to keep the per as page coloring info.
1422  */
1423 #define	as_color_bin(as)	(astosfmmu(as)->sfmmu_clrbin)
1424 #define	as_color_start(as)	(astosfmmu(as)->sfmmu_clrstart)
1425 
1426 typedef struct {
1427 	char	h8[HME8BLK_SZ];
1428 } hblk8_t;
1429 
1430 typedef struct {
1431 	char	h1[HME1BLK_SZ];
1432 } hblk1_t;
1433 
1434 typedef struct {
1435 	ulong_t  	index;
1436 	ulong_t  	len;
1437 	hblk8_t		*list;
1438 } nucleus_hblk8_info_t;
1439 
1440 typedef struct {
1441 	ulong_t		index;
1442 	ulong_t		len;
1443 	hblk1_t		*list;
1444 } nucleus_hblk1_info_t;
1445 
1446 /*
1447  * This struct is used for accumlating information about a range
1448  * of pages that are unloading so that a single xcall can flush
1449  * the entire range from remote tlbs. A function that must demap
1450  * a range of virtual addresses declares one of these structures
1451  * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this
1452  * struct to the appropriate sfmmu_hblk_* level function which does
1453  * all the bookkeeping using the other macros. When the function has
1454  * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH()
1455  * macro to take care of any remaining unflushed mappings.
1456  *
1457  * The maximum range this struct can represent is the number of bits
1458  * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only
1459  * MMU_PAGESIZE pages are supported.
1460  *
1461  * Since there are now cases where it's no longer necessary to do
1462  * flushes (e.g. when the process isn't runnable because it's swapping
1463  * out or exiting) we allow these macros to take a NULL dmr input and do
1464  * nothing in that case.
1465  */
1466 typedef struct {
1467 	sfmmu_t		*dmr_sfmmup;	/* relevant hat */
1468 	caddr_t		dmr_addr;	/* beginning address */
1469 	caddr_t		dmr_endaddr;	/* ending  address */
1470 	ulong_t		dmr_bitvec;	/* valid pages found */
1471 	ulong_t		dmr_bit;	/* next page to examine */
1472 	ulong_t		dmr_maxbit;	/* highest page in range */
1473 	ulong_t		dmr_pgsz;	/* page size in range */
1474 } demap_range_t;
1475 
1476 #define	DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */
1477 
1478 #define	DEMAP_RANGE_INIT(sfmmup, dmrp) \
1479 	if ((dmrp) != NULL) { \
1480 	(dmrp)->dmr_sfmmup = (sfmmup); \
1481 	(dmrp)->dmr_bitvec = 0; \
1482 	(dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \
1483 	(dmrp)->dmr_pgsz = MMU_PAGESIZE; \
1484 	}
1485 
1486 #define	DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE)
1487 
1488 #define	DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \
1489 	if ((dmrp) != NULL) { \
1490 	if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \
1491 		sfmmu_tlb_range_demap(dmrp); \
1492 	(dmrp)->dmr_endaddr = (endaddr); \
1493 	}
1494 
1495 #define	DEMAP_RANGE_FLUSH(dmrp) \
1496 	if ((dmrp) != NULL) { \
1497 		if ((dmrp)->dmr_bitvec != 0) \
1498 			sfmmu_tlb_range_demap(dmrp); \
1499 	}
1500 
1501 #define	DEMAP_RANGE_MARKPG(dmrp, addr) \
1502 	if ((dmrp) != NULL) { \
1503 		if ((dmrp)->dmr_bitvec == 0) { \
1504 			(dmrp)->dmr_addr = (addr); \
1505 			(dmrp)->dmr_bit = 1; \
1506 		} \
1507 		(dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \
1508 	}
1509 
1510 #define	DEMAP_RANGE_NEXTPG(dmrp) \
1511 	if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \
1512 		if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \
1513 			sfmmu_tlb_range_demap(dmrp); \
1514 		} else { \
1515 			(dmrp)->dmr_bit <<= 1; \
1516 		} \
1517 	}
1518 
1519 /*
1520  * TSB related structures
1521  *
1522  * The TSB is made up of tte entries.  Both the tag and data are present
1523  * in the TSB.  The TSB locking is managed as follows:
1524  * A software bit in the tsb tag is used to indicate that entry is locked.
1525  * If a cpu servicing a tsb miss reads a locked entry the tag compare will
1526  * fail forcing the cpu to go to the hat hash for the translation.
1527  * The cpu who holds the lock can then modify the data side, and the tag side.
1528  * The last write should be to the word containing the lock bit which will
1529  * clear the lock and allow the tsb entry to be read.  It is assumed that all
1530  * cpus reading the tsb will do so with atomic 128-bit loads.  An atomic 128
1531  * bit load is required to prevent the following from happening:
1532  *
1533  * cpu 0			cpu 1			comments
1534  *
1535  * ldx tag						tag unlocked
1536  *				ldstub lock		set lock
1537  *				stx data
1538  *				stx tag			unlock
1539  * ldx tag						incorrect tte!!!
1540  *
1541  * The software also maintains a bit in the tag to indicate an invalid
1542  * tsb entry.  The purpose of this bit is to allow the tsb invalidate code
1543  * to invalidate a tsb entry with a single cas.  See code for details.
1544  */
1545 
1546 union tsb_tag {
1547 	struct {
1548 		uint32_t	tag_res0:16;	/* reserved - context area */
1549 		uint32_t	tag_inv:1;	/* sw - invalid tsb entry */
1550 		uint32_t	tag_lock:1;	/* sw - locked tsb entry */
1551 		uint32_t	tag_res1:4;	/* reserved */
1552 		uint32_t	tag_va_hi:10;	/* va[63:54] */
1553 		uint32_t	tag_va_lo;	/* va[53:22] */
1554 	} tagbits;
1555 	struct tsb_tagints {
1556 		uint32_t	inthi;
1557 		uint32_t	intlo;
1558 	} tagints;
1559 };
1560 #define	tag_invalid		tagbits.tag_inv
1561 #define	tag_locked		tagbits.tag_lock
1562 #define	tag_vahi		tagbits.tag_va_hi
1563 #define	tag_valo		tagbits.tag_va_lo
1564 #define	tag_inthi		tagints.inthi
1565 #define	tag_intlo		tagints.intlo
1566 
1567 struct tsbe {
1568 	union tsb_tag	tte_tag;
1569 	tte_t		tte_data;
1570 };
1571 
1572 /*
1573  * A per cpu struct is kept that duplicates some info
1574  * used by the tl>0 tsb miss handlers plus it provides
1575  * a scratch area.  Its purpose is to minimize cache misses
1576  * in the tsb miss handler and is 128 bytes (2 e$ lines).
1577  *
1578  * There should be one allocated per cpu in nucleus memory
1579  * and should be aligned on an ecache line boundary.
1580  */
1581 struct tsbmiss {
1582 	sfmmu_t			*ksfmmup;	/* kernel hat id */
1583 	sfmmu_t			*usfmmup;	/* user hat id */
1584 	sf_srd_t		*usrdp;		/* user's SRD hat id */
1585 	struct tsbe		*tsbptr;	/* hardware computed ptr */
1586 	struct tsbe		*tsbptr4m;	/* hardware computed ptr */
1587 	struct tsbe		*tsbscdptr;	/* hardware computed ptr */
1588 	struct tsbe		*tsbscdptr4m;	/* hardware computed ptr */
1589 	uint64_t		ismblkpa;
1590 	struct hmehash_bucket	*khashstart;
1591 	struct hmehash_bucket	*uhashstart;
1592 	uint_t			khashsz;
1593 	uint_t			uhashsz;
1594 	uint16_t 		dcache_line_mask; /* used to flush dcache */
1595 	uchar_t			uhat_tteflags;	/* private page sizes */
1596 	uchar_t			uhat_rtteflags;	/* SHME pagesizes */
1597 	uint32_t		utsb_misses;
1598 	uint32_t		ktsb_misses;
1599 	uint16_t		uprot_traps;
1600 	uint16_t		kprot_traps;
1601 	/*
1602 	 * scratch[0] -> TSB_TAGACC
1603 	 * scratch[1] -> TSBMISS_HMEBP
1604 	 * scratch[2] -> TSBMISS_HATID
1605 	 */
1606 	uintptr_t		scratch[3];
1607 	ulong_t		shmermap[SFMMU_HMERGNMAP_WORDS];	/* 8 bytes */
1608 	ulong_t		scd_shmermap[SFMMU_HMERGNMAP_WORDS];	/* 8 bytes */
1609 	uint8_t		pad[48];			/* pad to 64 bytes */
1610 };
1611 
1612 /*
1613  * A per cpu struct is kept for the use within the tl>0 kpm tsb
1614  * miss handler. Some members are duplicates of common data or
1615  * the physical addresses of common data. A few members are also
1616  * written by the tl>0 kpm tsb miss handler. Its purpose is to
1617  * minimize cache misses in the kpm tsb miss handler and occupies
1618  * one ecache line. There should be one allocated per cpu in
1619  * nucleus memory and it should be aligned on an ecache line
1620  * boundary. It is not merged w/ struct tsbmiss since there is
1621  * not much to share and the tsbmiss pathes are different, so
1622  * a kpm tlbmiss/tsbmiss only touches one cacheline, except for
1623  * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter
1624  * of struct tsbmiss is used on every dtlb miss.
1625  */
1626 struct kpmtsbm {
1627 	caddr_t		vbase;		/* start of address kpm range */
1628 	caddr_t		vend;		/* end of address kpm range */
1629 	uchar_t		flags;		/* flags needed in TL tsbmiss handler */
1630 	uchar_t		sz_shift;	/* for single kpm window */
1631 	uchar_t		kpmp_shift;	/* hash lock shift */
1632 	uchar_t		kpmp2pshft;	/* kpm page to page shift */
1633 	uint_t		kpmp_table_sz;	/* size of kpmp_table or kpmp_stable */
1634 	uint64_t	kpmp_tablepa;	/* paddr of kpmp_table or kpmp_stable */
1635 	uint64_t	msegphashpa;	/* paddr of memseg_phash */
1636 	struct tsbe	*tsbptr;	/* saved ktsb pointer */
1637 	uint_t		kpm_dtlb_misses; /* kpm tlbmiss counter */
1638 	uint_t		kpm_tsb_misses;	/* kpm tsbmiss counter */
1639 	uintptr_t	pad[1];
1640 };
1641 
1642 extern size_t	tsb_slab_size;
1643 extern uint_t	tsb_slab_shift;
1644 extern size_t	tsb_slab_mask;
1645 
1646 #endif /* !_ASM */
1647 
1648 /*
1649  * Flags for TL kpm tsbmiss handler
1650  */
1651 #define	KPMTSBM_ENABLE_FLAG	0x01	/* bit copy of kpm_enable */
1652 #define	KPMTSBM_TLTSBM_FLAG	0x02	/* use TL tsbmiss handler */
1653 #define	KPMTSBM_TSBPHYS_FLAG	0x04	/* use ASI_MEM for TSB update */
1654 
1655 /*
1656  * The TSB
1657  * All TSB sizes supported by the hardware are now supported (8K - 1M).
1658  * For kernel TSBs we may go beyond the hardware supported sizes and support
1659  * larger TSBs via software.
1660  * All TTE sizes are supported in the TSB; the manner in which this is
1661  * done is cpu dependent.
1662  */
1663 #define	TSB_MIN_SZCODE		TSB_8K_SZCODE	/* min. supported TSB size */
1664 #define	TSB_MIN_OFFSET_MASK	(TSB_OFFSET_MASK(TSB_MIN_SZCODE))
1665 
1666 #ifdef sun4v
1667 #define	UTSB_MAX_SZCODE		TSB_256M_SZCODE /* max. supported TSB size */
1668 #else /* sun4u */
1669 #define	UTSB_MAX_SZCODE		TSB_1M_SZCODE	/* max. supported TSB size */
1670 #endif /* sun4v */
1671 
1672 #define	UTSB_MAX_OFFSET_MASK	(TSB_OFFSET_MASK(UTSB_MAX_SZCODE))
1673 
1674 #define	TSB_FREEMEM_MIN		0x1000		/* 32 mb */
1675 #define	TSB_FREEMEM_LARGE	0x10000		/* 512 mb */
1676 #define	TSB_8K_SZCODE		0		/* 512 entries */
1677 #define	TSB_16K_SZCODE		1		/* 1k entries */
1678 #define	TSB_32K_SZCODE		2		/* 2k entries */
1679 #define	TSB_64K_SZCODE		3		/* 4k entries */
1680 #define	TSB_128K_SZCODE		4		/* 8k entries */
1681 #define	TSB_256K_SZCODE		5		/* 16k entries */
1682 #define	TSB_512K_SZCODE		6		/* 32k entries */
1683 #define	TSB_1M_SZCODE		7		/* 64k entries */
1684 #define	TSB_2M_SZCODE		8		/* 128k entries */
1685 #define	TSB_4M_SZCODE		9		/* 256k entries */
1686 #define	TSB_8M_SZCODE		10		/* 512k entries */
1687 #define	TSB_16M_SZCODE		11		/* 1M entries */
1688 #define	TSB_32M_SZCODE		12		/* 2M entries */
1689 #define	TSB_64M_SZCODE		13		/* 4M entries */
1690 #define	TSB_128M_SZCODE		14		/* 8M entries */
1691 #define	TSB_256M_SZCODE		15		/* 16M entries */
1692 #define	TSB_ENTRY_SHIFT		4	/* each entry = 128 bits = 16 bytes */
1693 #define	TSB_ENTRY_SIZE		(1 << 4)
1694 #define	TSB_START_SIZE		9
1695 #define	TSB_ENTRIES(tsbsz)	(1 << (TSB_START_SIZE + tsbsz))
1696 #define	TSB_BYTES(tsbsz)	(TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT)
1697 #define	TSB_OFFSET_MASK(tsbsz)	(TSB_ENTRIES(tsbsz) - 1)
1698 #define	TSB_BASEADDR_MASK	((1 << 12) - 1)
1699 
1700 /*
1701  * sun4u platforms
1702  * ---------------
1703  * We now support two user TSBs with one TSB base register.
1704  * Hence the TSB base register is split up as follows:
1705  *
1706  * When only one TSB present:
1707  *   [63  62..42  41..13  12..4  3..0]
1708  *     ^   ^       ^       ^     ^
1709  *     |   |       |       |     |
1710  *     |   |       |       |     |_ TSB size code
1711  *     |   |       |       |
1712  *     |   |       |       |_ Reserved 0
1713  *     |   |       |
1714  *     |   |       |_ TSB VA[41..13]
1715  *     |   |
1716  *     |   |_ VA hole (Spitfire), zeros (Cheetah and beyond)
1717  *     |
1718  *     |_ 0
1719  *
1720  * When second TSB present:
1721  *   [63  62..42  41..33  32..29  28..22  21..13  12..4  3..0]
1722  *     ^   ^       ^       ^       ^       ^       ^     ^
1723  *     |   |       |       |       |       |       |     |
1724  *     |   |       |       |       |       |       |     |_ First TSB size code
1725  *     |   |       |       |       |       |       |
1726  *     |   |       |       |       |       |       |_ Reserved 0
1727  *     |   |       |       |       |       |
1728  *     |   |       |       |       |       |_ First TSB's VA[21..13]
1729  *     |   |       |       |       |
1730  *     |   |       |       |       |_ Reserved for future use
1731  *     |   |       |       |
1732  *     |   |       |       |_ Second TSB's size code
1733  *     |   |       |
1734  *     |   |       |_ Second TSB's VA[21..13]
1735  *     |   |
1736  *     |   |_ VA hole (Spitfire) / ones (Cheetah and beyond)
1737  *     |
1738  *     |_ 1
1739  *
1740  * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs
1741  * may be up to 4M in size.  For now, only hardware supported TSB sizes
1742  * are supported, though the slabs are usually 4M in size.
1743  *
1744  * sun4u platforms that define UTSB_PHYS use physical addressing to access
1745  * the user TSBs at TL>0.  The first user TSB base is in the MMU I/D TSB Base
1746  * registers.  The second TSB base uses a dedicated scratchpad register which
1747  * requires a definition of SCRATCHPAD_UTSBREG in mach_sfmmu.h.  The layout for
1748  * both registers is equivalent to sun4v below, except the TSB PA range is
1749  * [46..13] for sun4u.
1750  *
1751  * sun4v platforms
1752  * ---------------
1753  * On sun4v platforms, we use two dedicated scratchpad registers as pseudo
1754  * hardware TSB base registers to hold up to two different user TSBs.
1755  *
1756  * Each register contains TSB's physical base and size code information
1757  * as follows:
1758  *
1759  *   [63..56  55..13  12..4  3..0]
1760  *      ^       ^       ^     ^
1761  *      |       |       |     |
1762  *      |       |       |     |_ TSB size code
1763  *      |       |       |
1764  *      |       |       |_ Reserved 0
1765  *      |       |
1766  *      |       |_ TSB PA[55..13]
1767  *      |
1768  *      |
1769  *      |
1770  *      |_ 0 for valid TSB
1771  *
1772  * Absence of a user TSB (primarily the second user TSB) is indicated by
1773  * storing a negative value in the TSB base register. This allows us to
1774  * check for presence of a user TSB by simply checking bit# 63.
1775  */
1776 #define	TSBREG_MSB_SHIFT	32		/* set upper bits */
1777 #define	TSBREG_MSB_CONST	0xfffff800	/* set bits 63..43 */
1778 #define	TSBREG_FIRTSB_SHIFT	42		/* to clear bits 63:22 */
1779 #define	TSBREG_SECTSB_MKSHIFT	20		/* 21:13 --> 41:33 */
1780 #define	TSBREG_SECTSB_LSHIFT	22		/* to clear bits 63:42 */
1781 #define	TSBREG_SECTSB_RSHIFT	(TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT)
1782 						/* sectsb va -> bits 21:13 */
1783 						/* after clearing upper bits */
1784 #define	TSBREG_SECSZ_SHIFT	29		/* to get sectsb szc to 3:0 */
1785 #define	TSBREG_VAMASK_SHIFT	13		/* set up VA mask */
1786 
1787 #define	BIGKTSB_SZ_MASK		0xf
1788 #define	TSB_SOFTSZ_MASK		BIGKTSB_SZ_MASK
1789 #define	MIN_BIGKTSB_SZCODE	9	/* 256k entries */
1790 #define	MAX_BIGKTSB_SZCODE	11	/* 1024k entries */
1791 #define	MAX_BIGKTSB_TTES	(TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M)
1792 
1793 #define	TAG_VALO_SHIFT		22		/* tag's va are bits 63-22 */
1794 /*
1795  * sw bits used on tsb_tag - bit masks used only in assembly
1796  * use only a sethi for these fields.
1797  */
1798 #define	TSBTAG_INVALID	0x00008000		/* tsb_tag.tag_invalid */
1799 #define	TSBTAG_LOCKED	0x00004000		/* tsb_tag.tag_locked */
1800 
1801 #ifdef	_ASM
1802 
1803 /*
1804  * Marker to indicate that this instruction will be hot patched at runtime
1805  * to some other value.
1806  * This value must be zero since it fills in the imm bits of the target
1807  * instructions to be patched
1808  */
1809 #define	RUNTIME_PATCH	(0)
1810 
1811 /*
1812  * V9 defines nop instruction as the following, which we use
1813  * at runtime to nullify some instructions we don't want to
1814  * execute in the trap handlers on certain platforms.
1815  */
1816 #define	MAKE_NOP_INSTR(reg)	\
1817 	sethi	%hi(0x1000000), reg
1818 
1819 /*
1820  * This macro constructs a SPARC V9 "jmpl <source reg>, %g0"
1821  * instruction, with the source register specified by the jump_reg_number.
1822  * The jmp opcode [24:19] = 11 1000 and source register is bits [18:14].
1823  * The instruction is returned in reg. The macro is used to patch in a jmpl
1824  * instruction at runtime.
1825  */
1826 #define	MAKE_JMP_INSTR(jump_reg_number, reg, tmp)	\
1827 	sethi	%hi(0x81c00000), reg;			\
1828 	mov	jump_reg_number, tmp;			\
1829 	sll	tmp, 14, tmp;				\
1830 	or	reg, tmp, reg
1831 
1832 /*
1833  * Macro to get hat per-MMU cnum on this CPU.
1834  * sfmmu - In, pass in "sfmmup" from the caller.
1835  * cnum	- Out, return 'cnum' to the caller
1836  * scr	- scratch
1837  */
1838 #define	SFMMU_CPU_CNUM(sfmmu, cnum, scr)				      \
1839 	CPU_ADDR(scr, cnum);	/* scr = load CPU struct addr */	      \
1840 	ld	[scr + CPU_MMU_IDX], cnum;	/* cnum = mmuid */	      \
1841 	add	sfmmu, SFMMU_CTXS, scr;	/* scr = sfmmup->sfmmu_ctxs[] */      \
1842 	sllx    cnum, SFMMU_MMU_CTX_SHIFT, cnum;			      \
1843 	add	scr, cnum, scr;		/* scr = sfmmup->sfmmu_ctxs[id] */    \
1844 	ldx	[scr + SFMMU_MMU_GC_NUM], scr;	/* sfmmu_ctxs[id].gcnum */    \
1845 	sllx    scr, SFMMU_MMU_CNUM_LSHIFT, scr;			      \
1846 	srlx    scr, SFMMU_MMU_CNUM_LSHIFT, cnum;	/* cnum = sfmmu cnum */
1847 
1848 /*
1849  * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry
1850  * entry - In,  pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller.
1851  * gnum - Out, return sfmmu gnum
1852  * cnum - Out, return sfmmu cnum
1853  * reg	- scratch
1854  */
1855 #define	SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg)			     \
1856 	ldx	[entry + SFMMU_CTXS], reg;  /* reg = sfmmu (gnum | cnum) */  \
1857 	srlx	reg, SFMMU_MMU_GNUM_RSHIFT, gnum;    /* gnum = sfmmu gnum */ \
1858 	sllx	reg, SFMMU_MMU_CNUM_LSHIFT, cnum;			     \
1859 	srlx	cnum, SFMMU_MMU_CNUM_LSHIFT, cnum;   /* cnum = sfmmu cnum */
1860 
1861 /*
1862  * Macro to get this CPU's tsbmiss area.
1863  */
1864 #define	CPU_TSBMISS_AREA(tsbmiss, tmp1)					\
1865 	CPU_INDEX(tmp1, tsbmiss);		/* tmp1 = cpu idx */	\
1866 	sethi	%hi(tsbmiss_area), tsbmiss;	/* tsbmiss base ptr */	\
1867 	mulx    tmp1, TSBMISS_SIZE, tmp1;	/* byte offset */	\
1868 	or	tsbmiss, %lo(tsbmiss_area), tsbmiss;			\
1869 	add	tsbmiss, tmp1, tsbmiss		/* tsbmiss area of CPU */
1870 
1871 
1872 /*
1873  * Macro to set kernel context + page size codes in DMMU primary context
1874  * register. It is only necessary for sun4u because sun4v does not need
1875  * page size codes
1876  */
1877 #ifdef sun4v
1878 
1879 #define	SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3)
1880 
1881 #else
1882 
1883 #define	SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \
1884 	sethi	%hi(kcontextreg), reg0;					\
1885 	ldx	[reg0 + %lo(kcontextreg)], reg0;			\
1886 	mov	MMU_PCONTEXT, reg1;					\
1887 	ldxa	[reg1]ASI_MMU_CTX, reg2;				\
1888 	xor	reg0, reg2, reg2;					\
1889 	brz	reg2, label3;						\
1890 	srlx	reg2, CTXREG_NEXT_SHIFT, reg2;				\
1891 	rdpr	%pstate, reg3;		/* disable interrupts */	\
1892 	btst	PSTATE_IE, reg3;					\
1893 /*CSTYLED*/								\
1894 	bnz,a,pt %icc, label1;						\
1895 	wrpr	reg3, PSTATE_IE, %pstate;				\
1896 /*CSTYLED*/								\
1897 label1:;								\
1898 	brz	reg2, label2;	   /* need demap if N_pgsz0/1 change */	\
1899 	sethi	%hi(FLUSH_ADDR), reg4;					\
1900 	mov	DEMAP_ALL_TYPE, reg2;					\
1901 	stxa	%g0, [reg2]ASI_DTLB_DEMAP;				\
1902 	stxa	%g0, [reg2]ASI_ITLB_DEMAP;				\
1903 /*CSTYLED*/								\
1904 label2:;								\
1905 	stxa	reg0, [reg1]ASI_MMU_CTX;				\
1906 	flush	reg4;							\
1907 	btst	PSTATE_IE, reg3;					\
1908 /*CSTYLED*/								\
1909 	bnz,a,pt %icc, label3;						\
1910 	wrpr	%g0, reg3, %pstate;	/* restore interrupt state */	\
1911 label3:;
1912 
1913 #endif
1914 
1915 /*
1916  * Macro to setup arguments with kernel sfmmup context + page size before
1917  * calling sfmmu_setctx_sec()
1918  */
1919 #ifdef sun4v
1920 #define	SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1)			\
1921 	set	KCONTEXT, arg0;					\
1922 	set	0, arg1;
1923 #else
1924 #define	SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1)			\
1925 	ldub	[sfmmup + SFMMU_CEXT], arg1;			\
1926 	set	KCONTEXT, arg0;					\
1927 	sll	arg1, CTXREG_EXT_SHIFT, arg1;
1928 #endif
1929 
1930 #define	PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr)	       	\
1931 	andcc	pstatereg, PSTATE_IE, %g0;	/* panic if intrs */	\
1932 /*CSTYLED*/								\
1933 	bnz,pt	%icc, label;			/* already disabled */	\
1934 	nop;								\
1935 									\
1936 	sethi	%hi(panicstr), scr;					\
1937 	ldx	[scr + %lo(panicstr)], scr;				\
1938 	tst	scr;							\
1939 /*CSTYLED*/								\
1940 	bnz,pt	%xcc, label;						\
1941 	nop;								\
1942 									\
1943 	save	%sp, -SA(MINFRAME), %sp;				\
1944 	sethi	%hi(sfmmu_panic1), %o0;					\
1945 	call	panic;							\
1946 	or	%o0, %lo(sfmmu_panic1), %o0;				\
1947 /*CSTYLED*/								\
1948 label:
1949 
1950 #define	PANIC_IF_INTR_ENABLED_PSTR(label, scr)				\
1951 	/*								\
1952 	 * The caller must have disabled interrupts.			\
1953 	 * If interrupts are not disabled, panic			\
1954 	 */								\
1955 	rdpr	%pstate, scr;						\
1956 	andcc	scr, PSTATE_IE, %g0;					\
1957 /*CSTYLED*/								\
1958 	bz,pt	%icc, label;						\
1959 	nop;								\
1960 									\
1961 	sethi	%hi(panicstr), scr;					\
1962 	ldx	[scr + %lo(panicstr)], scr;				\
1963 	tst	scr;							\
1964 /*CSTYLED*/								\
1965 	bnz,pt	%xcc, label;						\
1966 	nop;								\
1967 									\
1968 	sethi	%hi(sfmmu_panic6), %o0;					\
1969 	call	panic;							\
1970 	or	%o0, %lo(sfmmu_panic6), %o0;				\
1971 /*CSTYLED*/								\
1972 label:
1973 
1974 #endif	/* _ASM */
1975 
1976 #ifndef _ASM
1977 
1978 #ifdef VAC
1979 /*
1980  * Page coloring
1981  * The p_vcolor field of the page struct (1 byte) is used to store the
1982  * virtual page color.  This provides for 255 colors.  The value zero is
1983  * used to mean the page has no color - never been mapped or somehow
1984  * purified.
1985  */
1986 
1987 #define	PP_GET_VCOLOR(pp)	(((pp)->p_vcolor) - 1)
1988 #define	PP_NEWPAGE(pp)		(!(pp)->p_vcolor)
1989 #define	PP_SET_VCOLOR(pp, color)                                          \
1990 	((pp)->p_vcolor = ((color) + 1))
1991 
1992 /*
1993  * As mentioned p_vcolor == 0 means there is no color for this page.
1994  * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus
1995  * one so we define this constant.
1996  */
1997 #define	NO_VCOLOR	(-1)
1998 
1999 #define	addr_to_vcolor(addr) \
2000 	(((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask)
2001 #else	/* VAC */
2002 #define	addr_to_vcolor(addr)	(0)
2003 #endif	/* VAC */
2004 
2005 /*
2006  * The field p_index in the psm page structure is for large pages support.
2007  * P_index is a bit-vector of the different mapping sizes that a given page
2008  * is part of. An hme structure for a large mapping is only added in the
2009  * group leader page (first page). All pages covered by a given large mapping
2010  * have the corrosponding mapping bit set in their p_index field. This allows
2011  * us to only store an explicit hme structure in the leading page which
2012  * simplifies the mapping link list management. Furthermore, it provides us
2013  * a fast mechanism for determining the largest mapping a page is part of. For
2014  * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A.
2015  *
2016  * Implementation note: even though the first bit in p_index is reserved
2017  * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set.
2018  * In addition, the upper four bits of the p_index field are used by the
2019  * code as temporaries
2020  */
2021 
2022 /*
2023  * Defines for psm page struct fields and large page support
2024  */
2025 #define	SFMMU_INDEX_SHIFT		6
2026 #define	SFMMU_INDEX_MASK		((1 << SFMMU_INDEX_SHIFT) - 1)
2027 
2028 /* Return the mapping index */
2029 #define	PP_MAPINDEX(pp)	((pp)->p_index & SFMMU_INDEX_MASK)
2030 
2031 /*
2032  * These macros rely on the following property:
2033  * All pages constituting a large page are covered by a virtually
2034  * contiguous set of page_t's.
2035  */
2036 
2037 /* Return the leader for this mapping size */
2038 #define	PP_GROUPLEADER(pp, sz) \
2039 	(&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))])
2040 
2041 /* Return the root page for this page based on p_szc */
2042 #define	PP_PAGEROOT(pp)	((pp)->p_szc == 0 ? (pp) : \
2043 	PP_GROUPLEADER((pp), (pp)->p_szc))
2044 
2045 #define	PP_PAGENEXT_N(pp, n)	((pp) + (n))
2046 #define	PP_PAGENEXT(pp)		PP_PAGENEXT_N((pp), 1)
2047 
2048 #define	PP_PAGEPREV_N(pp, n)	((pp) - (n))
2049 #define	PP_PAGEPREV(pp)		PP_PAGEPREV_N((pp), 1)
2050 
2051 #define	PP_ISMAPPED_LARGE(pp)	(PP_MAPINDEX(pp) != 0)
2052 
2053 /* Need function to test the page mappping which takes p_index into account */
2054 #define	PP_ISMAPPED(pp)	((pp)->p_mapping || PP_ISMAPPED_LARGE(pp))
2055 
2056 /*
2057  * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT
2058  * set p_index field.
2059  */
2060 #define	PAGESZ_TO_INDEX(sz)	(1 << (sz))
2061 
2062 
2063 /*
2064  * prototypes for hat assembly routines.  Some of these are
2065  * known to machine dependent VM code.
2066  */
2067 extern uint64_t sfmmu_make_tsbtag(caddr_t);
2068 extern struct tsbe *
2069 		sfmmu_get_tsbe(uint64_t, caddr_t, int, int);
2070 extern void	sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int);
2071 extern void	sfmmu_unload_tsbe(struct tsbe *, uint64_t, int);
2072 extern void	sfmmu_load_mmustate(sfmmu_t *);
2073 extern void	sfmmu_raise_tsb_exception(uint64_t, uint64_t);
2074 #ifndef sun4v
2075 extern void	sfmmu_itlb_ld_kva(caddr_t, tte_t *);
2076 extern void	sfmmu_dtlb_ld_kva(caddr_t, tte_t *);
2077 #endif /* sun4v */
2078 extern void	sfmmu_copytte(tte_t *, tte_t *);
2079 extern int	sfmmu_modifytte(tte_t *, tte_t *, tte_t *);
2080 extern int	sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *);
2081 extern pfn_t	sfmmu_ttetopfn(tte_t *, caddr_t);
2082 extern void	sfmmu_hblk_hash_rm(struct hmehash_bucket *,
2083 			struct hme_blk *, uint64_t, struct hme_blk *);
2084 extern void	sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *,
2085 			uint64_t);
2086 extern uint_t	sfmmu_disable_intrs(void);
2087 extern void	sfmmu_enable_intrs(uint_t);
2088 /*
2089  * functions exported to machine dependent VM code
2090  */
2091 extern void	sfmmu_patch_ktsb(void);
2092 #ifndef UTSB_PHYS
2093 extern void	sfmmu_patch_utsb(void);
2094 #endif /* UTSB_PHYS */
2095 extern pfn_t	sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *);
2096 extern void	sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *);
2097 extern pfn_t	sfmmu_kvaszc2pfn(caddr_t, int);
2098 #ifdef	DEBUG
2099 extern void	sfmmu_check_kpfn(pfn_t);
2100 #else
2101 #define		sfmmu_check_kpfn(pfn)	/* disabled */
2102 #endif	/* DEBUG */
2103 extern void	sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
2104 extern void	sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,	uint_t);
2105 extern void	sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t);
2106 extern void	sfmmu_init_tsbs(void);
2107 extern caddr_t  sfmmu_ktsb_alloc(caddr_t);
2108 extern int	sfmmu_getctx_pri(void);
2109 extern int	sfmmu_getctx_sec(void);
2110 extern void	sfmmu_setctx_sec(uint_t);
2111 extern void	sfmmu_inv_tsb(caddr_t, uint_t);
2112 extern void	sfmmu_init_ktsbinfo(void);
2113 extern int	sfmmu_setup_4lp(void);
2114 extern void	sfmmu_patch_mmu_asi(int);
2115 extern void	sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int);
2116 extern void	sfmmu_cache_flushall(void);
2117 extern pgcnt_t  sfmmu_tte_cnt(sfmmu_t *, uint_t);
2118 extern void	*sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int);
2119 extern void	sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t);
2120 extern void	sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *);
2121 
2122 extern void	hat_kern_setup(void);
2123 extern int	hat_page_relocate(page_t **, page_t **, spgcnt_t *);
2124 extern int	sfmmu_get_ppvcolor(struct page *);
2125 extern int	sfmmu_get_addrvcolor(caddr_t);
2126 extern int	sfmmu_hat_lock_held(sfmmu_t *);
2127 extern int	sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *, int);
2128 
2129 /*
2130  * Functions exported to xhat_sfmmu.c
2131  */
2132 extern kmutex_t *sfmmu_mlist_enter(page_t *);
2133 extern void	sfmmu_mlist_exit(kmutex_t *);
2134 extern int	sfmmu_mlist_held(struct page *);
2135 extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *);
2136 
2137 /*
2138  * MMU-specific functions optionally imported from the CPU module
2139  */
2140 #pragma weak mmu_large_pages_disabled
2141 #pragma weak mmu_set_ctx_page_sizes
2142 #pragma weak mmu_check_page_sizes
2143 
2144 extern uint_t mmu_large_pages_disabled(uint_t);
2145 extern void mmu_set_ctx_page_sizes(sfmmu_t *);
2146 extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *);
2147 
2148 extern sfmmu_t 		*ksfmmup;
2149 extern caddr_t		ktsb_base;
2150 extern uint64_t		ktsb_pbase;
2151 extern int		ktsb_sz;
2152 extern int		ktsb_szcode;
2153 extern caddr_t		ktsb4m_base;
2154 extern uint64_t		ktsb4m_pbase;
2155 extern int		ktsb4m_sz;
2156 extern int		ktsb4m_szcode;
2157 extern uint64_t		kpm_tsbbase;
2158 extern int		kpm_tsbsz;
2159 extern int		ktsb_phys;
2160 extern int		enable_bigktsb;
2161 #ifndef sun4v
2162 extern int		utsb_dtlb_ttenum;
2163 extern int		utsb4m_dtlb_ttenum;
2164 #endif /* sun4v */
2165 extern int		uhmehash_num;
2166 extern int		khmehash_num;
2167 extern struct hmehash_bucket *uhme_hash;
2168 extern struct hmehash_bucket *khme_hash;
2169 extern kmutex_t		*mml_table;
2170 extern uint_t		mml_table_sz;
2171 extern uint_t		mml_shift;
2172 extern uint_t		hblk_alloc_dynamic;
2173 extern struct tsbmiss	tsbmiss_area[NCPU];
2174 extern struct kpmtsbm	kpmtsbm_area[NCPU];
2175 
2176 #ifndef sun4v
2177 extern int		dtlb_resv_ttenum;
2178 extern caddr_t		utsb_vabase;
2179 extern caddr_t		utsb4m_vabase;
2180 #endif /* sun4v */
2181 extern vmem_t		*kmem_tsb_default_arena[];
2182 extern int		tsb_lgrp_affinity;
2183 
2184 extern uint_t		disable_large_pages;
2185 extern uint_t		disable_ism_large_pages;
2186 extern uint_t		disable_auto_data_large_pages;
2187 extern uint_t		disable_auto_text_large_pages;
2188 
2189 /* kpm externals */
2190 extern pfn_t		sfmmu_kpm_vatopfn(caddr_t);
2191 extern void		sfmmu_kpm_patch_tlbm(void);
2192 extern void		sfmmu_kpm_patch_tsbm(void);
2193 extern void		sfmmu_patch_shctx(void);
2194 extern void		sfmmu_kpm_load_tsb(caddr_t, tte_t *, int);
2195 extern void		sfmmu_kpm_unload_tsb(caddr_t, int);
2196 extern void		sfmmu_kpm_tsbmtl(short *, uint_t *, int);
2197 extern int		sfmmu_kpm_stsbmtl(char *, uint_t *, int);
2198 extern caddr_t		kpm_vbase;
2199 extern size_t		kpm_size;
2200 extern struct memseg	*memseg_hash[];
2201 extern uint64_t		memseg_phash[];
2202 extern kpm_hlk_t	*kpmp_table;
2203 extern kpm_shlk_t	*kpmp_stable;
2204 extern uint_t		kpmp_table_sz;
2205 extern uint_t		kpmp_stable_sz;
2206 extern uchar_t		kpmp_shift;
2207 
2208 #define	PP_ISMAPPED_KPM(pp)	((pp)->p_kpmref > 0)
2209 
2210 #define	IS_KPM_ALIAS_RANGE(vaddr)					\
2211 	(((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0)
2212 
2213 #endif /* !_ASM */
2214 
2215 /* sfmmu_kpm_tsbmtl flags */
2216 #define	KPMTSBM_STOP		0
2217 #define	KPMTSBM_START		1
2218 
2219 /* kpm_smallpages kp_mapped values */
2220 #define	KPM_MAPPEDS		-1	/* small mapping valid, no conflict */
2221 #define	KPM_MAPPEDSC		1	/* small mapping valid, conflict */
2222 
2223 /* Physical memseg address NULL marker */
2224 #define	MSEG_NULLPTR_PA		-1
2225 
2226 /*
2227  * Memseg hash defines for kpm trap level tsbmiss handler.
2228  * Must be in sync w/ page.h .
2229  */
2230 #define	SFMMU_MEM_HASH_SHIFT		0x9
2231 #define	SFMMU_N_MEM_SLOTS		0x200
2232 #define	SFMMU_MEM_HASH_ENTRY_SHIFT	3
2233 
2234 #ifndef	_ASM
2235 #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT)
2236 #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT
2237 #endif
2238 #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS)
2239 #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS
2240 #endif
2241 
2242 /* Physical memseg address NULL marker */
2243 #define	SFMMU_MEMSEG_NULLPTR_PA		-1
2244 
2245 /*
2246  * Check KCONTEXT to be zero, asm parts depend on that assumption.
2247  */
2248 #if (KCONTEXT != 0)
2249 #error KCONTEXT != 0
2250 #endif
2251 #endif	/* !_ASM */
2252 
2253 
2254 #endif /* _KERNEL */
2255 
2256 #ifndef _ASM
2257 /*
2258  * ctx, hmeblk, mlistlock and other stats for sfmmu
2259  */
2260 struct sfmmu_global_stat {
2261 	int		sf_tsb_exceptions;	/* # of tsb exceptions */
2262 	int		sf_tsb_raise_exception;	/* # tsb exc. w/o TLB flush */
2263 
2264 	int		sf_pagefaults;		/* # of pagefaults */
2265 
2266 	int		sf_uhash_searches;	/* # of user hash searches */
2267 	int		sf_uhash_links;		/* # of user hash links */
2268 	int		sf_khash_searches;	/* # of kernel hash searches */
2269 	int		sf_khash_links;		/* # of kernel hash links */
2270 
2271 	int		sf_swapout;		/* # times hat swapped out */
2272 
2273 	int		sf_tsb_alloc;		/* # TSB allocations */
2274 	int		sf_tsb_allocfail;	/* # times TSB alloc fail */
2275 	int		sf_tsb_sectsb_create;	/* # times second TSB added */
2276 
2277 	int		sf_scd_1sttsb_alloc;	/* # SCD 1st TSB allocations */
2278 	int		sf_scd_2ndtsb_alloc;	/* # SCD 2nd TSB allocations */
2279 	int		sf_scd_1sttsb_allocfail; /* # SCD 1st TSB alloc fail */
2280 	int		sf_scd_2ndtsb_allocfail; /* # SCD 2nd TSB alloc fail */
2281 
2282 
2283 	int		sf_tteload8k;		/* calls to sfmmu_tteload */
2284 	int		sf_tteload64k;		/* calls to sfmmu_tteload */
2285 	int		sf_tteload512k;		/* calls to sfmmu_tteload */
2286 	int		sf_tteload4m;		/* calls to sfmmu_tteload */
2287 	int		sf_tteload32m;		/* calls to sfmmu_tteload */
2288 	int		sf_tteload256m;		/* calls to sfmmu_tteload */
2289 
2290 	int		sf_tsb_load8k;		/* # times loaded 8K tsbent */
2291 	int		sf_tsb_load4m;		/* # times loaded 4M tsbent */
2292 
2293 	int		sf_hblk_hit;		/* found hblk during tteload */
2294 	int		sf_hblk8_ncreate;	/* static hblk8's created */
2295 	int		sf_hblk8_nalloc;	/* static hblk8's allocated */
2296 	int		sf_hblk1_ncreate;	/* static hblk1's created */
2297 	int		sf_hblk1_nalloc;	/* static hblk1's allocated */
2298 	int		sf_hblk_slab_cnt;	/* sfmmu8_cache slab creates */
2299 	int		sf_hblk_reserve_cnt;	/* hblk_reserve usage */
2300 	int		sf_hblk_recurse_cnt;	/* hblk_reserve	owner reqs */
2301 	int		sf_hblk_reserve_hit;	/* hblk_reserve hash hits */
2302 	int		sf_get_free_success;	/* reserve list allocs */
2303 	int		sf_get_free_throttle;	/* fails due to throttling */
2304 	int		sf_get_free_fail;	/* fails due to empty list */
2305 	int		sf_put_free_success;	/* reserve list frees */
2306 	int		sf_put_free_fail;	/* fails due to full list */
2307 
2308 	int		sf_pgcolor_conflict;	/* VAC conflict resolution */
2309 	int		sf_uncache_conflict;	/* VAC conflict resolution */
2310 	int		sf_unload_conflict;	/* VAC unload resolution */
2311 	int		sf_ism_uncache;		/* VAC conflict resolution */
2312 	int		sf_ism_recache;		/* VAC conflict resolution */
2313 	int		sf_recache;		/* VAC conflict resolution */
2314 
2315 	int		sf_steal_count;		/* # of hblks stolen */
2316 
2317 	int		sf_pagesync;		/* # of pagesyncs */
2318 	int		sf_clrwrt;		/* # of clear write perms */
2319 	int		sf_pagesync_invalid;	/* pagesync with inv tte */
2320 
2321 	int		sf_kernel_xcalls;	/* # of kernel cross calls */
2322 	int		sf_user_xcalls;		/* # of user cross calls */
2323 
2324 	int		sf_tsb_grow;		/* # of user tsb grows */
2325 	int		sf_tsb_shrink;		/* # of user tsb shrinks */
2326 	int		sf_tsb_resize_failures;	/* # of user tsb resize */
2327 	int		sf_tsb_reloc;		/* # of user tsb relocations */
2328 
2329 	int		sf_user_vtop;		/* # of user vatopfn calls */
2330 
2331 	int		sf_ctx_inv;		/* #times invalidate MMU ctx */
2332 
2333 	int		sf_tlb_reprog_pgsz;	/* # times switch TLB pgsz */
2334 
2335 	int		sf_region_remap_demap;	/* # times shme remap demap */
2336 
2337 	int		sf_create_scd;		/* # times SCD is created */
2338 	int		sf_join_scd;		/* # process joined scd */
2339 	int		sf_leave_scd;		/* # process left scd */
2340 	int		sf_destroy_scd;		/* # times SCD is destroyed */
2341 };
2342 
2343 struct sfmmu_tsbsize_stat {
2344 	int		sf_tsbsz_8k;
2345 	int		sf_tsbsz_16k;
2346 	int		sf_tsbsz_32k;
2347 	int		sf_tsbsz_64k;
2348 	int		sf_tsbsz_128k;
2349 	int		sf_tsbsz_256k;
2350 	int		sf_tsbsz_512k;
2351 	int		sf_tsbsz_1m;
2352 	int		sf_tsbsz_2m;
2353 	int		sf_tsbsz_4m;
2354 	int		sf_tsbsz_8m;
2355 	int		sf_tsbsz_16m;
2356 	int		sf_tsbsz_32m;
2357 	int		sf_tsbsz_64m;
2358 	int		sf_tsbsz_128m;
2359 	int		sf_tsbsz_256m;
2360 };
2361 
2362 struct sfmmu_percpu_stat {
2363 	int	sf_itlb_misses;		/* # of itlb misses */
2364 	int	sf_dtlb_misses;		/* # of dtlb misses */
2365 	int	sf_utsb_misses;		/* # of user tsb misses */
2366 	int	sf_ktsb_misses;		/* # of kernel tsb misses */
2367 	int	sf_tsb_hits;		/* # of tsb hits */
2368 	int	sf_umod_faults;		/* # of mod (prot viol) flts */
2369 	int	sf_kmod_faults;		/* # of mod (prot viol) flts */
2370 };
2371 
2372 #define	SFMMU_STAT(stat)		sfmmu_global_stat.stat++
2373 #define	SFMMU_STAT_ADD(stat, amount)	sfmmu_global_stat.stat += (amount)
2374 #define	SFMMU_STAT_SET(stat, count)	sfmmu_global_stat.stat = (count)
2375 
2376 #define	SFMMU_MMU_STAT(stat)		CPU->cpu_m.cpu_mmu_ctxp->stat++
2377 
2378 #endif /* !_ASM */
2379 
2380 #ifdef	__cplusplus
2381 }
2382 #endif
2383 
2384 #endif	/* _VM_HAT_SFMMU_H */
2385