1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1987, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * VM - Hardware Address Translation management. 27 * 28 * This file describes the contents of the sun-reference-mmu(sfmmu)- 29 * specific hat data structures and the sfmmu-specific hat procedures. 30 * The machine-independent interface is described in <vm/hat.h>. 31 */ 32 33 #ifndef _VM_HAT_SFMMU_H 34 #define _VM_HAT_SFMMU_H 35 36 #ifdef __cplusplus 37 extern "C" { 38 #endif 39 40 #ifndef _ASM 41 42 #include <sys/types.h> 43 44 #endif /* _ASM */ 45 46 #ifdef _KERNEL 47 48 #include <sys/pte.h> 49 #include <vm/mach_sfmmu.h> 50 #include <sys/mmu.h> 51 52 /* 53 * Don't alter these without considering changes to ism_map_t. 54 */ 55 #define DEFAULT_ISM_PAGESIZE MMU_PAGESIZE4M 56 #define DEFAULT_ISM_PAGESZC TTE4M 57 #define ISM_PG_SIZE(ism_vbshift) (1 << ism_vbshift) 58 #define ISM_SZ_MASK(ism_vbshift) (ISM_PG_SIZE(ism_vbshift) - 1) 59 #define ISM_MAP_SLOTS 8 /* Change this carefully. */ 60 61 #ifndef _ASM 62 63 #include <sys/t_lock.h> 64 #include <vm/hat.h> 65 #include <vm/seg.h> 66 #include <sys/machparam.h> 67 #include <sys/systm.h> 68 #include <sys/x_call.h> 69 #include <vm/page.h> 70 #include <sys/ksynch.h> 71 72 typedef struct hat sfmmu_t; 73 typedef struct sf_scd sf_scd_t; 74 75 /* 76 * SFMMU attributes for hat_memload/hat_devload 77 */ 78 #define SFMMU_UNCACHEPTTE 0x01000000 /* unencache in physical $ */ 79 #define SFMMU_UNCACHEVTTE 0x02000000 /* unencache in virtual $ */ 80 #define SFMMU_SIDEFFECT 0x04000000 /* set side effect bit */ 81 #define SFMMU_LOAD_ALLATTR (HAT_PROT_MASK | HAT_ORDER_MASK | \ 82 HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC | \ 83 SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT) 84 85 86 /* 87 * sfmmu flags for hat_memload/hat_devload 88 */ 89 #define SFMMU_NO_TSBLOAD 0x08000000 /* do not preload tsb */ 90 #define SFMMU_LOAD_ALLFLAG (HAT_LOAD | HAT_LOAD_LOCK | \ 91 HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST | \ 92 HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD | \ 93 HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT) 94 95 /* 96 * sfmmu internal flag to hat_pageunload that spares locked mappings 97 */ 98 #define SFMMU_KERNEL_RELOC 0x8000 99 100 /* 101 * mode for sfmmu_chgattr 102 */ 103 #define SFMMU_SETATTR 0x0 104 #define SFMMU_CLRATTR 0x1 105 #define SFMMU_CHGATTR 0x2 106 107 /* 108 * sfmmu specific flags for page_t 109 */ 110 #define P_PNC 0x8 /* non-caching is permanent bit */ 111 #define P_TNC 0x10 /* non-caching is temporary bit */ 112 #define P_KPMS 0x20 /* kpm mapped small (vac alias prevention) */ 113 #define P_KPMC 0x40 /* kpm conflict page (vac alias prevention) */ 114 115 #define PP_GENERIC_ATTR(pp) ((pp)->p_nrm & (P_MOD | P_REF | P_RO)) 116 #define PP_ISMOD(pp) ((pp)->p_nrm & P_MOD) 117 #define PP_ISREF(pp) ((pp)->p_nrm & P_REF) 118 #define PP_ISRO(pp) ((pp)->p_nrm & P_RO) 119 #define PP_ISNC(pp) ((pp)->p_nrm & (P_PNC|P_TNC)) 120 #define PP_ISPNC(pp) ((pp)->p_nrm & P_PNC) 121 #ifdef VAC 122 #define PP_ISTNC(pp) ((pp)->p_nrm & P_TNC) 123 #endif 124 #define PP_ISKPMS(pp) ((pp)->p_nrm & P_KPMS) 125 #define PP_ISKPMC(pp) ((pp)->p_nrm & P_KPMC) 126 127 #define PP_SETMOD(pp) ((pp)->p_nrm |= P_MOD) 128 #define PP_SETREF(pp) ((pp)->p_nrm |= P_REF) 129 #define PP_SETREFMOD(pp) ((pp)->p_nrm |= (P_REF|P_MOD)) 130 #define PP_SETRO(pp) ((pp)->p_nrm |= P_RO) 131 #define PP_SETREFRO(pp) ((pp)->p_nrm |= (P_REF|P_RO)) 132 #define PP_SETPNC(pp) ((pp)->p_nrm |= P_PNC) 133 #ifdef VAC 134 #define PP_SETTNC(pp) ((pp)->p_nrm |= P_TNC) 135 #endif 136 #define PP_SETKPMS(pp) ((pp)->p_nrm |= P_KPMS) 137 #define PP_SETKPMC(pp) ((pp)->p_nrm |= P_KPMC) 138 139 #define PP_CLRMOD(pp) ((pp)->p_nrm &= ~P_MOD) 140 #define PP_CLRREF(pp) ((pp)->p_nrm &= ~P_REF) 141 #define PP_CLRREFMOD(pp) ((pp)->p_nrm &= ~(P_REF|P_MOD)) 142 #define PP_CLRRO(pp) ((pp)->p_nrm &= ~P_RO) 143 #define PP_CLRPNC(pp) ((pp)->p_nrm &= ~P_PNC) 144 #ifdef VAC 145 #define PP_CLRTNC(pp) ((pp)->p_nrm &= ~P_TNC) 146 #endif 147 #define PP_CLRKPMS(pp) ((pp)->p_nrm &= ~P_KPMS) 148 #define PP_CLRKPMC(pp) ((pp)->p_nrm &= ~P_KPMC) 149 150 /* 151 * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM) 152 * will be constrained to a 4M, 32M or 256M alignment. Also since every newly- 153 * created ISM segment is created out of a new address space at base va 154 * of 0 we don't need to store it. 155 */ 156 #define ISM_ALIGN(shift) (1 << shift) /* base va aligned to <n>M */ 157 #define ISM_ALIGNED(shift, va) (((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0) 158 #define ISM_SHIFT(shift, x) ((uintptr_t)x >> (shift)) 159 160 /* 161 * Pad locks out to cache sub-block boundaries to prevent 162 * false sharing, so several processes don't contend for 163 * the same line if they aren't using the same lock. Since 164 * this is a typedef we also have a bit of freedom in 165 * changing lock implementations later if we decide it 166 * is necessary. 167 */ 168 typedef struct hat_lock { 169 kmutex_t hl_mutex; 170 uchar_t hl_pad[64 - sizeof (kmutex_t)]; 171 } hatlock_t; 172 173 #define HATLOCK_MUTEXP(hatlockp) (&((hatlockp)->hl_mutex)) 174 175 /* 176 * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned. 177 * Also size is guaranteed to be in 4M, 32M or 256M chunks. 178 * ism_seg consists of the following members: 179 * [XX..22] base address of ism segment. XX is 63 or 31 depending whether 180 * caddr_t is 64 bits or 32 bits. 181 * [21..0] size of segment. 182 * 183 * NOTE: Don't alter this structure without changing defines above and 184 * the tsb_miss and protection handlers. 185 */ 186 typedef struct ism_map { 187 uintptr_t imap_seg; /* base va + sz of ISM segment */ 188 uchar_t imap_vb_shift; /* mmu_pageshift for ism page size */ 189 uchar_t imap_rid; /* region id for ism */ 190 ushort_t imap_hatflags; /* primary ism page size */ 191 uint_t imap_sz_mask; /* mmu_pagemask for ism page size */ 192 sfmmu_t *imap_ismhat; /* hat id of dummy ISM as */ 193 struct ism_ment *imap_ment; /* pointer to mapping list entry */ 194 } ism_map_t; 195 196 #define ism_start(map) ((caddr_t)((map).imap_seg & \ 197 ~ISM_SZ_MASK((map).imap_vb_shift))) 198 #define ism_size(map) ((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift)) 199 #define ism_end(map) ((caddr_t)(ism_start(map) + (ism_size(map) * \ 200 ISM_PG_SIZE((map).imap_vb_shift)))) 201 /* 202 * ISM mapping entry. Used to link all hat's sharing a ism_hat. 203 * Same function as the p_mapping list for a page. 204 */ 205 typedef struct ism_ment { 206 sfmmu_t *iment_hat; /* back pointer to hat_share() hat */ 207 caddr_t iment_base_va; /* hat's va base for this ism seg */ 208 struct ism_ment *iment_next; /* next ism map entry */ 209 struct ism_ment *iment_prev; /* prev ism map entry */ 210 } ism_ment_t; 211 212 /* 213 * ISM segment block. One will be hung off the sfmmu structure if a 214 * a process uses ISM. More will be linked using ismblk_next if more 215 * than ISM_MAP_SLOTS segments are attached to this proc. 216 * 217 * All modifications to fields in this structure will be protected 218 * by the hat mutex. In order to avoid grabbing this lock in low level 219 * routines (tsb miss/protection handlers and vatopfn) while not 220 * introducing any race conditions with hat_unshare, we will set 221 * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur 222 * for this ctx while this bit is set will be handled in sfmmu_tsb_excption 223 * where it will synchronize behind the hat mutex. 224 */ 225 typedef struct ism_blk { 226 ism_map_t iblk_maps[ISM_MAP_SLOTS]; 227 struct ism_blk *iblk_next; 228 uint64_t iblk_nextpa; 229 } ism_blk_t; 230 231 /* 232 * TSB access information. All fields are protected by the process's 233 * hat lock. 234 */ 235 236 struct tsb_info { 237 caddr_t tsb_va; /* tsb base virtual address */ 238 uint64_t tsb_pa; /* tsb base physical address */ 239 struct tsb_info *tsb_next; /* next tsb used by this process */ 240 uint16_t tsb_szc; /* tsb size code */ 241 uint16_t tsb_flags; /* flags for this tsb; see below */ 242 uint_t tsb_ttesz_mask; /* page size masks; see below */ 243 244 tte_t tsb_tte; /* tte to lock into DTLB */ 245 sfmmu_t *tsb_sfmmu; /* sfmmu */ 246 kmem_cache_t *tsb_cache; /* cache from which mem allocated */ 247 vmem_t *tsb_vmp; /* vmem arena from which mem alloc'd */ 248 }; 249 250 /* 251 * Values for "tsb_ttesz_mask" bitmask. 252 */ 253 #define TSB8K (1 << TTE8K) 254 #define TSB64K (1 << TTE64K) 255 #define TSB512K (1 << TTE512K) 256 #define TSB4M (1 << TTE4M) 257 #define TSB32M (1 << TTE32M) 258 #define TSB256M (1 << TTE256M) 259 260 /* 261 * Values for "tsb_flags" field. 262 */ 263 #define TSB_RELOC_FLAG 0x1 264 #define TSB_FLUSH_NEEDED 0x2 265 #define TSB_SWAPPED 0x4 266 #define TSB_SHAREDCTX 0x8 267 268 #endif /* !_ASM */ 269 270 /* 271 * Data structures for shared hmeblk support. 272 */ 273 274 /* 275 * Do not increase the maximum number of ism/hme regions without checking first 276 * the impact on ism_map_t, TSB miss area, hblk tag and region id type in 277 * sf_region structure. 278 * Initially, shared hmes will only be used for the main text segment 279 * therefore this value will be set to 64, it will be increased when shared 280 * libraries are included. 281 */ 282 283 #define SFMMU_MAX_HME_REGIONS (64) 284 #define SFMMU_HMERGNMAP_WORDS BT_BITOUL(SFMMU_MAX_HME_REGIONS) 285 286 #define SFMMU_PRIVATE 0 287 #define SFMMU_SHARED 1 288 289 #define HMEBLK_ENDPA 1 290 291 #ifndef _ASM 292 293 #define SFMMU_MAX_ISM_REGIONS (64) 294 #define SFMMU_ISMRGNMAP_WORDS BT_BITOUL(SFMMU_MAX_ISM_REGIONS) 295 296 #define SFMMU_RGNMAP_WORDS (SFMMU_HMERGNMAP_WORDS + SFMMU_ISMRGNMAP_WORDS) 297 298 #define SFMMU_MAX_REGION_BUCKETS (128) 299 #define SFMMU_MAX_SRD_BUCKETS (2048) 300 301 typedef struct sf_hmeregion_map { 302 ulong_t bitmap[SFMMU_HMERGNMAP_WORDS]; 303 } sf_hmeregion_map_t; 304 305 typedef struct sf_ismregion_map { 306 ulong_t bitmap[SFMMU_ISMRGNMAP_WORDS]; 307 } sf_ismregion_map_t; 308 309 typedef union sf_region_map_u { 310 struct _h_rmap_s { 311 sf_hmeregion_map_t hmeregion_map; 312 sf_ismregion_map_t ismregion_map; 313 } h_rmap_s; 314 ulong_t bitmap[SFMMU_RGNMAP_WORDS]; 315 } sf_region_map_t; 316 317 #define SF_RGNMAP_ZERO(map) { \ 318 int _i; \ 319 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 320 (map).bitmap[_i] = 0; \ 321 } \ 322 } 323 324 /* 325 * Returns 1 if map1 and map2 are equal. 326 */ 327 #define SF_RGNMAP_EQUAL(map1, map2, rval) { \ 328 int _i; \ 329 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 330 if ((map1)->bitmap[_i] != (map2)->bitmap[_i]) \ 331 break; \ 332 } \ 333 if (_i < SFMMU_RGNMAP_WORDS) \ 334 rval = 0; \ 335 else \ 336 rval = 1; \ 337 } 338 339 #define SF_RGNMAP_ADD(map, r) BT_SET((map).bitmap, r) 340 #define SF_RGNMAP_DEL(map, r) BT_CLEAR((map).bitmap, r) 341 #define SF_RGNMAP_TEST(map, r) BT_TEST((map).bitmap, r) 342 343 /* 344 * Tests whether map2 is a subset of map1, returns 1 if 345 * this assertion is true. 346 */ 347 #define SF_RGNMAP_IS_SUBSET(map1, map2, rval) { \ 348 int _i; \ 349 for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) { \ 350 if (((map1)->bitmap[_i] & (map2)->bitmap[_i]) \ 351 != (map2)->bitmap[_i]) { \ 352 break; \ 353 } \ 354 } \ 355 if (_i < SFMMU_RGNMAP_WORDS) \ 356 rval = 0; \ 357 else \ 358 rval = 1; \ 359 } 360 361 #define SF_SCD_INCR_REF(scdp) { \ 362 atomic_inc_32((volatile uint32_t *)&(scdp)->scd_refcnt); \ 363 } 364 365 #define SF_SCD_DECR_REF(srdp, scdp) { \ 366 sf_region_map_t _scd_rmap = (scdp)->scd_region_map; \ 367 if (!atomic_dec_32_nv((volatile uint32_t *)&(scdp)->scd_refcnt)) {\ 368 sfmmu_destroy_scd((srdp), (scdp), &_scd_rmap); \ 369 } \ 370 } 371 372 /* 373 * A sfmmup link in the link list of sfmmups that share the same region. 374 */ 375 typedef struct sf_rgn_link { 376 sfmmu_t *next; 377 sfmmu_t *prev; 378 } sf_rgn_link_t; 379 380 /* 381 * rgn_flags values. 382 */ 383 #define SFMMU_REGION_HME 0x1 384 #define SFMMU_REGION_ISM 0x2 385 #define SFMMU_REGION_FREE 0x8 386 387 #define SFMMU_REGION_TYPE_MASK (0x3) 388 389 /* 390 * sf_region defines a text or (D)ISM segment which map 391 * the same underlying physical object. 392 */ 393 typedef struct sf_region { 394 caddr_t rgn_saddr; /* base addr of attached seg */ 395 size_t rgn_size; /* size of attached seg */ 396 void *rgn_obj; /* the underlying object id */ 397 u_offset_t rgn_objoff; /* offset in the object mapped */ 398 uchar_t rgn_perm; /* PROT_READ/WRITE/EXEC */ 399 uchar_t rgn_pgszc; /* page size of the region */ 400 uchar_t rgn_flags; /* region type, free flag */ 401 uchar_t rgn_id; 402 int rgn_refcnt; /* # of hats sharing the region */ 403 /* callback function for hat_unload_callback */ 404 hat_rgn_cb_func_t rgn_cb_function; 405 struct sf_region *rgn_hash; /* hash chain linking the rgns */ 406 kmutex_t rgn_mutex; /* protect region sfmmu list */ 407 /* A link list of processes attached to this region */ 408 sfmmu_t *rgn_sfmmu_head; 409 ulong_t rgn_ttecnt[MMU_PAGE_SIZES]; 410 uint16_t rgn_hmeflags; /* rgn tte size flags */ 411 } sf_region_t; 412 413 #define rgn_next rgn_hash 414 415 /* srd */ 416 typedef struct sf_shared_region_domain { 417 vnode_t *srd_evp; /* executable vnode */ 418 /* hme region table */ 419 sf_region_t *srd_hmergnp[SFMMU_MAX_HME_REGIONS]; 420 /* ism region table */ 421 sf_region_t *srd_ismrgnp[SFMMU_MAX_ISM_REGIONS]; 422 /* hash chain linking srds */ 423 struct sf_shared_region_domain *srd_hash; 424 /* pointer to the next free hme region */ 425 sf_region_t *srd_hmergnfree; 426 /* pointer to the next free ism region */ 427 sf_region_t *srd_ismrgnfree; 428 /* id of next ism region created */ 429 uint16_t srd_next_ismrid; 430 /* id of next hme region created */ 431 uint16_t srd_next_hmerid; 432 uint16_t srd_ismbusyrgns; /* # of ism rgns in use */ 433 uint16_t srd_hmebusyrgns; /* # of hme rgns in use */ 434 int srd_refcnt; /* # of procs in the srd */ 435 kmutex_t srd_mutex; /* sync add/remove rgns */ 436 kmutex_t srd_scd_mutex; 437 sf_scd_t *srd_scdp; /* list of scds in srd */ 438 /* hash of regions associated with the same executable */ 439 sf_region_t *srd_rgnhash[SFMMU_MAX_REGION_BUCKETS]; 440 } sf_srd_t; 441 442 typedef struct sf_srd_bucket { 443 kmutex_t srdb_lock; 444 sf_srd_t *srdb_srdp; 445 } sf_srd_bucket_t; 446 447 /* 448 * The value of SFMMU_L1_HMERLINKS and SFMMU_L2_HMERLINKS will be increased 449 * to 16 when the use of shared hmes for shared libraries is enabled. 450 */ 451 452 #define SFMMU_L1_HMERLINKS (8) 453 #define SFMMU_L2_HMERLINKS (8) 454 #define SFMMU_L1_HMERLINKS_SHIFT (3) 455 #define SFMMU_L1_HMERLINKS_MASK (SFMMU_L1_HMERLINKS - 1) 456 #define SFMMU_L2_HMERLINKS_MASK (SFMMU_L2_HMERLINKS - 1) 457 #define SFMMU_L1_HMERLINKS_SIZE \ 458 (SFMMU_L1_HMERLINKS * sizeof (sf_rgn_link_t *)) 459 #define SFMMU_L2_HMERLINKS_SIZE \ 460 (SFMMU_L2_HMERLINKS * sizeof (sf_rgn_link_t)) 461 462 #if (SFMMU_L1_HMERLINKS * SFMMU_L2_HMERLINKS < SFMMU_MAX_HME_REGIONS) 463 #error Not Enough HMERLINKS 464 #endif 465 466 /* 467 * This macro grabs hat lock and allocates level 2 hat chain 468 * associated with a shme rgn. In the majority of cases, the macro 469 * is called with alloc = 0, and lock = 0. 470 * A pointer to the level 2 sf_rgn_link_t structure is returned in the lnkp 471 * parameter. 472 */ 473 #define SFMMU_HMERID2RLINKP(sfmmup, rid, lnkp, alloc, lock) \ 474 { \ 475 int _l1ix = ((rid) >> SFMMU_L1_HMERLINKS_SHIFT) & \ 476 SFMMU_L1_HMERLINKS_MASK; \ 477 int _l2ix = ((rid) & SFMMU_L2_HMERLINKS_MASK); \ 478 hatlock_t *_hatlockp; \ 479 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ 480 if (lnkp != NULL) { \ 481 lnkp = &lnkp[_l2ix]; \ 482 } else if (alloc && lock) { \ 483 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ 484 _hatlockp = sfmmu_hat_enter(sfmmup); \ 485 if ((sfmmup)->sfmmu_hmeregion_links[_l1ix] != NULL) { \ 486 sfmmu_hat_exit(_hatlockp); \ 487 kmem_free(lnkp, SFMMU_L2_HMERLINKS_SIZE); \ 488 lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix]; \ 489 ASSERT(lnkp != NULL); \ 490 } else { \ 491 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ 492 sfmmu_hat_exit(_hatlockp); \ 493 } \ 494 lnkp = &lnkp[_l2ix]; \ 495 } else if (alloc) { \ 496 lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP); \ 497 ASSERT((sfmmup)->sfmmu_hmeregion_links[_l1ix] == NULL); \ 498 (sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp; \ 499 lnkp = &lnkp[_l2ix]; \ 500 } \ 501 } 502 503 /* 504 * Per cpu pending freelist of hmeblks. 505 */ 506 typedef struct cpu_hme_pend { 507 struct hme_blk *chp_listp; 508 kmutex_t chp_mutex; 509 time_t chp_timestamp; 510 uint_t chp_count; 511 uint8_t chp_pad[36]; /* pad to 64 bytes */ 512 } cpu_hme_pend_t; 513 514 /* 515 * The default value of the threshold for the per cpu pending queues of hmeblks. 516 * The queues are flushed if either the number of hmeblks on the queue is above 517 * the threshold, or one second has elapsed since the last flush. 518 */ 519 #define CPU_HME_PEND_THRESH 1000 520 521 /* 522 * Per-MMU context domain kstats. 523 * 524 * TSB Miss Exceptions 525 * Number of times a TSB miss exception is handled in an MMU. See 526 * sfmmu_tsbmiss_exception() for more details. 527 * TSB Raise Exception 528 * Number of times the CPUs within an MMU are cross-called 529 * to invalidate either a specific process context (when the process 530 * switches MMU contexts) or the context of any process that is 531 * running on those CPUs (as part of the MMU context wrap-around). 532 * Wrap Around 533 * The number of times a wrap-around of MMU context happens. 534 */ 535 typedef enum mmu_ctx_stat_types { 536 MMU_CTX_TSB_EXCEPTIONS, /* TSB miss exceptions handled */ 537 MMU_CTX_TSB_RAISE_EXCEPTION, /* ctx invalidation cross calls */ 538 MMU_CTX_WRAP_AROUND, /* wraparounds */ 539 MMU_CTX_NUM_STATS 540 } mmu_ctx_stat_t; 541 542 /* 543 * Per-MMU context domain structure. This is instantiated the first time a CPU 544 * belonging to the MMU context domain is configured into the system, at boot 545 * time or at DR time. 546 * 547 * mmu_gnum 548 * The current generation number for the context IDs on this MMU context 549 * domain. It is protected by mmu_lock. 550 * mmu_cnum 551 * The current cnum to be allocated on this MMU context domain. It 552 * is protected via CAS. 553 * mmu_nctxs 554 * The max number of context IDs supported on every CPU in this 555 * MMU context domain. This is needed here in case the system supports 556 * mixed type of processors/MMUs. It also helps to make ctx switch code 557 * access fewer cache lines i.e. no need to retrieve it from some global 558 * nctxs. 559 * mmu_lock 560 * The mutex spin lock used to serialize context ID wrap around 561 * mmu_idx 562 * The index for this MMU context domain structure in the global array 563 * mmu_ctxdoms. 564 * mmu_ncpus 565 * The actual number of CPUs that have been configured in this 566 * MMU context domain. This also acts as a reference count for the 567 * structure. When the last CPU in an MMU context domain is unconfigured, 568 * the structure is freed. It is protected by mmu_lock. 569 * mmu_cpuset 570 * The CPU set of configured CPUs for this MMU context domain. Used 571 * to cross-call all the CPUs in the MMU context domain to invalidate 572 * context IDs during a wraparound operation. It is protected by mmu_lock. 573 */ 574 575 typedef struct mmu_ctx { 576 uint64_t mmu_gnum; 577 uint_t mmu_cnum; 578 uint_t mmu_nctxs; 579 kmutex_t mmu_lock; 580 uint_t mmu_idx; 581 uint_t mmu_ncpus; 582 cpuset_t mmu_cpuset; 583 kstat_t *mmu_kstat; 584 kstat_named_t mmu_kstat_data[MMU_CTX_NUM_STATS]; 585 } mmu_ctx_t; 586 587 #define mmu_tsb_exceptions \ 588 mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64 589 #define mmu_tsb_raise_exception \ 590 mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64 591 #define mmu_wrap_around \ 592 mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64 593 594 extern uint_t max_mmu_ctxdoms; 595 extern mmu_ctx_t **mmu_ctxs_tbl; 596 597 extern void sfmmu_cpu_init(cpu_t *); 598 extern void sfmmu_cpu_cleanup(cpu_t *); 599 600 extern uint_t sfmmu_ctxdom_nctxs(int); 601 602 #ifdef sun4v 603 extern void sfmmu_ctxdoms_remove(void); 604 extern void sfmmu_ctxdoms_lock(void); 605 extern void sfmmu_ctxdoms_unlock(void); 606 extern void sfmmu_ctxdoms_update(void); 607 #endif 608 609 /* 610 * The following structure is used to get MMU context domain information for 611 * a CPU from the platform. 612 * 613 * mmu_idx 614 * The MMU context domain index within the global array mmu_ctxs 615 * mmu_nctxs 616 * The number of context IDs supported in the MMU context domain 617 */ 618 typedef struct mmu_ctx_info { 619 uint_t mmu_idx; 620 uint_t mmu_nctxs; 621 } mmu_ctx_info_t; 622 623 #pragma weak plat_cpuid_to_mmu_ctx_info 624 625 extern void plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *); 626 627 /* 628 * Each address space has an array of sfmmu_ctx_t structures, one structure 629 * per MMU context domain. 630 * 631 * cnum 632 * The context ID allocated for an address space on an MMU context domain 633 * gnum 634 * The generation number for the context ID in the MMU context domain. 635 * 636 * This structure needs to be a power-of-two in size. 637 */ 638 typedef struct sfmmu_ctx { 639 uint64_t gnum:48; 640 uint64_t cnum:16; 641 } sfmmu_ctx_t; 642 643 644 /* 645 * The platform dependent hat structure. 646 * tte counts should be protected by cas. 647 * cpuset is protected by cas. 648 * 649 * ttecnt accounting for mappings which do not use shared hme is carried out 650 * during pagefault handling. In the shared hme case, only the first process 651 * to access a mapping generates a pagefault, subsequent processes simply 652 * find the shared hme entry during trap handling and therefore there is no 653 * corresponding event to initiate ttecnt accounting. Currently, as shared 654 * hmes are only used for text segments, when joining a region we assume the 655 * worst case and add the the number of ttes required to map the entire region 656 * to the ttecnt corresponding to the region pagesize. However, if the region 657 * has a 4M pagesize, and memory is low, the allocation of 4M pages may fail 658 * then 8K pages will be allocated instead and the first TSB which stores 8K 659 * mappings will potentially be undersized. To compensate for the potential 660 * underaccounting in this case we always add 1/4 of the region size to the 8K 661 * ttecnt. 662 */ 663 664 struct hat { 665 cpuset_t sfmmu_cpusran; /* cpu bit mask for efficient xcalls */ 666 struct as *sfmmu_as; /* as this hat provides mapping for */ 667 /* per pgsz private ttecnt + shme rgns ttecnt for rgns not in SCD */ 668 ulong_t sfmmu_ttecnt[MMU_PAGE_SIZES]; 669 /* shme rgns ttecnt for rgns in SCD */ 670 ulong_t sfmmu_scdrttecnt[MMU_PAGE_SIZES]; 671 /* est. ism ttes that are NOT in a SCD */ 672 ulong_t sfmmu_ismttecnt[MMU_PAGE_SIZES]; 673 /* ttecnt for isms that are in a SCD */ 674 ulong_t sfmmu_scdismttecnt[MMU_PAGE_SIZES]; 675 /* inflate tsb0 to allow for large page alloc failure in region */ 676 ulong_t sfmmu_tsb0_4minflcnt; 677 union _h_un { 678 ism_blk_t *sfmmu_iblkp; /* maps to ismhat(s) */ 679 ism_ment_t *sfmmu_imentp; /* ism hat's mapping list */ 680 } h_un; 681 uint_t sfmmu_free:1; /* hat to be freed - set on as_free */ 682 uint_t sfmmu_ismhat:1; /* hat is dummy ism hatid */ 683 uint_t sfmmu_scdhat:1; /* hat is dummy scd hatid */ 684 uchar_t sfmmu_rmstat; /* refmod stats refcnt */ 685 ushort_t sfmmu_clrstart; /* start color bin for page coloring */ 686 ushort_t sfmmu_clrbin; /* per as phys page coloring bin */ 687 ushort_t sfmmu_flags; /* flags */ 688 uchar_t sfmmu_tteflags; /* pgsz flags */ 689 uchar_t sfmmu_rtteflags; /* pgsz flags for SRD hmes */ 690 struct tsb_info *sfmmu_tsb; /* list of per as tsbs */ 691 uint64_t sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */ 692 lock_t sfmmu_ctx_lock; /* sync ctx alloc and invalidation */ 693 kcondvar_t sfmmu_tsb_cv; /* signals TSB swapin or relocation */ 694 uchar_t sfmmu_cext; /* context page size encoding */ 695 uint8_t sfmmu_pgsz[MMU_PAGE_SIZES]; /* ranking for MMU */ 696 sf_srd_t *sfmmu_srdp; 697 sf_scd_t *sfmmu_scdp; /* scd this address space belongs to */ 698 sf_region_map_t sfmmu_region_map; 699 sf_rgn_link_t *sfmmu_hmeregion_links[SFMMU_L1_HMERLINKS]; 700 sf_rgn_link_t sfmmu_scd_link; /* link to scd or pending queue */ 701 #ifdef sun4v 702 struct hv_tsb_block sfmmu_hvblock; 703 #endif 704 /* 705 * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of 706 * elements. max_mmu_ctxdoms is determined at run-time. 707 * sfmmu_ctxs[1] is just the fist element of an array, it always 708 * has to be the last field to ensure that the memory allocated 709 * for sfmmu_ctxs is consecutive with the memory of the rest of 710 * the hat data structure. 711 */ 712 sfmmu_ctx_t sfmmu_ctxs[1]; 713 714 }; 715 716 #define sfmmu_iblk h_un.sfmmu_iblkp 717 #define sfmmu_iment h_un.sfmmu_imentp 718 719 #define sfmmu_hmeregion_map sfmmu_region_map.h_rmap_s.hmeregion_map 720 #define sfmmu_ismregion_map sfmmu_region_map.h_rmap_s.ismregion_map 721 722 #define SF_RGNMAP_ISNULL(sfmmup) \ 723 (sfrgnmap_isnull(&(sfmmup)->sfmmu_region_map)) 724 #define SF_HMERGNMAP_ISNULL(sfmmup) \ 725 (sfhmergnmap_isnull(&(sfmmup)->sfmmu_hmeregion_map)) 726 727 struct sf_scd { 728 sfmmu_t *scd_sfmmup; /* shared context hat */ 729 /* per pgsz ttecnt for shme rgns in SCD */ 730 ulong_t scd_rttecnt[MMU_PAGE_SIZES]; 731 uint_t scd_refcnt; /* address spaces attached to scd */ 732 sf_region_map_t scd_region_map; /* bit mask of attached segments */ 733 sf_scd_t *scd_next; /* link pointers for srd_scd list */ 734 sf_scd_t *scd_prev; 735 sfmmu_t *scd_sf_list; /* list of doubly linked hat structs */ 736 kmutex_t scd_mutex; 737 /* 738 * Link used to add an scd to the sfmmu_iment list. 739 */ 740 ism_ment_t scd_ism_links[SFMMU_MAX_ISM_REGIONS]; 741 }; 742 743 #define scd_hmeregion_map scd_region_map.h_rmap_s.hmeregion_map 744 #define scd_ismregion_map scd_region_map.h_rmap_s.ismregion_map 745 746 extern int disable_shctx; 747 extern int shctx_on; 748 749 /* 750 * bit mask for managing vac conflicts on large pages. 751 * bit 1 is for uncache flag. 752 * bits 2 through min(num of cache colors + 1,31) are 753 * for cache colors that have already been flushed. 754 */ 755 #ifdef VAC 756 #define CACHE_NUM_COLOR (shm_alignment >> MMU_PAGESHIFT) 757 #else 758 #define CACHE_NUM_COLOR 1 759 #endif 760 761 #define CACHE_VCOLOR_MASK(vcolor) (2 << (vcolor & (CACHE_NUM_COLOR - 1))) 762 763 #define CacheColor_IsFlushed(flag, vcolor) \ 764 ((flag) & CACHE_VCOLOR_MASK(vcolor)) 765 766 #define CacheColor_SetFlushed(flag, vcolor) \ 767 ((flag) |= CACHE_VCOLOR_MASK(vcolor)) 768 /* 769 * Flags passed to sfmmu_page_cache to flush page from vac or not. 770 */ 771 #define CACHE_FLUSH 0 772 #define CACHE_NO_FLUSH 1 773 774 /* 775 * Flags passed to sfmmu_tlbcache_demap 776 */ 777 #define FLUSH_NECESSARY_CPUS 0 778 #define FLUSH_ALL_CPUS 1 779 780 #ifdef DEBUG 781 /* 782 * For debugging purpose only. Maybe removed later. 783 */ 784 struct ctx_trace { 785 sfmmu_t *sc_sfmmu_stolen; 786 sfmmu_t *sc_sfmmu_stealing; 787 clock_t sc_time; 788 ushort_t sc_type; 789 ushort_t sc_cnum; 790 }; 791 #define CTX_TRC_STEAL 0x1 792 #define CTX_TRC_FREE 0x0 793 #define TRSIZE 0x400 794 #define NEXT_CTXTR(ptr) (((ptr) >= ctx_trace_last) ? \ 795 ctx_trace_first : ((ptr) + 1)) 796 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \ 797 mutex_enter(mutex); \ 798 (ptr)->sc_sfmmu_stolen = (stolen_sfmmu); \ 799 (ptr)->sc_sfmmu_stealing = (stealing_sfmmu); \ 800 (ptr)->sc_cnum = (cnum); \ 801 (ptr)->sc_type = (type); \ 802 (ptr)->sc_time = ddi_get_lbolt(); \ 803 (ptr) = NEXT_CTXTR(ptr); \ 804 num_ctx_stolen += (type); \ 805 mutex_exit(mutex); 806 #else 807 808 #define TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) 809 810 #endif /* DEBUG */ 811 812 #endif /* !_ASM */ 813 814 /* 815 * Macros for sfmmup->sfmmu_flags access. The macros that change the flags 816 * ASSERT() that we're holding the HAT lock before changing the flags; 817 * however callers that read the flags may do so without acquiring the lock 818 * in a fast path, and then recheck the flag after acquiring the lock in 819 * a slow path. 820 */ 821 #define SFMMU_FLAGS_ISSET(sfmmup, flags) \ 822 (((sfmmup)->sfmmu_flags & (flags)) == (flags)) 823 824 #define SFMMU_FLAGS_CLEAR(sfmmup, flags) \ 825 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ 826 (sfmmup)->sfmmu_flags &= ~(flags)) 827 828 #define SFMMU_FLAGS_SET(sfmmup, flags) \ 829 (ASSERT(sfmmu_hat_lock_held((sfmmup))), \ 830 (sfmmup)->sfmmu_flags |= (flags)) 831 832 #define SFMMU_TTEFLAGS_ISSET(sfmmup, flags) \ 833 ((((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) & (flags)) == \ 834 (flags)) 835 836 837 /* 838 * sfmmu tte HAT flags, must fit in 8 bits 839 */ 840 #define HAT_CHKCTX1_FLAG 0x1 841 #define HAT_64K_FLAG (0x1 << TTE64K) 842 #define HAT_512K_FLAG (0x1 << TTE512K) 843 #define HAT_4M_FLAG (0x1 << TTE4M) 844 #define HAT_32M_FLAG (0x1 << TTE32M) 845 #define HAT_256M_FLAG (0x1 << TTE256M) 846 847 /* 848 * sfmmu HAT flags, 16 bits at the moment. 849 */ 850 #define HAT_4MTEXT_FLAG 0x01 851 #define HAT_32M_ISM 0x02 852 #define HAT_256M_ISM 0x04 853 #define HAT_SWAPPED 0x08 /* swapped out */ 854 #define HAT_SWAPIN 0x10 /* swapping in */ 855 #define HAT_BUSY 0x20 /* replacing TSB(s) */ 856 #define HAT_ISMBUSY 0x40 /* adding/removing/traversing ISM maps */ 857 858 #define HAT_CTX1_FLAG 0x100 /* ISM imap hatflag for ctx1 */ 859 #define HAT_JOIN_SCD 0x200 /* region is joining scd */ 860 #define HAT_ALLCTX_INVALID 0x400 /* all per-MMU ctxs are invalidated */ 861 862 #define SFMMU_LGPGS_INUSE(sfmmup) \ 863 (((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) || \ 864 ((sfmmup)->sfmmu_iblk != NULL)) 865 866 /* 867 * Starting with context 0, the first NUM_LOCKED_CTXS contexts 868 * are locked so that sfmmu_getctx can't steal any of these 869 * contexts. At the time this software was being developed, the 870 * only context that needs to be locked is context 0 (the kernel 871 * context), and context 1 (reserved for stolen context). So this constant 872 * was originally defined to be 2. 873 * 874 * For sun4v only, USER_CONTEXT_TYPE represents any user context. Many 875 * routines only care whether the context is kernel, invalid or user. 876 */ 877 878 #define NUM_LOCKED_CTXS 2 879 #define INVALID_CONTEXT 1 880 881 #ifdef sun4v 882 #define USER_CONTEXT_TYPE NUM_LOCKED_CTXS 883 #endif 884 #if defined(sun4v) || defined(UTSB_PHYS) 885 /* 886 * Get the location in the 4MB base TSB of the tsbe for this fault. 887 * Assumes that the second TSB only contains 4M mappings. 888 * 889 * In: 890 * tagacc = tag access register (not clobbered) 891 * tsbe = 2nd TSB base register 892 * tmp1, tmp2 = scratch registers 893 * Out: 894 * tsbe = pointer to the tsbe in the 2nd TSB 895 */ 896 897 #define GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 898 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ 899 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ 900 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ 901 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ 902 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ 903 srlx tagacc, MMU_PAGESHIFT4M, tmp2; \ 904 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ 905 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ 906 add tsbe, tmp1, tsbe /* add entry offset to TSB base */ 907 908 #define GET_2ND_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 909 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) 910 911 /* 912 * Get the location in the 3rd TSB of the tsbe for this fault. 913 * The 3rd TSB corresponds to the shared context, and is used 914 * for 8K - 512k pages. 915 * 916 * In: 917 * tagacc = tag access register (not clobbered) 918 * tsbe, tmp1, tmp2 = scratch registers 919 * Out: 920 * tsbe = pointer to the tsbe in the 3rd TSB 921 */ 922 923 #define GET_3RD_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 924 and tsbe, TSB_SOFTSZ_MASK, tmp2; /* tmp2=szc */ \ 925 andn tsbe, TSB_SOFTSZ_MASK, tsbe; /* tsbbase */ \ 926 mov TSB_ENTRIES(0), tmp1; /* nentries in TSB size 0 */ \ 927 sllx tmp1, tmp2, tmp1; /* tmp1 = nentries in TSB */ \ 928 sub tmp1, 1, tmp1; /* mask = nentries - 1 */ \ 929 srlx tagacc, MMU_PAGESHIFT, tmp2; \ 930 and tmp2, tmp1, tmp1; /* tsbent = virtpage & mask */ \ 931 sllx tmp1, TSB_ENTRY_SHIFT, tmp1; /* entry num --> ptr */ \ 932 add tsbe, tmp1, tsbe /* add entry offset to TSB base */ 933 934 #define GET_4TH_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) \ 935 GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2) 936 /* 937 * Copy the sfmmu_region_map or scd_region_map to the tsbmiss 938 * shmermap or scd_shmermap, from sfmmu_load_mmustate. 939 */ 940 #define SET_REGION_MAP(rgn_map, tsbmiss_map, cnt, tmp, label) \ 941 /* BEGIN CSTYLED */ \ 942 label: ;\ 943 ldx [rgn_map], tmp ;\ 944 dec cnt ;\ 945 add rgn_map, CLONGSIZE, rgn_map ;\ 946 stx tmp, [tsbmiss_map] ;\ 947 brnz,pt cnt, label ;\ 948 add tsbmiss_map, CLONGSIZE, tsbmiss_map \ 949 /* END CSTYLED */ 950 951 /* 952 * If there is no scd, then zero the tsbmiss scd_shmermap, 953 * from sfmmu_load_mmustate. 954 */ 955 #define ZERO_REGION_MAP(tsbmiss_map, cnt, label) \ 956 /* BEGIN CSTYLED */ \ 957 label: ;\ 958 dec cnt ;\ 959 stx %g0, [tsbmiss_map] ;\ 960 brnz,pt cnt, label ;\ 961 add tsbmiss_map, CLONGSIZE, tsbmiss_map 962 /* END CSTYLED */ 963 964 /* 965 * Set hmemisc to 1 if the shared hme is also part of an scd. 966 * In: 967 * tsbarea = tsbmiss area (not clobbered) 968 * hmeblkpa = hmeblkpa + hmentoff + SFHME_TTE (not clobbered) 969 * hmentoff = hmentoff + SFHME_TTE = tte offset(clobbered) 970 * Out: 971 * use_shctx = 1 if shme is in scd and 0 otherwise 972 */ 973 #define GET_SCDSHMERMAP(tsbarea, hmeblkpa, hmentoff, use_shctx) \ 974 /* BEGIN CSTYLED */ \ 975 sub hmeblkpa, hmentoff, hmentoff /* hmentofff = hmeblkpa */ ;\ 976 add hmentoff, HMEBLK_TAG, hmentoff ;\ 977 ldxa [hmentoff]ASI_MEM, hmentoff /* read 1st part of tag */ ;\ 978 and hmentoff, HTAG_RID_MASK, hmentoff /* mask off rid */ ;\ 979 and hmentoff, BT_ULMASK, use_shctx /* mask bit index */ ;\ 980 srlx hmentoff, BT_ULSHIFT, hmentoff /* extract word */ ;\ 981 sllx hmentoff, CLONGSHIFT, hmentoff /* index */ ;\ 982 add tsbarea, hmentoff, hmentoff /* add to tsbarea */ ;\ 983 ldx [hmentoff + TSBMISS_SCDSHMERMAP], hmentoff /* scdrgn */ ;\ 984 srlx hmentoff, use_shctx, use_shctx ;\ 985 and use_shctx, 0x1, use_shctx \ 986 /* END CSTYLED */ 987 988 /* 989 * Synthesize a TSB base register contents for a process. 990 * 991 * In: 992 * tsbinfo = TSB info pointer (ro) 993 * tsbreg, tmp1 = scratch registers 994 * Out: 995 * tsbreg = value to program into TSB base register 996 */ 997 998 #define MAKE_UTSBREG(tsbinfo, tsbreg, tmp1) \ 999 ldx [tsbinfo + TSBINFO_PADDR], tsbreg; \ 1000 lduh [tsbinfo + TSBINFO_SZCODE], tmp1; \ 1001 and tmp1, TSB_SOFTSZ_MASK, tmp1; \ 1002 or tsbreg, tmp1, tsbreg; 1003 1004 1005 /* 1006 * Load TSB base register to TSBMISS area for privte contexts. 1007 * This register contains utsb_pabase in bits 63:13, and TSB size 1008 * code in bits 2:0. 1009 * 1010 * For private context 1011 * In: 1012 * tsbreg = value to load (ro) 1013 * regnum = constant or register 1014 * tmp1 = scratch register 1015 * Out: 1016 * Specified scratchpad register updated 1017 * 1018 */ 1019 #define SET_UTSBREG(regnum, tsbreg, tmp1) \ 1020 mov regnum, tmp1; \ 1021 stxa tsbreg, [tmp1]ASI_SCRATCHPAD /* save tsbreg */ 1022 /* 1023 * Get TSB base register from the scratchpad for private contexts 1024 * 1025 * In: 1026 * regnum = constant or register 1027 * tsbreg = scratch 1028 * Out: 1029 * tsbreg = tsbreg from the specified scratchpad register 1030 */ 1031 #define GET_UTSBREG(regnum, tsbreg) \ 1032 mov regnum, tsbreg; \ 1033 ldxa [tsbreg]ASI_SCRATCHPAD, tsbreg 1034 1035 /* 1036 * Load TSB base register to TSBMISS area for shared contexts. 1037 * This register contains utsb_pabase in bits 63:13, and TSB size 1038 * code in bits 2:0. 1039 * 1040 * In: 1041 * tsbmiss = pointer to tsbmiss area 1042 * tsbmissoffset = offset to right tsb pointer 1043 * tsbreg = value to load (ro) 1044 * Out: 1045 * Specified tsbmiss area updated 1046 * 1047 */ 1048 #define SET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ 1049 stx tsbreg, [tsbmiss + tsbmissoffset] /* save tsbreg */ 1050 1051 /* 1052 * Get TSB base register from the scratchpad for 1053 * shared contexts 1054 * 1055 * In: 1056 * tsbmiss = pointer to tsbmiss area 1057 * tsbmissoffset = offset to right tsb pointer 1058 * tsbreg = scratch 1059 * Out: 1060 * tsbreg = tsbreg from the specified scratchpad register 1061 */ 1062 #define GET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg) \ 1063 ldx [tsbmiss + tsbmissoffset], tsbreg 1064 1065 #endif /* defined(sun4v) || defined(UTSB_PHYS) */ 1066 1067 #ifndef _ASM 1068 1069 /* 1070 * Kernel page relocation stuff. 1071 */ 1072 struct sfmmu_callback { 1073 int key; 1074 int (*prehandler)(caddr_t, uint_t, uint_t, void *); 1075 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t); 1076 int (*errhandler)(caddr_t, uint_t, uint_t, void *); 1077 int capture_cpus; 1078 }; 1079 1080 extern int sfmmu_max_cb_id; 1081 extern struct sfmmu_callback *sfmmu_cb_table; 1082 1083 struct pa_hment; 1084 1085 /* 1086 * RFE: With multihat gone we gain back an int. We could use this to 1087 * keep ref bits on a per cpu basis to eliminate xcalls. 1088 */ 1089 struct sf_hment { 1090 tte_t hme_tte; /* tte for this hment */ 1091 1092 union { 1093 struct page *page; /* what page this maps */ 1094 struct pa_hment *data; /* pa_hment */ 1095 } sf_hment_un; 1096 1097 struct sf_hment *hme_next; /* next hment */ 1098 struct sf_hment *hme_prev; /* prev hment */ 1099 }; 1100 1101 struct pa_hment { 1102 caddr_t addr; /* va */ 1103 uint_t len; /* bytes */ 1104 ushort_t flags; /* internal flags */ 1105 ushort_t refcnt; /* reference count */ 1106 id_t cb_id; /* callback id, table index */ 1107 void *pvt; /* handler's private data */ 1108 struct sf_hment sfment; /* corresponding dummy sf_hment */ 1109 }; 1110 1111 #define hme_page sf_hment_un.page 1112 #define hme_data sf_hment_un.data 1113 #define hme_size(sfhmep) ((int)(TTE_CSZ(&(sfhmep)->hme_tte))) 1114 #define PAHME_SZ (sizeof (struct pa_hment)) 1115 #define SFHME_SZ (sizeof (struct sf_hment)) 1116 1117 #define IS_PAHME(hme) ((hme)->hme_tte.ll == 0) 1118 1119 /* 1120 * hmeblk_tag structure 1121 * structure used to obtain a match on a hme_blk. Currently consists of 1122 * the address of the sfmmu struct (or hatid), the base page address of the 1123 * hme_blk, and the rehash count. The rehash count is actually only 2 bits 1124 * and has the following meaning: 1125 * 1 = 8k or 64k hash sequence. 1126 * 2 = 512k hash sequence. 1127 * 3 = 4M hash sequence. 1128 * We require this count because we don't want to get a false hit on a 512K or 1129 * 4M rehash with a base address corresponding to a 8k or 64k hmeblk. 1130 * Note: The ordering and size of the hmeblk_tag members are implictly known 1131 * by the tsb miss handlers written in assembly. Do not change this structure 1132 * without checking those routines. See HTAG_SFMMUPSZ define. 1133 */ 1134 1135 /* 1136 * In private hmeblks hblk_rid field must be SFMMU_INVALID_RID. 1137 */ 1138 typedef union { 1139 struct { 1140 uint64_t hblk_basepg: 51, /* hme_blk base pg # */ 1141 hblk_rehash: 3, /* rehash number */ 1142 hblk_rid: 10; /* hme_blk region id */ 1143 void *hblk_id; 1144 } hblk_tag_un; 1145 uint64_t htag_tag[2]; 1146 } hmeblk_tag; 1147 1148 #define htag_id hblk_tag_un.hblk_id 1149 #define htag_bspage hblk_tag_un.hblk_basepg 1150 #define htag_rehash hblk_tag_un.hblk_rehash 1151 #define htag_rid hblk_tag_un.hblk_rid 1152 1153 #endif /* !_ASM */ 1154 1155 #define HTAG_REHASH_SHIFT 10 1156 #define HTAG_MAX_RID (((0x1 << HTAG_REHASH_SHIFT) - 1)) 1157 #define HTAG_RID_MASK HTAG_MAX_RID 1158 1159 /* used for tagging all per sfmmu (i.e. non SRD) private hmeblks */ 1160 #define SFMMU_INVALID_SHMERID HTAG_MAX_RID 1161 1162 #if SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS 1163 #error SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS 1164 #endif 1165 1166 #define SFMMU_IS_SHMERID_VALID(rid) ((rid) != SFMMU_INVALID_SHMERID) 1167 1168 /* ISM regions */ 1169 #define SFMMU_INVALID_ISMRID 0xff 1170 1171 #if SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS 1172 #error SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS 1173 #endif 1174 1175 #define SFMMU_IS_ISMRID_VALID(rid) ((rid) != SFMMU_INVALID_ISMRID) 1176 1177 1178 #define HTAGS_EQ(tag1, tag2) (((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \ 1179 (tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0) 1180 1181 /* 1182 * this macro must only be used for comparing tags in shared hmeblks. 1183 */ 1184 #define HTAGS_EQ_SHME(hmetag, tag, hrmap) \ 1185 (((hmetag).htag_rid != SFMMU_INVALID_SHMERID) && \ 1186 (((((hmetag).htag_tag[0] ^ (tag).htag_tag[0]) & \ 1187 ~HTAG_RID_MASK) | \ 1188 ((hmetag).htag_tag[1] ^ (tag).htag_tag[1])) == 0) && \ 1189 SF_RGNMAP_TEST(hrmap, hmetag.htag_rid)) 1190 1191 #define HME_REHASH(sfmmup) \ 1192 ((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 || \ 1193 (sfmmup)->sfmmu_ttecnt[TTE4M] != 0 || \ 1194 (sfmmup)->sfmmu_ttecnt[TTE32M] != 0 || \ 1195 (sfmmup)->sfmmu_ttecnt[TTE256M] != 0) 1196 1197 #define NHMENTS 8 /* # of hments in an 8k hme_blk */ 1198 /* needs to be multiple of 2 */ 1199 1200 #ifndef _ASM 1201 1202 #ifdef HBLK_TRACE 1203 1204 #define HBLK_LOCK 1 1205 #define HBLK_UNLOCK 0 1206 #define HBLK_STACK_DEPTH 6 1207 #define HBLK_AUDIT_CACHE_SIZE 16 1208 #define HBLK_LOCK_PATTERN 0xaaaaaaaa 1209 #define HBLK_UNLOCK_PATTERN 0xbbbbbbbb 1210 1211 struct hblk_lockcnt_audit { 1212 int flag; /* lock or unlock */ 1213 kthread_id_t thread; 1214 int depth; 1215 pc_t stack[HBLK_STACK_DEPTH]; 1216 }; 1217 1218 #endif /* HBLK_TRACE */ 1219 1220 1221 /* 1222 * Hment block structure. 1223 * The hme_blk is the node data structure which the hash structure 1224 * mantains. An hme_blk can have 2 different sizes depending on the 1225 * number of hments it implicitly contains. When dealing with 64K, 512K, 1226 * or 4M hments there is one hment per hme_blk. When dealing with 1227 * 8k hments we allocate an hme_blk plus an additional 7 hments to 1228 * give us a total of 8 (NHMENTS) hments that can be referenced through a 1229 * hme_blk. 1230 * 1231 * The hmeblk structure contains 2 tte reference counters used to determine if 1232 * it is ok to free up the hmeblk. Both counters have to be zero in order 1233 * to be able to free up hmeblk. They are protected by cas. 1234 * hblk_hmecnt is the number of hments present on pp mapping lists. 1235 * hblk_vcnt reflects number of valid ttes in hmeblk. 1236 * 1237 * The hmeblk now also has per tte lock cnts. This is required because 1238 * the counts can be high and there are not enough bits in the tte. When 1239 * physio is fixed to not lock the translations we should be able to move 1240 * the lock cnt back to the tte. See bug id 1198554. 1241 */ 1242 1243 struct hme_blk_misc { 1244 uint_t notused:26; 1245 uint_t shared_bit:1; /* set for SRD shared hmeblk */ 1246 uint_t shadow_bit:1; /* set for a shadow hme_blk */ 1247 uint_t nucleus_bit:1; /* set for a nucleus hme_blk */ 1248 uint_t ttesize:3; /* contains ttesz of hmeblk */ 1249 }; 1250 1251 struct hme_blk { 1252 volatile uint64_t hblk_nextpa; /* physical address for hash list */ 1253 1254 hmeblk_tag hblk_tag; /* tag used to obtain an hmeblk match */ 1255 1256 struct hme_blk *hblk_next; /* on free list or on hash list */ 1257 /* protected by hash lock */ 1258 1259 struct hme_blk *hblk_shadow; /* pts to shadow hblk */ 1260 /* protected by hash lock */ 1261 uint_t hblk_span; /* span of memory hmeblk maps */ 1262 1263 struct hme_blk_misc hblk_misc; 1264 1265 union { 1266 struct { 1267 ushort_t hblk_hmecount; /* hment on mlists counter */ 1268 ushort_t hblk_validcnt; /* valid tte reference count */ 1269 } hblk_counts; 1270 uint_t hblk_shadow_mask; 1271 } hblk_un; 1272 1273 uint_t hblk_lckcnt; 1274 1275 #ifdef HBLK_TRACE 1276 kmutex_t hblk_audit_lock; /* lock to protect index */ 1277 uint_t hblk_audit_index; /* index into audit_cache */ 1278 struct hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE]; 1279 #endif /* HBLK_AUDIT */ 1280 1281 struct sf_hment hblk_hme[1]; /* hment array */ 1282 }; 1283 1284 #define hblk_shared hblk_misc.shared_bit 1285 #define hblk_shw_bit hblk_misc.shadow_bit 1286 #define hblk_nuc_bit hblk_misc.nucleus_bit 1287 #define hblk_ttesz hblk_misc.ttesize 1288 #define hblk_hmecnt hblk_un.hblk_counts.hblk_hmecount 1289 #define hblk_vcnt hblk_un.hblk_counts.hblk_validcnt 1290 #define hblk_shw_mask hblk_un.hblk_shadow_mask 1291 1292 #define MAX_HBLK_LCKCNT 0xFFFFFFFF 1293 #define HMEBLK_ALIGN 0x8 /* hmeblk has to be double aligned */ 1294 1295 #ifdef HBLK_TRACE 1296 1297 #define HBLK_STACK_TRACE(hmeblkp, lock) \ 1298 { \ 1299 int flag = lock; /* to pacify lint */ \ 1300 int audit_index; \ 1301 \ 1302 mutex_enter(&hmeblkp->hblk_audit_lock); \ 1303 audit_index = hmeblkp->hblk_audit_index; \ 1304 hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) & \ 1305 (HBLK_AUDIT_CACHE_SIZE - 1)); \ 1306 mutex_exit(&hmeblkp->hblk_audit_lock); \ 1307 \ 1308 if (flag) \ 1309 hmeblkp->hblk_audit_cache[audit_index].flag = \ 1310 HBLK_LOCK_PATTERN; \ 1311 else \ 1312 hmeblkp->hblk_audit_cache[audit_index].flag = \ 1313 HBLK_UNLOCK_PATTERN; \ 1314 \ 1315 hmeblkp->hblk_audit_cache[audit_index].thread = curthread; \ 1316 hmeblkp->hblk_audit_cache[audit_index].depth = \ 1317 getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack, \ 1318 HBLK_STACK_DEPTH); \ 1319 } 1320 1321 #else 1322 1323 #define HBLK_STACK_TRACE(hmeblkp, lock) 1324 1325 #endif /* HBLK_TRACE */ 1326 1327 #define HMEHASH_FACTOR 16 /* used to calc # of buckets in hme hash */ 1328 1329 /* 1330 * A maximum number of user hmeblks is defined in order to place an upper 1331 * limit on how much nucleus memory is required and to avoid overflowing the 1332 * tsbmiss uhashsz and khashsz data areas. The number below corresponds to 1333 * the number of buckets required, for an average hash chain length of 4 on 1334 * a 16TB machine. 1335 */ 1336 1337 #define MAX_UHME_BUCKETS (0x1 << 30) 1338 #define MAX_KHME_BUCKETS (0x1 << 30) 1339 1340 /* 1341 * The minimum number of kernel hash buckets. 1342 */ 1343 #define MIN_KHME_BUCKETS 0x800 1344 1345 /* 1346 * The number of hash buckets must be a power of 2. If the initial calculated 1347 * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater 1348 * power of 2, otherwise we round down to avoid huge over allocations. 1349 */ 1350 #define USER_BUCKETS_THRESHOLD (1<<22) 1351 1352 #define MAX_NUCUHME_BUCKETS 0x4000 1353 #define MAX_NUCKHME_BUCKETS 0x2000 1354 1355 /* 1356 * There are 2 locks in the hmehash bucket. The hmehash_mutex is 1357 * a regular mutex used to make sure operations on a hash link are only 1358 * done by one thread. Any operation which comes into the hat with 1359 * a <vaddr, as> will grab the hmehash_mutex. Normally one would expect 1360 * the tsb miss handlers to grab the hash lock to make sure the hash list 1361 * is consistent while we traverse it. Unfortunately this can lead to 1362 * deadlocks or recursive mutex enters since it is possible for 1363 * someone holding the lock to take a tlb/tsb miss. 1364 * To solve this problem we have added the hmehash_listlock. This lock 1365 * is only grabbed by the tsb miss handlers, vatopfn, and while 1366 * adding/removing a hmeblk from the hash list. The code is written to 1367 * guarantee we won't take a tlb miss while holding this lock. 1368 */ 1369 struct hmehash_bucket { 1370 kmutex_t hmehash_mutex; 1371 volatile uint64_t hmeh_nextpa; /* physical address for hash list */ 1372 struct hme_blk *hmeblkp; 1373 uint_t hmeh_listlock; 1374 }; 1375 1376 #endif /* !_ASM */ 1377 1378 #define SFMMU_PGCNT_MASK 0x3f 1379 #define SFMMU_PGCNT_SHIFT 6 1380 #define INVALID_MMU_ID -1 1381 #define SFMMU_MMU_GNUM_RSHIFT 16 1382 #define SFMMU_MMU_CNUM_LSHIFT (64 - SFMMU_MMU_GNUM_RSHIFT) 1383 #define MAX_SFMMU_CTX_VAL ((1 << 16) - 1) /* for sanity check */ 1384 #define MAX_SFMMU_GNUM_VAL ((0x1UL << 48) - 1) 1385 1386 /* 1387 * The tsb miss handlers written in assembly know that sfmmup 1388 * is a 64 bit ptr. 1389 * 1390 * The bspage and re-hash part is 64 bits, with the sfmmup being another 64 1391 * bits. 1392 */ 1393 #define HTAG_SFMMUPSZ 0 /* Not really used for LP64 */ 1394 #define HTAG_BSPAGE_SHIFT 13 1395 1396 /* 1397 * Assembly routines need to be able to get to ttesz 1398 */ 1399 #define HBLK_SZMASK 0x7 1400 1401 #ifndef _ASM 1402 1403 /* 1404 * Returns the number of bytes that an hmeblk spans given its tte size 1405 */ 1406 #define get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span) 1407 #define get_hblk_ttesz(hmeblkp) ((hmeblkp)->hblk_ttesz) 1408 #define get_hblk_cache(hmeblkp) (((hmeblkp)->hblk_ttesz == TTE8K) ? \ 1409 sfmmu8_cache : sfmmu1_cache) 1410 #define HMEBLK_SPAN(ttesz) \ 1411 ((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz)) 1412 1413 #define set_hblk_sz(hmeblkp, ttesz) \ 1414 (hmeblkp)->hblk_ttesz = (ttesz); \ 1415 (hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz) 1416 1417 #define get_hblk_base(hmeblkp) \ 1418 ((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT) 1419 1420 #define get_hblk_endaddr(hmeblkp) \ 1421 ((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp))) 1422 1423 #define in_hblk_range(hmeblkp, vaddr) \ 1424 (((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) && \ 1425 ((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) + \ 1426 get_hblk_span(hmeblkp)))) 1427 1428 #define tte_to_vaddr(hmeblkp, tte) ((caddr_t)(get_hblk_base(hmeblkp) \ 1429 + (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum))) 1430 1431 #define tte_to_evaddr(hmeblkp, ttep) ((caddr_t)(get_hblk_base(hmeblkp) \ 1432 + (TTEBYTES(TTE_CSZ(ttep)) * ((ttep)->tte_hmenum + 1)))) 1433 1434 #define vaddr_to_vshift(hblktag, vaddr, shwsz) \ 1435 ((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\ 1436 TTE_BSZS_SHIFT((shwsz) - 1)) 1437 1438 #define HME8BLK_SZ (sizeof (struct hme_blk) + \ 1439 (NHMENTS - 1) * sizeof (struct sf_hment)) 1440 #define HME1BLK_SZ (sizeof (struct hme_blk)) 1441 #define H1MIN (2 + MAX_BIGKTSB_TTES) /* nucleus text+data, ktsb */ 1442 1443 /* 1444 * Hme_blk hash structure 1445 * Active mappings are kept in a hash structure of hme_blks. The hash 1446 * function is based on (ctx, vaddr) The size of the hash table size is a 1447 * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN. 1448 * The hash actually consists of 2 separate hashes. One hash is for the user 1449 * address space and the other hash is for the kernel address space. 1450 * The number of buckets are calculated at boot time and stored in the global 1451 * variables "uhmehash_num" and "khmehash_num". By making the hash table size 1452 * a power of 2 we can use a simply & function to derive an index instead of 1453 * a divide. 1454 * 1455 * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash 1456 * bucket. 1457 * An hme hash bucket contains a pointer to an hme_blk and the mutex that 1458 * protects the link list. 1459 * Spitfire supports 4 page sizes. 8k and 64K pages only need one hash. 1460 * 512K pages need 2 hashes and 4M pages need 3 hashes. 1461 * The 'shift' parameter controls how many bits the vaddr will be shifted in 1462 * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function 1463 * and it varies depending on the page size as follows: 1464 * 8k pages: HBLK_RANGE_SHIFT 1465 * 64k pages: MMU_PAGESHIFT64K 1466 * 512K pages: MMU_PAGESHIFT512K 1467 * 4M pages: MMU_PAGESHIFT4M 1468 * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All 1469 * changes should be reflected in both versions. This function and the TSB 1470 * miss handlers are the only places which know about the two hashes. 1471 * 1472 * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall 1473 * into the same bucket for a particular process. It is currently set to 1474 * be equivalent to 64K range or one hme_blk. 1475 * 1476 * The hme_blks in the hash are protected by a per hash bucket mutex 1477 * known as SFMMU_HASH_LOCK. 1478 * You need to acquire this lock before traversing the hash bucket link 1479 * list, while adding/removing a hme_blk to the list, and while 1480 * modifying an hme_blk. A possible optimization is to replace these 1481 * mutexes by readers/writer lock but right now it is not clear whether 1482 * this is a win or not. 1483 * 1484 * The HME_HASH_TABLE_SEARCH will search the hash table for the 1485 * hme_blk that contains the hment that corresponds to the passed 1486 * ctx and vaddr. It assumed the SFMMU_HASH_LOCK is held. 1487 */ 1488 1489 #endif /* ! _ASM */ 1490 1491 #define KHATID ksfmmup 1492 #define UHMEHASH_SZ uhmehash_num 1493 #define KHMEHASH_SZ khmehash_num 1494 #define HMENT_HASHAVELEN 4 1495 #define HBLK_RANGE_SHIFT MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */ 1496 #define HBLK_MIN_TTESZ 1 1497 #define HBLK_MIN_BYTES MMU_PAGESIZE64K 1498 #define HBLK_MIN_SHIFT MMU_PAGESHIFT64K 1499 #define MAX_HASHCNT 5 1500 #define DEFAULT_MAX_HASHCNT 3 1501 1502 #ifndef _ASM 1503 1504 #define HASHADDR_MASK(hashno) TTE_PAGEMASK(hashno) 1505 1506 #define HME_HASH_SHIFT(ttesz) \ 1507 ((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz)) 1508 1509 #define HME_HASH_ADDR(vaddr, hmeshift) \ 1510 ((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift))) 1511 1512 #define HME_HASH_BSPAGE(vaddr, hmeshift) \ 1513 (((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT)) 1514 1515 #define HME_HASH_REHASH(ttesz) \ 1516 (((ttesz) < TTE512K)? 1 : (ttesz)) 1517 1518 #define HME_HASH_FUNCTION(hatid, vaddr, shift) \ 1519 ((((void *)hatid) != ((void *)KHATID)) ? \ 1520 (&uhme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ 1521 UHMEHASH_SZ) ]): \ 1522 (&khme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \ 1523 KHMEHASH_SZ) ])) 1524 1525 /* 1526 * This macro will traverse a hmeblk hash link list looking for an hme_blk 1527 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp 1528 * will be set to NULL, otherwise it will point to the correct hme_blk. 1529 * This macro also cleans empty hblks. 1530 */ 1531 #define HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, pr_hblk, listp) \ 1532 { \ 1533 struct hme_blk *nx_hblk; \ 1534 \ 1535 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ 1536 hblkp = hmebp->hmeblkp; \ 1537 pr_hblk = NULL; \ 1538 while (hblkp) { \ 1539 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ 1540 /* found hme_blk */ \ 1541 break; \ 1542 } \ 1543 nx_hblk = hblkp->hblk_next; \ 1544 if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) { \ 1545 sfmmu_hblk_hash_rm(hmebp, hblkp, pr_hblk, \ 1546 listp, 0); \ 1547 } else { \ 1548 pr_hblk = hblkp; \ 1549 } \ 1550 hblkp = nx_hblk; \ 1551 } \ 1552 } 1553 1554 #define HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp) \ 1555 { \ 1556 struct hme_blk *pr_hblk; \ 1557 \ 1558 HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, pr_hblk, listp); \ 1559 } 1560 1561 /* 1562 * This macro will traverse a hmeblk hash link list looking for an hme_blk 1563 * that owns the specified vaddr and hatid. If if doesn't find one , hmeblkp 1564 * will be set to NULL, otherwise it will point to the correct hme_blk. 1565 * It doesn't remove empty hblks. 1566 */ 1567 #define HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp) \ 1568 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); \ 1569 for (hblkp = hmebp->hmeblkp; hblkp; \ 1570 hblkp = hblkp->hblk_next) { \ 1571 if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) { \ 1572 /* found hme_blk */ \ 1573 break; \ 1574 } \ 1575 } 1576 1577 #define SFMMU_HASH_LOCK(hmebp) \ 1578 (mutex_enter(&hmebp->hmehash_mutex)) 1579 1580 #define SFMMU_HASH_UNLOCK(hmebp) \ 1581 (mutex_exit(&hmebp->hmehash_mutex)) 1582 1583 #define SFMMU_HASH_LOCK_TRYENTER(hmebp) \ 1584 (mutex_tryenter(&hmebp->hmehash_mutex)) 1585 1586 #define SFMMU_HASH_LOCK_ISHELD(hmebp) \ 1587 (mutex_owned(&hmebp->hmehash_mutex)) 1588 1589 #define SFMMU_XCALL_STATS(sfmmup) \ 1590 { \ 1591 if (sfmmup == ksfmmup) { \ 1592 SFMMU_STAT(sf_kernel_xcalls); \ 1593 } else { \ 1594 SFMMU_STAT(sf_user_xcalls); \ 1595 } \ 1596 } 1597 1598 #define astosfmmu(as) ((as)->a_hat) 1599 #define hblktosfmmu(hmeblkp) ((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id) 1600 #define hblktosrd(hmeblkp) ((sf_srd_t *)(hmeblkp)->hblk_tag.htag_id) 1601 #define sfmmutoas(sfmmup) ((sfmmup)->sfmmu_as) 1602 1603 #define sfmmutohtagid(sfmmup, rid) \ 1604 (((rid) == SFMMU_INVALID_SHMERID) ? (void *)(sfmmup) : \ 1605 (void *)((sfmmup)->sfmmu_srdp)) 1606 1607 /* 1608 * We use the sfmmu data structure to keep the per as page coloring info. 1609 */ 1610 #define as_color_bin(as) (astosfmmu(as)->sfmmu_clrbin) 1611 #define as_color_start(as) (astosfmmu(as)->sfmmu_clrstart) 1612 1613 typedef struct { 1614 char h8[HME8BLK_SZ]; 1615 } hblk8_t; 1616 1617 typedef struct { 1618 char h1[HME1BLK_SZ]; 1619 } hblk1_t; 1620 1621 typedef struct { 1622 ulong_t index; 1623 ulong_t len; 1624 hblk8_t *list; 1625 } nucleus_hblk8_info_t; 1626 1627 typedef struct { 1628 ulong_t index; 1629 ulong_t len; 1630 hblk1_t *list; 1631 } nucleus_hblk1_info_t; 1632 1633 /* 1634 * This struct is used for accumlating information about a range 1635 * of pages that are unloading so that a single xcall can flush 1636 * the entire range from remote tlbs. A function that must demap 1637 * a range of virtual addresses declares one of these structures 1638 * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this 1639 * struct to the appropriate sfmmu_hblk_* level function which does 1640 * all the bookkeeping using the other macros. When the function has 1641 * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH() 1642 * macro to take care of any remaining unflushed mappings. 1643 * 1644 * The maximum range this struct can represent is the number of bits 1645 * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only 1646 * MMU_PAGESIZE pages are supported. 1647 * 1648 * Since there are now cases where it's no longer necessary to do 1649 * flushes (e.g. when the process isn't runnable because it's swapping 1650 * out or exiting) we allow these macros to take a NULL dmr input and do 1651 * nothing in that case. 1652 */ 1653 typedef struct { 1654 sfmmu_t *dmr_sfmmup; /* relevant hat */ 1655 caddr_t dmr_addr; /* beginning address */ 1656 caddr_t dmr_endaddr; /* ending address */ 1657 ulong_t dmr_bitvec; /* valid pages found */ 1658 ulong_t dmr_bit; /* next page to examine */ 1659 ulong_t dmr_maxbit; /* highest page in range */ 1660 ulong_t dmr_pgsz; /* page size in range */ 1661 } demap_range_t; 1662 1663 #define DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */ 1664 1665 #define DEMAP_RANGE_INIT(sfmmup, dmrp) \ 1666 (dmrp)->dmr_sfmmup = (sfmmup); \ 1667 (dmrp)->dmr_bitvec = 0; \ 1668 (dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \ 1669 (dmrp)->dmr_pgsz = MMU_PAGESIZE; 1670 1671 #define DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE) 1672 1673 #define DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \ 1674 if ((dmrp) != NULL) { \ 1675 if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \ 1676 sfmmu_tlb_range_demap(dmrp); \ 1677 (dmrp)->dmr_endaddr = (endaddr); \ 1678 } 1679 1680 #define DEMAP_RANGE_FLUSH(dmrp) \ 1681 if ((dmrp)->dmr_bitvec != 0) \ 1682 sfmmu_tlb_range_demap(dmrp); 1683 1684 1685 #define DEMAP_RANGE_MARKPG(dmrp, addr) \ 1686 if ((dmrp) != NULL) { \ 1687 if ((dmrp)->dmr_bitvec == 0) { \ 1688 (dmrp)->dmr_addr = (addr); \ 1689 (dmrp)->dmr_bit = 1; \ 1690 } \ 1691 (dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \ 1692 } 1693 1694 #define DEMAP_RANGE_NEXTPG(dmrp) \ 1695 if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \ 1696 if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \ 1697 sfmmu_tlb_range_demap(dmrp); \ 1698 } else { \ 1699 (dmrp)->dmr_bit <<= 1; \ 1700 } \ 1701 } 1702 1703 /* 1704 * TSB related structures 1705 * 1706 * The TSB is made up of tte entries. Both the tag and data are present 1707 * in the TSB. The TSB locking is managed as follows: 1708 * A software bit in the tsb tag is used to indicate that entry is locked. 1709 * If a cpu servicing a tsb miss reads a locked entry the tag compare will 1710 * fail forcing the cpu to go to the hat hash for the translation. 1711 * The cpu who holds the lock can then modify the data side, and the tag side. 1712 * The last write should be to the word containing the lock bit which will 1713 * clear the lock and allow the tsb entry to be read. It is assumed that all 1714 * cpus reading the tsb will do so with atomic 128-bit loads. An atomic 128 1715 * bit load is required to prevent the following from happening: 1716 * 1717 * cpu 0 cpu 1 comments 1718 * 1719 * ldx tag tag unlocked 1720 * ldstub lock set lock 1721 * stx data 1722 * stx tag unlock 1723 * ldx tag incorrect tte!!! 1724 * 1725 * The software also maintains a bit in the tag to indicate an invalid 1726 * tsb entry. The purpose of this bit is to allow the tsb invalidate code 1727 * to invalidate a tsb entry with a single cas. See code for details. 1728 */ 1729 1730 union tsb_tag { 1731 struct { 1732 uint32_t tag_res0:16; /* reserved - context area */ 1733 uint32_t tag_inv:1; /* sw - invalid tsb entry */ 1734 uint32_t tag_lock:1; /* sw - locked tsb entry */ 1735 uint32_t tag_res1:4; /* reserved */ 1736 uint32_t tag_va_hi:10; /* va[63:54] */ 1737 uint32_t tag_va_lo; /* va[53:22] */ 1738 } tagbits; 1739 struct tsb_tagints { 1740 uint32_t inthi; 1741 uint32_t intlo; 1742 } tagints; 1743 }; 1744 #define tag_invalid tagbits.tag_inv 1745 #define tag_locked tagbits.tag_lock 1746 #define tag_vahi tagbits.tag_va_hi 1747 #define tag_valo tagbits.tag_va_lo 1748 #define tag_inthi tagints.inthi 1749 #define tag_intlo tagints.intlo 1750 1751 struct tsbe { 1752 union tsb_tag tte_tag; 1753 tte_t tte_data; 1754 }; 1755 1756 /* 1757 * A per cpu struct is kept that duplicates some info 1758 * used by the tl>0 tsb miss handlers plus it provides 1759 * a scratch area. Its purpose is to minimize cache misses 1760 * in the tsb miss handler and is 128 bytes (2 e$ lines). 1761 * 1762 * There should be one allocated per cpu in nucleus memory 1763 * and should be aligned on an ecache line boundary. 1764 */ 1765 struct tsbmiss { 1766 sfmmu_t *ksfmmup; /* kernel hat id */ 1767 sfmmu_t *usfmmup; /* user hat id */ 1768 sf_srd_t *usrdp; /* user's SRD hat id */ 1769 struct tsbe *tsbptr; /* hardware computed ptr */ 1770 struct tsbe *tsbptr4m; /* hardware computed ptr */ 1771 struct tsbe *tsbscdptr; /* hardware computed ptr */ 1772 struct tsbe *tsbscdptr4m; /* hardware computed ptr */ 1773 uint64_t ismblkpa; 1774 struct hmehash_bucket *khashstart; 1775 struct hmehash_bucket *uhashstart; 1776 uint_t khashsz; 1777 uint_t uhashsz; 1778 uint16_t dcache_line_mask; /* used to flush dcache */ 1779 uchar_t uhat_tteflags; /* private page sizes */ 1780 uchar_t uhat_rtteflags; /* SHME pagesizes */ 1781 uint32_t utsb_misses; 1782 uint32_t ktsb_misses; 1783 uint16_t uprot_traps; 1784 uint16_t kprot_traps; 1785 /* 1786 * scratch[0] -> TSB_TAGACC 1787 * scratch[1] -> TSBMISS_HMEBP 1788 * scratch[2] -> TSBMISS_HATID 1789 */ 1790 uintptr_t scratch[3]; 1791 ulong_t shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ 1792 ulong_t scd_shmermap[SFMMU_HMERGNMAP_WORDS]; /* 8 bytes */ 1793 uint8_t pad[48]; /* pad to 64 bytes */ 1794 }; 1795 1796 /* 1797 * A per cpu struct is kept for the use within the tl>0 kpm tsb 1798 * miss handler. Some members are duplicates of common data or 1799 * the physical addresses of common data. A few members are also 1800 * written by the tl>0 kpm tsb miss handler. Its purpose is to 1801 * minimize cache misses in the kpm tsb miss handler and occupies 1802 * one ecache line. There should be one allocated per cpu in 1803 * nucleus memory and it should be aligned on an ecache line 1804 * boundary. It is not merged w/ struct tsbmiss since there is 1805 * not much to share and the tsbmiss pathes are different, so 1806 * a kpm tlbmiss/tsbmiss only touches one cacheline, except for 1807 * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter 1808 * of struct tsbmiss is used on every dtlb miss. 1809 */ 1810 struct kpmtsbm { 1811 caddr_t vbase; /* start of address kpm range */ 1812 caddr_t vend; /* end of address kpm range */ 1813 uchar_t flags; /* flags needed in TL tsbmiss handler */ 1814 uchar_t sz_shift; /* for single kpm window */ 1815 uchar_t kpmp_shift; /* hash lock shift */ 1816 uchar_t kpmp2pshft; /* kpm page to page shift */ 1817 uint_t kpmp_table_sz; /* size of kpmp_table or kpmp_stable */ 1818 uint64_t kpmp_tablepa; /* paddr of kpmp_table or kpmp_stable */ 1819 uint64_t msegphashpa; /* paddr of memseg_phash */ 1820 struct tsbe *tsbptr; /* saved ktsb pointer */ 1821 uint_t kpm_dtlb_misses; /* kpm tlbmiss counter */ 1822 uint_t kpm_tsb_misses; /* kpm tsbmiss counter */ 1823 uintptr_t pad[1]; 1824 }; 1825 1826 extern size_t tsb_slab_size; 1827 extern uint_t tsb_slab_shift; 1828 extern size_t tsb_slab_mask; 1829 1830 #endif /* !_ASM */ 1831 1832 /* 1833 * Flags for TL kpm tsbmiss handler 1834 */ 1835 #define KPMTSBM_ENABLE_FLAG 0x01 /* bit copy of kpm_enable */ 1836 #define KPMTSBM_TLTSBM_FLAG 0x02 /* use TL tsbmiss handler */ 1837 #define KPMTSBM_TSBPHYS_FLAG 0x04 /* use ASI_MEM for TSB update */ 1838 1839 /* 1840 * The TSB 1841 * All TSB sizes supported by the hardware are now supported (8K - 1M). 1842 * For kernel TSBs we may go beyond the hardware supported sizes and support 1843 * larger TSBs via software. 1844 * All TTE sizes are supported in the TSB; the manner in which this is 1845 * done is cpu dependent. 1846 */ 1847 #define TSB_MIN_SZCODE TSB_8K_SZCODE /* min. supported TSB size */ 1848 #define TSB_MIN_OFFSET_MASK (TSB_OFFSET_MASK(TSB_MIN_SZCODE)) 1849 1850 #ifdef sun4v 1851 #define UTSB_MAX_SZCODE TSB_256M_SZCODE /* max. supported TSB size */ 1852 #else /* sun4u */ 1853 #define UTSB_MAX_SZCODE TSB_1M_SZCODE /* max. supported TSB size */ 1854 #endif /* sun4v */ 1855 1856 #define UTSB_MAX_OFFSET_MASK (TSB_OFFSET_MASK(UTSB_MAX_SZCODE)) 1857 1858 #define TSB_FREEMEM_MIN 0x1000 /* 32 mb */ 1859 #define TSB_FREEMEM_LARGE 0x10000 /* 512 mb */ 1860 #define TSB_8K_SZCODE 0 /* 512 entries */ 1861 #define TSB_16K_SZCODE 1 /* 1k entries */ 1862 #define TSB_32K_SZCODE 2 /* 2k entries */ 1863 #define TSB_64K_SZCODE 3 /* 4k entries */ 1864 #define TSB_128K_SZCODE 4 /* 8k entries */ 1865 #define TSB_256K_SZCODE 5 /* 16k entries */ 1866 #define TSB_512K_SZCODE 6 /* 32k entries */ 1867 #define TSB_1M_SZCODE 7 /* 64k entries */ 1868 #define TSB_2M_SZCODE 8 /* 128k entries */ 1869 #define TSB_4M_SZCODE 9 /* 256k entries */ 1870 #define TSB_8M_SZCODE 10 /* 512k entries */ 1871 #define TSB_16M_SZCODE 11 /* 1M entries */ 1872 #define TSB_32M_SZCODE 12 /* 2M entries */ 1873 #define TSB_64M_SZCODE 13 /* 4M entries */ 1874 #define TSB_128M_SZCODE 14 /* 8M entries */ 1875 #define TSB_256M_SZCODE 15 /* 16M entries */ 1876 #define TSB_ENTRY_SHIFT 4 /* each entry = 128 bits = 16 bytes */ 1877 #define TSB_ENTRY_SIZE (1 << 4) 1878 #define TSB_START_SIZE 9 1879 #define TSB_ENTRIES(tsbsz) (1 << (TSB_START_SIZE + tsbsz)) 1880 #define TSB_BYTES(tsbsz) (TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT) 1881 #define TSB_OFFSET_MASK(tsbsz) (TSB_ENTRIES(tsbsz) - 1) 1882 #define TSB_BASEADDR_MASK ((1 << 12) - 1) 1883 1884 /* 1885 * sun4u platforms 1886 * --------------- 1887 * We now support two user TSBs with one TSB base register. 1888 * Hence the TSB base register is split up as follows: 1889 * 1890 * When only one TSB present: 1891 * [63 62..42 41..13 12..4 3..0] 1892 * ^ ^ ^ ^ ^ 1893 * | | | | | 1894 * | | | | |_ TSB size code 1895 * | | | | 1896 * | | | |_ Reserved 0 1897 * | | | 1898 * | | |_ TSB VA[41..13] 1899 * | | 1900 * | |_ VA hole (Spitfire), zeros (Cheetah and beyond) 1901 * | 1902 * |_ 0 1903 * 1904 * When second TSB present: 1905 * [63 62..42 41..33 32..29 28..22 21..13 12..4 3..0] 1906 * ^ ^ ^ ^ ^ ^ ^ ^ 1907 * | | | | | | | | 1908 * | | | | | | | |_ First TSB size code 1909 * | | | | | | | 1910 * | | | | | | |_ Reserved 0 1911 * | | | | | | 1912 * | | | | | |_ First TSB's VA[21..13] 1913 * | | | | | 1914 * | | | | |_ Reserved for future use 1915 * | | | | 1916 * | | | |_ Second TSB's size code 1917 * | | | 1918 * | | |_ Second TSB's VA[21..13] 1919 * | | 1920 * | |_ VA hole (Spitfire) / ones (Cheetah and beyond) 1921 * | 1922 * |_ 1 1923 * 1924 * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs 1925 * may be up to 4M in size. For now, only hardware supported TSB sizes 1926 * are supported, though the slabs are usually 4M in size. 1927 * 1928 * sun4u platforms that define UTSB_PHYS use physical addressing to access 1929 * the user TSBs at TL>0. The first user TSB base is in the MMU I/D TSB Base 1930 * registers. The second TSB base uses a dedicated scratchpad register which 1931 * requires a definition of SCRATCHPAD_UTSBREG2 in mach_sfmmu.h. The layout for 1932 * both registers is equivalent to sun4v below, except the TSB PA range is 1933 * [46..13] for sun4u. 1934 * 1935 * sun4v platforms 1936 * --------------- 1937 * On sun4v platforms, we use two dedicated scratchpad registers as pseudo 1938 * hardware TSB base registers to hold up to two different user TSBs. 1939 * 1940 * Each register contains TSB's physical base and size code information 1941 * as follows: 1942 * 1943 * [63..56 55..13 12..4 3..0] 1944 * ^ ^ ^ ^ 1945 * | | | | 1946 * | | | |_ TSB size code 1947 * | | | 1948 * | | |_ Reserved 0 1949 * | | 1950 * | |_ TSB PA[55..13] 1951 * | 1952 * | 1953 * | 1954 * |_ 0 for valid TSB 1955 * 1956 * Absence of a user TSB (primarily the second user TSB) is indicated by 1957 * storing a negative value in the TSB base register. This allows us to 1958 * check for presence of a user TSB by simply checking bit# 63. 1959 */ 1960 #define TSBREG_MSB_SHIFT 32 /* set upper bits */ 1961 #define TSBREG_MSB_CONST 0xfffff800 /* set bits 63..43 */ 1962 #define TSBREG_FIRTSB_SHIFT 42 /* to clear bits 63:22 */ 1963 #define TSBREG_SECTSB_MKSHIFT 20 /* 21:13 --> 41:33 */ 1964 #define TSBREG_SECTSB_LSHIFT 22 /* to clear bits 63:42 */ 1965 #define TSBREG_SECTSB_RSHIFT (TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT) 1966 /* sectsb va -> bits 21:13 */ 1967 /* after clearing upper bits */ 1968 #define TSBREG_SECSZ_SHIFT 29 /* to get sectsb szc to 3:0 */ 1969 #define TSBREG_VAMASK_SHIFT 13 /* set up VA mask */ 1970 1971 #define BIGKTSB_SZ_MASK 0xf 1972 #define TSB_SOFTSZ_MASK BIGKTSB_SZ_MASK 1973 #define MIN_BIGKTSB_SZCODE 9 /* 256k entries */ 1974 #define MAX_BIGKTSB_SZCODE 11 /* 1024k entries */ 1975 #define MAX_BIGKTSB_TTES (TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M) 1976 1977 #define TAG_VALO_SHIFT 22 /* tag's va are bits 63-22 */ 1978 /* 1979 * sw bits used on tsb_tag - bit masks used only in assembly 1980 * use only a sethi for these fields. 1981 */ 1982 #define TSBTAG_INVALID 0x00008000 /* tsb_tag.tag_invalid */ 1983 #define TSBTAG_LOCKED 0x00004000 /* tsb_tag.tag_locked */ 1984 1985 #ifdef _ASM 1986 1987 /* 1988 * Marker to indicate that this instruction will be hot patched at runtime 1989 * to some other value. 1990 * This value must be zero since it fills in the imm bits of the target 1991 * instructions to be patched 1992 */ 1993 #define RUNTIME_PATCH (0) 1994 1995 /* 1996 * V9 defines nop instruction as the following, which we use 1997 * at runtime to nullify some instructions we don't want to 1998 * execute in the trap handlers on certain platforms. 1999 */ 2000 #define MAKE_NOP_INSTR(reg) \ 2001 sethi %hi(0x1000000), reg 2002 2003 /* 2004 * This macro constructs a SPARC V9 "jmpl <source reg>, %g0" 2005 * instruction, with the source register specified by the jump_reg_number. 2006 * The jmp opcode [24:19] = 11 1000 and source register is bits [18:14]. 2007 * The instruction is returned in reg. The macro is used to patch in a jmpl 2008 * instruction at runtime. 2009 */ 2010 #define MAKE_JMP_INSTR(jump_reg_number, reg, tmp) \ 2011 sethi %hi(0x81c00000), reg; \ 2012 mov jump_reg_number, tmp; \ 2013 sll tmp, 14, tmp; \ 2014 or reg, tmp, reg 2015 2016 /* 2017 * Macro to get hat per-MMU cnum on this CPU. 2018 * sfmmu - In, pass in "sfmmup" from the caller. 2019 * cnum - Out, return 'cnum' to the caller 2020 * scr - scratch 2021 */ 2022 #define SFMMU_CPU_CNUM(sfmmu, cnum, scr) \ 2023 CPU_ADDR(scr, cnum); /* scr = load CPU struct addr */ \ 2024 ld [scr + CPU_MMU_IDX], cnum; /* cnum = mmuid */ \ 2025 add sfmmu, SFMMU_CTXS, scr; /* scr = sfmmup->sfmmu_ctxs[] */ \ 2026 sllx cnum, SFMMU_MMU_CTX_SHIFT, cnum; \ 2027 add scr, cnum, scr; /* scr = sfmmup->sfmmu_ctxs[id] */ \ 2028 ldx [scr + SFMMU_MMU_GC_NUM], scr; /* sfmmu_ctxs[id].gcnum */ \ 2029 sllx scr, SFMMU_MMU_CNUM_LSHIFT, scr; \ 2030 srlx scr, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ 2031 2032 /* 2033 * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry 2034 * entry - In, pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller. 2035 * gnum - Out, return sfmmu gnum 2036 * cnum - Out, return sfmmu cnum 2037 * reg - scratch 2038 */ 2039 #define SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg) \ 2040 ldx [entry + SFMMU_CTXS], reg; /* reg = sfmmu (gnum | cnum) */ \ 2041 srlx reg, SFMMU_MMU_GNUM_RSHIFT, gnum; /* gnum = sfmmu gnum */ \ 2042 sllx reg, SFMMU_MMU_CNUM_LSHIFT, cnum; \ 2043 srlx cnum, SFMMU_MMU_CNUM_LSHIFT, cnum; /* cnum = sfmmu cnum */ 2044 2045 /* 2046 * Macro to get this CPU's tsbmiss area. 2047 */ 2048 #define CPU_TSBMISS_AREA(tsbmiss, tmp1) \ 2049 CPU_INDEX(tmp1, tsbmiss); /* tmp1 = cpu idx */ \ 2050 sethi %hi(tsbmiss_area), tsbmiss; /* tsbmiss base ptr */ \ 2051 mulx tmp1, TSBMISS_SIZE, tmp1; /* byte offset */ \ 2052 or tsbmiss, %lo(tsbmiss_area), tsbmiss; \ 2053 add tsbmiss, tmp1, tsbmiss /* tsbmiss area of CPU */ 2054 2055 2056 /* 2057 * Macro to set kernel context + page size codes in DMMU primary context 2058 * register. It is only necessary for sun4u because sun4v does not need 2059 * page size codes 2060 */ 2061 #ifdef sun4v 2062 2063 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) 2064 2065 #else 2066 2067 #define SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \ 2068 sethi %hi(kcontextreg), reg0; \ 2069 ldx [reg0 + %lo(kcontextreg)], reg0; \ 2070 mov MMU_PCONTEXT, reg1; \ 2071 ldxa [reg1]ASI_MMU_CTX, reg2; \ 2072 xor reg0, reg2, reg2; \ 2073 brz reg2, label3; \ 2074 srlx reg2, CTXREG_NEXT_SHIFT, reg2; \ 2075 rdpr %pstate, reg3; /* disable interrupts */ \ 2076 btst PSTATE_IE, reg3; \ 2077 /*CSTYLED*/ \ 2078 bnz,a,pt %icc, label1; \ 2079 wrpr reg3, PSTATE_IE, %pstate; \ 2080 /*CSTYLED*/ \ 2081 label1:; \ 2082 brz reg2, label2; /* need demap if N_pgsz0/1 change */ \ 2083 sethi %hi(FLUSH_ADDR), reg4; \ 2084 mov DEMAP_ALL_TYPE, reg2; \ 2085 stxa %g0, [reg2]ASI_DTLB_DEMAP; \ 2086 stxa %g0, [reg2]ASI_ITLB_DEMAP; \ 2087 /*CSTYLED*/ \ 2088 label2:; \ 2089 stxa reg0, [reg1]ASI_MMU_CTX; \ 2090 flush reg4; \ 2091 btst PSTATE_IE, reg3; \ 2092 /*CSTYLED*/ \ 2093 bnz,a,pt %icc, label3; \ 2094 wrpr %g0, reg3, %pstate; /* restore interrupt state */ \ 2095 label3:; 2096 2097 #endif 2098 2099 /* 2100 * Macro to setup arguments with kernel sfmmup context + page size before 2101 * calling sfmmu_setctx_sec() 2102 */ 2103 #ifdef sun4v 2104 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ 2105 set KCONTEXT, arg0; \ 2106 set 0, arg1; 2107 #else 2108 #define SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1) \ 2109 ldub [sfmmup + SFMMU_CEXT], arg1; \ 2110 set KCONTEXT, arg0; \ 2111 sll arg1, CTXREG_EXT_SHIFT, arg1; 2112 #endif 2113 2114 #define PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr) \ 2115 andcc pstatereg, PSTATE_IE, %g0; /* panic if intrs */ \ 2116 /*CSTYLED*/ \ 2117 bnz,pt %icc, label; /* already disabled */ \ 2118 nop; \ 2119 \ 2120 sethi %hi(panicstr), scr; \ 2121 ldx [scr + %lo(panicstr)], scr; \ 2122 tst scr; \ 2123 /*CSTYLED*/ \ 2124 bnz,pt %xcc, label; \ 2125 nop; \ 2126 \ 2127 save %sp, -SA(MINFRAME), %sp; \ 2128 sethi %hi(sfmmu_panic1), %o0; \ 2129 call panic; \ 2130 or %o0, %lo(sfmmu_panic1), %o0; \ 2131 /*CSTYLED*/ \ 2132 label: 2133 2134 #define PANIC_IF_INTR_ENABLED_PSTR(label, scr) \ 2135 /* \ 2136 * The caller must have disabled interrupts. \ 2137 * If interrupts are not disabled, panic \ 2138 */ \ 2139 rdpr %pstate, scr; \ 2140 andcc scr, PSTATE_IE, %g0; \ 2141 /*CSTYLED*/ \ 2142 bz,pt %icc, label; \ 2143 nop; \ 2144 \ 2145 sethi %hi(panicstr), scr; \ 2146 ldx [scr + %lo(panicstr)], scr; \ 2147 tst scr; \ 2148 /*CSTYLED*/ \ 2149 bnz,pt %xcc, label; \ 2150 nop; \ 2151 \ 2152 sethi %hi(sfmmu_panic6), %o0; \ 2153 call panic; \ 2154 or %o0, %lo(sfmmu_panic6), %o0; \ 2155 /*CSTYLED*/ \ 2156 label: 2157 2158 #endif /* _ASM */ 2159 2160 #ifndef _ASM 2161 2162 #ifdef VAC 2163 /* 2164 * Page coloring 2165 * The p_vcolor field of the page struct (1 byte) is used to store the 2166 * virtual page color. This provides for 255 colors. The value zero is 2167 * used to mean the page has no color - never been mapped or somehow 2168 * purified. 2169 */ 2170 2171 #define PP_GET_VCOLOR(pp) (((pp)->p_vcolor) - 1) 2172 #define PP_NEWPAGE(pp) (!(pp)->p_vcolor) 2173 #define PP_SET_VCOLOR(pp, color) \ 2174 ((pp)->p_vcolor = ((color) + 1)) 2175 2176 /* 2177 * As mentioned p_vcolor == 0 means there is no color for this page. 2178 * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus 2179 * one so we define this constant. 2180 */ 2181 #define NO_VCOLOR (-1) 2182 2183 #define addr_to_vcolor(addr) \ 2184 (((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask) 2185 #else /* VAC */ 2186 #define addr_to_vcolor(addr) (0) 2187 #endif /* VAC */ 2188 2189 /* 2190 * The field p_index in the psm page structure is for large pages support. 2191 * P_index is a bit-vector of the different mapping sizes that a given page 2192 * is part of. An hme structure for a large mapping is only added in the 2193 * group leader page (first page). All pages covered by a given large mapping 2194 * have the corrosponding mapping bit set in their p_index field. This allows 2195 * us to only store an explicit hme structure in the leading page which 2196 * simplifies the mapping link list management. Furthermore, it provides us 2197 * a fast mechanism for determining the largest mapping a page is part of. For 2198 * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A. 2199 * 2200 * Implementation note: even though the first bit in p_index is reserved 2201 * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set. 2202 * In addition, the upper four bits of the p_index field are used by the 2203 * code as temporaries 2204 */ 2205 2206 /* 2207 * Defines for psm page struct fields and large page support 2208 */ 2209 #define SFMMU_INDEX_SHIFT 6 2210 #define SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1) 2211 2212 /* Return the mapping index */ 2213 #define PP_MAPINDEX(pp) ((pp)->p_index & SFMMU_INDEX_MASK) 2214 2215 /* 2216 * These macros rely on the following property: 2217 * All pages constituting a large page are covered by a virtually 2218 * contiguous set of page_t's. 2219 */ 2220 2221 /* Return the leader for this mapping size */ 2222 #define PP_GROUPLEADER(pp, sz) \ 2223 (&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))]) 2224 2225 /* Return the root page for this page based on p_szc */ 2226 #define PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \ 2227 PP_GROUPLEADER((pp), (pp)->p_szc)) 2228 2229 #define PP_PAGENEXT_N(pp, n) ((pp) + (n)) 2230 #define PP_PAGENEXT(pp) PP_PAGENEXT_N((pp), 1) 2231 2232 #define PP_PAGEPREV_N(pp, n) ((pp) - (n)) 2233 #define PP_PAGEPREV(pp) PP_PAGEPREV_N((pp), 1) 2234 2235 #define PP_ISMAPPED_LARGE(pp) (PP_MAPINDEX(pp) != 0) 2236 2237 /* Need function to test the page mappping which takes p_index into account */ 2238 #define PP_ISMAPPED(pp) ((pp)->p_mapping || PP_ISMAPPED_LARGE(pp)) 2239 2240 /* 2241 * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT 2242 * set p_index field. 2243 */ 2244 #define PAGESZ_TO_INDEX(sz) (1 << (sz)) 2245 2246 2247 /* 2248 * prototypes for hat assembly routines. Some of these are 2249 * known to machine dependent VM code. 2250 */ 2251 extern uint64_t sfmmu_make_tsbtag(caddr_t); 2252 extern struct tsbe * 2253 sfmmu_get_tsbe(uint64_t, caddr_t, int, int); 2254 extern void sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int); 2255 extern void sfmmu_unload_tsbe(struct tsbe *, uint64_t, int); 2256 extern void sfmmu_load_mmustate(sfmmu_t *); 2257 extern void sfmmu_raise_tsb_exception(uint64_t, uint64_t); 2258 #ifndef sun4v 2259 extern void sfmmu_itlb_ld_kva(caddr_t, tte_t *); 2260 extern void sfmmu_dtlb_ld_kva(caddr_t, tte_t *); 2261 #endif /* sun4v */ 2262 extern void sfmmu_copytte(tte_t *, tte_t *); 2263 extern int sfmmu_modifytte(tte_t *, tte_t *, tte_t *); 2264 extern int sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *); 2265 extern pfn_t sfmmu_ttetopfn(tte_t *, caddr_t); 2266 extern uint_t sfmmu_disable_intrs(void); 2267 extern void sfmmu_enable_intrs(uint_t); 2268 /* 2269 * functions exported to machine dependent VM code 2270 */ 2271 extern void sfmmu_patch_ktsb(void); 2272 #ifndef UTSB_PHYS 2273 extern void sfmmu_patch_utsb(void); 2274 #endif /* UTSB_PHYS */ 2275 extern pfn_t sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *); 2276 extern void sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *); 2277 extern pfn_t sfmmu_kvaszc2pfn(caddr_t, int); 2278 #ifdef DEBUG 2279 extern void sfmmu_check_kpfn(pfn_t); 2280 #else 2281 #define sfmmu_check_kpfn(pfn) /* disabled */ 2282 #endif /* DEBUG */ 2283 extern void sfmmu_memtte(tte_t *, pfn_t, uint_t, int); 2284 extern void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *, uint_t); 2285 extern void sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t); 2286 extern void sfmmu_init_tsbs(void); 2287 extern caddr_t sfmmu_ktsb_alloc(caddr_t); 2288 extern int sfmmu_getctx_pri(void); 2289 extern int sfmmu_getctx_sec(void); 2290 extern void sfmmu_setctx_sec(uint_t); 2291 extern void sfmmu_inv_tsb(caddr_t, uint_t); 2292 extern void sfmmu_init_ktsbinfo(void); 2293 extern int sfmmu_setup_4lp(void); 2294 extern void sfmmu_patch_mmu_asi(int); 2295 extern void sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int); 2296 extern void sfmmu_cache_flushall(void); 2297 extern pgcnt_t sfmmu_tte_cnt(sfmmu_t *, uint_t); 2298 extern void *sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int); 2299 extern void sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t); 2300 extern void sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *); 2301 2302 extern void hat_kern_setup(void); 2303 extern int hat_page_relocate(page_t **, page_t **, spgcnt_t *); 2304 extern int sfmmu_get_ppvcolor(struct page *); 2305 extern int sfmmu_get_addrvcolor(caddr_t); 2306 extern int sfmmu_hat_lock_held(sfmmu_t *); 2307 extern int sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *, int); 2308 2309 extern kmutex_t *sfmmu_mlist_enter(page_t *); 2310 extern void sfmmu_mlist_exit(kmutex_t *); 2311 extern int sfmmu_mlist_held(struct page *); 2312 extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *); 2313 2314 /* 2315 * MMU-specific functions optionally imported from the CPU module 2316 */ 2317 #pragma weak mmu_init_scd 2318 #pragma weak mmu_large_pages_disabled 2319 #pragma weak mmu_set_ctx_page_sizes 2320 #pragma weak mmu_check_page_sizes 2321 2322 extern void mmu_init_scd(sf_scd_t *); 2323 extern uint_t mmu_large_pages_disabled(uint_t); 2324 extern void mmu_set_ctx_page_sizes(sfmmu_t *); 2325 extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *); 2326 2327 extern sfmmu_t *ksfmmup; 2328 extern caddr_t ktsb_base; 2329 extern uint64_t ktsb_pbase; 2330 extern int ktsb_sz; 2331 extern int ktsb_szcode; 2332 extern caddr_t ktsb4m_base; 2333 extern uint64_t ktsb4m_pbase; 2334 extern int ktsb4m_sz; 2335 extern int ktsb4m_szcode; 2336 extern uint64_t kpm_tsbbase; 2337 extern int kpm_tsbsz; 2338 extern int ktsb_phys; 2339 extern int enable_bigktsb; 2340 #ifndef sun4v 2341 extern int utsb_dtlb_ttenum; 2342 extern int utsb4m_dtlb_ttenum; 2343 #endif /* sun4v */ 2344 extern int uhmehash_num; 2345 extern int khmehash_num; 2346 extern struct hmehash_bucket *uhme_hash; 2347 extern struct hmehash_bucket *khme_hash; 2348 extern uint_t hblk_alloc_dynamic; 2349 extern struct tsbmiss tsbmiss_area[NCPU]; 2350 extern struct kpmtsbm kpmtsbm_area[NCPU]; 2351 2352 #ifndef sun4v 2353 extern int dtlb_resv_ttenum; 2354 extern caddr_t utsb_vabase; 2355 extern caddr_t utsb4m_vabase; 2356 #endif /* sun4v */ 2357 extern vmem_t *kmem_tsb_default_arena[]; 2358 extern int tsb_lgrp_affinity; 2359 2360 extern uint_t disable_large_pages; 2361 extern uint_t disable_ism_large_pages; 2362 extern uint_t disable_auto_data_large_pages; 2363 extern uint_t disable_auto_text_large_pages; 2364 2365 /* kpm externals */ 2366 extern pfn_t sfmmu_kpm_vatopfn(caddr_t); 2367 extern void sfmmu_kpm_patch_tlbm(void); 2368 extern void sfmmu_kpm_patch_tsbm(void); 2369 extern void sfmmu_patch_shctx(void); 2370 extern void sfmmu_kpm_load_tsb(caddr_t, tte_t *, int); 2371 extern void sfmmu_kpm_unload_tsb(caddr_t, int); 2372 extern void sfmmu_kpm_tsbmtl(short *, uint_t *, int); 2373 extern int sfmmu_kpm_stsbmtl(uchar_t *, uint_t *, int); 2374 extern caddr_t kpm_vbase; 2375 extern size_t kpm_size; 2376 extern struct memseg *memseg_hash[]; 2377 extern uint64_t memseg_phash[]; 2378 extern kpm_hlk_t *kpmp_table; 2379 extern kpm_shlk_t *kpmp_stable; 2380 extern uint_t kpmp_table_sz; 2381 extern uint_t kpmp_stable_sz; 2382 extern uchar_t kpmp_shift; 2383 2384 #define PP_ISMAPPED_KPM(pp) ((pp)->p_kpmref > 0) 2385 2386 #define IS_KPM_ALIAS_RANGE(vaddr) \ 2387 (((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0) 2388 2389 #endif /* !_ASM */ 2390 2391 /* sfmmu_kpm_tsbmtl flags */ 2392 #define KPMTSBM_STOP 0 2393 #define KPMTSBM_START 1 2394 2395 /* 2396 * For kpm_smallpages, the state about how a kpm page is mapped and whether 2397 * it is ready to go is indicated by the two 4-bit fields defined in the 2398 * kpm_spage structure as follows: 2399 * kp_mapped_flag bit[0:3] - the page is mapped cacheable or not 2400 * kp_mapped_flag bit[4:7] - the mapping is ready to go or not 2401 * If the bit KPM_MAPPED_GO is on, it indicates that the assembly tsb miss 2402 * handler can drop the mapping in regardless of the caching state of the 2403 * mapping. Otherwise, we will have C handler resolve the VAC conflict no 2404 * matter the page is currently mapped cacheable or non-cacheable. 2405 */ 2406 #define KPM_MAPPEDS 0x1 /* small mapping valid, no conflict */ 2407 #define KPM_MAPPEDSC 0x2 /* small mapping valid, conflict */ 2408 #define KPM_MAPPED_GO 0x10 /* the mapping is ready to go */ 2409 #define KPM_MAPPED_MASK 0xf 2410 2411 /* Physical memseg address NULL marker */ 2412 #define MSEG_NULLPTR_PA -1 2413 2414 /* 2415 * Memseg hash defines for kpm trap level tsbmiss handler. 2416 * Must be in sync w/ page.h . 2417 */ 2418 #define SFMMU_MEM_HASH_SHIFT 0x9 2419 #define SFMMU_N_MEM_SLOTS 0x200 2420 #define SFMMU_MEM_HASH_ENTRY_SHIFT 3 2421 2422 #ifndef _ASM 2423 #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT) 2424 #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT 2425 #endif 2426 #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS) 2427 #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS 2428 #endif 2429 2430 /* Physical memseg address NULL marker */ 2431 #define SFMMU_MEMSEG_NULLPTR_PA -1 2432 2433 /* 2434 * Check KCONTEXT to be zero, asm parts depend on that assumption. 2435 */ 2436 #if (KCONTEXT != 0) 2437 #error KCONTEXT != 0 2438 #endif 2439 #endif /* !_ASM */ 2440 2441 2442 #endif /* _KERNEL */ 2443 2444 #ifndef _ASM 2445 /* 2446 * ctx, hmeblk, mlistlock and other stats for sfmmu 2447 */ 2448 struct sfmmu_global_stat { 2449 int sf_tsb_exceptions; /* # of tsb exceptions */ 2450 int sf_tsb_raise_exception; /* # tsb exc. w/o TLB flush */ 2451 2452 int sf_pagefaults; /* # of pagefaults */ 2453 2454 int sf_uhash_searches; /* # of user hash searches */ 2455 int sf_uhash_links; /* # of user hash links */ 2456 int sf_khash_searches; /* # of kernel hash searches */ 2457 int sf_khash_links; /* # of kernel hash links */ 2458 2459 int sf_swapout; /* # times hat swapped out */ 2460 2461 int sf_tsb_alloc; /* # TSB allocations */ 2462 int sf_tsb_allocfail; /* # times TSB alloc fail */ 2463 int sf_tsb_sectsb_create; /* # times second TSB added */ 2464 2465 int sf_scd_1sttsb_alloc; /* # SCD 1st TSB allocations */ 2466 int sf_scd_2ndtsb_alloc; /* # SCD 2nd TSB allocations */ 2467 int sf_scd_1sttsb_allocfail; /* # SCD 1st TSB alloc fail */ 2468 int sf_scd_2ndtsb_allocfail; /* # SCD 2nd TSB alloc fail */ 2469 2470 2471 int sf_tteload8k; /* calls to sfmmu_tteload */ 2472 int sf_tteload64k; /* calls to sfmmu_tteload */ 2473 int sf_tteload512k; /* calls to sfmmu_tteload */ 2474 int sf_tteload4m; /* calls to sfmmu_tteload */ 2475 int sf_tteload32m; /* calls to sfmmu_tteload */ 2476 int sf_tteload256m; /* calls to sfmmu_tteload */ 2477 2478 int sf_tsb_load8k; /* # times loaded 8K tsbent */ 2479 int sf_tsb_load4m; /* # times loaded 4M tsbent */ 2480 2481 int sf_hblk_hit; /* found hblk during tteload */ 2482 int sf_hblk8_ncreate; /* static hblk8's created */ 2483 int sf_hblk8_nalloc; /* static hblk8's allocated */ 2484 int sf_hblk1_ncreate; /* static hblk1's created */ 2485 int sf_hblk1_nalloc; /* static hblk1's allocated */ 2486 int sf_hblk_slab_cnt; /* sfmmu8_cache slab creates */ 2487 int sf_hblk_reserve_cnt; /* hblk_reserve usage */ 2488 int sf_hblk_recurse_cnt; /* hblk_reserve owner reqs */ 2489 int sf_hblk_reserve_hit; /* hblk_reserve hash hits */ 2490 int sf_get_free_success; /* reserve list allocs */ 2491 int sf_get_free_throttle; /* fails due to throttling */ 2492 int sf_get_free_fail; /* fails due to empty list */ 2493 int sf_put_free_success; /* reserve list frees */ 2494 int sf_put_free_fail; /* fails due to full list */ 2495 2496 int sf_pgcolor_conflict; /* VAC conflict resolution */ 2497 int sf_uncache_conflict; /* VAC conflict resolution */ 2498 int sf_unload_conflict; /* VAC unload resolution */ 2499 int sf_ism_uncache; /* VAC conflict resolution */ 2500 int sf_ism_recache; /* VAC conflict resolution */ 2501 int sf_recache; /* VAC conflict resolution */ 2502 2503 int sf_steal_count; /* # of hblks stolen */ 2504 2505 int sf_pagesync; /* # of pagesyncs */ 2506 int sf_clrwrt; /* # of clear write perms */ 2507 int sf_pagesync_invalid; /* pagesync with inv tte */ 2508 2509 int sf_kernel_xcalls; /* # of kernel cross calls */ 2510 int sf_user_xcalls; /* # of user cross calls */ 2511 2512 int sf_tsb_grow; /* # of user tsb grows */ 2513 int sf_tsb_shrink; /* # of user tsb shrinks */ 2514 int sf_tsb_resize_failures; /* # of user tsb resize */ 2515 int sf_tsb_reloc; /* # of user tsb relocations */ 2516 2517 int sf_user_vtop; /* # of user vatopfn calls */ 2518 2519 int sf_ctx_inv; /* #times invalidate MMU ctx */ 2520 2521 int sf_tlb_reprog_pgsz; /* # times switch TLB pgsz */ 2522 2523 int sf_region_remap_demap; /* # times shme remap demap */ 2524 2525 int sf_create_scd; /* # times SCD is created */ 2526 int sf_join_scd; /* # process joined scd */ 2527 int sf_leave_scd; /* # process left scd */ 2528 int sf_destroy_scd; /* # times SCD is destroyed */ 2529 }; 2530 2531 struct sfmmu_tsbsize_stat { 2532 int sf_tsbsz_8k; 2533 int sf_tsbsz_16k; 2534 int sf_tsbsz_32k; 2535 int sf_tsbsz_64k; 2536 int sf_tsbsz_128k; 2537 int sf_tsbsz_256k; 2538 int sf_tsbsz_512k; 2539 int sf_tsbsz_1m; 2540 int sf_tsbsz_2m; 2541 int sf_tsbsz_4m; 2542 int sf_tsbsz_8m; 2543 int sf_tsbsz_16m; 2544 int sf_tsbsz_32m; 2545 int sf_tsbsz_64m; 2546 int sf_tsbsz_128m; 2547 int sf_tsbsz_256m; 2548 }; 2549 2550 struct sfmmu_percpu_stat { 2551 int sf_itlb_misses; /* # of itlb misses */ 2552 int sf_dtlb_misses; /* # of dtlb misses */ 2553 int sf_utsb_misses; /* # of user tsb misses */ 2554 int sf_ktsb_misses; /* # of kernel tsb misses */ 2555 int sf_tsb_hits; /* # of tsb hits */ 2556 int sf_umod_faults; /* # of mod (prot viol) flts */ 2557 int sf_kmod_faults; /* # of mod (prot viol) flts */ 2558 }; 2559 2560 #define SFMMU_STAT(stat) sfmmu_global_stat.stat++ 2561 #define SFMMU_STAT_ADD(stat, amount) sfmmu_global_stat.stat += (amount) 2562 #define SFMMU_STAT_SET(stat, count) sfmmu_global_stat.stat = (count) 2563 2564 #define SFMMU_MMU_STAT(stat) { \ 2565 mmu_ctx_t *ctx = CPU->cpu_m.cpu_mmu_ctxp; \ 2566 if (ctx) \ 2567 ctx->stat++; \ 2568 } 2569 2570 #endif /* !_ASM */ 2571 2572 #ifdef __cplusplus 2573 } 2574 #endif 2575 2576 #endif /* _VM_HAT_SFMMU_H */ 2577