1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * VM - Hardware Address Translation management. 28 * 29 * This file describes the contents of the sun-reference-mmu(sfmmu)- 30 * specific hat data structures and the sfmmu-specific hat procedures. 31 * The machine-independent interface is described in <vm/hat.h>. 32 */ 33 34 #ifndef _VM_HAT_SFMMU_H 35 #define _VM_HAT_SFMMU_H 36 37 #ifdef __cplusplus 38 extern "C" { 39 #endif 40 41 #ifndef _ASM 42 43 #include <sys/types.h> 44 45 #endif /* _ASM */ 46 47 #ifdef _KERNEL 48 49 #include <sys/pte.h> 50 #include <vm/mach_sfmmu.h> 51 #include <sys/mmu.h> 52 53 /* 54 * Don't alter these without considering changes to ism_map_t. 55 */ 56 #define DEFAULT_ISM_PAGESIZE MMU_PAGESIZE4M 57 #define DEFAULT_ISM_PAGESZC TTE4M 58 #define ISM_PG_SIZE(ism_vbshift) (1 << ism_vbshift) 59 #define ISM_SZ_MASK(ism_vbshift) (ISM_PG_SIZE(ism_vbshift) - 1) 60 #define ISM_MAP_SLOTS 8 /* Change this carefully. */ 61 62 #ifndef _ASM 63 64 #include <sys/t_lock.h> 65 #include <vm/hat.h> 66 #include <vm/seg.h> 67 #include <sys/machparam.h> 68 #include <sys/systm.h> 69 #include <sys/x_call.h> 70 #include <vm/page.h> 71 #include <sys/ksynch.h> 72 73 typedef struct hat sfmmu_t; 74 typedef struct sf_scd sf_scd_t; 75 76 /* 77 * SFMMU attributes for hat_memload/hat_devload 78 */ 79 #define SFMMU_UNCACHEPTTE 0x01000000 /* unencache in physical $ */ 80 #define SFMMU_UNCACHEVTTE 0x02000000 /* unencache in virtual $ */ 81 #define SFMMU_SIDEFFECT 0x04000000 /* set side effect bit */ 82 #define SFMMU_LOAD_ALLATTR (HAT_PROT_MASK | HAT_ORDER_MASK | \ 83 HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC | \ 84 SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT) 85 86 87 /* 88 * sfmmu flags for hat_memload/hat_devload 89 */ 90 #define SFMMU_NO_TSBLOAD 0x08000000 /* do not preload tsb */ 91 #define SFMMU_LOAD_ALLFLAG (HAT_LOAD | HAT_LOAD_LOCK | \ 92 HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST | \ 93 HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD | \ 94 HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT) 95 96 /* 97 * sfmmu internal flag to hat_pageunload that spares locked mappings 98 */ 99 #define SFMMU_KERNEL_RELOC 0x8000 100 101 /* 102 * mode for sfmmu_chgattr 103 */ 104 #define SFMMU_SETATTR 0x0 105 #define SFMMU_CLRATTR 0x1 106 #define SFMMU_CHGATTR 0x2 107 108 /* 109 * sfmmu specific flags for page_t 110 */ 111 #define P_PNC 0x8 /* non-caching is permanent bit */ 112 #define P_TNC 0x10 /* non-caching is temporary bit */ 113 #define P_KPMS 0x20 /* kpm mapped small (vac alias prevention) */ 114 #define P_KPMC 0x40 /* kpm conflict page (vac alias prevention) */ 115 116 #define PP_GENERIC_ATTR(pp) ((pp)->p_nrm & (P_MOD | P_REF | P_RO)) 117 #define PP_ISMOD(pp) ((pp)->p_nrm & P_MOD) 118 #define PP_ISREF(pp) ((pp)->p_nrm & P_REF) 119 #define PP_ISRO(pp) ((pp)->p_nrm & P_RO) 120 #define PP_ISNC(pp) ((pp)->p_nrm & (P_PNC|P_TNC)) 121 #define PP_ISPNC(pp) ((pp)->p_nrm & P_PNC) 122 #ifdef VAC 123 #define PP_ISTNC(pp) ((pp)->p_nrm & P_TNC) 124 #endif 125 #define PP_ISKPMS(pp) ((pp)->p_nrm & P_KPMS) 126 #define PP_ISKPMC(pp) ((pp)->p_nrm & P_KPMC) 127 128 #define PP_SETMOD(pp) ((pp)->p_nrm |= P_MOD) 129 #define PP_SETREF(pp) ((pp)->p_nrm |= P_REF) 130 #define PP_SETREFMOD(pp) ((pp)->p_nrm |= (P_REF|P_MOD)) 131 #define PP_SETRO(pp) ((pp)->p_nrm |= P_RO) 132 #define PP_SETREFRO(pp) ((pp)->p_nrm |= (P_REF|P_RO)) 133 #define PP_SETPNC(pp) ((pp)->p_nrm |= P_PNC) 134 #ifdef VAC 135 #define PP_SETTNC(pp) ((pp)->p_nrm |= P_TNC) 136 #endif 137 #define PP_SETKPMS(pp) ((pp)->p_nrm |= P_KPMS) 138 #define PP_SETKPMC(pp) ((pp)->p_nrm |= P_KPMC) 139 140 #define PP_CLRMOD(pp) ((pp)->p_nrm &= ~P_MOD) 141 #define PP_CLRREF(pp) ((pp)->p_nrm &= ~P_REF) 142 #define PP_CLRREFMOD(pp) ((pp)->p_nrm &= ~(P_REF|P_MOD)) 143 #define PP_CLRRO(pp) ((pp)->p_nrm &= ~P_RO) 144 #define PP_CLRPNC(pp) ((pp)->p_nrm &= ~P_PNC) 145 #ifdef VAC 146 #define PP_CLRTNC(pp) ((pp)->p_nrm &= ~P_TNC) 147 #endif 148 #define PP_CLRKPMS(pp) ((pp)->p_nrm &= ~P_KPMS) 149 #define PP_CLRKPMC(pp) ((pp)->p_nrm &= ~P_KPMC) 150 151 /* 152 * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM) 153 * will be constrained to a 4M, 32M or 256M alignment. Also since every newly- 154 * created ISM segment is created out of a new address space at base va 155 * of 0 we don't need to store it. 156 */ 157 #define ISM_ALIGN(shift) (1 << shift) /* base va aligned to <n>M */ 158 #define ISM_ALIGNED(shift, va) (((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0) 159 #define ISM_SHIFT(shift, x) ((uintptr_t)x >> (shift)) 160 161 /* 162 * Pad locks out to cache sub-block boundaries to prevent 163 * false sharing, so several processes don't contend for 164 * the same line if they aren't using the same lock. Since 165 * this is a typedef we also have a bit of freedom in 166 * changing lock implementations later if we decide it 167 * is necessary. 168 */ 169 typedef struct hat_lock { 170 kmutex_t hl_mutex; 171 uchar_t hl_pad[64 - sizeof (kmutex_t)]; 172 } hatlock_t; 173 174 #define HATLOCK_MUTEXP(hatlockp) (&((hatlockp)->hl_mutex)) 175 176 /* 177 * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned. 178 * Also size is guaranteed to be in 4M, 32M or 256M chunks. 179 * ism_seg consists of the following members: 180 * [XX..22] base address of ism segment. XX is 63 or 31 depending whether 181 * caddr_t is 64 bits or 32 bits. 182 * [21..0] size of segment. 183 * 184 * NOTE: Don't alter this structure without changing defines above and 185 * the tsb_miss and protection handlers. 186 */ 187 typedef struct ism_map { 188 uintptr_t imap_seg; /* base va + sz of ISM segment */ 189 uchar_t imap_vb_shift; /* mmu_pageshift for ism page size */ 190 uchar_t imap_rid; /* region id for ism */ 191 ushort_t imap_hatflags; /* primary ism page size */ 192 uint_t imap_sz_mask; /* mmu_pagemask for ism page size */ 193 sfmmu_t *imap_ismhat; /* hat id of dummy ISM as */ 194 struct ism_ment *imap_ment; /* pointer to mapping list entry */ 195 } ism_map_t; 196 197 #define ism_start(map) ((caddr_t)((map).imap_seg & \ 198 ~ISM_SZ_MASK((map).imap_vb_shift))) 199 #define ism_size(map) ((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift)) 200 #define ism_end(map) ((caddr_t)(ism_start(map) + (ism_size(map) * \ 201 ISM_PG_SIZE((map).imap_vb_shift)))) 202 /* 203 * ISM mapping entry. Used to link all hat's sharing a ism_hat. 204 * Same function as the p_mapping list for a page. 205 */ 206 typedef struct ism_ment { 207 sfmmu_t *iment_hat; /* back pointer to hat_share() hat */ 208 caddr_t iment_base_va; /* hat's va base for this ism seg */ 209 struct ism_ment *iment_next; /* next ism map entry */ 210 struct ism_ment *iment_prev; /* prev ism map entry */ 211 } ism_ment_t; 212 213 /* 214 * ISM segment block. One will be hung off the sfmmu structure if a 215 * a process uses ISM. More will be linked using ismblk_next if more 216 * than ISM_MAP_SLOTS segments are attached to this proc. 217 * 218 * All modifications to fields in this structure will be protected 219 * by the hat mutex. In order to avoid grabbing this lock in low level 220 * routines (tsb miss/protection handlers and vatopfn) while not 221 * introducing any race conditions with hat_unshare, we will set 222 * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur 223 * for this ctx while this bit is set will be handled in sfmmu_tsb_excption 224 * where it will synchronize behind the hat mutex. 225 */ 226 typedef struct ism_blk { 227 ism_map_t iblk_maps[ISM_MAP_SLOTS]; 228 struct ism_blk *iblk_next; 229 uint64_t iblk_nextpa; 230 } ism_blk_t; 231 232 /* 233 * TSB access information. All fields are protected by the process's 234 * hat lock. 235 */ 236 237 struct tsb_info { 238 caddr_t tsb_va; /* tsb base virtual address */ 239 uint64_t tsb_pa; /* tsb base physical address */ 240 struct tsb_info *tsb_next; /* next tsb used by this process */ 241 uint16_t tsb_szc; /* tsb size code */ 242 uint16_t tsb_flags; /* flags for this tsb; see below */ 243 uint_t tsb_ttesz_mask; /* page size masks; see below */ 244 245 tte_t tsb_tte; /* tte to lock into DTLB */ 246 sfmmu_t *tsb_sfmmu; /* sfmmu */ 247 kmem_cache_t *tsb_cache; /* cache from which mem allocated */ 248 vmem_t *tsb_vmp; /* vmem arena from which mem alloc'd */ 249 }; 250 251 /* 252 * Values for "tsb_ttesz_mask" bitmask. 253 */ 254 #define TSB8K (1 << TTE8K) 255 #define TSB64K (1 << TTE64K) 256 #define TSB512K (1 << TTE512K) 257 #define TSB4M (1 << TTE4M) 258 #define TSB32M (1 << TTE32M) 259 #define TSB256M (1 << TTE256M) 260 261 /* 262 * Values for "tsb_flags" field. 263 */ 264 #define TSB_RELOC_FLAG 0x1 265 #define TSB_FLUSH_NEEDED 0x2 266 #define TSB_SWAPPED 0x4 267 #define TSB_SHAREDCTX 0x8 268 269 #endif /* !_ASM */ 270 271 /* 272 * Data structures for shared hmeblk support. 273 */ 274 275 /* 276 * Do not increase the maximum number of ism/hme regions without checking first 277 * the impact on ism_map_t, TSB miss area, hblk tag and region id type in 278 * sf_region structure. 279 * Initially, shared hmes will only be used for the main text segment 280 * therefore this value will be set to 64, it will be increased when shared 281 * libraries are included. 282 */ 283 284 #define SFMMU_MAX_HME_REGIONS (64) 285 #define SFMMU_HMERGNMAP_WORDS BT_BITOUL(SFMMU_MAX_HME_REGIONS) 286 287 #define SFMMU_PRIVATE 0 288 #define SFMMU_SHARED 1 289 290 #define HMEBLK_ENDPA 1 291 292 #ifndef _ASM 293 294 #define SFMMU_MAX_ISM_REGIONS (64) 295 #define SFMMU_ISMRGNMAP_WORDS BT_BITOUL(SFMMU_MAX_ISM_REGIONS) 296 297 #define SFMMU_RGNMAP_WORDS (SFMMU_HMERGNMAP_WORDS + SFMMU_ISMRGNMAP_WORDS) 298 299 #define SFMMU_MAX_REGION_BUCKETS (128) 300 #define SFMMU_MAX_SRD_BUCKETS (2048) 301 302 typedef struct sf_hmeregion_map { 303 ulong_t bitmap[SFMMU_HMERGNMAP_WORDS]; 304 } sf_hmeregion_map_t; 305 306 typedef struct sf_ismregion_map { 307 ulong_t bitmap[SFMMU_ISMRGNMAP_WORDS]; 308 } sf_ismregion_map_t; 309 310 typedef union sf_region_map_u { 311 struct _h_rmap_s { 312 sf_hmeregion_map_t hmeregion_map; 313 sf_ismregion_map_t ismregion_map; 314 } h_rmap_s; 315 ulong_t bitmap[SFMMU_RGNMAP_WORDS]; 316 } sf_region_map_t; 317 318 #define SF_RGNMAP_ZERO(map) { \ 319 int _i; \ 320 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 321 (map).bitmap[_i] = 0; \ 322 } \ 323 } 324 325 /* 326 * Returns 1 if map1 and map2 are equal. 327 */ 328 #define SF_RGNMAP_EQUAL(map1, map2, rval) { \ 329 int _i; \ 330 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 331 if ((map1)->bitmap[_i] != (map2)->bitmap[_i]) \ 332 break; \ 333 } \ 334 if (_i < SFMMU_RGNMAP_WORDS) \ 335 rval = 0; \ 336 else \ 337 rval = 1; \ 338 } 339 340 #define SF_RGNMAP_ADD(map, r) BT_SET((map).bitmap, r) 341 #define SF_RGNMAP_DEL(map, r) BT_CLEAR((map).bitmap, r) 342 #define SF_RGNMAP_TEST(map, r) BT_TEST((map).bitmap, r) 343 344 /* 345 * Tests whether map2 is a subset of map1, returns 1 if 346 * this assertion is true. 347 */ 348 #define SF_RGNMAP_IS_SUBSET(map1, map2, rval) { \ 349 int _i; \ 350 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 351 if (((map1)->bitmap[_i] & (map2)->bitmap[_i]) \ 352 != (map2)->bitmap[_i]) { \ 353 break; \ 354 } \ 355 } \ 356 if (_i < SFMMU_RGNMAP_WORDS) \ 357 rval = 0; \ 358 else \ 359 rval = 1; \ 360 } 361 362 #define SF_SCD_INCR_REF(scdp) { \ 363 atomic_add_32((volatile uint32_t *)&(scdp)->scd_refcnt, 1); \ 364 } 365 366 #define SF_SCD_DECR_REF(srdp, scdp) { \ 367 sf_region_map_t _scd_rmap = (scdp)->scd_region_map; \ 368 if (!atomic_add_32_nv( \ 369 (volatile uint32_t *)&(scdp)->scd_refcnt, -1)) { \ 370 sfmmu_destroy_scd((srdp), (scdp), &_scd_rmap); \ 371 } \ 372 } 373 374 /* 375 * A sfmmup link in the link list of sfmmups that share the same region. 376 */ 377 typedef struct sf_rgn_link { 378 sfmmu_t *next; 379 sfmmu_t *prev; 380 } sf_rgn_link_t; 381 382 /* 383 * rgn_flags values. 384 */ 385 #define SFMMU_REGION_HME 0x1 386 #define SFMMU_REGION_ISM 0x2 387 #define SFMMU_REGION_FREE 0x8 388 389 #define SFMMU_REGION_TYPE_MASK (0x3) 390 391 /* 392 * sf_region defines a text or (D)ISM segment which map 393 * the same underlying physical object. 394 */ 395 typedef struct sf_region { 396 caddr_t rgn_saddr; /* base addr of attached seg */ 397 size_t rgn_size; /* size of attached seg */ 398 void *rgn_obj; /* the underlying object id */ 399 u_offset_t rgn_objoff; /* offset in the object mapped */ 400 uchar_t rgn_perm; /* PROT_READ/WRITE/EXEC */ 401 uchar_t rgn_pgszc; /* page size of the region */ 402 uchar_t rgn_flags; /* region type, free flag */ 403 uchar_t rgn_id; 404 int rgn_refcnt; /* # of hats sharing the region */ 405 /* callback function for hat_unload_callback */ 406 hat_rgn_cb_func_t rgn_cb_function; 407 struct sf_region *rgn_hash; /* hash chain linking the rgns */ 408 kmutex_t rgn_mutex; /* protect region sfmmu list */ 409 /* A link list of processes attached to this region */ 410 sfmmu_t *rgn_sfmmu_head; 411 ulong_t rgn_ttecnt[MMU_PAGE_SIZES]; 412 uint16_t rgn_hmeflags; /* rgn tte size flags */ 413 } sf_region_t; 414 415 #define rgn_next rgn_hash 416 417 /* srd */ 418 typedef struct sf_shared_region_domain { 419 vnode_t *srd_evp; /* executable vnode */ 420 /* hme region table */ 421 sf_region_t *srd_hmergnp[SFMMU_MAX_HME_REGIONS]; 422 /* ism region table */ 423 sf_region_t *srd_ismrgnp[SFMMU_MAX_ISM_REGIONS]; 424 /* hash chain linking srds */ 425 struct sf_shared_region_domain *srd_hash; 426 /* pointer to the next free hme region */ 427 sf_region_t *srd_hmergnfree; 428 /* pointer to the next free ism region */ 429 sf_region_t *srd_ismrgnfree; 430 /* id of next ism region created */ 431 uint16_t srd_next_ismrid; 432 /* id of next hme region created */ 433 uint16_t srd_next_hmerid; 434 uint16_t srd_ismbusyrgns; /* # of ism rgns in use */ 435 uint16_t srd_hmebusyrgns; /* # of hme rgns in use */ 436 int srd_refcnt; /* # of procs in the srd */ 437 kmutex_t srd_mutex; /* sync add/remove rgns */ 438 kmutex_t srd_scd_mutex; 439 sf_scd_t *srd_scdp; /* list of scds in srd */ 440 /* hash of regions associated with the same executable */ 441 sf_region_t *srd_rgnhash[SFMMU_MAX_REGION_BUCKETS]; 442 } sf_srd_t; 443 444 typedef struct sf_srd_bucket { 445 kmutex_t srdb_lock; 446 sf_srd_t *srdb_srdp; 447 } sf_srd_bucket_t; 448 449 /* 450 * The value of SFMMU_L1_HMERLINKS and SFMMU_L2_HMERLINKS will be increased 451 * to 16 when the use of shared hmes for shared libraries is enabled. 452 */ 453 454 #define SFMMU_L1_HMERLINKS (8) 455 #define SFMMU_L2_HMERLINKS (8) 456 #define SFMMU_L1_HMERLINKS_SHIFT (3) 457 #define SFMMU_L1_HMERLINKS_MASK (SFMMU_L1_HMERLINKS - 1) 458 #define SFMMU_L2_HMERLINKS_MASK (SFMMU_L2_HMERLINKS - 1) 459 #define SFMMU_L1_HMERLINKS_SIZE \ 460 (SFMMU_L1_HMERLINKS * sizeof (sf_rgn_link_t *)) 461 #define SFMMU_L2_HMERLINKS_SIZE \ 462 (SFMMU_L2_HMERLINKS * sizeof (sf_rgn_link_t)) 463 464 #if (SFMMU_L1_HMERLINKS * SFMMU_L2_HMERLINKS < SFMMU_MAX_HME_REGIONS) 465 #error Not Enough HMERLINKS 466 #endif 467 468 /* 469 * This macro grabs hat lock and allocates level 2 hat chain 470 * associated with a shme rgn. In the majority of cases, the macro 471 * is called with alloc = 0, and lock = 0. 472 * A pointer to the level 2 sf_rgn_link_t structure is returned in the lnkp 473 * parameter. 474 */ 475 #define SFMMU_HMERID2RLINKP(sfmmup, rid, lnkp, alloc, lock) \ 476 { \ 477 int _l1ix = ((rid) >> SFMMU_L1_HMERLINKS_SHIFT) & \ 478 SFMMU_L1_HMERLINKS_MASK; \ 479 int _l2ix = ((rid) & SFMMU_L2_HMERLINKS_MASK); \ 480 hatlock_t *_hatlockp; \ 481 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ 482 if (lnkp != NULL) { \ 483 lnkp = &lnkp[_l2ix]; \ 484 } else if (alloc && lock) { \ 485 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ 486 _hatlockp = sfmmu_hat_enter(sfmmup); \ 487 if ((sfmmup)->sfmmu_hmeregion_links[_l1ix] != NULL) { \ 488 sfmmu_hat_exit(_hatlockp); \ 489 kmem_free(lnkp, SFMMU_L2_HMERLINKS_SIZE); \ 490 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ 491 ASSERT(lnkp != NULL); \ 492 } else { \ 493 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ 494 sfmmu_hat_exit(_hatlockp); \ 495 } \ 496 lnkp = &lnkp[_l2ix]; \ 497 } else if (alloc) { \ 498 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ 499 ASSERT((sfmmup)->sfmmu_hmeregion_links[_l1ix] == NULL); \ 500 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ 501 lnkp = &lnkp[_l2ix]; \ 502 } \ 503 } 504 505 /* 506 * Per cpu pending freelist of hmeblks. 507 */ 508 typedef struct cpu_hme_pend { 509 struct hme_blk *chp_listp; 510 kmutex_t chp_mutex; 511 time_t chp_timestamp; 512 uint_t chp_count; 513 uint8_t chp_pad[36]; /* pad to 64 bytes */ 514 } cpu_hme_pend_t; 515 516 /* 517 * The default value of the threshold for the per cpu pending queues of hmeblks. 518 * The queues are flushed if either the number of hmeblks on the queue is above 519 * the threshold, or one second has elapsed since the last flush. 520 */ 521 #define CPU_HME_PEND_THRESH 1000 522 523 /* 524 * Per-MMU context domain kstats. 525 * 526 * TSB Miss Exceptions 527 * Number of times a TSB miss exception is handled in an MMU. See 528 * sfmmu_tsbmiss_exception() for more details. 529 * TSB Raise Exception 530 * Number of times the CPUs within an MMU are cross-called 531 * to invalidate either a specific process context (when the process 532 * switches MMU contexts) or the context of any process that is 533 * running on those CPUs (as part of the MMU context wrap-around). 534 * Wrap Around 535 * The number of times a wrap-around of MMU context happens. 536 */ 537 typedef enum mmu_ctx_stat_types { 538 MMU_CTX_TSB_EXCEPTIONS, /* TSB miss exceptions handled */ 539 MMU_CTX_TSB_RAISE_EXCEPTION, /* ctx invalidation cross calls */ 540 MMU_CTX_WRAP_AROUND, /* wraparounds */ 541 MMU_CTX_NUM_STATS 542 } mmu_ctx_stat_t; 543 544 /* 545 * Per-MMU context domain structure. This is instantiated the first time a CPU 546 * belonging to the MMU context domain is configured into the system, at boot 547 * time or at DR time. 548 * 549 * mmu_gnum 550 * The current generation number for the context IDs on this MMU context 551 * domain. It is protected by mmu_lock. 552 * mmu_cnum 553 * The current cnum to be allocated on this MMU context domain. It 554 * is protected via CAS. 555 * mmu_nctxs 556 * The max number of context IDs supported on every CPU in this 557 * MMU context domain. It is 8K except for Rock where it is 64K. 558 * This is needed here in case the system supports mixed type of 559 * processors/MMUs. It also helps to make ctx switch code access 560 * fewer cache lines i.e. no need to retrieve it from some global nctxs. 561 * mmu_lock 562 * The mutex spin lock used to serialize context ID wrap around 563 * mmu_idx 564 * The index for this MMU context domain structure in the global array 565 * mmu_ctxdoms. 566 * mmu_ncpus 567 * The actual number of CPUs that have been configured in this 568 * MMU context domain. This also acts as a reference count for the 569 * structure. When the last CPU in an MMU context domain is unconfigured, 570 * the structure is freed. It is protected by mmu_lock. 571 * mmu_cpuset 572 * The CPU set of configured CPUs for this MMU context domain. Used 573 * to cross-call all the CPUs in the MMU context domain to invalidate 574 * context IDs during a wraparound operation. It is protected by mmu_lock. 575 */ 576 577 typedef struct mmu_ctx { 578 uint64_t mmu_gnum; 579 uint_t mmu_cnum; 580 uint_t mmu_nctxs; 581 kmutex_t mmu_lock; 582 uint_t mmu_idx; 583 uint_t mmu_ncpus; 584 cpuset_t mmu_cpuset; 585 kstat_t *mmu_kstat; 586 kstat_named_t mmu_kstat_data[MMU_CTX_NUM_STATS]; 587 } mmu_ctx_t; 588 589 #define mmu_tsb_exceptions \ 590 mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64 591 #define mmu_tsb_raise_exception \ 592 mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64 593 #define mmu_wrap_around \ 594 mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64 595 596 extern uint_t max_mmu_ctxdoms; 597 extern mmu_ctx_t **mmu_ctxs_tbl; 598 599 extern void sfmmu_cpu_init(cpu_t *); 600 extern void sfmmu_cpu_cleanup(cpu_t *); 601 602 /* 603 * The following structure is used to get MMU context domain information for 604 * a CPU from the platform. 605 * 606 * mmu_idx 607 * The MMU context domain index within the global array mmu_ctxs 608 * mmu_nctxs 609 * The number of context IDs supported in the MMU context domain 610 * (64K for Rock) 611 */ 612 typedef struct mmu_ctx_info { 613 uint_t mmu_idx; 614 uint_t mmu_nctxs; 615 } mmu_ctx_info_t; 616 617 #pragma weak plat_cpuid_to_mmu_ctx_info 618 619 extern void plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *); 620 621 /* 622 * Each address space has an array of sfmmu_ctx_t structures, one structure 623 * per MMU context domain. 624 * 625 * cnum 626 * The context ID allocated for an address space on an MMU context domain 627 * gnum 628 * The generation number for the context ID in the MMU context domain. 629 * 630 * This structure needs to be a power-of-two in size. 631 */ 632 typedef struct sfmmu_ctx { 633 uint64_t gnum:48; 634 uint64_t cnum:16; 635 } sfmmu_ctx_t; 636 637 638 /* 639 * The platform dependent hat structure. 640 * tte counts should be protected by cas. 641 * cpuset is protected by cas. 642 * 643 * ttecnt accounting for mappings which do not use shared hme is carried out 644 * during pagefault handling. In the shared hme case, only the first process 645 * to access a mapping generates a pagefault, subsequent processes simply 646 * find the shared hme entry during trap handling and therefore there is no 647 * corresponding event to initiate ttecnt accounting. Currently, as shared 648 * hmes are only used for text segments, when joining a region we assume the 649 * worst case and add the the number of ttes required to map the entire region 650 * to the ttecnt corresponding to the region pagesize. However, if the region 651 * has a 4M pagesize, and memory is low, the allocation of 4M pages may fail 652 * then 8K pages will be allocated instead and the first TSB which stores 8K 653 * mappings will potentially be undersized. To compensate for the potential 654 * underaccounting in this case we always add 1/4 of the region size to the 8K 655 * ttecnt. 656 * 657 * Note that sfmmu_xhat_provider MUST be the first element. 658 */ 659 660 struct hat { 661 void *sfmmu_xhat_provider; /* NULL for CPU hat */ 662 cpuset_t sfmmu_cpusran; /* cpu bit mask for efficient xcalls */ 663 struct as *sfmmu_as; /* as this hat provides mapping for */ 664 /* per pgsz private ttecnt + shme rgns ttecnt for rgns not in SCD */ 665 ulong_t sfmmu_ttecnt[MMU_PAGE_SIZES]; 666 /* shme rgns ttecnt for rgns in SCD */ 667 ulong_t sfmmu_scdrttecnt[MMU_PAGE_SIZES]; 668 /* est. ism ttes that are NOT in a SCD */ 669 ulong_t sfmmu_ismttecnt[MMU_PAGE_SIZES]; 670 /* ttecnt for isms that are in a SCD */ 671 ulong_t sfmmu_scdismttecnt[MMU_PAGE_SIZES]; 672 /* inflate tsb0 to allow for large page alloc failure in region */ 673 ulong_t sfmmu_tsb0_4minflcnt; 674 union _h_un { 675 ism_blk_t *sfmmu_iblkp; /* maps to ismhat(s) */ 676 ism_ment_t *sfmmu_imentp; /* ism hat's mapping list */ 677 } h_un; 678 uint_t sfmmu_free:1; /* hat to be freed - set on as_free */ 679 uint_t sfmmu_ismhat:1; /* hat is dummy ism hatid */ 680 uint_t sfmmu_scdhat:1; /* hat is dummy scd hatid */ 681 uchar_t sfmmu_rmstat; /* refmod stats refcnt */ 682 ushort_t sfmmu_clrstart; /* start color bin for page coloring */ 683 ushort_t sfmmu_clrbin; /* per as phys page coloring bin */ 684 ushort_t sfmmu_flags; /* flags */ 685 uchar_t sfmmu_tteflags; /* pgsz flags */ 686 uchar_t sfmmu_rtteflags; /* pgsz flags for SRD hmes */ 687 struct tsb_info *sfmmu_tsb; /* list of per as tsbs */ 688 uint64_t sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */ 689 lock_t sfmmu_ctx_lock; /* sync ctx alloc and invalidation */ 690 kcondvar_t sfmmu_tsb_cv; /* signals TSB swapin or relocation */ 691 uchar_t sfmmu_cext; /* context page size encoding */ 692 uint8_t sfmmu_pgsz[MMU_PAGE_SIZES]; /* ranking for MMU */ 693 sf_srd_t *sfmmu_srdp; 694 sf_scd_t *sfmmu_scdp; /* scd this address space belongs to */ 695 sf_region_map_t sfmmu_region_map; 696 sf_rgn_link_t *sfmmu_hmeregion_links[SFMMU_L1_HMERLINKS]; 697 sf_rgn_link_t sfmmu_scd_link; /* link to scd or pending queue */ 698 #ifdef sun4v 699 struct hv_tsb_block sfmmu_hvblock; 700 #endif 701 /* 702 * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of 703 * elements. max_mmu_ctxdoms is determined at run-time. 704 * sfmmu_ctxs[1] is just the fist element of an array, it always 705 * has to be the last field to ensure that the memory allocated 706 * for sfmmu_ctxs is consecutive with the memory of the rest of 707 * the hat data structure. 708 */ 709 sfmmu_ctx_t sfmmu_ctxs[1]; 710 711 }; 712 713 #define sfmmu_iblk h_un.sfmmu_iblkp 714 #define sfmmu_iment h_un.sfmmu_imentp 715 716 #define sfmmu_hmeregion_map sfmmu_region_map.h_rmap_s.hmeregion_map 717 #define sfmmu_ismregion_map sfmmu_region_map.h_rmap_s.ismregion_map 718 719 #define SF_RGNMAP_ISNULL(sfmmup) \ 720 (sfrgnmap_isnull(&(sfmmup)->sfmmu_region_map)) 721 #define SF_HMERGNMAP_ISNULL(sfmmup) \ 722 (sfhmergnmap_isnull(&(sfmmup)->sfmmu_hmeregion_map)) 723 724 struct sf_scd { 725 sfmmu_t *scd_sfmmup; /* shared context hat */ 726 /* per pgsz ttecnt for shme rgns in SCD */ 727 ulong_t scd_rttecnt[MMU_PAGE_SIZES]; 728 uint_t scd_refcnt; /* address spaces attached to scd */ 729 sf_region_map_t scd_region_map; /* bit mask of attached segments */ 730 sf_scd_t *scd_next; /* link pointers for srd_scd list */ 731 sf_scd_t *scd_prev; 732 sfmmu_t *scd_sf_list; /* list of doubly linked hat structs */ 733 kmutex_t scd_mutex; 734 /* 735 * Link used to add an scd to the sfmmu_iment list. 736 */ 737 ism_ment_t scd_ism_links[SFMMU_MAX_ISM_REGIONS]; 738 }; 739 740 #define scd_hmeregion_map scd_region_map.h_rmap_s.hmeregion_map 741 #define scd_ismregion_map scd_region_map.h_rmap_s.ismregion_map 742 743 extern int disable_shctx; 744 extern int shctx_on; 745 746 /* 747 * bit mask for managing vac conflicts on large pages. 748 * bit 1 is for uncache flag. 749 * bits 2 through min(num of cache colors + 1,31) are 750 * for cache colors that have already been flushed. 751 */ 752 #ifdef VAC 753 #define CACHE_NUM_COLOR (shm_alignment >> MMU_PAGESHIFT) 754 #else 755 #define CACHE_NUM_COLOR 1 756 #endif 757 758 #define CACHE_VCOLOR_MASK(vcolor) (2 << (vcolor & (CACHE_NUM_COLOR - 1))) 759 760 #define CacheColor_IsFlushed(flag, vcolor) \ 761 ((flag) & CACHE_VCOLOR_MASK(vcolor)) 762 763 #define CacheColor_SetFlushed(flag, vcolor) \ 764 ((flag) |= CACHE_VCOLOR_MASK(vcolor)) 765 /* 766 * Flags passed to sfmmu_page_cache to flush page from vac or not. 767 */ 768 #define CACHE_FLUSH 0 769 #define CACHE_NO_FLUSH 1 770 771 /* 772 * Flags passed to sfmmu_tlbcache_demap 773 */ 774 #define FLUSH_NECESSARY_CPUS 0 775 #define FLUSH_ALL_CPUS 1 776 777 #ifdef DEBUG 778 /* 779 * For debugging purpose only. Maybe removed later. 780 */ 781 struct ctx_trace { 782 sfmmu_t *sc_sfmmu_stolen; 783 sfmmu_t *sc_sfmmu_stealing; 784 clock_t sc_time; 785 ushort_t sc_type; 786 ushort_t sc_cnum; 787 }; 788 #define CTX_TRC_STEAL 0x1 789 #define CTX_TRC_FREE 0x0 790 #define TRSIZE 0x400 791 #define NEXT_CTXTR(ptr) (((ptr) >= ctx_trace_last) ? \ 792 ctx_trace_first : ((ptr) + 1)) 793 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \ 794 mutex_enter(mutex); \ 795 (ptr)->sc_sfmmu_stolen = (stolen_sfmmu); \ 796 (ptr)->sc_sfmmu_stealing = (stealing_sfmmu); \ 797 (ptr)->sc_cnum = (cnum); \ 798 (ptr)->sc_type = (type); \ 799 (ptr)->sc_time = lbolt; \ 800 (ptr) = NEXT_CTXTR(ptr); \ 801 num_ctx_stolen += (type); \ 802 mutex_exit(mutex); 803 #else 804 805 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) 806 807 #endif /* DEBUG */ 808 809 #endif /* !_ASM */ 810 811 /* 812 * Macros for sfmmup->sfmmu_flags access. The macros that change the flags 813 * ASSERT() that we're holding the HAT lock before changing the flags; 814 * however callers that read the flags may do so without acquiring the lock 815 * in a fast path, and then recheck the flag after acquiring the lock in 816 * a slow path. 817 */ 818 #define SFMMU_FLAGS_ISSET(sfmmup, flags) \ 819 (((sfmmup)->sfmmu_flags & (flags)) == (flags)) 820 821 #define SFMMU_FLAGS_CLEAR(sfmmup, flags) \ 822 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ 823 (sfmmup)->sfmmu_flags &= ~(flags)) 824 825 #define SFMMU_FLAGS_SET(sfmmup, flags) \ 826 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ 827 (sfmmup)->sfmmu_flags |= (flags)) 828 829 #define SFMMU_TTEFLAGS_ISSET(sfmmup, flags) \ 830 ((((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) & (flags)) == \ 831 (flags)) 832 833 834 /* 835 * sfmmu tte HAT flags, must fit in 8 bits 836 */ 837 #define HAT_CHKCTX1_FLAG 0x1 838 #define HAT_64K_FLAG (0x1 << TTE64K) 839 #define HAT_512K_FLAG (0x1 << TTE512K) 840 #define HAT_4M_FLAG (0x1 << TTE4M) 841 #define HAT_32M_FLAG (0x1 << TTE32M) 842 #define HAT_256M_FLAG (0x1 << TTE256M) 843 844 /* 845 * sfmmu HAT flags, 16 bits at the moment. 846 */ 847 #define HAT_4MTEXT_FLAG 0x01 848 #define HAT_32M_ISM 0x02 849 #define HAT_256M_ISM 0x04 850 #define HAT_SWAPPED 0x08 /* swapped out */ 851 #define HAT_SWAPIN 0x10 /* swapping in */ 852 #define HAT_BUSY 0x20 /* replacing TSB(s) */ 853 #define HAT_ISMBUSY 0x40 /* adding/removing/traversing ISM maps */ 854 855 #define HAT_CTX1_FLAG 0x100 /* ISM imap hatflag for ctx1 */ 856 #define HAT_JOIN_SCD 0x200 /* region is joining scd */ 857 #define HAT_ALLCTX_INVALID 0x400 /* all per-MMU ctxs are invalidated */ 858 859 #define SFMMU_LGPGS_INUSE(sfmmup) \ 860 (((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) || \ 861 ((sfmmup)->sfmmu_iblk != NULL)) 862 863 /* 864 * Starting with context 0, the first NUM_LOCKED_CTXS contexts 865 * are locked so that sfmmu_getctx can't steal any of these 866 * contexts. At the time this software was being developed, the 867 * only context that needs to be locked is context 0 (the kernel 868 * context), and context 1 (reserved for stolen context). So this constant 869 * was originally defined to be 2. 870 * 871 * For sun4v only, USER_CONTEXT_TYPE represents any user context. Many 872 * routines only care whether the context is kernel, invalid or user. 873 */ 874 875 #define NUM_LOCKED_CTXS 2 876 #define INVALID_CONTEXT 1 877 878 #ifdef sun4v 879 #define USER_CONTEXT_TYPE NUM_LOCKED_CTXS 880 #endif 881 #if defined(sun4v) || defined(UTSB_PHYS) 882 /* 883 * Get the location in the 4MB base TSB of the tsbe for this fault. 884 * Assumes that the second TSB only contains 4M mappings. 885 * 886 * In: 887 * tagacc = tag access register (not clobbered) 888 * tsbe = 2nd TSB base register 889 * tmp1, tmp2 = scratch registers 890 * Out: 891 * tsbe = pointer to the tsbe in the 2nd TSB 892 */ 893 894 #define GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 895 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ 896 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ 897 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ 898 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ 899 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ 900 srlx tagacc, MMU_PAGESHIFT4M, tmp2; \ 901 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ 902 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ 903 add tsbe, tmp1, tsbe /* add entry offset to TSB base */ 904 905 #define GET_2ND_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 906 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) 907 908 /* 909 * Get the location in the 3rd TSB of the tsbe for this fault. 910 * The 3rd TSB corresponds to the shared context, and is used 911 * for 8K - 512k pages. 912 * 913 * In: 914 * tagacc = tag access register (not clobbered) 915 * tsbe, tmp1, tmp2 = scratch registers 916 * Out: 917 * tsbe = pointer to the tsbe in the 3rd TSB 918 */ 919 920 #define GET_3RD_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 921 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ 922 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ 923 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ 924 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ 925 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ 926 srlx tagacc, MMU_PAGESHIFT, tmp2; \ 927 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ 928 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ 929 add tsbe, tmp1, tsbe /* add entry offset to TSB base */ 930 931 #define GET_4TH_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 932 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) 933 /* 934 * Copy the sfmmu_region_map or scd_region_map to the tsbmiss 935 * shmermap or scd_shmermap, from sfmmu_load_mmustate. 936 */ 937 #define SET_REGION_MAP(rgn_map, tsbmiss_map, cnt, tmp, label) \ 938 /* BEGIN CSTYLED */ \ 939 label: ;\ 940 ldx [rgn_map], tmp ;\ 941 dec cnt ;\ 942 add rgn_map, CLONGSIZE, rgn_map ;\ 943 stx tmp, [tsbmiss_map] ;\ 944 brnz,pt cnt, label ;\ 945 add tsbmiss_map, CLONGSIZE, tsbmiss_map \ 946 /* END CSTYLED */ 947 948 /* 949 * If there is no scd, then zero the tsbmiss scd_shmermap, 950 * from sfmmu_load_mmustate. 951 */ 952 #define ZERO_REGION_MAP(tsbmiss_map, cnt, label) \ 953 /* BEGIN CSTYLED */ \ 954 label: ;\ 955 dec cnt ;\ 956 stx %g0, [tsbmiss_map] ;\ 957 brnz,pt cnt, label ;\ 958 add tsbmiss_map, CLONGSIZE, tsbmiss_map 959 /* END CSTYLED */ 960 961 /* 962 * Set hmemisc to 1 if the shared hme is also part of an scd. 963 * In: 964 * tsbarea = tsbmiss area (not clobbered) 965 * hmeblkpa = hmeblkpa + hmentoff + SFHME_TTE (not clobbered) 966 * hmentoff = hmentoff + SFHME_TTE = tte offset(clobbered) 967 * Out: 968 * use_shctx = 1 if shme is in scd and 0 otherwise 969 */ 970 #define GET_SCDSHMERMAP(tsbarea, hmeblkpa, hmentoff, use_shctx) \ 971 /* BEGIN CSTYLED */ \ 972 sub hmeblkpa, hmentoff, hmentoff /* hmentofff = hmeblkpa */ ;\ 973 add hmentoff, HMEBLK_TAG, hmentoff ;\ 974 ldxa [hmentoff]ASI_MEM, hmentoff /* read 1st part of tag */ ;\ 975 and hmentoff, HTAG_RID_MASK, hmentoff /* mask off rid */ ;\ 976 and hmentoff, BT_ULMASK, use_shctx /* mask bit index */ ;\ 977 srlx hmentoff, BT_ULSHIFT, hmentoff /* extract word */ ;\ 978 sllx hmentoff, CLONGSHIFT, hmentoff /* index */ ;\ 979 add tsbarea, hmentoff, hmentoff /* add to tsbarea */ ;\ 980 ldx [hmentoff + TSBMISS_SCDSHMERMAP], hmentoff /* scdrgn */ ;\ 981 srlx hmentoff, use_shctx, use_shctx ;\ 982 and use_shctx, 0x1, use_shctx \ 983 /* END CSTYLED */ 984 985 /* 986 * Synthesize a TSB base register contents for a process. 987 * 988 * In: 989 * tsbinfo = TSB info pointer (ro) 990 * tsbreg, tmp1 = scratch registers 991 * Out: 992 * tsbreg = value to program into TSB base register 993 */ 994 995 #define MAKE_UTSBREG(tsbinfo, tsbreg, tmp1) \ 996 ldx [tsbinfo + TSBINFO_PADDR], tsbreg; \ 997 lduh [tsbinfo + TSBINFO_SZCODE], tmp1; \ 998 and tmp1, TSB_SOFTSZ_MASK, tmp1; \ 999 or tsbreg, tmp1, tsbreg; 1000 1001 1002 /* 1003 * Load TSB base register to TSBMISS area for privte contexts. 1004 * This register contains utsb_pabase in bits 63:13, and TSB size 1005 * code in bits 2:0. 1006 * 1007 * For private context 1008 * In: 1009 * tsbreg = value to load (ro) 1010 * regnum = constant or register 1011 * tmp1 = scratch register 1012 * Out: 1013 * Specified scratchpad register updated 1014 * 1015 */ 1016 #define SET_UTSBREG(regnum, tsbreg, tmp1) \ 1017 mov regnum, tmp1; \ 1018 stxa tsbreg, [tmp1]ASI_SCRATCHPAD /* save tsbreg */ 1019 /* 1020 * Get TSB base register from the scratchpad for private contexts 1021 * 1022 * In: 1023 * regnum = constant or register 1024 * tsbreg = scratch 1025 * Out: 1026 * tsbreg = tsbreg from the specified scratchpad register 1027 */ 1028 #define GET_UTSBREG(regnum, tsbreg) \ 1029 mov regnum, tsbreg; \ 1030 ldxa [tsbreg]ASI_SCRATCHPAD, tsbreg 1031 1032 /* 1033 * Load TSB base register to TSBMISS area for shared contexts. 1034 * This register contains utsb_pabase in bits 63:13, and TSB size 1035 * code in bits 2:0. 1036 * 1037 * In: 1038 * tsbmiss = pointer to tsbmiss area 1039 * tsbmissoffset = offset to right tsb pointer 1040 * tsbreg = value to load (ro) 1041 * Out: 1042 * Specified tsbmiss area updated 1043 * 1044 */ 1045 #define SET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ 1046 stx tsbreg, [tsbmiss + tsbmissoffset] /* save tsbreg */ 1047 1048 /* 1049 * Get TSB base register from the scratchpad for 1050 * shared contexts 1051 * 1052 * In: 1053 * tsbmiss = pointer to tsbmiss area 1054 * tsbmissoffset = offset to right tsb pointer 1055 * tsbreg = scratch 1056 * Out: 1057 * tsbreg = tsbreg from the specified scratchpad register 1058 */ 1059 #define GET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ 1060 ldx [tsbmiss + tsbmissoffset], tsbreg 1061 1062 #endif /* defined(sun4v) || defined(UTSB_PHYS) */ 1063 1064 #ifndef _ASM 1065 1066 /* 1067 * Kernel page relocation stuff. 1068 */ 1069 struct sfmmu_callback { 1070 int key; 1071 int (*prehandler)(caddr_t, uint_t, uint_t, void *); 1072 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t); 1073 int (*errhandler)(caddr_t, uint_t, uint_t, void *); 1074 int capture_cpus; 1075 }; 1076 1077 extern int sfmmu_max_cb_id; 1078 extern struct sfmmu_callback *sfmmu_cb_table; 1079 1080 extern int hat_kpr_enabled; 1081 1082 struct pa_hment; 1083 1084 /* 1085 * RFE: With multihat gone we gain back an int. We could use this to 1086 * keep ref bits on a per cpu basis to eliminate xcalls. 1087 */ 1088 struct sf_hment { 1089 tte_t hme_tte; /* tte for this hment */ 1090 1091 union { 1092 struct page *page; /* what page this maps */ 1093 struct pa_hment *data; /* pa_hment */ 1094 } sf_hment_un; 1095 1096 struct sf_hment *hme_next; /* next hment */ 1097 struct sf_hment *hme_prev; /* prev hment */ 1098 }; 1099 1100 struct pa_hment { 1101 caddr_t addr; /* va */ 1102 uint_t len; /* bytes */ 1103 ushort_t flags; /* internal flags */ 1104 ushort_t refcnt; /* reference count */ 1105 id_t cb_id; /* callback id, table index */ 1106 void *pvt; /* handler's private data */ 1107 struct sf_hment sfment; /* corresponding dummy sf_hment */ 1108 }; 1109 1110 #define hme_page sf_hment_un.page 1111 #define hme_data sf_hment_un.data 1112 #define hme_size(sfhmep) ((int)(TTE_CSZ(&(sfhmep)->hme_tte))) 1113 #define PAHME_SZ (sizeof (struct pa_hment)) 1114 #define SFHME_SZ (sizeof (struct sf_hment)) 1115 1116 #define IS_PAHME(hme) ((hme)->hme_tte.ll == 0) 1117 1118 /* 1119 * hmeblk_tag structure 1120 * structure used to obtain a match on a hme_blk. Currently consists of 1121 * the address of the sfmmu struct (or hatid), the base page address of the 1122 * hme_blk, and the rehash count. The rehash count is actually only 2 bits 1123 * and has the following meaning: 1124 * 1 = 8k or 64k hash sequence. 1125 * 2 = 512k hash sequence. 1126 * 3 = 4M hash sequence. 1127 * We require this count because we don't want to get a false hit on a 512K or 1128 * 4M rehash with a base address corresponding to a 8k or 64k hmeblk. 1129 * Note: The ordering and size of the hmeblk_tag members are implictly known 1130 * by the tsb miss handlers written in assembly. Do not change this structure 1131 * without checking those routines. See HTAG_SFMMUPSZ define. 1132 */ 1133 1134 /* 1135 * In private hmeblks hblk_rid field must be SFMMU_INVALID_RID. 1136 */ 1137 typedef union { 1138 struct { 1139 uint64_t hblk_basepg: 51, /* hme_blk base pg # */ 1140 hblk_rehash: 3, /* rehash number */ 1141 hblk_rid: 10; /* hme_blk region id */ 1142 void *hblk_id; 1143 } hblk_tag_un; 1144 uint64_t htag_tag[2]; 1145 } hmeblk_tag; 1146 1147 #define htag_id hblk_tag_un.hblk_id 1148 #define htag_bspage hblk_tag_un.hblk_basepg 1149 #define htag_rehash hblk_tag_un.hblk_rehash 1150 #define htag_rid hblk_tag_un.hblk_rid 1151 1152 #endif /* !_ASM */ 1153 1154 #define HTAG_REHASH_SHIFT 10 1155 #define HTAG_MAX_RID (((0x1 << HTAG_REHASH_SHIFT) - 1)) 1156 #define HTAG_RID_MASK HTAG_MAX_RID 1157 1158 /* used for tagging all per sfmmu (i.e. non SRD) private hmeblks */ 1159 #define SFMMU_INVALID_SHMERID HTAG_MAX_RID 1160 1161 #if SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS 1162 #error SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS 1163 #endif 1164 1165 #define SFMMU_IS_SHMERID_VALID(rid) ((rid) != SFMMU_INVALID_SHMERID) 1166 1167 /* ISM regions */ 1168 #define SFMMU_INVALID_ISMRID 0xff 1169 1170 #if SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS 1171 #error SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS 1172 #endif 1173 1174 #define SFMMU_IS_ISMRID_VALID(rid) ((rid) != SFMMU_INVALID_ISMRID) 1175 1176 1177 #define HTAGS_EQ(tag1, tag2) (((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \ 1178 (tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0) 1179 1180 /* 1181 * this macro must only be used for comparing tags in shared hmeblks. 1182 */ 1183 #define HTAGS_EQ_SHME(hmetag, tag, hrmap) \ 1184 (((hmetag).htag_rid != SFMMU_INVALID_SHMERID) && \ 1185 (((((hmetag).htag_tag[0] ^ (tag).htag_tag[0]) & \ 1186 ~HTAG_RID_MASK) | \ 1187 ((hmetag).htag_tag[1] ^ (tag).htag_tag[1])) == 0) && \ 1188 SF_RGNMAP_TEST(hrmap, hmetag.htag_rid)) 1189 1190 #define HME_REHASH(sfmmup) \ 1191 ((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 || \ 1192 (sfmmup)->sfmmu_ttecnt[TTE4M] != 0 || \ 1193 (sfmmup)->sfmmu_ttecnt[TTE32M] != 0 || \ 1194 (sfmmup)->sfmmu_ttecnt[TTE256M] != 0) 1195 1196 #define NHMENTS 8 /* # of hments in an 8k hme_blk */ 1197 /* needs to be multiple of 2 */ 1198 1199 #ifndef _ASM 1200 1201 #ifdef HBLK_TRACE 1202 1203 #define HBLK_LOCK 1 1204 #define HBLK_UNLOCK 0 1205 #define HBLK_STACK_DEPTH 6 1206 #define HBLK_AUDIT_CACHE_SIZE 16 1207 #define HBLK_LOCK_PATTERN 0xaaaaaaaa 1208 #define HBLK_UNLOCK_PATTERN 0xbbbbbbbb 1209 1210 struct hblk_lockcnt_audit { 1211 int flag; /* lock or unlock */ 1212 kthread_id_t thread; 1213 int depth; 1214 pc_t stack[HBLK_STACK_DEPTH]; 1215 }; 1216 1217 #endif /* HBLK_TRACE */ 1218 1219 1220 /* 1221 * Hment block structure. 1222 * The hme_blk is the node data structure which the hash structure 1223 * mantains. An hme_blk can have 2 different sizes depending on the 1224 * number of hments it implicitly contains. When dealing with 64K, 512K, 1225 * or 4M hments there is one hment per hme_blk. When dealing with 1226 * 8k hments we allocate an hme_blk plus an additional 7 hments to 1227 * give us a total of 8 (NHMENTS) hments that can be referenced through a 1228 * hme_blk. 1229 * 1230 * The hmeblk structure contains 2 tte reference counters used to determine if 1231 * it is ok to free up the hmeblk. Both counters have to be zero in order 1232 * to be able to free up hmeblk. They are protected by cas. 1233 * hblk_hmecnt is the number of hments present on pp mapping lists. 1234 * hblk_vcnt reflects number of valid ttes in hmeblk. 1235 * 1236 * The hmeblk now also has per tte lock cnts. This is required because 1237 * the counts can be high and there are not enough bits in the tte. When 1238 * physio is fixed to not lock the translations we should be able to move 1239 * the lock cnt back to the tte. See bug id 1198554. 1240 * 1241 * Note that xhat_hme_blk's layout follows this structure: hme_blk_misc 1242 * and sf_hment are at the same offsets in both structures. Whenever 1243 * hme_blk is changed, xhat_hme_blk may need to be updated as well. 1244 */ 1245 1246 struct hme_blk_misc { 1247 uint_t notused:25; 1248 uint_t shared_bit:1; /* set for SRD shared hmeblk */ 1249 uint_t xhat_bit:1; /* set for an xhat hme_blk */ 1250 uint_t shadow_bit:1; /* set for a shadow hme_blk */ 1251 uint_t nucleus_bit:1; /* set for a nucleus hme_blk */ 1252 uint_t ttesize:3; /* contains ttesz of hmeblk */ 1253 }; 1254 1255 struct hme_blk { 1256 volatile uint64_t hblk_nextpa; /* physical address for hash list */ 1257 1258 hmeblk_tag hblk_tag; /* tag used to obtain an hmeblk match */ 1259 1260 struct hme_blk *hblk_next; /* on free list or on hash list */ 1261 /* protected by hash lock */ 1262 1263 struct hme_blk *hblk_shadow; /* pts to shadow hblk */ 1264 /* protected by hash lock */ 1265 uint_t hblk_span; /* span of memory hmeblk maps */ 1266 1267 struct hme_blk_misc hblk_misc; 1268 1269 union { 1270 struct { 1271 ushort_t hblk_hmecount; /* hment on mlists counter */ 1272 ushort_t hblk_validcnt; /* valid tte reference count */ 1273 } hblk_counts; 1274 uint_t hblk_shadow_mask; 1275 } hblk_un; 1276 1277 uint_t hblk_lckcnt; 1278 1279 #ifdef HBLK_TRACE 1280 kmutex_t hblk_audit_lock; /* lock to protect index */ 1281 uint_t hblk_audit_index; /* index into audit_cache */ 1282 struct hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE]; 1283 #endif /* HBLK_AUDIT */ 1284 1285 struct sf_hment hblk_hme[1]; /* hment array */ 1286 }; 1287 1288 #define hblk_shared hblk_misc.shared_bit 1289 #define hblk_xhat_bit hblk_misc.xhat_bit 1290 #define hblk_shw_bit hblk_misc.shadow_bit 1291 #define hblk_nuc_bit hblk_misc.nucleus_bit 1292 #define hblk_ttesz hblk_misc.ttesize 1293 #define hblk_hmecnt hblk_un.hblk_counts.hblk_hmecount 1294 #define hblk_vcnt hblk_un.hblk_counts.hblk_validcnt 1295 #define hblk_shw_mask hblk_un.hblk_shadow_mask 1296 1297 #define MAX_HBLK_LCKCNT 0xFFFFFFFF 1298 #define HMEBLK_ALIGN 0x8 /* hmeblk has to be double aligned */ 1299 1300 #ifdef HBLK_TRACE 1301 1302 #define HBLK_STACK_TRACE(hmeblkp, lock) \ 1303 { \ 1304 int flag = lock; /* to pacify lint */ \ 1305 int audit_index; \ 1306 \ 1307 mutex_enter(&hmeblkp->hblk_audit_lock); \ 1308 audit_index = hmeblkp->hblk_audit_index; \ 1309 hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) & \ 1310 (HBLK_AUDIT_CACHE_SIZE - 1)); \ 1311 mutex_exit(&hmeblkp->hblk_audit_lock); \ 1312 \ 1313 if (flag) \ 1314 hmeblkp->hblk_audit_cache[audit_index].flag = \ 1315 HBLK_LOCK_PATTERN; \ 1316 else \ 1317 hmeblkp->hblk_audit_cache[audit_index].flag = \ 1318 HBLK_UNLOCK_PATTERN; \ 1319 \ 1320 hmeblkp->hblk_audit_cache[audit_index].thread = curthread; \ 1321 hmeblkp->hblk_audit_cache[audit_index].depth = \ 1322 getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack, \ 1323 HBLK_STACK_DEPTH); \ 1324 } 1325 1326 #else 1327 1328 #define HBLK_STACK_TRACE(hmeblkp, lock) 1329 1330 #endif /* HBLK_TRACE */ 1331 1332 #define HMEHASH_FACTOR 16 /* used to calc # of buckets in hme hash */ 1333 1334 /* 1335 * A maximum number of user hmeblks is defined in order to place an upper 1336 * limit on how much nucleus memory is required and to avoid overflowing the 1337 * tsbmiss uhashsz and khashsz data areas. The number below corresponds to 1338 * the number of buckets required, for an average hash chain length of 4 on 1339 * a 16TB machine. 1340 */ 1341 1342 #define MAX_UHME_BUCKETS (0x1 << 30) 1343 #define MAX_KHME_BUCKETS (0x1 << 30) 1344 1345 /* 1346 * The minimum number of kernel hash buckets. 1347 */ 1348 #define MIN_KHME_BUCKETS 0x800 1349 1350 /* 1351 * The number of hash buckets must be a power of 2. If the initial calculated 1352 * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater 1353 * power of 2, otherwise we round down to avoid huge over allocations. 1354 */ 1355 #define USER_BUCKETS_THRESHOLD (1<<22) 1356 1357 #define MAX_NUCUHME_BUCKETS 0x4000 1358 #define MAX_NUCKHME_BUCKETS 0x2000 1359 1360 /* 1361 * There are 2 locks in the hmehash bucket. The hmehash_mutex is 1362 * a regular mutex used to make sure operations on a hash link are only 1363 * done by one thread. Any operation which comes into the hat with 1364 * a <vaddr, as> will grab the hmehash_mutex. Normally one would expect 1365 * the tsb miss handlers to grab the hash lock to make sure the hash list 1366 * is consistent while we traverse it. Unfortunately this can lead to 1367 * deadlocks or recursive mutex enters since it is possible for 1368 * someone holding the lock to take a tlb/tsb miss. 1369 * To solve this problem we have added the hmehash_listlock. This lock 1370 * is only grabbed by the tsb miss handlers, vatopfn, and while 1371 * adding/removing a hmeblk from the hash list. The code is written to 1372 * guarantee we won't take a tlb miss while holding this lock. 1373 */ 1374 struct hmehash_bucket { 1375 kmutex_t hmehash_mutex; 1376 volatile uint64_t hmeh_nextpa; /* physical address for hash list */ 1377 struct hme_blk *hmeblkp; 1378 uint_t hmeh_listlock; 1379 }; 1380 1381 #endif /* !_ASM */ 1382 1383 #define SFMMU_PGCNT_MASK 0x3f 1384 #define SFMMU_PGCNT_SHIFT 6 1385 #define INVALID_MMU_ID -1 1386 #define SFMMU_MMU_GNUM_RSHIFT 16 1387 #define SFMMU_MMU_CNUM_LSHIFT (64 - SFMMU_MMU_GNUM_RSHIFT) 1388 #define MAX_SFMMU_CTX_VAL ((1 << 16) - 1) /* for sanity check */ 1389 #define MAX_SFMMU_GNUM_VAL ((0x1UL << 48) - 1) 1390 1391 /* 1392 * The tsb miss handlers written in assembly know that sfmmup 1393 * is a 64 bit ptr. 1394 * 1395 * The bspage and re-hash part is 64 bits, with the sfmmup being another 64 1396 * bits. 1397 */ 1398 #define HTAG_SFMMUPSZ 0 /* Not really used for LP64 */ 1399 #define HTAG_BSPAGE_SHIFT 13 1400 1401 /* 1402 * Assembly routines need to be able to get to ttesz 1403 */ 1404 #define HBLK_SZMASK 0x7 1405 1406 #ifndef _ASM 1407 1408 /* 1409 * Returns the number of bytes that an hmeblk spans given its tte size 1410 */ 1411 #define get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span) 1412 #define get_hblk_ttesz(hmeblkp) ((hmeblkp)->hblk_ttesz) 1413 #define get_hblk_cache(hmeblkp) (((hmeblkp)->hblk_ttesz == TTE8K) ? \ 1414 sfmmu8_cache : sfmmu1_cache) 1415 #define HMEBLK_SPAN(ttesz) \ 1416 ((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz)) 1417 1418 #define set_hblk_sz(hmeblkp, ttesz) \ 1419 (hmeblkp)->hblk_ttesz = (ttesz); \ 1420 (hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz) 1421 1422 #define get_hblk_base(hmeblkp) \ 1423 ((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT) 1424 1425 #define get_hblk_endaddr(hmeblkp) \ 1426 ((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp))) 1427 1428 #define in_hblk_range(hmeblkp, vaddr) \ 1429 (((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) && \ 1430 ((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) + \ 1431 get_hblk_span(hmeblkp)))) 1432 1433 #define tte_to_vaddr(hmeblkp, tte) ((caddr_t)(get_hblk_base(hmeblkp) \ 1434 + (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum))) 1435 1436 #define tte_to_evaddr(hmeblkp, ttep) ((caddr_t)(get_hblk_base(hmeblkp) \ 1437 + (TTEBYTES(TTE_CSZ(ttep)) * ((ttep)->tte_hmenum + 1)))) 1438 1439 #define vaddr_to_vshift(hblktag, vaddr, shwsz) \ 1440 ((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\ 1441 TTE_BSZS_SHIFT((shwsz) - 1)) 1442 1443 #define HME8BLK_SZ (sizeof (struct hme_blk) + \ 1444 (NHMENTS - 1) * sizeof (struct sf_hment)) 1445 #define HME1BLK_SZ (sizeof (struct hme_blk)) 1446 #define H1MIN (2 + MAX_BIGKTSB_TTES) /* nucleus text+data, ktsb */ 1447 1448 /* 1449 * Hme_blk hash structure 1450 * Active mappings are kept in a hash structure of hme_blks. The hash 1451 * function is based on (ctx, vaddr) The size of the hash table size is a 1452 * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN. 1453 * The hash actually consists of 2 separate hashes. One hash is for the user 1454 * address space and the other hash is for the kernel address space. 1455 * The number of buckets are calculated at boot time and stored in the global 1456 * variables "uhmehash_num" and "khmehash_num". By making the hash table size 1457 * a power of 2 we can use a simply & function to derive an index instead of 1458 * a divide. 1459 * 1460 * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash 1461 * bucket. 1462 * An hme hash bucket contains a pointer to an hme_blk and the mutex that 1463 * protects the link list. 1464 * Spitfire supports 4 page sizes. 8k and 64K pages only need one hash. 1465 * 512K pages need 2 hashes and 4M pages need 3 hashes. 1466 * The 'shift' parameter controls how many bits the vaddr will be shifted in 1467 * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function 1468 * and it varies depending on the page size as follows: 1469 * 8k pages: HBLK_RANGE_SHIFT 1470 * 64k pages: MMU_PAGESHIFT64K 1471 * 512K pages: MMU_PAGESHIFT512K 1472 * 4M pages: MMU_PAGESHIFT4M 1473 * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All 1474 * changes should be reflected in both versions. This function and the TSB 1475 * miss handlers are the only places which know about the two hashes. 1476 * 1477 * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall 1478 * into the same bucket for a particular process. It is currently set to 1479 * be equivalent to 64K range or one hme_blk. 1480 * 1481 * The hme_blks in the hash are protected by a per hash bucket mutex 1482 * known as SFMMU_HASH_LOCK. 1483 * You need to acquire this lock before traversing the hash bucket link 1484 * list, while adding/removing a hme_blk to the list, and while 1485 * modifying an hme_blk. A possible optimization is to replace these 1486 * mutexes by readers/writer lock but right now it is not clear whether 1487 * this is a win or not. 1488 * 1489 * The HME_HASH_TABLE_SEARCH will search the hash table for the 1490 * hme_blk that contains the hment that corresponds to the passed 1491 * ctx and vaddr. It assumed the SFMMU_HASH_LOCK is held. 1492 */ 1493 1494 #endif /* ! _ASM */ 1495 1496 #define KHATID ksfmmup 1497 #define UHMEHASH_SZ uhmehash_num 1498 #define KHMEHASH_SZ khmehash_num 1499 #define HMENT_HASHAVELEN 4 1500 #define HBLK_RANGE_SHIFT MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */ 1501 #define HBLK_MIN_TTESZ 1 1502 #define HBLK_MIN_BYTES MMU_PAGESIZE64K 1503 #define HBLK_MIN_SHIFT MMU_PAGESHIFT64K 1504 #define MAX_HASHCNT 5 1505 #define DEFAULT_MAX_HASHCNT 3 1506 1507 #ifndef _ASM 1508 1509 #define HASHADDR_MASK(hashno) TTE_PAGEMASK(hashno) 1510 1511 #define HME_HASH_SHIFT(ttesz) \ 1512 ((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz)) 1513 1514 #define HME_HASH_ADDR(vaddr, hmeshift) \ 1515 ((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift))) 1516 1517 #define HME_HASH_BSPAGE(vaddr, hmeshift) \ 1518 (((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT)) 1519 1520 #define HME_HASH_REHASH(ttesz) \ 1521 (((ttesz) < TTE512K)? 1 : (ttesz)) 1522 1523 #define HME_HASH_FUNCTION(hatid, vaddr, shift) \ 1524 ((((void *)hatid) != ((void *)KHATID)) ? \ 1525 (&uhme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ 1526 UHMEHASH_SZ) ]): \ 1527 (&khme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ 1528 KHMEHASH_SZ) ])) 1529 1530 /* 1531 * This macro will traverse a hmeblk hash link list looking for an hme_blk 1532 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp 1533 * will be set to NULL, otherwise it will point to the correct hme_blk. 1534 * This macro also cleans empty hblks. 1535 */ 1536 #define HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, pr_hblk, listp) \ 1537 { \ 1538 struct hme_blk *nx_hblk; \ 1539 \ 1540 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ 1541 hblkp = hmebp->hmeblkp; \ 1542 pr_hblk = NULL; \ 1543 while (hblkp) { \ 1544 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ 1545 /* found hme_blk */ \ 1546 break; \ 1547 } \ 1548 nx_hblk = hblkp->hblk_next; \ 1549 if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) { \ 1550 sfmmu_hblk_hash_rm(hmebp, hblkp, pr_hblk, \ 1551 listp, 0); \ 1552 } else { \ 1553 pr_hblk = hblkp; \ 1554 } \ 1555 hblkp = nx_hblk; \ 1556 } \ 1557 } 1558 1559 #define HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp) \ 1560 { \ 1561 struct hme_blk *pr_hblk; \ 1562 \ 1563 HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, pr_hblk, listp); \ 1564 } 1565 1566 /* 1567 * This macro will traverse a hmeblk hash link list looking for an hme_blk 1568 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp 1569 * will be set to NULL, otherwise it will point to the correct hme_blk. 1570 * It doesn't remove empty hblks. 1571 */ 1572 #define HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp) \ 1573 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ 1574 for (hblkp = hmebp->hmeblkp; hblkp; \ 1575 hblkp = hblkp->hblk_next) { \ 1576 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ 1577 /* found hme_blk */ \ 1578 break; \ 1579 } \ 1580 } 1581 1582 #define SFMMU_HASH_LOCK(hmebp) \ 1583 (mutex_enter(&hmebp->hmehash_mutex)) 1584 1585 #define SFMMU_HASH_UNLOCK(hmebp) \ 1586 (mutex_exit(&hmebp->hmehash_mutex)) 1587 1588 #define SFMMU_HASH_LOCK_TRYENTER(hmebp) \ 1589 (mutex_tryenter(&hmebp->hmehash_mutex)) 1590 1591 #define SFMMU_HASH_LOCK_ISHELD(hmebp) \ 1592 (mutex_owned(&hmebp->hmehash_mutex)) 1593 1594 #define SFMMU_XCALL_STATS(sfmmup) \ 1595 { \ 1596 if (sfmmup == ksfmmup) { \ 1597 SFMMU_STAT(sf_kernel_xcalls); \ 1598 } else { \ 1599 SFMMU_STAT(sf_user_xcalls); \ 1600 } \ 1601 } 1602 1603 #define astosfmmu(as) ((as)->a_hat) 1604 #define hblktosfmmu(hmeblkp) ((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id) 1605 #define hblktosrd(hmeblkp) ((sf_srd_t *)(hmeblkp)->hblk_tag.htag_id) 1606 #define sfmmutoas(sfmmup) ((sfmmup)->sfmmu_as) 1607 1608 #define sfmmutohtagid(sfmmup, rid) \ 1609 (((rid) == SFMMU_INVALID_SHMERID) ? (void *)(sfmmup) : \ 1610 (void *)((sfmmup)->sfmmu_srdp)) 1611 1612 /* 1613 * We use the sfmmu data structure to keep the per as page coloring info. 1614 */ 1615 #define as_color_bin(as) (astosfmmu(as)->sfmmu_clrbin) 1616 #define as_color_start(as) (astosfmmu(as)->sfmmu_clrstart) 1617 1618 typedef struct { 1619 char h8[HME8BLK_SZ]; 1620 } hblk8_t; 1621 1622 typedef struct { 1623 char h1[HME1BLK_SZ]; 1624 } hblk1_t; 1625 1626 typedef struct { 1627 ulong_t index; 1628 ulong_t len; 1629 hblk8_t *list; 1630 } nucleus_hblk8_info_t; 1631 1632 typedef struct { 1633 ulong_t index; 1634 ulong_t len; 1635 hblk1_t *list; 1636 } nucleus_hblk1_info_t; 1637 1638 /* 1639 * This struct is used for accumlating information about a range 1640 * of pages that are unloading so that a single xcall can flush 1641 * the entire range from remote tlbs. A function that must demap 1642 * a range of virtual addresses declares one of these structures 1643 * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this 1644 * struct to the appropriate sfmmu_hblk_* level function which does 1645 * all the bookkeeping using the other macros. When the function has 1646 * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH() 1647 * macro to take care of any remaining unflushed mappings. 1648 * 1649 * The maximum range this struct can represent is the number of bits 1650 * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only 1651 * MMU_PAGESIZE pages are supported. 1652 * 1653 * Since there are now cases where it's no longer necessary to do 1654 * flushes (e.g. when the process isn't runnable because it's swapping 1655 * out or exiting) we allow these macros to take a NULL dmr input and do 1656 * nothing in that case. 1657 */ 1658 typedef struct { 1659 sfmmu_t *dmr_sfmmup; /* relevant hat */ 1660 caddr_t dmr_addr; /* beginning address */ 1661 caddr_t dmr_endaddr; /* ending address */ 1662 ulong_t dmr_bitvec; /* valid pages found */ 1663 ulong_t dmr_bit; /* next page to examine */ 1664 ulong_t dmr_maxbit; /* highest page in range */ 1665 ulong_t dmr_pgsz; /* page size in range */ 1666 } demap_range_t; 1667 1668 #define DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */ 1669 1670 #define DEMAP_RANGE_INIT(sfmmup, dmrp) \ 1671 if ((dmrp) != NULL) { \ 1672 (dmrp)->dmr_sfmmup = (sfmmup); \ 1673 (dmrp)->dmr_bitvec = 0; \ 1674 (dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \ 1675 (dmrp)->dmr_pgsz = MMU_PAGESIZE; \ 1676 } 1677 1678 #define DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE) 1679 1680 #define DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \ 1681 if ((dmrp) != NULL) { \ 1682 if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \ 1683 sfmmu_tlb_range_demap(dmrp); \ 1684 (dmrp)->dmr_endaddr = (endaddr); \ 1685 } 1686 1687 #define DEMAP_RANGE_FLUSH(dmrp) \ 1688 if ((dmrp) != NULL) { \ 1689 if ((dmrp)->dmr_bitvec != 0) \ 1690 sfmmu_tlb_range_demap(dmrp); \ 1691 } 1692 1693 #define DEMAP_RANGE_MARKPG(dmrp, addr) \ 1694 if ((dmrp) != NULL) { \ 1695 if ((dmrp)->dmr_bitvec == 0) { \ 1696 (dmrp)->dmr_addr = (addr); \ 1697 (dmrp)->dmr_bit = 1; \ 1698 } \ 1699 (dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \ 1700 } 1701 1702 #define DEMAP_RANGE_NEXTPG(dmrp) \ 1703 if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \ 1704 if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \ 1705 sfmmu_tlb_range_demap(dmrp); \ 1706 } else { \ 1707 (dmrp)->dmr_bit <<= 1; \ 1708 } \ 1709 } 1710 1711 /* 1712 * TSB related structures 1713 * 1714 * The TSB is made up of tte entries. Both the tag and data are present 1715 * in the TSB. The TSB locking is managed as follows: 1716 * A software bit in the tsb tag is used to indicate that entry is locked. 1717 * If a cpu servicing a tsb miss reads a locked entry the tag compare will 1718 * fail forcing the cpu to go to the hat hash for the translation. 1719 * The cpu who holds the lock can then modify the data side, and the tag side. 1720 * The last write should be to the word containing the lock bit which will 1721 * clear the lock and allow the tsb entry to be read. It is assumed that all 1722 * cpus reading the tsb will do so with atomic 128-bit loads. An atomic 128 1723 * bit load is required to prevent the following from happening: 1724 * 1725 * cpu 0 cpu 1 comments 1726 * 1727 * ldx tag tag unlocked 1728 * ldstub lock set lock 1729 * stx data 1730 * stx tag unlock 1731 * ldx tag incorrect tte!!! 1732 * 1733 * The software also maintains a bit in the tag to indicate an invalid 1734 * tsb entry. The purpose of this bit is to allow the tsb invalidate code 1735 * to invalidate a tsb entry with a single cas. See code for details. 1736 */ 1737 1738 union tsb_tag { 1739 struct { 1740 uint32_t tag_res0:16; /* reserved - context area */ 1741 uint32_t tag_inv:1; /* sw - invalid tsb entry */ 1742 uint32_t tag_lock:1; /* sw - locked tsb entry */ 1743 uint32_t tag_res1:4; /* reserved */ 1744 uint32_t tag_va_hi:10; /* va[63:54] */ 1745 uint32_t tag_va_lo; /* va[53:22] */ 1746 } tagbits; 1747 struct tsb_tagints { 1748 uint32_t inthi; 1749 uint32_t intlo; 1750 } tagints; 1751 }; 1752 #define tag_invalid tagbits.tag_inv 1753 #define tag_locked tagbits.tag_lock 1754 #define tag_vahi tagbits.tag_va_hi 1755 #define tag_valo tagbits.tag_va_lo 1756 #define tag_inthi tagints.inthi 1757 #define tag_intlo tagints.intlo 1758 1759 struct tsbe { 1760 union tsb_tag tte_tag; 1761 tte_t tte_data; 1762 }; 1763 1764 /* 1765 * A per cpu struct is kept that duplicates some info 1766 * used by the tl>0 tsb miss handlers plus it provides 1767 * a scratch area. Its purpose is to minimize cache misses 1768 * in the tsb miss handler and is 128 bytes (2 e$ lines). 1769 * 1770 * There should be one allocated per cpu in nucleus memory 1771 * and should be aligned on an ecache line boundary. 1772 */ 1773 struct tsbmiss { 1774 sfmmu_t *ksfmmup; /* kernel hat id */ 1775 sfmmu_t *usfmmup; /* user hat id */ 1776 sf_srd_t *usrdp; /* user's SRD hat id */ 1777 struct tsbe *tsbptr; /* hardware computed ptr */ 1778 struct tsbe *tsbptr4m; /* hardware computed ptr */ 1779 struct tsbe *tsbscdptr; /* hardware computed ptr */ 1780 struct tsbe *tsbscdptr4m; /* hardware computed ptr */ 1781 uint64_t ismblkpa; 1782 struct hmehash_bucket *khashstart; 1783 struct hmehash_bucket *uhashstart; 1784 uint_t khashsz; 1785 uint_t uhashsz; 1786 uint16_t dcache_line_mask; /* used to flush dcache */ 1787 uchar_t uhat_tteflags; /* private page sizes */ 1788 uchar_t uhat_rtteflags; /* SHME pagesizes */ 1789 uint32_t utsb_misses; 1790 uint32_t ktsb_misses; 1791 uint16_t uprot_traps; 1792 uint16_t kprot_traps; 1793 /* 1794 * scratch[0] -> TSB_TAGACC 1795 * scratch[1] -> TSBMISS_HMEBP 1796 * scratch[2] -> TSBMISS_HATID 1797 */ 1798 uintptr_t scratch[3]; 1799 ulong_t shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ 1800 ulong_t scd_shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ 1801 uint8_t pad[48]; /* pad to 64 bytes */ 1802 }; 1803 1804 /* 1805 * A per cpu struct is kept for the use within the tl>0 kpm tsb 1806 * miss handler. Some members are duplicates of common data or 1807 * the physical addresses of common data. A few members are also 1808 * written by the tl>0 kpm tsb miss handler. Its purpose is to 1809 * minimize cache misses in the kpm tsb miss handler and occupies 1810 * one ecache line. There should be one allocated per cpu in 1811 * nucleus memory and it should be aligned on an ecache line 1812 * boundary. It is not merged w/ struct tsbmiss since there is 1813 * not much to share and the tsbmiss pathes are different, so 1814 * a kpm tlbmiss/tsbmiss only touches one cacheline, except for 1815 * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter 1816 * of struct tsbmiss is used on every dtlb miss. 1817 */ 1818 struct kpmtsbm { 1819 caddr_t vbase; /* start of address kpm range */ 1820 caddr_t vend; /* end of address kpm range */ 1821 uchar_t flags; /* flags needed in TL tsbmiss handler */ 1822 uchar_t sz_shift; /* for single kpm window */ 1823 uchar_t kpmp_shift; /* hash lock shift */ 1824 uchar_t kpmp2pshft; /* kpm page to page shift */ 1825 uint_t kpmp_table_sz; /* size of kpmp_table or kpmp_stable */ 1826 uint64_t kpmp_tablepa; /* paddr of kpmp_table or kpmp_stable */ 1827 uint64_t msegphashpa; /* paddr of memseg_phash */ 1828 struct tsbe *tsbptr; /* saved ktsb pointer */ 1829 uint_t kpm_dtlb_misses; /* kpm tlbmiss counter */ 1830 uint_t kpm_tsb_misses; /* kpm tsbmiss counter */ 1831 uintptr_t pad[1]; 1832 }; 1833 1834 extern size_t tsb_slab_size; 1835 extern uint_t tsb_slab_shift; 1836 extern size_t tsb_slab_mask; 1837 1838 #endif /* !_ASM */ 1839 1840 /* 1841 * Flags for TL kpm tsbmiss handler 1842 */ 1843 #define KPMTSBM_ENABLE_FLAG 0x01 /* bit copy of kpm_enable */ 1844 #define KPMTSBM_TLTSBM_FLAG 0x02 /* use TL tsbmiss handler */ 1845 #define KPMTSBM_TSBPHYS_FLAG 0x04 /* use ASI_MEM for TSB update */ 1846 1847 /* 1848 * The TSB 1849 * All TSB sizes supported by the hardware are now supported (8K - 1M). 1850 * For kernel TSBs we may go beyond the hardware supported sizes and support 1851 * larger TSBs via software. 1852 * All TTE sizes are supported in the TSB; the manner in which this is 1853 * done is cpu dependent. 1854 */ 1855 #define TSB_MIN_SZCODE TSB_8K_SZCODE /* min. supported TSB size */ 1856 #define TSB_MIN_OFFSET_MASK (TSB_OFFSET_MASK(TSB_MIN_SZCODE)) 1857 1858 #ifdef sun4v 1859 #define UTSB_MAX_SZCODE TSB_256M_SZCODE /* max. supported TSB size */ 1860 #else /* sun4u */ 1861 #define UTSB_MAX_SZCODE TSB_1M_SZCODE /* max. supported TSB size */ 1862 #endif /* sun4v */ 1863 1864 #define UTSB_MAX_OFFSET_MASK (TSB_OFFSET_MASK(UTSB_MAX_SZCODE)) 1865 1866 #define TSB_FREEMEM_MIN 0x1000 /* 32 mb */ 1867 #define TSB_FREEMEM_LARGE 0x10000 /* 512 mb */ 1868 #define TSB_8K_SZCODE 0 /* 512 entries */ 1869 #define TSB_16K_SZCODE 1 /* 1k entries */ 1870 #define TSB_32K_SZCODE 2 /* 2k entries */ 1871 #define TSB_64K_SZCODE 3 /* 4k entries */ 1872 #define TSB_128K_SZCODE 4 /* 8k entries */ 1873 #define TSB_256K_SZCODE 5 /* 16k entries */ 1874 #define TSB_512K_SZCODE 6 /* 32k entries */ 1875 #define TSB_1M_SZCODE 7 /* 64k entries */ 1876 #define TSB_2M_SZCODE 8 /* 128k entries */ 1877 #define TSB_4M_SZCODE 9 /* 256k entries */ 1878 #define TSB_8M_SZCODE 10 /* 512k entries */ 1879 #define TSB_16M_SZCODE 11 /* 1M entries */ 1880 #define TSB_32M_SZCODE 12 /* 2M entries */ 1881 #define TSB_64M_SZCODE 13 /* 4M entries */ 1882 #define TSB_128M_SZCODE 14 /* 8M entries */ 1883 #define TSB_256M_SZCODE 15 /* 16M entries */ 1884 #define TSB_ENTRY_SHIFT 4 /* each entry = 128 bits = 16 bytes */ 1885 #define TSB_ENTRY_SIZE (1 << 4) 1886 #define TSB_START_SIZE 9 1887 #define TSB_ENTRIES(tsbsz) (1 << (TSB_START_SIZE + tsbsz)) 1888 #define TSB_BYTES(tsbsz) (TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT) 1889 #define TSB_OFFSET_MASK(tsbsz) (TSB_ENTRIES(tsbsz) - 1) 1890 #define TSB_BASEADDR_MASK ((1 << 12) - 1) 1891 1892 /* 1893 * sun4u platforms 1894 * --------------- 1895 * We now support two user TSBs with one TSB base register. 1896 * Hence the TSB base register is split up as follows: 1897 * 1898 * When only one TSB present: 1899 * [63 62..42 41..13 12..4 3..0] 1900 * ^ ^ ^ ^ ^ 1901 * | | | | | 1902 * | | | | |_ TSB size code 1903 * | | | | 1904 * | | | |_ Reserved 0 1905 * | | | 1906 * | | |_ TSB VA[41..13] 1907 * | | 1908 * | |_ VA hole (Spitfire), zeros (Cheetah and beyond) 1909 * | 1910 * |_ 0 1911 * 1912 * When second TSB present: 1913 * [63 62..42 41..33 32..29 28..22 21..13 12..4 3..0] 1914 * ^ ^ ^ ^ ^ ^ ^ ^ 1915 * | | | | | | | | 1916 * | | | | | | | |_ First TSB size code 1917 * | | | | | | | 1918 * | | | | | | |_ Reserved 0 1919 * | | | | | | 1920 * | | | | | |_ First TSB's VA[21..13] 1921 * | | | | | 1922 * | | | | |_ Reserved for future use 1923 * | | | | 1924 * | | | |_ Second TSB's size code 1925 * | | | 1926 * | | |_ Second TSB's VA[21..13] 1927 * | | 1928 * | |_ VA hole (Spitfire) / ones (Cheetah and beyond) 1929 * | 1930 * |_ 1 1931 * 1932 * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs 1933 * may be up to 4M in size. For now, only hardware supported TSB sizes 1934 * are supported, though the slabs are usually 4M in size. 1935 * 1936 * sun4u platforms that define UTSB_PHYS use physical addressing to access 1937 * the user TSBs at TL>0. The first user TSB base is in the MMU I/D TSB Base 1938 * registers. The second TSB base uses a dedicated scratchpad register which 1939 * requires a definition of SCRATCHPAD_UTSBREG2 in mach_sfmmu.h. The layout for 1940 * both registers is equivalent to sun4v below, except the TSB PA range is 1941 * [46..13] for sun4u. 1942 * 1943 * sun4v platforms 1944 * --------------- 1945 * On sun4v platforms, we use two dedicated scratchpad registers as pseudo 1946 * hardware TSB base registers to hold up to two different user TSBs. 1947 * 1948 * Each register contains TSB's physical base and size code information 1949 * as follows: 1950 * 1951 * [63..56 55..13 12..4 3..0] 1952 * ^ ^ ^ ^ 1953 * | | | | 1954 * | | | |_ TSB size code 1955 * | | | 1956 * | | |_ Reserved 0 1957 * | | 1958 * | |_ TSB PA[55..13] 1959 * | 1960 * | 1961 * | 1962 * |_ 0 for valid TSB 1963 * 1964 * Absence of a user TSB (primarily the second user TSB) is indicated by 1965 * storing a negative value in the TSB base register. This allows us to 1966 * check for presence of a user TSB by simply checking bit# 63. 1967 */ 1968 #define TSBREG_MSB_SHIFT 32 /* set upper bits */ 1969 #define TSBREG_MSB_CONST 0xfffff800 /* set bits 63..43 */ 1970 #define TSBREG_FIRTSB_SHIFT 42 /* to clear bits 63:22 */ 1971 #define TSBREG_SECTSB_MKSHIFT 20 /* 21:13 --> 41:33 */ 1972 #define TSBREG_SECTSB_LSHIFT 22 /* to clear bits 63:42 */ 1973 #define TSBREG_SECTSB_RSHIFT (TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT) 1974 /* sectsb va -> bits 21:13 */ 1975 /* after clearing upper bits */ 1976 #define TSBREG_SECSZ_SHIFT 29 /* to get sectsb szc to 3:0 */ 1977 #define TSBREG_VAMASK_SHIFT 13 /* set up VA mask */ 1978 1979 #define BIGKTSB_SZ_MASK 0xf 1980 #define TSB_SOFTSZ_MASK BIGKTSB_SZ_MASK 1981 #define MIN_BIGKTSB_SZCODE 9 /* 256k entries */ 1982 #define MAX_BIGKTSB_SZCODE 11 /* 1024k entries */ 1983 #define MAX_BIGKTSB_TTES (TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M) 1984 1985 #define TAG_VALO_SHIFT 22 /* tag's va are bits 63-22 */ 1986 /* 1987 * sw bits used on tsb_tag - bit masks used only in assembly 1988 * use only a sethi for these fields. 1989 */ 1990 #define TSBTAG_INVALID 0x00008000 /* tsb_tag.tag_invalid */ 1991 #define TSBTAG_LOCKED 0x00004000 /* tsb_tag.tag_locked */ 1992 1993 #ifdef _ASM 1994 1995 /* 1996 * Marker to indicate that this instruction will be hot patched at runtime 1997 * to some other value. 1998 * This value must be zero since it fills in the imm bits of the target 1999 * instructions to be patched 2000 */ 2001 #define RUNTIME_PATCH (0) 2002 2003 /* 2004 * V9 defines nop instruction as the following, which we use 2005 * at runtime to nullify some instructions we don't want to 2006 * execute in the trap handlers on certain platforms. 2007 */ 2008 #define MAKE_NOP_INSTR(reg) \ 2009 sethi %hi(0x1000000), reg 2010 2011 /* 2012 * This macro constructs a SPARC V9 "jmpl <source reg>, %g0" 2013 * instruction, with the source register specified by the jump_reg_number. 2014 * The jmp opcode [24:19] = 11 1000 and source register is bits [18:14]. 2015 * The instruction is returned in reg. The macro is used to patch in a jmpl 2016 * instruction at runtime. 2017 */ 2018 #define MAKE_JMP_INSTR(jump_reg_number, reg, tmp) \ 2019 sethi %hi(0x81c00000), reg; \ 2020 mov jump_reg_number, tmp; \ 2021 sll tmp, 14, tmp; \ 2022 or reg, tmp, reg 2023 2024 /* 2025 * Macro to get hat per-MMU cnum on this CPU. 2026 * sfmmu - In, pass in "sfmmup" from the caller. 2027 * cnum - Out, return 'cnum' to the caller 2028 * scr - scratch 2029 */ 2030 #define SFMMU_CPU_CNUM(sfmmu, cnum, scr) \ 2031 CPU_ADDR(scr, cnum); /* scr = load CPU struct addr */ \ 2032 ld [scr + CPU_MMU_IDX], cnum; /* cnum = mmuid */ \ 2033 add sfmmu, SFMMU_CTXS, scr; /* scr = sfmmup->sfmmu_ctxs[] */ \ 2034 sllx cnum, SFMMU_MMU_CTX_SHIFT, cnum; \ 2035 add scr, cnum, scr; /* scr = sfmmup->sfmmu_ctxs[id] */ \ 2036 ldx [scr + SFMMU_MMU_GC_NUM], scr; /* sfmmu_ctxs[id].gcnum */ \ 2037 sllx scr, SFMMU_MMU_CNUM_LSHIFT, scr; \ 2038 srlx scr, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ 2039 2040 /* 2041 * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry 2042 * entry - In, pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller. 2043 * gnum - Out, return sfmmu gnum 2044 * cnum - Out, return sfmmu cnum 2045 * reg - scratch 2046 */ 2047 #define SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg) \ 2048 ldx [entry + SFMMU_CTXS], reg; /* reg = sfmmu (gnum | cnum) */ \ 2049 srlx reg, SFMMU_MMU_GNUM_RSHIFT, gnum; /* gnum = sfmmu gnum */ \ 2050 sllx reg, SFMMU_MMU_CNUM_LSHIFT, cnum; \ 2051 srlx cnum, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ 2052 2053 /* 2054 * Macro to get this CPU's tsbmiss area. 2055 */ 2056 #define CPU_TSBMISS_AREA(tsbmiss, tmp1) \ 2057 CPU_INDEX(tmp1, tsbmiss); /* tmp1 = cpu idx */ \ 2058 sethi %hi(tsbmiss_area), tsbmiss; /* tsbmiss base ptr */ \ 2059 mulx tmp1, TSBMISS_SIZE, tmp1; /* byte offset */ \ 2060 or tsbmiss, %lo(tsbmiss_area), tsbmiss; \ 2061 add tsbmiss, tmp1, tsbmiss /* tsbmiss area of CPU */ 2062 2063 2064 /* 2065 * Macro to set kernel context + page size codes in DMMU primary context 2066 * register. It is only necessary for sun4u because sun4v does not need 2067 * page size codes 2068 */ 2069 #ifdef sun4v 2070 2071 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) 2072 2073 #else 2074 2075 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \ 2076 sethi %hi(kcontextreg), reg0; \ 2077 ldx [reg0 + %lo(kcontextreg)], reg0; \ 2078 mov MMU_PCONTEXT, reg1; \ 2079 ldxa [reg1]ASI_MMU_CTX, reg2; \ 2080 xor reg0, reg2, reg2; \ 2081 brz reg2, label3; \ 2082 srlx reg2, CTXREG_NEXT_SHIFT, reg2; \ 2083 rdpr %pstate, reg3; /* disable interrupts */ \ 2084 btst PSTATE_IE, reg3; \ 2085 /*CSTYLED*/ \ 2086 bnz,a,pt %icc, label1; \ 2087 wrpr reg3, PSTATE_IE, %pstate; \ 2088 /*CSTYLED*/ \ 2089 label1:; \ 2090 brz reg2, label2; /* need demap if N_pgsz0/1 change */ \ 2091 sethi %hi(FLUSH_ADDR), reg4; \ 2092 mov DEMAP_ALL_TYPE, reg2; \ 2093 stxa %g0, [reg2]ASI_DTLB_DEMAP; \ 2094 stxa %g0, [reg2]ASI_ITLB_DEMAP; \ 2095 /*CSTYLED*/ \ 2096 label2:; \ 2097 stxa reg0, [reg1]ASI_MMU_CTX; \ 2098 flush reg4; \ 2099 btst PSTATE_IE, reg3; \ 2100 /*CSTYLED*/ \ 2101 bnz,a,pt %icc, label3; \ 2102 wrpr %g0, reg3, %pstate; /* restore interrupt state */ \ 2103 label3:; 2104 2105 #endif 2106 2107 /* 2108 * Macro to setup arguments with kernel sfmmup context + page size before 2109 * calling sfmmu_setctx_sec() 2110 */ 2111 #ifdef sun4v 2112 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ 2113 set KCONTEXT, arg0; \ 2114 set 0, arg1; 2115 #else 2116 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ 2117 ldub [sfmmup + SFMMU_CEXT], arg1; \ 2118 set KCONTEXT, arg0; \ 2119 sll arg1, CTXREG_EXT_SHIFT, arg1; 2120 #endif 2121 2122 #define PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr) \ 2123 andcc pstatereg, PSTATE_IE, %g0; /* panic if intrs */ \ 2124 /*CSTYLED*/ \ 2125 bnz,pt %icc, label; /* already disabled */ \ 2126 nop; \ 2127 \ 2128 sethi %hi(panicstr), scr; \ 2129 ldx [scr + %lo(panicstr)], scr; \ 2130 tst scr; \ 2131 /*CSTYLED*/ \ 2132 bnz,pt %xcc, label; \ 2133 nop; \ 2134 \ 2135 save %sp, -SA(MINFRAME), %sp; \ 2136 sethi %hi(sfmmu_panic1), %o0; \ 2137 call panic; \ 2138 or %o0, %lo(sfmmu_panic1), %o0; \ 2139 /*CSTYLED*/ \ 2140 label: 2141 2142 #define PANIC_IF_INTR_ENABLED_PSTR(label, scr) \ 2143 /* \ 2144 * The caller must have disabled interrupts. \ 2145 * If interrupts are not disabled, panic \ 2146 */ \ 2147 rdpr %pstate, scr; \ 2148 andcc scr, PSTATE_IE, %g0; \ 2149 /*CSTYLED*/ \ 2150 bz,pt %icc, label; \ 2151 nop; \ 2152 \ 2153 sethi %hi(panicstr), scr; \ 2154 ldx [scr + %lo(panicstr)], scr; \ 2155 tst scr; \ 2156 /*CSTYLED*/ \ 2157 bnz,pt %xcc, label; \ 2158 nop; \ 2159 \ 2160 sethi %hi(sfmmu_panic6), %o0; \ 2161 call panic; \ 2162 or %o0, %lo(sfmmu_panic6), %o0; \ 2163 /*CSTYLED*/ \ 2164 label: 2165 2166 #endif /* _ASM */ 2167 2168 #ifndef _ASM 2169 2170 #ifdef VAC 2171 /* 2172 * Page coloring 2173 * The p_vcolor field of the page struct (1 byte) is used to store the 2174 * virtual page color. This provides for 255 colors. The value zero is 2175 * used to mean the page has no color - never been mapped or somehow 2176 * purified. 2177 */ 2178 2179 #define PP_GET_VCOLOR(pp) (((pp)->p_vcolor) - 1) 2180 #define PP_NEWPAGE(pp) (!(pp)->p_vcolor) 2181 #define PP_SET_VCOLOR(pp, color) \ 2182 ((pp)->p_vcolor = ((color) + 1)) 2183 2184 /* 2185 * As mentioned p_vcolor == 0 means there is no color for this page. 2186 * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus 2187 * one so we define this constant. 2188 */ 2189 #define NO_VCOLOR (-1) 2190 2191 #define addr_to_vcolor(addr) \ 2192 (((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask) 2193 #else /* VAC */ 2194 #define addr_to_vcolor(addr) (0) 2195 #endif /* VAC */ 2196 2197 /* 2198 * The field p_index in the psm page structure is for large pages support. 2199 * P_index is a bit-vector of the different mapping sizes that a given page 2200 * is part of. An hme structure for a large mapping is only added in the 2201 * group leader page (first page). All pages covered by a given large mapping 2202 * have the corrosponding mapping bit set in their p_index field. This allows 2203 * us to only store an explicit hme structure in the leading page which 2204 * simplifies the mapping link list management. Furthermore, it provides us 2205 * a fast mechanism for determining the largest mapping a page is part of. For 2206 * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A. 2207 * 2208 * Implementation note: even though the first bit in p_index is reserved 2209 * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set. 2210 * In addition, the upper four bits of the p_index field are used by the 2211 * code as temporaries 2212 */ 2213 2214 /* 2215 * Defines for psm page struct fields and large page support 2216 */ 2217 #define SFMMU_INDEX_SHIFT 6 2218 #define SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1) 2219 2220 /* Return the mapping index */ 2221 #define PP_MAPINDEX(pp) ((pp)->p_index & SFMMU_INDEX_MASK) 2222 2223 /* 2224 * These macros rely on the following property: 2225 * All pages constituting a large page are covered by a virtually 2226 * contiguous set of page_t's. 2227 */ 2228 2229 /* Return the leader for this mapping size */ 2230 #define PP_GROUPLEADER(pp, sz) \ 2231 (&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))]) 2232 2233 /* Return the root page for this page based on p_szc */ 2234 #define PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \ 2235 PP_GROUPLEADER((pp), (pp)->p_szc)) 2236 2237 #define PP_PAGENEXT_N(pp, n) ((pp) + (n)) 2238 #define PP_PAGENEXT(pp) PP_PAGENEXT_N((pp), 1) 2239 2240 #define PP_PAGEPREV_N(pp, n) ((pp) - (n)) 2241 #define PP_PAGEPREV(pp) PP_PAGEPREV_N((pp), 1) 2242 2243 #define PP_ISMAPPED_LARGE(pp) (PP_MAPINDEX(pp) != 0) 2244 2245 /* Need function to test the page mappping which takes p_index into account */ 2246 #define PP_ISMAPPED(pp) ((pp)->p_mapping || PP_ISMAPPED_LARGE(pp)) 2247 2248 /* 2249 * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT 2250 * set p_index field. 2251 */ 2252 #define PAGESZ_TO_INDEX(sz) (1 << (sz)) 2253 2254 2255 /* 2256 * prototypes for hat assembly routines. Some of these are 2257 * known to machine dependent VM code. 2258 */ 2259 extern uint64_t sfmmu_make_tsbtag(caddr_t); 2260 extern struct tsbe * 2261 sfmmu_get_tsbe(uint64_t, caddr_t, int, int); 2262 extern void sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int); 2263 extern void sfmmu_unload_tsbe(struct tsbe *, uint64_t, int); 2264 extern void sfmmu_load_mmustate(sfmmu_t *); 2265 extern void sfmmu_raise_tsb_exception(uint64_t, uint64_t); 2266 #ifndef sun4v 2267 extern void sfmmu_itlb_ld_kva(caddr_t, tte_t *); 2268 extern void sfmmu_dtlb_ld_kva(caddr_t, tte_t *); 2269 #endif /* sun4v */ 2270 extern void sfmmu_copytte(tte_t *, tte_t *); 2271 extern int sfmmu_modifytte(tte_t *, tte_t *, tte_t *); 2272 extern int sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *); 2273 extern pfn_t sfmmu_ttetopfn(tte_t *, caddr_t); 2274 extern uint_t sfmmu_disable_intrs(void); 2275 extern void sfmmu_enable_intrs(uint_t); 2276 /* 2277 * functions exported to machine dependent VM code 2278 */ 2279 extern void sfmmu_patch_ktsb(void); 2280 #ifndef UTSB_PHYS 2281 extern void sfmmu_patch_utsb(void); 2282 #endif /* UTSB_PHYS */ 2283 extern pfn_t sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *); 2284 extern void sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *); 2285 extern pfn_t sfmmu_kvaszc2pfn(caddr_t, int); 2286 #ifdef DEBUG 2287 extern void sfmmu_check_kpfn(pfn_t); 2288 #else 2289 #define sfmmu_check_kpfn(pfn) /* disabled */ 2290 #endif /* DEBUG */ 2291 extern void sfmmu_memtte(tte_t *, pfn_t, uint_t, int); 2292 extern void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *, uint_t); 2293 extern void sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t); 2294 extern void sfmmu_init_tsbs(void); 2295 extern caddr_t sfmmu_ktsb_alloc(caddr_t); 2296 extern int sfmmu_getctx_pri(void); 2297 extern int sfmmu_getctx_sec(void); 2298 extern void sfmmu_setctx_sec(uint_t); 2299 extern void sfmmu_inv_tsb(caddr_t, uint_t); 2300 extern void sfmmu_init_ktsbinfo(void); 2301 extern int sfmmu_setup_4lp(void); 2302 extern void sfmmu_patch_mmu_asi(int); 2303 extern void sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int); 2304 extern void sfmmu_cache_flushall(void); 2305 extern pgcnt_t sfmmu_tte_cnt(sfmmu_t *, uint_t); 2306 extern void *sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int); 2307 extern void sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t); 2308 extern void sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *); 2309 2310 extern void hat_kern_setup(void); 2311 extern int hat_page_relocate(page_t **, page_t **, spgcnt_t *); 2312 extern int sfmmu_get_ppvcolor(struct page *); 2313 extern int sfmmu_get_addrvcolor(caddr_t); 2314 extern int sfmmu_hat_lock_held(sfmmu_t *); 2315 extern int sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *, int); 2316 2317 /* 2318 * Functions exported to xhat_sfmmu.c 2319 */ 2320 extern kmutex_t *sfmmu_mlist_enter(page_t *); 2321 extern void sfmmu_mlist_exit(kmutex_t *); 2322 extern int sfmmu_mlist_held(struct page *); 2323 extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *); 2324 2325 /* 2326 * MMU-specific functions optionally imported from the CPU module 2327 */ 2328 #pragma weak mmu_init_scd 2329 #pragma weak mmu_large_pages_disabled 2330 #pragma weak mmu_set_ctx_page_sizes 2331 #pragma weak mmu_check_page_sizes 2332 2333 extern void mmu_init_scd(sf_scd_t *); 2334 extern uint_t mmu_large_pages_disabled(uint_t); 2335 extern void mmu_set_ctx_page_sizes(sfmmu_t *); 2336 extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *); 2337 2338 extern sfmmu_t *ksfmmup; 2339 extern caddr_t ktsb_base; 2340 extern uint64_t ktsb_pbase; 2341 extern int ktsb_sz; 2342 extern int ktsb_szcode; 2343 extern caddr_t ktsb4m_base; 2344 extern uint64_t ktsb4m_pbase; 2345 extern int ktsb4m_sz; 2346 extern int ktsb4m_szcode; 2347 extern uint64_t kpm_tsbbase; 2348 extern int kpm_tsbsz; 2349 extern int ktsb_phys; 2350 extern int enable_bigktsb; 2351 #ifndef sun4v 2352 extern int utsb_dtlb_ttenum; 2353 extern int utsb4m_dtlb_ttenum; 2354 #endif /* sun4v */ 2355 extern int uhmehash_num; 2356 extern int khmehash_num; 2357 extern struct hmehash_bucket *uhme_hash; 2358 extern struct hmehash_bucket *khme_hash; 2359 extern kmutex_t *mml_table; 2360 extern uint_t mml_table_sz; 2361 extern uint_t mml_shift; 2362 extern uint_t hblk_alloc_dynamic; 2363 extern struct tsbmiss tsbmiss_area[NCPU]; 2364 extern struct kpmtsbm kpmtsbm_area[NCPU]; 2365 2366 #ifndef sun4v 2367 extern int dtlb_resv_ttenum; 2368 extern caddr_t utsb_vabase; 2369 extern caddr_t utsb4m_vabase; 2370 #endif /* sun4v */ 2371 extern vmem_t *kmem_tsb_default_arena[]; 2372 extern int tsb_lgrp_affinity; 2373 2374 extern uint_t disable_large_pages; 2375 extern uint_t disable_ism_large_pages; 2376 extern uint_t disable_auto_data_large_pages; 2377 extern uint_t disable_auto_text_large_pages; 2378 2379 /* kpm externals */ 2380 extern pfn_t sfmmu_kpm_vatopfn(caddr_t); 2381 extern void sfmmu_kpm_patch_tlbm(void); 2382 extern void sfmmu_kpm_patch_tsbm(void); 2383 extern void sfmmu_patch_shctx(void); 2384 extern void sfmmu_kpm_load_tsb(caddr_t, tte_t *, int); 2385 extern void sfmmu_kpm_unload_tsb(caddr_t, int); 2386 extern void sfmmu_kpm_tsbmtl(short *, uint_t *, int); 2387 extern int sfmmu_kpm_stsbmtl(uchar_t *, uint_t *, int); 2388 extern caddr_t kpm_vbase; 2389 extern size_t kpm_size; 2390 extern struct memseg *memseg_hash[]; 2391 extern uint64_t memseg_phash[]; 2392 extern kpm_hlk_t *kpmp_table; 2393 extern kpm_shlk_t *kpmp_stable; 2394 extern uint_t kpmp_table_sz; 2395 extern uint_t kpmp_stable_sz; 2396 extern uchar_t kpmp_shift; 2397 2398 #define PP_ISMAPPED_KPM(pp) ((pp)->p_kpmref > 0) 2399 2400 #define IS_KPM_ALIAS_RANGE(vaddr) \ 2401 (((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0) 2402 2403 #endif /* !_ASM */ 2404 2405 /* sfmmu_kpm_tsbmtl flags */ 2406 #define KPMTSBM_STOP 0 2407 #define KPMTSBM_START 1 2408 2409 /* 2410 * For kpm_smallpages, the state about how a kpm page is mapped and whether 2411 * it is ready to go is indicated by the two 4-bit fields defined in the 2412 * kpm_spage structure as follows: 2413 * kp_mapped_flag bit[0:3] - the page is mapped cacheable or not 2414 * kp_mapped_flag bit[4:7] - the mapping is ready to go or not 2415 * If the bit KPM_MAPPED_GO is on, it indicates that the assembly tsb miss 2416 * handler can drop the mapping in regardless of the caching state of the 2417 * mapping. Otherwise, we will have C handler resolve the VAC conflict no 2418 * matter the page is currently mapped cacheable or non-cacheable. 2419 */ 2420 #define KPM_MAPPEDS 0x1 /* small mapping valid, no conflict */ 2421 #define KPM_MAPPEDSC 0x2 /* small mapping valid, conflict */ 2422 #define KPM_MAPPED_GO 0x10 /* the mapping is ready to go */ 2423 #define KPM_MAPPED_MASK 0xf 2424 2425 /* Physical memseg address NULL marker */ 2426 #define MSEG_NULLPTR_PA -1 2427 2428 /* 2429 * Memseg hash defines for kpm trap level tsbmiss handler. 2430 * Must be in sync w/ page.h . 2431 */ 2432 #define SFMMU_MEM_HASH_SHIFT 0x9 2433 #define SFMMU_N_MEM_SLOTS 0x200 2434 #define SFMMU_MEM_HASH_ENTRY_SHIFT 3 2435 2436 #ifndef _ASM 2437 #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT) 2438 #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT 2439 #endif 2440 #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS) 2441 #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS 2442 #endif 2443 2444 /* Physical memseg address NULL marker */ 2445 #define SFMMU_MEMSEG_NULLPTR_PA -1 2446 2447 /* 2448 * Check KCONTEXT to be zero, asm parts depend on that assumption. 2449 */ 2450 #if (KCONTEXT != 0) 2451 #error KCONTEXT != 0 2452 #endif 2453 #endif /* !_ASM */ 2454 2455 2456 #endif /* _KERNEL */ 2457 2458 #ifndef _ASM 2459 /* 2460 * ctx, hmeblk, mlistlock and other stats for sfmmu 2461 */ 2462 struct sfmmu_global_stat { 2463 int sf_tsb_exceptions; /* # of tsb exceptions */ 2464 int sf_tsb_raise_exception; /* # tsb exc. w/o TLB flush */ 2465 2466 int sf_pagefaults; /* # of pagefaults */ 2467 2468 int sf_uhash_searches; /* # of user hash searches */ 2469 int sf_uhash_links; /* # of user hash links */ 2470 int sf_khash_searches; /* # of kernel hash searches */ 2471 int sf_khash_links; /* # of kernel hash links */ 2472 2473 int sf_swapout; /* # times hat swapped out */ 2474 2475 int sf_tsb_alloc; /* # TSB allocations */ 2476 int sf_tsb_allocfail; /* # times TSB alloc fail */ 2477 int sf_tsb_sectsb_create; /* # times second TSB added */ 2478 2479 int sf_scd_1sttsb_alloc; /* # SCD 1st TSB allocations */ 2480 int sf_scd_2ndtsb_alloc; /* # SCD 2nd TSB allocations */ 2481 int sf_scd_1sttsb_allocfail; /* # SCD 1st TSB alloc fail */ 2482 int sf_scd_2ndtsb_allocfail; /* # SCD 2nd TSB alloc fail */ 2483 2484 2485 int sf_tteload8k; /* calls to sfmmu_tteload */ 2486 int sf_tteload64k; /* calls to sfmmu_tteload */ 2487 int sf_tteload512k; /* calls to sfmmu_tteload */ 2488 int sf_tteload4m; /* calls to sfmmu_tteload */ 2489 int sf_tteload32m; /* calls to sfmmu_tteload */ 2490 int sf_tteload256m; /* calls to sfmmu_tteload */ 2491 2492 int sf_tsb_load8k; /* # times loaded 8K tsbent */ 2493 int sf_tsb_load4m; /* # times loaded 4M tsbent */ 2494 2495 int sf_hblk_hit; /* found hblk during tteload */ 2496 int sf_hblk8_ncreate; /* static hblk8's created */ 2497 int sf_hblk8_nalloc; /* static hblk8's allocated */ 2498 int sf_hblk1_ncreate; /* static hblk1's created */ 2499 int sf_hblk1_nalloc; /* static hblk1's allocated */ 2500 int sf_hblk_slab_cnt; /* sfmmu8_cache slab creates */ 2501 int sf_hblk_reserve_cnt; /* hblk_reserve usage */ 2502 int sf_hblk_recurse_cnt; /* hblk_reserve owner reqs */ 2503 int sf_hblk_reserve_hit; /* hblk_reserve hash hits */ 2504 int sf_get_free_success; /* reserve list allocs */ 2505 int sf_get_free_throttle; /* fails due to throttling */ 2506 int sf_get_free_fail; /* fails due to empty list */ 2507 int sf_put_free_success; /* reserve list frees */ 2508 int sf_put_free_fail; /* fails due to full list */ 2509 2510 int sf_pgcolor_conflict; /* VAC conflict resolution */ 2511 int sf_uncache_conflict; /* VAC conflict resolution */ 2512 int sf_unload_conflict; /* VAC unload resolution */ 2513 int sf_ism_uncache; /* VAC conflict resolution */ 2514 int sf_ism_recache; /* VAC conflict resolution */ 2515 int sf_recache; /* VAC conflict resolution */ 2516 2517 int sf_steal_count; /* # of hblks stolen */ 2518 2519 int sf_pagesync; /* # of pagesyncs */ 2520 int sf_clrwrt; /* # of clear write perms */ 2521 int sf_pagesync_invalid; /* pagesync with inv tte */ 2522 2523 int sf_kernel_xcalls; /* # of kernel cross calls */ 2524 int sf_user_xcalls; /* # of user cross calls */ 2525 2526 int sf_tsb_grow; /* # of user tsb grows */ 2527 int sf_tsb_shrink; /* # of user tsb shrinks */ 2528 int sf_tsb_resize_failures; /* # of user tsb resize */ 2529 int sf_tsb_reloc; /* # of user tsb relocations */ 2530 2531 int sf_user_vtop; /* # of user vatopfn calls */ 2532 2533 int sf_ctx_inv; /* #times invalidate MMU ctx */ 2534 2535 int sf_tlb_reprog_pgsz; /* # times switch TLB pgsz */ 2536 2537 int sf_region_remap_demap; /* # times shme remap demap */ 2538 2539 int sf_create_scd; /* # times SCD is created */ 2540 int sf_join_scd; /* # process joined scd */ 2541 int sf_leave_scd; /* # process left scd */ 2542 int sf_destroy_scd; /* # times SCD is destroyed */ 2543 }; 2544 2545 struct sfmmu_tsbsize_stat { 2546 int sf_tsbsz_8k; 2547 int sf_tsbsz_16k; 2548 int sf_tsbsz_32k; 2549 int sf_tsbsz_64k; 2550 int sf_tsbsz_128k; 2551 int sf_tsbsz_256k; 2552 int sf_tsbsz_512k; 2553 int sf_tsbsz_1m; 2554 int sf_tsbsz_2m; 2555 int sf_tsbsz_4m; 2556 int sf_tsbsz_8m; 2557 int sf_tsbsz_16m; 2558 int sf_tsbsz_32m; 2559 int sf_tsbsz_64m; 2560 int sf_tsbsz_128m; 2561 int sf_tsbsz_256m; 2562 }; 2563 2564 struct sfmmu_percpu_stat { 2565 int sf_itlb_misses; /* # of itlb misses */ 2566 int sf_dtlb_misses; /* # of dtlb misses */ 2567 int sf_utsb_misses; /* # of user tsb misses */ 2568 int sf_ktsb_misses; /* # of kernel tsb misses */ 2569 int sf_tsb_hits; /* # of tsb hits */ 2570 int sf_umod_faults; /* # of mod (prot viol) flts */ 2571 int sf_kmod_faults; /* # of mod (prot viol) flts */ 2572 }; 2573 2574 #define SFMMU_STAT(stat) sfmmu_global_stat.stat++ 2575 #define SFMMU_STAT_ADD(stat, amount) sfmmu_global_stat.stat += (amount) 2576 #define SFMMU_STAT_SET(stat, count) sfmmu_global_stat.stat = (count) 2577 2578 #define SFMMU_MMU_STAT(stat) CPU->cpu_m.cpu_mmu_ctxp->stat++ 2579 2580 #endif /* !_ASM */ 2581 2582 #ifdef __cplusplus 2583 } 2584 #endif 2585 2586 #endif /* _VM_HAT_SFMMU_H */ 2587