xref: /illumos-gate/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision f73e1ebf60792a8bdb2d559097c3131b68c09318)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright 2016 Gary Mills
27  * Copyright 2019 Joyent, Inc.
28  */
29 
30 /*
31  * VM - Hardware Address Translation management for Spitfire MMU.
32  *
33  * This file implements the machine specific hardware translation
34  * needed by the VM system.  The machine independent interface is
35  * described in <vm/hat.h> while the machine dependent interface
36  * and data structures are described in <vm/hat_sfmmu.h>.
37  *
38  * The hat layer manages the address translation hardware as a cache
39  * driven by calls from the higher levels in the VM system.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/kstat.h>
44 #include <vm/hat.h>
45 #include <vm/hat_sfmmu.h>
46 #include <vm/page.h>
47 #include <sys/pte.h>
48 #include <sys/systm.h>
49 #include <sys/mman.h>
50 #include <sys/sysmacros.h>
51 #include <sys/machparam.h>
52 #include <sys/vtrace.h>
53 #include <sys/kmem.h>
54 #include <sys/mmu.h>
55 #include <sys/cmn_err.h>
56 #include <sys/cpu.h>
57 #include <sys/cpuvar.h>
58 #include <sys/debug.h>
59 #include <sys/lgrp.h>
60 #include <sys/archsystm.h>
61 #include <sys/machsystm.h>
62 #include <sys/vmsystm.h>
63 #include <vm/as.h>
64 #include <vm/seg.h>
65 #include <vm/seg_kp.h>
66 #include <vm/seg_kmem.h>
67 #include <vm/seg_kpm.h>
68 #include <vm/rm.h>
69 #include <sys/t_lock.h>
70 #include <sys/obpdefs.h>
71 #include <sys/vm_machparam.h>
72 #include <sys/var.h>
73 #include <sys/trap.h>
74 #include <sys/machtrap.h>
75 #include <sys/scb.h>
76 #include <sys/bitmap.h>
77 #include <sys/machlock.h>
78 #include <sys/membar.h>
79 #include <sys/atomic.h>
80 #include <sys/cpu_module.h>
81 #include <sys/prom_debug.h>
82 #include <sys/ksynch.h>
83 #include <sys/mem_config.h>
84 #include <sys/mem_cage.h>
85 #include <vm/vm_dep.h>
86 #include <sys/fpu/fpusystm.h>
87 #include <vm/mach_kpm.h>
88 #include <sys/callb.h>
89 
90 #ifdef	DEBUG
91 #define	SFMMU_VALIDATE_HMERID(hat, rid, saddr, len)			\
92 	if (SFMMU_IS_SHMERID_VALID(rid)) {				\
93 		caddr_t _eaddr = (saddr) + (len);			\
94 		sf_srd_t *_srdp;					\
95 		sf_region_t *_rgnp;					\
96 		ASSERT((rid) < SFMMU_MAX_HME_REGIONS);			\
97 		ASSERT(SF_RGNMAP_TEST(hat->sfmmu_hmeregion_map, rid));	\
98 		ASSERT((hat) != ksfmmup);				\
99 		_srdp = (hat)->sfmmu_srdp;				\
100 		ASSERT(_srdp != NULL);					\
101 		ASSERT(_srdp->srd_refcnt != 0);				\
102 		_rgnp = _srdp->srd_hmergnp[(rid)];			\
103 		ASSERT(_rgnp != NULL && _rgnp->rgn_id == rid);		\
104 		ASSERT(_rgnp->rgn_refcnt != 0);				\
105 		ASSERT(!(_rgnp->rgn_flags & SFMMU_REGION_FREE));	\
106 		ASSERT((_rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) ==	\
107 		    SFMMU_REGION_HME);					\
108 		ASSERT((saddr) >= _rgnp->rgn_saddr);			\
109 		ASSERT((saddr) < _rgnp->rgn_saddr + _rgnp->rgn_size);	\
110 		ASSERT(_eaddr > _rgnp->rgn_saddr);			\
111 		ASSERT(_eaddr <= _rgnp->rgn_saddr + _rgnp->rgn_size);	\
112 	}
113 
114 #define	SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)		\
115 {									\
116 		caddr_t _hsva;						\
117 		caddr_t _heva;						\
118 		caddr_t _rsva;						\
119 		caddr_t _reva;						\
120 		int	_ttesz = get_hblk_ttesz(hmeblkp);		\
121 		int	_flagtte;					\
122 		ASSERT((srdp)->srd_refcnt != 0);			\
123 		ASSERT((rid) < SFMMU_MAX_HME_REGIONS);			\
124 		ASSERT((rgnp)->rgn_id == rid);				\
125 		ASSERT(!((rgnp)->rgn_flags & SFMMU_REGION_FREE));	\
126 		ASSERT(((rgnp)->rgn_flags & SFMMU_REGION_TYPE_MASK) ==	\
127 		    SFMMU_REGION_HME);					\
128 		ASSERT(_ttesz <= (rgnp)->rgn_pgszc);			\
129 		_hsva = (caddr_t)get_hblk_base(hmeblkp);		\
130 		_heva = get_hblk_endaddr(hmeblkp);			\
131 		_rsva = (caddr_t)P2ALIGN(				\
132 		    (uintptr_t)(rgnp)->rgn_saddr, HBLK_MIN_BYTES);	\
133 		_reva = (caddr_t)P2ROUNDUP(				\
134 		    (uintptr_t)((rgnp)->rgn_saddr + (rgnp)->rgn_size),	\
135 		    HBLK_MIN_BYTES);					\
136 		ASSERT(_hsva >= _rsva);					\
137 		ASSERT(_hsva < _reva);					\
138 		ASSERT(_heva > _rsva);					\
139 		ASSERT(_heva <= _reva);					\
140 		_flagtte = (_ttesz < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : \
141 			_ttesz;						\
142 		ASSERT(rgnp->rgn_hmeflags & (0x1 << _flagtte));		\
143 }
144 
145 #else /* DEBUG */
146 #define	SFMMU_VALIDATE_HMERID(hat, rid, addr, len)
147 #define	SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)
148 #endif /* DEBUG */
149 
150 #if defined(SF_ERRATA_57)
151 extern caddr_t errata57_limit;
152 #endif
153 
154 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
155 				(sizeof (int64_t)))
156 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
157 
158 #define	HBLK_RESERVE_CNT	128
159 #define	HBLK_RESERVE_MIN	20
160 
161 static struct hme_blk		*freehblkp;
162 static kmutex_t			freehblkp_lock;
163 static int			freehblkcnt;
164 
165 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
166 static kmutex_t			hblk_reserve_lock;
167 static kthread_t		*hblk_reserve_thread;
168 
169 static nucleus_hblk8_info_t	nucleus_hblk8;
170 static nucleus_hblk1_info_t	nucleus_hblk1;
171 
172 /*
173  * Data to manage per-cpu hmeblk pending queues, hmeblks are queued here
174  * after the initial phase of removing an hmeblk from the hash chain, see
175  * the detailed comment in sfmmu_hblk_hash_rm() for further details.
176  */
177 static cpu_hme_pend_t		*cpu_hme_pend;
178 static uint_t			cpu_hme_pend_thresh;
179 /*
180  * SFMMU specific hat functions
181  */
182 void	hat_pagecachectl(struct page *, int);
183 
184 /* flags for hat_pagecachectl */
185 #define	HAT_CACHE	0x1
186 #define	HAT_UNCACHE	0x2
187 #define	HAT_TMPNC	0x4
188 
189 /*
190  * Flag to allow the creation of non-cacheable translations
191  * to system memory. It is off by default. At the moment this
192  * flag is used by the ecache error injector. The error injector
193  * will turn it on when creating such a translation then shut it
194  * off when it's finished.
195  */
196 
197 int	sfmmu_allow_nc_trans = 0;
198 
199 /*
200  * Flag to disable large page support.
201  *	value of 1 => disable all large pages.
202  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
203  *
204  * For example, use the value 0x4 to disable 512K pages.
205  *
206  */
207 #define	LARGE_PAGES_OFF		0x1
208 
209 /*
210  * The disable_large_pages and disable_ism_large_pages variables control
211  * hat_memload_array and the page sizes to be used by ISM and the kernel.
212  *
213  * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
214  * are only used to control which OOB pages to use at upper VM segment creation
215  * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
216  * Their values may come from platform or CPU specific code to disable page
217  * sizes that should not be used.
218  *
219  * WARNING: 512K pages are currently not supported for ISM/DISM.
220  */
221 uint_t	disable_large_pages = 0;
222 uint_t	disable_ism_large_pages = (1 << TTE512K);
223 uint_t	disable_auto_data_large_pages = 0;
224 uint_t	disable_auto_text_large_pages = 0;
225 
226 /*
227  * Private sfmmu data structures for hat management
228  */
229 static struct kmem_cache *sfmmuid_cache;
230 static struct kmem_cache *mmuctxdom_cache;
231 
232 /*
233  * Private sfmmu data structures for tsb management
234  */
235 static struct kmem_cache *sfmmu_tsbinfo_cache;
236 static struct kmem_cache *sfmmu_tsb8k_cache;
237 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
238 static vmem_t *kmem_bigtsb_arena;
239 static vmem_t *kmem_tsb_arena;
240 
241 /*
242  * sfmmu static variables for hmeblk resource management.
243  */
244 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
245 static struct kmem_cache *sfmmu8_cache;
246 static struct kmem_cache *sfmmu1_cache;
247 static struct kmem_cache *pa_hment_cache;
248 
249 static kmutex_t		ism_mlist_lock;	/* mutex for ism mapping list */
250 /*
251  * private data for ism
252  */
253 static struct kmem_cache *ism_blk_cache;
254 static struct kmem_cache *ism_ment_cache;
255 #define	ISMID_STARTADDR	NULL
256 
257 /*
258  * Region management data structures and function declarations.
259  */
260 
261 static void	sfmmu_leave_srd(sfmmu_t *);
262 static int	sfmmu_srdcache_constructor(void *, void *, int);
263 static void	sfmmu_srdcache_destructor(void *, void *);
264 static int	sfmmu_rgncache_constructor(void *, void *, int);
265 static void	sfmmu_rgncache_destructor(void *, void *);
266 static int	sfrgnmap_isnull(sf_region_map_t *);
267 static int	sfhmergnmap_isnull(sf_hmeregion_map_t *);
268 static int	sfmmu_scdcache_constructor(void *, void *, int);
269 static void	sfmmu_scdcache_destructor(void *, void *);
270 static void	sfmmu_rgn_cb_noop(caddr_t, caddr_t, caddr_t,
271     size_t, void *, u_offset_t);
272 
273 static uint_t srd_hashmask = SFMMU_MAX_SRD_BUCKETS - 1;
274 static sf_srd_bucket_t *srd_buckets;
275 static struct kmem_cache *srd_cache;
276 static uint_t srd_rgn_hashmask = SFMMU_MAX_REGION_BUCKETS - 1;
277 static struct kmem_cache *region_cache;
278 static struct kmem_cache *scd_cache;
279 
280 #ifdef sun4v
281 int use_bigtsb_arena = 1;
282 #else
283 int use_bigtsb_arena = 0;
284 #endif
285 
286 /* External /etc/system tunable, for turning on&off the shctx support */
287 int disable_shctx = 0;
288 /* Internal variable, set by MD if the HW supports shctx feature */
289 int shctx_on = 0;
290 
291 #ifdef DEBUG
292 static void check_scd_sfmmu_list(sfmmu_t **, sfmmu_t *, int);
293 #endif
294 static void sfmmu_to_scd_list(sfmmu_t **, sfmmu_t *);
295 static void sfmmu_from_scd_list(sfmmu_t **, sfmmu_t *);
296 
297 static sf_scd_t *sfmmu_alloc_scd(sf_srd_t *, sf_region_map_t *);
298 static void sfmmu_find_scd(sfmmu_t *);
299 static void sfmmu_join_scd(sf_scd_t *, sfmmu_t *);
300 static void sfmmu_finish_join_scd(sfmmu_t *);
301 static void sfmmu_leave_scd(sfmmu_t *, uchar_t);
302 static void sfmmu_destroy_scd(sf_srd_t *, sf_scd_t *, sf_region_map_t *);
303 static int sfmmu_alloc_scd_tsbs(sf_srd_t *, sf_scd_t *);
304 static void sfmmu_free_scd_tsbs(sfmmu_t *);
305 static void sfmmu_tsb_inv_ctx(sfmmu_t *);
306 static int find_ism_rid(sfmmu_t *, sfmmu_t *, caddr_t, uint_t *);
307 static void sfmmu_ism_hatflags(sfmmu_t *, int);
308 static int sfmmu_srd_lock_held(sf_srd_t *);
309 static void sfmmu_remove_scd(sf_scd_t **, sf_scd_t *);
310 static void sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *);
311 static void sfmmu_link_scd_to_regions(sf_srd_t *, sf_scd_t *);
312 static void sfmmu_unlink_scd_from_regions(sf_srd_t *, sf_scd_t *);
313 static void sfmmu_link_to_hmeregion(sfmmu_t *, sf_region_t *);
314 static void sfmmu_unlink_from_hmeregion(sfmmu_t *, sf_region_t *);
315 
316 /*
317  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
318  * HAT flags, synchronizing TLB/TSB coherency, and context management.
319  * The lock is hashed on the sfmmup since the case where we need to lock
320  * all processes is rare but does occur (e.g. we need to unload a shared
321  * mapping from all processes using the mapping).  We have a lot of buckets,
322  * and each slab of sfmmu_t's can use about a quarter of them, giving us
323  * a fairly good distribution without wasting too much space and overhead
324  * when we have to grab them all.
325  */
326 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
327 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
328 
329 /*
330  * Hash algorithm optimized for a small number of slabs.
331  *  7 is (highbit((sizeof sfmmu_t)) - 1)
332  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
333  * kmem_cache, and thus they will be sequential within that cache.  In
334  * addition, each new slab will have a different "color" up to cache_maxcolor
335  * which will skew the hashing for each successive slab which is allocated.
336  * If the size of sfmmu_t changed to a larger size, this algorithm may need
337  * to be revisited.
338  */
339 #define	TSB_HASH_SHIFT_BITS (7)
340 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
341 
342 #ifdef DEBUG
343 int tsb_hash_debug = 0;
344 #define	TSB_HASH(sfmmup)	\
345 	(tsb_hash_debug ? &hat_lock[0] : \
346 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
347 #else	/* DEBUG */
348 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
349 #endif	/* DEBUG */
350 
351 
352 /* sfmmu_replace_tsb() return codes. */
353 typedef enum tsb_replace_rc {
354 	TSB_SUCCESS,
355 	TSB_ALLOCFAIL,
356 	TSB_LOSTRACE,
357 	TSB_ALREADY_SWAPPED,
358 	TSB_CANTGROW
359 } tsb_replace_rc_t;
360 
361 /*
362  * Flags for TSB allocation routines.
363  */
364 #define	TSB_ALLOC	0x01
365 #define	TSB_FORCEALLOC	0x02
366 #define	TSB_GROW	0x04
367 #define	TSB_SHRINK	0x08
368 #define	TSB_SWAPIN	0x10
369 
370 /*
371  * Support for HAT callbacks.
372  */
373 #define	SFMMU_MAX_RELOC_CALLBACKS	10
374 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
375 static id_t sfmmu_cb_nextid = 0;
376 static id_t sfmmu_tsb_cb_id;
377 struct sfmmu_callback *sfmmu_cb_table;
378 
379 kmutex_t	kpr_mutex;
380 kmutex_t	kpr_suspendlock;
381 kthread_t	*kreloc_thread;
382 
383 /*
384  * Enable VA->PA translation sanity checking on DEBUG kernels.
385  * Disabled by default.  This is incompatible with some
386  * drivers (error injector, RSM) so if it breaks you get
387  * to keep both pieces.
388  */
389 int hat_check_vtop = 0;
390 
391 /*
392  * Private sfmmu routines (prototypes)
393  */
394 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
395 static struct	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
396 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t,
397 			uint_t);
398 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
399 			caddr_t, demap_range_t *, uint_t);
400 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
401 			caddr_t, int);
402 static void	sfmmu_hblk_free(struct hme_blk **);
403 static void	sfmmu_hblks_list_purge(struct hme_blk **, int);
404 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
405 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
406 static struct hme_blk *sfmmu_hblk_steal(int);
407 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
408 			struct hme_blk *, uint64_t, struct hme_blk *);
409 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
410 
411 static void	hat_do_memload_array(struct hat *, caddr_t, size_t,
412 		    struct page **, uint_t, uint_t, uint_t);
413 static void	hat_do_memload(struct hat *, caddr_t, struct page *,
414 		    uint_t, uint_t, uint_t);
415 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
416 		    uint_t, uint_t, pgcnt_t, uint_t);
417 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
418 			uint_t);
419 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
420 			uint_t, uint_t);
421 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
422 					caddr_t, int, uint_t);
423 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
424 			struct hmehash_bucket *, caddr_t, uint_t, uint_t,
425 			uint_t);
426 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
427 			caddr_t, page_t **, uint_t, uint_t);
428 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
429 
430 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
431 static pfn_t	sfmmu_uvatopfn(caddr_t, sfmmu_t *, tte_t *);
432 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
433 #ifdef VAC
434 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
435 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
436 int	tst_tnc(page_t *pp, pgcnt_t);
437 void	conv_tnc(page_t *pp, int);
438 #endif
439 
440 static void	sfmmu_get_ctx(sfmmu_t *);
441 static void	sfmmu_free_sfmmu(sfmmu_t *);
442 
443 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
444 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
445 
446 cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
447 static void	hat_pagereload(struct page *, struct page *);
448 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
449 #ifdef VAC
450 void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
451 static void	sfmmu_page_cache(page_t *, int, int, int);
452 #endif
453 
454 cpuset_t	sfmmu_rgntlb_demap(caddr_t, sf_region_t *,
455     struct hme_blk *, int);
456 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
457 			pfn_t, int, int, int, int);
458 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
459 			pfn_t, int);
460 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
461 static void	sfmmu_tlb_range_demap(demap_range_t *);
462 static void	sfmmu_invalidate_ctx(sfmmu_t *);
463 static void	sfmmu_sync_mmustate(sfmmu_t *);
464 
465 static void	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
466 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
467 			sfmmu_t *);
468 static void	sfmmu_tsb_free(struct tsb_info *);
469 static void	sfmmu_tsbinfo_free(struct tsb_info *);
470 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
471 			sfmmu_t *);
472 static void	sfmmu_tsb_chk_reloc(sfmmu_t *, hatlock_t *);
473 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
474 static int	sfmmu_select_tsb_szc(pgcnt_t);
475 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
476 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
477 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
478 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
479 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
480 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
481 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
482     hatlock_t *, uint_t);
483 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
484 
485 #ifdef VAC
486 void	sfmmu_cache_flush(pfn_t, int);
487 void	sfmmu_cache_flushcolor(int, pfn_t);
488 #endif
489 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
490 			caddr_t, demap_range_t *, uint_t, int);
491 
492 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
493 static uint_t	sfmmu_ptov_attr(tte_t *);
494 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
495 			caddr_t, demap_range_t *, uint_t);
496 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
497 static int	sfmmu_idcache_constructor(void *, void *, int);
498 static void	sfmmu_idcache_destructor(void *, void *);
499 static int	sfmmu_hblkcache_constructor(void *, void *, int);
500 static void	sfmmu_hblkcache_destructor(void *, void *);
501 static void	sfmmu_hblkcache_reclaim(void *);
502 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
503 			struct hmehash_bucket *);
504 static void	sfmmu_hblk_hash_rm(struct hmehash_bucket *, struct hme_blk *,
505 			struct hme_blk *, struct hme_blk **, int);
506 static void	sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *,
507 			uint64_t);
508 static struct hme_blk *sfmmu_check_pending_hblks(int);
509 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
510 static void	sfmmu_cleanup_rhblk(sf_srd_t *, caddr_t, uint_t, int);
511 static void	sfmmu_unload_hmeregion_va(sf_srd_t *, uint_t, caddr_t, caddr_t,
512 			int, caddr_t *);
513 static void	sfmmu_unload_hmeregion(sf_srd_t *, sf_region_t *);
514 
515 static void	sfmmu_rm_large_mappings(page_t *, int);
516 
517 static void	hat_lock_init(void);
518 static void	hat_kstat_init(void);
519 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
520 static void	sfmmu_set_scd_rttecnt(sf_srd_t *, sf_scd_t *);
521 static	int	sfmmu_is_rgnva(sf_srd_t *, caddr_t, ulong_t, ulong_t);
522 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
523 int	fnd_mapping_sz(page_t *);
524 static void	iment_add(struct ism_ment *,  struct hat *);
525 static void	iment_sub(struct ism_ment *, struct hat *);
526 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
527 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
528 extern void	sfmmu_clear_utsbinfo(void);
529 
530 static void		sfmmu_ctx_wrap_around(mmu_ctx_t *, boolean_t);
531 
532 extern int vpm_enable;
533 
534 /* kpm globals */
535 #ifdef	DEBUG
536 /*
537  * Enable trap level tsbmiss handling
538  */
539 int	kpm_tsbmtl = 1;
540 
541 /*
542  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
543  * required TLB shootdowns in this case, so handle w/ care. Off by default.
544  */
545 int	kpm_tlb_flush;
546 #endif	/* DEBUG */
547 
548 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
549 
550 #ifdef DEBUG
551 static void	sfmmu_check_hblk_flist();
552 #endif
553 
554 /*
555  * Semi-private sfmmu data structures.  Some of them are initialize in
556  * startup or in hat_init. Some of them are private but accessed by
557  * assembly code or mach_sfmmu.c
558  */
559 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
560 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
561 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
562 uint64_t	khme_hash_pa;		/* PA of khme_hash */
563 int		uhmehash_num;		/* # of buckets in user hash table */
564 int		khmehash_num;		/* # of buckets in kernel hash table */
565 
566 uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
567 mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
568 uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
569 
570 #define	DEFAULT_NUM_CTXS_PER_MMU 8192
571 static uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
572 
573 int		cache;			/* describes system cache */
574 
575 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
576 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
577 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
578 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
579 
580 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
581 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
582 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
583 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
584 
585 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
586 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
587 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
588 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
589 
590 #ifndef sun4v
591 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
592 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
593 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
594 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
595 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
596 #endif /* sun4v */
597 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
598 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
599 vmem_t		*kmem_bigtsb_default_arena[NLGRPS_MAX]; /* dynamic 256M TSBs */
600 
601 /*
602  * Size to use for TSB slabs.  Future platforms that support page sizes
603  * larger than 4M may wish to change these values, and provide their own
604  * assembly macros for building and decoding the TSB base register contents.
605  * Note disable_large_pages will override the value set here.
606  */
607 static	uint_t tsb_slab_ttesz = TTE4M;
608 size_t	tsb_slab_size = MMU_PAGESIZE4M;
609 uint_t	tsb_slab_shift = MMU_PAGESHIFT4M;
610 /* PFN mask for TTE */
611 size_t	tsb_slab_mask = MMU_PAGEOFFSET4M >> MMU_PAGESHIFT;
612 
613 /*
614  * Size to use for TSB slabs.  These are used only when 256M tsb arenas
615  * exist.
616  */
617 static uint_t	bigtsb_slab_ttesz = TTE256M;
618 static size_t	bigtsb_slab_size = MMU_PAGESIZE256M;
619 static uint_t	bigtsb_slab_shift = MMU_PAGESHIFT256M;
620 /* 256M page alignment for 8K pfn */
621 static size_t	bigtsb_slab_mask = MMU_PAGEOFFSET256M >> MMU_PAGESHIFT;
622 
623 /* largest TSB size to grow to, will be smaller on smaller memory systems */
624 static int	tsb_max_growsize = 0;
625 
626 /*
627  * Tunable parameters dealing with TSB policies.
628  */
629 
630 /*
631  * This undocumented tunable forces all 8K TSBs to be allocated from
632  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
633  */
634 #ifdef	DEBUG
635 int	tsb_forceheap = 0;
636 #endif	/* DEBUG */
637 
638 /*
639  * Decide whether to use per-lgroup arenas, or one global set of
640  * TSB arenas.  The default is not to break up per-lgroup, since
641  * most platforms don't recognize any tangible benefit from it.
642  */
643 int	tsb_lgrp_affinity = 0;
644 
645 /*
646  * Used for growing the TSB based on the process RSS.
647  * tsb_rss_factor is based on the smallest TSB, and is
648  * shifted by the TSB size to determine if we need to grow.
649  * The default will grow the TSB if the number of TTEs for
650  * this page size exceeds 75% of the number of TSB entries,
651  * which should _almost_ eliminate all conflict misses
652  * (at the expense of using up lots and lots of memory).
653  */
654 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
655 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
656 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
657 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
658 	default_tsb_size)
659 #define	TSB_OK_SHRINK()	\
660 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
661 #define	TSB_OK_GROW()	\
662 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
663 
664 int	enable_tsb_rss_sizing = 1;
665 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
666 
667 /* which TSB size code to use for new address spaces or if rss sizing off */
668 int default_tsb_size = TSB_8K_SZCODE;
669 
670 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
671 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
672 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
673 
674 #ifdef DEBUG
675 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
676 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
677 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
678 static int tsb_alloc_fail_mtbf = 0;
679 static int tsb_alloc_count = 0;
680 #endif /* DEBUG */
681 
682 /* if set to 1, will remap valid TTEs when growing TSB. */
683 int tsb_remap_ttes = 1;
684 
685 /*
686  * If we have more than this many mappings, allocate a second TSB.
687  * This default is chosen because the I/D fully associative TLBs are
688  * assumed to have at least 8 available entries. Platforms with a
689  * larger fully-associative TLB could probably override the default.
690  */
691 
692 #ifdef sun4v
693 int tsb_sectsb_threshold = 0;
694 #else
695 int tsb_sectsb_threshold = 8;
696 #endif
697 
698 /*
699  * kstat data
700  */
701 struct sfmmu_global_stat sfmmu_global_stat;
702 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
703 
704 /*
705  * Global data
706  */
707 sfmmu_t		*ksfmmup;		/* kernel's hat id */
708 
709 #ifdef DEBUG
710 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
711 #endif
712 
713 /* sfmmu locking operations */
714 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
715 static int	sfmmu_mlspl_held(struct page *, int);
716 
717 kmutex_t *sfmmu_page_enter(page_t *);
718 void	sfmmu_page_exit(kmutex_t *);
719 int	sfmmu_page_spl_held(struct page *);
720 
721 /* sfmmu internal locking operations - accessed directly */
722 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
723 				kmutex_t **, kmutex_t **);
724 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
725 static hatlock_t *
726 		sfmmu_hat_enter(sfmmu_t *);
727 static hatlock_t *
728 		sfmmu_hat_tryenter(sfmmu_t *);
729 static void	sfmmu_hat_exit(hatlock_t *);
730 static void	sfmmu_hat_lock_all(void);
731 static void	sfmmu_hat_unlock_all(void);
732 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
733 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
734 
735 kpm_hlk_t	*kpmp_table;
736 uint_t		kpmp_table_sz;	/* must be a power of 2 */
737 uchar_t		kpmp_shift;
738 
739 kpm_shlk_t	*kpmp_stable;
740 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
741 
742 /*
743  * SPL_TABLE_SIZE is 2 * NCPU, but no smaller than 128.
744  * SPL_SHIFT is log2(SPL_TABLE_SIZE).
745  */
746 #if ((2*NCPU_P2) > 128)
747 #define	SPL_SHIFT	((unsigned)(NCPU_LOG2 + 1))
748 #else
749 #define	SPL_SHIFT	7U
750 #endif
751 #define	SPL_TABLE_SIZE	(1U << SPL_SHIFT)
752 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
753 
754 /*
755  * We shift by PP_SHIFT to take care of the low-order 0 bits of a page_t
756  * and by multiples of SPL_SHIFT to get as many varied bits as we can.
757  */
758 #define	SPL_INDEX(pp) \
759 	((((uintptr_t)(pp) >> PP_SHIFT) ^ \
760 	((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT)) ^ \
761 	((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 2)) ^ \
762 	((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 3))) & \
763 	SPL_MASK)
764 
765 #define	SPL_HASH(pp)    \
766 	(&sfmmu_page_lock[SPL_INDEX(pp)].pad_mutex)
767 
768 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
769 
770 /* Array of mutexes protecting a page's mapping list and p_nrm field. */
771 
772 #define	MML_TABLE_SIZE	SPL_TABLE_SIZE
773 #define	MLIST_HASH(pp)	(&mml_table[SPL_INDEX(pp)].pad_mutex)
774 
775 static pad_mutex_t	mml_table[MML_TABLE_SIZE];
776 
777 /*
778  * hat_unload_callback() will group together callbacks in order
779  * to avoid xt_sync() calls.  This is the maximum size of the group.
780  */
781 #define	MAX_CB_ADDR	32
782 
783 tte_t	hw_tte;
784 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
785 
786 static char	*mmu_ctx_kstat_names[] = {
787 	"mmu_ctx_tsb_exceptions",
788 	"mmu_ctx_tsb_raise_exception",
789 	"mmu_ctx_wrap_around",
790 };
791 
792 /*
793  * Wrapper for vmem_xalloc since vmem_create only allows limited
794  * parameters for vm_source_alloc functions.  This function allows us
795  * to specify alignment consistent with the size of the object being
796  * allocated.
797  */
798 static void *
799 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
800 {
801 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
802 }
803 
804 /* Common code for setting tsb_alloc_hiwater. */
805 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
806 		ptob(pages) / tsb_alloc_hiwater_factor
807 
808 /*
809  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
810  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
811  * TTEs to represent all those physical pages.  We round this up by using
812  * 1<<highbit().  To figure out which size code to use, remember that the size
813  * code is just an amount to shift the smallest TSB size to get the size of
814  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
815  * highbit() - 1) to get the size code for the smallest TSB that can represent
816  * all of physical memory, while erring on the side of too much.
817  *
818  * Restrict tsb_max_growsize to make sure that:
819  *	1) TSBs can't grow larger than the TSB slab size
820  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
821  */
822 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
823 	int	_i, _szc, _slabszc, _tsbszc;				\
824 									\
825 	_i = highbit(pages);						\
826 	if ((1 << (_i - 1)) == (pages))					\
827 		_i--;		/* 2^n case, round down */              \
828 	_szc = _i - TSB_START_SIZE;					\
829 	_slabszc = bigtsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); \
830 	_tsbszc = MIN(_szc, _slabszc);                                  \
831 	tsb_max_growsize = MIN(_tsbszc, UTSB_MAX_SZCODE);               \
832 }
833 
834 /*
835  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
836  * tsb_info which handles that TTE size.
837  */
838 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) {			\
839 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
840 	ASSERT(((tsbinfop)->tsb_flags & TSB_SHAREDCTX) ||		\
841 	    sfmmu_hat_lock_held(sfmmup));				\
842 	if ((tte_szc) >= TTE4M)	{					\
843 		ASSERT((tsbinfop) != NULL);				\
844 		(tsbinfop) = (tsbinfop)->tsb_next;			\
845 	}								\
846 }
847 
848 /*
849  * Macro to use to unload entries from the TSB.
850  * It has knowledge of which page sizes get replicated in the TSB
851  * and will call the appropriate unload routine for the appropriate size.
852  */
853 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, ismhat)		\
854 {									\
855 	int ttesz = get_hblk_ttesz(hmeblkp);				\
856 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
857 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
858 	} else {							\
859 		caddr_t sva = ismhat ? addr :				\
860 		    (caddr_t)get_hblk_base(hmeblkp);			\
861 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
862 		ASSERT(addr >= sva && addr < eva);			\
863 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
864 	}								\
865 }
866 
867 
868 /* Update tsb_alloc_hiwater after memory is configured. */
869 /*ARGSUSED*/
870 static void
871 sfmmu_update_post_add(void *arg, pgcnt_t delta_pages)
872 {
873 	/* Assumes physmem has already been updated. */
874 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
875 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
876 }
877 
878 /*
879  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
880  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
881  * deleted.
882  */
883 /*ARGSUSED*/
884 static int
885 sfmmu_update_pre_del(void *arg, pgcnt_t delta_pages)
886 {
887 	return (0);
888 }
889 
890 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
891 /*ARGSUSED*/
892 static void
893 sfmmu_update_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
894 {
895 	/*
896 	 * Whether the delete was cancelled or not, just go ahead and update
897 	 * tsb_alloc_hiwater and tsb_max_growsize.
898 	 */
899 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
900 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
901 }
902 
903 static kphysm_setup_vector_t sfmmu_update_vec = {
904 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
905 	sfmmu_update_post_add,		/* post_add */
906 	sfmmu_update_pre_del,		/* pre_del */
907 	sfmmu_update_post_del		/* post_del */
908 };
909 
910 
911 /*
912  * HME_BLK HASH PRIMITIVES
913  */
914 
915 /*
916  * Enter a hme on the mapping list for page pp.
917  * When large pages are more prevalent in the system we might want to
918  * keep the mapping list in ascending order by the hment size. For now,
919  * small pages are more frequent, so don't slow it down.
920  */
921 #define	HME_ADD(hme, pp)					\
922 {								\
923 	ASSERT(sfmmu_mlist_held(pp));				\
924 								\
925 	hme->hme_prev = NULL;					\
926 	hme->hme_next = pp->p_mapping;				\
927 	hme->hme_page = pp;					\
928 	if (pp->p_mapping) {					\
929 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
930 		ASSERT(pp->p_share > 0);			\
931 	} else  {						\
932 		/* EMPTY */					\
933 		ASSERT(pp->p_share == 0);			\
934 	}							\
935 	pp->p_mapping = hme;					\
936 	pp->p_share++;						\
937 }
938 
939 /*
940  * Enter a hme on the mapping list for page pp.
941  * If we are unmapping a large translation, we need to make sure that the
942  * change is reflect in the corresponding bit of the p_index field.
943  */
944 #define	HME_SUB(hme, pp)					\
945 {								\
946 	ASSERT(sfmmu_mlist_held(pp));				\
947 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
948 								\
949 	if (pp->p_mapping == NULL) {				\
950 		panic("hme_remove - no mappings");		\
951 	}							\
952 								\
953 	membar_stst();	/* ensure previous stores finish */	\
954 								\
955 	ASSERT(pp->p_share > 0);				\
956 	pp->p_share--;						\
957 								\
958 	if (hme->hme_prev) {					\
959 		ASSERT(pp->p_mapping != hme);			\
960 		ASSERT(hme->hme_prev->hme_page == pp ||		\
961 			IS_PAHME(hme->hme_prev));		\
962 		hme->hme_prev->hme_next = hme->hme_next;	\
963 	} else {						\
964 		ASSERT(pp->p_mapping == hme);			\
965 		pp->p_mapping = hme->hme_next;			\
966 		ASSERT((pp->p_mapping == NULL) ?		\
967 			(pp->p_share == 0) : 1);		\
968 	}							\
969 								\
970 	if (hme->hme_next) {					\
971 		ASSERT(hme->hme_next->hme_page == pp ||		\
972 			IS_PAHME(hme->hme_next));		\
973 		hme->hme_next->hme_prev = hme->hme_prev;	\
974 	}							\
975 								\
976 	/* zero out the entry */				\
977 	hme->hme_next = NULL;					\
978 	hme->hme_prev = NULL;					\
979 	hme->hme_page = NULL;					\
980 								\
981 	if (hme_size(hme) > TTE8K) {				\
982 		/* remove mappings for remainder of large pg */	\
983 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
984 	}							\
985 }
986 
987 /*
988  * This function returns the hment given the hme_blk and a vaddr.
989  * It assumes addr has already been checked to belong to hme_blk's
990  * range.
991  */
992 #define	HBLKTOHME(hment, hmeblkp, addr)					\
993 {									\
994 	int index;							\
995 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
996 }
997 
998 /*
999  * Version of HBLKTOHME that also returns the index in hmeblkp
1000  * of the hment.
1001  */
1002 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
1003 {									\
1004 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
1005 									\
1006 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
1007 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
1008 	} else								\
1009 		idx = 0;						\
1010 									\
1011 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
1012 }
1013 
1014 /*
1015  * Disable any page sizes not supported by the CPU
1016  */
1017 void
1018 hat_init_pagesizes()
1019 {
1020 	int		i;
1021 
1022 	mmu_exported_page_sizes = 0;
1023 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
1024 
1025 		szc_2_userszc[i] = (uint_t)-1;
1026 		userszc_2_szc[i] = (uint_t)-1;
1027 
1028 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
1029 			disable_large_pages |= (1 << i);
1030 		} else {
1031 			szc_2_userszc[i] = mmu_exported_page_sizes;
1032 			userszc_2_szc[mmu_exported_page_sizes] = i;
1033 			mmu_exported_page_sizes++;
1034 		}
1035 	}
1036 
1037 	disable_ism_large_pages |= disable_large_pages;
1038 	disable_auto_data_large_pages = disable_large_pages;
1039 	disable_auto_text_large_pages = disable_large_pages;
1040 
1041 	/*
1042 	 * Initialize mmu-specific large page sizes.
1043 	 */
1044 	if (&mmu_large_pages_disabled) {
1045 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
1046 		disable_ism_large_pages |=
1047 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
1048 		disable_auto_data_large_pages |=
1049 		    mmu_large_pages_disabled(HAT_AUTO_DATA);
1050 		disable_auto_text_large_pages |=
1051 		    mmu_large_pages_disabled(HAT_AUTO_TEXT);
1052 	}
1053 }
1054 
1055 /*
1056  * Initialize the hardware address translation structures.
1057  */
1058 void
1059 hat_init(void)
1060 {
1061 	int		i;
1062 	uint_t		sz;
1063 	size_t		size;
1064 
1065 	hat_lock_init();
1066 	hat_kstat_init();
1067 
1068 	/*
1069 	 * Hardware-only bits in a TTE
1070 	 */
1071 	MAKE_TTE_MASK(&hw_tte);
1072 
1073 	hat_init_pagesizes();
1074 
1075 	/* Initialize the hash locks */
1076 	for (i = 0; i < khmehash_num; i++) {
1077 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1078 		    MUTEX_DEFAULT, NULL);
1079 		khme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1080 	}
1081 	for (i = 0; i < uhmehash_num; i++) {
1082 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1083 		    MUTEX_DEFAULT, NULL);
1084 		uhme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1085 	}
1086 	khmehash_num--;		/* make sure counter starts from 0 */
1087 	uhmehash_num--;		/* make sure counter starts from 0 */
1088 
1089 	/*
1090 	 * Allocate context domain structures.
1091 	 *
1092 	 * A platform may choose to modify max_mmu_ctxdoms in
1093 	 * set_platform_defaults(). If a platform does not define
1094 	 * a set_platform_defaults() or does not choose to modify
1095 	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
1096 	 *
1097 	 * For all platforms that have CPUs sharing MMUs, this
1098 	 * value must be defined.
1099 	 */
1100 	if (max_mmu_ctxdoms == 0)
1101 		max_mmu_ctxdoms = max_ncpus;
1102 
1103 	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
1104 	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
1105 
1106 	/* mmu_ctx_t is 64 bytes aligned */
1107 	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
1108 	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
1109 	/*
1110 	 * MMU context domain initialization for the Boot CPU.
1111 	 * This needs the context domains array allocated above.
1112 	 */
1113 	mutex_enter(&cpu_lock);
1114 	sfmmu_cpu_init(CPU);
1115 	mutex_exit(&cpu_lock);
1116 
1117 	/*
1118 	 * Intialize ism mapping list lock.
1119 	 */
1120 
1121 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1122 
1123 	/*
1124 	 * Each sfmmu structure carries an array of MMU context info
1125 	 * structures, one per context domain. The size of this array depends
1126 	 * on the maximum number of context domains. So, the size of the
1127 	 * sfmmu structure varies per platform.
1128 	 *
1129 	 * sfmmu is allocated from static arena, because trap
1130 	 * handler at TL > 0 is not allowed to touch kernel relocatable
1131 	 * memory. sfmmu's alignment is changed to 64 bytes from
1132 	 * default 8 bytes, as the lower 6 bits will be used to pass
1133 	 * pgcnt to vtag_flush_pgcnt_tl1.
1134 	 */
1135 	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1136 
1137 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1138 	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1139 	    NULL, NULL, static_arena, 0);
1140 
1141 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1142 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1143 
1144 	/*
1145 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1146 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1147 	 * specified, don't use magazines to cache them--we want to return
1148 	 * them to the system as quickly as possible.
1149 	 */
1150 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1151 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1152 	    static_arena, KMC_NOMAGAZINE);
1153 
1154 	/*
1155 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1156 	 * memory, which corresponds to the old static reserve for TSBs.
1157 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1158 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1159 	 * allocations will be taken from the kernel heap (via
1160 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1161 	 * consumer.
1162 	 */
1163 	if (tsb_alloc_hiwater_factor == 0) {
1164 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1165 	}
1166 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1167 
1168 	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1169 		if (!(disable_large_pages & (1 << sz)))
1170 			break;
1171 	}
1172 
1173 	if (sz < tsb_slab_ttesz) {
1174 		tsb_slab_ttesz = sz;
1175 		tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1176 		tsb_slab_size = 1 << tsb_slab_shift;
1177 		tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1178 		use_bigtsb_arena = 0;
1179 	} else if (use_bigtsb_arena &&
1180 	    (disable_large_pages & (1 << bigtsb_slab_ttesz))) {
1181 		use_bigtsb_arena = 0;
1182 	}
1183 
1184 	if (!use_bigtsb_arena) {
1185 		bigtsb_slab_shift = tsb_slab_shift;
1186 	}
1187 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1188 
1189 	/*
1190 	 * On smaller memory systems, allocate TSB memory in smaller chunks
1191 	 * than the default 4M slab size. We also honor disable_large_pages
1192 	 * here.
1193 	 *
1194 	 * The trap handlers need to be patched with the final slab shift,
1195 	 * since they need to be able to construct the TSB pointer at runtime.
1196 	 */
1197 	if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1198 	    !(disable_large_pages & (1 << TTE512K))) {
1199 		tsb_slab_ttesz = TTE512K;
1200 		tsb_slab_shift = MMU_PAGESHIFT512K;
1201 		tsb_slab_size = MMU_PAGESIZE512K;
1202 		tsb_slab_mask = MMU_PAGEOFFSET512K >> MMU_PAGESHIFT;
1203 		use_bigtsb_arena = 0;
1204 	}
1205 
1206 	if (!use_bigtsb_arena) {
1207 		bigtsb_slab_ttesz = tsb_slab_ttesz;
1208 		bigtsb_slab_shift = tsb_slab_shift;
1209 		bigtsb_slab_size = tsb_slab_size;
1210 		bigtsb_slab_mask = tsb_slab_mask;
1211 	}
1212 
1213 
1214 	/*
1215 	 * Set up memory callback to update tsb_alloc_hiwater and
1216 	 * tsb_max_growsize.
1217 	 */
1218 	i = kphysm_setup_func_register(&sfmmu_update_vec, (void *) 0);
1219 	ASSERT(i == 0);
1220 
1221 	/*
1222 	 * kmem_tsb_arena is the source from which large TSB slabs are
1223 	 * drawn.  The quantum of this arena corresponds to the largest
1224 	 * TSB size we can dynamically allocate for user processes.
1225 	 * Currently it must also be a supported page size since we
1226 	 * use exactly one translation entry to map each slab page.
1227 	 *
1228 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1229 	 * which most TSBs are allocated.  Since most TSB allocations are
1230 	 * typically 8K we have a kmem cache we stack on top of each
1231 	 * kmem_tsb_default_arena to speed up those allocations.
1232 	 *
1233 	 * Note the two-level scheme of arenas is required only
1234 	 * because vmem_create doesn't allow us to specify alignment
1235 	 * requirements.  If this ever changes the code could be
1236 	 * simplified to use only one level of arenas.
1237 	 *
1238 	 * If 256M page support exists on sun4v, 256MB kmem_bigtsb_arena
1239 	 * will be provided in addition to the 4M kmem_tsb_arena.
1240 	 */
1241 	if (use_bigtsb_arena) {
1242 		kmem_bigtsb_arena = vmem_create("kmem_bigtsb", NULL, 0,
1243 		    bigtsb_slab_size, sfmmu_vmem_xalloc_aligned_wrapper,
1244 		    vmem_xfree, heap_arena, 0, VM_SLEEP);
1245 	}
1246 
1247 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1248 	    sfmmu_vmem_xalloc_aligned_wrapper,
1249 	    vmem_xfree, heap_arena, 0, VM_SLEEP);
1250 
1251 	if (tsb_lgrp_affinity) {
1252 		char s[50];
1253 		for (i = 0; i < NLGRPS_MAX; i++) {
1254 			if (use_bigtsb_arena) {
1255 				(void) sprintf(s, "kmem_bigtsb_lgrp%d", i);
1256 				kmem_bigtsb_default_arena[i] = vmem_create(s,
1257 				    NULL, 0, 2 * tsb_slab_size,
1258 				    sfmmu_tsb_segkmem_alloc,
1259 				    sfmmu_tsb_segkmem_free, kmem_bigtsb_arena,
1260 				    0, VM_SLEEP | VM_BESTFIT);
1261 			}
1262 
1263 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1264 			kmem_tsb_default_arena[i] = vmem_create(s,
1265 			    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1266 			    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1267 			    VM_SLEEP | VM_BESTFIT);
1268 
1269 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1270 			sfmmu_tsb_cache[i] = kmem_cache_create(s,
1271 			    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1272 			    kmem_tsb_default_arena[i], 0);
1273 		}
1274 	} else {
1275 		if (use_bigtsb_arena) {
1276 			kmem_bigtsb_default_arena[0] =
1277 			    vmem_create("kmem_bigtsb_default", NULL, 0,
1278 			    2 * tsb_slab_size, sfmmu_tsb_segkmem_alloc,
1279 			    sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 0,
1280 			    VM_SLEEP | VM_BESTFIT);
1281 		}
1282 
1283 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1284 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1285 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1286 		    VM_SLEEP | VM_BESTFIT);
1287 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1288 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1289 		    kmem_tsb_default_arena[0], 0);
1290 	}
1291 
1292 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1293 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1294 	    sfmmu_hblkcache_destructor,
1295 	    sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1296 	    hat_memload_arena, KMC_NOHASH);
1297 
1298 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1299 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0,
1300 	    VMC_DUMPSAFE | VM_SLEEP);
1301 
1302 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1303 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1304 	    sfmmu_hblkcache_destructor,
1305 	    NULL, (void *)HME1BLK_SZ,
1306 	    hat_memload1_arena, KMC_NOHASH);
1307 
1308 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1309 	    0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1310 
1311 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1312 	    sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1313 	    NULL, NULL, static_arena, KMC_NOHASH);
1314 
1315 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1316 	    sizeof (ism_ment_t), 0, NULL, NULL,
1317 	    NULL, NULL, NULL, 0);
1318 
1319 	/*
1320 	 * We grab the first hat for the kernel,
1321 	 */
1322 	AS_LOCK_ENTER(&kas, RW_WRITER);
1323 	kas.a_hat = hat_alloc(&kas);
1324 	AS_LOCK_EXIT(&kas);
1325 
1326 	/*
1327 	 * Initialize hblk_reserve.
1328 	 */
1329 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1330 	    va_to_pa((caddr_t)hblk_reserve);
1331 
1332 #ifndef UTSB_PHYS
1333 	/*
1334 	 * Reserve some kernel virtual address space for the locked TTEs
1335 	 * that allow us to probe the TSB from TL>0.
1336 	 */
1337 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1338 	    0, 0, NULL, NULL, VM_SLEEP);
1339 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1340 	    0, 0, NULL, NULL, VM_SLEEP);
1341 #endif
1342 
1343 #ifdef VAC
1344 	/*
1345 	 * The big page VAC handling code assumes VAC
1346 	 * will not be bigger than the smallest big
1347 	 * page- which is 64K.
1348 	 */
1349 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1350 		cmn_err(CE_PANIC, "VAC too big!");
1351 	}
1352 #endif
1353 
1354 	uhme_hash_pa = va_to_pa(uhme_hash);
1355 	khme_hash_pa = va_to_pa(khme_hash);
1356 
1357 	/*
1358 	 * Initialize relocation locks. kpr_suspendlock is held
1359 	 * at PIL_MAX to prevent interrupts from pinning the holder
1360 	 * of a suspended TTE which may access it leading to a
1361 	 * deadlock condition.
1362 	 */
1363 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1364 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1365 
1366 	/*
1367 	 * If Shared context support is disabled via /etc/system
1368 	 * set shctx_on to 0 here if it was set to 1 earlier in boot
1369 	 * sequence by cpu module initialization code.
1370 	 */
1371 	if (shctx_on && disable_shctx) {
1372 		shctx_on = 0;
1373 	}
1374 
1375 	if (shctx_on) {
1376 		srd_buckets = kmem_zalloc(SFMMU_MAX_SRD_BUCKETS *
1377 		    sizeof (srd_buckets[0]), KM_SLEEP);
1378 		for (i = 0; i < SFMMU_MAX_SRD_BUCKETS; i++) {
1379 			mutex_init(&srd_buckets[i].srdb_lock, NULL,
1380 			    MUTEX_DEFAULT, NULL);
1381 		}
1382 
1383 		srd_cache = kmem_cache_create("srd_cache", sizeof (sf_srd_t),
1384 		    0, sfmmu_srdcache_constructor, sfmmu_srdcache_destructor,
1385 		    NULL, NULL, NULL, 0);
1386 		region_cache = kmem_cache_create("region_cache",
1387 		    sizeof (sf_region_t), 0, sfmmu_rgncache_constructor,
1388 		    sfmmu_rgncache_destructor, NULL, NULL, NULL, 0);
1389 		scd_cache = kmem_cache_create("scd_cache", sizeof (sf_scd_t),
1390 		    0, sfmmu_scdcache_constructor,  sfmmu_scdcache_destructor,
1391 		    NULL, NULL, NULL, 0);
1392 	}
1393 
1394 	/*
1395 	 * Pre-allocate hrm_hashtab before enabling the collection of
1396 	 * refmod statistics.  Allocating on the fly would mean us
1397 	 * running the risk of suffering recursive mutex enters or
1398 	 * deadlocks.
1399 	 */
1400 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1401 	    KM_SLEEP);
1402 
1403 	/* Allocate per-cpu pending freelist of hmeblks */
1404 	cpu_hme_pend = kmem_zalloc((NCPU * sizeof (cpu_hme_pend_t)) + 64,
1405 	    KM_SLEEP);
1406 	cpu_hme_pend = (cpu_hme_pend_t *)P2ROUNDUP(
1407 	    (uintptr_t)cpu_hme_pend, 64);
1408 
1409 	for (i = 0; i < NCPU; i++) {
1410 		mutex_init(&cpu_hme_pend[i].chp_mutex, NULL, MUTEX_DEFAULT,
1411 		    NULL);
1412 	}
1413 
1414 	if (cpu_hme_pend_thresh == 0) {
1415 		cpu_hme_pend_thresh = CPU_HME_PEND_THRESH;
1416 	}
1417 }
1418 
1419 /*
1420  * Initialize locking for the hat layer, called early during boot.
1421  */
1422 static void
1423 hat_lock_init()
1424 {
1425 	int i;
1426 
1427 	/*
1428 	 * initialize the array of mutexes protecting a page's mapping
1429 	 * list and p_nrm field.
1430 	 */
1431 	for (i = 0; i < MML_TABLE_SIZE; i++)
1432 		mutex_init(&mml_table[i].pad_mutex, NULL, MUTEX_DEFAULT, NULL);
1433 
1434 	if (kpm_enable) {
1435 		for (i = 0; i < kpmp_table_sz; i++) {
1436 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1437 			    MUTEX_DEFAULT, NULL);
1438 		}
1439 	}
1440 
1441 	/*
1442 	 * Initialize array of mutex locks that protects sfmmu fields and
1443 	 * TSB lists.
1444 	 */
1445 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1446 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1447 		    NULL);
1448 }
1449 
1450 #define	SFMMU_KERNEL_MAXVA \
1451 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1452 
1453 /*
1454  * Allocate a hat structure.
1455  * Called when an address space first uses a hat.
1456  */
1457 struct hat *
1458 hat_alloc(struct as *as)
1459 {
1460 	sfmmu_t *sfmmup;
1461 	int i;
1462 	uint64_t cnum;
1463 	extern uint_t get_color_start(struct as *);
1464 
1465 	ASSERT(AS_WRITE_HELD(as));
1466 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1467 	sfmmup->sfmmu_as = as;
1468 	sfmmup->sfmmu_flags = 0;
1469 	sfmmup->sfmmu_tteflags = 0;
1470 	sfmmup->sfmmu_rtteflags = 0;
1471 	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1472 
1473 	if (as == &kas) {
1474 		ksfmmup = sfmmup;
1475 		sfmmup->sfmmu_cext = 0;
1476 		cnum = KCONTEXT;
1477 
1478 		sfmmup->sfmmu_clrstart = 0;
1479 		sfmmup->sfmmu_tsb = NULL;
1480 		/*
1481 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1482 		 * to setup tsb_info for ksfmmup.
1483 		 */
1484 	} else {
1485 
1486 		/*
1487 		 * Just set to invalid ctx. When it faults, it will
1488 		 * get a valid ctx. This would avoid the situation
1489 		 * where we get a ctx, but it gets stolen and then
1490 		 * we fault when we try to run and so have to get
1491 		 * another ctx.
1492 		 */
1493 		sfmmup->sfmmu_cext = 0;
1494 		cnum = INVALID_CONTEXT;
1495 
1496 		/* initialize original physical page coloring bin */
1497 		sfmmup->sfmmu_clrstart = get_color_start(as);
1498 #ifdef DEBUG
1499 		if (tsb_random_size) {
1500 			uint32_t randval = (uint32_t)gettick() >> 4;
1501 			int size = randval % (tsb_max_growsize + 1);
1502 
1503 			/* chose a random tsb size for stress testing */
1504 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1505 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1506 		} else
1507 #endif /* DEBUG */
1508 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1509 			    default_tsb_size,
1510 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1511 		sfmmup->sfmmu_flags = HAT_SWAPPED | HAT_ALLCTX_INVALID;
1512 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1513 	}
1514 
1515 	ASSERT(max_mmu_ctxdoms > 0);
1516 	for (i = 0; i < max_mmu_ctxdoms; i++) {
1517 		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1518 		sfmmup->sfmmu_ctxs[i].gnum = 0;
1519 	}
1520 
1521 	for (i = 0; i < max_mmu_page_sizes; i++) {
1522 		sfmmup->sfmmu_ttecnt[i] = 0;
1523 		sfmmup->sfmmu_scdrttecnt[i] = 0;
1524 		sfmmup->sfmmu_ismttecnt[i] = 0;
1525 		sfmmup->sfmmu_scdismttecnt[i] = 0;
1526 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1527 	}
1528 	sfmmup->sfmmu_tsb0_4minflcnt = 0;
1529 	sfmmup->sfmmu_iblk = NULL;
1530 	sfmmup->sfmmu_ismhat = 0;
1531 	sfmmup->sfmmu_scdhat = 0;
1532 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1533 	if (sfmmup == ksfmmup) {
1534 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1535 	} else {
1536 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1537 	}
1538 	sfmmup->sfmmu_free = 0;
1539 	sfmmup->sfmmu_rmstat = 0;
1540 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1541 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1542 	sfmmup->sfmmu_srdp = NULL;
1543 	SF_RGNMAP_ZERO(sfmmup->sfmmu_region_map);
1544 	bzero(sfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
1545 	sfmmup->sfmmu_scdp = NULL;
1546 	sfmmup->sfmmu_scd_link.next = NULL;
1547 	sfmmup->sfmmu_scd_link.prev = NULL;
1548 	return (sfmmup);
1549 }
1550 
1551 /*
1552  * Create per-MMU context domain kstats for a given MMU ctx.
1553  */
1554 static void
1555 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1556 {
1557 	mmu_ctx_stat_t	stat;
1558 	kstat_t		*mmu_kstat;
1559 
1560 	ASSERT(MUTEX_HELD(&cpu_lock));
1561 	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1562 
1563 	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1564 	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1565 
1566 	if (mmu_kstat == NULL) {
1567 		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1568 		    mmu_ctxp->mmu_idx);
1569 	} else {
1570 		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1571 		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1572 			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1573 			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1574 		mmu_ctxp->mmu_kstat = mmu_kstat;
1575 		kstat_install(mmu_kstat);
1576 	}
1577 }
1578 
1579 /*
1580  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1581  * context domain information for a given CPU. If a platform does not
1582  * specify that interface, then the function below is used instead to return
1583  * default information. The defaults are as follows:
1584  *
1585  *	- The number of MMU context IDs supported on any CPU in the
1586  *	  system is 8K.
1587  *	- There is one MMU context domain per CPU.
1588  */
1589 /*ARGSUSED*/
1590 static void
1591 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1592 {
1593 	infop->mmu_nctxs = nctxs;
1594 	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1595 }
1596 
1597 /*
1598  * Called during CPU initialization to set the MMU context-related information
1599  * for a CPU.
1600  *
1601  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1602  */
1603 void
1604 sfmmu_cpu_init(cpu_t *cp)
1605 {
1606 	mmu_ctx_info_t	info;
1607 	mmu_ctx_t	*mmu_ctxp;
1608 
1609 	ASSERT(MUTEX_HELD(&cpu_lock));
1610 
1611 	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1612 		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1613 	else
1614 		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1615 
1616 	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1617 
1618 	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1619 		/* Each mmu_ctx is cacheline aligned. */
1620 		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1621 		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1622 
1623 		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1624 		    (void *)ipltospl(DISP_LEVEL));
1625 		mmu_ctxp->mmu_idx = info.mmu_idx;
1626 		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1627 		/*
1628 		 * Globally for lifetime of a system,
1629 		 * gnum must always increase.
1630 		 * mmu_saved_gnum is protected by the cpu_lock.
1631 		 */
1632 		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1633 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1634 
1635 		sfmmu_mmu_kstat_create(mmu_ctxp);
1636 
1637 		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1638 	} else {
1639 		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1640 		ASSERT(mmu_ctxp->mmu_nctxs <= info.mmu_nctxs);
1641 	}
1642 
1643 	/*
1644 	 * The mmu_lock is acquired here to prevent races with
1645 	 * the wrap-around code.
1646 	 */
1647 	mutex_enter(&mmu_ctxp->mmu_lock);
1648 
1649 
1650 	mmu_ctxp->mmu_ncpus++;
1651 	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1652 	CPU_MMU_IDX(cp) = info.mmu_idx;
1653 	CPU_MMU_CTXP(cp) = mmu_ctxp;
1654 
1655 	mutex_exit(&mmu_ctxp->mmu_lock);
1656 }
1657 
1658 static void
1659 sfmmu_ctxdom_free(mmu_ctx_t *mmu_ctxp)
1660 {
1661 	ASSERT(MUTEX_HELD(&cpu_lock));
1662 	ASSERT(!MUTEX_HELD(&mmu_ctxp->mmu_lock));
1663 
1664 	mutex_destroy(&mmu_ctxp->mmu_lock);
1665 
1666 	if (mmu_ctxp->mmu_kstat)
1667 		kstat_delete(mmu_ctxp->mmu_kstat);
1668 
1669 	/* mmu_saved_gnum is protected by the cpu_lock. */
1670 	if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1671 		mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1672 
1673 	kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1674 }
1675 
1676 /*
1677  * Called to perform MMU context-related cleanup for a CPU.
1678  */
1679 void
1680 sfmmu_cpu_cleanup(cpu_t *cp)
1681 {
1682 	mmu_ctx_t	*mmu_ctxp;
1683 
1684 	ASSERT(MUTEX_HELD(&cpu_lock));
1685 
1686 	mmu_ctxp = CPU_MMU_CTXP(cp);
1687 	ASSERT(mmu_ctxp != NULL);
1688 
1689 	/*
1690 	 * The mmu_lock is acquired here to prevent races with
1691 	 * the wrap-around code.
1692 	 */
1693 	mutex_enter(&mmu_ctxp->mmu_lock);
1694 
1695 	CPU_MMU_CTXP(cp) = NULL;
1696 
1697 	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1698 	if (--mmu_ctxp->mmu_ncpus == 0) {
1699 		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1700 		mutex_exit(&mmu_ctxp->mmu_lock);
1701 		sfmmu_ctxdom_free(mmu_ctxp);
1702 		return;
1703 	}
1704 
1705 	mutex_exit(&mmu_ctxp->mmu_lock);
1706 }
1707 
1708 uint_t
1709 sfmmu_ctxdom_nctxs(int idx)
1710 {
1711 	return (mmu_ctxs_tbl[idx]->mmu_nctxs);
1712 }
1713 
1714 #ifdef sun4v
1715 /*
1716  * sfmmu_ctxdoms_* is an interface provided to help keep context domains
1717  * consistant after suspend/resume on system that can resume on a different
1718  * hardware than it was suspended.
1719  *
1720  * sfmmu_ctxdom_lock(void) locks all context domains and prevents new contexts
1721  * from being allocated.  It acquires all hat_locks, which blocks most access to
1722  * context data, except for a few cases that are handled separately or are
1723  * harmless.  It wraps each domain to increment gnum and invalidate on-CPU
1724  * contexts, and forces cnum to its max.  As a result of this call all user
1725  * threads that are running on CPUs trap and try to perform wrap around but
1726  * can't because hat_locks are taken.  Threads that were not on CPUs but started
1727  * by scheduler go to sfmmu_alloc_ctx() to aquire context without checking
1728  * hat_lock, but fail, because cnum == nctxs, and therefore also trap and block
1729  * on hat_lock trying to wrap.  sfmmu_ctxdom_lock() must be called before CPUs
1730  * are paused, else it could deadlock acquiring locks held by paused CPUs.
1731  *
1732  * sfmmu_ctxdoms_remove() removes context domains from every CPUs and records
1733  * the CPUs that had them.  It must be called after CPUs have been paused. This
1734  * ensures that no threads are in sfmmu_alloc_ctx() accessing domain data,
1735  * because pause_cpus sends a mondo interrupt to every CPU, and sfmmu_alloc_ctx
1736  * runs with interrupts disabled.  When CPUs are later resumed, they may enter
1737  * sfmmu_alloc_ctx, but it will check for CPU_MMU_CTXP = NULL and immediately
1738  * return failure.  Or, they will be blocked trying to acquire hat_lock. Thus
1739  * after sfmmu_ctxdoms_remove returns, we are guaranteed that no one is
1740  * accessing the old context domains.
1741  *
1742  * sfmmu_ctxdoms_update(void) frees space used by old context domains and
1743  * allocates new context domains based on hardware layout.  It initializes
1744  * every CPU that had context domain before migration to have one again.
1745  * sfmmu_ctxdoms_update must be called after CPUs are resumed, else it
1746  * could deadlock acquiring locks held by paused CPUs.
1747  *
1748  * sfmmu_ctxdoms_unlock(void) releases all hat_locks after which user threads
1749  * acquire new context ids and continue execution.
1750  *
1751  * Therefore functions should be called in the following order:
1752  *       suspend_routine()
1753  *		sfmmu_ctxdom_lock()
1754  *		pause_cpus()
1755  *		suspend()
1756  *			if (suspend failed)
1757  *				sfmmu_ctxdom_unlock()
1758  *		...
1759  *		sfmmu_ctxdom_remove()
1760  *		resume_cpus()
1761  *		sfmmu_ctxdom_update()
1762  *		sfmmu_ctxdom_unlock()
1763  */
1764 static cpuset_t sfmmu_ctxdoms_pset;
1765 
1766 void
1767 sfmmu_ctxdoms_remove()
1768 {
1769 	processorid_t	id;
1770 	cpu_t		*cp;
1771 
1772 	/*
1773 	 * Record the CPUs that have domains in sfmmu_ctxdoms_pset, so they can
1774 	 * be restored post-migration. A CPU may be powered off and not have a
1775 	 * domain, for example.
1776 	 */
1777 	CPUSET_ZERO(sfmmu_ctxdoms_pset);
1778 
1779 	for (id = 0; id < NCPU; id++) {
1780 		if ((cp = cpu[id]) != NULL && CPU_MMU_CTXP(cp) != NULL) {
1781 			CPUSET_ADD(sfmmu_ctxdoms_pset, id);
1782 			CPU_MMU_CTXP(cp) = NULL;
1783 		}
1784 	}
1785 }
1786 
1787 void
1788 sfmmu_ctxdoms_lock(void)
1789 {
1790 	int		idx;
1791 	mmu_ctx_t	*mmu_ctxp;
1792 
1793 	sfmmu_hat_lock_all();
1794 
1795 	/*
1796 	 * At this point, no thread can be in sfmmu_ctx_wrap_around, because
1797 	 * hat_lock is always taken before calling it.
1798 	 *
1799 	 * For each domain, set mmu_cnum to max so no more contexts can be
1800 	 * allocated, and wrap to flush on-CPU contexts and force threads to
1801 	 * acquire a new context when we later drop hat_lock after migration.
1802 	 * Setting mmu_cnum may race with sfmmu_alloc_ctx which also sets cnum,
1803 	 * but the latter uses CAS and will miscompare and not overwrite it.
1804 	 */
1805 	kpreempt_disable(); /* required by sfmmu_ctx_wrap_around */
1806 	for (idx = 0; idx < max_mmu_ctxdoms; idx++) {
1807 		if ((mmu_ctxp = mmu_ctxs_tbl[idx]) != NULL) {
1808 			mutex_enter(&mmu_ctxp->mmu_lock);
1809 			mmu_ctxp->mmu_cnum = mmu_ctxp->mmu_nctxs;
1810 			/* make sure updated cnum visible */
1811 			membar_enter();
1812 			mutex_exit(&mmu_ctxp->mmu_lock);
1813 			sfmmu_ctx_wrap_around(mmu_ctxp, B_FALSE);
1814 		}
1815 	}
1816 	kpreempt_enable();
1817 }
1818 
1819 void
1820 sfmmu_ctxdoms_unlock(void)
1821 {
1822 	sfmmu_hat_unlock_all();
1823 }
1824 
1825 void
1826 sfmmu_ctxdoms_update(void)
1827 {
1828 	processorid_t	id;
1829 	cpu_t		*cp;
1830 	uint_t		idx;
1831 	mmu_ctx_t	*mmu_ctxp;
1832 
1833 	/*
1834 	 * Free all context domains.  As side effect, this increases
1835 	 * mmu_saved_gnum to the maximum gnum over all domains, which is used to
1836 	 * init gnum in the new domains, which therefore will be larger than the
1837 	 * sfmmu gnum for any process, guaranteeing that every process will see
1838 	 * a new generation and allocate a new context regardless of what new
1839 	 * domain it runs in.
1840 	 */
1841 	mutex_enter(&cpu_lock);
1842 
1843 	for (idx = 0; idx < max_mmu_ctxdoms; idx++) {
1844 		if (mmu_ctxs_tbl[idx] != NULL) {
1845 			mmu_ctxp = mmu_ctxs_tbl[idx];
1846 			mmu_ctxs_tbl[idx] = NULL;
1847 			sfmmu_ctxdom_free(mmu_ctxp);
1848 		}
1849 	}
1850 
1851 	for (id = 0; id < NCPU; id++) {
1852 		if (CPU_IN_SET(sfmmu_ctxdoms_pset, id) &&
1853 		    (cp = cpu[id]) != NULL)
1854 			sfmmu_cpu_init(cp);
1855 	}
1856 	mutex_exit(&cpu_lock);
1857 }
1858 #endif
1859 
1860 /*
1861  * Hat_setup, makes an address space context the current active one.
1862  * In sfmmu this translates to setting the secondary context with the
1863  * corresponding context.
1864  */
1865 void
1866 hat_setup(struct hat *sfmmup, int allocflag)
1867 {
1868 	hatlock_t *hatlockp;
1869 
1870 	/* Init needs some special treatment. */
1871 	if (allocflag == HAT_INIT) {
1872 		/*
1873 		 * Make sure that we have
1874 		 * 1. a TSB
1875 		 * 2. a valid ctx that doesn't get stolen after this point.
1876 		 */
1877 		hatlockp = sfmmu_hat_enter(sfmmup);
1878 
1879 		/*
1880 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1881 		 * TSBs, but we need one for init, since the kernel does some
1882 		 * special things to set up its stack and needs the TSB to
1883 		 * resolve page faults.
1884 		 */
1885 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1886 
1887 		sfmmu_get_ctx(sfmmup);
1888 
1889 		sfmmu_hat_exit(hatlockp);
1890 	} else {
1891 		ASSERT(allocflag == HAT_ALLOC);
1892 
1893 		hatlockp = sfmmu_hat_enter(sfmmup);
1894 		kpreempt_disable();
1895 
1896 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1897 		/*
1898 		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1899 		 * pagesize bits don't matter in this case since we are passing
1900 		 * INVALID_CONTEXT to it.
1901 		 * Compatibility Note: hw takes care of MMU_SCONTEXT1
1902 		 */
1903 		sfmmu_setctx_sec(INVALID_CONTEXT);
1904 		sfmmu_clear_utsbinfo();
1905 
1906 		kpreempt_enable();
1907 		sfmmu_hat_exit(hatlockp);
1908 	}
1909 }
1910 
1911 /*
1912  * Free all the translation resources for the specified address space.
1913  * Called from as_free when an address space is being destroyed.
1914  */
1915 void
1916 hat_free_start(struct hat *sfmmup)
1917 {
1918 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
1919 	ASSERT(sfmmup != ksfmmup);
1920 
1921 	sfmmup->sfmmu_free = 1;
1922 	if (sfmmup->sfmmu_scdp != NULL) {
1923 		sfmmu_leave_scd(sfmmup, 0);
1924 	}
1925 
1926 	ASSERT(sfmmup->sfmmu_scdp == NULL);
1927 }
1928 
1929 void
1930 hat_free_end(struct hat *sfmmup)
1931 {
1932 	int i;
1933 
1934 	ASSERT(sfmmup->sfmmu_free == 1);
1935 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1936 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1937 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1938 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1939 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1940 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1941 
1942 	if (sfmmup->sfmmu_rmstat) {
1943 		hat_freestat(sfmmup->sfmmu_as, 0);
1944 	}
1945 
1946 	while (sfmmup->sfmmu_tsb != NULL) {
1947 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1948 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1949 		sfmmup->sfmmu_tsb = next;
1950 	}
1951 
1952 	if (sfmmup->sfmmu_srdp != NULL) {
1953 		sfmmu_leave_srd(sfmmup);
1954 		ASSERT(sfmmup->sfmmu_srdp == NULL);
1955 		for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1956 			if (sfmmup->sfmmu_hmeregion_links[i] != NULL) {
1957 				kmem_free(sfmmup->sfmmu_hmeregion_links[i],
1958 				    SFMMU_L2_HMERLINKS_SIZE);
1959 				sfmmup->sfmmu_hmeregion_links[i] = NULL;
1960 			}
1961 		}
1962 	}
1963 	sfmmu_free_sfmmu(sfmmup);
1964 
1965 #ifdef DEBUG
1966 	for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1967 		ASSERT(sfmmup->sfmmu_hmeregion_links[i] == NULL);
1968 	}
1969 #endif
1970 
1971 	kmem_cache_free(sfmmuid_cache, sfmmup);
1972 }
1973 
1974 /*
1975  * Set up any translation structures, for the specified address space,
1976  * that are needed or preferred when the process is being swapped in.
1977  */
1978 /* ARGSUSED */
1979 void
1980 hat_swapin(struct hat *hat)
1981 {
1982 }
1983 
1984 /*
1985  * Free all of the translation resources, for the specified address space,
1986  * that can be freed while the process is swapped out. Called from as_swapout.
1987  * Also, free up the ctx that this process was using.
1988  */
1989 void
1990 hat_swapout(struct hat *sfmmup)
1991 {
1992 	struct hmehash_bucket *hmebp;
1993 	struct hme_blk *hmeblkp;
1994 	struct hme_blk *pr_hblk = NULL;
1995 	struct hme_blk *nx_hblk;
1996 	int i;
1997 	struct hme_blk *list = NULL;
1998 	hatlock_t *hatlockp;
1999 	struct tsb_info *tsbinfop;
2000 	struct free_tsb {
2001 		struct free_tsb *next;
2002 		struct tsb_info *tsbinfop;
2003 	};			/* free list of TSBs */
2004 	struct free_tsb *freelist, *last, *next;
2005 
2006 	SFMMU_STAT(sf_swapout);
2007 
2008 	/*
2009 	 * There is no way to go from an as to all its translations in sfmmu.
2010 	 * Here is one of the times when we take the big hit and traverse
2011 	 * the hash looking for hme_blks to free up.  Not only do we free up
2012 	 * this as hme_blks but all those that are free.  We are obviously
2013 	 * swapping because we need memory so let's free up as much
2014 	 * as we can.
2015 	 *
2016 	 * Note that we don't flush TLB/TSB here -- it's not necessary
2017 	 * because:
2018 	 *  1) we free the ctx we're using and throw away the TSB(s);
2019 	 *  2) processes aren't runnable while being swapped out.
2020 	 */
2021 	ASSERT(sfmmup != KHATID);
2022 	for (i = 0; i <= UHMEHASH_SZ; i++) {
2023 		hmebp = &uhme_hash[i];
2024 		SFMMU_HASH_LOCK(hmebp);
2025 		hmeblkp = hmebp->hmeblkp;
2026 		pr_hblk = NULL;
2027 		while (hmeblkp) {
2028 
2029 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
2030 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
2031 				ASSERT(!hmeblkp->hblk_shared);
2032 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
2033 				    (caddr_t)get_hblk_base(hmeblkp),
2034 				    get_hblk_endaddr(hmeblkp),
2035 				    NULL, HAT_UNLOAD);
2036 			}
2037 			nx_hblk = hmeblkp->hblk_next;
2038 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
2039 				ASSERT(!hmeblkp->hblk_lckcnt);
2040 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
2041 				    &list, 0);
2042 			} else {
2043 				pr_hblk = hmeblkp;
2044 			}
2045 			hmeblkp = nx_hblk;
2046 		}
2047 		SFMMU_HASH_UNLOCK(hmebp);
2048 	}
2049 
2050 	sfmmu_hblks_list_purge(&list, 0);
2051 
2052 	/*
2053 	 * Now free up the ctx so that others can reuse it.
2054 	 */
2055 	hatlockp = sfmmu_hat_enter(sfmmup);
2056 
2057 	sfmmu_invalidate_ctx(sfmmup);
2058 
2059 	/*
2060 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
2061 	 * If TSBs were never swapped in, just return.
2062 	 * This implies that we don't support partial swapping
2063 	 * of TSBs -- either all are swapped out, or none are.
2064 	 *
2065 	 * We must hold the HAT lock here to prevent racing with another
2066 	 * thread trying to unmap TTEs from the TSB or running the post-
2067 	 * relocator after relocating the TSB's memory.  Unfortunately, we
2068 	 * can't free memory while holding the HAT lock or we could
2069 	 * deadlock, so we build a list of TSBs to be freed after marking
2070 	 * the tsbinfos as swapped out and free them after dropping the
2071 	 * lock.
2072 	 */
2073 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
2074 		sfmmu_hat_exit(hatlockp);
2075 		return;
2076 	}
2077 
2078 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
2079 	last = freelist = NULL;
2080 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
2081 	    tsbinfop = tsbinfop->tsb_next) {
2082 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
2083 
2084 		/*
2085 		 * Cast the TSB into a struct free_tsb and put it on the free
2086 		 * list.
2087 		 */
2088 		if (freelist == NULL) {
2089 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
2090 		} else {
2091 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
2092 			last = last->next;
2093 		}
2094 		last->next = NULL;
2095 		last->tsbinfop = tsbinfop;
2096 		tsbinfop->tsb_flags |= TSB_SWAPPED;
2097 		/*
2098 		 * Zero out the TTE to clear the valid bit.
2099 		 * Note we can't use a value like 0xbad because we want to
2100 		 * ensure diagnostic bits are NEVER set on TTEs that might
2101 		 * be loaded.  The intent is to catch any invalid access
2102 		 * to the swapped TSB, such as a thread running with a valid
2103 		 * context without first calling sfmmu_tsb_swapin() to
2104 		 * allocate TSB memory.
2105 		 */
2106 		tsbinfop->tsb_tte.ll = 0;
2107 	}
2108 
2109 	/* Now we can drop the lock and free the TSB memory. */
2110 	sfmmu_hat_exit(hatlockp);
2111 	for (; freelist != NULL; freelist = next) {
2112 		next = freelist->next;
2113 		sfmmu_tsb_free(freelist->tsbinfop);
2114 	}
2115 }
2116 
2117 /*
2118  * Duplicate the translations of an as into another newas
2119  */
2120 /* ARGSUSED */
2121 int
2122 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
2123     uint_t flag)
2124 {
2125 	sf_srd_t *srdp;
2126 	sf_scd_t *scdp;
2127 	int i;
2128 	extern uint_t get_color_start(struct as *);
2129 
2130 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW) ||
2131 	    (flag == HAT_DUP_SRD));
2132 	ASSERT(hat != ksfmmup);
2133 	ASSERT(newhat != ksfmmup);
2134 	ASSERT(flag != HAT_DUP_ALL || hat->sfmmu_srdp == newhat->sfmmu_srdp);
2135 
2136 	if (flag == HAT_DUP_COW) {
2137 		panic("hat_dup: HAT_DUP_COW not supported");
2138 	}
2139 
2140 	if (flag == HAT_DUP_SRD && ((srdp = hat->sfmmu_srdp) != NULL)) {
2141 		ASSERT(srdp->srd_evp != NULL);
2142 		VN_HOLD(srdp->srd_evp);
2143 		ASSERT(srdp->srd_refcnt > 0);
2144 		newhat->sfmmu_srdp = srdp;
2145 		atomic_inc_32((volatile uint_t *)&srdp->srd_refcnt);
2146 	}
2147 
2148 	/*
2149 	 * HAT_DUP_ALL flag is used after as duplication is done.
2150 	 */
2151 	if (flag == HAT_DUP_ALL && ((srdp = newhat->sfmmu_srdp) != NULL)) {
2152 		ASSERT(newhat->sfmmu_srdp->srd_refcnt >= 2);
2153 		newhat->sfmmu_rtteflags = hat->sfmmu_rtteflags;
2154 		if (hat->sfmmu_flags & HAT_4MTEXT_FLAG) {
2155 			newhat->sfmmu_flags |= HAT_4MTEXT_FLAG;
2156 		}
2157 
2158 		/* check if need to join scd */
2159 		if ((scdp = hat->sfmmu_scdp) != NULL &&
2160 		    newhat->sfmmu_scdp != scdp) {
2161 			int ret;
2162 			SF_RGNMAP_IS_SUBSET(&newhat->sfmmu_region_map,
2163 			    &scdp->scd_region_map, ret);
2164 			ASSERT(ret);
2165 			sfmmu_join_scd(scdp, newhat);
2166 			ASSERT(newhat->sfmmu_scdp == scdp &&
2167 			    scdp->scd_refcnt >= 2);
2168 			for (i = 0; i < max_mmu_page_sizes; i++) {
2169 				newhat->sfmmu_ismttecnt[i] =
2170 				    hat->sfmmu_ismttecnt[i];
2171 				newhat->sfmmu_scdismttecnt[i] =
2172 				    hat->sfmmu_scdismttecnt[i];
2173 			}
2174 		}
2175 
2176 		sfmmu_check_page_sizes(newhat, 1);
2177 	}
2178 
2179 	if (flag == HAT_DUP_ALL && consistent_coloring == 0 &&
2180 	    update_proc_pgcolorbase_after_fork != 0) {
2181 		hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as);
2182 	}
2183 	return (0);
2184 }
2185 
2186 void
2187 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
2188     uint_t attr, uint_t flags)
2189 {
2190 	hat_do_memload(hat, addr, pp, attr, flags,
2191 	    SFMMU_INVALID_SHMERID);
2192 }
2193 
2194 void
2195 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
2196     uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
2197 {
2198 	uint_t rid;
2199 	if (rcookie == HAT_INVALID_REGION_COOKIE) {
2200 		hat_do_memload(hat, addr, pp, attr, flags,
2201 		    SFMMU_INVALID_SHMERID);
2202 		return;
2203 	}
2204 	rid = (uint_t)((uint64_t)rcookie);
2205 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2206 	hat_do_memload(hat, addr, pp, attr, flags, rid);
2207 }
2208 
2209 /*
2210  * Set up addr to map to page pp with protection prot.
2211  * As an optimization we also load the TSB with the
2212  * corresponding tte but it is no big deal if  the tte gets kicked out.
2213  */
2214 static void
2215 hat_do_memload(struct hat *hat, caddr_t addr, struct page *pp,
2216     uint_t attr, uint_t flags, uint_t rid)
2217 {
2218 	tte_t tte;
2219 
2220 
2221 	ASSERT(hat != NULL);
2222 	ASSERT(PAGE_LOCKED(pp));
2223 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2224 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2225 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2226 	SFMMU_VALIDATE_HMERID(hat, rid, addr, MMU_PAGESIZE);
2227 
2228 	if (PP_ISFREE(pp)) {
2229 		panic("hat_memload: loading a mapping to free page %p",
2230 		    (void *)pp);
2231 	}
2232 
2233 	ASSERT((hat == ksfmmup) || AS_LOCK_HELD(hat->sfmmu_as));
2234 
2235 	if (flags & ~SFMMU_LOAD_ALLFLAG)
2236 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
2237 		    flags & ~SFMMU_LOAD_ALLFLAG);
2238 
2239 	if (hat->sfmmu_rmstat)
2240 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
2241 
2242 #if defined(SF_ERRATA_57)
2243 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2244 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2245 	    !(flags & HAT_LOAD_SHARE)) {
2246 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
2247 		    " page executable");
2248 		attr &= ~PROT_EXEC;
2249 	}
2250 #endif
2251 
2252 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2253 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags, rid);
2254 
2255 	/*
2256 	 * Check TSB and TLB page sizes.
2257 	 */
2258 	if ((flags & HAT_LOAD_SHARE) == 0) {
2259 		sfmmu_check_page_sizes(hat, 1);
2260 	}
2261 }
2262 
2263 /*
2264  * hat_devload can be called to map real memory (e.g.
2265  * /dev/kmem) and even though hat_devload will determine pf is
2266  * for memory, it will be unable to get a shared lock on the
2267  * page (because someone else has it exclusively) and will
2268  * pass dp = NULL.  If tteload doesn't get a non-NULL
2269  * page pointer it can't cache memory.
2270  */
2271 void
2272 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
2273     uint_t attr, int flags)
2274 {
2275 	tte_t tte;
2276 	struct page *pp = NULL;
2277 	int use_lgpg = 0;
2278 
2279 	ASSERT(hat != NULL);
2280 
2281 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2282 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2283 	ASSERT((hat == ksfmmup) || AS_LOCK_HELD(hat->sfmmu_as));
2284 	if (len == 0)
2285 		panic("hat_devload: zero len");
2286 	if (flags & ~SFMMU_LOAD_ALLFLAG)
2287 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
2288 		    flags & ~SFMMU_LOAD_ALLFLAG);
2289 
2290 #if defined(SF_ERRATA_57)
2291 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2292 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2293 	    !(flags & HAT_LOAD_SHARE)) {
2294 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
2295 		    " page executable");
2296 		attr &= ~PROT_EXEC;
2297 	}
2298 #endif
2299 
2300 	/*
2301 	 * If it's a memory page find its pp
2302 	 */
2303 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
2304 		pp = page_numtopp_nolock(pfn);
2305 		if (pp == NULL) {
2306 			flags |= HAT_LOAD_NOCONSIST;
2307 		} else {
2308 			if (PP_ISFREE(pp)) {
2309 				panic("hat_memload: loading "
2310 				    "a mapping to free page %p",
2311 				    (void *)pp);
2312 			}
2313 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
2314 				panic("hat_memload: loading a mapping "
2315 				    "to unlocked relocatable page %p",
2316 				    (void *)pp);
2317 			}
2318 			ASSERT(len == MMU_PAGESIZE);
2319 		}
2320 	}
2321 
2322 	if (hat->sfmmu_rmstat)
2323 		hat_resvstat(len, hat->sfmmu_as, addr);
2324 
2325 	if (flags & HAT_LOAD_NOCONSIST) {
2326 		attr |= SFMMU_UNCACHEVTTE;
2327 		use_lgpg = 1;
2328 	}
2329 	if (!pf_is_memory(pfn)) {
2330 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
2331 		use_lgpg = 1;
2332 		switch (attr & HAT_ORDER_MASK) {
2333 			case HAT_STRICTORDER:
2334 			case HAT_UNORDERED_OK:
2335 				/*
2336 				 * we set the side effect bit for all non
2337 				 * memory mappings unless merging is ok
2338 				 */
2339 				attr |= SFMMU_SIDEFFECT;
2340 				break;
2341 			case HAT_MERGING_OK:
2342 			case HAT_LOADCACHING_OK:
2343 			case HAT_STORECACHING_OK:
2344 				break;
2345 			default:
2346 				panic("hat_devload: bad attr");
2347 				break;
2348 		}
2349 	}
2350 	while (len) {
2351 		if (!use_lgpg) {
2352 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
2353 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2354 			    flags, SFMMU_INVALID_SHMERID);
2355 			len -= MMU_PAGESIZE;
2356 			addr += MMU_PAGESIZE;
2357 			pfn++;
2358 			continue;
2359 		}
2360 		/*
2361 		 *  try to use large pages, check va/pa alignments
2362 		 *  Note that 32M/256M page sizes are not (yet) supported.
2363 		 */
2364 		if ((len >= MMU_PAGESIZE4M) &&
2365 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
2366 		    !(disable_large_pages & (1 << TTE4M)) &&
2367 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
2368 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
2369 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2370 			    flags, SFMMU_INVALID_SHMERID);
2371 			len -= MMU_PAGESIZE4M;
2372 			addr += MMU_PAGESIZE4M;
2373 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
2374 		} else if ((len >= MMU_PAGESIZE512K) &&
2375 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
2376 		    !(disable_large_pages & (1 << TTE512K)) &&
2377 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
2378 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
2379 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2380 			    flags, SFMMU_INVALID_SHMERID);
2381 			len -= MMU_PAGESIZE512K;
2382 			addr += MMU_PAGESIZE512K;
2383 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
2384 		} else if ((len >= MMU_PAGESIZE64K) &&
2385 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
2386 		    !(disable_large_pages & (1 << TTE64K)) &&
2387 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
2388 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
2389 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2390 			    flags, SFMMU_INVALID_SHMERID);
2391 			len -= MMU_PAGESIZE64K;
2392 			addr += MMU_PAGESIZE64K;
2393 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
2394 		} else {
2395 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
2396 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2397 			    flags, SFMMU_INVALID_SHMERID);
2398 			len -= MMU_PAGESIZE;
2399 			addr += MMU_PAGESIZE;
2400 			pfn++;
2401 		}
2402 	}
2403 
2404 	/*
2405 	 * Check TSB and TLB page sizes.
2406 	 */
2407 	if ((flags & HAT_LOAD_SHARE) == 0) {
2408 		sfmmu_check_page_sizes(hat, 1);
2409 	}
2410 }
2411 
2412 void
2413 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2414     struct page **pps, uint_t attr, uint_t flags)
2415 {
2416 	hat_do_memload_array(hat, addr, len, pps, attr, flags,
2417 	    SFMMU_INVALID_SHMERID);
2418 }
2419 
2420 void
2421 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
2422     struct page **pps, uint_t attr, uint_t flags,
2423     hat_region_cookie_t rcookie)
2424 {
2425 	uint_t rid;
2426 	if (rcookie == HAT_INVALID_REGION_COOKIE) {
2427 		hat_do_memload_array(hat, addr, len, pps, attr, flags,
2428 		    SFMMU_INVALID_SHMERID);
2429 		return;
2430 	}
2431 	rid = (uint_t)((uint64_t)rcookie);
2432 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2433 	hat_do_memload_array(hat, addr, len, pps, attr, flags, rid);
2434 }
2435 
2436 /*
2437  * Map the largest extend possible out of the page array. The array may NOT
2438  * be in order.  The largest possible mapping a page can have
2439  * is specified in the p_szc field.  The p_szc field
2440  * cannot change as long as there any mappings (large or small)
2441  * to any of the pages that make up the large page. (ie. any
2442  * promotion/demotion of page size is not up to the hat but up to
2443  * the page free list manager).  The array
2444  * should consist of properly aligned contigous pages that are
2445  * part of a big page for a large mapping to be created.
2446  */
2447 static void
2448 hat_do_memload_array(struct hat *hat, caddr_t addr, size_t len,
2449     struct page **pps, uint_t attr, uint_t flags, uint_t rid)
2450 {
2451 	int  ttesz;
2452 	size_t mapsz;
2453 	pgcnt_t	numpg, npgs;
2454 	tte_t tte;
2455 	page_t *pp;
2456 	uint_t large_pages_disable;
2457 
2458 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2459 	SFMMU_VALIDATE_HMERID(hat, rid, addr, len);
2460 
2461 	if (hat->sfmmu_rmstat)
2462 		hat_resvstat(len, hat->sfmmu_as, addr);
2463 
2464 #if defined(SF_ERRATA_57)
2465 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2466 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2467 	    !(flags & HAT_LOAD_SHARE)) {
2468 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2469 		    "user page executable");
2470 		attr &= ~PROT_EXEC;
2471 	}
2472 #endif
2473 
2474 	/* Get number of pages */
2475 	npgs = len >> MMU_PAGESHIFT;
2476 
2477 	if (flags & HAT_LOAD_SHARE) {
2478 		large_pages_disable = disable_ism_large_pages;
2479 	} else {
2480 		large_pages_disable = disable_large_pages;
2481 	}
2482 
2483 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2484 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2485 		    rid);
2486 		return;
2487 	}
2488 
2489 	while (npgs >= NHMENTS) {
2490 		pp = *pps;
2491 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2492 			/*
2493 			 * Check if this page size is disabled.
2494 			 */
2495 			if (large_pages_disable & (1 << ttesz))
2496 				continue;
2497 
2498 			numpg = TTEPAGES(ttesz);
2499 			mapsz = numpg << MMU_PAGESHIFT;
2500 			if ((npgs >= numpg) &&
2501 			    IS_P2ALIGNED(addr, mapsz) &&
2502 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2503 				/*
2504 				 * At this point we have enough pages and
2505 				 * we know the virtual address and the pfn
2506 				 * are properly aligned.  We still need
2507 				 * to check for physical contiguity but since
2508 				 * it is very likely that this is the case
2509 				 * we will assume they are so and undo
2510 				 * the request if necessary.  It would
2511 				 * be great if we could get a hint flag
2512 				 * like HAT_CONTIG which would tell us
2513 				 * the pages are contigous for sure.
2514 				 */
2515 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2516 				    attr, ttesz);
2517 				if (!sfmmu_tteload_array(hat, &tte, addr,
2518 				    pps, flags, rid)) {
2519 					break;
2520 				}
2521 			}
2522 		}
2523 		if (ttesz == TTE8K) {
2524 			/*
2525 			 * We were not able to map array using a large page
2526 			 * batch a hmeblk or fraction at a time.
2527 			 */
2528 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2529 			    & (NHMENTS-1);
2530 			numpg = NHMENTS - numpg;
2531 			ASSERT(numpg <= npgs);
2532 			mapsz = numpg * MMU_PAGESIZE;
2533 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2534 			    numpg, rid);
2535 		}
2536 		addr += mapsz;
2537 		npgs -= numpg;
2538 		pps += numpg;
2539 	}
2540 
2541 	if (npgs) {
2542 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2543 		    rid);
2544 	}
2545 
2546 	/*
2547 	 * Check TSB and TLB page sizes.
2548 	 */
2549 	if ((flags & HAT_LOAD_SHARE) == 0) {
2550 		sfmmu_check_page_sizes(hat, 1);
2551 	}
2552 }
2553 
2554 /*
2555  * Function tries to batch 8K pages into the same hme blk.
2556  */
2557 static void
2558 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2559     uint_t attr, uint_t flags, pgcnt_t npgs, uint_t rid)
2560 {
2561 	tte_t	tte;
2562 	page_t *pp;
2563 	struct hmehash_bucket *hmebp;
2564 	struct hme_blk *hmeblkp;
2565 	int	index;
2566 
2567 	while (npgs) {
2568 		/*
2569 		 * Acquire the hash bucket.
2570 		 */
2571 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K,
2572 		    rid);
2573 		ASSERT(hmebp);
2574 
2575 		/*
2576 		 * Find the hment block.
2577 		 */
2578 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2579 		    TTE8K, flags, rid);
2580 		ASSERT(hmeblkp);
2581 
2582 		do {
2583 			/*
2584 			 * Make the tte.
2585 			 */
2586 			pp = *pps;
2587 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2588 
2589 			/*
2590 			 * Add the translation.
2591 			 */
2592 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2593 			    vaddr, pps, flags, rid);
2594 
2595 			/*
2596 			 * Goto next page.
2597 			 */
2598 			pps++;
2599 			npgs--;
2600 
2601 			/*
2602 			 * Goto next address.
2603 			 */
2604 			vaddr += MMU_PAGESIZE;
2605 
2606 			/*
2607 			 * Don't crossover into a different hmentblk.
2608 			 */
2609 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2610 			    (NHMENTS-1));
2611 
2612 		} while (index != 0 && npgs != 0);
2613 
2614 		/*
2615 		 * Release the hash bucket.
2616 		 */
2617 
2618 		sfmmu_tteload_release_hashbucket(hmebp);
2619 	}
2620 }
2621 
2622 /*
2623  * Construct a tte for a page:
2624  *
2625  * tte_valid = 1
2626  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2627  * tte_size = size
2628  * tte_nfo = attr & HAT_NOFAULT
2629  * tte_ie = attr & HAT_STRUCTURE_LE
2630  * tte_hmenum = hmenum
2631  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2632  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2633  * tte_ref = 1 (optimization)
2634  * tte_wr_perm = attr & PROT_WRITE;
2635  * tte_no_sync = attr & HAT_NOSYNC
2636  * tte_lock = attr & SFMMU_LOCKTTE
2637  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2638  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2639  * tte_e = attr & SFMMU_SIDEFFECT
2640  * tte_priv = !(attr & PROT_USER)
2641  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2642  * tte_glb = 0
2643  */
2644 void
2645 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2646 {
2647 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2648 
2649 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2650 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2651 
2652 	if (TTE_IS_NOSYNC(ttep)) {
2653 		TTE_SET_REF(ttep);
2654 		if (TTE_IS_WRITABLE(ttep)) {
2655 			TTE_SET_MOD(ttep);
2656 		}
2657 	}
2658 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2659 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2660 	}
2661 }
2662 
2663 /*
2664  * This function will add a translation to the hme_blk and allocate the
2665  * hme_blk if one does not exist.
2666  * If a page structure is specified then it will add the
2667  * corresponding hment to the mapping list.
2668  * It will also update the hmenum field for the tte.
2669  *
2670  * Currently this function is only used for kernel mappings.
2671  * So pass invalid region to sfmmu_tteload_array().
2672  */
2673 void
2674 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2675     uint_t flags)
2676 {
2677 	ASSERT(sfmmup == ksfmmup);
2678 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags,
2679 	    SFMMU_INVALID_SHMERID);
2680 }
2681 
2682 /*
2683  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2684  * Assumes that a particular page size may only be resident in one TSB.
2685  */
2686 static void
2687 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2688 {
2689 	struct tsb_info *tsbinfop = NULL;
2690 	uint64_t tag;
2691 	struct tsbe *tsbe_addr;
2692 	uint64_t tsb_base;
2693 	uint_t tsb_size;
2694 	int vpshift = MMU_PAGESHIFT;
2695 	int phys = 0;
2696 
2697 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2698 		phys = ktsb_phys;
2699 		if (ttesz >= TTE4M) {
2700 #ifndef sun4v
2701 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2702 #endif
2703 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2704 			tsb_size = ktsb4m_szcode;
2705 		} else {
2706 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2707 			tsb_size = ktsb_szcode;
2708 		}
2709 	} else {
2710 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2711 
2712 		/*
2713 		 * If there isn't a TSB for this page size, or the TSB is
2714 		 * swapped out, there is nothing to do.  Note that the latter
2715 		 * case seems impossible but can occur if hat_pageunload()
2716 		 * is called on an ISM mapping while the process is swapped
2717 		 * out.
2718 		 */
2719 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2720 			return;
2721 
2722 		/*
2723 		 * If another thread is in the middle of relocating a TSB
2724 		 * we can't unload the entry so set a flag so that the
2725 		 * TSB will be flushed before it can be accessed by the
2726 		 * process.
2727 		 */
2728 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2729 			if (ttep == NULL)
2730 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2731 			return;
2732 		}
2733 #if defined(UTSB_PHYS)
2734 		phys = 1;
2735 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2736 #else
2737 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2738 #endif
2739 		tsb_size = tsbinfop->tsb_szc;
2740 	}
2741 	if (ttesz >= TTE4M)
2742 		vpshift = MMU_PAGESHIFT4M;
2743 
2744 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2745 	tag = sfmmu_make_tsbtag(vaddr);
2746 
2747 	if (ttep == NULL) {
2748 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2749 	} else {
2750 		if (ttesz >= TTE4M) {
2751 			SFMMU_STAT(sf_tsb_load4m);
2752 		} else {
2753 			SFMMU_STAT(sf_tsb_load8k);
2754 		}
2755 
2756 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2757 	}
2758 }
2759 
2760 /*
2761  * Unmap all entries from [start, end) matching the given page size.
2762  *
2763  * This function is used primarily to unmap replicated 64K or 512K entries
2764  * from the TSB that are inserted using the base page size TSB pointer, but
2765  * it may also be called to unmap a range of addresses from the TSB.
2766  */
2767 void
2768 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2769 {
2770 	struct tsb_info *tsbinfop;
2771 	uint64_t tag;
2772 	struct tsbe *tsbe_addr;
2773 	caddr_t vaddr;
2774 	uint64_t tsb_base;
2775 	int vpshift, vpgsz;
2776 	uint_t tsb_size;
2777 	int phys = 0;
2778 
2779 	/*
2780 	 * Assumptions:
2781 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2782 	 *  at a time shooting down any valid entries we encounter.
2783 	 *
2784 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2785 	 *  down any valid mappings we find.
2786 	 */
2787 	if (sfmmup == ksfmmup) {
2788 		phys = ktsb_phys;
2789 		if (ttesz >= TTE4M) {
2790 #ifndef sun4v
2791 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2792 #endif
2793 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2794 			tsb_size = ktsb4m_szcode;
2795 		} else {
2796 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2797 			tsb_size = ktsb_szcode;
2798 		}
2799 	} else {
2800 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2801 
2802 		/*
2803 		 * If there isn't a TSB for this page size, or the TSB is
2804 		 * swapped out, there is nothing to do.  Note that the latter
2805 		 * case seems impossible but can occur if hat_pageunload()
2806 		 * is called on an ISM mapping while the process is swapped
2807 		 * out.
2808 		 */
2809 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2810 			return;
2811 
2812 		/*
2813 		 * If another thread is in the middle of relocating a TSB
2814 		 * we can't unload the entry so set a flag so that the
2815 		 * TSB will be flushed before it can be accessed by the
2816 		 * process.
2817 		 */
2818 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2819 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2820 			return;
2821 		}
2822 #if defined(UTSB_PHYS)
2823 		phys = 1;
2824 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2825 #else
2826 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2827 #endif
2828 		tsb_size = tsbinfop->tsb_szc;
2829 	}
2830 	if (ttesz >= TTE4M) {
2831 		vpshift = MMU_PAGESHIFT4M;
2832 		vpgsz = MMU_PAGESIZE4M;
2833 	} else {
2834 		vpshift = MMU_PAGESHIFT;
2835 		vpgsz = MMU_PAGESIZE;
2836 	}
2837 
2838 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2839 		tag = sfmmu_make_tsbtag(vaddr);
2840 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2841 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2842 	}
2843 }
2844 
2845 /*
2846  * Select the optimum TSB size given the number of mappings
2847  * that need to be cached.
2848  */
2849 static int
2850 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2851 {
2852 	int szc = 0;
2853 
2854 #ifdef DEBUG
2855 	if (tsb_grow_stress) {
2856 		uint32_t randval = (uint32_t)gettick() >> 4;
2857 		return (randval % (tsb_max_growsize + 1));
2858 	}
2859 #endif	/* DEBUG */
2860 
2861 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2862 		szc++;
2863 	return (szc);
2864 }
2865 
2866 /*
2867  * This function will add a translation to the hme_blk and allocate the
2868  * hme_blk if one does not exist.
2869  * If a page structure is specified then it will add the
2870  * corresponding hment to the mapping list.
2871  * It will also update the hmenum field for the tte.
2872  * Furthermore, it attempts to create a large page translation
2873  * for <addr,hat> at page array pps.  It assumes addr and first
2874  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2875  */
2876 static int
2877 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2878     page_t **pps, uint_t flags, uint_t rid)
2879 {
2880 	struct hmehash_bucket *hmebp;
2881 	struct hme_blk *hmeblkp;
2882 	int	ret;
2883 	uint_t	size;
2884 
2885 	/*
2886 	 * Get mapping size.
2887 	 */
2888 	size = TTE_CSZ(ttep);
2889 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2890 
2891 	/*
2892 	 * Acquire the hash bucket.
2893 	 */
2894 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size, rid);
2895 	ASSERT(hmebp);
2896 
2897 	/*
2898 	 * Find the hment block.
2899 	 */
2900 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags,
2901 	    rid);
2902 	ASSERT(hmeblkp);
2903 
2904 	/*
2905 	 * Add the translation.
2906 	 */
2907 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags,
2908 	    rid);
2909 
2910 	/*
2911 	 * Release the hash bucket.
2912 	 */
2913 	sfmmu_tteload_release_hashbucket(hmebp);
2914 
2915 	return (ret);
2916 }
2917 
2918 /*
2919  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2920  */
2921 static struct hmehash_bucket *
2922 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size,
2923     uint_t rid)
2924 {
2925 	struct hmehash_bucket *hmebp;
2926 	int hmeshift;
2927 	void *htagid = sfmmutohtagid(sfmmup, rid);
2928 
2929 	ASSERT(htagid != NULL);
2930 
2931 	hmeshift = HME_HASH_SHIFT(size);
2932 
2933 	hmebp = HME_HASH_FUNCTION(htagid, vaddr, hmeshift);
2934 
2935 	SFMMU_HASH_LOCK(hmebp);
2936 
2937 	return (hmebp);
2938 }
2939 
2940 /*
2941  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2942  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2943  * allocated.
2944  */
2945 static struct hme_blk *
2946 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2947     caddr_t vaddr, uint_t size, uint_t flags, uint_t rid)
2948 {
2949 	hmeblk_tag hblktag;
2950 	int hmeshift;
2951 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2952 
2953 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
2954 
2955 	hblktag.htag_id = sfmmutohtagid(sfmmup, rid);
2956 	ASSERT(hblktag.htag_id != NULL);
2957 	hmeshift = HME_HASH_SHIFT(size);
2958 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2959 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2960 	hblktag.htag_rid = rid;
2961 
2962 ttearray_realloc:
2963 
2964 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
2965 
2966 	/*
2967 	 * We block until hblk_reserve_lock is released; it's held by
2968 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2969 	 * replaced by a hblk from sfmmu8_cache.
2970 	 */
2971 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2972 	    hblk_reserve_thread != curthread) {
2973 		SFMMU_HASH_UNLOCK(hmebp);
2974 		mutex_enter(&hblk_reserve_lock);
2975 		mutex_exit(&hblk_reserve_lock);
2976 		SFMMU_STAT(sf_hblk_reserve_hit);
2977 		SFMMU_HASH_LOCK(hmebp);
2978 		goto ttearray_realloc;
2979 	}
2980 
2981 	if (hmeblkp == NULL) {
2982 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2983 		    hblktag, flags, rid);
2984 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2985 		ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2986 	} else {
2987 		/*
2988 		 * It is possible for 8k and 64k hblks to collide since they
2989 		 * have the same rehash value. This is because we
2990 		 * lazily free hblks and 8K/64K blks could be lingering.
2991 		 * If we find size mismatch we free the block and & try again.
2992 		 */
2993 		if (get_hblk_ttesz(hmeblkp) != size) {
2994 			ASSERT(!hmeblkp->hblk_vcnt);
2995 			ASSERT(!hmeblkp->hblk_hmecnt);
2996 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
2997 			    &list, 0);
2998 			goto ttearray_realloc;
2999 		}
3000 		if (hmeblkp->hblk_shw_bit) {
3001 			/*
3002 			 * if the hblk was previously used as a shadow hblk then
3003 			 * we will change it to a normal hblk
3004 			 */
3005 			ASSERT(!hmeblkp->hblk_shared);
3006 			if (hmeblkp->hblk_shw_mask) {
3007 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
3008 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3009 				goto ttearray_realloc;
3010 			} else {
3011 				hmeblkp->hblk_shw_bit = 0;
3012 			}
3013 		}
3014 		SFMMU_STAT(sf_hblk_hit);
3015 	}
3016 
3017 	/*
3018 	 * hat_memload() should never call kmem_cache_free() for kernel hmeblks;
3019 	 * see block comment showing the stacktrace in sfmmu_hblk_alloc();
3020 	 * set the flag parameter to 1 so that sfmmu_hblks_list_purge() will
3021 	 * just add these hmeblks to the per-cpu pending queue.
3022 	 */
3023 	sfmmu_hblks_list_purge(&list, 1);
3024 
3025 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
3026 	ASSERT(!hmeblkp->hblk_shw_bit);
3027 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3028 	ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3029 	ASSERT(hmeblkp->hblk_tag.htag_rid == rid);
3030 
3031 	return (hmeblkp);
3032 }
3033 
3034 /*
3035  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
3036  * otherwise.
3037  */
3038 static int
3039 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
3040     caddr_t vaddr, page_t **pps, uint_t flags, uint_t rid)
3041 {
3042 	page_t *pp = *pps;
3043 	int hmenum, size, remap;
3044 	tte_t tteold, flush_tte;
3045 #ifdef DEBUG
3046 	tte_t orig_old;
3047 #endif /* DEBUG */
3048 	struct sf_hment *sfhme;
3049 	kmutex_t *pml, *pmtx;
3050 	hatlock_t *hatlockp;
3051 	int myflt;
3052 
3053 	/*
3054 	 * remove this panic when we decide to let user virtual address
3055 	 * space be >= USERLIMIT.
3056 	 */
3057 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
3058 		panic("user addr %p in kernel space", (void *)vaddr);
3059 #if defined(TTE_IS_GLOBAL)
3060 	if (TTE_IS_GLOBAL(ttep))
3061 		panic("sfmmu_tteload: creating global tte");
3062 #endif
3063 
3064 #ifdef DEBUG
3065 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
3066 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
3067 		panic("sfmmu_tteload: non cacheable memory tte");
3068 #endif /* DEBUG */
3069 
3070 	/* don't simulate dirty bit for writeable ISM/DISM mappings */
3071 	if ((flags & HAT_LOAD_SHARE) && TTE_IS_WRITABLE(ttep)) {
3072 		TTE_SET_REF(ttep);
3073 		TTE_SET_MOD(ttep);
3074 	}
3075 
3076 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
3077 	    !TTE_IS_MOD(ttep)) {
3078 		/*
3079 		 * Don't load TSB for dummy as in ISM.  Also don't preload
3080 		 * the TSB if the TTE isn't writable since we're likely to
3081 		 * fault on it again -- preloading can be fairly expensive.
3082 		 */
3083 		flags |= SFMMU_NO_TSBLOAD;
3084 	}
3085 
3086 	size = TTE_CSZ(ttep);
3087 	switch (size) {
3088 	case TTE8K:
3089 		SFMMU_STAT(sf_tteload8k);
3090 		break;
3091 	case TTE64K:
3092 		SFMMU_STAT(sf_tteload64k);
3093 		break;
3094 	case TTE512K:
3095 		SFMMU_STAT(sf_tteload512k);
3096 		break;
3097 	case TTE4M:
3098 		SFMMU_STAT(sf_tteload4m);
3099 		break;
3100 	case (TTE32M):
3101 		SFMMU_STAT(sf_tteload32m);
3102 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3103 		break;
3104 	case (TTE256M):
3105 		SFMMU_STAT(sf_tteload256m);
3106 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3107 		break;
3108 	}
3109 
3110 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
3111 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
3112 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3113 	ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3114 
3115 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
3116 
3117 	/*
3118 	 * Need to grab mlist lock here so that pageunload
3119 	 * will not change tte behind us.
3120 	 */
3121 	if (pp) {
3122 		pml = sfmmu_mlist_enter(pp);
3123 	}
3124 
3125 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
3126 	/*
3127 	 * Look for corresponding hment and if valid verify
3128 	 * pfns are equal.
3129 	 */
3130 	remap = TTE_IS_VALID(&tteold);
3131 	if (remap) {
3132 		pfn_t	new_pfn, old_pfn;
3133 
3134 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
3135 		new_pfn = TTE_TO_PFN(vaddr, ttep);
3136 
3137 		if (flags & HAT_LOAD_REMAP) {
3138 			/* make sure we are remapping same type of pages */
3139 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
3140 				panic("sfmmu_tteload - tte remap io<->memory");
3141 			}
3142 			if (old_pfn != new_pfn &&
3143 			    (pp != NULL || sfhme->hme_page != NULL)) {
3144 				panic("sfmmu_tteload - tte remap pp != NULL");
3145 			}
3146 		} else if (old_pfn != new_pfn) {
3147 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
3148 			    (void *)hmeblkp);
3149 		}
3150 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
3151 	}
3152 
3153 	if (pp) {
3154 		if (size == TTE8K) {
3155 #ifdef VAC
3156 			/*
3157 			 * Handle VAC consistency
3158 			 */
3159 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
3160 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
3161 			}
3162 #endif
3163 
3164 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3165 				pmtx = sfmmu_page_enter(pp);
3166 				PP_CLRRO(pp);
3167 				sfmmu_page_exit(pmtx);
3168 			} else if (!PP_ISMAPPED(pp) &&
3169 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
3170 				pmtx = sfmmu_page_enter(pp);
3171 				if (!(PP_ISMOD(pp))) {
3172 					PP_SETRO(pp);
3173 				}
3174 				sfmmu_page_exit(pmtx);
3175 			}
3176 
3177 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
3178 			/*
3179 			 * sfmmu_pagearray_setup failed so return
3180 			 */
3181 			sfmmu_mlist_exit(pml);
3182 			return (1);
3183 		}
3184 	}
3185 
3186 	/*
3187 	 * Make sure hment is not on a mapping list.
3188 	 */
3189 	ASSERT(remap || (sfhme->hme_page == NULL));
3190 
3191 	/* if it is not a remap then hme->next better be NULL */
3192 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
3193 
3194 	if (flags & HAT_LOAD_LOCK) {
3195 		if ((hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
3196 			panic("too high lckcnt-hmeblk %p",
3197 			    (void *)hmeblkp);
3198 		}
3199 		atomic_inc_32(&hmeblkp->hblk_lckcnt);
3200 
3201 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
3202 	}
3203 
3204 #ifdef VAC
3205 	if (pp && PP_ISNC(pp)) {
3206 		/*
3207 		 * If the physical page is marked to be uncacheable, like
3208 		 * by a vac conflict, make sure the new mapping is also
3209 		 * uncacheable.
3210 		 */
3211 		TTE_CLR_VCACHEABLE(ttep);
3212 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
3213 	}
3214 #endif
3215 	ttep->tte_hmenum = hmenum;
3216 
3217 #ifdef DEBUG
3218 	orig_old = tteold;
3219 #endif /* DEBUG */
3220 
3221 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
3222 		if ((sfmmup == KHATID) &&
3223 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
3224 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
3225 		}
3226 #ifdef DEBUG
3227 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
3228 #endif /* DEBUG */
3229 	}
3230 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
3231 
3232 	if (!TTE_IS_VALID(&tteold)) {
3233 
3234 		atomic_inc_16(&hmeblkp->hblk_vcnt);
3235 		if (rid == SFMMU_INVALID_SHMERID) {
3236 			atomic_inc_ulong(&sfmmup->sfmmu_ttecnt[size]);
3237 		} else {
3238 			sf_srd_t *srdp = sfmmup->sfmmu_srdp;
3239 			sf_region_t *rgnp = srdp->srd_hmergnp[rid];
3240 			/*
3241 			 * We already accounted for region ttecnt's in sfmmu
3242 			 * during hat_join_region() processing. Here we
3243 			 * only update ttecnt's in region struture.
3244 			 */
3245 			atomic_inc_ulong(&rgnp->rgn_ttecnt[size]);
3246 		}
3247 	}
3248 
3249 	myflt = (astosfmmu(curthread->t_procp->p_as) == sfmmup);
3250 	if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
3251 	    sfmmup != ksfmmup) {
3252 		uchar_t tteflag = 1 << size;
3253 		if (rid == SFMMU_INVALID_SHMERID) {
3254 			if (!(sfmmup->sfmmu_tteflags & tteflag)) {
3255 				hatlockp = sfmmu_hat_enter(sfmmup);
3256 				sfmmup->sfmmu_tteflags |= tteflag;
3257 				sfmmu_hat_exit(hatlockp);
3258 			}
3259 		} else if (!(sfmmup->sfmmu_rtteflags & tteflag)) {
3260 			hatlockp = sfmmu_hat_enter(sfmmup);
3261 			sfmmup->sfmmu_rtteflags |= tteflag;
3262 			sfmmu_hat_exit(hatlockp);
3263 		}
3264 		/*
3265 		 * Update the current CPU tsbmiss area, so the current thread
3266 		 * won't need to take the tsbmiss for the new pagesize.
3267 		 * The other threads in the process will update their tsb
3268 		 * miss area lazily in sfmmu_tsbmiss_exception() when they
3269 		 * fail to find the translation for a newly added pagesize.
3270 		 */
3271 		if (size > TTE64K && myflt) {
3272 			struct tsbmiss *tsbmp;
3273 			kpreempt_disable();
3274 			tsbmp = &tsbmiss_area[CPU->cpu_id];
3275 			if (rid == SFMMU_INVALID_SHMERID) {
3276 				if (!(tsbmp->uhat_tteflags & tteflag)) {
3277 					tsbmp->uhat_tteflags |= tteflag;
3278 				}
3279 			} else {
3280 				if (!(tsbmp->uhat_rtteflags & tteflag)) {
3281 					tsbmp->uhat_rtteflags |= tteflag;
3282 				}
3283 			}
3284 			kpreempt_enable();
3285 		}
3286 	}
3287 
3288 	if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
3289 	    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
3290 		hatlockp = sfmmu_hat_enter(sfmmup);
3291 		SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
3292 		sfmmu_hat_exit(hatlockp);
3293 	}
3294 
3295 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
3296 	    hw_tte.tte_intlo;
3297 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
3298 	    hw_tte.tte_inthi;
3299 
3300 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
3301 		/*
3302 		 * If remap and new tte differs from old tte we need
3303 		 * to sync the mod bit and flush TLB/TSB.  We don't
3304 		 * need to sync ref bit because we currently always set
3305 		 * ref bit in tteload.
3306 		 */
3307 		ASSERT(TTE_IS_REF(ttep));
3308 		if (TTE_IS_MOD(&tteold)) {
3309 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
3310 		}
3311 		/*
3312 		 * hwtte bits shouldn't change for SRD hmeblks as long as SRD
3313 		 * hmes are only used for read only text. Adding this code for
3314 		 * completeness and future use of shared hmeblks with writable
3315 		 * mappings of VMODSORT vnodes.
3316 		 */
3317 		if (hmeblkp->hblk_shared) {
3318 			cpuset_t cpuset = sfmmu_rgntlb_demap(vaddr,
3319 			    sfmmup->sfmmu_srdp->srd_hmergnp[rid], hmeblkp, 1);
3320 			xt_sync(cpuset);
3321 			SFMMU_STAT_ADD(sf_region_remap_demap, 1);
3322 		} else {
3323 			sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
3324 			xt_sync(sfmmup->sfmmu_cpusran);
3325 		}
3326 	}
3327 
3328 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
3329 		/*
3330 		 * We only preload 8K and 4M mappings into the TSB, since
3331 		 * 64K and 512K mappings are replicated and hence don't
3332 		 * have a single, unique TSB entry. Ditto for 32M/256M.
3333 		 */
3334 		if (size == TTE8K || size == TTE4M) {
3335 			sf_scd_t *scdp;
3336 			hatlockp = sfmmu_hat_enter(sfmmup);
3337 			/*
3338 			 * Don't preload private TSB if the mapping is used
3339 			 * by the shctx in the SCD.
3340 			 */
3341 			scdp = sfmmup->sfmmu_scdp;
3342 			if (rid == SFMMU_INVALID_SHMERID || scdp == NULL ||
3343 			    !SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
3344 				sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte,
3345 				    size);
3346 			}
3347 			sfmmu_hat_exit(hatlockp);
3348 		}
3349 	}
3350 	if (pp) {
3351 		if (!remap) {
3352 			HME_ADD(sfhme, pp);
3353 			atomic_inc_16(&hmeblkp->hblk_hmecnt);
3354 			ASSERT(hmeblkp->hblk_hmecnt > 0);
3355 
3356 			/*
3357 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
3358 			 * see pageunload() for comment.
3359 			 */
3360 		}
3361 		sfmmu_mlist_exit(pml);
3362 	}
3363 
3364 	return (0);
3365 }
3366 /*
3367  * Function unlocks hash bucket.
3368  */
3369 static void
3370 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
3371 {
3372 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3373 	SFMMU_HASH_UNLOCK(hmebp);
3374 }
3375 
3376 /*
3377  * function which checks and sets up page array for a large
3378  * translation.  Will set p_vcolor, p_index, p_ro fields.
3379  * Assumes addr and pfnum of first page are properly aligned.
3380  * Will check for physical contiguity. If check fails it return
3381  * non null.
3382  */
3383 static int
3384 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
3385 {
3386 	int	i, index, ttesz;
3387 	pfn_t	pfnum;
3388 	pgcnt_t	npgs;
3389 	page_t *pp, *pp1;
3390 	kmutex_t *pmtx;
3391 #ifdef VAC
3392 	int osz;
3393 	int cflags = 0;
3394 	int vac_err = 0;
3395 #endif
3396 	int newidx = 0;
3397 
3398 	ttesz = TTE_CSZ(ttep);
3399 
3400 	ASSERT(ttesz > TTE8K);
3401 
3402 	npgs = TTEPAGES(ttesz);
3403 	index = PAGESZ_TO_INDEX(ttesz);
3404 
3405 	pfnum = (*pps)->p_pagenum;
3406 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
3407 
3408 	/*
3409 	 * Save the first pp so we can do HAT_TMPNC at the end.
3410 	 */
3411 	pp1 = *pps;
3412 #ifdef VAC
3413 	osz = fnd_mapping_sz(pp1);
3414 #endif
3415 
3416 	for (i = 0; i < npgs; i++, pps++) {
3417 		pp = *pps;
3418 		ASSERT(PAGE_LOCKED(pp));
3419 		ASSERT(pp->p_szc >= ttesz);
3420 		ASSERT(pp->p_szc == pp1->p_szc);
3421 		ASSERT(sfmmu_mlist_held(pp));
3422 
3423 		/*
3424 		 * XXX is it possible to maintain P_RO on the root only?
3425 		 */
3426 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3427 			pmtx = sfmmu_page_enter(pp);
3428 			PP_CLRRO(pp);
3429 			sfmmu_page_exit(pmtx);
3430 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
3431 		    !PP_ISMOD(pp)) {
3432 			pmtx = sfmmu_page_enter(pp);
3433 			if (!(PP_ISMOD(pp))) {
3434 				PP_SETRO(pp);
3435 			}
3436 			sfmmu_page_exit(pmtx);
3437 		}
3438 
3439 		/*
3440 		 * If this is a remap we skip vac & contiguity checks.
3441 		 */
3442 		if (remap)
3443 			continue;
3444 
3445 		/*
3446 		 * set p_vcolor and detect any vac conflicts.
3447 		 */
3448 #ifdef VAC
3449 		if (vac_err == 0) {
3450 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
3451 
3452 		}
3453 #endif
3454 
3455 		/*
3456 		 * Save current index in case we need to undo it.
3457 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
3458 		 *	"SFMMU_INDEX_SHIFT	6"
3459 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
3460 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
3461 		 *
3462 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
3463 		 *	if ttesz == 1 then index = 0x2
3464 		 *		    2 then index = 0x4
3465 		 *		    3 then index = 0x8
3466 		 *		    4 then index = 0x10
3467 		 *		    5 then index = 0x20
3468 		 * The code below checks if it's a new pagesize (ie, newidx)
3469 		 * in case we need to take it back out of p_index,
3470 		 * and then or's the new index into the existing index.
3471 		 */
3472 		if ((PP_MAPINDEX(pp) & index) == 0)
3473 			newidx = 1;
3474 		pp->p_index = (PP_MAPINDEX(pp) | index);
3475 
3476 		/*
3477 		 * contiguity check
3478 		 */
3479 		if (pp->p_pagenum != pfnum) {
3480 			/*
3481 			 * If we fail the contiguity test then
3482 			 * the only thing we need to fix is the p_index field.
3483 			 * We might get a few extra flushes but since this
3484 			 * path is rare that is ok.  The p_ro field will
3485 			 * get automatically fixed on the next tteload to
3486 			 * the page.  NO TNC bit is set yet.
3487 			 */
3488 			while (i >= 0) {
3489 				pp = *pps;
3490 				if (newidx)
3491 					pp->p_index = (PP_MAPINDEX(pp) &
3492 					    ~index);
3493 				pps--;
3494 				i--;
3495 			}
3496 			return (1);
3497 		}
3498 		pfnum++;
3499 		addr += MMU_PAGESIZE;
3500 	}
3501 
3502 #ifdef VAC
3503 	if (vac_err) {
3504 		if (ttesz > osz) {
3505 			/*
3506 			 * There are some smaller mappings that causes vac
3507 			 * conflicts. Convert all existing small mappings to
3508 			 * TNC.
3509 			 */
3510 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3511 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3512 			    npgs);
3513 		} else {
3514 			/* EMPTY */
3515 			/*
3516 			 * If there exists an big page mapping,
3517 			 * that means the whole existing big page
3518 			 * has TNC setting already. No need to covert to
3519 			 * TNC again.
3520 			 */
3521 			ASSERT(PP_ISTNC(pp1));
3522 		}
3523 	}
3524 #endif	/* VAC */
3525 
3526 	return (0);
3527 }
3528 
3529 #ifdef VAC
3530 /*
3531  * Routine that detects vac consistency for a large page. It also
3532  * sets virtual color for all pp's for this big mapping.
3533  */
3534 static int
3535 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3536 {
3537 	int vcolor, ocolor;
3538 
3539 	ASSERT(sfmmu_mlist_held(pp));
3540 
3541 	if (PP_ISNC(pp)) {
3542 		return (HAT_TMPNC);
3543 	}
3544 
3545 	vcolor = addr_to_vcolor(addr);
3546 	if (PP_NEWPAGE(pp)) {
3547 		PP_SET_VCOLOR(pp, vcolor);
3548 		return (0);
3549 	}
3550 
3551 	ocolor = PP_GET_VCOLOR(pp);
3552 	if (ocolor == vcolor) {
3553 		return (0);
3554 	}
3555 
3556 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
3557 		/*
3558 		 * Previous user of page had a differnet color
3559 		 * but since there are no current users
3560 		 * we just flush the cache and change the color.
3561 		 * As an optimization for large pages we flush the
3562 		 * entire cache of that color and set a flag.
3563 		 */
3564 		SFMMU_STAT(sf_pgcolor_conflict);
3565 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3566 			CacheColor_SetFlushed(*cflags, ocolor);
3567 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3568 		}
3569 		PP_SET_VCOLOR(pp, vcolor);
3570 		return (0);
3571 	}
3572 
3573 	/*
3574 	 * We got a real conflict with a current mapping.
3575 	 * set flags to start unencaching all mappings
3576 	 * and return failure so we restart looping
3577 	 * the pp array from the beginning.
3578 	 */
3579 	return (HAT_TMPNC);
3580 }
3581 #endif	/* VAC */
3582 
3583 /*
3584  * creates a large page shadow hmeblk for a tte.
3585  * The purpose of this routine is to allow us to do quick unloads because
3586  * the vm layer can easily pass a very large but sparsely populated range.
3587  */
3588 static struct hme_blk *
3589 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3590 {
3591 	struct hmehash_bucket *hmebp;
3592 	hmeblk_tag hblktag;
3593 	int hmeshift, size, vshift;
3594 	uint_t shw_mask, newshw_mask;
3595 	struct hme_blk *hmeblkp;
3596 
3597 	ASSERT(sfmmup != KHATID);
3598 	if (mmu_page_sizes == max_mmu_page_sizes) {
3599 		ASSERT(ttesz < TTE256M);
3600 	} else {
3601 		ASSERT(ttesz < TTE4M);
3602 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3603 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3604 	}
3605 
3606 	if (ttesz == TTE8K) {
3607 		size = TTE512K;
3608 	} else {
3609 		size = ++ttesz;
3610 	}
3611 
3612 	hblktag.htag_id = sfmmup;
3613 	hmeshift = HME_HASH_SHIFT(size);
3614 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3615 	hblktag.htag_rehash = HME_HASH_REHASH(size);
3616 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3617 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3618 
3619 	SFMMU_HASH_LOCK(hmebp);
3620 
3621 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3622 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3623 	if (hmeblkp == NULL) {
3624 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3625 		    hblktag, flags, SFMMU_INVALID_SHMERID);
3626 	}
3627 	ASSERT(hmeblkp);
3628 	if (!hmeblkp->hblk_shw_mask) {
3629 		/*
3630 		 * if this is a unused hblk it was just allocated or could
3631 		 * potentially be a previous large page hblk so we need to
3632 		 * set the shadow bit.
3633 		 */
3634 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3635 		hmeblkp->hblk_shw_bit = 1;
3636 	} else if (hmeblkp->hblk_shw_bit == 0) {
3637 		panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3638 		    (void *)hmeblkp);
3639 	}
3640 	ASSERT(hmeblkp->hblk_shw_bit == 1);
3641 	ASSERT(!hmeblkp->hblk_shared);
3642 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3643 	ASSERT(vshift < 8);
3644 	/*
3645 	 * Atomically set shw mask bit
3646 	 */
3647 	do {
3648 		shw_mask = hmeblkp->hblk_shw_mask;
3649 		newshw_mask = shw_mask | (1 << vshift);
3650 		newshw_mask = atomic_cas_32(&hmeblkp->hblk_shw_mask, shw_mask,
3651 		    newshw_mask);
3652 	} while (newshw_mask != shw_mask);
3653 
3654 	SFMMU_HASH_UNLOCK(hmebp);
3655 
3656 	return (hmeblkp);
3657 }
3658 
3659 /*
3660  * This routine cleanup a previous shadow hmeblk and changes it to
3661  * a regular hblk.  This happens rarely but it is possible
3662  * when a process wants to use large pages and there are hblks still
3663  * lying around from the previous as that used these hmeblks.
3664  * The alternative was to cleanup the shadow hblks at unload time
3665  * but since so few user processes actually use large pages, it is
3666  * better to be lazy and cleanup at this time.
3667  */
3668 static void
3669 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3670     struct hmehash_bucket *hmebp)
3671 {
3672 	caddr_t addr, endaddr;
3673 	int hashno, size;
3674 
3675 	ASSERT(hmeblkp->hblk_shw_bit);
3676 	ASSERT(!hmeblkp->hblk_shared);
3677 
3678 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3679 
3680 	if (!hmeblkp->hblk_shw_mask) {
3681 		hmeblkp->hblk_shw_bit = 0;
3682 		return;
3683 	}
3684 	addr = (caddr_t)get_hblk_base(hmeblkp);
3685 	endaddr = get_hblk_endaddr(hmeblkp);
3686 	size = get_hblk_ttesz(hmeblkp);
3687 	hashno = size - 1;
3688 	ASSERT(hashno > 0);
3689 	SFMMU_HASH_UNLOCK(hmebp);
3690 
3691 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3692 
3693 	SFMMU_HASH_LOCK(hmebp);
3694 }
3695 
3696 static void
3697 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3698     int hashno)
3699 {
3700 	int hmeshift, shadow = 0;
3701 	hmeblk_tag hblktag;
3702 	struct hmehash_bucket *hmebp;
3703 	struct hme_blk *hmeblkp;
3704 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3705 
3706 	ASSERT(hashno > 0);
3707 	hblktag.htag_id = sfmmup;
3708 	hblktag.htag_rehash = hashno;
3709 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3710 
3711 	hmeshift = HME_HASH_SHIFT(hashno);
3712 
3713 	while (addr < endaddr) {
3714 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3715 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3716 		SFMMU_HASH_LOCK(hmebp);
3717 		/* inline HME_HASH_SEARCH */
3718 		hmeblkp = hmebp->hmeblkp;
3719 		pr_hblk = NULL;
3720 		while (hmeblkp) {
3721 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3722 				/* found hme_blk */
3723 				ASSERT(!hmeblkp->hblk_shared);
3724 				if (hmeblkp->hblk_shw_bit) {
3725 					if (hmeblkp->hblk_shw_mask) {
3726 						shadow = 1;
3727 						sfmmu_shadow_hcleanup(sfmmup,
3728 						    hmeblkp, hmebp);
3729 						break;
3730 					} else {
3731 						hmeblkp->hblk_shw_bit = 0;
3732 					}
3733 				}
3734 
3735 				/*
3736 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3737 				 * since hblk_unload() does not gurantee that.
3738 				 *
3739 				 * XXX - this could cause tteload() to spin
3740 				 * where sfmmu_shadow_hcleanup() is called.
3741 				 */
3742 			}
3743 
3744 			nx_hblk = hmeblkp->hblk_next;
3745 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3746 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3747 				    &list, 0);
3748 			} else {
3749 				pr_hblk = hmeblkp;
3750 			}
3751 			hmeblkp = nx_hblk;
3752 		}
3753 
3754 		SFMMU_HASH_UNLOCK(hmebp);
3755 
3756 		if (shadow) {
3757 			/*
3758 			 * We found another shadow hblk so cleaned its
3759 			 * children.  We need to go back and cleanup
3760 			 * the original hblk so we don't change the
3761 			 * addr.
3762 			 */
3763 			shadow = 0;
3764 		} else {
3765 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3766 			    (1 << hmeshift));
3767 		}
3768 	}
3769 	sfmmu_hblks_list_purge(&list, 0);
3770 }
3771 
3772 /*
3773  * This routine's job is to delete stale invalid shared hmeregions hmeblks that
3774  * may still linger on after pageunload.
3775  */
3776 static void
3777 sfmmu_cleanup_rhblk(sf_srd_t *srdp, caddr_t addr, uint_t rid, int ttesz)
3778 {
3779 	int hmeshift;
3780 	hmeblk_tag hblktag;
3781 	struct hmehash_bucket *hmebp;
3782 	struct hme_blk *hmeblkp;
3783 	struct hme_blk *pr_hblk;
3784 	struct hme_blk *list = NULL;
3785 
3786 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3787 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3788 
3789 	hmeshift = HME_HASH_SHIFT(ttesz);
3790 	hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3791 	hblktag.htag_rehash = ttesz;
3792 	hblktag.htag_rid = rid;
3793 	hblktag.htag_id = srdp;
3794 	hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3795 
3796 	SFMMU_HASH_LOCK(hmebp);
3797 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3798 	if (hmeblkp != NULL) {
3799 		ASSERT(hmeblkp->hblk_shared);
3800 		ASSERT(!hmeblkp->hblk_shw_bit);
3801 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3802 			panic("sfmmu_cleanup_rhblk: valid hmeblk");
3803 		}
3804 		ASSERT(!hmeblkp->hblk_lckcnt);
3805 		sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3806 		    &list, 0);
3807 	}
3808 	SFMMU_HASH_UNLOCK(hmebp);
3809 	sfmmu_hblks_list_purge(&list, 0);
3810 }
3811 
3812 /* ARGSUSED */
3813 static void
3814 sfmmu_rgn_cb_noop(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
3815     size_t r_size, void *r_obj, u_offset_t r_objoff)
3816 {
3817 }
3818 
3819 /*
3820  * Searches for an hmeblk which maps addr, then unloads this mapping
3821  * and updates *eaddrp, if the hmeblk is found.
3822  */
3823 static void
3824 sfmmu_unload_hmeregion_va(sf_srd_t *srdp, uint_t rid, caddr_t addr,
3825     caddr_t eaddr, int ttesz, caddr_t *eaddrp)
3826 {
3827 	int hmeshift;
3828 	hmeblk_tag hblktag;
3829 	struct hmehash_bucket *hmebp;
3830 	struct hme_blk *hmeblkp;
3831 	struct hme_blk *pr_hblk;
3832 	struct hme_blk *list = NULL;
3833 
3834 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3835 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3836 	ASSERT(ttesz >= HBLK_MIN_TTESZ);
3837 
3838 	hmeshift = HME_HASH_SHIFT(ttesz);
3839 	hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3840 	hblktag.htag_rehash = ttesz;
3841 	hblktag.htag_rid = rid;
3842 	hblktag.htag_id = srdp;
3843 	hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3844 
3845 	SFMMU_HASH_LOCK(hmebp);
3846 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3847 	if (hmeblkp != NULL) {
3848 		ASSERT(hmeblkp->hblk_shared);
3849 		ASSERT(!hmeblkp->hblk_lckcnt);
3850 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3851 			*eaddrp = sfmmu_hblk_unload(NULL, hmeblkp, addr,
3852 			    eaddr, NULL, HAT_UNLOAD);
3853 			ASSERT(*eaddrp > addr);
3854 		}
3855 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3856 		sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3857 		    &list, 0);
3858 	}
3859 	SFMMU_HASH_UNLOCK(hmebp);
3860 	sfmmu_hblks_list_purge(&list, 0);
3861 }
3862 
3863 static void
3864 sfmmu_unload_hmeregion(sf_srd_t *srdp, sf_region_t *rgnp)
3865 {
3866 	int ttesz = rgnp->rgn_pgszc;
3867 	size_t rsz = rgnp->rgn_size;
3868 	caddr_t rsaddr = rgnp->rgn_saddr;
3869 	caddr_t readdr = rsaddr + rsz;
3870 	caddr_t rhsaddr;
3871 	caddr_t va;
3872 	uint_t rid = rgnp->rgn_id;
3873 	caddr_t cbsaddr;
3874 	caddr_t cbeaddr;
3875 	hat_rgn_cb_func_t rcbfunc;
3876 	ulong_t cnt;
3877 
3878 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3879 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3880 
3881 	ASSERT(IS_P2ALIGNED(rsaddr, TTEBYTES(ttesz)));
3882 	ASSERT(IS_P2ALIGNED(rsz, TTEBYTES(ttesz)));
3883 	if (ttesz < HBLK_MIN_TTESZ) {
3884 		ttesz = HBLK_MIN_TTESZ;
3885 		rhsaddr = (caddr_t)P2ALIGN((uintptr_t)rsaddr, HBLK_MIN_BYTES);
3886 	} else {
3887 		rhsaddr = rsaddr;
3888 	}
3889 
3890 	if ((rcbfunc = rgnp->rgn_cb_function) == NULL) {
3891 		rcbfunc = sfmmu_rgn_cb_noop;
3892 	}
3893 
3894 	while (ttesz >= HBLK_MIN_TTESZ) {
3895 		cbsaddr = rsaddr;
3896 		cbeaddr = rsaddr;
3897 		if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3898 			ttesz--;
3899 			continue;
3900 		}
3901 		cnt = 0;
3902 		va = rsaddr;
3903 		while (va < readdr) {
3904 			ASSERT(va >= rhsaddr);
3905 			if (va != cbeaddr) {
3906 				if (cbeaddr != cbsaddr) {
3907 					ASSERT(cbeaddr > cbsaddr);
3908 					(*rcbfunc)(cbsaddr, cbeaddr,
3909 					    rsaddr, rsz, rgnp->rgn_obj,
3910 					    rgnp->rgn_objoff);
3911 				}
3912 				cbsaddr = va;
3913 				cbeaddr = va;
3914 			}
3915 			sfmmu_unload_hmeregion_va(srdp, rid, va, readdr,
3916 			    ttesz, &cbeaddr);
3917 			cnt++;
3918 			va = rhsaddr + (cnt << TTE_PAGE_SHIFT(ttesz));
3919 		}
3920 		if (cbeaddr != cbsaddr) {
3921 			ASSERT(cbeaddr > cbsaddr);
3922 			(*rcbfunc)(cbsaddr, cbeaddr, rsaddr,
3923 			    rsz, rgnp->rgn_obj,
3924 			    rgnp->rgn_objoff);
3925 		}
3926 		ttesz--;
3927 	}
3928 }
3929 
3930 /*
3931  * Release one hardware address translation lock on the given address range.
3932  */
3933 void
3934 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3935 {
3936 	struct hmehash_bucket *hmebp;
3937 	hmeblk_tag hblktag;
3938 	int hmeshift, hashno = 1;
3939 	struct hme_blk *hmeblkp, *list = NULL;
3940 	caddr_t endaddr;
3941 
3942 	ASSERT(sfmmup != NULL);
3943 
3944 	ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
3945 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3946 	endaddr = addr + len;
3947 	hblktag.htag_id = sfmmup;
3948 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3949 
3950 	/*
3951 	 * Spitfire supports 4 page sizes.
3952 	 * Most pages are expected to be of the smallest page size (8K) and
3953 	 * these will not need to be rehashed. 64K pages also don't need to be
3954 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3955 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3956 	 */
3957 	while (addr < endaddr) {
3958 		hmeshift = HME_HASH_SHIFT(hashno);
3959 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3960 		hblktag.htag_rehash = hashno;
3961 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3962 
3963 		SFMMU_HASH_LOCK(hmebp);
3964 
3965 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3966 		if (hmeblkp != NULL) {
3967 			ASSERT(!hmeblkp->hblk_shared);
3968 			/*
3969 			 * If we encounter a shadow hmeblk then
3970 			 * we know there are no valid hmeblks mapping
3971 			 * this address at this size or larger.
3972 			 * Just increment address by the smallest
3973 			 * page size.
3974 			 */
3975 			if (hmeblkp->hblk_shw_bit) {
3976 				addr += MMU_PAGESIZE;
3977 			} else {
3978 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3979 				    endaddr);
3980 			}
3981 			SFMMU_HASH_UNLOCK(hmebp);
3982 			hashno = 1;
3983 			continue;
3984 		}
3985 		SFMMU_HASH_UNLOCK(hmebp);
3986 
3987 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3988 			/*
3989 			 * We have traversed the whole list and rehashed
3990 			 * if necessary without finding the address to unlock
3991 			 * which should never happen.
3992 			 */
3993 			panic("sfmmu_unlock: addr not found. "
3994 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3995 		} else {
3996 			hashno++;
3997 		}
3998 	}
3999 
4000 	sfmmu_hblks_list_purge(&list, 0);
4001 }
4002 
4003 void
4004 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len,
4005     hat_region_cookie_t rcookie)
4006 {
4007 	sf_srd_t *srdp;
4008 	sf_region_t *rgnp;
4009 	int ttesz;
4010 	uint_t rid;
4011 	caddr_t eaddr;
4012 	caddr_t va;
4013 	int hmeshift;
4014 	hmeblk_tag hblktag;
4015 	struct hmehash_bucket *hmebp;
4016 	struct hme_blk *hmeblkp;
4017 	struct hme_blk *pr_hblk;
4018 	struct hme_blk *list;
4019 
4020 	if (rcookie == HAT_INVALID_REGION_COOKIE) {
4021 		hat_unlock(sfmmup, addr, len);
4022 		return;
4023 	}
4024 
4025 	ASSERT(sfmmup != NULL);
4026 	ASSERT(sfmmup != ksfmmup);
4027 
4028 	srdp = sfmmup->sfmmu_srdp;
4029 	rid = (uint_t)((uint64_t)rcookie);
4030 	VERIFY3U(rid, <, SFMMU_MAX_HME_REGIONS);
4031 	eaddr = addr + len;
4032 	va = addr;
4033 	list = NULL;
4034 	rgnp = srdp->srd_hmergnp[rid];
4035 	SFMMU_VALIDATE_HMERID(sfmmup, rid, addr, len);
4036 
4037 	ASSERT(IS_P2ALIGNED(addr, TTEBYTES(rgnp->rgn_pgszc)));
4038 	ASSERT(IS_P2ALIGNED(len, TTEBYTES(rgnp->rgn_pgszc)));
4039 	if (rgnp->rgn_pgszc < HBLK_MIN_TTESZ) {
4040 		ttesz = HBLK_MIN_TTESZ;
4041 	} else {
4042 		ttesz = rgnp->rgn_pgszc;
4043 	}
4044 	while (va < eaddr) {
4045 		while (ttesz < rgnp->rgn_pgszc &&
4046 		    IS_P2ALIGNED(va, TTEBYTES(ttesz + 1))) {
4047 			ttesz++;
4048 		}
4049 		while (ttesz >= HBLK_MIN_TTESZ) {
4050 			if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
4051 				ttesz--;
4052 				continue;
4053 			}
4054 			hmeshift = HME_HASH_SHIFT(ttesz);
4055 			hblktag.htag_bspage = HME_HASH_BSPAGE(va, hmeshift);
4056 			hblktag.htag_rehash = ttesz;
4057 			hblktag.htag_rid = rid;
4058 			hblktag.htag_id = srdp;
4059 			hmebp = HME_HASH_FUNCTION(srdp, va, hmeshift);
4060 			SFMMU_HASH_LOCK(hmebp);
4061 			HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk,
4062 			    &list);
4063 			if (hmeblkp == NULL) {
4064 				SFMMU_HASH_UNLOCK(hmebp);
4065 				ttesz--;
4066 				continue;
4067 			}
4068 			ASSERT(hmeblkp->hblk_shared);
4069 			va = sfmmu_hblk_unlock(hmeblkp, va, eaddr);
4070 			ASSERT(va >= eaddr ||
4071 			    IS_P2ALIGNED((uintptr_t)va, TTEBYTES(ttesz)));
4072 			SFMMU_HASH_UNLOCK(hmebp);
4073 			break;
4074 		}
4075 		if (ttesz < HBLK_MIN_TTESZ) {
4076 			panic("hat_unlock_region: addr not found "
4077 			    "addr %p hat %p", (void *)va, (void *)sfmmup);
4078 		}
4079 	}
4080 	sfmmu_hblks_list_purge(&list, 0);
4081 }
4082 
4083 /*
4084  * Function to unlock a range of addresses in an hmeblk.  It returns the
4085  * next address that needs to be unlocked.
4086  * Should be called with the hash lock held.
4087  */
4088 static caddr_t
4089 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
4090 {
4091 	struct sf_hment *sfhme;
4092 	tte_t tteold, ttemod;
4093 	int ttesz, ret;
4094 
4095 	ASSERT(in_hblk_range(hmeblkp, addr));
4096 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4097 
4098 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4099 	ttesz = get_hblk_ttesz(hmeblkp);
4100 
4101 	HBLKTOHME(sfhme, hmeblkp, addr);
4102 	while (addr < endaddr) {
4103 readtte:
4104 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
4105 		if (TTE_IS_VALID(&tteold)) {
4106 
4107 			ttemod = tteold;
4108 
4109 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
4110 			    &sfhme->hme_tte);
4111 
4112 			if (ret < 0)
4113 				goto readtte;
4114 
4115 			if (hmeblkp->hblk_lckcnt == 0)
4116 				panic("zero hblk lckcnt");
4117 
4118 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
4119 			    (uintptr_t)endaddr)
4120 				panic("can't unlock large tte");
4121 
4122 			ASSERT(hmeblkp->hblk_lckcnt > 0);
4123 			atomic_dec_32(&hmeblkp->hblk_lckcnt);
4124 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
4125 		} else {
4126 			panic("sfmmu_hblk_unlock: invalid tte");
4127 		}
4128 		addr += TTEBYTES(ttesz);
4129 		sfhme++;
4130 	}
4131 	return (addr);
4132 }
4133 
4134 /*
4135  * Physical Address Mapping Framework
4136  *
4137  * General rules:
4138  *
4139  * (1) Applies only to seg_kmem memory pages. To make things easier,
4140  *     seg_kpm addresses are also accepted by the routines, but nothing
4141  *     is done with them since by definition their PA mappings are static.
4142  * (2) hat_add_callback() may only be called while holding the page lock
4143  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
4144  *     or passing HAC_PAGELOCK flag.
4145  * (3) prehandler() and posthandler() may not call hat_add_callback() or
4146  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
4147  *     callbacks may not sleep or acquire adaptive mutex locks.
4148  * (4) Either prehandler() or posthandler() (but not both) may be specified
4149  *     as being NULL.  Specifying an errhandler() is optional.
4150  *
4151  * Details of using the framework:
4152  *
4153  * registering a callback (hat_register_callback())
4154  *
4155  *	Pass prehandler, posthandler, errhandler addresses
4156  *	as described below. If capture_cpus argument is nonzero,
4157  *	suspend callback to the prehandler will occur with CPUs
4158  *	captured and executing xc_loop() and CPUs will remain
4159  *	captured until after the posthandler suspend callback
4160  *	occurs.
4161  *
4162  * adding a callback (hat_add_callback())
4163  *
4164  *      as_pagelock();
4165  *	hat_add_callback();
4166  *      save returned pfn in private data structures or program registers;
4167  *      as_pageunlock();
4168  *
4169  * prehandler()
4170  *
4171  *	Stop all accesses by physical address to this memory page.
4172  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
4173  *	adaptive locks. The second, SUSPEND, is called at high PIL with
4174  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
4175  *	locks must be XCALL_PIL or higher locks).
4176  *
4177  *	May return the following errors:
4178  *		EIO:	A fatal error has occurred. This will result in panic.
4179  *		EAGAIN:	The page cannot be suspended. This will fail the
4180  *			relocation.
4181  *		0:	Success.
4182  *
4183  * posthandler()
4184  *
4185  *      Save new pfn in private data structures or program registers;
4186  *	not allowed to fail (non-zero return values will result in panic).
4187  *
4188  * errhandler()
4189  *
4190  *	called when an error occurs related to the callback.  Currently
4191  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
4192  *	a page is being freed, but there are still outstanding callback(s)
4193  *	registered on the page.
4194  *
4195  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
4196  *
4197  *	stop using physical address
4198  *	hat_delete_callback();
4199  *
4200  */
4201 
4202 /*
4203  * Register a callback class.  Each subsystem should do this once and
4204  * cache the id_t returned for use in setting up and tearing down callbacks.
4205  *
4206  * There is no facility for removing callback IDs once they are created;
4207  * the "key" should be unique for each module, so in case a module is unloaded
4208  * and subsequently re-loaded, we can recycle the module's previous entry.
4209  */
4210 id_t
4211 hat_register_callback(int key,
4212     int (*prehandler)(caddr_t, uint_t, uint_t, void *),
4213     int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
4214     int (*errhandler)(caddr_t, uint_t, uint_t, void *),
4215     int capture_cpus)
4216 {
4217 	id_t id;
4218 
4219 	/*
4220 	 * Search the table for a pre-existing callback associated with
4221 	 * the identifier "key".  If one exists, we re-use that entry in
4222 	 * the table for this instance, otherwise we assign the next
4223 	 * available table slot.
4224 	 */
4225 	for (id = 0; id < sfmmu_max_cb_id; id++) {
4226 		if (sfmmu_cb_table[id].key == key)
4227 			break;
4228 	}
4229 
4230 	if (id == sfmmu_max_cb_id) {
4231 		id = sfmmu_cb_nextid++;
4232 		if (id >= sfmmu_max_cb_id)
4233 			panic("hat_register_callback: out of callback IDs");
4234 	}
4235 
4236 	ASSERT(prehandler != NULL || posthandler != NULL);
4237 
4238 	sfmmu_cb_table[id].key = key;
4239 	sfmmu_cb_table[id].prehandler = prehandler;
4240 	sfmmu_cb_table[id].posthandler = posthandler;
4241 	sfmmu_cb_table[id].errhandler = errhandler;
4242 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
4243 
4244 	return (id);
4245 }
4246 
4247 #define	HAC_COOKIE_NONE	(void *)-1
4248 
4249 /*
4250  * Add relocation callbacks to the specified addr/len which will be called
4251  * when relocating the associated page. See the description of pre and
4252  * posthandler above for more details.
4253  *
4254  * If HAC_PAGELOCK is included in flags, the underlying memory page is
4255  * locked internally so the caller must be able to deal with the callback
4256  * running even before this function has returned.  If HAC_PAGELOCK is not
4257  * set, it is assumed that the underlying memory pages are locked.
4258  *
4259  * Since the caller must track the individual page boundaries anyway,
4260  * we only allow a callback to be added to a single page (large
4261  * or small).  Thus [addr, addr + len) MUST be contained within a single
4262  * page.
4263  *
4264  * Registering multiple callbacks on the same [addr, addr+len) is supported,
4265  * _provided_that_ a unique parameter is specified for each callback.
4266  * If multiple callbacks are registered on the same range the callback will
4267  * be invoked with each unique parameter. Registering the same callback with
4268  * the same argument more than once will result in corrupted kernel state.
4269  *
4270  * Returns the pfn of the underlying kernel page in *rpfn
4271  * on success, or PFN_INVALID on failure.
4272  *
4273  * cookiep (if passed) provides storage space for an opaque cookie
4274  * to return later to hat_delete_callback(). This cookie makes the callback
4275  * deletion significantly quicker by avoiding a potentially lengthy hash
4276  * search.
4277  *
4278  * Returns values:
4279  *    0:      success
4280  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
4281  *    EINVAL: callback ID is not valid
4282  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
4283  *            space
4284  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
4285  */
4286 int
4287 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
4288     void *pvt, pfn_t *rpfn, void **cookiep)
4289 {
4290 	struct		hmehash_bucket *hmebp;
4291 	hmeblk_tag	hblktag;
4292 	struct hme_blk	*hmeblkp;
4293 	int		hmeshift, hashno;
4294 	caddr_t		saddr, eaddr, baseaddr;
4295 	struct pa_hment *pahmep;
4296 	struct sf_hment *sfhmep, *osfhmep;
4297 	kmutex_t	*pml;
4298 	tte_t		tte;
4299 	page_t		*pp;
4300 	vnode_t		*vp;
4301 	u_offset_t	off;
4302 	pfn_t		pfn;
4303 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
4304 	int		locked = 0;
4305 
4306 	/*
4307 	 * For KPM mappings, just return the physical address since we
4308 	 * don't need to register any callbacks.
4309 	 */
4310 	if (IS_KPM_ADDR(vaddr)) {
4311 		uint64_t paddr;
4312 		SFMMU_KPM_VTOP(vaddr, paddr);
4313 		*rpfn = btop(paddr);
4314 		if (cookiep != NULL)
4315 			*cookiep = HAC_COOKIE_NONE;
4316 		return (0);
4317 	}
4318 
4319 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
4320 		*rpfn = PFN_INVALID;
4321 		return (EINVAL);
4322 	}
4323 
4324 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
4325 		*rpfn = PFN_INVALID;
4326 		return (ENOMEM);
4327 	}
4328 
4329 	sfhmep = &pahmep->sfment;
4330 
4331 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4332 	eaddr = saddr + len;
4333 
4334 rehash:
4335 	/* Find the mapping(s) for this page */
4336 	for (hashno = TTE64K, hmeblkp = NULL;
4337 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
4338 	    hashno++) {
4339 		hmeshift = HME_HASH_SHIFT(hashno);
4340 		hblktag.htag_id = ksfmmup;
4341 		hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4342 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4343 		hblktag.htag_rehash = hashno;
4344 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4345 
4346 		SFMMU_HASH_LOCK(hmebp);
4347 
4348 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4349 
4350 		if (hmeblkp == NULL)
4351 			SFMMU_HASH_UNLOCK(hmebp);
4352 	}
4353 
4354 	if (hmeblkp == NULL) {
4355 		kmem_cache_free(pa_hment_cache, pahmep);
4356 		*rpfn = PFN_INVALID;
4357 		return (ENXIO);
4358 	}
4359 
4360 	ASSERT(!hmeblkp->hblk_shared);
4361 
4362 	HBLKTOHME(osfhmep, hmeblkp, saddr);
4363 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
4364 
4365 	if (!TTE_IS_VALID(&tte)) {
4366 		SFMMU_HASH_UNLOCK(hmebp);
4367 		kmem_cache_free(pa_hment_cache, pahmep);
4368 		*rpfn = PFN_INVALID;
4369 		return (ENXIO);
4370 	}
4371 
4372 	/*
4373 	 * Make sure the boundaries for the callback fall within this
4374 	 * single mapping.
4375 	 */
4376 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
4377 	ASSERT(saddr >= baseaddr);
4378 	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
4379 		SFMMU_HASH_UNLOCK(hmebp);
4380 		kmem_cache_free(pa_hment_cache, pahmep);
4381 		*rpfn = PFN_INVALID;
4382 		return (ERANGE);
4383 	}
4384 
4385 	pfn = sfmmu_ttetopfn(&tte, vaddr);
4386 
4387 	/*
4388 	 * The pfn may not have a page_t underneath in which case we
4389 	 * just return it. This can happen if we are doing I/O to a
4390 	 * static portion of the kernel's address space, for instance.
4391 	 */
4392 	pp = osfhmep->hme_page;
4393 	if (pp == NULL) {
4394 		SFMMU_HASH_UNLOCK(hmebp);
4395 		kmem_cache_free(pa_hment_cache, pahmep);
4396 		*rpfn = pfn;
4397 		if (cookiep)
4398 			*cookiep = HAC_COOKIE_NONE;
4399 		return (0);
4400 	}
4401 	ASSERT(pp == PP_PAGEROOT(pp));
4402 
4403 	vp = pp->p_vnode;
4404 	off = pp->p_offset;
4405 
4406 	pml = sfmmu_mlist_enter(pp);
4407 
4408 	if (flags & HAC_PAGELOCK) {
4409 		if (!page_trylock(pp, SE_SHARED)) {
4410 			/*
4411 			 * Somebody is holding SE_EXCL lock. Might even be
4412 			 * hat_page_relocate().
4413 			 * Drop all our locks, lookup the page in &kvp, and
4414 			 * retry.
4415 			 * If it doesn't exist in &kvp and &kvps[KV_ZVP],
4416 			 * then we must be dealing with a kernel mapped
4417 			 * page which doesn't actually belong to
4418 			 * segkmem so we punt.
4419 			 */
4420 			sfmmu_mlist_exit(pml);
4421 			SFMMU_HASH_UNLOCK(hmebp);
4422 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4423 
4424 			/* check &kvps[KV_ZVP] before giving up */
4425 			if (pp == NULL)
4426 				pp = page_lookup(&kvps[KV_ZVP],
4427 				    (u_offset_t)saddr, SE_SHARED);
4428 
4429 			/* Okay, we didn't find it, give up */
4430 			if (pp == NULL) {
4431 				kmem_cache_free(pa_hment_cache, pahmep);
4432 				*rpfn = pfn;
4433 				if (cookiep)
4434 					*cookiep = HAC_COOKIE_NONE;
4435 				return (0);
4436 			}
4437 			page_unlock(pp);
4438 			goto rehash;
4439 		}
4440 		locked = 1;
4441 	}
4442 
4443 	if (!PAGE_LOCKED(pp) && !panicstr)
4444 		panic("hat_add_callback: page 0x%p not locked", (void *)pp);
4445 
4446 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4447 	    pp->p_offset != off) {
4448 		/*
4449 		 * The page moved before we got our hands on it.  Drop
4450 		 * all the locks and try again.
4451 		 */
4452 		ASSERT((flags & HAC_PAGELOCK) != 0);
4453 		sfmmu_mlist_exit(pml);
4454 		SFMMU_HASH_UNLOCK(hmebp);
4455 		page_unlock(pp);
4456 		locked = 0;
4457 		goto rehash;
4458 	}
4459 
4460 	if (!VN_ISKAS(vp)) {
4461 		/*
4462 		 * This is not a segkmem page but another page which
4463 		 * has been kernel mapped. It had better have at least
4464 		 * a share lock on it. Return the pfn.
4465 		 */
4466 		sfmmu_mlist_exit(pml);
4467 		SFMMU_HASH_UNLOCK(hmebp);
4468 		if (locked)
4469 			page_unlock(pp);
4470 		kmem_cache_free(pa_hment_cache, pahmep);
4471 		ASSERT(PAGE_LOCKED(pp));
4472 		*rpfn = pfn;
4473 		if (cookiep)
4474 			*cookiep = HAC_COOKIE_NONE;
4475 		return (0);
4476 	}
4477 
4478 	/*
4479 	 * Setup this pa_hment and link its embedded dummy sf_hment into
4480 	 * the mapping list.
4481 	 */
4482 	pp->p_share++;
4483 	pahmep->cb_id = callback_id;
4484 	pahmep->addr = vaddr;
4485 	pahmep->len = len;
4486 	pahmep->refcnt = 1;
4487 	pahmep->flags = 0;
4488 	pahmep->pvt = pvt;
4489 
4490 	sfhmep->hme_tte.ll = 0;
4491 	sfhmep->hme_data = pahmep;
4492 	sfhmep->hme_prev = osfhmep;
4493 	sfhmep->hme_next = osfhmep->hme_next;
4494 
4495 	if (osfhmep->hme_next)
4496 		osfhmep->hme_next->hme_prev = sfhmep;
4497 
4498 	osfhmep->hme_next = sfhmep;
4499 
4500 	sfmmu_mlist_exit(pml);
4501 	SFMMU_HASH_UNLOCK(hmebp);
4502 
4503 	if (locked)
4504 		page_unlock(pp);
4505 
4506 	*rpfn = pfn;
4507 	if (cookiep)
4508 		*cookiep = (void *)pahmep;
4509 
4510 	return (0);
4511 }
4512 
4513 /*
4514  * Remove the relocation callbacks from the specified addr/len.
4515  */
4516 void
4517 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
4518     void *cookie)
4519 {
4520 	struct		hmehash_bucket *hmebp;
4521 	hmeblk_tag	hblktag;
4522 	struct hme_blk	*hmeblkp;
4523 	int		hmeshift, hashno;
4524 	caddr_t		saddr;
4525 	struct pa_hment	*pahmep;
4526 	struct sf_hment	*sfhmep, *osfhmep;
4527 	kmutex_t	*pml;
4528 	tte_t		tte;
4529 	page_t		*pp;
4530 	vnode_t		*vp;
4531 	u_offset_t	off;
4532 	int		locked = 0;
4533 
4534 	/*
4535 	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
4536 	 * remove so just return.
4537 	 */
4538 	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
4539 		return;
4540 
4541 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4542 
4543 rehash:
4544 	/* Find the mapping(s) for this page */
4545 	for (hashno = TTE64K, hmeblkp = NULL;
4546 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
4547 	    hashno++) {
4548 		hmeshift = HME_HASH_SHIFT(hashno);
4549 		hblktag.htag_id = ksfmmup;
4550 		hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4551 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4552 		hblktag.htag_rehash = hashno;
4553 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4554 
4555 		SFMMU_HASH_LOCK(hmebp);
4556 
4557 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4558 
4559 		if (hmeblkp == NULL)
4560 			SFMMU_HASH_UNLOCK(hmebp);
4561 	}
4562 
4563 	if (hmeblkp == NULL)
4564 		return;
4565 
4566 	ASSERT(!hmeblkp->hblk_shared);
4567 
4568 	HBLKTOHME(osfhmep, hmeblkp, saddr);
4569 
4570 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
4571 	if (!TTE_IS_VALID(&tte)) {
4572 		SFMMU_HASH_UNLOCK(hmebp);
4573 		return;
4574 	}
4575 
4576 	pp = osfhmep->hme_page;
4577 	if (pp == NULL) {
4578 		SFMMU_HASH_UNLOCK(hmebp);
4579 		ASSERT(cookie == NULL);
4580 		return;
4581 	}
4582 
4583 	vp = pp->p_vnode;
4584 	off = pp->p_offset;
4585 
4586 	pml = sfmmu_mlist_enter(pp);
4587 
4588 	if (flags & HAC_PAGELOCK) {
4589 		if (!page_trylock(pp, SE_SHARED)) {
4590 			/*
4591 			 * Somebody is holding SE_EXCL lock. Might even be
4592 			 * hat_page_relocate().
4593 			 * Drop all our locks, lookup the page in &kvp, and
4594 			 * retry.
4595 			 * If it doesn't exist in &kvp and &kvps[KV_ZVP],
4596 			 * then we must be dealing with a kernel mapped
4597 			 * page which doesn't actually belong to
4598 			 * segkmem so we punt.
4599 			 */
4600 			sfmmu_mlist_exit(pml);
4601 			SFMMU_HASH_UNLOCK(hmebp);
4602 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4603 
4604 			/* check &kvps[KV_ZVP] before giving up */
4605 			if (pp == NULL)
4606 				pp = page_lookup(&kvps[KV_ZVP],
4607 				    (u_offset_t)saddr, SE_SHARED);
4608 
4609 			if (pp == NULL) {
4610 				ASSERT(cookie == NULL);
4611 				return;
4612 			}
4613 			page_unlock(pp);
4614 			goto rehash;
4615 		}
4616 		locked = 1;
4617 	}
4618 
4619 	ASSERT(PAGE_LOCKED(pp));
4620 
4621 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4622 	    pp->p_offset != off) {
4623 		/*
4624 		 * The page moved before we got our hands on it.  Drop
4625 		 * all the locks and try again.
4626 		 */
4627 		ASSERT((flags & HAC_PAGELOCK) != 0);
4628 		sfmmu_mlist_exit(pml);
4629 		SFMMU_HASH_UNLOCK(hmebp);
4630 		page_unlock(pp);
4631 		locked = 0;
4632 		goto rehash;
4633 	}
4634 
4635 	if (!VN_ISKAS(vp)) {
4636 		/*
4637 		 * This is not a segkmem page but another page which
4638 		 * has been kernel mapped.
4639 		 */
4640 		sfmmu_mlist_exit(pml);
4641 		SFMMU_HASH_UNLOCK(hmebp);
4642 		if (locked)
4643 			page_unlock(pp);
4644 		ASSERT(cookie == NULL);
4645 		return;
4646 	}
4647 
4648 	if (cookie != NULL) {
4649 		pahmep = (struct pa_hment *)cookie;
4650 		sfhmep = &pahmep->sfment;
4651 	} else {
4652 		for (sfhmep = pp->p_mapping; sfhmep != NULL;
4653 		    sfhmep = sfhmep->hme_next) {
4654 
4655 			/*
4656 			 * skip va<->pa mappings
4657 			 */
4658 			if (!IS_PAHME(sfhmep))
4659 				continue;
4660 
4661 			pahmep = sfhmep->hme_data;
4662 			ASSERT(pahmep != NULL);
4663 
4664 			/*
4665 			 * if pa_hment matches, remove it
4666 			 */
4667 			if ((pahmep->pvt == pvt) &&
4668 			    (pahmep->addr == vaddr) &&
4669 			    (pahmep->len == len)) {
4670 				break;
4671 			}
4672 		}
4673 	}
4674 
4675 	if (sfhmep == NULL) {
4676 		if (!panicstr) {
4677 			panic("hat_delete_callback: pa_hment not found, pp %p",
4678 			    (void *)pp);
4679 		}
4680 		return;
4681 	}
4682 
4683 	/*
4684 	 * Note: at this point a valid kernel mapping must still be
4685 	 * present on this page.
4686 	 */
4687 	pp->p_share--;
4688 	if (pp->p_share <= 0)
4689 		panic("hat_delete_callback: zero p_share");
4690 
4691 	if (--pahmep->refcnt == 0) {
4692 		if (pahmep->flags != 0)
4693 			panic("hat_delete_callback: pa_hment is busy");
4694 
4695 		/*
4696 		 * Remove sfhmep from the mapping list for the page.
4697 		 */
4698 		if (sfhmep->hme_prev) {
4699 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
4700 		} else {
4701 			pp->p_mapping = sfhmep->hme_next;
4702 		}
4703 
4704 		if (sfhmep->hme_next)
4705 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
4706 
4707 		sfmmu_mlist_exit(pml);
4708 		SFMMU_HASH_UNLOCK(hmebp);
4709 
4710 		if (locked)
4711 			page_unlock(pp);
4712 
4713 		kmem_cache_free(pa_hment_cache, pahmep);
4714 		return;
4715 	}
4716 
4717 	sfmmu_mlist_exit(pml);
4718 	SFMMU_HASH_UNLOCK(hmebp);
4719 	if (locked)
4720 		page_unlock(pp);
4721 }
4722 
4723 /*
4724  * hat_probe returns 1 if the translation for the address 'addr' is
4725  * loaded, zero otherwise.
4726  *
4727  * hat_probe should be used only for advisorary purposes because it may
4728  * occasionally return the wrong value. The implementation must guarantee that
4729  * returning the wrong value is a very rare event. hat_probe is used
4730  * to implement optimizations in the segment drivers.
4731  *
4732  */
4733 int
4734 hat_probe(struct hat *sfmmup, caddr_t addr)
4735 {
4736 	pfn_t pfn;
4737 	tte_t tte;
4738 
4739 	ASSERT(sfmmup != NULL);
4740 
4741 	ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
4742 
4743 	if (sfmmup == ksfmmup) {
4744 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4745 		    == PFN_SUSPENDED) {
4746 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4747 		}
4748 	} else {
4749 		pfn = sfmmu_uvatopfn(addr, sfmmup, NULL);
4750 	}
4751 
4752 	if (pfn != PFN_INVALID)
4753 		return (1);
4754 	else
4755 		return (0);
4756 }
4757 
4758 ssize_t
4759 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4760 {
4761 	tte_t tte;
4762 
4763 	if (sfmmup == ksfmmup) {
4764 		if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4765 			return (-1);
4766 		}
4767 	} else {
4768 		if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4769 			return (-1);
4770 		}
4771 	}
4772 
4773 	ASSERT(TTE_IS_VALID(&tte));
4774 	return (TTEBYTES(TTE_CSZ(&tte)));
4775 }
4776 
4777 uint_t
4778 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4779 {
4780 	tte_t tte;
4781 
4782 	if (sfmmup == ksfmmup) {
4783 		if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4784 			tte.ll = 0;
4785 		}
4786 	} else {
4787 		if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4788 			tte.ll = 0;
4789 		}
4790 	}
4791 	if (TTE_IS_VALID(&tte)) {
4792 		*attr = sfmmu_ptov_attr(&tte);
4793 		return (0);
4794 	}
4795 	*attr = 0;
4796 	return ((uint_t)0xffffffff);
4797 }
4798 
4799 /*
4800  * Enables more attributes on specified address range (ie. logical OR)
4801  */
4802 void
4803 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4804 {
4805 	ASSERT(hat->sfmmu_as != NULL);
4806 
4807 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4808 }
4809 
4810 /*
4811  * Assigns attributes to the specified address range.  All the attributes
4812  * are specified.
4813  */
4814 void
4815 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4816 {
4817 	ASSERT(hat->sfmmu_as != NULL);
4818 
4819 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4820 }
4821 
4822 /*
4823  * Remove attributes on the specified address range (ie. loginal NAND)
4824  */
4825 void
4826 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4827 {
4828 	ASSERT(hat->sfmmu_as != NULL);
4829 
4830 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4831 }
4832 
4833 /*
4834  * Change attributes on an address range to that specified by attr and mode.
4835  */
4836 static void
4837 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4838     int mode)
4839 {
4840 	struct hmehash_bucket *hmebp;
4841 	hmeblk_tag hblktag;
4842 	int hmeshift, hashno = 1;
4843 	struct hme_blk *hmeblkp, *list = NULL;
4844 	caddr_t endaddr;
4845 	cpuset_t cpuset;
4846 	demap_range_t dmr;
4847 
4848 	CPUSET_ZERO(cpuset);
4849 
4850 	ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
4851 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4852 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4853 
4854 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4855 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4856 		panic("user addr %p in kernel space",
4857 		    (void *)addr);
4858 	}
4859 
4860 	endaddr = addr + len;
4861 	hblktag.htag_id = sfmmup;
4862 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4863 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4864 
4865 	while (addr < endaddr) {
4866 		hmeshift = HME_HASH_SHIFT(hashno);
4867 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4868 		hblktag.htag_rehash = hashno;
4869 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4870 
4871 		SFMMU_HASH_LOCK(hmebp);
4872 
4873 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4874 		if (hmeblkp != NULL) {
4875 			ASSERT(!hmeblkp->hblk_shared);
4876 			/*
4877 			 * We've encountered a shadow hmeblk so skip the range
4878 			 * of the next smaller mapping size.
4879 			 */
4880 			if (hmeblkp->hblk_shw_bit) {
4881 				ASSERT(sfmmup != ksfmmup);
4882 				ASSERT(hashno > 1);
4883 				addr = (caddr_t)P2END((uintptr_t)addr,
4884 				    TTEBYTES(hashno - 1));
4885 			} else {
4886 				addr = sfmmu_hblk_chgattr(sfmmup,
4887 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4888 			}
4889 			SFMMU_HASH_UNLOCK(hmebp);
4890 			hashno = 1;
4891 			continue;
4892 		}
4893 		SFMMU_HASH_UNLOCK(hmebp);
4894 
4895 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4896 			/*
4897 			 * We have traversed the whole list and rehashed
4898 			 * if necessary without finding the address to chgattr.
4899 			 * This is ok, so we increment the address by the
4900 			 * smallest hmeblk range for kernel mappings or for
4901 			 * user mappings with no large pages, and the largest
4902 			 * hmeblk range, to account for shadow hmeblks, for
4903 			 * user mappings with large pages and continue.
4904 			 */
4905 			if (sfmmup == ksfmmup)
4906 				addr = (caddr_t)P2END((uintptr_t)addr,
4907 				    TTEBYTES(1));
4908 			else
4909 				addr = (caddr_t)P2END((uintptr_t)addr,
4910 				    TTEBYTES(hashno));
4911 			hashno = 1;
4912 		} else {
4913 			hashno++;
4914 		}
4915 	}
4916 
4917 	sfmmu_hblks_list_purge(&list, 0);
4918 	DEMAP_RANGE_FLUSH(&dmr);
4919 	cpuset = sfmmup->sfmmu_cpusran;
4920 	xt_sync(cpuset);
4921 }
4922 
4923 /*
4924  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4925  * next addres that needs to be chgattr.
4926  * It should be called with the hash lock held.
4927  * XXX It should be possible to optimize chgattr by not flushing every time but
4928  * on the other hand:
4929  * 1. do one flush crosscall.
4930  * 2. only flush if we are increasing permissions (make sure this will work)
4931  */
4932 static caddr_t
4933 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4934     caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4935 {
4936 	tte_t tte, tteattr, tteflags, ttemod;
4937 	struct sf_hment *sfhmep;
4938 	int ttesz;
4939 	struct page *pp = NULL;
4940 	kmutex_t *pml, *pmtx;
4941 	int ret;
4942 	int use_demap_range;
4943 #if defined(SF_ERRATA_57)
4944 	int check_exec;
4945 #endif
4946 
4947 	ASSERT(in_hblk_range(hmeblkp, addr));
4948 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4949 	ASSERT(!hmeblkp->hblk_shared);
4950 
4951 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4952 	ttesz = get_hblk_ttesz(hmeblkp);
4953 
4954 	/*
4955 	 * Flush the current demap region if addresses have been
4956 	 * skipped or the page size doesn't match.
4957 	 */
4958 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4959 	if (use_demap_range) {
4960 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4961 	} else if (dmrp != NULL) {
4962 		DEMAP_RANGE_FLUSH(dmrp);
4963 	}
4964 
4965 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4966 #if defined(SF_ERRATA_57)
4967 	check_exec = (sfmmup != ksfmmup) &&
4968 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4969 	    TTE_IS_EXECUTABLE(&tteattr);
4970 #endif
4971 	HBLKTOHME(sfhmep, hmeblkp, addr);
4972 	while (addr < endaddr) {
4973 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
4974 		if (TTE_IS_VALID(&tte)) {
4975 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
4976 				/*
4977 				 * if the new attr is the same as old
4978 				 * continue
4979 				 */
4980 				goto next_addr;
4981 			}
4982 			if (!TTE_IS_WRITABLE(&tteattr)) {
4983 				/*
4984 				 * make sure we clear hw modify bit if we
4985 				 * removing write protections
4986 				 */
4987 				tteflags.tte_intlo |= TTE_HWWR_INT;
4988 			}
4989 
4990 			pml = NULL;
4991 			pp = sfhmep->hme_page;
4992 			if (pp) {
4993 				pml = sfmmu_mlist_enter(pp);
4994 			}
4995 
4996 			if (pp != sfhmep->hme_page) {
4997 				/*
4998 				 * tte must have been unloaded.
4999 				 */
5000 				ASSERT(pml);
5001 				sfmmu_mlist_exit(pml);
5002 				continue;
5003 			}
5004 
5005 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5006 
5007 			ttemod = tte;
5008 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
5009 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
5010 
5011 #if defined(SF_ERRATA_57)
5012 			if (check_exec && addr < errata57_limit)
5013 				ttemod.tte_exec_perm = 0;
5014 #endif
5015 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5016 			    &sfhmep->hme_tte);
5017 
5018 			if (ret < 0) {
5019 				/* tte changed underneath us */
5020 				if (pml) {
5021 					sfmmu_mlist_exit(pml);
5022 				}
5023 				continue;
5024 			}
5025 
5026 			if (tteflags.tte_intlo & TTE_HWWR_INT) {
5027 				/*
5028 				 * need to sync if we are clearing modify bit.
5029 				 */
5030 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5031 			}
5032 
5033 			if (pp && PP_ISRO(pp)) {
5034 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
5035 					pmtx = sfmmu_page_enter(pp);
5036 					PP_CLRRO(pp);
5037 					sfmmu_page_exit(pmtx);
5038 				}
5039 			}
5040 
5041 			if (ret > 0 && use_demap_range) {
5042 				DEMAP_RANGE_MARKPG(dmrp, addr);
5043 			} else if (ret > 0) {
5044 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5045 			}
5046 
5047 			if (pml) {
5048 				sfmmu_mlist_exit(pml);
5049 			}
5050 		}
5051 next_addr:
5052 		addr += TTEBYTES(ttesz);
5053 		sfhmep++;
5054 		DEMAP_RANGE_NEXTPG(dmrp);
5055 	}
5056 	return (addr);
5057 }
5058 
5059 /*
5060  * This routine converts virtual attributes to physical ones.  It will
5061  * update the tteflags field with the tte mask corresponding to the attributes
5062  * affected and it returns the new attributes.  It will also clear the modify
5063  * bit if we are taking away write permission.  This is necessary since the
5064  * modify bit is the hardware permission bit and we need to clear it in order
5065  * to detect write faults.
5066  */
5067 static uint64_t
5068 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
5069 {
5070 	tte_t ttevalue;
5071 
5072 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
5073 
5074 	switch (mode) {
5075 	case SFMMU_CHGATTR:
5076 		/* all attributes specified */
5077 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
5078 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
5079 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
5080 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
5081 		break;
5082 	case SFMMU_SETATTR:
5083 		ASSERT(!(attr & ~HAT_PROT_MASK));
5084 		ttemaskp->ll = 0;
5085 		ttevalue.ll = 0;
5086 		/*
5087 		 * a valid tte implies exec and read for sfmmu
5088 		 * so no need to do anything about them.
5089 		 * since priviledged access implies user access
5090 		 * PROT_USER doesn't make sense either.
5091 		 */
5092 		if (attr & PROT_WRITE) {
5093 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
5094 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
5095 		}
5096 		break;
5097 	case SFMMU_CLRATTR:
5098 		/* attributes will be nand with current ones */
5099 		if (attr & ~(PROT_WRITE | PROT_USER)) {
5100 			panic("sfmmu: attr %x not supported", attr);
5101 		}
5102 		ttemaskp->ll = 0;
5103 		ttevalue.ll = 0;
5104 		if (attr & PROT_WRITE) {
5105 			/* clear both writable and modify bit */
5106 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
5107 		}
5108 		if (attr & PROT_USER) {
5109 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
5110 			ttevalue.tte_intlo |= TTE_PRIV_INT;
5111 		}
5112 		break;
5113 	default:
5114 		panic("sfmmu_vtop_attr: bad mode %x", mode);
5115 	}
5116 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
5117 	return (ttevalue.ll);
5118 }
5119 
5120 static uint_t
5121 sfmmu_ptov_attr(tte_t *ttep)
5122 {
5123 	uint_t attr;
5124 
5125 	ASSERT(TTE_IS_VALID(ttep));
5126 
5127 	attr = PROT_READ;
5128 
5129 	if (TTE_IS_WRITABLE(ttep)) {
5130 		attr |= PROT_WRITE;
5131 	}
5132 	if (TTE_IS_EXECUTABLE(ttep)) {
5133 		attr |= PROT_EXEC;
5134 	}
5135 	if (!TTE_IS_PRIVILEGED(ttep)) {
5136 		attr |= PROT_USER;
5137 	}
5138 	if (TTE_IS_NFO(ttep)) {
5139 		attr |= HAT_NOFAULT;
5140 	}
5141 	if (TTE_IS_NOSYNC(ttep)) {
5142 		attr |= HAT_NOSYNC;
5143 	}
5144 	if (TTE_IS_SIDEFFECT(ttep)) {
5145 		attr |= SFMMU_SIDEFFECT;
5146 	}
5147 	if (!TTE_IS_VCACHEABLE(ttep)) {
5148 		attr |= SFMMU_UNCACHEVTTE;
5149 	}
5150 	if (!TTE_IS_PCACHEABLE(ttep)) {
5151 		attr |= SFMMU_UNCACHEPTTE;
5152 	}
5153 	return (attr);
5154 }
5155 
5156 /*
5157  * hat_chgprot is a deprecated hat call.  New segment drivers
5158  * should store all attributes and use hat_*attr calls.
5159  *
5160  * Change the protections in the virtual address range
5161  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
5162  * then remove write permission, leaving the other
5163  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
5164  *
5165  */
5166 void
5167 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
5168 {
5169 	struct hmehash_bucket *hmebp;
5170 	hmeblk_tag hblktag;
5171 	int hmeshift, hashno = 1;
5172 	struct hme_blk *hmeblkp, *list = NULL;
5173 	caddr_t endaddr;
5174 	cpuset_t cpuset;
5175 	demap_range_t dmr;
5176 
5177 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5178 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
5179 
5180 	ASSERT(sfmmup->sfmmu_as != NULL);
5181 
5182 	CPUSET_ZERO(cpuset);
5183 
5184 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
5185 	    ((addr + len) > (caddr_t)USERLIMIT)) {
5186 		panic("user addr %p vprot %x in kernel space",
5187 		    (void *)addr, vprot);
5188 	}
5189 	endaddr = addr + len;
5190 	hblktag.htag_id = sfmmup;
5191 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5192 	DEMAP_RANGE_INIT(sfmmup, &dmr);
5193 
5194 	while (addr < endaddr) {
5195 		hmeshift = HME_HASH_SHIFT(hashno);
5196 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5197 		hblktag.htag_rehash = hashno;
5198 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5199 
5200 		SFMMU_HASH_LOCK(hmebp);
5201 
5202 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5203 		if (hmeblkp != NULL) {
5204 			ASSERT(!hmeblkp->hblk_shared);
5205 			/*
5206 			 * We've encountered a shadow hmeblk so skip the range
5207 			 * of the next smaller mapping size.
5208 			 */
5209 			if (hmeblkp->hblk_shw_bit) {
5210 				ASSERT(sfmmup != ksfmmup);
5211 				ASSERT(hashno > 1);
5212 				addr = (caddr_t)P2END((uintptr_t)addr,
5213 				    TTEBYTES(hashno - 1));
5214 			} else {
5215 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
5216 				    addr, endaddr, &dmr, vprot);
5217 			}
5218 			SFMMU_HASH_UNLOCK(hmebp);
5219 			hashno = 1;
5220 			continue;
5221 		}
5222 		SFMMU_HASH_UNLOCK(hmebp);
5223 
5224 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5225 			/*
5226 			 * We have traversed the whole list and rehashed
5227 			 * if necessary without finding the address to chgprot.
5228 			 * This is ok so we increment the address by the
5229 			 * smallest hmeblk range for kernel mappings and the
5230 			 * largest hmeblk range, to account for shadow hmeblks,
5231 			 * for user mappings and continue.
5232 			 */
5233 			if (sfmmup == ksfmmup)
5234 				addr = (caddr_t)P2END((uintptr_t)addr,
5235 				    TTEBYTES(1));
5236 			else
5237 				addr = (caddr_t)P2END((uintptr_t)addr,
5238 				    TTEBYTES(hashno));
5239 			hashno = 1;
5240 		} else {
5241 			hashno++;
5242 		}
5243 	}
5244 
5245 	sfmmu_hblks_list_purge(&list, 0);
5246 	DEMAP_RANGE_FLUSH(&dmr);
5247 	cpuset = sfmmup->sfmmu_cpusran;
5248 	xt_sync(cpuset);
5249 }
5250 
5251 /*
5252  * This function chgprots a range of addresses in an hmeblk.  It returns the
5253  * next addres that needs to be chgprot.
5254  * It should be called with the hash lock held.
5255  * XXX It shold be possible to optimize chgprot by not flushing every time but
5256  * on the other hand:
5257  * 1. do one flush crosscall.
5258  * 2. only flush if we are increasing permissions (make sure this will work)
5259  */
5260 static caddr_t
5261 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5262     caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
5263 {
5264 	uint_t pprot;
5265 	tte_t tte, ttemod;
5266 	struct sf_hment *sfhmep;
5267 	uint_t tteflags;
5268 	int ttesz;
5269 	struct page *pp = NULL;
5270 	kmutex_t *pml, *pmtx;
5271 	int ret;
5272 	int use_demap_range;
5273 #if defined(SF_ERRATA_57)
5274 	int check_exec;
5275 #endif
5276 
5277 	ASSERT(in_hblk_range(hmeblkp, addr));
5278 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5279 	ASSERT(!hmeblkp->hblk_shared);
5280 
5281 #ifdef DEBUG
5282 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5283 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5284 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
5285 	}
5286 #endif /* DEBUG */
5287 
5288 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5289 	ttesz = get_hblk_ttesz(hmeblkp);
5290 
5291 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
5292 #if defined(SF_ERRATA_57)
5293 	check_exec = (sfmmup != ksfmmup) &&
5294 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
5295 	    ((vprot & PROT_EXEC) == PROT_EXEC);
5296 #endif
5297 	HBLKTOHME(sfhmep, hmeblkp, addr);
5298 
5299 	/*
5300 	 * Flush the current demap region if addresses have been
5301 	 * skipped or the page size doesn't match.
5302 	 */
5303 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
5304 	if (use_demap_range) {
5305 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5306 	} else if (dmrp != NULL) {
5307 		DEMAP_RANGE_FLUSH(dmrp);
5308 	}
5309 
5310 	while (addr < endaddr) {
5311 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5312 		if (TTE_IS_VALID(&tte)) {
5313 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
5314 				/*
5315 				 * if the new protection is the same as old
5316 				 * continue
5317 				 */
5318 				goto next_addr;
5319 			}
5320 			pml = NULL;
5321 			pp = sfhmep->hme_page;
5322 			if (pp) {
5323 				pml = sfmmu_mlist_enter(pp);
5324 			}
5325 			if (pp != sfhmep->hme_page) {
5326 				/*
5327 				 * tte most have been unloaded
5328 				 * underneath us.  Recheck
5329 				 */
5330 				ASSERT(pml);
5331 				sfmmu_mlist_exit(pml);
5332 				continue;
5333 			}
5334 
5335 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5336 
5337 			ttemod = tte;
5338 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
5339 #if defined(SF_ERRATA_57)
5340 			if (check_exec && addr < errata57_limit)
5341 				ttemod.tte_exec_perm = 0;
5342 #endif
5343 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5344 			    &sfhmep->hme_tte);
5345 
5346 			if (ret < 0) {
5347 				/* tte changed underneath us */
5348 				if (pml) {
5349 					sfmmu_mlist_exit(pml);
5350 				}
5351 				continue;
5352 			}
5353 
5354 			if (tteflags & TTE_HWWR_INT) {
5355 				/*
5356 				 * need to sync if we are clearing modify bit.
5357 				 */
5358 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5359 			}
5360 
5361 			if (pp && PP_ISRO(pp)) {
5362 				if (pprot & TTE_WRPRM_INT) {
5363 					pmtx = sfmmu_page_enter(pp);
5364 					PP_CLRRO(pp);
5365 					sfmmu_page_exit(pmtx);
5366 				}
5367 			}
5368 
5369 			if (ret > 0 && use_demap_range) {
5370 				DEMAP_RANGE_MARKPG(dmrp, addr);
5371 			} else if (ret > 0) {
5372 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5373 			}
5374 
5375 			if (pml) {
5376 				sfmmu_mlist_exit(pml);
5377 			}
5378 		}
5379 next_addr:
5380 		addr += TTEBYTES(ttesz);
5381 		sfhmep++;
5382 		DEMAP_RANGE_NEXTPG(dmrp);
5383 	}
5384 	return (addr);
5385 }
5386 
5387 /*
5388  * This routine is deprecated and should only be used by hat_chgprot.
5389  * The correct routine is sfmmu_vtop_attr.
5390  * This routine converts virtual page protections to physical ones.  It will
5391  * update the tteflags field with the tte mask corresponding to the protections
5392  * affected and it returns the new protections.  It will also clear the modify
5393  * bit if we are taking away write permission.  This is necessary since the
5394  * modify bit is the hardware permission bit and we need to clear it in order
5395  * to detect write faults.
5396  * It accepts the following special protections:
5397  * ~PROT_WRITE = remove write permissions.
5398  * ~PROT_USER = remove user permissions.
5399  */
5400 static uint_t
5401 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
5402 {
5403 	if (vprot == (uint_t)~PROT_WRITE) {
5404 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
5405 		return (0);		/* will cause wrprm to be cleared */
5406 	}
5407 	if (vprot == (uint_t)~PROT_USER) {
5408 		*tteflagsp = TTE_PRIV_INT;
5409 		return (0);		/* will cause privprm to be cleared */
5410 	}
5411 	if ((vprot == 0) || (vprot == PROT_USER) ||
5412 	    ((vprot & PROT_ALL) != vprot)) {
5413 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5414 	}
5415 
5416 	switch (vprot) {
5417 	case (PROT_READ):
5418 	case (PROT_EXEC):
5419 	case (PROT_EXEC | PROT_READ):
5420 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5421 		return (TTE_PRIV_INT);		/* set prv and clr wrt */
5422 	case (PROT_WRITE):
5423 	case (PROT_WRITE | PROT_READ):
5424 	case (PROT_EXEC | PROT_WRITE):
5425 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
5426 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5427 		return (TTE_PRIV_INT | TTE_WRPRM_INT);	/* set prv and wrt */
5428 	case (PROT_USER | PROT_READ):
5429 	case (PROT_USER | PROT_EXEC):
5430 	case (PROT_USER | PROT_EXEC | PROT_READ):
5431 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5432 		return (0);			/* clr prv and wrt */
5433 	case (PROT_USER | PROT_WRITE):
5434 	case (PROT_USER | PROT_WRITE | PROT_READ):
5435 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
5436 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
5437 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5438 		return (TTE_WRPRM_INT);		/* clr prv and set wrt */
5439 	default:
5440 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5441 	}
5442 	return (0);
5443 }
5444 
5445 /*
5446  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
5447  * the normal algorithm would take too long for a very large VA range with
5448  * few real mappings. This routine just walks thru all HMEs in the global
5449  * hash table to find and remove mappings.
5450  */
5451 static void
5452 hat_unload_large_virtual(struct hat *sfmmup, caddr_t startaddr, size_t len,
5453     uint_t flags, hat_callback_t *callback)
5454 {
5455 	struct hmehash_bucket *hmebp;
5456 	struct hme_blk *hmeblkp;
5457 	struct hme_blk *pr_hblk = NULL;
5458 	struct hme_blk *nx_hblk;
5459 	struct hme_blk *list = NULL;
5460 	int i;
5461 	demap_range_t dmr, *dmrp;
5462 	cpuset_t cpuset;
5463 	caddr_t	endaddr = startaddr + len;
5464 	caddr_t	sa;
5465 	caddr_t	ea;
5466 	caddr_t	cb_sa[MAX_CB_ADDR];
5467 	caddr_t	cb_ea[MAX_CB_ADDR];
5468 	int	addr_cnt = 0;
5469 	int	a = 0;
5470 
5471 	if (sfmmup->sfmmu_free) {
5472 		dmrp = NULL;
5473 	} else {
5474 		dmrp = &dmr;
5475 		DEMAP_RANGE_INIT(sfmmup, dmrp);
5476 	}
5477 
5478 	/*
5479 	 * Loop through all the hash buckets of HME blocks looking for matches.
5480 	 */
5481 	for (i = 0; i <= UHMEHASH_SZ; i++) {
5482 		hmebp = &uhme_hash[i];
5483 		SFMMU_HASH_LOCK(hmebp);
5484 		hmeblkp = hmebp->hmeblkp;
5485 		pr_hblk = NULL;
5486 		while (hmeblkp) {
5487 			nx_hblk = hmeblkp->hblk_next;
5488 
5489 			/*
5490 			 * skip if not this context, if a shadow block or
5491 			 * if the mapping is not in the requested range
5492 			 */
5493 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
5494 			    hmeblkp->hblk_shw_bit ||
5495 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
5496 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
5497 				pr_hblk = hmeblkp;
5498 				goto next_block;
5499 			}
5500 
5501 			ASSERT(!hmeblkp->hblk_shared);
5502 			/*
5503 			 * unload if there are any current valid mappings
5504 			 */
5505 			if (hmeblkp->hblk_vcnt != 0 ||
5506 			    hmeblkp->hblk_hmecnt != 0)
5507 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
5508 				    sa, ea, dmrp, flags);
5509 
5510 			/*
5511 			 * on unmap we also release the HME block itself, once
5512 			 * all mappings are gone.
5513 			 */
5514 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
5515 			    !hmeblkp->hblk_vcnt &&
5516 			    !hmeblkp->hblk_hmecnt) {
5517 				ASSERT(!hmeblkp->hblk_lckcnt);
5518 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5519 				    &list, 0);
5520 			} else {
5521 				pr_hblk = hmeblkp;
5522 			}
5523 
5524 			if (callback == NULL)
5525 				goto next_block;
5526 
5527 			/*
5528 			 * HME blocks may span more than one page, but we may be
5529 			 * unmapping only one page, so check for a smaller range
5530 			 * for the callback
5531 			 */
5532 			if (sa < startaddr)
5533 				sa = startaddr;
5534 			if (--ea > endaddr)
5535 				ea = endaddr - 1;
5536 
5537 			cb_sa[addr_cnt] = sa;
5538 			cb_ea[addr_cnt] = ea;
5539 			if (++addr_cnt == MAX_CB_ADDR) {
5540 				if (dmrp != NULL) {
5541 					DEMAP_RANGE_FLUSH(dmrp);
5542 					cpuset = sfmmup->sfmmu_cpusran;
5543 					xt_sync(cpuset);
5544 				}
5545 
5546 				for (a = 0; a < MAX_CB_ADDR; ++a) {
5547 					callback->hcb_start_addr = cb_sa[a];
5548 					callback->hcb_end_addr = cb_ea[a];
5549 					callback->hcb_function(callback);
5550 				}
5551 				addr_cnt = 0;
5552 			}
5553 
5554 next_block:
5555 			hmeblkp = nx_hblk;
5556 		}
5557 		SFMMU_HASH_UNLOCK(hmebp);
5558 	}
5559 
5560 	sfmmu_hblks_list_purge(&list, 0);
5561 	if (dmrp != NULL) {
5562 		DEMAP_RANGE_FLUSH(dmrp);
5563 		cpuset = sfmmup->sfmmu_cpusran;
5564 		xt_sync(cpuset);
5565 	}
5566 
5567 	for (a = 0; a < addr_cnt; ++a) {
5568 		callback->hcb_start_addr = cb_sa[a];
5569 		callback->hcb_end_addr = cb_ea[a];
5570 		callback->hcb_function(callback);
5571 	}
5572 
5573 	/*
5574 	 * Check TSB and TLB page sizes if the process isn't exiting.
5575 	 */
5576 	if (!sfmmup->sfmmu_free)
5577 		sfmmu_check_page_sizes(sfmmup, 0);
5578 }
5579 
5580 /*
5581  * Unload all the mappings in the range [addr..addr+len). addr and len must
5582  * be MMU_PAGESIZE aligned.
5583  */
5584 
5585 extern struct seg *segkmap;
5586 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
5587 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
5588 
5589 
5590 void
5591 hat_unload_callback(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags,
5592     hat_callback_t *callback)
5593 {
5594 	struct hmehash_bucket *hmebp;
5595 	hmeblk_tag hblktag;
5596 	int hmeshift, hashno, iskernel;
5597 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
5598 	caddr_t endaddr;
5599 	cpuset_t cpuset;
5600 	int addr_count = 0;
5601 	int a;
5602 	caddr_t cb_start_addr[MAX_CB_ADDR];
5603 	caddr_t cb_end_addr[MAX_CB_ADDR];
5604 	int issegkmap = ISSEGKMAP(sfmmup, addr);
5605 	demap_range_t dmr, *dmrp;
5606 
5607 	ASSERT(sfmmup->sfmmu_as != NULL);
5608 
5609 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
5610 	    AS_LOCK_HELD(sfmmup->sfmmu_as));
5611 
5612 	ASSERT(sfmmup != NULL);
5613 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5614 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5615 
5616 	/*
5617 	 * Probing through a large VA range (say 63 bits) will be slow, even
5618 	 * at 4 Meg steps between the probes. So, when the virtual address range
5619 	 * is very large, search the HME entries for what to unload.
5620 	 *
5621 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5622 	 *
5623 	 *	UHMEHASH_SZ is number of hash buckets to examine
5624 	 *
5625 	 */
5626 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5627 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5628 		return;
5629 	}
5630 
5631 	CPUSET_ZERO(cpuset);
5632 
5633 	/*
5634 	 * If the process is exiting, we can save a lot of fuss since
5635 	 * we'll flush the TLB when we free the ctx anyway.
5636 	 */
5637 	if (sfmmup->sfmmu_free) {
5638 		dmrp = NULL;
5639 	} else {
5640 		dmrp = &dmr;
5641 		DEMAP_RANGE_INIT(sfmmup, dmrp);
5642 	}
5643 
5644 	endaddr = addr + len;
5645 	hblktag.htag_id = sfmmup;
5646 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5647 
5648 	/*
5649 	 * It is likely for the vm to call unload over a wide range of
5650 	 * addresses that are actually very sparsely populated by
5651 	 * translations.  In order to speed this up the sfmmu hat supports
5652 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
5653 	 * correspond to actual small translations are allocated at tteload
5654 	 * time and are referred to as shadow hmeblks.  Now, during unload
5655 	 * time, we first check if we have a shadow hmeblk for that
5656 	 * translation.  The absence of one means the corresponding address
5657 	 * range is empty and can be skipped.
5658 	 *
5659 	 * The kernel is an exception to above statement and that is why
5660 	 * we don't use shadow hmeblks and hash starting from the smallest
5661 	 * page size.
5662 	 */
5663 	if (sfmmup == KHATID) {
5664 		iskernel = 1;
5665 		hashno = TTE64K;
5666 	} else {
5667 		iskernel = 0;
5668 		if (mmu_page_sizes == max_mmu_page_sizes) {
5669 			hashno = TTE256M;
5670 		} else {
5671 			hashno = TTE4M;
5672 		}
5673 	}
5674 	while (addr < endaddr) {
5675 		hmeshift = HME_HASH_SHIFT(hashno);
5676 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5677 		hblktag.htag_rehash = hashno;
5678 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5679 
5680 		SFMMU_HASH_LOCK(hmebp);
5681 
5682 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
5683 		if (hmeblkp == NULL) {
5684 			/*
5685 			 * didn't find an hmeblk. skip the appropiate
5686 			 * address range.
5687 			 */
5688 			SFMMU_HASH_UNLOCK(hmebp);
5689 			if (iskernel) {
5690 				if (hashno < mmu_hashcnt) {
5691 					hashno++;
5692 					continue;
5693 				} else {
5694 					hashno = TTE64K;
5695 					addr = (caddr_t)roundup((uintptr_t)addr
5696 					    + 1, MMU_PAGESIZE64K);
5697 					continue;
5698 				}
5699 			}
5700 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5701 			    (1 << hmeshift));
5702 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5703 				ASSERT(hashno == TTE64K);
5704 				continue;
5705 			}
5706 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5707 				hashno = TTE512K;
5708 				continue;
5709 			}
5710 			if (mmu_page_sizes == max_mmu_page_sizes) {
5711 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5712 					hashno = TTE4M;
5713 					continue;
5714 				}
5715 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5716 					hashno = TTE32M;
5717 					continue;
5718 				}
5719 				hashno = TTE256M;
5720 				continue;
5721 			} else {
5722 				hashno = TTE4M;
5723 				continue;
5724 			}
5725 		}
5726 		ASSERT(hmeblkp);
5727 		ASSERT(!hmeblkp->hblk_shared);
5728 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5729 			/*
5730 			 * If the valid count is zero we can skip the range
5731 			 * mapped by this hmeblk.
5732 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5733 			 * is used by segment drivers as a hint
5734 			 * that the mapping resource won't be used any longer.
5735 			 * The best example of this is during exit().
5736 			 */
5737 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5738 			    get_hblk_span(hmeblkp));
5739 			if ((flags & HAT_UNLOAD_UNMAP) ||
5740 			    (iskernel && !issegkmap)) {
5741 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5742 				    &list, 0);
5743 			}
5744 			SFMMU_HASH_UNLOCK(hmebp);
5745 
5746 			if (iskernel) {
5747 				hashno = TTE64K;
5748 				continue;
5749 			}
5750 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5751 				ASSERT(hashno == TTE64K);
5752 				continue;
5753 			}
5754 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5755 				hashno = TTE512K;
5756 				continue;
5757 			}
5758 			if (mmu_page_sizes == max_mmu_page_sizes) {
5759 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5760 					hashno = TTE4M;
5761 					continue;
5762 				}
5763 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5764 					hashno = TTE32M;
5765 					continue;
5766 				}
5767 				hashno = TTE256M;
5768 				continue;
5769 			} else {
5770 				hashno = TTE4M;
5771 				continue;
5772 			}
5773 		}
5774 		if (hmeblkp->hblk_shw_bit) {
5775 			/*
5776 			 * If we encounter a shadow hmeblk we know there is
5777 			 * smaller sized hmeblks mapping the same address space.
5778 			 * Decrement the hash size and rehash.
5779 			 */
5780 			ASSERT(sfmmup != KHATID);
5781 			hashno--;
5782 			SFMMU_HASH_UNLOCK(hmebp);
5783 			continue;
5784 		}
5785 
5786 		/*
5787 		 * track callback address ranges.
5788 		 * only start a new range when it's not contiguous
5789 		 */
5790 		if (callback != NULL) {
5791 			if (addr_count > 0 &&
5792 			    addr == cb_end_addr[addr_count - 1])
5793 				--addr_count;
5794 			else
5795 				cb_start_addr[addr_count] = addr;
5796 		}
5797 
5798 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5799 		    dmrp, flags);
5800 
5801 		if (callback != NULL)
5802 			cb_end_addr[addr_count++] = addr;
5803 
5804 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5805 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5806 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 0);
5807 		}
5808 		SFMMU_HASH_UNLOCK(hmebp);
5809 
5810 		/*
5811 		 * Notify our caller as to exactly which pages
5812 		 * have been unloaded. We do these in clumps,
5813 		 * to minimize the number of xt_sync()s that need to occur.
5814 		 */
5815 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5816 			if (dmrp != NULL) {
5817 				DEMAP_RANGE_FLUSH(dmrp);
5818 				cpuset = sfmmup->sfmmu_cpusran;
5819 				xt_sync(cpuset);
5820 			}
5821 
5822 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5823 				callback->hcb_start_addr = cb_start_addr[a];
5824 				callback->hcb_end_addr = cb_end_addr[a];
5825 				callback->hcb_function(callback);
5826 			}
5827 			addr_count = 0;
5828 		}
5829 		if (iskernel) {
5830 			hashno = TTE64K;
5831 			continue;
5832 		}
5833 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5834 			ASSERT(hashno == TTE64K);
5835 			continue;
5836 		}
5837 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5838 			hashno = TTE512K;
5839 			continue;
5840 		}
5841 		if (mmu_page_sizes == max_mmu_page_sizes) {
5842 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5843 				hashno = TTE4M;
5844 				continue;
5845 			}
5846 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5847 				hashno = TTE32M;
5848 				continue;
5849 			}
5850 			hashno = TTE256M;
5851 		} else {
5852 			hashno = TTE4M;
5853 		}
5854 	}
5855 
5856 	sfmmu_hblks_list_purge(&list, 0);
5857 	if (dmrp != NULL) {
5858 		DEMAP_RANGE_FLUSH(dmrp);
5859 		cpuset = sfmmup->sfmmu_cpusran;
5860 		xt_sync(cpuset);
5861 	}
5862 	if (callback && addr_count != 0) {
5863 		for (a = 0; a < addr_count; ++a) {
5864 			callback->hcb_start_addr = cb_start_addr[a];
5865 			callback->hcb_end_addr = cb_end_addr[a];
5866 			callback->hcb_function(callback);
5867 		}
5868 	}
5869 
5870 	/*
5871 	 * Check TSB and TLB page sizes if the process isn't exiting.
5872 	 */
5873 	if (!sfmmup->sfmmu_free)
5874 		sfmmu_check_page_sizes(sfmmup, 0);
5875 }
5876 
5877 /*
5878  * Unload all the mappings in the range [addr..addr+len). addr and len must
5879  * be MMU_PAGESIZE aligned.
5880  */
5881 void
5882 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5883 {
5884 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5885 }
5886 
5887 
5888 /*
5889  * Find the largest mapping size for this page.
5890  */
5891 int
5892 fnd_mapping_sz(page_t *pp)
5893 {
5894 	int sz;
5895 	int p_index;
5896 
5897 	p_index = PP_MAPINDEX(pp);
5898 
5899 	sz = 0;
5900 	p_index >>= 1;	/* don't care about 8K bit */
5901 	for (; p_index; p_index >>= 1) {
5902 		sz++;
5903 	}
5904 
5905 	return (sz);
5906 }
5907 
5908 /*
5909  * This function unloads a range of addresses for an hmeblk.
5910  * It returns the next address to be unloaded.
5911  * It should be called with the hash lock held.
5912  */
5913 static caddr_t
5914 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5915     caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5916 {
5917 	tte_t	tte, ttemod;
5918 	struct	sf_hment *sfhmep;
5919 	int	ttesz;
5920 	long	ttecnt;
5921 	page_t *pp;
5922 	kmutex_t *pml;
5923 	int ret;
5924 	int use_demap_range;
5925 
5926 	ASSERT(in_hblk_range(hmeblkp, addr));
5927 	ASSERT(!hmeblkp->hblk_shw_bit);
5928 	ASSERT(sfmmup != NULL || hmeblkp->hblk_shared);
5929 	ASSERT(sfmmup == NULL || !hmeblkp->hblk_shared);
5930 	ASSERT(dmrp == NULL || !hmeblkp->hblk_shared);
5931 
5932 #ifdef DEBUG
5933 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5934 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5935 		panic("sfmmu_hblk_unload: partial unload of large page");
5936 	}
5937 #endif /* DEBUG */
5938 
5939 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5940 	ttesz = get_hblk_ttesz(hmeblkp);
5941 
5942 	use_demap_range = ((dmrp == NULL) ||
5943 	    (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5944 
5945 	if (use_demap_range) {
5946 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5947 	} else if (dmrp != NULL) {
5948 		DEMAP_RANGE_FLUSH(dmrp);
5949 	}
5950 	ttecnt = 0;
5951 	HBLKTOHME(sfhmep, hmeblkp, addr);
5952 
5953 	while (addr < endaddr) {
5954 		pml = NULL;
5955 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5956 		if (TTE_IS_VALID(&tte)) {
5957 			pp = sfhmep->hme_page;
5958 			if (pp != NULL) {
5959 				pml = sfmmu_mlist_enter(pp);
5960 			}
5961 
5962 			/*
5963 			 * Verify if hme still points to 'pp' now that
5964 			 * we have p_mapping lock.
5965 			 */
5966 			if (sfhmep->hme_page != pp) {
5967 				if (pp != NULL && sfhmep->hme_page != NULL) {
5968 					ASSERT(pml != NULL);
5969 					sfmmu_mlist_exit(pml);
5970 					/* Re-start this iteration. */
5971 					continue;
5972 				}
5973 				ASSERT((pp != NULL) &&
5974 				    (sfhmep->hme_page == NULL));
5975 				goto tte_unloaded;
5976 			}
5977 
5978 			/*
5979 			 * This point on we have both HASH and p_mapping
5980 			 * lock.
5981 			 */
5982 			ASSERT(pp == sfhmep->hme_page);
5983 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5984 
5985 			/*
5986 			 * We need to loop on modify tte because it is
5987 			 * possible for pagesync to come along and
5988 			 * change the software bits beneath us.
5989 			 *
5990 			 * Page_unload can also invalidate the tte after
5991 			 * we read tte outside of p_mapping lock.
5992 			 */
5993 again:
5994 			ttemod = tte;
5995 
5996 			TTE_SET_INVALID(&ttemod);
5997 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5998 			    &sfhmep->hme_tte);
5999 
6000 			if (ret <= 0) {
6001 				if (TTE_IS_VALID(&tte)) {
6002 					ASSERT(ret < 0);
6003 					goto again;
6004 				}
6005 				if (pp != NULL) {
6006 					panic("sfmmu_hblk_unload: pp = 0x%p "
6007 					    "tte became invalid under mlist"
6008 					    " lock = 0x%p", (void *)pp,
6009 					    (void *)pml);
6010 				}
6011 				continue;
6012 			}
6013 
6014 			if (!(flags & HAT_UNLOAD_NOSYNC)) {
6015 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
6016 			}
6017 
6018 			/*
6019 			 * Ok- we invalidated the tte. Do the rest of the job.
6020 			 */
6021 			ttecnt++;
6022 
6023 			if (flags & HAT_UNLOAD_UNLOCK) {
6024 				ASSERT(hmeblkp->hblk_lckcnt > 0);
6025 				atomic_dec_32(&hmeblkp->hblk_lckcnt);
6026 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
6027 			}
6028 
6029 			/*
6030 			 * Normally we would need to flush the page
6031 			 * from the virtual cache at this point in
6032 			 * order to prevent a potential cache alias
6033 			 * inconsistency.
6034 			 * The particular scenario we need to worry
6035 			 * about is:
6036 			 * Given:  va1 and va2 are two virtual address
6037 			 * that alias and map the same physical
6038 			 * address.
6039 			 * 1.   mapping exists from va1 to pa and data
6040 			 * has been read into the cache.
6041 			 * 2.   unload va1.
6042 			 * 3.   load va2 and modify data using va2.
6043 			 * 4    unload va2.
6044 			 * 5.   load va1 and reference data.  Unless we
6045 			 * flush the data cache when we unload we will
6046 			 * get stale data.
6047 			 * Fortunately, page coloring eliminates the
6048 			 * above scenario by remembering the color a
6049 			 * physical page was last or is currently
6050 			 * mapped to.  Now, we delay the flush until
6051 			 * the loading of translations.  Only when the
6052 			 * new translation is of a different color
6053 			 * are we forced to flush.
6054 			 */
6055 			if (use_demap_range) {
6056 				/*
6057 				 * Mark this page as needing a demap.
6058 				 */
6059 				DEMAP_RANGE_MARKPG(dmrp, addr);
6060 			} else {
6061 				ASSERT(sfmmup != NULL);
6062 				ASSERT(!hmeblkp->hblk_shared);
6063 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
6064 				    sfmmup->sfmmu_free, 0);
6065 			}
6066 
6067 			if (pp) {
6068 				/*
6069 				 * Remove the hment from the mapping list
6070 				 */
6071 				ASSERT(hmeblkp->hblk_hmecnt > 0);
6072 
6073 				/*
6074 				 * Again, we cannot
6075 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
6076 				 */
6077 				HME_SUB(sfhmep, pp);
6078 				membar_stst();
6079 				atomic_dec_16(&hmeblkp->hblk_hmecnt);
6080 			}
6081 
6082 			ASSERT(hmeblkp->hblk_vcnt > 0);
6083 			atomic_dec_16(&hmeblkp->hblk_vcnt);
6084 
6085 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6086 			    !hmeblkp->hblk_lckcnt);
6087 
6088 #ifdef VAC
6089 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
6090 				if (PP_ISTNC(pp)) {
6091 					/*
6092 					 * If page was temporary
6093 					 * uncached, try to recache
6094 					 * it. Note that HME_SUB() was
6095 					 * called above so p_index and
6096 					 * mlist had been updated.
6097 					 */
6098 					conv_tnc(pp, ttesz);
6099 				} else if (pp->p_mapping == NULL) {
6100 					ASSERT(kpm_enable);
6101 					/*
6102 					 * Page is marked to be in VAC conflict
6103 					 * to an existing kpm mapping and/or is
6104 					 * kpm mapped using only the regular
6105 					 * pagesize.
6106 					 */
6107 					sfmmu_kpm_hme_unload(pp);
6108 				}
6109 			}
6110 #endif	/* VAC */
6111 		} else if ((pp = sfhmep->hme_page) != NULL) {
6112 				/*
6113 				 * TTE is invalid but the hme
6114 				 * still exists. let pageunload
6115 				 * complete its job.
6116 				 */
6117 				ASSERT(pml == NULL);
6118 				pml = sfmmu_mlist_enter(pp);
6119 				if (sfhmep->hme_page != NULL) {
6120 					sfmmu_mlist_exit(pml);
6121 					continue;
6122 				}
6123 				ASSERT(sfhmep->hme_page == NULL);
6124 		} else if (hmeblkp->hblk_hmecnt != 0) {
6125 			/*
6126 			 * pageunload may have not finished decrementing
6127 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
6128 			 * wait for pageunload to finish. Rely on pageunload
6129 			 * to decrement hblk_hmecnt after hblk_vcnt.
6130 			 */
6131 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
6132 			ASSERT(pml == NULL);
6133 			if (pf_is_memory(pfn)) {
6134 				pp = page_numtopp_nolock(pfn);
6135 				if (pp != NULL) {
6136 					pml = sfmmu_mlist_enter(pp);
6137 					sfmmu_mlist_exit(pml);
6138 					pml = NULL;
6139 				}
6140 			}
6141 		}
6142 
6143 tte_unloaded:
6144 		/*
6145 		 * At this point, the tte we are looking at
6146 		 * should be unloaded, and hme has been unlinked
6147 		 * from page too. This is important because in
6148 		 * pageunload, it does ttesync() then HME_SUB.
6149 		 * We need to make sure HME_SUB has been completed
6150 		 * so we know ttesync() has been completed. Otherwise,
6151 		 * at exit time, after return from hat layer, VM will
6152 		 * release as structure which hat_setstat() (called
6153 		 * by ttesync()) needs.
6154 		 */
6155 #ifdef DEBUG
6156 		{
6157 			tte_t	dtte;
6158 
6159 			ASSERT(sfhmep->hme_page == NULL);
6160 
6161 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
6162 			ASSERT(!TTE_IS_VALID(&dtte));
6163 		}
6164 #endif
6165 
6166 		if (pml) {
6167 			sfmmu_mlist_exit(pml);
6168 		}
6169 
6170 		addr += TTEBYTES(ttesz);
6171 		sfhmep++;
6172 		DEMAP_RANGE_NEXTPG(dmrp);
6173 	}
6174 	/*
6175 	 * For shared hmeblks this routine is only called when region is freed
6176 	 * and no longer referenced.  So no need to decrement ttecnt
6177 	 * in the region structure here.
6178 	 */
6179 	if (ttecnt > 0 && sfmmup != NULL) {
6180 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
6181 	}
6182 	return (addr);
6183 }
6184 
6185 /*
6186  * Invalidate a virtual address range for the local CPU.
6187  * For best performance ensure that the va range is completely
6188  * mapped, otherwise the entire TLB will be flushed.
6189  */
6190 void
6191 hat_flush_range(struct hat *sfmmup, caddr_t va, size_t size)
6192 {
6193 	ssize_t sz;
6194 	caddr_t endva = va + size;
6195 
6196 	while (va < endva) {
6197 		sz = hat_getpagesize(sfmmup, va);
6198 		if (sz < 0) {
6199 			vtag_flushall();
6200 			break;
6201 		}
6202 		vtag_flushpage(va, (uint64_t)sfmmup);
6203 		va += sz;
6204 	}
6205 }
6206 
6207 /*
6208  * Synchronize all the mappings in the range [addr..addr+len).
6209  * Can be called with clearflag having two states:
6210  * HAT_SYNC_DONTZERO means just return the rm stats
6211  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
6212  */
6213 void
6214 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
6215 {
6216 	struct hmehash_bucket *hmebp;
6217 	hmeblk_tag hblktag;
6218 	int hmeshift, hashno = 1;
6219 	struct hme_blk *hmeblkp, *list = NULL;
6220 	caddr_t endaddr;
6221 	cpuset_t cpuset;
6222 
6223 	ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
6224 	ASSERT((len & MMU_PAGEOFFSET) == 0);
6225 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6226 	    (clearflag == HAT_SYNC_ZERORM));
6227 
6228 	CPUSET_ZERO(cpuset);
6229 
6230 	endaddr = addr + len;
6231 	hblktag.htag_id = sfmmup;
6232 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
6233 
6234 	/*
6235 	 * Spitfire supports 4 page sizes.
6236 	 * Most pages are expected to be of the smallest page
6237 	 * size (8K) and these will not need to be rehashed. 64K
6238 	 * pages also don't need to be rehashed because the an hmeblk
6239 	 * spans 64K of address space. 512K pages might need 1 rehash and
6240 	 * and 4M pages 2 rehashes.
6241 	 */
6242 	while (addr < endaddr) {
6243 		hmeshift = HME_HASH_SHIFT(hashno);
6244 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
6245 		hblktag.htag_rehash = hashno;
6246 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
6247 
6248 		SFMMU_HASH_LOCK(hmebp);
6249 
6250 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
6251 		if (hmeblkp != NULL) {
6252 			ASSERT(!hmeblkp->hblk_shared);
6253 			/*
6254 			 * We've encountered a shadow hmeblk so skip the range
6255 			 * of the next smaller mapping size.
6256 			 */
6257 			if (hmeblkp->hblk_shw_bit) {
6258 				ASSERT(sfmmup != ksfmmup);
6259 				ASSERT(hashno > 1);
6260 				addr = (caddr_t)P2END((uintptr_t)addr,
6261 				    TTEBYTES(hashno - 1));
6262 			} else {
6263 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
6264 				    addr, endaddr, clearflag);
6265 			}
6266 			SFMMU_HASH_UNLOCK(hmebp);
6267 			hashno = 1;
6268 			continue;
6269 		}
6270 		SFMMU_HASH_UNLOCK(hmebp);
6271 
6272 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
6273 			/*
6274 			 * We have traversed the whole list and rehashed
6275 			 * if necessary without finding the address to sync.
6276 			 * This is ok so we increment the address by the
6277 			 * smallest hmeblk range for kernel mappings and the
6278 			 * largest hmeblk range, to account for shadow hmeblks,
6279 			 * for user mappings and continue.
6280 			 */
6281 			if (sfmmup == ksfmmup)
6282 				addr = (caddr_t)P2END((uintptr_t)addr,
6283 				    TTEBYTES(1));
6284 			else
6285 				addr = (caddr_t)P2END((uintptr_t)addr,
6286 				    TTEBYTES(hashno));
6287 			hashno = 1;
6288 		} else {
6289 			hashno++;
6290 		}
6291 	}
6292 	sfmmu_hblks_list_purge(&list, 0);
6293 	cpuset = sfmmup->sfmmu_cpusran;
6294 	xt_sync(cpuset);
6295 }
6296 
6297 static caddr_t
6298 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
6299     caddr_t endaddr, int clearflag)
6300 {
6301 	tte_t	tte, ttemod;
6302 	struct sf_hment *sfhmep;
6303 	int ttesz;
6304 	struct page *pp;
6305 	kmutex_t *pml;
6306 	int ret;
6307 
6308 	ASSERT(hmeblkp->hblk_shw_bit == 0);
6309 	ASSERT(!hmeblkp->hblk_shared);
6310 
6311 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6312 
6313 	ttesz = get_hblk_ttesz(hmeblkp);
6314 	HBLKTOHME(sfhmep, hmeblkp, addr);
6315 
6316 	while (addr < endaddr) {
6317 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6318 		if (TTE_IS_VALID(&tte)) {
6319 			pml = NULL;
6320 			pp = sfhmep->hme_page;
6321 			if (pp) {
6322 				pml = sfmmu_mlist_enter(pp);
6323 			}
6324 			if (pp != sfhmep->hme_page) {
6325 				/*
6326 				 * tte most have been unloaded
6327 				 * underneath us.  Recheck
6328 				 */
6329 				ASSERT(pml);
6330 				sfmmu_mlist_exit(pml);
6331 				continue;
6332 			}
6333 
6334 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6335 
6336 			if (clearflag == HAT_SYNC_ZERORM) {
6337 				ttemod = tte;
6338 				TTE_CLR_RM(&ttemod);
6339 				ret = sfmmu_modifytte_try(&tte, &ttemod,
6340 				    &sfhmep->hme_tte);
6341 				if (ret < 0) {
6342 					if (pml) {
6343 						sfmmu_mlist_exit(pml);
6344 					}
6345 					continue;
6346 				}
6347 
6348 				if (ret > 0) {
6349 					sfmmu_tlb_demap(addr, sfmmup,
6350 					    hmeblkp, 0, 0);
6351 				}
6352 			}
6353 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
6354 			if (pml) {
6355 				sfmmu_mlist_exit(pml);
6356 			}
6357 		}
6358 		addr += TTEBYTES(ttesz);
6359 		sfhmep++;
6360 	}
6361 	return (addr);
6362 }
6363 
6364 /*
6365  * This function will sync a tte to the page struct and it will
6366  * update the hat stats. Currently it allows us to pass a NULL pp
6367  * and we will simply update the stats.  We may want to change this
6368  * so we only keep stats for pages backed by pp's.
6369  */
6370 static void
6371 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
6372 {
6373 	uint_t rm = 0;
6374 	int	sz;
6375 	pgcnt_t	npgs;
6376 
6377 	ASSERT(TTE_IS_VALID(ttep));
6378 
6379 	if (TTE_IS_NOSYNC(ttep)) {
6380 		return;
6381 	}
6382 
6383 	if (TTE_IS_REF(ttep))  {
6384 		rm = P_REF;
6385 	}
6386 	if (TTE_IS_MOD(ttep))  {
6387 		rm |= P_MOD;
6388 	}
6389 
6390 	if (rm == 0) {
6391 		return;
6392 	}
6393 
6394 	sz = TTE_CSZ(ttep);
6395 	if (sfmmup != NULL && sfmmup->sfmmu_rmstat) {
6396 		int i;
6397 		caddr_t	vaddr = addr;
6398 
6399 		for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
6400 			hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
6401 		}
6402 
6403 	}
6404 
6405 	/*
6406 	 * XXX I want to use cas to update nrm bits but they
6407 	 * currently belong in common/vm and not in hat where
6408 	 * they should be.
6409 	 * The nrm bits are protected by the same mutex as
6410 	 * the one that protects the page's mapping list.
6411 	 */
6412 	if (!pp)
6413 		return;
6414 	ASSERT(sfmmu_mlist_held(pp));
6415 	/*
6416 	 * If the tte is for a large page, we need to sync all the
6417 	 * pages covered by the tte.
6418 	 */
6419 	if (sz != TTE8K) {
6420 		ASSERT(pp->p_szc != 0);
6421 		pp = PP_GROUPLEADER(pp, sz);
6422 		ASSERT(sfmmu_mlist_held(pp));
6423 	}
6424 
6425 	/* Get number of pages from tte size. */
6426 	npgs = TTEPAGES(sz);
6427 
6428 	do {
6429 		ASSERT(pp);
6430 		ASSERT(sfmmu_mlist_held(pp));
6431 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
6432 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
6433 			hat_page_setattr(pp, rm);
6434 
6435 		/*
6436 		 * Are we done? If not, we must have a large mapping.
6437 		 * For large mappings we need to sync the rest of the pages
6438 		 * covered by this tte; goto the next page.
6439 		 */
6440 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
6441 }
6442 
6443 /*
6444  * Execute pre-callback handler of each pa_hment linked to pp
6445  *
6446  * Inputs:
6447  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
6448  *   capture_cpus: pointer to return value (below)
6449  *
6450  * Returns:
6451  *   Propagates the subsystem callback return values back to the caller;
6452  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
6453  *   is zero if all of the pa_hments are of a type that do not require
6454  *   capturing CPUs prior to suspending the mapping, else it is 1.
6455  */
6456 static int
6457 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
6458 {
6459 	struct sf_hment	*sfhmep;
6460 	struct pa_hment *pahmep;
6461 	int (*f)(caddr_t, uint_t, uint_t, void *);
6462 	int		ret;
6463 	id_t		id;
6464 	int		locked = 0;
6465 	kmutex_t	*pml;
6466 
6467 	ASSERT(PAGE_EXCL(pp));
6468 	if (!sfmmu_mlist_held(pp)) {
6469 		pml = sfmmu_mlist_enter(pp);
6470 		locked = 1;
6471 	}
6472 
6473 	if (capture_cpus)
6474 		*capture_cpus = 0;
6475 
6476 top:
6477 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6478 		/*
6479 		 * skip sf_hments corresponding to VA<->PA mappings;
6480 		 * for pa_hment's, hme_tte.ll is zero
6481 		 */
6482 		if (!IS_PAHME(sfhmep))
6483 			continue;
6484 
6485 		pahmep = sfhmep->hme_data;
6486 		ASSERT(pahmep != NULL);
6487 
6488 		/*
6489 		 * skip if pre-handler has been called earlier in this loop
6490 		 */
6491 		if (pahmep->flags & flag)
6492 			continue;
6493 
6494 		id = pahmep->cb_id;
6495 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6496 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
6497 			*capture_cpus = 1;
6498 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
6499 			pahmep->flags |= flag;
6500 			continue;
6501 		}
6502 
6503 		/*
6504 		 * Drop the mapping list lock to avoid locking order issues.
6505 		 */
6506 		if (locked)
6507 			sfmmu_mlist_exit(pml);
6508 
6509 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
6510 		if (ret != 0)
6511 			return (ret);	/* caller must do the cleanup */
6512 
6513 		if (locked) {
6514 			pml = sfmmu_mlist_enter(pp);
6515 			pahmep->flags |= flag;
6516 			goto top;
6517 		}
6518 
6519 		pahmep->flags |= flag;
6520 	}
6521 
6522 	if (locked)
6523 		sfmmu_mlist_exit(pml);
6524 
6525 	return (0);
6526 }
6527 
6528 /*
6529  * Execute post-callback handler of each pa_hment linked to pp
6530  *
6531  * Same overall assumptions and restrictions apply as for
6532  * hat_pageprocess_precallbacks().
6533  */
6534 static void
6535 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
6536 {
6537 	pfn_t pgpfn = pp->p_pagenum;
6538 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
6539 	pfn_t newpfn;
6540 	struct sf_hment *sfhmep;
6541 	struct pa_hment *pahmep;
6542 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
6543 	id_t	id;
6544 	int	locked = 0;
6545 	kmutex_t *pml;
6546 
6547 	ASSERT(PAGE_EXCL(pp));
6548 	if (!sfmmu_mlist_held(pp)) {
6549 		pml = sfmmu_mlist_enter(pp);
6550 		locked = 1;
6551 	}
6552 
6553 top:
6554 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6555 		/*
6556 		 * skip sf_hments corresponding to VA<->PA mappings;
6557 		 * for pa_hment's, hme_tte.ll is zero
6558 		 */
6559 		if (!IS_PAHME(sfhmep))
6560 			continue;
6561 
6562 		pahmep = sfhmep->hme_data;
6563 		ASSERT(pahmep != NULL);
6564 
6565 		if ((pahmep->flags & flag) == 0)
6566 			continue;
6567 
6568 		pahmep->flags &= ~flag;
6569 
6570 		id = pahmep->cb_id;
6571 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6572 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
6573 			continue;
6574 
6575 		/*
6576 		 * Convert the base page PFN into the constituent PFN
6577 		 * which is needed by the callback handler.
6578 		 */
6579 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
6580 
6581 		/*
6582 		 * Drop the mapping list lock to avoid locking order issues.
6583 		 */
6584 		if (locked)
6585 			sfmmu_mlist_exit(pml);
6586 
6587 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
6588 		    != 0)
6589 			panic("sfmmu: posthandler failed");
6590 
6591 		if (locked) {
6592 			pml = sfmmu_mlist_enter(pp);
6593 			goto top;
6594 		}
6595 	}
6596 
6597 	if (locked)
6598 		sfmmu_mlist_exit(pml);
6599 }
6600 
6601 /*
6602  * Suspend locked kernel mapping
6603  */
6604 void
6605 hat_pagesuspend(struct page *pp)
6606 {
6607 	struct sf_hment *sfhmep;
6608 	sfmmu_t *sfmmup;
6609 	tte_t tte, ttemod;
6610 	struct hme_blk *hmeblkp;
6611 	caddr_t addr;
6612 	int index, cons;
6613 	cpuset_t cpuset;
6614 
6615 	ASSERT(PAGE_EXCL(pp));
6616 	ASSERT(sfmmu_mlist_held(pp));
6617 
6618 	mutex_enter(&kpr_suspendlock);
6619 
6620 	/*
6621 	 * We're about to suspend a kernel mapping so mark this thread as
6622 	 * non-traceable by DTrace. This prevents us from running into issues
6623 	 * with probe context trying to touch a suspended page
6624 	 * in the relocation codepath itself.
6625 	 */
6626 	curthread->t_flag |= T_DONTDTRACE;
6627 
6628 	index = PP_MAPINDEX(pp);
6629 	cons = TTE8K;
6630 
6631 retry:
6632 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6633 
6634 		if (IS_PAHME(sfhmep))
6635 			continue;
6636 
6637 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6638 			continue;
6639 
6640 		/*
6641 		 * Loop until we successfully set the suspend bit in
6642 		 * the TTE.
6643 		 */
6644 again:
6645 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6646 		ASSERT(TTE_IS_VALID(&tte));
6647 
6648 		ttemod = tte;
6649 		TTE_SET_SUSPEND(&ttemod);
6650 		if (sfmmu_modifytte_try(&tte, &ttemod,
6651 		    &sfhmep->hme_tte) < 0)
6652 			goto again;
6653 
6654 		/*
6655 		 * Invalidate TSB entry
6656 		 */
6657 		hmeblkp = sfmmu_hmetohblk(sfhmep);
6658 
6659 		sfmmup = hblktosfmmu(hmeblkp);
6660 		ASSERT(sfmmup == ksfmmup);
6661 		ASSERT(!hmeblkp->hblk_shared);
6662 
6663 		addr = tte_to_vaddr(hmeblkp, tte);
6664 
6665 		/*
6666 		 * No need to make sure that the TSB for this sfmmu is
6667 		 * not being relocated since it is ksfmmup and thus it
6668 		 * will never be relocated.
6669 		 */
6670 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
6671 
6672 		/*
6673 		 * Update xcall stats
6674 		 */
6675 		cpuset = cpu_ready_set;
6676 		CPUSET_DEL(cpuset, CPU->cpu_id);
6677 
6678 		/* LINTED: constant in conditional context */
6679 		SFMMU_XCALL_STATS(ksfmmup);
6680 
6681 		/*
6682 		 * Flush TLB entry on remote CPU's
6683 		 */
6684 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6685 		    (uint64_t)ksfmmup);
6686 		xt_sync(cpuset);
6687 
6688 		/*
6689 		 * Flush TLB entry on local CPU
6690 		 */
6691 		vtag_flushpage(addr, (uint64_t)ksfmmup);
6692 	}
6693 
6694 	while (index != 0) {
6695 		index = index >> 1;
6696 		if (index != 0)
6697 			cons++;
6698 		if (index & 0x1) {
6699 			pp = PP_GROUPLEADER(pp, cons);
6700 			goto retry;
6701 		}
6702 	}
6703 }
6704 
6705 #ifdef	DEBUG
6706 
6707 #define	N_PRLE	1024
6708 struct prle {
6709 	page_t *targ;
6710 	page_t *repl;
6711 	int status;
6712 	int pausecpus;
6713 	hrtime_t whence;
6714 };
6715 
6716 static struct prle page_relocate_log[N_PRLE];
6717 static int prl_entry;
6718 static kmutex_t prl_mutex;
6719 
6720 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6721 	mutex_enter(&prl_mutex);					\
6722 	page_relocate_log[prl_entry].targ = *(t);			\
6723 	page_relocate_log[prl_entry].repl = *(r);			\
6724 	page_relocate_log[prl_entry].status = (s);			\
6725 	page_relocate_log[prl_entry].pausecpus = (p);			\
6726 	page_relocate_log[prl_entry].whence = gethrtime();		\
6727 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6728 	mutex_exit(&prl_mutex);
6729 
6730 #else	/* !DEBUG */
6731 #define	PAGE_RELOCATE_LOG(t, r, s, p)
6732 #endif
6733 
6734 /*
6735  * Core Kernel Page Relocation Algorithm
6736  *
6737  * Input:
6738  *
6739  * target :	constituent pages are SE_EXCL locked.
6740  * replacement:	constituent pages are SE_EXCL locked.
6741  *
6742  * Output:
6743  *
6744  * nrelocp:	number of pages relocated
6745  */
6746 int
6747 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6748 {
6749 	page_t		*targ, *repl;
6750 	page_t		*tpp, *rpp;
6751 	kmutex_t	*low, *high;
6752 	spgcnt_t	npages, i;
6753 	page_t		*pl = NULL;
6754 	int		old_pil;
6755 	cpuset_t	cpuset;
6756 	int		cap_cpus;
6757 	int		ret;
6758 #ifdef VAC
6759 	int		cflags = 0;
6760 #endif
6761 
6762 	if (!kcage_on || PP_ISNORELOC(*target)) {
6763 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6764 		return (EAGAIN);
6765 	}
6766 
6767 	mutex_enter(&kpr_mutex);
6768 	kreloc_thread = curthread;
6769 
6770 	targ = *target;
6771 	repl = *replacement;
6772 	ASSERT(repl != NULL);
6773 	ASSERT(targ->p_szc == repl->p_szc);
6774 
6775 	npages = page_get_pagecnt(targ->p_szc);
6776 
6777 	/*
6778 	 * unload VA<->PA mappings that are not locked
6779 	 */
6780 	tpp = targ;
6781 	for (i = 0; i < npages; i++) {
6782 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6783 		tpp++;
6784 	}
6785 
6786 	/*
6787 	 * Do "presuspend" callbacks, in a context from which we can still
6788 	 * block as needed. Note that we don't hold the mapping list lock
6789 	 * of "targ" at this point due to potential locking order issues;
6790 	 * we assume that between the hat_pageunload() above and holding
6791 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6792 	 * point.
6793 	 */
6794 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6795 	if (ret != 0) {
6796 		/*
6797 		 * EIO translates to fatal error, for all others cleanup
6798 		 * and return EAGAIN.
6799 		 */
6800 		ASSERT(ret != EIO);
6801 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6802 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6803 		kreloc_thread = NULL;
6804 		mutex_exit(&kpr_mutex);
6805 		return (EAGAIN);
6806 	}
6807 
6808 	/*
6809 	 * acquire p_mapping list lock for both the target and replacement
6810 	 * root pages.
6811 	 *
6812 	 * low and high refer to the need to grab the mlist locks in a
6813 	 * specific order in order to prevent race conditions.  Thus the
6814 	 * lower lock must be grabbed before the higher lock.
6815 	 *
6816 	 * This will block hat_unload's accessing p_mapping list.  Since
6817 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6818 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6819 	 * while we suspend and reload the locked mapping below.
6820 	 */
6821 	tpp = targ;
6822 	rpp = repl;
6823 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6824 
6825 	kpreempt_disable();
6826 
6827 	/*
6828 	 * We raise our PIL to 13 so that we don't get captured by
6829 	 * another CPU or pinned by an interrupt thread.  We can't go to
6830 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6831 	 * that level in the case of IOMMU pseudo mappings.
6832 	 */
6833 	cpuset = cpu_ready_set;
6834 	CPUSET_DEL(cpuset, CPU->cpu_id);
6835 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6836 		old_pil = splr(XCALL_PIL);
6837 	} else {
6838 		old_pil = -1;
6839 		xc_attention(cpuset);
6840 	}
6841 	ASSERT(getpil() == XCALL_PIL);
6842 
6843 	/*
6844 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6845 	 * this will suspend all DMA activity to the page while it is
6846 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6847 	 * may be captured at this point we should have acquired any needed
6848 	 * locks in the presuspend callback.
6849 	 */
6850 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6851 	if (ret != 0) {
6852 		repl = targ;
6853 		goto suspend_fail;
6854 	}
6855 
6856 	/*
6857 	 * Raise the PIL yet again, this time to block all high-level
6858 	 * interrupts on this CPU. This is necessary to prevent an
6859 	 * interrupt routine from pinning the thread which holds the
6860 	 * mapping suspended and then touching the suspended page.
6861 	 *
6862 	 * Once the page is suspended we also need to be careful to
6863 	 * avoid calling any functions which touch any seg_kmem memory
6864 	 * since that memory may be backed by the very page we are
6865 	 * relocating in here!
6866 	 */
6867 	hat_pagesuspend(targ);
6868 
6869 	/*
6870 	 * Now that we are confident everybody has stopped using this page,
6871 	 * copy the page contents.  Note we use a physical copy to prevent
6872 	 * locking issues and to avoid fpRAS because we can't handle it in
6873 	 * this context.
6874 	 */
6875 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6876 #ifdef VAC
6877 		/*
6878 		 * If the replacement has a different vcolor than
6879 		 * the one being replacd, we need to handle VAC
6880 		 * consistency for it just as we were setting up
6881 		 * a new mapping to it.
6882 		 */
6883 		if ((PP_GET_VCOLOR(rpp) != NO_VCOLOR) &&
6884 		    (tpp->p_vcolor != rpp->p_vcolor) &&
6885 		    !CacheColor_IsFlushed(cflags, PP_GET_VCOLOR(rpp))) {
6886 			CacheColor_SetFlushed(cflags, PP_GET_VCOLOR(rpp));
6887 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6888 			    rpp->p_pagenum);
6889 		}
6890 #endif
6891 		/*
6892 		 * Copy the contents of the page.
6893 		 */
6894 		ppcopy_kernel(tpp, rpp);
6895 	}
6896 
6897 	tpp = targ;
6898 	rpp = repl;
6899 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6900 		/*
6901 		 * Copy attributes.  VAC consistency was handled above,
6902 		 * if required.
6903 		 */
6904 		rpp->p_nrm = tpp->p_nrm;
6905 		tpp->p_nrm = 0;
6906 		rpp->p_index = tpp->p_index;
6907 		tpp->p_index = 0;
6908 #ifdef VAC
6909 		rpp->p_vcolor = tpp->p_vcolor;
6910 #endif
6911 	}
6912 
6913 	/*
6914 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6915 	 * the mapping list from the target page to the replacement page.
6916 	 * Next process postcallbacks; since pa_hment's are linked only to the
6917 	 * p_mapping list of root page, we don't iterate over the constituent
6918 	 * pages.
6919 	 */
6920 	hat_pagereload(targ, repl);
6921 
6922 suspend_fail:
6923 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6924 
6925 	/*
6926 	 * Now lower our PIL and release any captured CPUs since we
6927 	 * are out of the "danger zone".  After this it will again be
6928 	 * safe to acquire adaptive mutex locks, or to drop them...
6929 	 */
6930 	if (old_pil != -1) {
6931 		splx(old_pil);
6932 	} else {
6933 		xc_dismissed(cpuset);
6934 	}
6935 
6936 	kpreempt_enable();
6937 
6938 	sfmmu_mlist_reloc_exit(low, high);
6939 
6940 	/*
6941 	 * Postsuspend callbacks should drop any locks held across
6942 	 * the suspend callbacks.  As before, we don't hold the mapping
6943 	 * list lock at this point.. our assumption is that the mapping
6944 	 * list still can't change due to our holding SE_EXCL lock and
6945 	 * there being no unlocked mappings left. Hence the restriction
6946 	 * on calling context to hat_delete_callback()
6947 	 */
6948 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6949 	if (ret != 0) {
6950 		/*
6951 		 * The second presuspend call failed: we got here through
6952 		 * the suspend_fail label above.
6953 		 */
6954 		ASSERT(ret != EIO);
6955 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6956 		kreloc_thread = NULL;
6957 		mutex_exit(&kpr_mutex);
6958 		return (EAGAIN);
6959 	}
6960 
6961 	/*
6962 	 * Now that we're out of the performance critical section we can
6963 	 * take care of updating the hash table, since we still
6964 	 * hold all the pages locked SE_EXCL at this point we
6965 	 * needn't worry about things changing out from under us.
6966 	 */
6967 	tpp = targ;
6968 	rpp = repl;
6969 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6970 
6971 		/*
6972 		 * replace targ with replacement in page_hash table
6973 		 */
6974 		targ = tpp;
6975 		page_relocate_hash(rpp, targ);
6976 
6977 		/*
6978 		 * concatenate target; caller of platform_page_relocate()
6979 		 * expects target to be concatenated after returning.
6980 		 */
6981 		ASSERT(targ->p_next == targ);
6982 		ASSERT(targ->p_prev == targ);
6983 		page_list_concat(&pl, &targ);
6984 	}
6985 
6986 	ASSERT(*target == pl);
6987 	*nrelocp = npages;
6988 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6989 	kreloc_thread = NULL;
6990 	mutex_exit(&kpr_mutex);
6991 	return (0);
6992 }
6993 
6994 /*
6995  * Called when stray pa_hments are found attached to a page which is
6996  * being freed.  Notify the subsystem which attached the pa_hment of
6997  * the error if it registered a suitable handler, else panic.
6998  */
6999 static void
7000 sfmmu_pahment_leaked(struct pa_hment *pahmep)
7001 {
7002 	id_t cb_id = pahmep->cb_id;
7003 
7004 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
7005 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
7006 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
7007 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
7008 			return;		/* non-fatal */
7009 	}
7010 	panic("pa_hment leaked: 0x%p", (void *)pahmep);
7011 }
7012 
7013 /*
7014  * Remove all mappings to page 'pp'.
7015  */
7016 int
7017 hat_pageunload(struct page *pp, uint_t forceflag)
7018 {
7019 	struct page *origpp = pp;
7020 	struct sf_hment *sfhme, *tmphme;
7021 	struct hme_blk *hmeblkp;
7022 	kmutex_t *pml;
7023 #ifdef VAC
7024 	kmutex_t *pmtx;
7025 #endif
7026 	cpuset_t cpuset, tset;
7027 	int index, cons;
7028 	int pa_hments;
7029 
7030 	ASSERT(PAGE_EXCL(pp));
7031 
7032 	tmphme = NULL;
7033 	pa_hments = 0;
7034 	CPUSET_ZERO(cpuset);
7035 
7036 	pml = sfmmu_mlist_enter(pp);
7037 
7038 #ifdef VAC
7039 	if (pp->p_kpmref)
7040 		sfmmu_kpm_pageunload(pp);
7041 	ASSERT(!PP_ISMAPPED_KPM(pp));
7042 #endif
7043 	/*
7044 	 * Clear vpm reference. Since the page is exclusively locked
7045 	 * vpm cannot be referencing it.
7046 	 */
7047 	if (vpm_enable) {
7048 		pp->p_vpmref = 0;
7049 	}
7050 
7051 	index = PP_MAPINDEX(pp);
7052 	cons = TTE8K;
7053 retry:
7054 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7055 		tmphme = sfhme->hme_next;
7056 
7057 		if (IS_PAHME(sfhme)) {
7058 			ASSERT(sfhme->hme_data != NULL);
7059 			pa_hments++;
7060 			continue;
7061 		}
7062 
7063 		hmeblkp = sfmmu_hmetohblk(sfhme);
7064 
7065 		/*
7066 		 * If there are kernel mappings don't unload them, they will
7067 		 * be suspended.
7068 		 */
7069 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
7070 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
7071 			continue;
7072 
7073 		tset = sfmmu_pageunload(pp, sfhme, cons);
7074 		CPUSET_OR(cpuset, tset);
7075 	}
7076 
7077 	while (index != 0) {
7078 		index = index >> 1;
7079 		if (index != 0)
7080 			cons++;
7081 		if (index & 0x1) {
7082 			/* Go to leading page */
7083 			pp = PP_GROUPLEADER(pp, cons);
7084 			ASSERT(sfmmu_mlist_held(pp));
7085 			goto retry;
7086 		}
7087 	}
7088 
7089 	/*
7090 	 * cpuset may be empty if the page was only mapped by segkpm,
7091 	 * in which case we won't actually cross-trap.
7092 	 */
7093 	xt_sync(cpuset);
7094 
7095 	/*
7096 	 * The page should have no mappings at this point, unless
7097 	 * we were called from hat_page_relocate() in which case we
7098 	 * leave the locked mappings which will be suspended later.
7099 	 */
7100 	ASSERT(!PP_ISMAPPED(origpp) || pa_hments ||
7101 	    (forceflag == SFMMU_KERNEL_RELOC));
7102 
7103 #ifdef VAC
7104 	if (PP_ISTNC(pp)) {
7105 		if (cons == TTE8K) {
7106 			pmtx = sfmmu_page_enter(pp);
7107 			PP_CLRTNC(pp);
7108 			sfmmu_page_exit(pmtx);
7109 		} else {
7110 			conv_tnc(pp, cons);
7111 		}
7112 	}
7113 #endif	/* VAC */
7114 
7115 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
7116 		/*
7117 		 * Unlink any pa_hments and free them, calling back
7118 		 * the responsible subsystem to notify it of the error.
7119 		 * This can occur in situations such as drivers leaking
7120 		 * DMA handles: naughty, but common enough that we'd like
7121 		 * to keep the system running rather than bringing it
7122 		 * down with an obscure error like "pa_hment leaked"
7123 		 * which doesn't aid the user in debugging their driver.
7124 		 */
7125 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7126 			tmphme = sfhme->hme_next;
7127 			if (IS_PAHME(sfhme)) {
7128 				struct pa_hment *pahmep = sfhme->hme_data;
7129 				sfmmu_pahment_leaked(pahmep);
7130 				HME_SUB(sfhme, pp);
7131 				kmem_cache_free(pa_hment_cache, pahmep);
7132 			}
7133 		}
7134 
7135 		ASSERT(!PP_ISMAPPED(origpp));
7136 	}
7137 
7138 	sfmmu_mlist_exit(pml);
7139 
7140 	return (0);
7141 }
7142 
7143 cpuset_t
7144 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
7145 {
7146 	struct hme_blk *hmeblkp;
7147 	sfmmu_t *sfmmup;
7148 	tte_t tte, ttemod;
7149 #ifdef DEBUG
7150 	tte_t orig_old;
7151 #endif /* DEBUG */
7152 	caddr_t addr;
7153 	int ttesz;
7154 	int ret;
7155 	cpuset_t cpuset;
7156 
7157 	ASSERT(pp != NULL);
7158 	ASSERT(sfmmu_mlist_held(pp));
7159 	ASSERT(!PP_ISKAS(pp));
7160 
7161 	CPUSET_ZERO(cpuset);
7162 
7163 	hmeblkp = sfmmu_hmetohblk(sfhme);
7164 
7165 readtte:
7166 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7167 	if (TTE_IS_VALID(&tte)) {
7168 		sfmmup = hblktosfmmu(hmeblkp);
7169 		ttesz = get_hblk_ttesz(hmeblkp);
7170 		/*
7171 		 * Only unload mappings of 'cons' size.
7172 		 */
7173 		if (ttesz != cons)
7174 			return (cpuset);
7175 
7176 		/*
7177 		 * Note that we have p_mapping lock, but no hash lock here.
7178 		 * hblk_unload() has to have both hash lock AND p_mapping
7179 		 * lock before it tries to modify tte. So, the tte could
7180 		 * not become invalid in the sfmmu_modifytte_try() below.
7181 		 */
7182 		ttemod = tte;
7183 #ifdef DEBUG
7184 		orig_old = tte;
7185 #endif /* DEBUG */
7186 
7187 		TTE_SET_INVALID(&ttemod);
7188 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7189 		if (ret < 0) {
7190 #ifdef DEBUG
7191 			/* only R/M bits can change. */
7192 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
7193 #endif /* DEBUG */
7194 			goto readtte;
7195 		}
7196 
7197 		if (ret == 0) {
7198 			panic("pageunload: cas failed?");
7199 		}
7200 
7201 		addr = tte_to_vaddr(hmeblkp, tte);
7202 
7203 		if (hmeblkp->hblk_shared) {
7204 			sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7205 			uint_t rid = hmeblkp->hblk_tag.htag_rid;
7206 			sf_region_t *rgnp;
7207 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7208 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7209 			ASSERT(srdp != NULL);
7210 			rgnp = srdp->srd_hmergnp[rid];
7211 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7212 			cpuset = sfmmu_rgntlb_demap(addr, rgnp, hmeblkp, 1);
7213 			sfmmu_ttesync(NULL, addr, &tte, pp);
7214 			ASSERT(rgnp->rgn_ttecnt[ttesz] > 0);
7215 			atomic_dec_ulong(&rgnp->rgn_ttecnt[ttesz]);
7216 		} else {
7217 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
7218 			atomic_dec_ulong(&sfmmup->sfmmu_ttecnt[ttesz]);
7219 
7220 			/*
7221 			 * We need to flush the page from the virtual cache
7222 			 * in order to prevent a virtual cache alias
7223 			 * inconsistency. The particular scenario we need
7224 			 * to worry about is:
7225 			 * Given:  va1 and va2 are two virtual address that
7226 			 * alias and will map the same physical address.
7227 			 * 1.   mapping exists from va1 to pa and data has
7228 			 *	been read into the cache.
7229 			 * 2.   unload va1.
7230 			 * 3.   load va2 and modify data using va2.
7231 			 * 4    unload va2.
7232 			 * 5.   load va1 and reference data.  Unless we flush
7233 			 *	the data cache when we unload we will get
7234 			 *	stale data.
7235 			 * This scenario is taken care of by using virtual
7236 			 * page coloring.
7237 			 */
7238 			if (sfmmup->sfmmu_ismhat) {
7239 				/*
7240 				 * Flush TSBs, TLBs and caches
7241 				 * of every process
7242 				 * sharing this ism segment.
7243 				 */
7244 				sfmmu_hat_lock_all();
7245 				mutex_enter(&ism_mlist_lock);
7246 				kpreempt_disable();
7247 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
7248 				    pp->p_pagenum, CACHE_NO_FLUSH);
7249 				kpreempt_enable();
7250 				mutex_exit(&ism_mlist_lock);
7251 				sfmmu_hat_unlock_all();
7252 				cpuset = cpu_ready_set;
7253 			} else {
7254 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7255 				cpuset = sfmmup->sfmmu_cpusran;
7256 			}
7257 		}
7258 
7259 		/*
7260 		 * Hme_sub has to run after ttesync() and a_rss update.
7261 		 * See hblk_unload().
7262 		 */
7263 		HME_SUB(sfhme, pp);
7264 		membar_stst();
7265 
7266 		/*
7267 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
7268 		 * since pteload may have done a HME_ADD() right after
7269 		 * we did the HME_SUB() above. Hmecnt is now maintained
7270 		 * by cas only. no lock guranteed its value. The only
7271 		 * gurantee we have is the hmecnt should not be less than
7272 		 * what it should be so the hblk will not be taken away.
7273 		 * It's also important that we decremented the hmecnt after
7274 		 * we are done with hmeblkp so that this hmeblk won't be
7275 		 * stolen.
7276 		 */
7277 		ASSERT(hmeblkp->hblk_hmecnt > 0);
7278 		ASSERT(hmeblkp->hblk_vcnt > 0);
7279 		atomic_dec_16(&hmeblkp->hblk_vcnt);
7280 		atomic_dec_16(&hmeblkp->hblk_hmecnt);
7281 		/*
7282 		 * This is bug 4063182.
7283 		 * XXX: fixme
7284 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
7285 		 *	!hmeblkp->hblk_lckcnt);
7286 		 */
7287 	} else {
7288 		panic("invalid tte? pp %p &tte %p",
7289 		    (void *)pp, (void *)&tte);
7290 	}
7291 
7292 	return (cpuset);
7293 }
7294 
7295 /*
7296  * While relocating a kernel page, this function will move the mappings
7297  * from tpp to dpp and modify any associated data with these mappings.
7298  * It also unsuspends the suspended kernel mapping.
7299  */
7300 static void
7301 hat_pagereload(struct page *tpp, struct page *dpp)
7302 {
7303 	struct sf_hment *sfhme;
7304 	tte_t tte, ttemod;
7305 	int index, cons;
7306 
7307 	ASSERT(getpil() == PIL_MAX);
7308 	ASSERT(sfmmu_mlist_held(tpp));
7309 	ASSERT(sfmmu_mlist_held(dpp));
7310 
7311 	index = PP_MAPINDEX(tpp);
7312 	cons = TTE8K;
7313 
7314 	/* Update real mappings to the page */
7315 retry:
7316 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
7317 		if (IS_PAHME(sfhme))
7318 			continue;
7319 		sfmmu_copytte(&sfhme->hme_tte, &tte);
7320 		ttemod = tte;
7321 
7322 		/*
7323 		 * replace old pfn with new pfn in TTE
7324 		 */
7325 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
7326 
7327 		/*
7328 		 * clear suspend bit
7329 		 */
7330 		ASSERT(TTE_IS_SUSPEND(&ttemod));
7331 		TTE_CLR_SUSPEND(&ttemod);
7332 
7333 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
7334 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
7335 
7336 		/*
7337 		 * set hme_page point to new page
7338 		 */
7339 		sfhme->hme_page = dpp;
7340 	}
7341 
7342 	/*
7343 	 * move p_mapping list from old page to new page
7344 	 */
7345 	dpp->p_mapping = tpp->p_mapping;
7346 	tpp->p_mapping = NULL;
7347 	dpp->p_share = tpp->p_share;
7348 	tpp->p_share = 0;
7349 
7350 	while (index != 0) {
7351 		index = index >> 1;
7352 		if (index != 0)
7353 			cons++;
7354 		if (index & 0x1) {
7355 			tpp = PP_GROUPLEADER(tpp, cons);
7356 			dpp = PP_GROUPLEADER(dpp, cons);
7357 			goto retry;
7358 		}
7359 	}
7360 
7361 	curthread->t_flag &= ~T_DONTDTRACE;
7362 	mutex_exit(&kpr_suspendlock);
7363 }
7364 
7365 uint_t
7366 hat_pagesync(struct page *pp, uint_t clearflag)
7367 {
7368 	struct sf_hment *sfhme, *tmphme = NULL;
7369 	struct hme_blk *hmeblkp;
7370 	kmutex_t *pml;
7371 	cpuset_t cpuset, tset;
7372 	int	index, cons;
7373 	extern	ulong_t po_share;
7374 	page_t	*save_pp = pp;
7375 	int	stop_on_sh = 0;
7376 	uint_t	shcnt;
7377 
7378 	CPUSET_ZERO(cpuset);
7379 
7380 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
7381 		return (PP_GENERIC_ATTR(pp));
7382 	}
7383 
7384 	if ((clearflag & HAT_SYNC_ZERORM) == 0) {
7385 		if ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(pp)) {
7386 			return (PP_GENERIC_ATTR(pp));
7387 		}
7388 		if ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(pp)) {
7389 			return (PP_GENERIC_ATTR(pp));
7390 		}
7391 		if (clearflag & HAT_SYNC_STOPON_SHARED) {
7392 			if (pp->p_share > po_share) {
7393 				hat_page_setattr(pp, P_REF);
7394 				return (PP_GENERIC_ATTR(pp));
7395 			}
7396 			stop_on_sh = 1;
7397 			shcnt = 0;
7398 		}
7399 	}
7400 
7401 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
7402 	pml = sfmmu_mlist_enter(pp);
7403 	index = PP_MAPINDEX(pp);
7404 	cons = TTE8K;
7405 retry:
7406 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7407 		/*
7408 		 * We need to save the next hment on the list since
7409 		 * it is possible for pagesync to remove an invalid hment
7410 		 * from the list.
7411 		 */
7412 		tmphme = sfhme->hme_next;
7413 		if (IS_PAHME(sfhme))
7414 			continue;
7415 		/*
7416 		 * If we are looking for large mappings and this hme doesn't
7417 		 * reach the range we are seeking, just ignore it.
7418 		 */
7419 		hmeblkp = sfmmu_hmetohblk(sfhme);
7420 
7421 		if (hme_size(sfhme) < cons)
7422 			continue;
7423 
7424 		if (stop_on_sh) {
7425 			if (hmeblkp->hblk_shared) {
7426 				sf_srd_t *srdp = hblktosrd(hmeblkp);
7427 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
7428 				sf_region_t *rgnp;
7429 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7430 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7431 				ASSERT(srdp != NULL);
7432 				rgnp = srdp->srd_hmergnp[rid];
7433 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
7434 				    rgnp, rid);
7435 				shcnt += rgnp->rgn_refcnt;
7436 			} else {
7437 				shcnt++;
7438 			}
7439 			if (shcnt > po_share) {
7440 				/*
7441 				 * tell the pager to spare the page this time
7442 				 * around.
7443 				 */
7444 				hat_page_setattr(save_pp, P_REF);
7445 				index = 0;
7446 				break;
7447 			}
7448 		}
7449 		tset = sfmmu_pagesync(pp, sfhme,
7450 		    clearflag & ~HAT_SYNC_STOPON_RM);
7451 		CPUSET_OR(cpuset, tset);
7452 
7453 		/*
7454 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
7455 		 * as the "ref" or "mod" is set or share cnt exceeds po_share.
7456 		 */
7457 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
7458 		    (((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
7459 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)))) {
7460 			index = 0;
7461 			break;
7462 		}
7463 	}
7464 
7465 	while (index) {
7466 		index = index >> 1;
7467 		cons++;
7468 		if (index & 0x1) {
7469 			/* Go to leading page */
7470 			pp = PP_GROUPLEADER(pp, cons);
7471 			goto retry;
7472 		}
7473 	}
7474 
7475 	xt_sync(cpuset);
7476 	sfmmu_mlist_exit(pml);
7477 	return (PP_GENERIC_ATTR(save_pp));
7478 }
7479 
7480 /*
7481  * Get all the hardware dependent attributes for a page struct
7482  */
7483 static cpuset_t
7484 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
7485     uint_t clearflag)
7486 {
7487 	caddr_t addr;
7488 	tte_t tte, ttemod;
7489 	struct hme_blk *hmeblkp;
7490 	int ret;
7491 	sfmmu_t *sfmmup;
7492 	cpuset_t cpuset;
7493 
7494 	ASSERT(pp != NULL);
7495 	ASSERT(sfmmu_mlist_held(pp));
7496 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
7497 	    (clearflag == HAT_SYNC_ZERORM));
7498 
7499 	SFMMU_STAT(sf_pagesync);
7500 
7501 	CPUSET_ZERO(cpuset);
7502 
7503 sfmmu_pagesync_retry:
7504 
7505 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7506 	if (TTE_IS_VALID(&tte)) {
7507 		hmeblkp = sfmmu_hmetohblk(sfhme);
7508 		sfmmup = hblktosfmmu(hmeblkp);
7509 		addr = tte_to_vaddr(hmeblkp, tte);
7510 		if (clearflag == HAT_SYNC_ZERORM) {
7511 			ttemod = tte;
7512 			TTE_CLR_RM(&ttemod);
7513 			ret = sfmmu_modifytte_try(&tte, &ttemod,
7514 			    &sfhme->hme_tte);
7515 			if (ret < 0) {
7516 				/*
7517 				 * cas failed and the new value is not what
7518 				 * we want.
7519 				 */
7520 				goto sfmmu_pagesync_retry;
7521 			}
7522 
7523 			if (ret > 0) {
7524 				/* we win the cas */
7525 				if (hmeblkp->hblk_shared) {
7526 					sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7527 					uint_t rid =
7528 					    hmeblkp->hblk_tag.htag_rid;
7529 					sf_region_t *rgnp;
7530 					ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7531 					ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7532 					ASSERT(srdp != NULL);
7533 					rgnp = srdp->srd_hmergnp[rid];
7534 					SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7535 					    srdp, rgnp, rid);
7536 					cpuset = sfmmu_rgntlb_demap(addr,
7537 					    rgnp, hmeblkp, 1);
7538 				} else {
7539 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
7540 					    0, 0);
7541 					cpuset = sfmmup->sfmmu_cpusran;
7542 				}
7543 			}
7544 		}
7545 		sfmmu_ttesync(hmeblkp->hblk_shared ? NULL : sfmmup, addr,
7546 		    &tte, pp);
7547 	}
7548 	return (cpuset);
7549 }
7550 
7551 /*
7552  * Remove write permission from a mappings to a page, so that
7553  * we can detect the next modification of it. This requires modifying
7554  * the TTE then invalidating (demap) any TLB entry using that TTE.
7555  * This code is similar to sfmmu_pagesync().
7556  */
7557 static cpuset_t
7558 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
7559 {
7560 	caddr_t addr;
7561 	tte_t tte;
7562 	tte_t ttemod;
7563 	struct hme_blk *hmeblkp;
7564 	int ret;
7565 	sfmmu_t *sfmmup;
7566 	cpuset_t cpuset;
7567 
7568 	ASSERT(pp != NULL);
7569 	ASSERT(sfmmu_mlist_held(pp));
7570 
7571 	CPUSET_ZERO(cpuset);
7572 	SFMMU_STAT(sf_clrwrt);
7573 
7574 retry:
7575 
7576 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7577 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
7578 		hmeblkp = sfmmu_hmetohblk(sfhme);
7579 		sfmmup = hblktosfmmu(hmeblkp);
7580 		addr = tte_to_vaddr(hmeblkp, tte);
7581 
7582 		ttemod = tte;
7583 		TTE_CLR_WRT(&ttemod);
7584 		TTE_CLR_MOD(&ttemod);
7585 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7586 
7587 		/*
7588 		 * if cas failed and the new value is not what
7589 		 * we want retry
7590 		 */
7591 		if (ret < 0)
7592 			goto retry;
7593 
7594 		/* we win the cas */
7595 		if (ret > 0) {
7596 			if (hmeblkp->hblk_shared) {
7597 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7598 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
7599 				sf_region_t *rgnp;
7600 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7601 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7602 				ASSERT(srdp != NULL);
7603 				rgnp = srdp->srd_hmergnp[rid];
7604 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7605 				    srdp, rgnp, rid);
7606 				cpuset = sfmmu_rgntlb_demap(addr,
7607 				    rgnp, hmeblkp, 1);
7608 			} else {
7609 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7610 				cpuset = sfmmup->sfmmu_cpusran;
7611 			}
7612 		}
7613 	}
7614 
7615 	return (cpuset);
7616 }
7617 
7618 /*
7619  * Walk all mappings of a page, removing write permission and clearing the
7620  * ref/mod bits. This code is similar to hat_pagesync()
7621  */
7622 static void
7623 hat_page_clrwrt(page_t *pp)
7624 {
7625 	struct sf_hment *sfhme;
7626 	struct sf_hment *tmphme = NULL;
7627 	kmutex_t *pml;
7628 	cpuset_t cpuset;
7629 	cpuset_t tset;
7630 	int	index;
7631 	int	 cons;
7632 
7633 	CPUSET_ZERO(cpuset);
7634 
7635 	pml = sfmmu_mlist_enter(pp);
7636 	index = PP_MAPINDEX(pp);
7637 	cons = TTE8K;
7638 retry:
7639 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7640 		tmphme = sfhme->hme_next;
7641 
7642 		/*
7643 		 * If we are looking for large mappings and this hme doesn't
7644 		 * reach the range we are seeking, just ignore its.
7645 		 */
7646 
7647 		if (hme_size(sfhme) < cons)
7648 			continue;
7649 
7650 		tset = sfmmu_pageclrwrt(pp, sfhme);
7651 		CPUSET_OR(cpuset, tset);
7652 	}
7653 
7654 	while (index) {
7655 		index = index >> 1;
7656 		cons++;
7657 		if (index & 0x1) {
7658 			/* Go to leading page */
7659 			pp = PP_GROUPLEADER(pp, cons);
7660 			goto retry;
7661 		}
7662 	}
7663 
7664 	xt_sync(cpuset);
7665 	sfmmu_mlist_exit(pml);
7666 }
7667 
7668 /*
7669  * Set the given REF/MOD/RO bits for the given page.
7670  * For a vnode with a sorted v_pages list, we need to change
7671  * the attributes and the v_pages list together under page_vnode_mutex.
7672  */
7673 void
7674 hat_page_setattr(page_t *pp, uint_t flag)
7675 {
7676 	vnode_t		*vp = pp->p_vnode;
7677 	page_t		**listp;
7678 	kmutex_t	*pmtx;
7679 	kmutex_t	*vphm = NULL;
7680 	int		noshuffle;
7681 
7682 	noshuffle = flag & P_NSH;
7683 	flag &= ~P_NSH;
7684 
7685 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7686 
7687 	/*
7688 	 * nothing to do if attribute already set
7689 	 */
7690 	if ((pp->p_nrm & flag) == flag)
7691 		return;
7692 
7693 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
7694 	    !noshuffle) {
7695 		vphm = page_vnode_mutex(vp);
7696 		mutex_enter(vphm);
7697 	}
7698 
7699 	pmtx = sfmmu_page_enter(pp);
7700 	pp->p_nrm |= flag;
7701 	sfmmu_page_exit(pmtx);
7702 
7703 	if (vphm != NULL) {
7704 		/*
7705 		 * Some File Systems examine v_pages for NULL w/o
7706 		 * grabbing the vphm mutex. Must not let it become NULL when
7707 		 * pp is the only page on the list.
7708 		 */
7709 		if (pp->p_vpnext != pp) {
7710 			page_vpsub(&vp->v_pages, pp);
7711 			if (vp->v_pages != NULL)
7712 				listp = &vp->v_pages->p_vpprev->p_vpnext;
7713 			else
7714 				listp = &vp->v_pages;
7715 			page_vpadd(listp, pp);
7716 		}
7717 		mutex_exit(vphm);
7718 	}
7719 }
7720 
7721 void
7722 hat_page_clrattr(page_t *pp, uint_t flag)
7723 {
7724 	vnode_t		*vp = pp->p_vnode;
7725 	kmutex_t	*pmtx;
7726 
7727 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7728 
7729 	pmtx = sfmmu_page_enter(pp);
7730 
7731 	/*
7732 	 * Caller is expected to hold page's io lock for VMODSORT to work
7733 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7734 	 * bit is cleared.
7735 	 * We don't have assert to avoid tripping some existing third party
7736 	 * code. The dirty page is moved back to top of the v_page list
7737 	 * after IO is done in pvn_write_done().
7738 	 */
7739 	pp->p_nrm &= ~flag;
7740 	sfmmu_page_exit(pmtx);
7741 
7742 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7743 
7744 		/*
7745 		 * VMODSORT works by removing write permissions and getting
7746 		 * a fault when a page is made dirty. At this point
7747 		 * we need to remove write permission from all mappings
7748 		 * to this page.
7749 		 */
7750 		hat_page_clrwrt(pp);
7751 	}
7752 }
7753 
7754 uint_t
7755 hat_page_getattr(page_t *pp, uint_t flag)
7756 {
7757 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7758 	return ((uint_t)(pp->p_nrm & flag));
7759 }
7760 
7761 /*
7762  * DEBUG kernels: verify that a kernel va<->pa translation
7763  * is safe by checking the underlying page_t is in a page
7764  * relocation-safe state.
7765  */
7766 #ifdef	DEBUG
7767 void
7768 sfmmu_check_kpfn(pfn_t pfn)
7769 {
7770 	page_t *pp;
7771 	int index, cons;
7772 
7773 	if (hat_check_vtop == 0)
7774 		return;
7775 
7776 	if (kvseg.s_base == NULL || panicstr)
7777 		return;
7778 
7779 	pp = page_numtopp_nolock(pfn);
7780 	if (!pp)
7781 		return;
7782 
7783 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7784 		return;
7785 
7786 	/*
7787 	 * Handed a large kernel page, we dig up the root page since we
7788 	 * know the root page might have the lock also.
7789 	 */
7790 	if (pp->p_szc != 0) {
7791 		index = PP_MAPINDEX(pp);
7792 		cons = TTE8K;
7793 again:
7794 		while (index != 0) {
7795 			index >>= 1;
7796 			if (index != 0)
7797 				cons++;
7798 			if (index & 0x1) {
7799 				pp = PP_GROUPLEADER(pp, cons);
7800 				goto again;
7801 			}
7802 		}
7803 	}
7804 
7805 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7806 		return;
7807 
7808 	/*
7809 	 * Pages need to be locked or allocated "permanent" (either from
7810 	 * static_arena arena or explicitly setting PG_NORELOC when calling
7811 	 * page_create_va()) for VA->PA translations to be valid.
7812 	 */
7813 	if (!PP_ISNORELOC(pp))
7814 		panic("Illegal VA->PA translation, pp 0x%p not permanent",
7815 		    (void *)pp);
7816 	else
7817 		panic("Illegal VA->PA translation, pp 0x%p not locked",
7818 		    (void *)pp);
7819 }
7820 #endif	/* DEBUG */
7821 
7822 /*
7823  * Returns a page frame number for a given virtual address.
7824  * Returns PFN_INVALID to indicate an invalid mapping
7825  */
7826 pfn_t
7827 hat_getpfnum(struct hat *hat, caddr_t addr)
7828 {
7829 	pfn_t pfn;
7830 	tte_t tte;
7831 
7832 	/*
7833 	 * We would like to
7834 	 * ASSERT(AS_LOCK_HELD(as));
7835 	 * but we can't because the iommu driver will call this
7836 	 * routine at interrupt time and it can't grab the as lock
7837 	 * or it will deadlock: A thread could have the as lock
7838 	 * and be waiting for io.  The io can't complete
7839 	 * because the interrupt thread is blocked trying to grab
7840 	 * the as lock.
7841 	 */
7842 
7843 	if (hat == ksfmmup) {
7844 		if (IS_KMEM_VA_LARGEPAGE(addr)) {
7845 			ASSERT(segkmem_lpszc > 0);
7846 			pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7847 			if (pfn != PFN_INVALID) {
7848 				sfmmu_check_kpfn(pfn);
7849 				return (pfn);
7850 			}
7851 		} else if (segkpm && IS_KPM_ADDR(addr)) {
7852 			return (sfmmu_kpm_vatopfn(addr));
7853 		}
7854 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7855 		    == PFN_SUSPENDED) {
7856 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7857 		}
7858 		sfmmu_check_kpfn(pfn);
7859 		return (pfn);
7860 	} else {
7861 		return (sfmmu_uvatopfn(addr, hat, NULL));
7862 	}
7863 }
7864 
7865 /*
7866  * This routine will return both pfn and tte for the vaddr.
7867  */
7868 static pfn_t
7869 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup, tte_t *ttep)
7870 {
7871 	struct hmehash_bucket *hmebp;
7872 	hmeblk_tag hblktag;
7873 	int hmeshift, hashno = 1;
7874 	struct hme_blk *hmeblkp = NULL;
7875 	tte_t tte;
7876 
7877 	struct sf_hment *sfhmep;
7878 	pfn_t pfn;
7879 
7880 	/* support for ISM */
7881 	ism_map_t	*ism_map;
7882 	ism_blk_t	*ism_blkp;
7883 	int		i;
7884 	sfmmu_t *ism_hatid = NULL;
7885 	sfmmu_t *locked_hatid = NULL;
7886 	sfmmu_t	*sv_sfmmup = sfmmup;
7887 	caddr_t	sv_vaddr = vaddr;
7888 	sf_srd_t *srdp;
7889 
7890 	if (ttep == NULL) {
7891 		ttep = &tte;
7892 	} else {
7893 		ttep->ll = 0;
7894 	}
7895 
7896 	ASSERT(sfmmup != ksfmmup);
7897 	SFMMU_STAT(sf_user_vtop);
7898 	/*
7899 	 * Set ism_hatid if vaddr falls in a ISM segment.
7900 	 */
7901 	ism_blkp = sfmmup->sfmmu_iblk;
7902 	if (ism_blkp != NULL) {
7903 		sfmmu_ismhat_enter(sfmmup, 0);
7904 		locked_hatid = sfmmup;
7905 	}
7906 	while (ism_blkp != NULL && ism_hatid == NULL) {
7907 		ism_map = ism_blkp->iblk_maps;
7908 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7909 			if (vaddr >= ism_start(ism_map[i]) &&
7910 			    vaddr < ism_end(ism_map[i])) {
7911 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7912 				vaddr = (caddr_t)(vaddr -
7913 				    ism_start(ism_map[i]));
7914 				break;
7915 			}
7916 		}
7917 		ism_blkp = ism_blkp->iblk_next;
7918 	}
7919 	if (locked_hatid) {
7920 		sfmmu_ismhat_exit(locked_hatid, 0);
7921 	}
7922 
7923 	hblktag.htag_id = sfmmup;
7924 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
7925 	do {
7926 		hmeshift = HME_HASH_SHIFT(hashno);
7927 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7928 		hblktag.htag_rehash = hashno;
7929 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7930 
7931 		SFMMU_HASH_LOCK(hmebp);
7932 
7933 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7934 		if (hmeblkp != NULL) {
7935 			ASSERT(!hmeblkp->hblk_shared);
7936 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
7937 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
7938 			SFMMU_HASH_UNLOCK(hmebp);
7939 			if (TTE_IS_VALID(ttep)) {
7940 				pfn = TTE_TO_PFN(vaddr, ttep);
7941 				return (pfn);
7942 			}
7943 			break;
7944 		}
7945 		SFMMU_HASH_UNLOCK(hmebp);
7946 		hashno++;
7947 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7948 
7949 	if (SF_HMERGNMAP_ISNULL(sv_sfmmup)) {
7950 		return (PFN_INVALID);
7951 	}
7952 	srdp = sv_sfmmup->sfmmu_srdp;
7953 	ASSERT(srdp != NULL);
7954 	ASSERT(srdp->srd_refcnt != 0);
7955 	hblktag.htag_id = srdp;
7956 	hashno = 1;
7957 	do {
7958 		hmeshift = HME_HASH_SHIFT(hashno);
7959 		hblktag.htag_bspage = HME_HASH_BSPAGE(sv_vaddr, hmeshift);
7960 		hblktag.htag_rehash = hashno;
7961 		hmebp = HME_HASH_FUNCTION(srdp, sv_vaddr, hmeshift);
7962 
7963 		SFMMU_HASH_LOCK(hmebp);
7964 		for (hmeblkp = hmebp->hmeblkp; hmeblkp != NULL;
7965 		    hmeblkp = hmeblkp->hblk_next) {
7966 			uint_t rid;
7967 			sf_region_t *rgnp;
7968 			caddr_t rsaddr;
7969 			caddr_t readdr;
7970 
7971 			if (!HTAGS_EQ_SHME(hmeblkp->hblk_tag, hblktag,
7972 			    sv_sfmmup->sfmmu_hmeregion_map)) {
7973 				continue;
7974 			}
7975 			ASSERT(hmeblkp->hblk_shared);
7976 			rid = hmeblkp->hblk_tag.htag_rid;
7977 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7978 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7979 			rgnp = srdp->srd_hmergnp[rid];
7980 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7981 			HBLKTOHME(sfhmep, hmeblkp, sv_vaddr);
7982 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
7983 			rsaddr = rgnp->rgn_saddr;
7984 			readdr = rsaddr + rgnp->rgn_size;
7985 #ifdef DEBUG
7986 			if (TTE_IS_VALID(ttep) ||
7987 			    get_hblk_ttesz(hmeblkp) > TTE8K) {
7988 				caddr_t eva = tte_to_evaddr(hmeblkp, ttep);
7989 				ASSERT(eva > sv_vaddr);
7990 				ASSERT(sv_vaddr >= rsaddr);
7991 				ASSERT(sv_vaddr < readdr);
7992 				ASSERT(eva <= readdr);
7993 			}
7994 #endif /* DEBUG */
7995 			/*
7996 			 * Continue the search if we
7997 			 * found an invalid 8K tte outside of the area
7998 			 * covered by this hmeblk's region.
7999 			 */
8000 			if (TTE_IS_VALID(ttep)) {
8001 				SFMMU_HASH_UNLOCK(hmebp);
8002 				pfn = TTE_TO_PFN(sv_vaddr, ttep);
8003 				return (pfn);
8004 			} else if (get_hblk_ttesz(hmeblkp) > TTE8K ||
8005 			    (sv_vaddr >= rsaddr && sv_vaddr < readdr)) {
8006 				SFMMU_HASH_UNLOCK(hmebp);
8007 				pfn = PFN_INVALID;
8008 				return (pfn);
8009 			}
8010 		}
8011 		SFMMU_HASH_UNLOCK(hmebp);
8012 		hashno++;
8013 	} while (hashno <= mmu_hashcnt);
8014 	return (PFN_INVALID);
8015 }
8016 
8017 
8018 /*
8019  * For compatability with AT&T and later optimizations
8020  */
8021 /* ARGSUSED */
8022 void
8023 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
8024 {
8025 	ASSERT(hat != NULL);
8026 }
8027 
8028 /*
8029  * Return the number of mappings to a particular page.  This number is an
8030  * approximation of the number of people sharing the page.
8031  *
8032  * shared hmeblks or ism hmeblks are counted as 1 mapping here.
8033  * hat_page_checkshare() can be used to compare threshold to share
8034  * count that reflects the number of region sharers albeit at higher cost.
8035  */
8036 ulong_t
8037 hat_page_getshare(page_t *pp)
8038 {
8039 	page_t *spp = pp;	/* start page */
8040 	kmutex_t *pml;
8041 	ulong_t	cnt;
8042 	int index, sz = TTE64K;
8043 
8044 	/*
8045 	 * We need to grab the mlist lock to make sure any outstanding
8046 	 * load/unloads complete.  Otherwise we could return zero
8047 	 * even though the unload(s) hasn't finished yet.
8048 	 */
8049 	pml = sfmmu_mlist_enter(spp);
8050 	cnt = spp->p_share;
8051 
8052 #ifdef VAC
8053 	if (kpm_enable)
8054 		cnt += spp->p_kpmref;
8055 #endif
8056 	if (vpm_enable && pp->p_vpmref) {
8057 		cnt += 1;
8058 	}
8059 
8060 	/*
8061 	 * If we have any large mappings, we count the number of
8062 	 * mappings that this large page is part of.
8063 	 */
8064 	index = PP_MAPINDEX(spp);
8065 	index >>= 1;
8066 	while (index) {
8067 		pp = PP_GROUPLEADER(spp, sz);
8068 		if ((index & 0x1) && pp != spp) {
8069 			cnt += pp->p_share;
8070 			spp = pp;
8071 		}
8072 		index >>= 1;
8073 		sz++;
8074 	}
8075 	sfmmu_mlist_exit(pml);
8076 	return (cnt);
8077 }
8078 
8079 /*
8080  * Return 1 if the number of mappings exceeds sh_thresh. Return 0
8081  * otherwise. Count shared hmeblks by region's refcnt.
8082  */
8083 int
8084 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
8085 {
8086 	kmutex_t *pml;
8087 	ulong_t	cnt = 0;
8088 	int index, sz = TTE8K;
8089 	struct sf_hment *sfhme, *tmphme = NULL;
8090 	struct hme_blk *hmeblkp;
8091 
8092 	pml = sfmmu_mlist_enter(pp);
8093 
8094 #ifdef VAC
8095 	if (kpm_enable)
8096 		cnt = pp->p_kpmref;
8097 #endif
8098 
8099 	if (vpm_enable && pp->p_vpmref) {
8100 		cnt += 1;
8101 	}
8102 
8103 	if (pp->p_share + cnt > sh_thresh) {
8104 		sfmmu_mlist_exit(pml);
8105 		return (1);
8106 	}
8107 
8108 	index = PP_MAPINDEX(pp);
8109 
8110 again:
8111 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
8112 		tmphme = sfhme->hme_next;
8113 		if (IS_PAHME(sfhme)) {
8114 			continue;
8115 		}
8116 
8117 		hmeblkp = sfmmu_hmetohblk(sfhme);
8118 		if (hme_size(sfhme) != sz) {
8119 			continue;
8120 		}
8121 
8122 		if (hmeblkp->hblk_shared) {
8123 			sf_srd_t *srdp = hblktosrd(hmeblkp);
8124 			uint_t rid = hmeblkp->hblk_tag.htag_rid;
8125 			sf_region_t *rgnp;
8126 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8127 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8128 			ASSERT(srdp != NULL);
8129 			rgnp = srdp->srd_hmergnp[rid];
8130 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
8131 			    rgnp, rid);
8132 			cnt += rgnp->rgn_refcnt;
8133 		} else {
8134 			cnt++;
8135 		}
8136 		if (cnt > sh_thresh) {
8137 			sfmmu_mlist_exit(pml);
8138 			return (1);
8139 		}
8140 	}
8141 
8142 	index >>= 1;
8143 	sz++;
8144 	while (index) {
8145 		pp = PP_GROUPLEADER(pp, sz);
8146 		ASSERT(sfmmu_mlist_held(pp));
8147 		if (index & 0x1) {
8148 			goto again;
8149 		}
8150 		index >>= 1;
8151 		sz++;
8152 	}
8153 	sfmmu_mlist_exit(pml);
8154 	return (0);
8155 }
8156 
8157 /*
8158  * Unload all large mappings to the pp and reset the p_szc field of every
8159  * constituent page according to the remaining mappings.
8160  *
8161  * pp must be locked SE_EXCL. Even though no other constituent pages are
8162  * locked it's legal to unload the large mappings to the pp because all
8163  * constituent pages of large locked mappings have to be locked SE_SHARED.
8164  * This means if we have SE_EXCL lock on one of constituent pages none of the
8165  * large mappings to pp are locked.
8166  *
8167  * Decrease p_szc field starting from the last constituent page and ending
8168  * with the root page. This method is used because other threads rely on the
8169  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
8170  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
8171  * ensures that p_szc changes of the constituent pages appears atomic for all
8172  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
8173  *
8174  * This mechanism is only used for file system pages where it's not always
8175  * possible to get SE_EXCL locks on all constituent pages to demote the size
8176  * code (as is done for anonymous or kernel large pages).
8177  *
8178  * See more comments in front of sfmmu_mlspl_enter().
8179  */
8180 void
8181 hat_page_demote(page_t *pp)
8182 {
8183 	int index;
8184 	int sz;
8185 	cpuset_t cpuset;
8186 	int sync = 0;
8187 	page_t *rootpp;
8188 	struct sf_hment *sfhme;
8189 	struct sf_hment *tmphme = NULL;
8190 	uint_t pszc;
8191 	page_t *lastpp;
8192 	cpuset_t tset;
8193 	pgcnt_t npgs;
8194 	kmutex_t *pml;
8195 	kmutex_t *pmtx = NULL;
8196 
8197 	ASSERT(PAGE_EXCL(pp));
8198 	ASSERT(!PP_ISFREE(pp));
8199 	ASSERT(!PP_ISKAS(pp));
8200 	ASSERT(page_szc_lock_assert(pp));
8201 	pml = sfmmu_mlist_enter(pp);
8202 
8203 	pszc = pp->p_szc;
8204 	if (pszc == 0) {
8205 		goto out;
8206 	}
8207 
8208 	index = PP_MAPINDEX(pp) >> 1;
8209 
8210 	if (index) {
8211 		CPUSET_ZERO(cpuset);
8212 		sz = TTE64K;
8213 		sync = 1;
8214 	}
8215 
8216 	while (index) {
8217 		if (!(index & 0x1)) {
8218 			index >>= 1;
8219 			sz++;
8220 			continue;
8221 		}
8222 		ASSERT(sz <= pszc);
8223 		rootpp = PP_GROUPLEADER(pp, sz);
8224 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
8225 			tmphme = sfhme->hme_next;
8226 			ASSERT(!IS_PAHME(sfhme));
8227 			if (hme_size(sfhme) != sz) {
8228 				continue;
8229 			}
8230 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
8231 			CPUSET_OR(cpuset, tset);
8232 		}
8233 		if (index >>= 1) {
8234 			sz++;
8235 		}
8236 	}
8237 
8238 	ASSERT(!PP_ISMAPPED_LARGE(pp));
8239 
8240 	if (sync) {
8241 		xt_sync(cpuset);
8242 #ifdef VAC
8243 		if (PP_ISTNC(pp)) {
8244 			conv_tnc(rootpp, sz);
8245 		}
8246 #endif	/* VAC */
8247 	}
8248 
8249 	pmtx = sfmmu_page_enter(pp);
8250 
8251 	ASSERT(pp->p_szc == pszc);
8252 	rootpp = PP_PAGEROOT(pp);
8253 	ASSERT(rootpp->p_szc == pszc);
8254 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
8255 
8256 	while (lastpp != rootpp) {
8257 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
8258 		ASSERT(sz < pszc);
8259 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
8260 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
8261 		while (--npgs > 0) {
8262 			lastpp->p_szc = (uchar_t)sz;
8263 			lastpp = PP_PAGEPREV(lastpp);
8264 		}
8265 		if (sz) {
8266 			/*
8267 			 * make sure before current root's pszc
8268 			 * is updated all updates to constituent pages pszc
8269 			 * fields are globally visible.
8270 			 */
8271 			membar_producer();
8272 		}
8273 		lastpp->p_szc = sz;
8274 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
8275 		if (lastpp != rootpp) {
8276 			lastpp = PP_PAGEPREV(lastpp);
8277 		}
8278 	}
8279 	if (sz == 0) {
8280 		/* the loop above doesn't cover this case */
8281 		rootpp->p_szc = 0;
8282 	}
8283 out:
8284 	ASSERT(pp->p_szc == 0);
8285 	if (pmtx != NULL) {
8286 		sfmmu_page_exit(pmtx);
8287 	}
8288 	sfmmu_mlist_exit(pml);
8289 }
8290 
8291 /*
8292  * Refresh the HAT ismttecnt[] element for size szc.
8293  * Caller must have set ISM busy flag to prevent mapping
8294  * lists from changing while we're traversing them.
8295  */
8296 pgcnt_t
8297 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
8298 {
8299 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
8300 	ism_map_t	*ism_map;
8301 	pgcnt_t		npgs = 0;
8302 	pgcnt_t		npgs_scd = 0;
8303 	int		j;
8304 	sf_scd_t	*scdp;
8305 	uchar_t		rid;
8306 
8307 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
8308 	scdp = sfmmup->sfmmu_scdp;
8309 
8310 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
8311 		ism_map = ism_blkp->iblk_maps;
8312 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) {
8313 			rid = ism_map[j].imap_rid;
8314 			ASSERT(rid == SFMMU_INVALID_ISMRID ||
8315 			    rid < sfmmup->sfmmu_srdp->srd_next_ismrid);
8316 
8317 			if (scdp != NULL && rid != SFMMU_INVALID_ISMRID &&
8318 			    SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
8319 				/* ISM is in sfmmup's SCD */
8320 				npgs_scd +=
8321 				    ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8322 			} else {
8323 				/* ISMs is not in SCD */
8324 				npgs +=
8325 				    ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8326 			}
8327 		}
8328 	}
8329 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
8330 	sfmmup->sfmmu_scdismttecnt[szc] = npgs_scd;
8331 	return (npgs);
8332 }
8333 
8334 /*
8335  * Yield the memory claim requirement for an address space.
8336  *
8337  * This is currently implemented as the number of bytes that have active
8338  * hardware translations that have page structures.  Therefore, it can
8339  * underestimate the traditional resident set size, eg, if the
8340  * physical page is present and the hardware translation is missing;
8341  * and it can overestimate the rss, eg, if there are active
8342  * translations to a frame buffer with page structs.
8343  * Also, it does not take sharing into account.
8344  *
8345  * Note that we don't acquire locks here since this function is most often
8346  * called from the clock thread.
8347  */
8348 size_t
8349 hat_get_mapped_size(struct hat *hat)
8350 {
8351 	size_t		assize = 0;
8352 	int		i;
8353 
8354 	if (hat == NULL)
8355 		return (0);
8356 
8357 	for (i = 0; i < mmu_page_sizes; i++)
8358 		assize += ((pgcnt_t)hat->sfmmu_ttecnt[i] +
8359 		    (pgcnt_t)hat->sfmmu_scdrttecnt[i]) * TTEBYTES(i);
8360 
8361 	if (hat->sfmmu_iblk == NULL)
8362 		return (assize);
8363 
8364 	for (i = 0; i < mmu_page_sizes; i++)
8365 		assize += ((pgcnt_t)hat->sfmmu_ismttecnt[i] +
8366 		    (pgcnt_t)hat->sfmmu_scdismttecnt[i]) * TTEBYTES(i);
8367 
8368 	return (assize);
8369 }
8370 
8371 int
8372 hat_stats_enable(struct hat *hat)
8373 {
8374 	hatlock_t	*hatlockp;
8375 
8376 	hatlockp = sfmmu_hat_enter(hat);
8377 	hat->sfmmu_rmstat++;
8378 	sfmmu_hat_exit(hatlockp);
8379 	return (1);
8380 }
8381 
8382 void
8383 hat_stats_disable(struct hat *hat)
8384 {
8385 	hatlock_t	*hatlockp;
8386 
8387 	hatlockp = sfmmu_hat_enter(hat);
8388 	hat->sfmmu_rmstat--;
8389 	sfmmu_hat_exit(hatlockp);
8390 }
8391 
8392 /*
8393  * Routines for entering or removing  ourselves from the
8394  * ism_hat's mapping list. This is used for both private and
8395  * SCD hats.
8396  */
8397 static void
8398 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
8399 {
8400 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
8401 
8402 	iment->iment_prev = NULL;
8403 	iment->iment_next = ism_hat->sfmmu_iment;
8404 	if (ism_hat->sfmmu_iment) {
8405 		ism_hat->sfmmu_iment->iment_prev = iment;
8406 	}
8407 	ism_hat->sfmmu_iment = iment;
8408 }
8409 
8410 static void
8411 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
8412 {
8413 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
8414 
8415 	if (ism_hat->sfmmu_iment == NULL) {
8416 		panic("ism map entry remove - no entries");
8417 	}
8418 
8419 	if (iment->iment_prev) {
8420 		ASSERT(ism_hat->sfmmu_iment != iment);
8421 		iment->iment_prev->iment_next = iment->iment_next;
8422 	} else {
8423 		ASSERT(ism_hat->sfmmu_iment == iment);
8424 		ism_hat->sfmmu_iment = iment->iment_next;
8425 	}
8426 
8427 	if (iment->iment_next) {
8428 		iment->iment_next->iment_prev = iment->iment_prev;
8429 	}
8430 
8431 	/*
8432 	 * zero out the entry
8433 	 */
8434 	iment->iment_next = NULL;
8435 	iment->iment_prev = NULL;
8436 	iment->iment_hat =  NULL;
8437 	iment->iment_base_va = 0;
8438 }
8439 
8440 /*
8441  * Hat_share()/unshare() return an (non-zero) error
8442  * when saddr and daddr are not properly aligned.
8443  *
8444  * The top level mapping element determines the alignment
8445  * requirement for saddr and daddr, depending on different
8446  * architectures.
8447  *
8448  * When hat_share()/unshare() are not supported,
8449  * HATOP_SHARE()/UNSHARE() return 0
8450  */
8451 int
8452 hat_share(struct hat *sfmmup, caddr_t addr, struct hat *ism_hatid,
8453     caddr_t sptaddr, size_t len, uint_t ismszc)
8454 {
8455 	ism_blk_t	*ism_blkp;
8456 	ism_blk_t	*new_iblk;
8457 	ism_map_t	*ism_map;
8458 	ism_ment_t	*ism_ment;
8459 	int		i, added;
8460 	hatlock_t	*hatlockp;
8461 	int		reload_mmu = 0;
8462 	uint_t		ismshift = page_get_shift(ismszc);
8463 	size_t		ismpgsz = page_get_pagesize(ismszc);
8464 	uint_t		ismmask = (uint_t)ismpgsz - 1;
8465 	size_t		sh_size = ISM_SHIFT(ismshift, len);
8466 	ushort_t	ismhatflag;
8467 	hat_region_cookie_t rcookie;
8468 	sf_scd_t	*old_scdp;
8469 
8470 #ifdef DEBUG
8471 	caddr_t		eaddr = addr + len;
8472 #endif /* DEBUG */
8473 
8474 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
8475 	ASSERT(sptaddr == ISMID_STARTADDR);
8476 	/*
8477 	 * Check the alignment.
8478 	 */
8479 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
8480 		return (EINVAL);
8481 
8482 	/*
8483 	 * Check size alignment.
8484 	 */
8485 	if (!ISM_ALIGNED(ismshift, len))
8486 		return (EINVAL);
8487 
8488 	/*
8489 	 * Allocate ism_ment for the ism_hat's mapping list, and an
8490 	 * ism map blk in case we need one.  We must do our
8491 	 * allocations before acquiring locks to prevent a deadlock
8492 	 * in the kmem allocator on the mapping list lock.
8493 	 */
8494 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
8495 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
8496 
8497 	/*
8498 	 * Serialize ISM mappings with the ISM busy flag, and also the
8499 	 * trap handlers.
8500 	 */
8501 	sfmmu_ismhat_enter(sfmmup, 0);
8502 
8503 	/*
8504 	 * Allocate an ism map blk if necessary.
8505 	 */
8506 	if (sfmmup->sfmmu_iblk == NULL) {
8507 		sfmmup->sfmmu_iblk = new_iblk;
8508 		bzero(new_iblk, sizeof (*new_iblk));
8509 		new_iblk->iblk_nextpa = (uint64_t)-1;
8510 		membar_stst();	/* make sure next ptr visible to all CPUs */
8511 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
8512 		reload_mmu = 1;
8513 		new_iblk = NULL;
8514 	}
8515 
8516 #ifdef DEBUG
8517 	/*
8518 	 * Make sure mapping does not already exist.
8519 	 */
8520 	ism_blkp = sfmmup->sfmmu_iblk;
8521 	while (ism_blkp != NULL) {
8522 		ism_map = ism_blkp->iblk_maps;
8523 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
8524 			if ((addr >= ism_start(ism_map[i]) &&
8525 			    addr < ism_end(ism_map[i])) ||
8526 			    eaddr > ism_start(ism_map[i]) &&
8527 			    eaddr <= ism_end(ism_map[i])) {
8528 				panic("sfmmu_share: Already mapped!");
8529 			}
8530 		}
8531 		ism_blkp = ism_blkp->iblk_next;
8532 	}
8533 #endif /* DEBUG */
8534 
8535 	ASSERT(ismszc >= TTE4M);
8536 	if (ismszc == TTE4M) {
8537 		ismhatflag = HAT_4M_FLAG;
8538 	} else if (ismszc == TTE32M) {
8539 		ismhatflag = HAT_32M_FLAG;
8540 	} else if (ismszc == TTE256M) {
8541 		ismhatflag = HAT_256M_FLAG;
8542 	}
8543 	/*
8544 	 * Add mapping to first available mapping slot.
8545 	 */
8546 	ism_blkp = sfmmup->sfmmu_iblk;
8547 	added = 0;
8548 	while (!added) {
8549 		ism_map = ism_blkp->iblk_maps;
8550 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
8551 			if (ism_map[i].imap_ismhat == NULL) {
8552 
8553 				ism_map[i].imap_ismhat = ism_hatid;
8554 				ism_map[i].imap_vb_shift = (uchar_t)ismshift;
8555 				ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8556 				ism_map[i].imap_hatflags = ismhatflag;
8557 				ism_map[i].imap_sz_mask = ismmask;
8558 				/*
8559 				 * imap_seg is checked in ISM_CHECK to see if
8560 				 * non-NULL, then other info assumed valid.
8561 				 */
8562 				membar_stst();
8563 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
8564 				ism_map[i].imap_ment = ism_ment;
8565 
8566 				/*
8567 				 * Now add ourselves to the ism_hat's
8568 				 * mapping list.
8569 				 */
8570 				ism_ment->iment_hat = sfmmup;
8571 				ism_ment->iment_base_va = addr;
8572 				ism_hatid->sfmmu_ismhat = 1;
8573 				mutex_enter(&ism_mlist_lock);
8574 				iment_add(ism_ment, ism_hatid);
8575 				mutex_exit(&ism_mlist_lock);
8576 				added = 1;
8577 				break;
8578 			}
8579 		}
8580 		if (!added && ism_blkp->iblk_next == NULL) {
8581 			ism_blkp->iblk_next = new_iblk;
8582 			new_iblk = NULL;
8583 			bzero(ism_blkp->iblk_next,
8584 			    sizeof (*ism_blkp->iblk_next));
8585 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
8586 			membar_stst();
8587 			ism_blkp->iblk_nextpa =
8588 			    va_to_pa((caddr_t)ism_blkp->iblk_next);
8589 		}
8590 		ism_blkp = ism_blkp->iblk_next;
8591 	}
8592 
8593 	/*
8594 	 * After calling hat_join_region, sfmmup may join a new SCD or
8595 	 * move from the old scd to a new scd, in which case, we want to
8596 	 * shrink the sfmmup's private tsb size, i.e., pass shrink to
8597 	 * sfmmu_check_page_sizes at the end of this routine.
8598 	 */
8599 	old_scdp = sfmmup->sfmmu_scdp;
8600 
8601 	rcookie = hat_join_region(sfmmup, addr, len, (void *)ism_hatid, 0,
8602 	    PROT_ALL, ismszc, NULL, HAT_REGION_ISM);
8603 	if (rcookie != HAT_INVALID_REGION_COOKIE) {
8604 		ism_map[i].imap_rid = (uchar_t)((uint64_t)rcookie);
8605 	}
8606 	/*
8607 	 * Update our counters for this sfmmup's ism mappings.
8608 	 */
8609 	for (i = 0; i <= ismszc; i++) {
8610 		if (!(disable_ism_large_pages & (1 << i)))
8611 			(void) ism_tsb_entries(sfmmup, i);
8612 	}
8613 
8614 	/*
8615 	 * For ISM and DISM we do not support 512K pages, so we only only
8616 	 * search the 4M and 8K/64K hashes for 4 pagesize cpus, and search the
8617 	 * 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
8618 	 *
8619 	 * Need to set 32M/256M ISM flags to make sure
8620 	 * sfmmu_check_page_sizes() enables them on Panther.
8621 	 */
8622 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
8623 
8624 	switch (ismszc) {
8625 	case TTE256M:
8626 		if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_ISM)) {
8627 			hatlockp = sfmmu_hat_enter(sfmmup);
8628 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_ISM);
8629 			sfmmu_hat_exit(hatlockp);
8630 		}
8631 		break;
8632 	case TTE32M:
8633 		if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_ISM)) {
8634 			hatlockp = sfmmu_hat_enter(sfmmup);
8635 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_ISM);
8636 			sfmmu_hat_exit(hatlockp);
8637 		}
8638 		break;
8639 	default:
8640 		break;
8641 	}
8642 
8643 	/*
8644 	 * If we updated the ismblkpa for this HAT we must make
8645 	 * sure all CPUs running this process reload their tsbmiss area.
8646 	 * Otherwise they will fail to load the mappings in the tsbmiss
8647 	 * handler and will loop calling pagefault().
8648 	 */
8649 	if (reload_mmu) {
8650 		hatlockp = sfmmu_hat_enter(sfmmup);
8651 		sfmmu_sync_mmustate(sfmmup);
8652 		sfmmu_hat_exit(hatlockp);
8653 	}
8654 
8655 	sfmmu_ismhat_exit(sfmmup, 0);
8656 
8657 	/*
8658 	 * Free up ismblk if we didn't use it.
8659 	 */
8660 	if (new_iblk != NULL)
8661 		kmem_cache_free(ism_blk_cache, new_iblk);
8662 
8663 	/*
8664 	 * Check TSB and TLB page sizes.
8665 	 */
8666 	if (sfmmup->sfmmu_scdp != NULL && old_scdp != sfmmup->sfmmu_scdp) {
8667 		sfmmu_check_page_sizes(sfmmup, 0);
8668 	} else {
8669 		sfmmu_check_page_sizes(sfmmup, 1);
8670 	}
8671 	return (0);
8672 }
8673 
8674 /*
8675  * hat_unshare removes exactly one ism_map from
8676  * this process's as.  It expects multiple calls
8677  * to hat_unshare for multiple shm segments.
8678  */
8679 void
8680 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
8681 {
8682 	ism_map_t	*ism_map;
8683 	ism_ment_t	*free_ment = NULL;
8684 	ism_blk_t	*ism_blkp;
8685 	struct hat	*ism_hatid;
8686 	int		found, i;
8687 	hatlock_t	*hatlockp;
8688 	struct tsb_info	*tsbinfo;
8689 	uint_t		ismshift = page_get_shift(ismszc);
8690 	size_t		sh_size = ISM_SHIFT(ismshift, len);
8691 	uchar_t		ism_rid;
8692 	sf_scd_t	*old_scdp;
8693 
8694 	ASSERT(ISM_ALIGNED(ismshift, addr));
8695 	ASSERT(ISM_ALIGNED(ismshift, len));
8696 	ASSERT(sfmmup != NULL);
8697 	ASSERT(sfmmup != ksfmmup);
8698 
8699 	ASSERT(sfmmup->sfmmu_as != NULL);
8700 
8701 	/*
8702 	 * Make sure that during the entire time ISM mappings are removed,
8703 	 * the trap handlers serialize behind us, and that no one else
8704 	 * can be mucking with ISM mappings.  This also lets us get away
8705 	 * with not doing expensive cross calls to flush the TLB -- we
8706 	 * just discard the context, flush the entire TSB, and call it
8707 	 * a day.
8708 	 */
8709 	sfmmu_ismhat_enter(sfmmup, 0);
8710 
8711 	/*
8712 	 * Remove the mapping.
8713 	 *
8714 	 * We can't have any holes in the ism map.
8715 	 * The tsb miss code while searching the ism map will
8716 	 * stop on an empty map slot.  So we must move
8717 	 * everyone past the hole up 1 if any.
8718 	 *
8719 	 * Also empty ism map blks are not freed until the
8720 	 * process exits. This is to prevent a MT race condition
8721 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
8722 	 */
8723 	found = 0;
8724 	ism_blkp = sfmmup->sfmmu_iblk;
8725 	while (!found && ism_blkp != NULL) {
8726 		ism_map = ism_blkp->iblk_maps;
8727 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
8728 			if (addr == ism_start(ism_map[i]) &&
8729 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
8730 				found = 1;
8731 				break;
8732 			}
8733 		}
8734 		if (!found)
8735 			ism_blkp = ism_blkp->iblk_next;
8736 	}
8737 
8738 	if (found) {
8739 		ism_hatid = ism_map[i].imap_ismhat;
8740 		ism_rid = ism_map[i].imap_rid;
8741 		ASSERT(ism_hatid != NULL);
8742 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
8743 
8744 		/*
8745 		 * After hat_leave_region, the sfmmup may leave SCD,
8746 		 * in which case, we want to grow the private tsb size when
8747 		 * calling sfmmu_check_page_sizes at the end of the routine.
8748 		 */
8749 		old_scdp = sfmmup->sfmmu_scdp;
8750 		/*
8751 		 * Then remove ourselves from the region.
8752 		 */
8753 		if (ism_rid != SFMMU_INVALID_ISMRID) {
8754 			hat_leave_region(sfmmup, (void *)((uint64_t)ism_rid),
8755 			    HAT_REGION_ISM);
8756 		}
8757 
8758 		/*
8759 		 * And now guarantee that any other cpu
8760 		 * that tries to process an ISM miss
8761 		 * will go to tl=0.
8762 		 */
8763 		hatlockp = sfmmu_hat_enter(sfmmup);
8764 		sfmmu_invalidate_ctx(sfmmup);
8765 		sfmmu_hat_exit(hatlockp);
8766 
8767 		/*
8768 		 * Remove ourselves from the ism mapping list.
8769 		 */
8770 		mutex_enter(&ism_mlist_lock);
8771 		iment_sub(ism_map[i].imap_ment, ism_hatid);
8772 		mutex_exit(&ism_mlist_lock);
8773 		free_ment = ism_map[i].imap_ment;
8774 
8775 		/*
8776 		 * We delete the ism map by copying
8777 		 * the next map over the current one.
8778 		 * We will take the next one in the maps
8779 		 * array or from the next ism_blk.
8780 		 */
8781 		while (ism_blkp != NULL) {
8782 			ism_map = ism_blkp->iblk_maps;
8783 			while (i < (ISM_MAP_SLOTS - 1)) {
8784 				ism_map[i] = ism_map[i + 1];
8785 				i++;
8786 			}
8787 			/* i == (ISM_MAP_SLOTS - 1) */
8788 			ism_blkp = ism_blkp->iblk_next;
8789 			if (ism_blkp != NULL) {
8790 				ism_map[i] = ism_blkp->iblk_maps[0];
8791 				i = 0;
8792 			} else {
8793 				ism_map[i].imap_seg = 0;
8794 				ism_map[i].imap_vb_shift = 0;
8795 				ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8796 				ism_map[i].imap_hatflags = 0;
8797 				ism_map[i].imap_sz_mask = 0;
8798 				ism_map[i].imap_ismhat = NULL;
8799 				ism_map[i].imap_ment = NULL;
8800 			}
8801 		}
8802 
8803 		/*
8804 		 * Now flush entire TSB for the process, since
8805 		 * demapping page by page can be too expensive.
8806 		 * We don't have to flush the TLB here anymore
8807 		 * since we switch to a new TLB ctx instead.
8808 		 * Also, there is no need to flush if the process
8809 		 * is exiting since the TSB will be freed later.
8810 		 */
8811 		if (!sfmmup->sfmmu_free) {
8812 			hatlockp = sfmmu_hat_enter(sfmmup);
8813 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
8814 			    tsbinfo = tsbinfo->tsb_next) {
8815 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
8816 					continue;
8817 				if (tsbinfo->tsb_flags & TSB_RELOC_FLAG) {
8818 					tsbinfo->tsb_flags |=
8819 					    TSB_FLUSH_NEEDED;
8820 					continue;
8821 				}
8822 
8823 				sfmmu_inv_tsb(tsbinfo->tsb_va,
8824 				    TSB_BYTES(tsbinfo->tsb_szc));
8825 			}
8826 			sfmmu_hat_exit(hatlockp);
8827 		}
8828 	}
8829 
8830 	/*
8831 	 * Update our counters for this sfmmup's ism mappings.
8832 	 */
8833 	for (i = 0; i <= ismszc; i++) {
8834 		if (!(disable_ism_large_pages & (1 << i)))
8835 			(void) ism_tsb_entries(sfmmup, i);
8836 	}
8837 
8838 	sfmmu_ismhat_exit(sfmmup, 0);
8839 
8840 	/*
8841 	 * We must do our freeing here after dropping locks
8842 	 * to prevent a deadlock in the kmem allocator on the
8843 	 * mapping list lock.
8844 	 */
8845 	if (free_ment != NULL)
8846 		kmem_cache_free(ism_ment_cache, free_ment);
8847 
8848 	/*
8849 	 * Check TSB and TLB page sizes if the process isn't exiting.
8850 	 */
8851 	if (!sfmmup->sfmmu_free) {
8852 		if (found && old_scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
8853 			sfmmu_check_page_sizes(sfmmup, 1);
8854 		} else {
8855 			sfmmu_check_page_sizes(sfmmup, 0);
8856 		}
8857 	}
8858 }
8859 
8860 /* ARGSUSED */
8861 static int
8862 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8863 {
8864 	/* void *buf is sfmmu_t pointer */
8865 	bzero(buf, sizeof (sfmmu_t));
8866 
8867 	return (0);
8868 }
8869 
8870 /* ARGSUSED */
8871 static void
8872 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8873 {
8874 	/* void *buf is sfmmu_t pointer */
8875 }
8876 
8877 /*
8878  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8879  * field to be the pa of this hmeblk
8880  */
8881 /* ARGSUSED */
8882 static int
8883 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8884 {
8885 	struct hme_blk *hmeblkp;
8886 
8887 	bzero(buf, (size_t)cdrarg);
8888 	hmeblkp = (struct hme_blk *)buf;
8889 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8890 
8891 #ifdef	HBLK_TRACE
8892 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8893 #endif	/* HBLK_TRACE */
8894 
8895 	return (0);
8896 }
8897 
8898 /* ARGSUSED */
8899 static void
8900 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8901 {
8902 
8903 #ifdef	HBLK_TRACE
8904 
8905 	struct hme_blk *hmeblkp;
8906 
8907 	hmeblkp = (struct hme_blk *)buf;
8908 	mutex_destroy(&hmeblkp->hblk_audit_lock);
8909 
8910 #endif	/* HBLK_TRACE */
8911 }
8912 
8913 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8914 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8915 /*
8916  * The kmem allocator will callback into our reclaim routine when the system
8917  * is running low in memory.  We traverse the hash and free up all unused but
8918  * still cached hme_blks.  We also traverse the free list and free them up
8919  * as well.
8920  */
8921 /*ARGSUSED*/
8922 static void
8923 sfmmu_hblkcache_reclaim(void *cdrarg)
8924 {
8925 	int i;
8926 	struct hmehash_bucket *hmebp;
8927 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
8928 	static struct hmehash_bucket *uhmehash_reclaim_hand;
8929 	static struct hmehash_bucket *khmehash_reclaim_hand;
8930 	struct hme_blk *list = NULL, *last_hmeblkp;
8931 	cpuset_t cpuset = cpu_ready_set;
8932 	cpu_hme_pend_t *cpuhp;
8933 
8934 	/* Free up hmeblks on the cpu pending lists */
8935 	for (i = 0; i < NCPU; i++) {
8936 		cpuhp = &cpu_hme_pend[i];
8937 		if (cpuhp->chp_listp != NULL)  {
8938 			mutex_enter(&cpuhp->chp_mutex);
8939 			if (cpuhp->chp_listp == NULL) {
8940 				mutex_exit(&cpuhp->chp_mutex);
8941 				continue;
8942 			}
8943 			for (last_hmeblkp = cpuhp->chp_listp;
8944 			    last_hmeblkp->hblk_next != NULL;
8945 			    last_hmeblkp = last_hmeblkp->hblk_next)
8946 				;
8947 			last_hmeblkp->hblk_next = list;
8948 			list = cpuhp->chp_listp;
8949 			cpuhp->chp_listp = NULL;
8950 			cpuhp->chp_count = 0;
8951 			mutex_exit(&cpuhp->chp_mutex);
8952 		}
8953 
8954 	}
8955 
8956 	if (list != NULL) {
8957 		kpreempt_disable();
8958 		CPUSET_DEL(cpuset, CPU->cpu_id);
8959 		xt_sync(cpuset);
8960 		xt_sync(cpuset);
8961 		kpreempt_enable();
8962 		sfmmu_hblk_free(&list);
8963 		list = NULL;
8964 	}
8965 
8966 	hmebp = uhmehash_reclaim_hand;
8967 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
8968 		uhmehash_reclaim_hand = hmebp = uhme_hash;
8969 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8970 
8971 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8972 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8973 			hmeblkp = hmebp->hmeblkp;
8974 			pr_hblk = NULL;
8975 			while (hmeblkp) {
8976 				nx_hblk = hmeblkp->hblk_next;
8977 				if (!hmeblkp->hblk_vcnt &&
8978 				    !hmeblkp->hblk_hmecnt) {
8979 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8980 					    pr_hblk, &list, 0);
8981 				} else {
8982 					pr_hblk = hmeblkp;
8983 				}
8984 				hmeblkp = nx_hblk;
8985 			}
8986 			SFMMU_HASH_UNLOCK(hmebp);
8987 		}
8988 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
8989 			hmebp = uhme_hash;
8990 	}
8991 
8992 	hmebp = khmehash_reclaim_hand;
8993 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
8994 		khmehash_reclaim_hand = hmebp = khme_hash;
8995 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8996 
8997 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8998 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8999 			hmeblkp = hmebp->hmeblkp;
9000 			pr_hblk = NULL;
9001 			while (hmeblkp) {
9002 				nx_hblk = hmeblkp->hblk_next;
9003 				if (!hmeblkp->hblk_vcnt &&
9004 				    !hmeblkp->hblk_hmecnt) {
9005 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9006 					    pr_hblk, &list, 0);
9007 				} else {
9008 					pr_hblk = hmeblkp;
9009 				}
9010 				hmeblkp = nx_hblk;
9011 			}
9012 			SFMMU_HASH_UNLOCK(hmebp);
9013 		}
9014 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
9015 			hmebp = khme_hash;
9016 	}
9017 	sfmmu_hblks_list_purge(&list, 0);
9018 }
9019 
9020 /*
9021  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
9022  * same goes for sfmmu_get_addrvcolor().
9023  *
9024  * This function will return the virtual color for the specified page. The
9025  * virtual color corresponds to this page current mapping or its last mapping.
9026  * It is used by memory allocators to choose addresses with the correct
9027  * alignment so vac consistency is automatically maintained.  If the page
9028  * has no color it returns -1.
9029  */
9030 /*ARGSUSED*/
9031 int
9032 sfmmu_get_ppvcolor(struct page *pp)
9033 {
9034 #ifdef VAC
9035 	int color;
9036 
9037 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
9038 		return (-1);
9039 	}
9040 	color = PP_GET_VCOLOR(pp);
9041 	ASSERT(color < mmu_btop(shm_alignment));
9042 	return (color);
9043 #else
9044 	return (-1);
9045 #endif	/* VAC */
9046 }
9047 
9048 /*
9049  * This function will return the desired alignment for vac consistency
9050  * (vac color) given a virtual address.  If no vac is present it returns -1.
9051  */
9052 /*ARGSUSED*/
9053 int
9054 sfmmu_get_addrvcolor(caddr_t vaddr)
9055 {
9056 #ifdef VAC
9057 	if (cache & CACHE_VAC) {
9058 		return (addr_to_vcolor(vaddr));
9059 	} else {
9060 		return (-1);
9061 	}
9062 #else
9063 	return (-1);
9064 #endif	/* VAC */
9065 }
9066 
9067 #ifdef VAC
9068 /*
9069  * Check for conflicts.
9070  * A conflict exists if the new and existent mappings do not match in
9071  * their "shm_alignment fields. If conflicts exist, the existant mappings
9072  * are flushed unless one of them is locked. If one of them is locked, then
9073  * the mappings are flushed and converted to non-cacheable mappings.
9074  */
9075 static void
9076 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
9077 {
9078 	struct hat *tmphat;
9079 	struct sf_hment *sfhmep, *tmphme = NULL;
9080 	struct hme_blk *hmeblkp;
9081 	int vcolor;
9082 	tte_t tte;
9083 
9084 	ASSERT(sfmmu_mlist_held(pp));
9085 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
9086 
9087 	vcolor = addr_to_vcolor(addr);
9088 	if (PP_NEWPAGE(pp)) {
9089 		PP_SET_VCOLOR(pp, vcolor);
9090 		return;
9091 	}
9092 
9093 	if (PP_GET_VCOLOR(pp) == vcolor) {
9094 		return;
9095 	}
9096 
9097 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
9098 		/*
9099 		 * Previous user of page had a different color
9100 		 * but since there are no current users
9101 		 * we just flush the cache and change the color.
9102 		 */
9103 		SFMMU_STAT(sf_pgcolor_conflict);
9104 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9105 		PP_SET_VCOLOR(pp, vcolor);
9106 		return;
9107 	}
9108 
9109 	/*
9110 	 * If we get here we have a vac conflict with a current
9111 	 * mapping.  VAC conflict policy is as follows.
9112 	 * - The default is to unload the other mappings unless:
9113 	 * - If we have a large mapping we uncache the page.
9114 	 * We need to uncache the rest of the large page too.
9115 	 * - If any of the mappings are locked we uncache the page.
9116 	 * - If the requested mapping is inconsistent
9117 	 * with another mapping and that mapping
9118 	 * is in the same address space we have to
9119 	 * make it non-cached.  The default thing
9120 	 * to do is unload the inconsistent mapping
9121 	 * but if they are in the same address space
9122 	 * we run the risk of unmapping the pc or the
9123 	 * stack which we will use as we return to the user,
9124 	 * in which case we can then fault on the thing
9125 	 * we just unloaded and get into an infinite loop.
9126 	 */
9127 	if (PP_ISMAPPED_LARGE(pp)) {
9128 		int sz;
9129 
9130 		/*
9131 		 * Existing mapping is for big pages. We don't unload
9132 		 * existing big mappings to satisfy new mappings.
9133 		 * Always convert all mappings to TNC.
9134 		 */
9135 		sz = fnd_mapping_sz(pp);
9136 		pp = PP_GROUPLEADER(pp, sz);
9137 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
9138 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
9139 		    TTEPAGES(sz));
9140 
9141 		return;
9142 	}
9143 
9144 	/*
9145 	 * check if any mapping is in same as or if it is locked
9146 	 * since in that case we need to uncache.
9147 	 */
9148 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9149 		tmphme = sfhmep->hme_next;
9150 		if (IS_PAHME(sfhmep))
9151 			continue;
9152 		hmeblkp = sfmmu_hmetohblk(sfhmep);
9153 		tmphat = hblktosfmmu(hmeblkp);
9154 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
9155 		ASSERT(TTE_IS_VALID(&tte));
9156 		if (hmeblkp->hblk_shared || tmphat == hat ||
9157 		    hmeblkp->hblk_lckcnt) {
9158 			/*
9159 			 * We have an uncache conflict
9160 			 */
9161 			SFMMU_STAT(sf_uncache_conflict);
9162 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
9163 			return;
9164 		}
9165 	}
9166 
9167 	/*
9168 	 * We have an unload conflict
9169 	 * We have already checked for LARGE mappings, therefore
9170 	 * the remaining mapping(s) must be TTE8K.
9171 	 */
9172 	SFMMU_STAT(sf_unload_conflict);
9173 
9174 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9175 		tmphme = sfhmep->hme_next;
9176 		if (IS_PAHME(sfhmep))
9177 			continue;
9178 		hmeblkp = sfmmu_hmetohblk(sfhmep);
9179 		ASSERT(!hmeblkp->hblk_shared);
9180 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
9181 	}
9182 
9183 	if (PP_ISMAPPED_KPM(pp))
9184 		sfmmu_kpm_vac_unload(pp, addr);
9185 
9186 	/*
9187 	 * Unloads only do TLB flushes so we need to flush the
9188 	 * cache here.
9189 	 */
9190 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9191 	PP_SET_VCOLOR(pp, vcolor);
9192 }
9193 
9194 /*
9195  * Whenever a mapping is unloaded and the page is in TNC state,
9196  * we see if the page can be made cacheable again. 'pp' is
9197  * the page that we just unloaded a mapping from, the size
9198  * of mapping that was unloaded is 'ottesz'.
9199  * Remark:
9200  * The recache policy for mpss pages can leave a performance problem
9201  * under the following circumstances:
9202  * . A large page in uncached mode has just been unmapped.
9203  * . All constituent pages are TNC due to a conflicting small mapping.
9204  * . There are many other, non conflicting, small mappings around for
9205  *   a lot of the constituent pages.
9206  * . We're called w/ the "old" groupleader page and the old ottesz,
9207  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
9208  *   we end up w/ TTE8K or npages == 1.
9209  * . We call tst_tnc w/ the old groupleader only, and if there is no
9210  *   conflict, we re-cache only this page.
9211  * . All other small mappings are not checked and will be left in TNC mode.
9212  * The problem is not very serious because:
9213  * . mpss is actually only defined for heap and stack, so the probability
9214  *   is not very high that a large page mapping exists in parallel to a small
9215  *   one (this is possible, but seems to be bad programming style in the
9216  *   appl).
9217  * . The problem gets a little bit more serious, when those TNC pages
9218  *   have to be mapped into kernel space, e.g. for networking.
9219  * . When VAC alias conflicts occur in applications, this is regarded
9220  *   as an application bug. So if kstat's show them, the appl should
9221  *   be changed anyway.
9222  */
9223 void
9224 conv_tnc(page_t *pp, int ottesz)
9225 {
9226 	int cursz, dosz;
9227 	pgcnt_t curnpgs, dopgs;
9228 	pgcnt_t pg64k;
9229 	page_t *pp2;
9230 
9231 	/*
9232 	 * Determine how big a range we check for TNC and find
9233 	 * leader page. cursz is the size of the biggest
9234 	 * mapping that still exist on 'pp'.
9235 	 */
9236 	if (PP_ISMAPPED_LARGE(pp)) {
9237 		cursz = fnd_mapping_sz(pp);
9238 	} else {
9239 		cursz = TTE8K;
9240 	}
9241 
9242 	if (ottesz >= cursz) {
9243 		dosz = ottesz;
9244 		pp2 = pp;
9245 	} else {
9246 		dosz = cursz;
9247 		pp2 = PP_GROUPLEADER(pp, dosz);
9248 	}
9249 
9250 	pg64k = TTEPAGES(TTE64K);
9251 	dopgs = TTEPAGES(dosz);
9252 
9253 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
9254 
9255 	while (dopgs != 0) {
9256 		curnpgs = TTEPAGES(cursz);
9257 		if (tst_tnc(pp2, curnpgs)) {
9258 			SFMMU_STAT_ADD(sf_recache, curnpgs);
9259 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
9260 			    curnpgs);
9261 		}
9262 
9263 		ASSERT(dopgs >= curnpgs);
9264 		dopgs -= curnpgs;
9265 
9266 		if (dopgs == 0) {
9267 			break;
9268 		}
9269 
9270 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
9271 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
9272 			cursz = fnd_mapping_sz(pp2);
9273 		} else {
9274 			cursz = TTE8K;
9275 		}
9276 	}
9277 }
9278 
9279 /*
9280  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
9281  * returns 0 otherwise. Note that oaddr argument is valid for only
9282  * 8k pages.
9283  */
9284 int
9285 tst_tnc(page_t *pp, pgcnt_t npages)
9286 {
9287 	struct	sf_hment *sfhme;
9288 	struct	hme_blk *hmeblkp;
9289 	tte_t	tte;
9290 	caddr_t	vaddr;
9291 	int	clr_valid = 0;
9292 	int	color, color1, bcolor;
9293 	int	i, ncolors;
9294 
9295 	ASSERT(pp != NULL);
9296 	ASSERT(!(cache & CACHE_WRITEBACK));
9297 
9298 	if (npages > 1) {
9299 		ncolors = CACHE_NUM_COLOR;
9300 	}
9301 
9302 	for (i = 0; i < npages; i++) {
9303 		ASSERT(sfmmu_mlist_held(pp));
9304 		ASSERT(PP_ISTNC(pp));
9305 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
9306 
9307 		if (PP_ISPNC(pp)) {
9308 			return (0);
9309 		}
9310 
9311 		clr_valid = 0;
9312 		if (PP_ISMAPPED_KPM(pp)) {
9313 			caddr_t kpmvaddr;
9314 
9315 			ASSERT(kpm_enable);
9316 			kpmvaddr = hat_kpm_page2va(pp, 1);
9317 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
9318 			color1 = addr_to_vcolor(kpmvaddr);
9319 			clr_valid = 1;
9320 		}
9321 
9322 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9323 			if (IS_PAHME(sfhme))
9324 				continue;
9325 			hmeblkp = sfmmu_hmetohblk(sfhme);
9326 
9327 			sfmmu_copytte(&sfhme->hme_tte, &tte);
9328 			ASSERT(TTE_IS_VALID(&tte));
9329 
9330 			vaddr = tte_to_vaddr(hmeblkp, tte);
9331 			color = addr_to_vcolor(vaddr);
9332 
9333 			if (npages > 1) {
9334 				/*
9335 				 * If there is a big mapping, make sure
9336 				 * 8K mapping is consistent with the big
9337 				 * mapping.
9338 				 */
9339 				bcolor = i % ncolors;
9340 				if (color != bcolor) {
9341 					return (0);
9342 				}
9343 			}
9344 			if (!clr_valid) {
9345 				clr_valid = 1;
9346 				color1 = color;
9347 			}
9348 
9349 			if (color1 != color) {
9350 				return (0);
9351 			}
9352 		}
9353 
9354 		pp = PP_PAGENEXT(pp);
9355 	}
9356 
9357 	return (1);
9358 }
9359 
9360 void
9361 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
9362     pgcnt_t npages)
9363 {
9364 	kmutex_t *pmtx;
9365 	int i, ncolors, bcolor;
9366 	kpm_hlk_t *kpmp;
9367 	cpuset_t cpuset;
9368 
9369 	ASSERT(pp != NULL);
9370 	ASSERT(!(cache & CACHE_WRITEBACK));
9371 
9372 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
9373 	pmtx = sfmmu_page_enter(pp);
9374 
9375 	/*
9376 	 * Fast path caching single unmapped page
9377 	 */
9378 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
9379 	    flags == HAT_CACHE) {
9380 		PP_CLRTNC(pp);
9381 		PP_CLRPNC(pp);
9382 		sfmmu_page_exit(pmtx);
9383 		sfmmu_kpm_kpmp_exit(kpmp);
9384 		return;
9385 	}
9386 
9387 	/*
9388 	 * We need to capture all cpus in order to change cacheability
9389 	 * because we can't allow one cpu to access the same physical
9390 	 * page using a cacheable and a non-cachebale mapping at the same
9391 	 * time. Since we may end up walking the ism mapping list
9392 	 * have to grab it's lock now since we can't after all the
9393 	 * cpus have been captured.
9394 	 */
9395 	sfmmu_hat_lock_all();
9396 	mutex_enter(&ism_mlist_lock);
9397 	kpreempt_disable();
9398 	cpuset = cpu_ready_set;
9399 	xc_attention(cpuset);
9400 
9401 	if (npages > 1) {
9402 		/*
9403 		 * Make sure all colors are flushed since the
9404 		 * sfmmu_page_cache() only flushes one color-
9405 		 * it does not know big pages.
9406 		 */
9407 		ncolors = CACHE_NUM_COLOR;
9408 		if (flags & HAT_TMPNC) {
9409 			for (i = 0; i < ncolors; i++) {
9410 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
9411 			}
9412 			cache_flush_flag = CACHE_NO_FLUSH;
9413 		}
9414 	}
9415 
9416 	for (i = 0; i < npages; i++) {
9417 
9418 		ASSERT(sfmmu_mlist_held(pp));
9419 
9420 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
9421 
9422 			if (npages > 1) {
9423 				bcolor = i % ncolors;
9424 			} else {
9425 				bcolor = NO_VCOLOR;
9426 			}
9427 
9428 			sfmmu_page_cache(pp, flags, cache_flush_flag,
9429 			    bcolor);
9430 		}
9431 
9432 		pp = PP_PAGENEXT(pp);
9433 	}
9434 
9435 	xt_sync(cpuset);
9436 	xc_dismissed(cpuset);
9437 	mutex_exit(&ism_mlist_lock);
9438 	sfmmu_hat_unlock_all();
9439 	sfmmu_page_exit(pmtx);
9440 	sfmmu_kpm_kpmp_exit(kpmp);
9441 	kpreempt_enable();
9442 }
9443 
9444 /*
9445  * This function changes the virtual cacheability of all mappings to a
9446  * particular page.  When changing from uncache to cacheable the mappings will
9447  * only be changed if all of them have the same virtual color.
9448  * We need to flush the cache in all cpus.  It is possible that
9449  * a process referenced a page as cacheable but has sinced exited
9450  * and cleared the mapping list.  We still to flush it but have no
9451  * state so all cpus is the only alternative.
9452  */
9453 static void
9454 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
9455 {
9456 	struct	sf_hment *sfhme;
9457 	struct	hme_blk *hmeblkp;
9458 	sfmmu_t *sfmmup;
9459 	tte_t	tte, ttemod;
9460 	caddr_t	vaddr;
9461 	int	ret, color;
9462 	pfn_t	pfn;
9463 
9464 	color = bcolor;
9465 	pfn = pp->p_pagenum;
9466 
9467 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9468 
9469 		if (IS_PAHME(sfhme))
9470 			continue;
9471 		hmeblkp = sfmmu_hmetohblk(sfhme);
9472 
9473 		sfmmu_copytte(&sfhme->hme_tte, &tte);
9474 		ASSERT(TTE_IS_VALID(&tte));
9475 		vaddr = tte_to_vaddr(hmeblkp, tte);
9476 		color = addr_to_vcolor(vaddr);
9477 
9478 #ifdef DEBUG
9479 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
9480 			ASSERT(color == bcolor);
9481 		}
9482 #endif
9483 
9484 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
9485 
9486 		ttemod = tte;
9487 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
9488 			TTE_CLR_VCACHEABLE(&ttemod);
9489 		} else {	/* flags & HAT_CACHE */
9490 			TTE_SET_VCACHEABLE(&ttemod);
9491 		}
9492 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
9493 		if (ret < 0) {
9494 			/*
9495 			 * Since all cpus are captured modifytte should not
9496 			 * fail.
9497 			 */
9498 			panic("sfmmu_page_cache: write to tte failed");
9499 		}
9500 
9501 		sfmmup = hblktosfmmu(hmeblkp);
9502 		if (cache_flush_flag == CACHE_FLUSH) {
9503 			/*
9504 			 * Flush TSBs, TLBs and caches
9505 			 */
9506 			if (hmeblkp->hblk_shared) {
9507 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9508 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
9509 				sf_region_t *rgnp;
9510 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9511 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9512 				ASSERT(srdp != NULL);
9513 				rgnp = srdp->srd_hmergnp[rid];
9514 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9515 				    srdp, rgnp, rid);
9516 				(void) sfmmu_rgntlb_demap(vaddr, rgnp,
9517 				    hmeblkp, 0);
9518 				sfmmu_cache_flush(pfn, addr_to_vcolor(vaddr));
9519 			} else if (sfmmup->sfmmu_ismhat) {
9520 				if (flags & HAT_CACHE) {
9521 					SFMMU_STAT(sf_ism_recache);
9522 				} else {
9523 					SFMMU_STAT(sf_ism_uncache);
9524 				}
9525 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9526 				    pfn, CACHE_FLUSH);
9527 			} else {
9528 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
9529 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
9530 			}
9531 
9532 			/*
9533 			 * all cache entries belonging to this pfn are
9534 			 * now flushed.
9535 			 */
9536 			cache_flush_flag = CACHE_NO_FLUSH;
9537 		} else {
9538 			/*
9539 			 * Flush only TSBs and TLBs.
9540 			 */
9541 			if (hmeblkp->hblk_shared) {
9542 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9543 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
9544 				sf_region_t *rgnp;
9545 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9546 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9547 				ASSERT(srdp != NULL);
9548 				rgnp = srdp->srd_hmergnp[rid];
9549 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9550 				    srdp, rgnp, rid);
9551 				(void) sfmmu_rgntlb_demap(vaddr, rgnp,
9552 				    hmeblkp, 0);
9553 			} else if (sfmmup->sfmmu_ismhat) {
9554 				if (flags & HAT_CACHE) {
9555 					SFMMU_STAT(sf_ism_recache);
9556 				} else {
9557 					SFMMU_STAT(sf_ism_uncache);
9558 				}
9559 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9560 				    pfn, CACHE_NO_FLUSH);
9561 			} else {
9562 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
9563 			}
9564 		}
9565 	}
9566 
9567 	if (PP_ISMAPPED_KPM(pp))
9568 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
9569 
9570 	switch (flags) {
9571 
9572 		default:
9573 			panic("sfmmu_pagecache: unknown flags");
9574 			break;
9575 
9576 		case HAT_CACHE:
9577 			PP_CLRTNC(pp);
9578 			PP_CLRPNC(pp);
9579 			PP_SET_VCOLOR(pp, color);
9580 			break;
9581 
9582 		case HAT_TMPNC:
9583 			PP_SETTNC(pp);
9584 			PP_SET_VCOLOR(pp, NO_VCOLOR);
9585 			break;
9586 
9587 		case HAT_UNCACHE:
9588 			PP_SETPNC(pp);
9589 			PP_CLRTNC(pp);
9590 			PP_SET_VCOLOR(pp, NO_VCOLOR);
9591 			break;
9592 	}
9593 }
9594 #endif	/* VAC */
9595 
9596 
9597 /*
9598  * Wrapper routine used to return a context.
9599  *
9600  * It's the responsibility of the caller to guarantee that the
9601  * process serializes on calls here by taking the HAT lock for
9602  * the hat.
9603  *
9604  */
9605 static void
9606 sfmmu_get_ctx(sfmmu_t *sfmmup)
9607 {
9608 	mmu_ctx_t *mmu_ctxp;
9609 	uint_t pstate_save;
9610 	int ret;
9611 
9612 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9613 	ASSERT(sfmmup != ksfmmup);
9614 
9615 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)) {
9616 		sfmmu_setup_tsbinfo(sfmmup);
9617 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_ALLCTX_INVALID);
9618 	}
9619 
9620 	kpreempt_disable();
9621 
9622 	mmu_ctxp = CPU_MMU_CTXP(CPU);
9623 	ASSERT(mmu_ctxp);
9624 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
9625 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
9626 
9627 	/*
9628 	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
9629 	 */
9630 	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
9631 		sfmmu_ctx_wrap_around(mmu_ctxp, B_TRUE);
9632 
9633 	/*
9634 	 * Let the MMU set up the page sizes to use for
9635 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
9636 	 */
9637 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
9638 		mmu_set_ctx_page_sizes(sfmmup);
9639 	}
9640 
9641 	/*
9642 	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
9643 	 * interrupts disabled to prevent race condition with wrap-around
9644 	 * ctx invalidatation. In sun4v, ctx invalidation also involves
9645 	 * a HV call to set the number of TSBs to 0. If interrupts are not
9646 	 * disabled until after sfmmu_load_mmustate is complete TSBs may
9647 	 * become assigned to INVALID_CONTEXT. This is not allowed.
9648 	 */
9649 	pstate_save = sfmmu_disable_intrs();
9650 
9651 	if (sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE) &&
9652 	    sfmmup->sfmmu_scdp != NULL) {
9653 		sf_scd_t *scdp = sfmmup->sfmmu_scdp;
9654 		sfmmu_t *scsfmmup = scdp->scd_sfmmup;
9655 		ret = sfmmu_alloc_ctx(scsfmmup, 1, CPU, SFMMU_SHARED);
9656 		/* debug purpose only */
9657 		ASSERT(!ret || scsfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
9658 		    != INVALID_CONTEXT);
9659 	}
9660 	sfmmu_load_mmustate(sfmmup);
9661 
9662 	sfmmu_enable_intrs(pstate_save);
9663 
9664 	kpreempt_enable();
9665 }
9666 
9667 /*
9668  * When all cnums are used up in a MMU, cnum will wrap around to the
9669  * next generation and start from 2.
9670  */
9671 static void
9672 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp, boolean_t reset_cnum)
9673 {
9674 
9675 	/* caller must have disabled the preemption */
9676 	ASSERT(curthread->t_preempt >= 1);
9677 	ASSERT(mmu_ctxp != NULL);
9678 
9679 	/* acquire Per-MMU (PM) spin lock */
9680 	mutex_enter(&mmu_ctxp->mmu_lock);
9681 
9682 	/* re-check to see if wrap-around is needed */
9683 	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
9684 		goto done;
9685 
9686 	SFMMU_MMU_STAT(mmu_wrap_around);
9687 
9688 	/* update gnum */
9689 	ASSERT(mmu_ctxp->mmu_gnum != 0);
9690 	mmu_ctxp->mmu_gnum++;
9691 	if (mmu_ctxp->mmu_gnum == 0 ||
9692 	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
9693 		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
9694 		    (void *)mmu_ctxp);
9695 	}
9696 
9697 	if (mmu_ctxp->mmu_ncpus > 1) {
9698 		cpuset_t cpuset;
9699 
9700 		membar_enter(); /* make sure updated gnum visible */
9701 
9702 		SFMMU_XCALL_STATS(NULL);
9703 
9704 		/* xcall to others on the same MMU to invalidate ctx */
9705 		cpuset = mmu_ctxp->mmu_cpuset;
9706 		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id) || !reset_cnum);
9707 		CPUSET_DEL(cpuset, CPU->cpu_id);
9708 		CPUSET_AND(cpuset, cpu_ready_set);
9709 
9710 		/*
9711 		 * Pass in INVALID_CONTEXT as the first parameter to
9712 		 * sfmmu_raise_tsb_exception, which invalidates the context
9713 		 * of any process running on the CPUs in the MMU.
9714 		 */
9715 		xt_some(cpuset, sfmmu_raise_tsb_exception,
9716 		    INVALID_CONTEXT, INVALID_CONTEXT);
9717 		xt_sync(cpuset);
9718 
9719 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
9720 	}
9721 
9722 	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
9723 		sfmmu_setctx_sec(INVALID_CONTEXT);
9724 		sfmmu_clear_utsbinfo();
9725 	}
9726 
9727 	/*
9728 	 * No xcall is needed here. For sun4u systems all CPUs in context
9729 	 * domain share a single physical MMU therefore it's enough to flush
9730 	 * TLB on local CPU. On sun4v systems we use 1 global context
9731 	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
9732 	 * handler. Note that vtag_flushall_uctxs() is called
9733 	 * for Ultra II machine, where the equivalent flushall functionality
9734 	 * is implemented in SW, and only user ctx TLB entries are flushed.
9735 	 */
9736 	if (&vtag_flushall_uctxs != NULL) {
9737 		vtag_flushall_uctxs();
9738 	} else {
9739 		vtag_flushall();
9740 	}
9741 
9742 	/* reset mmu cnum, skips cnum 0 and 1 */
9743 	if (reset_cnum == B_TRUE)
9744 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
9745 
9746 done:
9747 	mutex_exit(&mmu_ctxp->mmu_lock);
9748 }
9749 
9750 
9751 /*
9752  * For multi-threaded process, set the process context to INVALID_CONTEXT
9753  * so that it faults and reloads the MMU state from TL=0. For single-threaded
9754  * process, we can just load the MMU state directly without having to
9755  * set context invalid. Caller must hold the hat lock since we don't
9756  * acquire it here.
9757  */
9758 static void
9759 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
9760 {
9761 	uint_t cnum;
9762 	uint_t pstate_save;
9763 
9764 	ASSERT(sfmmup != ksfmmup);
9765 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9766 
9767 	kpreempt_disable();
9768 
9769 	/*
9770 	 * We check whether the pass'ed-in sfmmup is the same as the
9771 	 * current running proc. This is to makes sure the current proc
9772 	 * stays single-threaded if it already is.
9773 	 */
9774 	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
9775 	    (curthread->t_procp->p_lwpcnt == 1)) {
9776 		/* single-thread */
9777 		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
9778 		if (cnum != INVALID_CONTEXT) {
9779 			uint_t curcnum;
9780 			/*
9781 			 * Disable interrupts to prevent race condition
9782 			 * with sfmmu_ctx_wrap_around ctx invalidation.
9783 			 * In sun4v, ctx invalidation involves setting
9784 			 * TSB to NULL, hence, interrupts should be disabled
9785 			 * untill after sfmmu_load_mmustate is completed.
9786 			 */
9787 			pstate_save = sfmmu_disable_intrs();
9788 			curcnum = sfmmu_getctx_sec();
9789 			if (curcnum == cnum)
9790 				sfmmu_load_mmustate(sfmmup);
9791 			sfmmu_enable_intrs(pstate_save);
9792 			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
9793 		}
9794 	} else {
9795 		/*
9796 		 * multi-thread
9797 		 * or when sfmmup is not the same as the curproc.
9798 		 */
9799 		sfmmu_invalidate_ctx(sfmmup);
9800 	}
9801 
9802 	kpreempt_enable();
9803 }
9804 
9805 
9806 /*
9807  * Replace the specified TSB with a new TSB.  This function gets called when
9808  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
9809  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
9810  * (8K).
9811  *
9812  * Caller must hold the HAT lock, but should assume any tsb_info
9813  * pointers it has are no longer valid after calling this function.
9814  *
9815  * Return values:
9816  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
9817  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
9818  *			something to this tsbinfo/TSB
9819  *	TSB_SUCCESS	Operation succeeded
9820  */
9821 static tsb_replace_rc_t
9822 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
9823     hatlock_t *hatlockp, uint_t flags)
9824 {
9825 	struct tsb_info *new_tsbinfo = NULL;
9826 	struct tsb_info *curtsb, *prevtsb;
9827 	uint_t tte_sz_mask;
9828 	int i;
9829 
9830 	ASSERT(sfmmup != ksfmmup);
9831 	ASSERT(sfmmup->sfmmu_ismhat == 0);
9832 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9833 	ASSERT(szc <= tsb_max_growsize);
9834 
9835 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
9836 		return (TSB_LOSTRACE);
9837 
9838 	/*
9839 	 * Find the tsb_info ahead of this one in the list, and
9840 	 * also make sure that the tsb_info passed in really
9841 	 * exists!
9842 	 */
9843 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9844 	    curtsb != old_tsbinfo && curtsb != NULL;
9845 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
9846 		;
9847 	ASSERT(curtsb != NULL);
9848 
9849 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9850 		/*
9851 		 * The process is swapped out, so just set the new size
9852 		 * code.  When it swaps back in, we'll allocate a new one
9853 		 * of the new chosen size.
9854 		 */
9855 		curtsb->tsb_szc = szc;
9856 		return (TSB_SUCCESS);
9857 	}
9858 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
9859 
9860 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
9861 
9862 	/*
9863 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
9864 	 * If we fail to allocate a TSB, exit.
9865 	 *
9866 	 * If tsb grows with new tsb size > 4M and old tsb size < 4M,
9867 	 * then try 4M slab after the initial alloc fails.
9868 	 *
9869 	 * If tsb swapin with tsb size > 4M, then try 4M after the
9870 	 * initial alloc fails.
9871 	 */
9872 	sfmmu_hat_exit(hatlockp);
9873 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc,
9874 	    tte_sz_mask, flags, sfmmup) &&
9875 	    (!(flags & (TSB_GROW | TSB_SWAPIN)) || (szc <= TSB_4M_SZCODE) ||
9876 	    (!(flags & TSB_SWAPIN) &&
9877 	    (old_tsbinfo->tsb_szc >= TSB_4M_SZCODE)) ||
9878 	    sfmmu_tsbinfo_alloc(&new_tsbinfo, TSB_4M_SZCODE,
9879 	    tte_sz_mask, flags, sfmmup))) {
9880 		(void) sfmmu_hat_enter(sfmmup);
9881 		if (!(flags & TSB_SWAPIN))
9882 			SFMMU_STAT(sf_tsb_resize_failures);
9883 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9884 		return (TSB_ALLOCFAIL);
9885 	}
9886 	(void) sfmmu_hat_enter(sfmmup);
9887 
9888 	/*
9889 	 * Re-check to make sure somebody else didn't muck with us while we
9890 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
9891 	 * exit; this can happen if we try to shrink the TSB from the context
9892 	 * of another process (such as on an ISM unmap), though it is rare.
9893 	 */
9894 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9895 		SFMMU_STAT(sf_tsb_resize_failures);
9896 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9897 		sfmmu_hat_exit(hatlockp);
9898 		sfmmu_tsbinfo_free(new_tsbinfo);
9899 		(void) sfmmu_hat_enter(sfmmup);
9900 		return (TSB_LOSTRACE);
9901 	}
9902 
9903 #ifdef	DEBUG
9904 	/* Reverify that the tsb_info still exists.. for debugging only */
9905 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9906 	    curtsb != old_tsbinfo && curtsb != NULL;
9907 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
9908 		;
9909 	ASSERT(curtsb != NULL);
9910 #endif	/* DEBUG */
9911 
9912 	/*
9913 	 * Quiesce any CPUs running this process on their next TLB miss
9914 	 * so they atomically see the new tsb_info.  We temporarily set the
9915 	 * context to invalid context so new threads that come on processor
9916 	 * after we do the xcall to cpusran will also serialize behind the
9917 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
9918 	 * race with a new thread coming on processor is relatively rare,
9919 	 * this synchronization mechanism should be cheaper than always
9920 	 * pausing all CPUs for the duration of the setup, which is what
9921 	 * the old implementation did.  This is particuarly true if we are
9922 	 * copying a huge chunk of memory around during that window.
9923 	 *
9924 	 * The memory barriers are to make sure things stay consistent
9925 	 * with resume() since it does not hold the HAT lock while
9926 	 * walking the list of tsb_info structures.
9927 	 */
9928 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
9929 		/* The TSB is either growing or shrinking. */
9930 		sfmmu_invalidate_ctx(sfmmup);
9931 	} else {
9932 		/*
9933 		 * It is illegal to swap in TSBs from a process other
9934 		 * than a process being swapped in.  This in turn
9935 		 * implies we do not have a valid MMU context here
9936 		 * since a process needs one to resolve translation
9937 		 * misses.
9938 		 */
9939 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
9940 	}
9941 
9942 #ifdef DEBUG
9943 	ASSERT(max_mmu_ctxdoms > 0);
9944 
9945 	/*
9946 	 * Process should have INVALID_CONTEXT on all MMUs
9947 	 */
9948 	for (i = 0; i < max_mmu_ctxdoms; i++) {
9949 
9950 		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
9951 	}
9952 #endif
9953 
9954 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
9955 	membar_stst();	/* strict ordering required */
9956 	if (prevtsb)
9957 		prevtsb->tsb_next = new_tsbinfo;
9958 	else
9959 		sfmmup->sfmmu_tsb = new_tsbinfo;
9960 	membar_enter();	/* make sure new TSB globally visible */
9961 
9962 	/*
9963 	 * We need to migrate TSB entries from the old TSB to the new TSB
9964 	 * if tsb_remap_ttes is set and the TSB is growing.
9965 	 */
9966 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9967 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9968 
9969 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9970 
9971 	/*
9972 	 * Drop the HAT lock to free our old tsb_info.
9973 	 */
9974 	sfmmu_hat_exit(hatlockp);
9975 
9976 	if ((flags & TSB_GROW) == TSB_GROW) {
9977 		SFMMU_STAT(sf_tsb_grow);
9978 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9979 		SFMMU_STAT(sf_tsb_shrink);
9980 	}
9981 
9982 	sfmmu_tsbinfo_free(old_tsbinfo);
9983 
9984 	(void) sfmmu_hat_enter(sfmmup);
9985 	return (TSB_SUCCESS);
9986 }
9987 
9988 /*
9989  * This function will re-program hat pgsz array, and invalidate the
9990  * process' context, forcing the process to switch to another
9991  * context on the next TLB miss, and therefore start using the
9992  * TLB that is reprogrammed for the new page sizes.
9993  */
9994 void
9995 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9996 {
9997 	int i;
9998 	hatlock_t *hatlockp = NULL;
9999 
10000 	hatlockp = sfmmu_hat_enter(sfmmup);
10001 	/* USIII+-IV+ optimization, requires hat lock */
10002 	if (tmp_pgsz) {
10003 		for (i = 0; i < mmu_page_sizes; i++)
10004 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
10005 	}
10006 	SFMMU_STAT(sf_tlb_reprog_pgsz);
10007 
10008 	sfmmu_invalidate_ctx(sfmmup);
10009 
10010 	sfmmu_hat_exit(hatlockp);
10011 }
10012 
10013 /*
10014  * The scd_rttecnt field in the SCD must be updated to take account of the
10015  * regions which it contains.
10016  */
10017 static void
10018 sfmmu_set_scd_rttecnt(sf_srd_t *srdp, sf_scd_t *scdp)
10019 {
10020 	uint_t rid;
10021 	uint_t i, j;
10022 	ulong_t w;
10023 	sf_region_t *rgnp;
10024 
10025 	ASSERT(srdp != NULL);
10026 
10027 	for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
10028 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
10029 			continue;
10030 		}
10031 
10032 		j = 0;
10033 		while (w) {
10034 			if (!(w & 0x1)) {
10035 				j++;
10036 				w >>= 1;
10037 				continue;
10038 			}
10039 			rid = (i << BT_ULSHIFT) | j;
10040 			j++;
10041 			w >>= 1;
10042 
10043 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
10044 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
10045 			rgnp = srdp->srd_hmergnp[rid];
10046 			ASSERT(rgnp->rgn_refcnt > 0);
10047 			ASSERT(rgnp->rgn_id == rid);
10048 
10049 			scdp->scd_rttecnt[rgnp->rgn_pgszc] +=
10050 			    rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
10051 
10052 			/*
10053 			 * Maintain the tsb0 inflation cnt for the regions
10054 			 * in the SCD.
10055 			 */
10056 			if (rgnp->rgn_pgszc >= TTE4M) {
10057 				scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt +=
10058 				    rgnp->rgn_size >>
10059 				    (TTE_PAGE_SHIFT(TTE8K) + 2);
10060 			}
10061 		}
10062 	}
10063 }
10064 
10065 /*
10066  * This function assumes that there are either four or six supported page
10067  * sizes and at most two programmable TLBs, so we need to decide which
10068  * page sizes are most important and then tell the MMU layer so it
10069  * can adjust the TLB page sizes accordingly (if supported).
10070  *
10071  * If these assumptions change, this function will need to be
10072  * updated to support whatever the new limits are.
10073  *
10074  * The growing flag is nonzero if we are growing the address space,
10075  * and zero if it is shrinking.  This allows us to decide whether
10076  * to grow or shrink our TSB, depending upon available memory
10077  * conditions.
10078  */
10079 static void
10080 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
10081 {
10082 	uint64_t ttecnt[MMU_PAGE_SIZES];
10083 	uint64_t tte8k_cnt, tte4m_cnt;
10084 	uint8_t i;
10085 	int sectsb_thresh;
10086 
10087 	/*
10088 	 * Kernel threads, processes with small address spaces not using
10089 	 * large pages, and dummy ISM HATs need not apply.
10090 	 */
10091 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != 0)
10092 		return;
10093 
10094 	if (!SFMMU_LGPGS_INUSE(sfmmup) &&
10095 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
10096 		return;
10097 
10098 	for (i = 0; i < mmu_page_sizes; i++) {
10099 		ttecnt[i] = sfmmup->sfmmu_ttecnt[i] +
10100 		    sfmmup->sfmmu_ismttecnt[i];
10101 	}
10102 
10103 	/* Check pagesizes in use, and possibly reprogram DTLB. */
10104 	if (&mmu_check_page_sizes)
10105 		mmu_check_page_sizes(sfmmup, ttecnt);
10106 
10107 	/*
10108 	 * Calculate the number of 8k ttes to represent the span of these
10109 	 * pages.
10110 	 */
10111 	tte8k_cnt = ttecnt[TTE8K] +
10112 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
10113 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
10114 	if (mmu_page_sizes == max_mmu_page_sizes) {
10115 		tte4m_cnt = ttecnt[TTE4M] +
10116 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
10117 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
10118 	} else {
10119 		tte4m_cnt = ttecnt[TTE4M];
10120 	}
10121 
10122 	/*
10123 	 * Inflate tte8k_cnt to allow for region large page allocation failure.
10124 	 */
10125 	tte8k_cnt += sfmmup->sfmmu_tsb0_4minflcnt;
10126 
10127 	/*
10128 	 * Inflate TSB sizes by a factor of 2 if this process
10129 	 * uses 4M text pages to minimize extra conflict misses
10130 	 * in the first TSB since without counting text pages
10131 	 * 8K TSB may become too small.
10132 	 *
10133 	 * Also double the size of the second TSB to minimize
10134 	 * extra conflict misses due to competition between 4M text pages
10135 	 * and data pages.
10136 	 *
10137 	 * We need to adjust the second TSB allocation threshold by the
10138 	 * inflation factor, since there is no point in creating a second
10139 	 * TSB when we know all the mappings can fit in the I/D TLBs.
10140 	 */
10141 	sectsb_thresh = tsb_sectsb_threshold;
10142 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
10143 		tte8k_cnt <<= 1;
10144 		tte4m_cnt <<= 1;
10145 		sectsb_thresh <<= 1;
10146 	}
10147 
10148 	/*
10149 	 * Check to see if our TSB is the right size; we may need to
10150 	 * grow or shrink it.  If the process is small, our work is
10151 	 * finished at this point.
10152 	 */
10153 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
10154 		return;
10155 	}
10156 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
10157 }
10158 
10159 static void
10160 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
10161     uint64_t tte4m_cnt, int sectsb_thresh)
10162 {
10163 	int tsb_bits;
10164 	uint_t tsb_szc;
10165 	struct tsb_info *tsbinfop;
10166 	hatlock_t *hatlockp = NULL;
10167 
10168 	hatlockp = sfmmu_hat_enter(sfmmup);
10169 	ASSERT(hatlockp != NULL);
10170 	tsbinfop = sfmmup->sfmmu_tsb;
10171 	ASSERT(tsbinfop != NULL);
10172 
10173 	/*
10174 	 * If we're growing, select the size based on RSS.  If we're
10175 	 * shrinking, leave some room so we don't have to turn around and
10176 	 * grow again immediately.
10177 	 */
10178 	if (growing)
10179 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
10180 	else
10181 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
10182 
10183 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10184 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10185 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10186 		    hatlockp, TSB_SHRINK);
10187 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
10188 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10189 		    hatlockp, TSB_GROW);
10190 	}
10191 	tsbinfop = sfmmup->sfmmu_tsb;
10192 
10193 	/*
10194 	 * With the TLB and first TSB out of the way, we need to see if
10195 	 * we need a second TSB for 4M pages.  If we managed to reprogram
10196 	 * the TLB page sizes above, the process will start using this new
10197 	 * TSB right away; otherwise, it will start using it on the next
10198 	 * context switch.  Either way, it's no big deal so there's no
10199 	 * synchronization with the trap handlers here unless we grow the
10200 	 * TSB (in which case it's required to prevent using the old one
10201 	 * after it's freed). Note: second tsb is required for 32M/256M
10202 	 * page sizes.
10203 	 */
10204 	if (tte4m_cnt > sectsb_thresh) {
10205 		/*
10206 		 * If we're growing, select the size based on RSS.  If we're
10207 		 * shrinking, leave some room so we don't have to turn
10208 		 * around and grow again immediately.
10209 		 */
10210 		if (growing)
10211 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
10212 		else
10213 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
10214 		if (tsbinfop->tsb_next == NULL) {
10215 			struct tsb_info *newtsb;
10216 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
10217 			    0 : TSB_ALLOC;
10218 
10219 			sfmmu_hat_exit(hatlockp);
10220 
10221 			/*
10222 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
10223 			 * can't get the size we want, retry w/a minimum sized
10224 			 * TSB.  If that still didn't work, give up; we can
10225 			 * still run without one.
10226 			 */
10227 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
10228 			    TSB4M|TSB32M|TSB256M:TSB4M;
10229 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
10230 			    allocflags, sfmmup)) &&
10231 			    (tsb_szc <= TSB_4M_SZCODE ||
10232 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
10233 			    tsb_bits, allocflags, sfmmup)) &&
10234 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
10235 			    tsb_bits, allocflags, sfmmup)) {
10236 				return;
10237 			}
10238 
10239 			hatlockp = sfmmu_hat_enter(sfmmup);
10240 
10241 			sfmmu_invalidate_ctx(sfmmup);
10242 
10243 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
10244 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
10245 				SFMMU_STAT(sf_tsb_sectsb_create);
10246 				sfmmu_hat_exit(hatlockp);
10247 				return;
10248 			} else {
10249 				/*
10250 				 * It's annoying, but possible for us
10251 				 * to get here.. we dropped the HAT lock
10252 				 * because of locking order in the kmem
10253 				 * allocator, and while we were off getting
10254 				 * our memory, some other thread decided to
10255 				 * do us a favor and won the race to get a
10256 				 * second TSB for this process.  Sigh.
10257 				 */
10258 				sfmmu_hat_exit(hatlockp);
10259 				sfmmu_tsbinfo_free(newtsb);
10260 				return;
10261 			}
10262 		}
10263 
10264 		/*
10265 		 * We have a second TSB, see if it's big enough.
10266 		 */
10267 		tsbinfop = tsbinfop->tsb_next;
10268 
10269 		/*
10270 		 * Check to see if our second TSB is the right size;
10271 		 * we may need to grow or shrink it.
10272 		 * To prevent thrashing (e.g. growing the TSB on a
10273 		 * subsequent map operation), only try to shrink if
10274 		 * the TSB reach exceeds twice the virtual address
10275 		 * space size.
10276 		 */
10277 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10278 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10279 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10280 			    tsb_szc, hatlockp, TSB_SHRINK);
10281 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
10282 		    TSB_OK_GROW()) {
10283 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10284 			    tsb_szc, hatlockp, TSB_GROW);
10285 		}
10286 	}
10287 
10288 	sfmmu_hat_exit(hatlockp);
10289 }
10290 
10291 /*
10292  * Free up a sfmmu
10293  * Since the sfmmu is currently embedded in the hat struct we simply zero
10294  * out our fields and free up the ism map blk list if any.
10295  */
10296 static void
10297 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
10298 {
10299 	ism_blk_t	*blkp, *nx_blkp;
10300 #ifdef	DEBUG
10301 	ism_map_t	*map;
10302 	int		i;
10303 #endif
10304 
10305 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
10306 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
10307 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
10308 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
10309 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
10310 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
10311 	ASSERT(SF_RGNMAP_ISNULL(sfmmup));
10312 
10313 	sfmmup->sfmmu_free = 0;
10314 	sfmmup->sfmmu_ismhat = 0;
10315 
10316 	blkp = sfmmup->sfmmu_iblk;
10317 	sfmmup->sfmmu_iblk = NULL;
10318 
10319 	while (blkp) {
10320 #ifdef	DEBUG
10321 		map = blkp->iblk_maps;
10322 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
10323 			ASSERT(map[i].imap_seg == 0);
10324 			ASSERT(map[i].imap_ismhat == NULL);
10325 			ASSERT(map[i].imap_ment == NULL);
10326 		}
10327 #endif
10328 		nx_blkp = blkp->iblk_next;
10329 		blkp->iblk_next = NULL;
10330 		blkp->iblk_nextpa = (uint64_t)-1;
10331 		kmem_cache_free(ism_blk_cache, blkp);
10332 		blkp = nx_blkp;
10333 	}
10334 }
10335 
10336 /*
10337  * Locking primitves accessed by HATLOCK macros
10338  */
10339 
10340 #define	SFMMU_SPL_MTX	(0x0)
10341 #define	SFMMU_ML_MTX	(0x1)
10342 
10343 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
10344 					    SPL_HASH(pg) : MLIST_HASH(pg))
10345 
10346 kmutex_t *
10347 sfmmu_page_enter(struct page *pp)
10348 {
10349 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
10350 }
10351 
10352 void
10353 sfmmu_page_exit(kmutex_t *spl)
10354 {
10355 	mutex_exit(spl);
10356 }
10357 
10358 int
10359 sfmmu_page_spl_held(struct page *pp)
10360 {
10361 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
10362 }
10363 
10364 kmutex_t *
10365 sfmmu_mlist_enter(struct page *pp)
10366 {
10367 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
10368 }
10369 
10370 void
10371 sfmmu_mlist_exit(kmutex_t *mml)
10372 {
10373 	mutex_exit(mml);
10374 }
10375 
10376 int
10377 sfmmu_mlist_held(struct page *pp)
10378 {
10379 
10380 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
10381 }
10382 
10383 /*
10384  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
10385  * sfmmu_mlist_enter() case mml_table lock array is used and for
10386  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
10387  *
10388  * The lock is taken on a root page so that it protects an operation on all
10389  * constituent pages of a large page pp belongs to.
10390  *
10391  * The routine takes a lock from the appropriate array. The lock is determined
10392  * by hashing the root page. After taking the lock this routine checks if the
10393  * root page has the same size code that was used to determine the root (i.e
10394  * that root hasn't changed).  If root page has the expected p_szc field we
10395  * have the right lock and it's returned to the caller. If root's p_szc
10396  * decreased we release the lock and retry from the beginning.  This case can
10397  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
10398  * value and taking the lock. The number of retries due to p_szc decrease is
10399  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
10400  * determined by hashing pp itself.
10401  *
10402  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
10403  * possible that p_szc can increase. To increase p_szc a thread has to lock
10404  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
10405  * callers that don't hold a page locked recheck if hmeblk through which pp
10406  * was found still maps this pp.  If it doesn't map it anymore returned lock
10407  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
10408  * p_szc increase after taking the lock it returns this lock without further
10409  * retries because in this case the caller doesn't care about which lock was
10410  * taken. The caller will drop it right away.
10411  *
10412  * After the routine returns it's guaranteed that hat_page_demote() can't
10413  * change p_szc field of any of constituent pages of a large page pp belongs
10414  * to as long as pp was either locked at least SHARED prior to this call or
10415  * the caller finds that hment that pointed to this pp still references this
10416  * pp (this also assumes that the caller holds hme hash bucket lock so that
10417  * the same pp can't be remapped into the same hmeblk after it was unmapped by
10418  * hat_pageunload()).
10419  */
10420 static kmutex_t *
10421 sfmmu_mlspl_enter(struct page *pp, int type)
10422 {
10423 	kmutex_t	*mtx;
10424 	uint_t		prev_rszc = UINT_MAX;
10425 	page_t		*rootpp;
10426 	uint_t		szc;
10427 	uint_t		rszc;
10428 	uint_t		pszc = pp->p_szc;
10429 
10430 	ASSERT(pp != NULL);
10431 
10432 again:
10433 	if (pszc == 0) {
10434 		mtx = SFMMU_MLSPL_MTX(type, pp);
10435 		mutex_enter(mtx);
10436 		return (mtx);
10437 	}
10438 
10439 	/* The lock lives in the root page */
10440 	rootpp = PP_GROUPLEADER(pp, pszc);
10441 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
10442 	mutex_enter(mtx);
10443 
10444 	/*
10445 	 * Return mml in the following 3 cases:
10446 	 *
10447 	 * 1) If pp itself is root since if its p_szc decreased before we took
10448 	 * the lock pp is still the root of smaller szc page. And if its p_szc
10449 	 * increased it doesn't matter what lock we return (see comment in
10450 	 * front of this routine).
10451 	 *
10452 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
10453 	 * large page we have the right lock since any previous potential
10454 	 * hat_page_demote() is done demoting from greater than current root's
10455 	 * p_szc because hat_page_demote() changes root's p_szc last. No
10456 	 * further hat_page_demote() can start or be in progress since it
10457 	 * would need the same lock we currently hold.
10458 	 *
10459 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
10460 	 * matter what lock we return (see comment in front of this routine).
10461 	 */
10462 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
10463 	    rszc >= prev_rszc) {
10464 		return (mtx);
10465 	}
10466 
10467 	/*
10468 	 * hat_page_demote() could have decreased root's p_szc.
10469 	 * In this case pp's p_szc must also be smaller than pszc.
10470 	 * Retry.
10471 	 */
10472 	if (rszc < pszc) {
10473 		szc = pp->p_szc;
10474 		if (szc < pszc) {
10475 			mutex_exit(mtx);
10476 			pszc = szc;
10477 			goto again;
10478 		}
10479 		/*
10480 		 * pp's p_szc increased after it was decreased.
10481 		 * page cannot be mapped. Return current lock. The caller
10482 		 * will drop it right away.
10483 		 */
10484 		return (mtx);
10485 	}
10486 
10487 	/*
10488 	 * root's p_szc is greater than pp's p_szc.
10489 	 * hat_page_demote() is not done with all pages
10490 	 * yet. Wait for it to complete.
10491 	 */
10492 	mutex_exit(mtx);
10493 	rootpp = PP_GROUPLEADER(rootpp, rszc);
10494 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
10495 	mutex_enter(mtx);
10496 	mutex_exit(mtx);
10497 	prev_rszc = rszc;
10498 	goto again;
10499 }
10500 
10501 static int
10502 sfmmu_mlspl_held(struct page *pp, int type)
10503 {
10504 	kmutex_t	*mtx;
10505 
10506 	ASSERT(pp != NULL);
10507 	/* The lock lives in the root page */
10508 	pp = PP_PAGEROOT(pp);
10509 	ASSERT(pp != NULL);
10510 
10511 	mtx = SFMMU_MLSPL_MTX(type, pp);
10512 	return (MUTEX_HELD(mtx));
10513 }
10514 
10515 static uint_t
10516 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
10517 {
10518 	struct  hme_blk *hblkp;
10519 
10520 
10521 	if (freehblkp != NULL) {
10522 		mutex_enter(&freehblkp_lock);
10523 		if (freehblkp != NULL) {
10524 			/*
10525 			 * If the current thread is owning hblk_reserve OR
10526 			 * critical request from sfmmu_hblk_steal()
10527 			 * let it succeed even if freehblkcnt is really low.
10528 			 */
10529 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
10530 				SFMMU_STAT(sf_get_free_throttle);
10531 				mutex_exit(&freehblkp_lock);
10532 				return (0);
10533 			}
10534 			freehblkcnt--;
10535 			*hmeblkpp = freehblkp;
10536 			hblkp = *hmeblkpp;
10537 			freehblkp = hblkp->hblk_next;
10538 			mutex_exit(&freehblkp_lock);
10539 			hblkp->hblk_next = NULL;
10540 			SFMMU_STAT(sf_get_free_success);
10541 
10542 			ASSERT(hblkp->hblk_hmecnt == 0);
10543 			ASSERT(hblkp->hblk_vcnt == 0);
10544 			ASSERT(hblkp->hblk_nextpa == va_to_pa((caddr_t)hblkp));
10545 
10546 			return (1);
10547 		}
10548 		mutex_exit(&freehblkp_lock);
10549 	}
10550 
10551 	/* Check cpu hblk pending queues */
10552 	if ((*hmeblkpp = sfmmu_check_pending_hblks(TTE8K)) != NULL) {
10553 		hblkp = *hmeblkpp;
10554 		hblkp->hblk_next = NULL;
10555 		hblkp->hblk_nextpa = va_to_pa((caddr_t)hblkp);
10556 
10557 		ASSERT(hblkp->hblk_hmecnt == 0);
10558 		ASSERT(hblkp->hblk_vcnt == 0);
10559 
10560 		return (1);
10561 	}
10562 
10563 	SFMMU_STAT(sf_get_free_fail);
10564 	return (0);
10565 }
10566 
10567 static uint_t
10568 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
10569 {
10570 	struct  hme_blk *hblkp;
10571 
10572 	ASSERT(hmeblkp->hblk_hmecnt == 0);
10573 	ASSERT(hmeblkp->hblk_vcnt == 0);
10574 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10575 
10576 	/*
10577 	 * If the current thread is mapping into kernel space,
10578 	 * let it succede even if freehblkcnt is max
10579 	 * so that it will avoid freeing it to kmem.
10580 	 * This will prevent stack overflow due to
10581 	 * possible recursion since kmem_cache_free()
10582 	 * might require creation of a slab which
10583 	 * in turn needs an hmeblk to map that slab;
10584 	 * let's break this vicious chain at the first
10585 	 * opportunity.
10586 	 */
10587 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10588 		mutex_enter(&freehblkp_lock);
10589 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10590 			SFMMU_STAT(sf_put_free_success);
10591 			freehblkcnt++;
10592 			hmeblkp->hblk_next = freehblkp;
10593 			freehblkp = hmeblkp;
10594 			mutex_exit(&freehblkp_lock);
10595 			return (1);
10596 		}
10597 		mutex_exit(&freehblkp_lock);
10598 	}
10599 
10600 	/*
10601 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
10602 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
10603 	 * we are not in the process of mapping into kernel space.
10604 	 */
10605 	ASSERT(!critical);
10606 	while (freehblkcnt > HBLK_RESERVE_CNT) {
10607 		mutex_enter(&freehblkp_lock);
10608 		if (freehblkcnt > HBLK_RESERVE_CNT) {
10609 			freehblkcnt--;
10610 			hblkp = freehblkp;
10611 			freehblkp = hblkp->hblk_next;
10612 			mutex_exit(&freehblkp_lock);
10613 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
10614 			kmem_cache_free(sfmmu8_cache, hblkp);
10615 			continue;
10616 		}
10617 		mutex_exit(&freehblkp_lock);
10618 	}
10619 	SFMMU_STAT(sf_put_free_fail);
10620 	return (0);
10621 }
10622 
10623 static void
10624 sfmmu_hblk_swap(struct hme_blk *new)
10625 {
10626 	struct hme_blk *old, *hblkp, *prev;
10627 	uint64_t newpa;
10628 	caddr_t	base, vaddr, endaddr;
10629 	struct hmehash_bucket *hmebp;
10630 	struct sf_hment *osfhme, *nsfhme;
10631 	page_t *pp;
10632 	kmutex_t *pml;
10633 	tte_t tte;
10634 	struct hme_blk *list = NULL;
10635 
10636 #ifdef	DEBUG
10637 	hmeblk_tag		hblktag;
10638 	struct hme_blk		*found;
10639 #endif
10640 	old = HBLK_RESERVE;
10641 	ASSERT(!old->hblk_shared);
10642 
10643 	/*
10644 	 * save pa before bcopy clobbers it
10645 	 */
10646 	newpa = new->hblk_nextpa;
10647 
10648 	base = (caddr_t)get_hblk_base(old);
10649 	endaddr = base + get_hblk_span(old);
10650 
10651 	/*
10652 	 * acquire hash bucket lock.
10653 	 */
10654 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K,
10655 	    SFMMU_INVALID_SHMERID);
10656 
10657 	/*
10658 	 * copy contents from old to new
10659 	 */
10660 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
10661 
10662 	/*
10663 	 * add new to hash chain
10664 	 */
10665 	sfmmu_hblk_hash_add(hmebp, new, newpa);
10666 
10667 	/*
10668 	 * search hash chain for hblk_reserve; this needs to be performed
10669 	 * after adding new, otherwise prev won't correspond to the hblk which
10670 	 * is prior to old in hash chain when we call sfmmu_hblk_hash_rm to
10671 	 * remove old later.
10672 	 */
10673 	for (prev = NULL,
10674 	    hblkp = hmebp->hmeblkp; hblkp != NULL && hblkp != old;
10675 	    prev = hblkp, hblkp = hblkp->hblk_next)
10676 		;
10677 
10678 	if (hblkp != old)
10679 		panic("sfmmu_hblk_swap: hblk_reserve not found");
10680 
10681 	/*
10682 	 * p_mapping list is still pointing to hments in hblk_reserve;
10683 	 * fix up p_mapping list so that they point to hments in new.
10684 	 *
10685 	 * Since all these mappings are created by hblk_reserve_thread
10686 	 * on the way and it's using at least one of the buffers from each of
10687 	 * the newly minted slabs, there is no danger of any of these
10688 	 * mappings getting unloaded by another thread.
10689 	 *
10690 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
10691 	 * Since all of these hments hold mappings established by segkmem
10692 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
10693 	 * have no meaning for the mappings in hblk_reserve.  hments in
10694 	 * old and new are identical except for ref/mod bits.
10695 	 */
10696 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
10697 
10698 		HBLKTOHME(osfhme, old, vaddr);
10699 		sfmmu_copytte(&osfhme->hme_tte, &tte);
10700 
10701 		if (TTE_IS_VALID(&tte)) {
10702 			if ((pp = osfhme->hme_page) == NULL)
10703 				panic("sfmmu_hblk_swap: page not mapped");
10704 
10705 			pml = sfmmu_mlist_enter(pp);
10706 
10707 			if (pp != osfhme->hme_page)
10708 				panic("sfmmu_hblk_swap: mapping changed");
10709 
10710 			HBLKTOHME(nsfhme, new, vaddr);
10711 
10712 			HME_ADD(nsfhme, pp);
10713 			HME_SUB(osfhme, pp);
10714 
10715 			sfmmu_mlist_exit(pml);
10716 		}
10717 	}
10718 
10719 	/*
10720 	 * remove old from hash chain
10721 	 */
10722 	sfmmu_hblk_hash_rm(hmebp, old, prev, &list, 1);
10723 
10724 #ifdef	DEBUG
10725 
10726 	hblktag.htag_id = ksfmmup;
10727 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
10728 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
10729 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
10730 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
10731 
10732 	if (found != new)
10733 		panic("sfmmu_hblk_swap: new hblk not found");
10734 #endif
10735 
10736 	SFMMU_HASH_UNLOCK(hmebp);
10737 
10738 	/*
10739 	 * Reset hblk_reserve
10740 	 */
10741 	bzero((void *)old, HME8BLK_SZ);
10742 	old->hblk_nextpa = va_to_pa((caddr_t)old);
10743 }
10744 
10745 /*
10746  * Grab the mlist mutex for both pages passed in.
10747  *
10748  * low and high will be returned as pointers to the mutexes for these pages.
10749  * low refers to the mutex residing in the lower bin of the mlist hash, while
10750  * high refers to the mutex residing in the higher bin of the mlist hash.  This
10751  * is due to the locking order restrictions on the same thread grabbing
10752  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
10753  *
10754  * If both pages hash to the same mutex, only grab that single mutex, and
10755  * high will be returned as NULL
10756  * If the pages hash to different bins in the hash, grab the lower addressed
10757  * lock first and then the higher addressed lock in order to follow the locking
10758  * rules involved with the same thread grabbing multiple mlist mutexes.
10759  * low and high will both have non-NULL values.
10760  */
10761 static void
10762 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
10763     kmutex_t **low, kmutex_t **high)
10764 {
10765 	kmutex_t	*mml_targ, *mml_repl;
10766 
10767 	/*
10768 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
10769 	 * because this routine is only called by hat_page_relocate() and all
10770 	 * targ and repl pages are already locked EXCL so szc can't change.
10771 	 */
10772 
10773 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
10774 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
10775 
10776 	if (mml_targ == mml_repl) {
10777 		*low = mml_targ;
10778 		*high = NULL;
10779 	} else {
10780 		if (mml_targ < mml_repl) {
10781 			*low = mml_targ;
10782 			*high = mml_repl;
10783 		} else {
10784 			*low = mml_repl;
10785 			*high = mml_targ;
10786 		}
10787 	}
10788 
10789 	mutex_enter(*low);
10790 	if (*high)
10791 		mutex_enter(*high);
10792 }
10793 
10794 static void
10795 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
10796 {
10797 	if (high)
10798 		mutex_exit(high);
10799 	mutex_exit(low);
10800 }
10801 
10802 static hatlock_t *
10803 sfmmu_hat_enter(sfmmu_t *sfmmup)
10804 {
10805 	hatlock_t	*hatlockp;
10806 
10807 	if (sfmmup != ksfmmup) {
10808 		hatlockp = TSB_HASH(sfmmup);
10809 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
10810 		return (hatlockp);
10811 	}
10812 	return (NULL);
10813 }
10814 
10815 static hatlock_t *
10816 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
10817 {
10818 	hatlock_t	*hatlockp;
10819 
10820 	if (sfmmup != ksfmmup) {
10821 		hatlockp = TSB_HASH(sfmmup);
10822 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
10823 			return (NULL);
10824 		return (hatlockp);
10825 	}
10826 	return (NULL);
10827 }
10828 
10829 static void
10830 sfmmu_hat_exit(hatlock_t *hatlockp)
10831 {
10832 	if (hatlockp != NULL)
10833 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
10834 }
10835 
10836 static void
10837 sfmmu_hat_lock_all(void)
10838 {
10839 	int i;
10840 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
10841 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
10842 }
10843 
10844 static void
10845 sfmmu_hat_unlock_all(void)
10846 {
10847 	int i;
10848 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
10849 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
10850 }
10851 
10852 int
10853 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
10854 {
10855 	ASSERT(sfmmup != ksfmmup);
10856 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
10857 }
10858 
10859 /*
10860  * Locking primitives to provide consistency between ISM unmap
10861  * and other operations.  Since ISM unmap can take a long time, we
10862  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
10863  * contention on the hatlock buckets while ISM segments are being
10864  * unmapped.  The tradeoff is that the flags don't prevent priority
10865  * inversion from occurring, so we must request kernel priority in
10866  * case we have to sleep to keep from getting buried while holding
10867  * the HAT_ISMBUSY flag set, which in turn could block other kernel
10868  * threads from running (for example, in sfmmu_uvatopfn()).
10869  */
10870 static void
10871 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
10872 {
10873 	hatlock_t *hatlockp;
10874 
10875 	if (!hatlock_held)
10876 		hatlockp = sfmmu_hat_enter(sfmmup);
10877 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
10878 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10879 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
10880 	if (!hatlock_held)
10881 		sfmmu_hat_exit(hatlockp);
10882 }
10883 
10884 static void
10885 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
10886 {
10887 	hatlock_t *hatlockp;
10888 
10889 	if (!hatlock_held)
10890 		hatlockp = sfmmu_hat_enter(sfmmup);
10891 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
10892 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
10893 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10894 	if (!hatlock_held)
10895 		sfmmu_hat_exit(hatlockp);
10896 }
10897 
10898 /*
10899  *
10900  * Algorithm:
10901  *
10902  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
10903  *	hblks.
10904  *
10905  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
10906  *
10907  *		(a) try to return an hblk from reserve pool of free hblks;
10908  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
10909  *		    and return hblk_reserve.
10910  *
10911  * (3) call kmem_cache_alloc() to allocate hblk;
10912  *
10913  *		(a) if hblk_reserve_lock is held by the current thread,
10914  *		    atomically replace hblk_reserve by the hblk that is
10915  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
10916  *		    and call kmem_cache_alloc() again.
10917  *		(b) if reserve pool is not full, add the hblk that is
10918  *		    returned by kmem_cache_alloc to reserve pool and
10919  *		    call kmem_cache_alloc again.
10920  *
10921  */
10922 static struct hme_blk *
10923 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
10924     struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
10925     uint_t flags, uint_t rid)
10926 {
10927 	struct hme_blk *hmeblkp = NULL;
10928 	struct hme_blk *newhblkp;
10929 	struct hme_blk *shw_hblkp = NULL;
10930 	struct kmem_cache *sfmmu_cache = NULL;
10931 	uint64_t hblkpa;
10932 	ulong_t index;
10933 	uint_t owner;		/* set to 1 if using hblk_reserve */
10934 	uint_t forcefree;
10935 	int sleep;
10936 	sf_srd_t *srdp;
10937 	sf_region_t *rgnp;
10938 
10939 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10940 	ASSERT(hblktag.htag_rid == rid);
10941 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
10942 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
10943 	    IS_P2ALIGNED(vaddr, TTEBYTES(size)));
10944 
10945 	/*
10946 	 * If segkmem is not created yet, allocate from static hmeblks
10947 	 * created at the end of startup_modules().  See the block comment
10948 	 * in startup_modules() describing how we estimate the number of
10949 	 * static hmeblks that will be needed during re-map.
10950 	 */
10951 	if (!hblk_alloc_dynamic) {
10952 
10953 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
10954 
10955 		if (size == TTE8K) {
10956 			index = nucleus_hblk8.index;
10957 			if (index >= nucleus_hblk8.len) {
10958 				/*
10959 				 * If we panic here, see startup_modules() to
10960 				 * make sure that we are calculating the
10961 				 * number of hblk8's that we need correctly.
10962 				 */
10963 				prom_panic("no nucleus hblk8 to allocate");
10964 			}
10965 			hmeblkp =
10966 			    (struct hme_blk *)&nucleus_hblk8.list[index];
10967 			nucleus_hblk8.index++;
10968 			SFMMU_STAT(sf_hblk8_nalloc);
10969 		} else {
10970 			index = nucleus_hblk1.index;
10971 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
10972 				/*
10973 				 * If we panic here, see startup_modules().
10974 				 * Most likely you need to update the
10975 				 * calculation of the number of hblk1 elements
10976 				 * that the kernel needs to boot.
10977 				 */
10978 				prom_panic("no nucleus hblk1 to allocate");
10979 			}
10980 			hmeblkp =
10981 			    (struct hme_blk *)&nucleus_hblk1.list[index];
10982 			nucleus_hblk1.index++;
10983 			SFMMU_STAT(sf_hblk1_nalloc);
10984 		}
10985 
10986 		goto hblk_init;
10987 	}
10988 
10989 	SFMMU_HASH_UNLOCK(hmebp);
10990 
10991 	if (sfmmup != KHATID && !SFMMU_IS_SHMERID_VALID(rid)) {
10992 		if (mmu_page_sizes == max_mmu_page_sizes) {
10993 			if (size < TTE256M)
10994 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10995 				    size, flags);
10996 		} else {
10997 			if (size < TTE4M)
10998 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10999 				    size, flags);
11000 		}
11001 	} else if (SFMMU_IS_SHMERID_VALID(rid)) {
11002 		/*
11003 		 * Shared hmes use per region bitmaps in rgn_hmeflag
11004 		 * rather than shadow hmeblks to keep track of the
11005 		 * mapping sizes which have been allocated for the region.
11006 		 * Here we cleanup old invalid hmeblks with this rid,
11007 		 * which may be left around by pageunload().
11008 		 */
11009 		int ttesz;
11010 		caddr_t va;
11011 		caddr_t	eva = vaddr + TTEBYTES(size);
11012 
11013 		ASSERT(sfmmup != KHATID);
11014 
11015 		srdp = sfmmup->sfmmu_srdp;
11016 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11017 		rgnp = srdp->srd_hmergnp[rid];
11018 		ASSERT(rgnp != NULL && rgnp->rgn_id == rid);
11019 		ASSERT(rgnp->rgn_refcnt != 0);
11020 		ASSERT(size <= rgnp->rgn_pgszc);
11021 
11022 		ttesz = HBLK_MIN_TTESZ;
11023 		do {
11024 			if (!(rgnp->rgn_hmeflags & (0x1 << ttesz))) {
11025 				continue;
11026 			}
11027 
11028 			if (ttesz > size && ttesz != HBLK_MIN_TTESZ) {
11029 				sfmmu_cleanup_rhblk(srdp, vaddr, rid, ttesz);
11030 			} else if (ttesz < size) {
11031 				for (va = vaddr; va < eva;
11032 				    va += TTEBYTES(ttesz)) {
11033 					sfmmu_cleanup_rhblk(srdp, va, rid,
11034 					    ttesz);
11035 				}
11036 			}
11037 		} while (++ttesz <= rgnp->rgn_pgszc);
11038 	}
11039 
11040 fill_hblk:
11041 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
11042 
11043 	if (owner && size == TTE8K) {
11044 
11045 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11046 		/*
11047 		 * We are really in a tight spot. We already own
11048 		 * hblk_reserve and we need another hblk.  In anticipation
11049 		 * of this kind of scenario, we specifically set aside
11050 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
11051 		 * by owner of hblk_reserve.
11052 		 */
11053 		SFMMU_STAT(sf_hblk_recurse_cnt);
11054 
11055 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
11056 			panic("sfmmu_hblk_alloc: reserve list is empty");
11057 
11058 		goto hblk_verify;
11059 	}
11060 
11061 	ASSERT(!owner);
11062 
11063 	if ((flags & HAT_NO_KALLOC) == 0) {
11064 
11065 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
11066 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
11067 
11068 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
11069 			hmeblkp = sfmmu_hblk_steal(size);
11070 		} else {
11071 			/*
11072 			 * if we are the owner of hblk_reserve,
11073 			 * swap hblk_reserve with hmeblkp and
11074 			 * start a fresh life.  Hope things go
11075 			 * better this time.
11076 			 */
11077 			if (hblk_reserve_thread == curthread) {
11078 				ASSERT(sfmmu_cache == sfmmu8_cache);
11079 				sfmmu_hblk_swap(hmeblkp);
11080 				hblk_reserve_thread = NULL;
11081 				mutex_exit(&hblk_reserve_lock);
11082 				goto fill_hblk;
11083 			}
11084 			/*
11085 			 * let's donate this hblk to our reserve list if
11086 			 * we are not mapping kernel range
11087 			 */
11088 			if (size == TTE8K && sfmmup != KHATID) {
11089 				if (sfmmu_put_free_hblk(hmeblkp, 0))
11090 					goto fill_hblk;
11091 			}
11092 		}
11093 	} else {
11094 		/*
11095 		 * We are here to map the slab in sfmmu8_cache; let's
11096 		 * check if we could tap our reserve list; if successful,
11097 		 * this will avoid the pain of going thru sfmmu_hblk_swap
11098 		 */
11099 		SFMMU_STAT(sf_hblk_slab_cnt);
11100 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
11101 			/*
11102 			 * let's start hblk_reserve dance
11103 			 */
11104 			SFMMU_STAT(sf_hblk_reserve_cnt);
11105 			owner = 1;
11106 			mutex_enter(&hblk_reserve_lock);
11107 			hmeblkp = HBLK_RESERVE;
11108 			hblk_reserve_thread = curthread;
11109 		}
11110 	}
11111 
11112 hblk_verify:
11113 	ASSERT(hmeblkp != NULL);
11114 	set_hblk_sz(hmeblkp, size);
11115 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
11116 	SFMMU_HASH_LOCK(hmebp);
11117 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11118 	if (newhblkp != NULL) {
11119 		SFMMU_HASH_UNLOCK(hmebp);
11120 		if (hmeblkp != HBLK_RESERVE) {
11121 			/*
11122 			 * This is really tricky!
11123 			 *
11124 			 * vmem_alloc(vmem_seg_arena)
11125 			 *  vmem_alloc(vmem_internal_arena)
11126 			 *   segkmem_alloc(heap_arena)
11127 			 *    vmem_alloc(heap_arena)
11128 			 *    page_create()
11129 			 *    hat_memload()
11130 			 *	kmem_cache_free()
11131 			 *	 kmem_cache_alloc()
11132 			 *	  kmem_slab_create()
11133 			 *	   vmem_alloc(kmem_internal_arena)
11134 			 *	    segkmem_alloc(heap_arena)
11135 			 *		vmem_alloc(heap_arena)
11136 			 *		page_create()
11137 			 *		hat_memload()
11138 			 *		  kmem_cache_free()
11139 			 *		...
11140 			 *
11141 			 * Thus, hat_memload() could call kmem_cache_free
11142 			 * for enough number of times that we could easily
11143 			 * hit the bottom of the stack or run out of reserve
11144 			 * list of vmem_seg structs.  So, we must donate
11145 			 * this hblk to reserve list if it's allocated
11146 			 * from sfmmu8_cache *and* mapping kernel range.
11147 			 * We don't need to worry about freeing hmeblk1's
11148 			 * to kmem since they don't map any kmem slabs.
11149 			 *
11150 			 * Note: When segkmem supports largepages, we must
11151 			 * free hmeblk1's to reserve list as well.
11152 			 */
11153 			forcefree = (sfmmup == KHATID) ? 1 : 0;
11154 			if (size == TTE8K &&
11155 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
11156 				goto re_verify;
11157 			}
11158 			ASSERT(sfmmup != KHATID);
11159 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11160 		} else {
11161 			/*
11162 			 * Hey! we don't need hblk_reserve any more.
11163 			 */
11164 			ASSERT(owner);
11165 			hblk_reserve_thread = NULL;
11166 			mutex_exit(&hblk_reserve_lock);
11167 			owner = 0;
11168 		}
11169 re_verify:
11170 		/*
11171 		 * let's check if the goodies are still present
11172 		 */
11173 		SFMMU_HASH_LOCK(hmebp);
11174 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11175 		if (newhblkp != NULL) {
11176 			/*
11177 			 * return newhblkp if it's not hblk_reserve;
11178 			 * if newhblkp is hblk_reserve, return it
11179 			 * _only if_ we are the owner of hblk_reserve.
11180 			 */
11181 			if (newhblkp != HBLK_RESERVE || owner) {
11182 				ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11183 				    newhblkp->hblk_shared);
11184 				ASSERT(SFMMU_IS_SHMERID_VALID(rid) ||
11185 				    !newhblkp->hblk_shared);
11186 				return (newhblkp);
11187 			} else {
11188 				/*
11189 				 * we just hit hblk_reserve in the hash and
11190 				 * we are not the owner of that;
11191 				 *
11192 				 * block until hblk_reserve_thread completes
11193 				 * swapping hblk_reserve and try the dance
11194 				 * once again.
11195 				 */
11196 				SFMMU_HASH_UNLOCK(hmebp);
11197 				mutex_enter(&hblk_reserve_lock);
11198 				mutex_exit(&hblk_reserve_lock);
11199 				SFMMU_STAT(sf_hblk_reserve_hit);
11200 				goto fill_hblk;
11201 			}
11202 		} else {
11203 			/*
11204 			 * it's no more! try the dance once again.
11205 			 */
11206 			SFMMU_HASH_UNLOCK(hmebp);
11207 			goto fill_hblk;
11208 		}
11209 	}
11210 
11211 hblk_init:
11212 	if (SFMMU_IS_SHMERID_VALID(rid)) {
11213 		uint16_t tteflag = 0x1 <<
11214 		    ((size < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : size);
11215 
11216 		if (!(rgnp->rgn_hmeflags & tteflag)) {
11217 			atomic_or_16(&rgnp->rgn_hmeflags, tteflag);
11218 		}
11219 		hmeblkp->hblk_shared = 1;
11220 	} else {
11221 		hmeblkp->hblk_shared = 0;
11222 	}
11223 	set_hblk_sz(hmeblkp, size);
11224 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11225 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
11226 	hmeblkp->hblk_tag = hblktag;
11227 	hmeblkp->hblk_shadow = shw_hblkp;
11228 	hblkpa = hmeblkp->hblk_nextpa;
11229 	hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
11230 
11231 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
11232 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
11233 	ASSERT(hmeblkp->hblk_hmecnt == 0);
11234 	ASSERT(hmeblkp->hblk_vcnt == 0);
11235 	ASSERT(hmeblkp->hblk_lckcnt == 0);
11236 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11237 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
11238 	return (hmeblkp);
11239 }
11240 
11241 /*
11242  * This function cleans up the hme_blk and returns it to the free list.
11243  */
11244 /* ARGSUSED */
11245 static void
11246 sfmmu_hblk_free(struct hme_blk **listp)
11247 {
11248 	struct hme_blk *hmeblkp, *next_hmeblkp;
11249 	int		size;
11250 	uint_t		critical;
11251 	uint64_t	hblkpa;
11252 
11253 	ASSERT(*listp != NULL);
11254 
11255 	hmeblkp = *listp;
11256 	while (hmeblkp != NULL) {
11257 		next_hmeblkp = hmeblkp->hblk_next;
11258 		ASSERT(!hmeblkp->hblk_hmecnt);
11259 		ASSERT(!hmeblkp->hblk_vcnt);
11260 		ASSERT(!hmeblkp->hblk_lckcnt);
11261 		ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
11262 		ASSERT(hmeblkp->hblk_shared == 0);
11263 		ASSERT(hmeblkp->hblk_shw_bit == 0);
11264 		ASSERT(hmeblkp->hblk_shadow == NULL);
11265 
11266 		hblkpa = va_to_pa((caddr_t)hmeblkp);
11267 		ASSERT(hblkpa != (uint64_t)-1);
11268 		critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
11269 
11270 		size = get_hblk_ttesz(hmeblkp);
11271 		hmeblkp->hblk_next = NULL;
11272 		hmeblkp->hblk_nextpa = hblkpa;
11273 
11274 		if (hmeblkp->hblk_nuc_bit == 0) {
11275 
11276 			if (size != TTE8K ||
11277 			    !sfmmu_put_free_hblk(hmeblkp, critical))
11278 				kmem_cache_free(get_hblk_cache(hmeblkp),
11279 				    hmeblkp);
11280 		}
11281 		hmeblkp = next_hmeblkp;
11282 	}
11283 }
11284 
11285 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
11286 #define	SFMMU_HBLK_STEAL_THRESHOLD 5
11287 
11288 static uint_t sfmmu_hblk_steal_twice;
11289 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
11290 
11291 /*
11292  * Steal a hmeblk from user or kernel hme hash lists.
11293  * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
11294  * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
11295  * tap into critical reserve of freehblkp.
11296  * Note: We remain looping in this routine until we find one.
11297  */
11298 static struct hme_blk *
11299 sfmmu_hblk_steal(int size)
11300 {
11301 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
11302 	struct hmehash_bucket *hmebp;
11303 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
11304 	uint64_t hblkpa;
11305 	int i;
11306 	uint_t loop_cnt = 0, critical;
11307 
11308 	for (;;) {
11309 		/* Check cpu hblk pending queues */
11310 		if ((hmeblkp = sfmmu_check_pending_hblks(size)) != NULL) {
11311 			hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
11312 			ASSERT(hmeblkp->hblk_hmecnt == 0);
11313 			ASSERT(hmeblkp->hblk_vcnt == 0);
11314 			return (hmeblkp);
11315 		}
11316 
11317 		if (size == TTE8K) {
11318 			critical =
11319 			    (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
11320 			if (sfmmu_get_free_hblk(&hmeblkp, critical))
11321 				return (hmeblkp);
11322 		}
11323 
11324 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
11325 		    uhmehash_steal_hand;
11326 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
11327 
11328 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
11329 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
11330 			SFMMU_HASH_LOCK(hmebp);
11331 			hmeblkp = hmebp->hmeblkp;
11332 			hblkpa = hmebp->hmeh_nextpa;
11333 			pr_hblk = NULL;
11334 			while (hmeblkp) {
11335 				/*
11336 				 * check if it is a hmeblk that is not locked
11337 				 * and not shared. skip shadow hmeblks with
11338 				 * shadow_mask set i.e valid count non zero.
11339 				 */
11340 				if ((get_hblk_ttesz(hmeblkp) == size) &&
11341 				    (hmeblkp->hblk_shw_bit == 0 ||
11342 				    hmeblkp->hblk_vcnt == 0) &&
11343 				    (hmeblkp->hblk_lckcnt == 0)) {
11344 					/*
11345 					 * there is a high probability that we
11346 					 * will find a free one. search some
11347 					 * buckets for a free hmeblk initially
11348 					 * before unloading a valid hmeblk.
11349 					 */
11350 					if ((hmeblkp->hblk_vcnt == 0 &&
11351 					    hmeblkp->hblk_hmecnt == 0) || (i >=
11352 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
11353 						if (sfmmu_steal_this_hblk(hmebp,
11354 						    hmeblkp, hblkpa, pr_hblk)) {
11355 							/*
11356 							 * Hblk is unloaded
11357 							 * successfully
11358 							 */
11359 							break;
11360 						}
11361 					}
11362 				}
11363 				pr_hblk = hmeblkp;
11364 				hblkpa = hmeblkp->hblk_nextpa;
11365 				hmeblkp = hmeblkp->hblk_next;
11366 			}
11367 
11368 			SFMMU_HASH_UNLOCK(hmebp);
11369 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
11370 				hmebp = uhme_hash;
11371 		}
11372 		uhmehash_steal_hand = hmebp;
11373 
11374 		if (hmeblkp != NULL)
11375 			break;
11376 
11377 		/*
11378 		 * in the worst case, look for a free one in the kernel
11379 		 * hash table.
11380 		 */
11381 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
11382 			SFMMU_HASH_LOCK(hmebp);
11383 			hmeblkp = hmebp->hmeblkp;
11384 			hblkpa = hmebp->hmeh_nextpa;
11385 			pr_hblk = NULL;
11386 			while (hmeblkp) {
11387 				/*
11388 				 * check if it is free hmeblk
11389 				 */
11390 				if ((get_hblk_ttesz(hmeblkp) == size) &&
11391 				    (hmeblkp->hblk_lckcnt == 0) &&
11392 				    (hmeblkp->hblk_vcnt == 0) &&
11393 				    (hmeblkp->hblk_hmecnt == 0)) {
11394 					if (sfmmu_steal_this_hblk(hmebp,
11395 					    hmeblkp, hblkpa, pr_hblk)) {
11396 						break;
11397 					} else {
11398 						/*
11399 						 * Cannot fail since we have
11400 						 * hash lock.
11401 						 */
11402 						panic("fail to steal?");
11403 					}
11404 				}
11405 
11406 				pr_hblk = hmeblkp;
11407 				hblkpa = hmeblkp->hblk_nextpa;
11408 				hmeblkp = hmeblkp->hblk_next;
11409 			}
11410 
11411 			SFMMU_HASH_UNLOCK(hmebp);
11412 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
11413 				hmebp = khme_hash;
11414 		}
11415 
11416 		if (hmeblkp != NULL)
11417 			break;
11418 		sfmmu_hblk_steal_twice++;
11419 	}
11420 	return (hmeblkp);
11421 }
11422 
11423 /*
11424  * This routine does real work to prepare a hblk to be "stolen" by
11425  * unloading the mappings, updating shadow counts ....
11426  * It returns 1 if the block is ready to be reused (stolen), or 0
11427  * means the block cannot be stolen yet- pageunload is still working
11428  * on this hblk.
11429  */
11430 static int
11431 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11432     uint64_t hblkpa, struct hme_blk *pr_hblk)
11433 {
11434 	int shw_size, vshift;
11435 	struct hme_blk *shw_hblkp;
11436 	caddr_t vaddr;
11437 	uint_t shw_mask, newshw_mask;
11438 	struct hme_blk *list = NULL;
11439 
11440 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11441 
11442 	/*
11443 	 * check if the hmeblk is free, unload if necessary
11444 	 */
11445 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11446 		sfmmu_t *sfmmup;
11447 		demap_range_t dmr;
11448 
11449 		sfmmup = hblktosfmmu(hmeblkp);
11450 		if (hmeblkp->hblk_shared || sfmmup->sfmmu_ismhat) {
11451 			return (0);
11452 		}
11453 		DEMAP_RANGE_INIT(sfmmup, &dmr);
11454 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
11455 		    (caddr_t)get_hblk_base(hmeblkp),
11456 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
11457 		DEMAP_RANGE_FLUSH(&dmr);
11458 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11459 			/*
11460 			 * Pageunload is working on the same hblk.
11461 			 */
11462 			return (0);
11463 		}
11464 
11465 		sfmmu_hblk_steal_unload_count++;
11466 	}
11467 
11468 	ASSERT(hmeblkp->hblk_lckcnt == 0);
11469 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
11470 
11471 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 1);
11472 	hmeblkp->hblk_nextpa = hblkpa;
11473 
11474 	shw_hblkp = hmeblkp->hblk_shadow;
11475 	if (shw_hblkp) {
11476 		ASSERT(!hmeblkp->hblk_shared);
11477 		shw_size = get_hblk_ttesz(shw_hblkp);
11478 		vaddr = (caddr_t)get_hblk_base(hmeblkp);
11479 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11480 		ASSERT(vshift < 8);
11481 		/*
11482 		 * Atomically clear shadow mask bit
11483 		 */
11484 		do {
11485 			shw_mask = shw_hblkp->hblk_shw_mask;
11486 			ASSERT(shw_mask & (1 << vshift));
11487 			newshw_mask = shw_mask & ~(1 << vshift);
11488 			newshw_mask = atomic_cas_32(&shw_hblkp->hblk_shw_mask,
11489 			    shw_mask, newshw_mask);
11490 		} while (newshw_mask != shw_mask);
11491 		hmeblkp->hblk_shadow = NULL;
11492 	}
11493 
11494 	/*
11495 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
11496 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
11497 	 * we are indeed allocating a shadow hmeblk.
11498 	 */
11499 	hmeblkp->hblk_shw_bit = 0;
11500 
11501 	if (hmeblkp->hblk_shared) {
11502 		sf_srd_t	*srdp;
11503 		sf_region_t	*rgnp;
11504 		uint_t		rid;
11505 
11506 		srdp = hblktosrd(hmeblkp);
11507 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11508 		rid = hmeblkp->hblk_tag.htag_rid;
11509 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11510 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11511 		rgnp = srdp->srd_hmergnp[rid];
11512 		ASSERT(rgnp != NULL);
11513 		SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11514 		hmeblkp->hblk_shared = 0;
11515 	}
11516 
11517 	sfmmu_hblk_steal_count++;
11518 	SFMMU_STAT(sf_steal_count);
11519 
11520 	return (1);
11521 }
11522 
11523 struct hme_blk *
11524 sfmmu_hmetohblk(struct sf_hment *sfhme)
11525 {
11526 	struct hme_blk *hmeblkp;
11527 	struct sf_hment *sfhme0;
11528 	struct hme_blk *hblk_dummy = 0;
11529 
11530 	/*
11531 	 * No dummy sf_hments, please.
11532 	 */
11533 	ASSERT(sfhme->hme_tte.ll != 0);
11534 
11535 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
11536 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
11537 	    (uintptr_t)&hblk_dummy->hblk_hme[0]);
11538 
11539 	return (hmeblkp);
11540 }
11541 
11542 /*
11543  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
11544  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
11545  * KM_SLEEP allocation.
11546  *
11547  * Return 0 on success, -1 otherwise.
11548  */
11549 static void
11550 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11551 {
11552 	struct tsb_info *tsbinfop, *next;
11553 	tsb_replace_rc_t rc;
11554 	boolean_t gotfirst = B_FALSE;
11555 
11556 	ASSERT(sfmmup != ksfmmup);
11557 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11558 
11559 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
11560 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11561 	}
11562 
11563 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11564 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
11565 	} else {
11566 		return;
11567 	}
11568 
11569 	ASSERT(sfmmup->sfmmu_tsb != NULL);
11570 
11571 	/*
11572 	 * Loop over all tsbinfo's replacing them with ones that actually have
11573 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
11574 	 */
11575 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
11576 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
11577 		next = tsbinfop->tsb_next;
11578 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
11579 		    hatlockp, TSB_SWAPIN);
11580 		if (rc != TSB_SUCCESS) {
11581 			break;
11582 		}
11583 		gotfirst = B_TRUE;
11584 	}
11585 
11586 	switch (rc) {
11587 	case TSB_SUCCESS:
11588 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11589 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11590 		return;
11591 	case TSB_LOSTRACE:
11592 		break;
11593 	case TSB_ALLOCFAIL:
11594 		break;
11595 	default:
11596 		panic("sfmmu_replace_tsb returned unrecognized failure code "
11597 		    "%d", rc);
11598 	}
11599 
11600 	/*
11601 	 * In this case, we failed to get one of our TSBs.  If we failed to
11602 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
11603 	 * and throw away the tsbinfos, starting where the allocation failed;
11604 	 * we can get by with just one TSB as long as we don't leave the
11605 	 * SWAPPED tsbinfo structures lying around.
11606 	 */
11607 	tsbinfop = sfmmup->sfmmu_tsb;
11608 	next = tsbinfop->tsb_next;
11609 	tsbinfop->tsb_next = NULL;
11610 
11611 	sfmmu_hat_exit(hatlockp);
11612 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
11613 		next = tsbinfop->tsb_next;
11614 		sfmmu_tsbinfo_free(tsbinfop);
11615 	}
11616 	hatlockp = sfmmu_hat_enter(sfmmup);
11617 
11618 	/*
11619 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
11620 	 * pages.
11621 	 */
11622 	if (!gotfirst) {
11623 		tsbinfop = sfmmup->sfmmu_tsb;
11624 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
11625 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
11626 		ASSERT(rc == TSB_SUCCESS);
11627 	}
11628 
11629 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11630 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11631 }
11632 
11633 static int
11634 sfmmu_is_rgnva(sf_srd_t *srdp, caddr_t addr, ulong_t w, ulong_t bmw)
11635 {
11636 	ulong_t bix = 0;
11637 	uint_t rid;
11638 	sf_region_t *rgnp;
11639 
11640 	ASSERT(srdp != NULL);
11641 	ASSERT(srdp->srd_refcnt != 0);
11642 
11643 	w <<= BT_ULSHIFT;
11644 	while (bmw) {
11645 		if (!(bmw & 0x1)) {
11646 			bix++;
11647 			bmw >>= 1;
11648 			continue;
11649 		}
11650 		rid = w | bix;
11651 		rgnp = srdp->srd_hmergnp[rid];
11652 		ASSERT(rgnp->rgn_refcnt > 0);
11653 		ASSERT(rgnp->rgn_id == rid);
11654 		if (addr < rgnp->rgn_saddr ||
11655 		    addr >= (rgnp->rgn_saddr + rgnp->rgn_size)) {
11656 			bix++;
11657 			bmw >>= 1;
11658 		} else {
11659 			return (1);
11660 		}
11661 	}
11662 	return (0);
11663 }
11664 
11665 /*
11666  * Handle exceptions for low level tsb_handler.
11667  *
11668  * There are many scenarios that could land us here:
11669  *
11670  * If the context is invalid we land here. The context can be invalid
11671  * for 3 reasons: 1) we couldn't allocate a new context and now need to
11672  * perform a wrap around operation in order to allocate a new context.
11673  * 2) Context was invalidated to change pagesize programming 3) ISMs or
11674  * TSBs configuration is changeing for this process and we are forced into
11675  * here to do a syncronization operation. If the context is valid we can
11676  * be here from window trap hanlder. In this case just call trap to handle
11677  * the fault.
11678  *
11679  * Note that the process will run in INVALID_CONTEXT before
11680  * faulting into here and subsequently loading the MMU registers
11681  * (including the TSB base register) associated with this process.
11682  * For this reason, the trap handlers must all test for
11683  * INVALID_CONTEXT before attempting to access any registers other
11684  * than the context registers.
11685  */
11686 void
11687 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
11688 {
11689 	sfmmu_t *sfmmup, *shsfmmup;
11690 	uint_t ctxtype;
11691 	klwp_id_t lwp;
11692 	char lwp_save_state;
11693 	hatlock_t *hatlockp, *shatlockp;
11694 	struct tsb_info *tsbinfop;
11695 	struct tsbmiss *tsbmp;
11696 	sf_scd_t *scdp;
11697 
11698 	SFMMU_STAT(sf_tsb_exceptions);
11699 	SFMMU_MMU_STAT(mmu_tsb_exceptions);
11700 	sfmmup = astosfmmu(curthread->t_procp->p_as);
11701 	/*
11702 	 * note that in sun4u, tagacces register contains ctxnum
11703 	 * while sun4v passes ctxtype in the tagaccess register.
11704 	 */
11705 	ctxtype = tagaccess & TAGACC_CTX_MASK;
11706 
11707 	ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
11708 	ASSERT(sfmmup->sfmmu_ismhat == 0);
11709 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
11710 	    ctxtype == INVALID_CONTEXT);
11711 
11712 	if (ctxtype != INVALID_CONTEXT && traptype != T_DATA_PROT) {
11713 		/*
11714 		 * We may land here because shme bitmap and pagesize
11715 		 * flags are updated lazily in tsbmiss area on other cpus.
11716 		 * If we detect here that tsbmiss area is out of sync with
11717 		 * sfmmu update it and retry the trapped instruction.
11718 		 * Otherwise call trap().
11719 		 */
11720 		int ret = 0;
11721 		uchar_t tteflag_mask = (1 << TTE64K) | (1 << TTE8K);
11722 		caddr_t addr = (caddr_t)(tagaccess & TAGACC_VADDR_MASK);
11723 
11724 		/*
11725 		 * Must set lwp state to LWP_SYS before
11726 		 * trying to acquire any adaptive lock
11727 		 */
11728 		lwp = ttolwp(curthread);
11729 		ASSERT(lwp);
11730 		lwp_save_state = lwp->lwp_state;
11731 		lwp->lwp_state = LWP_SYS;
11732 
11733 		hatlockp = sfmmu_hat_enter(sfmmup);
11734 		kpreempt_disable();
11735 		tsbmp = &tsbmiss_area[CPU->cpu_id];
11736 		ASSERT(sfmmup == tsbmp->usfmmup);
11737 		if (((tsbmp->uhat_tteflags ^ sfmmup->sfmmu_tteflags) &
11738 		    ~tteflag_mask) ||
11739 		    ((tsbmp->uhat_rtteflags ^  sfmmup->sfmmu_rtteflags) &
11740 		    ~tteflag_mask)) {
11741 			tsbmp->uhat_tteflags = sfmmup->sfmmu_tteflags;
11742 			tsbmp->uhat_rtteflags = sfmmup->sfmmu_rtteflags;
11743 			ret = 1;
11744 		}
11745 		if (sfmmup->sfmmu_srdp != NULL) {
11746 			ulong_t *sm = sfmmup->sfmmu_hmeregion_map.bitmap;
11747 			ulong_t *tm = tsbmp->shmermap;
11748 			ulong_t i;
11749 			for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
11750 				ulong_t d = tm[i] ^ sm[i];
11751 				if (d) {
11752 					if (d & sm[i]) {
11753 						if (!ret && sfmmu_is_rgnva(
11754 						    sfmmup->sfmmu_srdp,
11755 						    addr, i, d & sm[i])) {
11756 							ret = 1;
11757 						}
11758 					}
11759 					tm[i] = sm[i];
11760 				}
11761 			}
11762 		}
11763 		kpreempt_enable();
11764 		sfmmu_hat_exit(hatlockp);
11765 		lwp->lwp_state = lwp_save_state;
11766 		if (ret) {
11767 			return;
11768 		}
11769 	} else if (ctxtype == INVALID_CONTEXT) {
11770 		/*
11771 		 * First, make sure we come out of here with a valid ctx,
11772 		 * since if we don't get one we'll simply loop on the
11773 		 * faulting instruction.
11774 		 *
11775 		 * If the ISM mappings are changing, the TSB is relocated,
11776 		 * the process is swapped, the process is joining SCD or
11777 		 * leaving SCD or shared regions we serialize behind the
11778 		 * controlling thread with hat lock, sfmmu_flags and
11779 		 * sfmmu_tsb_cv condition variable.
11780 		 */
11781 
11782 		/*
11783 		 * Must set lwp state to LWP_SYS before
11784 		 * trying to acquire any adaptive lock
11785 		 */
11786 		lwp = ttolwp(curthread);
11787 		ASSERT(lwp);
11788 		lwp_save_state = lwp->lwp_state;
11789 		lwp->lwp_state = LWP_SYS;
11790 
11791 		hatlockp = sfmmu_hat_enter(sfmmup);
11792 retry:
11793 		if ((scdp = sfmmup->sfmmu_scdp) != NULL) {
11794 			shsfmmup = scdp->scd_sfmmup;
11795 			ASSERT(shsfmmup != NULL);
11796 
11797 			for (tsbinfop = shsfmmup->sfmmu_tsb; tsbinfop != NULL;
11798 			    tsbinfop = tsbinfop->tsb_next) {
11799 				if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11800 					/* drop the private hat lock */
11801 					sfmmu_hat_exit(hatlockp);
11802 					/* acquire the shared hat lock */
11803 					shatlockp = sfmmu_hat_enter(shsfmmup);
11804 					/*
11805 					 * recheck to see if anything changed
11806 					 * after we drop the private hat lock.
11807 					 */
11808 					if (sfmmup->sfmmu_scdp == scdp &&
11809 					    shsfmmup == scdp->scd_sfmmup) {
11810 						sfmmu_tsb_chk_reloc(shsfmmup,
11811 						    shatlockp);
11812 					}
11813 					sfmmu_hat_exit(shatlockp);
11814 					hatlockp = sfmmu_hat_enter(sfmmup);
11815 					goto retry;
11816 				}
11817 			}
11818 		}
11819 
11820 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
11821 		    tsbinfop = tsbinfop->tsb_next) {
11822 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11823 				cv_wait(&sfmmup->sfmmu_tsb_cv,
11824 				    HATLOCK_MUTEXP(hatlockp));
11825 				goto retry;
11826 			}
11827 		}
11828 
11829 		/*
11830 		 * Wait for ISM maps to be updated.
11831 		 */
11832 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
11833 			cv_wait(&sfmmup->sfmmu_tsb_cv,
11834 			    HATLOCK_MUTEXP(hatlockp));
11835 			goto retry;
11836 		}
11837 
11838 		/* Is this process joining an SCD? */
11839 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
11840 			/*
11841 			 * Flush private TSB and setup shared TSB.
11842 			 * sfmmu_finish_join_scd() does not drop the
11843 			 * hat lock.
11844 			 */
11845 			sfmmu_finish_join_scd(sfmmup);
11846 			SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
11847 		}
11848 
11849 		/*
11850 		 * If we're swapping in, get TSB(s).  Note that we must do
11851 		 * this before we get a ctx or load the MMU state.  Once
11852 		 * we swap in we have to recheck to make sure the TSB(s) and
11853 		 * ISM mappings didn't change while we slept.
11854 		 */
11855 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11856 			sfmmu_tsb_swapin(sfmmup, hatlockp);
11857 			goto retry;
11858 		}
11859 
11860 		sfmmu_get_ctx(sfmmup);
11861 
11862 		sfmmu_hat_exit(hatlockp);
11863 		/*
11864 		 * Must restore lwp_state if not calling
11865 		 * trap() for further processing. Restore
11866 		 * it anyway.
11867 		 */
11868 		lwp->lwp_state = lwp_save_state;
11869 		return;
11870 	}
11871 	trap(rp, (caddr_t)tagaccess, traptype, 0);
11872 }
11873 
11874 static void
11875 sfmmu_tsb_chk_reloc(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11876 {
11877 	struct tsb_info *tp;
11878 
11879 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11880 
11881 	for (tp = sfmmup->sfmmu_tsb; tp != NULL; tp = tp->tsb_next) {
11882 		if (tp->tsb_flags & TSB_RELOC_FLAG) {
11883 			cv_wait(&sfmmup->sfmmu_tsb_cv,
11884 			    HATLOCK_MUTEXP(hatlockp));
11885 			break;
11886 		}
11887 	}
11888 }
11889 
11890 /*
11891  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
11892  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
11893  * rather than spinning to avoid send mondo timeouts with
11894  * interrupts enabled. When the lock is acquired it is immediately
11895  * released and we return back to sfmmu_vatopfn just after
11896  * the GET_TTE call.
11897  */
11898 void
11899 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
11900 {
11901 	struct page	**pp;
11902 
11903 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
11904 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
11905 }
11906 
11907 /*
11908  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
11909  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
11910  * cross traps which cannot be handled while spinning in the
11911  * trap handlers. Simply enter and exit the kpr_suspendlock spin
11912  * mutex, which is held by the holder of the suspend bit, and then
11913  * retry the trapped instruction after unwinding.
11914  */
11915 /*ARGSUSED*/
11916 void
11917 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
11918 {
11919 	ASSERT(curthread != kreloc_thread);
11920 	mutex_enter(&kpr_suspendlock);
11921 	mutex_exit(&kpr_suspendlock);
11922 }
11923 
11924 /*
11925  * This routine could be optimized to reduce the number of xcalls by flushing
11926  * the entire TLBs if region reference count is above some threshold but the
11927  * tradeoff will depend on the size of the TLB. So for now flush the specific
11928  * page a context at a time.
11929  *
11930  * If uselocks is 0 then it's called after all cpus were captured and all the
11931  * hat locks were taken. In this case don't take the region lock by relying on
11932  * the order of list region update operations in hat_join_region(),
11933  * hat_leave_region() and hat_dup_region(). The ordering in those routines
11934  * guarantees that list is always forward walkable and reaches active sfmmus
11935  * regardless of where xc_attention() captures a cpu.
11936  */
11937 cpuset_t
11938 sfmmu_rgntlb_demap(caddr_t addr, sf_region_t *rgnp,
11939     struct hme_blk *hmeblkp, int uselocks)
11940 {
11941 	sfmmu_t	*sfmmup;
11942 	cpuset_t cpuset;
11943 	cpuset_t rcpuset;
11944 	hatlock_t *hatlockp;
11945 	uint_t rid = rgnp->rgn_id;
11946 	sf_rgn_link_t *rlink;
11947 	sf_scd_t *scdp;
11948 
11949 	ASSERT(hmeblkp->hblk_shared);
11950 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11951 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11952 
11953 	CPUSET_ZERO(rcpuset);
11954 	if (uselocks) {
11955 		mutex_enter(&rgnp->rgn_mutex);
11956 	}
11957 	sfmmup = rgnp->rgn_sfmmu_head;
11958 	while (sfmmup != NULL) {
11959 		if (uselocks) {
11960 			hatlockp = sfmmu_hat_enter(sfmmup);
11961 		}
11962 
11963 		/*
11964 		 * When an SCD is created the SCD hat is linked on the sfmmu
11965 		 * region lists for each hme region which is part of the
11966 		 * SCD. If we find an SCD hat, when walking these lists,
11967 		 * then we flush the shared TSBs, if we find a private hat,
11968 		 * which is part of an SCD, but where the region
11969 		 * is not part of the SCD then we flush the private TSBs.
11970 		 */
11971 		if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
11972 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
11973 			scdp = sfmmup->sfmmu_scdp;
11974 			if (SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
11975 				if (uselocks) {
11976 					sfmmu_hat_exit(hatlockp);
11977 				}
11978 				goto next;
11979 			}
11980 		}
11981 
11982 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
11983 
11984 		kpreempt_disable();
11985 		cpuset = sfmmup->sfmmu_cpusran;
11986 		CPUSET_AND(cpuset, cpu_ready_set);
11987 		CPUSET_DEL(cpuset, CPU->cpu_id);
11988 		SFMMU_XCALL_STATS(sfmmup);
11989 		xt_some(cpuset, vtag_flushpage_tl1,
11990 		    (uint64_t)addr, (uint64_t)sfmmup);
11991 		vtag_flushpage(addr, (uint64_t)sfmmup);
11992 		if (uselocks) {
11993 			sfmmu_hat_exit(hatlockp);
11994 		}
11995 		kpreempt_enable();
11996 		CPUSET_OR(rcpuset, cpuset);
11997 
11998 next:
11999 		/* LINTED: constant in conditional context */
12000 		SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
12001 		ASSERT(rlink != NULL);
12002 		sfmmup = rlink->next;
12003 	}
12004 	if (uselocks) {
12005 		mutex_exit(&rgnp->rgn_mutex);
12006 	}
12007 	return (rcpuset);
12008 }
12009 
12010 /*
12011  * This routine takes an sfmmu pointer and the va for an adddress in an
12012  * ISM region as input and returns the corresponding region id in ism_rid.
12013  * The return value of 1 indicates that a region has been found and ism_rid
12014  * is valid, otherwise 0 is returned.
12015  */
12016 static int
12017 find_ism_rid(sfmmu_t *sfmmup, sfmmu_t *ism_sfmmup, caddr_t va, uint_t *ism_rid)
12018 {
12019 	ism_blk_t	*ism_blkp;
12020 	int		i;
12021 	ism_map_t	*ism_map;
12022 #ifdef DEBUG
12023 	struct hat	*ism_hatid;
12024 #endif
12025 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12026 
12027 	ism_blkp = sfmmup->sfmmu_iblk;
12028 	while (ism_blkp != NULL) {
12029 		ism_map = ism_blkp->iblk_maps;
12030 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
12031 			if ((va >= ism_start(ism_map[i])) &&
12032 			    (va < ism_end(ism_map[i]))) {
12033 
12034 				*ism_rid = ism_map[i].imap_rid;
12035 #ifdef DEBUG
12036 				ism_hatid = ism_map[i].imap_ismhat;
12037 				ASSERT(ism_hatid == ism_sfmmup);
12038 				ASSERT(ism_hatid->sfmmu_ismhat);
12039 #endif
12040 				return (1);
12041 			}
12042 		}
12043 		ism_blkp = ism_blkp->iblk_next;
12044 	}
12045 	return (0);
12046 }
12047 
12048 /*
12049  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
12050  * This routine may be called with all cpu's captured. Therefore, the
12051  * caller is responsible for holding all locks and disabling kernel
12052  * preemption.
12053  */
12054 /* ARGSUSED */
12055 static void
12056 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
12057     struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
12058 {
12059 	cpuset_t	cpuset;
12060 	caddr_t		va;
12061 	ism_ment_t	*ment;
12062 	sfmmu_t		*sfmmup;
12063 #ifdef VAC
12064 	int		vcolor;
12065 #endif
12066 
12067 	sf_scd_t	*scdp;
12068 	uint_t		ism_rid;
12069 
12070 	ASSERT(!hmeblkp->hblk_shared);
12071 	/*
12072 	 * Walk the ism_hat's mapping list and flush the page
12073 	 * from every hat sharing this ism_hat. This routine
12074 	 * may be called while all cpu's have been captured.
12075 	 * Therefore we can't attempt to grab any locks. For now
12076 	 * this means we will protect the ism mapping list under
12077 	 * a single lock which will be grabbed by the caller.
12078 	 * If hat_share/unshare scalibility becomes a performance
12079 	 * problem then we may need to re-think ism mapping list locking.
12080 	 */
12081 	ASSERT(ism_sfmmup->sfmmu_ismhat);
12082 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
12083 	addr = (caddr_t)((uintptr_t)addr - (uintptr_t)ISMID_STARTADDR);
12084 
12085 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
12086 
12087 		sfmmup = ment->iment_hat;
12088 
12089 		va = ment->iment_base_va;
12090 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
12091 
12092 		/*
12093 		 * When an SCD is created the SCD hat is linked on the ism
12094 		 * mapping lists for each ISM segment which is part of the
12095 		 * SCD. If we find an SCD hat, when walking these lists,
12096 		 * then we flush the shared TSBs, if we find a private hat,
12097 		 * which is part of an SCD, but where the region
12098 		 * corresponding to this va is not part of the SCD then we
12099 		 * flush the private TSBs.
12100 		 */
12101 		if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12102 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD) &&
12103 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12104 			if (!find_ism_rid(sfmmup, ism_sfmmup, va,
12105 			    &ism_rid)) {
12106 				cmn_err(CE_PANIC,
12107 				    "can't find matching ISM rid!");
12108 			}
12109 
12110 			scdp = sfmmup->sfmmu_scdp;
12111 			if (SFMMU_IS_ISMRID_VALID(ism_rid) &&
12112 			    SF_RGNMAP_TEST(scdp->scd_ismregion_map,
12113 			    ism_rid)) {
12114 				continue;
12115 			}
12116 		}
12117 		SFMMU_UNLOAD_TSB(va, sfmmup, hmeblkp, 1);
12118 
12119 		cpuset = sfmmup->sfmmu_cpusran;
12120 		CPUSET_AND(cpuset, cpu_ready_set);
12121 		CPUSET_DEL(cpuset, CPU->cpu_id);
12122 		SFMMU_XCALL_STATS(sfmmup);
12123 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
12124 		    (uint64_t)sfmmup);
12125 		vtag_flushpage(va, (uint64_t)sfmmup);
12126 
12127 #ifdef VAC
12128 		/*
12129 		 * Flush D$
12130 		 * When flushing D$ we must flush all
12131 		 * cpu's. See sfmmu_cache_flush().
12132 		 */
12133 		if (cache_flush_flag == CACHE_FLUSH) {
12134 			cpuset = cpu_ready_set;
12135 			CPUSET_DEL(cpuset, CPU->cpu_id);
12136 
12137 			SFMMU_XCALL_STATS(sfmmup);
12138 			vcolor = addr_to_vcolor(va);
12139 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12140 			vac_flushpage(pfnum, vcolor);
12141 		}
12142 #endif	/* VAC */
12143 	}
12144 }
12145 
12146 /*
12147  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
12148  * a particular virtual address and ctx.  If noflush is set we do not
12149  * flush the TLB/TSB.  This function may or may not be called with the
12150  * HAT lock held.
12151  */
12152 static void
12153 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12154     pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
12155     int hat_lock_held)
12156 {
12157 #ifdef VAC
12158 	int vcolor;
12159 #endif
12160 	cpuset_t cpuset;
12161 	hatlock_t *hatlockp;
12162 
12163 	ASSERT(!hmeblkp->hblk_shared);
12164 
12165 #if defined(lint) && !defined(VAC)
12166 	pfnum = pfnum;
12167 	cpu_flag = cpu_flag;
12168 	cache_flush_flag = cache_flush_flag;
12169 #endif
12170 
12171 	/*
12172 	 * There is no longer a need to protect against ctx being
12173 	 * stolen here since we don't store the ctx in the TSB anymore.
12174 	 */
12175 #ifdef VAC
12176 	vcolor = addr_to_vcolor(addr);
12177 #endif
12178 
12179 	/*
12180 	 * We must hold the hat lock during the flush of TLB,
12181 	 * to avoid a race with sfmmu_invalidate_ctx(), where
12182 	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12183 	 * causing TLB demap routine to skip flush on that MMU.
12184 	 * If the context on a MMU has already been set to
12185 	 * INVALID_CONTEXT, we just get an extra flush on
12186 	 * that MMU.
12187 	 */
12188 	if (!hat_lock_held && !tlb_noflush)
12189 		hatlockp = sfmmu_hat_enter(sfmmup);
12190 
12191 	kpreempt_disable();
12192 	if (!tlb_noflush) {
12193 		/*
12194 		 * Flush the TSB and TLB.
12195 		 */
12196 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12197 
12198 		cpuset = sfmmup->sfmmu_cpusran;
12199 		CPUSET_AND(cpuset, cpu_ready_set);
12200 		CPUSET_DEL(cpuset, CPU->cpu_id);
12201 
12202 		SFMMU_XCALL_STATS(sfmmup);
12203 
12204 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
12205 		    (uint64_t)sfmmup);
12206 
12207 		vtag_flushpage(addr, (uint64_t)sfmmup);
12208 	}
12209 
12210 	if (!hat_lock_held && !tlb_noflush)
12211 		sfmmu_hat_exit(hatlockp);
12212 
12213 #ifdef VAC
12214 	/*
12215 	 * Flush the D$
12216 	 *
12217 	 * Even if the ctx is stolen, we need to flush the
12218 	 * cache. Our ctx stealer only flushes the TLBs.
12219 	 */
12220 	if (cache_flush_flag == CACHE_FLUSH) {
12221 		if (cpu_flag & FLUSH_ALL_CPUS) {
12222 			cpuset = cpu_ready_set;
12223 		} else {
12224 			cpuset = sfmmup->sfmmu_cpusran;
12225 			CPUSET_AND(cpuset, cpu_ready_set);
12226 		}
12227 		CPUSET_DEL(cpuset, CPU->cpu_id);
12228 		SFMMU_XCALL_STATS(sfmmup);
12229 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12230 		vac_flushpage(pfnum, vcolor);
12231 	}
12232 #endif	/* VAC */
12233 	kpreempt_enable();
12234 }
12235 
12236 /*
12237  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
12238  * address and ctx.  If noflush is set we do not currently do anything.
12239  * This function may or may not be called with the HAT lock held.
12240  */
12241 static void
12242 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12243     int tlb_noflush, int hat_lock_held)
12244 {
12245 	cpuset_t cpuset;
12246 	hatlock_t *hatlockp;
12247 
12248 	ASSERT(!hmeblkp->hblk_shared);
12249 
12250 	/*
12251 	 * If the process is exiting we have nothing to do.
12252 	 */
12253 	if (tlb_noflush)
12254 		return;
12255 
12256 	/*
12257 	 * Flush TSB.
12258 	 */
12259 	if (!hat_lock_held)
12260 		hatlockp = sfmmu_hat_enter(sfmmup);
12261 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12262 
12263 	kpreempt_disable();
12264 
12265 	cpuset = sfmmup->sfmmu_cpusran;
12266 	CPUSET_AND(cpuset, cpu_ready_set);
12267 	CPUSET_DEL(cpuset, CPU->cpu_id);
12268 
12269 	SFMMU_XCALL_STATS(sfmmup);
12270 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
12271 
12272 	vtag_flushpage(addr, (uint64_t)sfmmup);
12273 
12274 	if (!hat_lock_held)
12275 		sfmmu_hat_exit(hatlockp);
12276 
12277 	kpreempt_enable();
12278 
12279 }
12280 
12281 /*
12282  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
12283  * call handler that can flush a range of pages to save on xcalls.
12284  */
12285 static int sfmmu_xcall_save;
12286 
12287 /*
12288  * this routine is never used for demaping addresses backed by SRD hmeblks.
12289  */
12290 static void
12291 sfmmu_tlb_range_demap(demap_range_t *dmrp)
12292 {
12293 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
12294 	hatlock_t *hatlockp;
12295 	cpuset_t cpuset;
12296 	uint64_t sfmmu_pgcnt;
12297 	pgcnt_t pgcnt = 0;
12298 	int pgunload = 0;
12299 	int dirtypg = 0;
12300 	caddr_t addr = dmrp->dmr_addr;
12301 	caddr_t eaddr;
12302 	uint64_t bitvec = dmrp->dmr_bitvec;
12303 
12304 	ASSERT(bitvec & 1);
12305 
12306 	/*
12307 	 * Flush TSB and calculate number of pages to flush.
12308 	 */
12309 	while (bitvec != 0) {
12310 		dirtypg = 0;
12311 		/*
12312 		 * Find the first page to flush and then count how many
12313 		 * pages there are after it that also need to be flushed.
12314 		 * This way the number of TSB flushes is minimized.
12315 		 */
12316 		while ((bitvec & 1) == 0) {
12317 			pgcnt++;
12318 			addr += MMU_PAGESIZE;
12319 			bitvec >>= 1;
12320 		}
12321 		while (bitvec & 1) {
12322 			dirtypg++;
12323 			bitvec >>= 1;
12324 		}
12325 		eaddr = addr + ptob(dirtypg);
12326 		hatlockp = sfmmu_hat_enter(sfmmup);
12327 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
12328 		sfmmu_hat_exit(hatlockp);
12329 		pgunload += dirtypg;
12330 		addr = eaddr;
12331 		pgcnt += dirtypg;
12332 	}
12333 
12334 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
12335 	if (sfmmup->sfmmu_free == 0) {
12336 		addr = dmrp->dmr_addr;
12337 		bitvec = dmrp->dmr_bitvec;
12338 
12339 		/*
12340 		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
12341 		 * as it will be used to pack argument for xt_some
12342 		 */
12343 		ASSERT((pgcnt > 0) &&
12344 		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
12345 
12346 		/*
12347 		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
12348 		 * the low 6 bits of sfmmup. This is doable since pgcnt
12349 		 * always >= 1.
12350 		 */
12351 		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
12352 		sfmmu_pgcnt = (uint64_t)sfmmup |
12353 		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
12354 
12355 		/*
12356 		 * We must hold the hat lock during the flush of TLB,
12357 		 * to avoid a race with sfmmu_invalidate_ctx(), where
12358 		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12359 		 * causing TLB demap routine to skip flush on that MMU.
12360 		 * If the context on a MMU has already been set to
12361 		 * INVALID_CONTEXT, we just get an extra flush on
12362 		 * that MMU.
12363 		 */
12364 		hatlockp = sfmmu_hat_enter(sfmmup);
12365 		kpreempt_disable();
12366 
12367 		cpuset = sfmmup->sfmmu_cpusran;
12368 		CPUSET_AND(cpuset, cpu_ready_set);
12369 		CPUSET_DEL(cpuset, CPU->cpu_id);
12370 
12371 		SFMMU_XCALL_STATS(sfmmup);
12372 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
12373 		    sfmmu_pgcnt);
12374 
12375 		for (; bitvec != 0; bitvec >>= 1) {
12376 			if (bitvec & 1)
12377 				vtag_flushpage(addr, (uint64_t)sfmmup);
12378 			addr += MMU_PAGESIZE;
12379 		}
12380 		kpreempt_enable();
12381 		sfmmu_hat_exit(hatlockp);
12382 
12383 		sfmmu_xcall_save += (pgunload-1);
12384 	}
12385 	dmrp->dmr_bitvec = 0;
12386 }
12387 
12388 /*
12389  * In cases where we need to synchronize with TLB/TSB miss trap
12390  * handlers, _and_ need to flush the TLB, it's a lot easier to
12391  * throw away the context from the process than to do a
12392  * special song and dance to keep things consistent for the
12393  * handlers.
12394  *
12395  * Since the process suddenly ends up without a context and our caller
12396  * holds the hat lock, threads that fault after this function is called
12397  * will pile up on the lock.  We can then do whatever we need to
12398  * atomically from the context of the caller.  The first blocked thread
12399  * to resume executing will get the process a new context, and the
12400  * process will resume executing.
12401  *
12402  * One added advantage of this approach is that on MMUs that
12403  * support a "flush all" operation, we will delay the flush until
12404  * cnum wrap-around, and then flush the TLB one time.  This
12405  * is rather rare, so it's a lot less expensive than making 8000
12406  * x-calls to flush the TLB 8000 times.
12407  *
12408  * A per-process (PP) lock is used to synchronize ctx allocations in
12409  * resume() and ctx invalidations here.
12410  */
12411 static void
12412 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
12413 {
12414 	cpuset_t cpuset;
12415 	int cnum, currcnum;
12416 	mmu_ctx_t *mmu_ctxp;
12417 	int i;
12418 	uint_t pstate_save;
12419 
12420 	SFMMU_STAT(sf_ctx_inv);
12421 
12422 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12423 	ASSERT(sfmmup != ksfmmup);
12424 
12425 	kpreempt_disable();
12426 
12427 	mmu_ctxp = CPU_MMU_CTXP(CPU);
12428 	ASSERT(mmu_ctxp);
12429 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
12430 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
12431 
12432 	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
12433 
12434 	pstate_save = sfmmu_disable_intrs();
12435 
12436 	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
12437 	/* set HAT cnum invalid across all context domains. */
12438 	for (i = 0; i < max_mmu_ctxdoms; i++) {
12439 
12440 		cnum = sfmmup->sfmmu_ctxs[i].cnum;
12441 		if (cnum == INVALID_CONTEXT) {
12442 			continue;
12443 		}
12444 
12445 		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
12446 	}
12447 	membar_enter();	/* make sure globally visible to all CPUs */
12448 	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
12449 
12450 	sfmmu_enable_intrs(pstate_save);
12451 
12452 	cpuset = sfmmup->sfmmu_cpusran;
12453 	CPUSET_DEL(cpuset, CPU->cpu_id);
12454 	CPUSET_AND(cpuset, cpu_ready_set);
12455 	if (!CPUSET_ISNULL(cpuset)) {
12456 		SFMMU_XCALL_STATS(sfmmup);
12457 		xt_some(cpuset, sfmmu_raise_tsb_exception,
12458 		    (uint64_t)sfmmup, INVALID_CONTEXT);
12459 		xt_sync(cpuset);
12460 		SFMMU_STAT(sf_tsb_raise_exception);
12461 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
12462 	}
12463 
12464 	/*
12465 	 * If the hat to-be-invalidated is the same as the current
12466 	 * process on local CPU we need to invalidate
12467 	 * this CPU context as well.
12468 	 */
12469 	if ((sfmmu_getctx_sec() == currcnum) &&
12470 	    (currcnum != INVALID_CONTEXT)) {
12471 		/* sets shared context to INVALID too */
12472 		sfmmu_setctx_sec(INVALID_CONTEXT);
12473 		sfmmu_clear_utsbinfo();
12474 	}
12475 
12476 	SFMMU_FLAGS_SET(sfmmup, HAT_ALLCTX_INVALID);
12477 
12478 	kpreempt_enable();
12479 
12480 	/*
12481 	 * we hold the hat lock, so nobody should allocate a context
12482 	 * for us yet
12483 	 */
12484 	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
12485 }
12486 
12487 #ifdef VAC
12488 /*
12489  * We need to flush the cache in all cpus.  It is possible that
12490  * a process referenced a page as cacheable but has sinced exited
12491  * and cleared the mapping list.  We still to flush it but have no
12492  * state so all cpus is the only alternative.
12493  */
12494 void
12495 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
12496 {
12497 	cpuset_t cpuset;
12498 
12499 	kpreempt_disable();
12500 	cpuset = cpu_ready_set;
12501 	CPUSET_DEL(cpuset, CPU->cpu_id);
12502 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
12503 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12504 	xt_sync(cpuset);
12505 	vac_flushpage(pfnum, vcolor);
12506 	kpreempt_enable();
12507 }
12508 
12509 void
12510 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
12511 {
12512 	cpuset_t cpuset;
12513 
12514 	ASSERT(vcolor >= 0);
12515 
12516 	kpreempt_disable();
12517 	cpuset = cpu_ready_set;
12518 	CPUSET_DEL(cpuset, CPU->cpu_id);
12519 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
12520 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
12521 	xt_sync(cpuset);
12522 	vac_flushcolor(vcolor, pfnum);
12523 	kpreempt_enable();
12524 }
12525 #endif	/* VAC */
12526 
12527 /*
12528  * We need to prevent processes from accessing the TSB using a cached physical
12529  * address.  It's alright if they try to access the TSB via virtual address
12530  * since they will just fault on that virtual address once the mapping has
12531  * been suspended.
12532  */
12533 #pragma weak sendmondo_in_recover
12534 
12535 /* ARGSUSED */
12536 static int
12537 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
12538 {
12539 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12540 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12541 	hatlock_t *hatlockp;
12542 	sf_scd_t *scdp;
12543 
12544 	if (flags != HAT_PRESUSPEND)
12545 		return (0);
12546 
12547 	/*
12548 	 * If tsb is a shared TSB with TSB_SHAREDCTX set, sfmmup must
12549 	 * be a shared hat, then set SCD's tsbinfo's flag.
12550 	 * If tsb is not shared, sfmmup is a private hat, then set
12551 	 * its private tsbinfo's flag.
12552 	 */
12553 	hatlockp = sfmmu_hat_enter(sfmmup);
12554 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
12555 
12556 	if (!(tsbinfop->tsb_flags & TSB_SHAREDCTX)) {
12557 		sfmmu_tsb_inv_ctx(sfmmup);
12558 		sfmmu_hat_exit(hatlockp);
12559 	} else {
12560 		/* release lock on the shared hat */
12561 		sfmmu_hat_exit(hatlockp);
12562 		/* sfmmup is a shared hat */
12563 		ASSERT(sfmmup->sfmmu_scdhat);
12564 		scdp = sfmmup->sfmmu_scdp;
12565 		ASSERT(scdp != NULL);
12566 		/* get private hat from the scd list */
12567 		mutex_enter(&scdp->scd_mutex);
12568 		sfmmup = scdp->scd_sf_list;
12569 		while (sfmmup != NULL) {
12570 			hatlockp = sfmmu_hat_enter(sfmmup);
12571 			/*
12572 			 * We do not call sfmmu_tsb_inv_ctx here because
12573 			 * sendmondo_in_recover check is only needed for
12574 			 * sun4u.
12575 			 */
12576 			sfmmu_invalidate_ctx(sfmmup);
12577 			sfmmu_hat_exit(hatlockp);
12578 			sfmmup = sfmmup->sfmmu_scd_link.next;
12579 
12580 		}
12581 		mutex_exit(&scdp->scd_mutex);
12582 	}
12583 	return (0);
12584 }
12585 
12586 static void
12587 sfmmu_tsb_inv_ctx(sfmmu_t *sfmmup)
12588 {
12589 	extern uint32_t sendmondo_in_recover;
12590 
12591 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12592 
12593 	/*
12594 	 * For Cheetah+ Erratum 25:
12595 	 * Wait for any active recovery to finish.  We can't risk
12596 	 * relocating the TSB of the thread running mondo_recover_proc()
12597 	 * since, if we did that, we would deadlock.  The scenario we are
12598 	 * trying to avoid is as follows:
12599 	 *
12600 	 * THIS CPU			RECOVER CPU
12601 	 * --------			-----------
12602 	 *				Begins recovery, walking through TSB
12603 	 * hat_pagesuspend() TSB TTE
12604 	 *				TLB miss on TSB TTE, spins at TL1
12605 	 * xt_sync()
12606 	 *	send_mondo_timeout()
12607 	 *	mondo_recover_proc()
12608 	 *	((deadlocked))
12609 	 *
12610 	 * The second half of the workaround is that mondo_recover_proc()
12611 	 * checks to see if the tsb_info has the RELOC flag set, and if it
12612 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
12613 	 * and hence avoiding the TLB miss that could result in a deadlock.
12614 	 */
12615 	if (&sendmondo_in_recover) {
12616 		membar_enter();	/* make sure RELOC flag visible */
12617 		while (sendmondo_in_recover) {
12618 			drv_usecwait(1);
12619 			membar_consumer();
12620 		}
12621 	}
12622 
12623 	sfmmu_invalidate_ctx(sfmmup);
12624 }
12625 
12626 /* ARGSUSED */
12627 static int
12628 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
12629     void *tsbinfo, pfn_t newpfn)
12630 {
12631 	hatlock_t *hatlockp;
12632 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12633 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
12634 
12635 	if (flags != HAT_POSTUNSUSPEND)
12636 		return (0);
12637 
12638 	hatlockp = sfmmu_hat_enter(sfmmup);
12639 
12640 	SFMMU_STAT(sf_tsb_reloc);
12641 
12642 	/*
12643 	 * The process may have swapped out while we were relocating one
12644 	 * of its TSBs.  If so, don't bother doing the setup since the
12645 	 * process can't be using the memory anymore.
12646 	 */
12647 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
12648 		ASSERT(va == tsbinfop->tsb_va);
12649 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
12650 
12651 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
12652 			sfmmu_inv_tsb(tsbinfop->tsb_va,
12653 			    TSB_BYTES(tsbinfop->tsb_szc));
12654 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
12655 		}
12656 	}
12657 
12658 	membar_exit();
12659 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
12660 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
12661 
12662 	sfmmu_hat_exit(hatlockp);
12663 
12664 	return (0);
12665 }
12666 
12667 /*
12668  * Allocate and initialize a tsb_info structure.  Note that we may or may not
12669  * allocate a TSB here, depending on the flags passed in.
12670  */
12671 static int
12672 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
12673     uint_t flags, sfmmu_t *sfmmup)
12674 {
12675 	int err;
12676 
12677 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
12678 	    sfmmu_tsbinfo_cache, KM_SLEEP);
12679 
12680 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
12681 	    tsb_szc, flags, sfmmup)) != 0) {
12682 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
12683 		SFMMU_STAT(sf_tsb_allocfail);
12684 		*tsbinfopp = NULL;
12685 		return (err);
12686 	}
12687 	SFMMU_STAT(sf_tsb_alloc);
12688 
12689 	/*
12690 	 * Bump the TSB size counters for this TSB size.
12691 	 */
12692 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
12693 	return (0);
12694 }
12695 
12696 static void
12697 sfmmu_tsb_free(struct tsb_info *tsbinfo)
12698 {
12699 	caddr_t tsbva = tsbinfo->tsb_va;
12700 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
12701 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
12702 	vmem_t	*vmp = tsbinfo->tsb_vmp;
12703 
12704 	/*
12705 	 * If we allocated this TSB from relocatable kernel memory, then we
12706 	 * need to uninstall the callback handler.
12707 	 */
12708 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
12709 		uintptr_t slab_mask;
12710 		caddr_t slab_vaddr;
12711 		page_t **ppl;
12712 		int ret;
12713 
12714 		ASSERT(tsb_size <= MMU_PAGESIZE4M || use_bigtsb_arena);
12715 		if (tsb_size > MMU_PAGESIZE4M)
12716 			slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12717 		else
12718 			slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12719 		slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
12720 
12721 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
12722 		ASSERT(ret == 0);
12723 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
12724 		    0, NULL);
12725 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
12726 	}
12727 
12728 	if (kmem_cachep != NULL) {
12729 		kmem_cache_free(kmem_cachep, tsbva);
12730 	} else {
12731 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
12732 	}
12733 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
12734 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
12735 }
12736 
12737 static void
12738 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
12739 {
12740 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
12741 		sfmmu_tsb_free(tsbinfo);
12742 	}
12743 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
12744 
12745 }
12746 
12747 /*
12748  * Setup all the references to physical memory for this tsbinfo.
12749  * The underlying page(s) must be locked.
12750  */
12751 static void
12752 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
12753 {
12754 	ASSERT(pfn != PFN_INVALID);
12755 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
12756 
12757 #ifndef sun4v
12758 	if (tsbinfo->tsb_szc == 0) {
12759 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
12760 		    PROT_WRITE|PROT_READ, TTE8K);
12761 	} else {
12762 		/*
12763 		 * Round down PA and use a large mapping; the handlers will
12764 		 * compute the TSB pointer at the correct offset into the
12765 		 * big virtual page.  NOTE: this assumes all TSBs larger
12766 		 * than 8K must come from physically contiguous slabs of
12767 		 * size tsb_slab_size.
12768 		 */
12769 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
12770 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
12771 	}
12772 	tsbinfo->tsb_pa = ptob(pfn);
12773 
12774 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
12775 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
12776 
12777 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
12778 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
12779 #else /* sun4v */
12780 	tsbinfo->tsb_pa = ptob(pfn);
12781 #endif /* sun4v */
12782 }
12783 
12784 
12785 /*
12786  * Returns zero on success, ENOMEM if over the high water mark,
12787  * or EAGAIN if the caller needs to retry with a smaller TSB
12788  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
12789  *
12790  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
12791  * is specified and the TSB requested is PAGESIZE, though it
12792  * may sleep waiting for memory if sufficient memory is not
12793  * available.
12794  */
12795 static int
12796 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
12797     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
12798 {
12799 	caddr_t vaddr = NULL;
12800 	caddr_t slab_vaddr;
12801 	uintptr_t slab_mask;
12802 	int tsbbytes = TSB_BYTES(tsbcode);
12803 	int lowmem = 0;
12804 	struct kmem_cache *kmem_cachep = NULL;
12805 	vmem_t *vmp = NULL;
12806 	lgrp_id_t lgrpid = LGRP_NONE;
12807 	pfn_t pfn;
12808 	uint_t cbflags = HAC_SLEEP;
12809 	page_t **pplist;
12810 	int ret;
12811 
12812 	ASSERT(tsbbytes <= MMU_PAGESIZE4M || use_bigtsb_arena);
12813 	if (tsbbytes > MMU_PAGESIZE4M)
12814 		slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12815 	else
12816 		slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12817 
12818 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
12819 		flags |= TSB_ALLOC;
12820 
12821 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
12822 
12823 	tsbinfo->tsb_sfmmu = sfmmup;
12824 
12825 	/*
12826 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
12827 	 * return.
12828 	 */
12829 	if ((flags & TSB_ALLOC) == 0) {
12830 		tsbinfo->tsb_szc = tsbcode;
12831 		tsbinfo->tsb_ttesz_mask = tteszmask;
12832 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
12833 		tsbinfo->tsb_pa = -1;
12834 		tsbinfo->tsb_tte.ll = 0;
12835 		tsbinfo->tsb_next = NULL;
12836 		tsbinfo->tsb_flags = TSB_SWAPPED;
12837 		tsbinfo->tsb_cache = NULL;
12838 		tsbinfo->tsb_vmp = NULL;
12839 		return (0);
12840 	}
12841 
12842 #ifdef DEBUG
12843 	/*
12844 	 * For debugging:
12845 	 * Randomly force allocation failures every tsb_alloc_mtbf
12846 	 * tries if TSB_FORCEALLOC is not specified.  This will
12847 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
12848 	 * it is even, to allow testing of both failure paths...
12849 	 */
12850 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
12851 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
12852 		tsb_alloc_count = 0;
12853 		tsb_alloc_fail_mtbf++;
12854 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
12855 	}
12856 #endif	/* DEBUG */
12857 
12858 	/*
12859 	 * Enforce high water mark if we are not doing a forced allocation
12860 	 * and are not shrinking a process' TSB.
12861 	 */
12862 	if ((flags & TSB_SHRINK) == 0 &&
12863 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
12864 		if ((flags & TSB_FORCEALLOC) == 0)
12865 			return (ENOMEM);
12866 		lowmem = 1;
12867 	}
12868 
12869 	/*
12870 	 * Allocate from the correct location based upon the size of the TSB
12871 	 * compared to the base page size, and what memory conditions dictate.
12872 	 * Note we always do nonblocking allocations from the TSB arena since
12873 	 * we don't want memory fragmentation to cause processes to block
12874 	 * indefinitely waiting for memory; until the kernel algorithms that
12875 	 * coalesce large pages are improved this is our best option.
12876 	 *
12877 	 * Algorithm:
12878 	 *	If allocating a "large" TSB (>8K), allocate from the
12879 	 *		appropriate kmem_tsb_default_arena vmem arena
12880 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
12881 	 *	tsb_forceheap is set
12882 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
12883 	 *		KM_SLEEP (never fails)
12884 	 *	else
12885 	 *		Allocate from appropriate sfmmu_tsb_cache with
12886 	 *		KM_NOSLEEP
12887 	 *	endif
12888 	 */
12889 	if (tsb_lgrp_affinity)
12890 		lgrpid = lgrp_home_id(curthread);
12891 	if (lgrpid == LGRP_NONE)
12892 		lgrpid = 0;	/* use lgrp of boot CPU */
12893 
12894 	if (tsbbytes > MMU_PAGESIZE) {
12895 		if (tsbbytes > MMU_PAGESIZE4M) {
12896 			vmp = kmem_bigtsb_default_arena[lgrpid];
12897 			vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
12898 			    0, 0, NULL, NULL, VM_NOSLEEP);
12899 		} else {
12900 			vmp = kmem_tsb_default_arena[lgrpid];
12901 			vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
12902 			    0, 0, NULL, NULL, VM_NOSLEEP);
12903 		}
12904 #ifdef	DEBUG
12905 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
12906 #else	/* !DEBUG */
12907 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
12908 #endif	/* DEBUG */
12909 		kmem_cachep = sfmmu_tsb8k_cache;
12910 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
12911 		ASSERT(vaddr != NULL);
12912 	} else {
12913 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
12914 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
12915 	}
12916 
12917 	tsbinfo->tsb_cache = kmem_cachep;
12918 	tsbinfo->tsb_vmp = vmp;
12919 
12920 	if (vaddr == NULL) {
12921 		return (EAGAIN);
12922 	}
12923 
12924 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
12925 	kmem_cachep = tsbinfo->tsb_cache;
12926 
12927 	/*
12928 	 * If we are allocating from outside the cage, then we need to
12929 	 * register a relocation callback handler.  Note that for now
12930 	 * since pseudo mappings always hang off of the slab's root page,
12931 	 * we need only lock the first 8K of the TSB slab.  This is a bit
12932 	 * hacky but it is good for performance.
12933 	 */
12934 	if (kmem_cachep != sfmmu_tsb8k_cache) {
12935 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
12936 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
12937 		ASSERT(ret == 0);
12938 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
12939 		    cbflags, (void *)tsbinfo, &pfn, NULL);
12940 
12941 		/*
12942 		 * Need to free up resources if we could not successfully
12943 		 * add the callback function and return an error condition.
12944 		 */
12945 		if (ret != 0) {
12946 			if (kmem_cachep) {
12947 				kmem_cache_free(kmem_cachep, vaddr);
12948 			} else {
12949 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
12950 			}
12951 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
12952 			    S_WRITE);
12953 			return (EAGAIN);
12954 		}
12955 	} else {
12956 		/*
12957 		 * Since allocation of 8K TSBs from heap is rare and occurs
12958 		 * during memory pressure we allocate them from permanent
12959 		 * memory rather than using callbacks to get the PFN.
12960 		 */
12961 		pfn = hat_getpfnum(kas.a_hat, vaddr);
12962 	}
12963 
12964 	tsbinfo->tsb_va = vaddr;
12965 	tsbinfo->tsb_szc = tsbcode;
12966 	tsbinfo->tsb_ttesz_mask = tteszmask;
12967 	tsbinfo->tsb_next = NULL;
12968 	tsbinfo->tsb_flags = 0;
12969 
12970 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
12971 
12972 	sfmmu_inv_tsb(vaddr, tsbbytes);
12973 
12974 	if (kmem_cachep != sfmmu_tsb8k_cache) {
12975 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
12976 	}
12977 
12978 	return (0);
12979 }
12980 
12981 /*
12982  * Initialize per cpu tsb and per cpu tsbmiss_area
12983  */
12984 void
12985 sfmmu_init_tsbs(void)
12986 {
12987 	int i;
12988 	struct tsbmiss	*tsbmissp;
12989 	struct kpmtsbm	*kpmtsbmp;
12990 #ifndef sun4v
12991 	extern int	dcache_line_mask;
12992 #endif /* sun4v */
12993 	extern uint_t	vac_colors;
12994 
12995 	/*
12996 	 * Init. tsb miss area.
12997 	 */
12998 	tsbmissp = tsbmiss_area;
12999 
13000 	for (i = 0; i < NCPU; tsbmissp++, i++) {
13001 		/*
13002 		 * initialize the tsbmiss area.
13003 		 * Do this for all possible CPUs as some may be added
13004 		 * while the system is running. There is no cost to this.
13005 		 */
13006 		tsbmissp->ksfmmup = ksfmmup;
13007 #ifndef sun4v
13008 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
13009 #endif /* sun4v */
13010 		tsbmissp->khashstart =
13011 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
13012 		tsbmissp->uhashstart =
13013 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
13014 		tsbmissp->khashsz = khmehash_num;
13015 		tsbmissp->uhashsz = uhmehash_num;
13016 	}
13017 
13018 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
13019 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
13020 
13021 	if (kpm_enable == 0)
13022 		return;
13023 
13024 	/* -- Begin KPM specific init -- */
13025 
13026 	if (kpm_smallpages) {
13027 		/*
13028 		 * If we're using base pagesize pages for seg_kpm
13029 		 * mappings, we use the kernel TSB since we can't afford
13030 		 * to allocate a second huge TSB for these mappings.
13031 		 */
13032 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13033 		kpm_tsbsz = ktsb_szcode;
13034 		kpmsm_tsbbase = kpm_tsbbase;
13035 		kpmsm_tsbsz = kpm_tsbsz;
13036 	} else {
13037 		/*
13038 		 * In VAC conflict case, just put the entries in the
13039 		 * kernel 8K indexed TSB for now so we can find them.
13040 		 * This could really be changed in the future if we feel
13041 		 * the need...
13042 		 */
13043 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13044 		kpmsm_tsbsz = ktsb_szcode;
13045 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
13046 		kpm_tsbsz = ktsb4m_szcode;
13047 	}
13048 
13049 	kpmtsbmp = kpmtsbm_area;
13050 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
13051 		/*
13052 		 * Initialize the kpmtsbm area.
13053 		 * Do this for all possible CPUs as some may be added
13054 		 * while the system is running. There is no cost to this.
13055 		 */
13056 		kpmtsbmp->vbase = kpm_vbase;
13057 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
13058 		kpmtsbmp->sz_shift = kpm_size_shift;
13059 		kpmtsbmp->kpmp_shift = kpmp_shift;
13060 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
13061 		if (kpm_smallpages == 0) {
13062 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
13063 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
13064 		} else {
13065 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
13066 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
13067 		}
13068 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
13069 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
13070 #ifdef	DEBUG
13071 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
13072 #endif	/* DEBUG */
13073 		if (ktsb_phys)
13074 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
13075 	}
13076 
13077 	/* -- End KPM specific init -- */
13078 }
13079 
13080 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
13081 struct tsb_info ktsb_info[2];
13082 
13083 /*
13084  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
13085  */
13086 void
13087 sfmmu_init_ktsbinfo()
13088 {
13089 	ASSERT(ksfmmup != NULL);
13090 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
13091 	/*
13092 	 * Allocate tsbinfos for kernel and copy in data
13093 	 * to make debug easier and sun4v setup easier.
13094 	 */
13095 	ktsb_info[0].tsb_sfmmu = ksfmmup;
13096 	ktsb_info[0].tsb_szc = ktsb_szcode;
13097 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
13098 	ktsb_info[0].tsb_va = ktsb_base;
13099 	ktsb_info[0].tsb_pa = ktsb_pbase;
13100 	ktsb_info[0].tsb_flags = 0;
13101 	ktsb_info[0].tsb_tte.ll = 0;
13102 	ktsb_info[0].tsb_cache = NULL;
13103 
13104 	ktsb_info[1].tsb_sfmmu = ksfmmup;
13105 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
13106 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
13107 	ktsb_info[1].tsb_va = ktsb4m_base;
13108 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
13109 	ktsb_info[1].tsb_flags = 0;
13110 	ktsb_info[1].tsb_tte.ll = 0;
13111 	ktsb_info[1].tsb_cache = NULL;
13112 
13113 	/* Link them into ksfmmup. */
13114 	ktsb_info[0].tsb_next = &ktsb_info[1];
13115 	ktsb_info[1].tsb_next = NULL;
13116 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
13117 
13118 	sfmmu_setup_tsbinfo(ksfmmup);
13119 }
13120 
13121 /*
13122  * Cache the last value returned from va_to_pa().  If the VA specified
13123  * in the current call to cached_va_to_pa() maps to the same Page (as the
13124  * previous call to cached_va_to_pa()), then compute the PA using
13125  * cached info, else call va_to_pa().
13126  *
13127  * Note: this function is neither MT-safe nor consistent in the presence
13128  * of multiple, interleaved threads.  This function was created to enable
13129  * an optimization used during boot (at a point when there's only one thread
13130  * executing on the "boot CPU", and before startup_vm() has been called).
13131  */
13132 static uint64_t
13133 cached_va_to_pa(void *vaddr)
13134 {
13135 	static uint64_t prev_vaddr_base = 0;
13136 	static uint64_t prev_pfn = 0;
13137 
13138 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
13139 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
13140 	} else {
13141 		uint64_t pa = va_to_pa(vaddr);
13142 
13143 		if (pa != ((uint64_t)-1)) {
13144 			/*
13145 			 * Computed physical address is valid.  Cache its
13146 			 * related info for the next cached_va_to_pa() call.
13147 			 */
13148 			prev_pfn = pa & MMU_PAGEMASK;
13149 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
13150 		}
13151 
13152 		return (pa);
13153 	}
13154 }
13155 
13156 /*
13157  * Carve up our nucleus hblk region.  We may allocate more hblks than
13158  * asked due to rounding errors but we are guaranteed to have at least
13159  * enough space to allocate the requested number of hblk8's and hblk1's.
13160  */
13161 void
13162 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
13163 {
13164 	struct hme_blk *hmeblkp;
13165 	size_t hme8blk_sz, hme1blk_sz;
13166 	size_t i;
13167 	size_t hblk8_bound;
13168 	ulong_t j = 0, k = 0;
13169 
13170 	ASSERT(addr != NULL && size != 0);
13171 
13172 	/* Need to use proper structure alignment */
13173 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
13174 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
13175 
13176 	nucleus_hblk8.list = (void *)addr;
13177 	nucleus_hblk8.index = 0;
13178 
13179 	/*
13180 	 * Use as much memory as possible for hblk8's since we
13181 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
13182 	 * We need to hold back enough space for the hblk1's which
13183 	 * we'll allocate next.
13184 	 */
13185 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
13186 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
13187 		hmeblkp = (struct hme_blk *)addr;
13188 		addr += hme8blk_sz;
13189 		hmeblkp->hblk_nuc_bit = 1;
13190 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13191 	}
13192 	nucleus_hblk8.len = j;
13193 	ASSERT(j >= nhblk8);
13194 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
13195 
13196 	nucleus_hblk1.list = (void *)addr;
13197 	nucleus_hblk1.index = 0;
13198 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
13199 		hmeblkp = (struct hme_blk *)addr;
13200 		addr += hme1blk_sz;
13201 		hmeblkp->hblk_nuc_bit = 1;
13202 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13203 	}
13204 	ASSERT(k >= nhblk1);
13205 	nucleus_hblk1.len = k;
13206 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
13207 }
13208 
13209 /*
13210  * This function is currently not supported on this platform. For what
13211  * it's supposed to do, see hat.c and hat_srmmu.c
13212  */
13213 /* ARGSUSED */
13214 faultcode_t
13215 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
13216     uint_t flags)
13217 {
13218 	return (FC_NOSUPPORT);
13219 }
13220 
13221 /*
13222  * Searchs the mapping list of the page for a mapping of the same size. If not
13223  * found the corresponding bit is cleared in the p_index field. When large
13224  * pages are more prevalent in the system, we can maintain the mapping list
13225  * in order and we don't have to traverse the list each time. Just check the
13226  * next and prev entries, and if both are of different size, we clear the bit.
13227  */
13228 static void
13229 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
13230 {
13231 	struct sf_hment *sfhmep;
13232 	int	index;
13233 	pgcnt_t	npgs;
13234 
13235 	ASSERT(ttesz > TTE8K);
13236 
13237 	ASSERT(sfmmu_mlist_held(pp));
13238 
13239 	ASSERT(PP_ISMAPPED_LARGE(pp));
13240 
13241 	/*
13242 	 * Traverse mapping list looking for another mapping of same size.
13243 	 * since we only want to clear index field if all mappings of
13244 	 * that size are gone.
13245 	 */
13246 
13247 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
13248 		if (IS_PAHME(sfhmep))
13249 			continue;
13250 		if (hme_size(sfhmep) == ttesz) {
13251 			/*
13252 			 * another mapping of the same size. don't clear index.
13253 			 */
13254 			return;
13255 		}
13256 	}
13257 
13258 	/*
13259 	 * Clear the p_index bit for large page.
13260 	 */
13261 	index = PAGESZ_TO_INDEX(ttesz);
13262 	npgs = TTEPAGES(ttesz);
13263 	while (npgs-- > 0) {
13264 		ASSERT(pp->p_index & index);
13265 		pp->p_index &= ~index;
13266 		pp = PP_PAGENEXT(pp);
13267 	}
13268 }
13269 
13270 /*
13271  * return supported features
13272  */
13273 /* ARGSUSED */
13274 int
13275 hat_supported(enum hat_features feature, void *arg)
13276 {
13277 	switch (feature) {
13278 	case    HAT_SHARED_PT:
13279 	case	HAT_DYNAMIC_ISM_UNMAP:
13280 	case	HAT_VMODSORT:
13281 		return (1);
13282 	case	HAT_SHARED_REGIONS:
13283 		if (shctx_on)
13284 			return (1);
13285 		else
13286 			return (0);
13287 	default:
13288 		return (0);
13289 	}
13290 }
13291 
13292 void
13293 hat_enter(struct hat *hat)
13294 {
13295 	hatlock_t	*hatlockp;
13296 
13297 	if (hat != ksfmmup) {
13298 		hatlockp = TSB_HASH(hat);
13299 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
13300 	}
13301 }
13302 
13303 void
13304 hat_exit(struct hat *hat)
13305 {
13306 	hatlock_t	*hatlockp;
13307 
13308 	if (hat != ksfmmup) {
13309 		hatlockp = TSB_HASH(hat);
13310 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
13311 	}
13312 }
13313 
13314 /*ARGSUSED*/
13315 void
13316 hat_reserve(struct as *as, caddr_t addr, size_t len)
13317 {
13318 }
13319 
13320 static void
13321 hat_kstat_init(void)
13322 {
13323 	kstat_t *ksp;
13324 
13325 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
13326 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
13327 	    KSTAT_FLAG_VIRTUAL);
13328 	if (ksp) {
13329 		ksp->ks_data = (void *) &sfmmu_global_stat;
13330 		kstat_install(ksp);
13331 	}
13332 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
13333 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
13334 	    KSTAT_FLAG_VIRTUAL);
13335 	if (ksp) {
13336 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
13337 		kstat_install(ksp);
13338 	}
13339 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
13340 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
13341 	    KSTAT_FLAG_WRITABLE);
13342 	if (ksp) {
13343 		ksp->ks_update = sfmmu_kstat_percpu_update;
13344 		kstat_install(ksp);
13345 	}
13346 }
13347 
13348 /* ARGSUSED */
13349 static int
13350 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
13351 {
13352 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
13353 	struct tsbmiss *tsbm = tsbmiss_area;
13354 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
13355 	int i;
13356 
13357 	ASSERT(cpu_kstat);
13358 	if (rw == KSTAT_READ) {
13359 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
13360 			cpu_kstat->sf_itlb_misses = 0;
13361 			cpu_kstat->sf_dtlb_misses = 0;
13362 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
13363 			    tsbm->uprot_traps;
13364 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
13365 			    kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
13366 			cpu_kstat->sf_tsb_hits = 0;
13367 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
13368 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
13369 		}
13370 	} else {
13371 		/* KSTAT_WRITE is used to clear stats */
13372 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
13373 			tsbm->utsb_misses = 0;
13374 			tsbm->ktsb_misses = 0;
13375 			tsbm->uprot_traps = 0;
13376 			tsbm->kprot_traps = 0;
13377 			kpmtsbm->kpm_dtlb_misses = 0;
13378 			kpmtsbm->kpm_tsb_misses = 0;
13379 		}
13380 	}
13381 	return (0);
13382 }
13383 
13384 #ifdef	DEBUG
13385 
13386 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
13387 
13388 /*
13389  * A tte checker. *orig_old is the value we read before cas.
13390  *	*cur is the value returned by cas.
13391  *	*new is the desired value when we do the cas.
13392  *
13393  *	*hmeblkp is currently unused.
13394  */
13395 
13396 /* ARGSUSED */
13397 void
13398 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
13399 {
13400 	pfn_t i, j, k;
13401 	int cpuid = CPU->cpu_id;
13402 
13403 	gorig[cpuid] = orig_old;
13404 	gcur[cpuid] = cur;
13405 	gnew[cpuid] = new;
13406 
13407 #ifdef lint
13408 	hmeblkp = hmeblkp;
13409 #endif
13410 
13411 	if (TTE_IS_VALID(orig_old)) {
13412 		if (TTE_IS_VALID(cur)) {
13413 			i = TTE_TO_TTEPFN(orig_old);
13414 			j = TTE_TO_TTEPFN(cur);
13415 			k = TTE_TO_TTEPFN(new);
13416 			if (i != j) {
13417 				/* remap error? */
13418 				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
13419 			}
13420 
13421 			if (i != k) {
13422 				/* remap error? */
13423 				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
13424 			}
13425 		} else {
13426 			if (TTE_IS_VALID(new)) {
13427 				panic("chk_tte: invalid cur? ");
13428 			}
13429 
13430 			i = TTE_TO_TTEPFN(orig_old);
13431 			k = TTE_TO_TTEPFN(new);
13432 			if (i != k) {
13433 				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
13434 			}
13435 		}
13436 	} else {
13437 		if (TTE_IS_VALID(cur)) {
13438 			j = TTE_TO_TTEPFN(cur);
13439 			if (TTE_IS_VALID(new)) {
13440 				k = TTE_TO_TTEPFN(new);
13441 				if (j != k) {
13442 					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
13443 					    j, k);
13444 				}
13445 			} else {
13446 				panic("chk_tte: why here?");
13447 			}
13448 		} else {
13449 			if (!TTE_IS_VALID(new)) {
13450 				panic("chk_tte: why here2 ?");
13451 			}
13452 		}
13453 	}
13454 }
13455 
13456 #endif /* DEBUG */
13457 
13458 extern void prefetch_tsbe_read(struct tsbe *);
13459 extern void prefetch_tsbe_write(struct tsbe *);
13460 
13461 
13462 /*
13463  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
13464  * us optimal performance on Cheetah+.  You can only have 8 outstanding
13465  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
13466  * prefetch to make the most utilization of the prefetch capability.
13467  */
13468 #define	TSBE_PREFETCH_STRIDE (7)
13469 
13470 void
13471 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
13472 {
13473 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
13474 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
13475 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
13476 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
13477 	struct tsbe *old;
13478 	struct tsbe *new;
13479 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
13480 	uint64_t va;
13481 	int new_offset;
13482 	int i;
13483 	int vpshift;
13484 	int last_prefetch;
13485 
13486 	if (old_bytes == new_bytes) {
13487 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
13488 	} else {
13489 
13490 		/*
13491 		 * A TSBE is 16 bytes which means there are four TSBE's per
13492 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
13493 		 */
13494 		old = (struct tsbe *)old_tsbinfo->tsb_va;
13495 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
13496 		for (i = 0; i < old_entries; i++, old++) {
13497 			if (((i & (4-1)) == 0) && (i < last_prefetch))
13498 				prefetch_tsbe_read(old);
13499 			if (!old->tte_tag.tag_invalid) {
13500 				/*
13501 				 * We have a valid TTE to remap.  Check the
13502 				 * size.  We won't remap 64K or 512K TTEs
13503 				 * because they span more than one TSB entry
13504 				 * and are indexed using an 8K virt. page.
13505 				 * Ditto for 32M and 256M TTEs.
13506 				 */
13507 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
13508 				    TTE_CSZ(&old->tte_data) == TTE512K)
13509 					continue;
13510 				if (mmu_page_sizes == max_mmu_page_sizes) {
13511 					if (TTE_CSZ(&old->tte_data) == TTE32M ||
13512 					    TTE_CSZ(&old->tte_data) == TTE256M)
13513 						continue;
13514 				}
13515 
13516 				/* clear the lower 22 bits of the va */
13517 				va = *(uint64_t *)old << 22;
13518 				/* turn va into a virtual pfn */
13519 				va >>= 22 - TSB_START_SIZE;
13520 				/*
13521 				 * or in bits from the offset in the tsb
13522 				 * to get the real virtual pfn. These
13523 				 * correspond to bits [21:13] in the va
13524 				 */
13525 				vpshift =
13526 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
13527 				    0x1ff;
13528 				va |= (i << vpshift);
13529 				va >>= vpshift;
13530 				new_offset = va & (new_entries - 1);
13531 				new = new_base + new_offset;
13532 				prefetch_tsbe_write(new);
13533 				*new = *old;
13534 			}
13535 		}
13536 	}
13537 }
13538 
13539 /*
13540  * unused in sfmmu
13541  */
13542 void
13543 hat_dump(void)
13544 {
13545 }
13546 
13547 /*
13548  * Called when a thread is exiting and we have switched to the kernel address
13549  * space.  Perform the same VM initialization resume() uses when switching
13550  * processes.
13551  *
13552  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
13553  * we call it anyway in case the semantics change in the future.
13554  */
13555 /*ARGSUSED*/
13556 void
13557 hat_thread_exit(kthread_t *thd)
13558 {
13559 	uint_t pgsz_cnum;
13560 	uint_t pstate_save;
13561 
13562 	ASSERT(thd->t_procp->p_as == &kas);
13563 
13564 	pgsz_cnum = KCONTEXT;
13565 #ifdef sun4u
13566 	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
13567 #endif
13568 
13569 	/*
13570 	 * Note that sfmmu_load_mmustate() is currently a no-op for
13571 	 * kernel threads. We need to disable interrupts here,
13572 	 * simply because otherwise sfmmu_load_mmustate() would panic
13573 	 * if the caller does not disable interrupts.
13574 	 */
13575 	pstate_save = sfmmu_disable_intrs();
13576 
13577 	/* Compatibility Note: hw takes care of MMU_SCONTEXT1 */
13578 	sfmmu_setctx_sec(pgsz_cnum);
13579 	sfmmu_load_mmustate(ksfmmup);
13580 	sfmmu_enable_intrs(pstate_save);
13581 }
13582 
13583 
13584 /*
13585  * SRD support
13586  */
13587 #define	SRD_HASH_FUNCTION(vp)	(((((uintptr_t)(vp)) >> 4) ^ \
13588 				    (((uintptr_t)(vp)) >> 11)) & \
13589 				    srd_hashmask)
13590 
13591 /*
13592  * Attach the process to the srd struct associated with the exec vnode
13593  * from which the process is started.
13594  */
13595 void
13596 hat_join_srd(struct hat *sfmmup, vnode_t *evp)
13597 {
13598 	uint_t hash = SRD_HASH_FUNCTION(evp);
13599 	sf_srd_t *srdp;
13600 	sf_srd_t *newsrdp;
13601 
13602 	ASSERT(sfmmup != ksfmmup);
13603 	ASSERT(sfmmup->sfmmu_srdp == NULL);
13604 
13605 	if (!shctx_on) {
13606 		return;
13607 	}
13608 
13609 	VN_HOLD(evp);
13610 
13611 	if (srd_buckets[hash].srdb_srdp != NULL) {
13612 		mutex_enter(&srd_buckets[hash].srdb_lock);
13613 		for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13614 		    srdp = srdp->srd_hash) {
13615 			if (srdp->srd_evp == evp) {
13616 				ASSERT(srdp->srd_refcnt >= 0);
13617 				sfmmup->sfmmu_srdp = srdp;
13618 				atomic_inc_32(
13619 				    (volatile uint_t *)&srdp->srd_refcnt);
13620 				mutex_exit(&srd_buckets[hash].srdb_lock);
13621 				return;
13622 			}
13623 		}
13624 		mutex_exit(&srd_buckets[hash].srdb_lock);
13625 	}
13626 	newsrdp = kmem_cache_alloc(srd_cache, KM_SLEEP);
13627 	ASSERT(newsrdp->srd_next_ismrid == 0 && newsrdp->srd_next_hmerid == 0);
13628 
13629 	newsrdp->srd_evp = evp;
13630 	newsrdp->srd_refcnt = 1;
13631 	newsrdp->srd_hmergnfree = NULL;
13632 	newsrdp->srd_ismrgnfree = NULL;
13633 
13634 	mutex_enter(&srd_buckets[hash].srdb_lock);
13635 	for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13636 	    srdp = srdp->srd_hash) {
13637 		if (srdp->srd_evp == evp) {
13638 			ASSERT(srdp->srd_refcnt >= 0);
13639 			sfmmup->sfmmu_srdp = srdp;
13640 			atomic_inc_32((volatile uint_t *)&srdp->srd_refcnt);
13641 			mutex_exit(&srd_buckets[hash].srdb_lock);
13642 			kmem_cache_free(srd_cache, newsrdp);
13643 			return;
13644 		}
13645 	}
13646 	newsrdp->srd_hash = srd_buckets[hash].srdb_srdp;
13647 	srd_buckets[hash].srdb_srdp = newsrdp;
13648 	sfmmup->sfmmu_srdp = newsrdp;
13649 
13650 	mutex_exit(&srd_buckets[hash].srdb_lock);
13651 
13652 }
13653 
13654 static void
13655 sfmmu_leave_srd(sfmmu_t *sfmmup)
13656 {
13657 	vnode_t *evp;
13658 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13659 	uint_t hash;
13660 	sf_srd_t **prev_srdpp;
13661 	sf_region_t *rgnp;
13662 	sf_region_t *nrgnp;
13663 #ifdef DEBUG
13664 	int rgns = 0;
13665 #endif
13666 	int i;
13667 
13668 	ASSERT(sfmmup != ksfmmup);
13669 	ASSERT(srdp != NULL);
13670 	ASSERT(srdp->srd_refcnt > 0);
13671 	ASSERT(sfmmup->sfmmu_scdp == NULL);
13672 	ASSERT(sfmmup->sfmmu_free == 1);
13673 
13674 	sfmmup->sfmmu_srdp = NULL;
13675 	evp = srdp->srd_evp;
13676 	ASSERT(evp != NULL);
13677 	if (atomic_dec_32_nv((volatile uint_t *)&srdp->srd_refcnt)) {
13678 		VN_RELE(evp);
13679 		return;
13680 	}
13681 
13682 	hash = SRD_HASH_FUNCTION(evp);
13683 	mutex_enter(&srd_buckets[hash].srdb_lock);
13684 	for (prev_srdpp = &srd_buckets[hash].srdb_srdp;
13685 	    (srdp = *prev_srdpp) != NULL; prev_srdpp = &srdp->srd_hash) {
13686 		if (srdp->srd_evp == evp) {
13687 			break;
13688 		}
13689 	}
13690 	if (srdp == NULL || srdp->srd_refcnt) {
13691 		mutex_exit(&srd_buckets[hash].srdb_lock);
13692 		VN_RELE(evp);
13693 		return;
13694 	}
13695 	*prev_srdpp = srdp->srd_hash;
13696 	mutex_exit(&srd_buckets[hash].srdb_lock);
13697 
13698 	ASSERT(srdp->srd_refcnt == 0);
13699 	VN_RELE(evp);
13700 
13701 #ifdef DEBUG
13702 	for (i = 0; i < SFMMU_MAX_REGION_BUCKETS; i++) {
13703 		ASSERT(srdp->srd_rgnhash[i] == NULL);
13704 	}
13705 #endif /* DEBUG */
13706 
13707 	/* free each hme regions in the srd */
13708 	for (rgnp = srdp->srd_hmergnfree; rgnp != NULL; rgnp = nrgnp) {
13709 		nrgnp = rgnp->rgn_next;
13710 		ASSERT(rgnp->rgn_id < srdp->srd_next_hmerid);
13711 		ASSERT(rgnp->rgn_refcnt == 0);
13712 		ASSERT(rgnp->rgn_sfmmu_head == NULL);
13713 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13714 		ASSERT(rgnp->rgn_hmeflags == 0);
13715 		ASSERT(srdp->srd_hmergnp[rgnp->rgn_id] == rgnp);
13716 #ifdef DEBUG
13717 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
13718 			ASSERT(rgnp->rgn_ttecnt[i] == 0);
13719 		}
13720 		rgns++;
13721 #endif /* DEBUG */
13722 		kmem_cache_free(region_cache, rgnp);
13723 	}
13724 	ASSERT(rgns == srdp->srd_next_hmerid);
13725 
13726 #ifdef DEBUG
13727 	rgns = 0;
13728 #endif
13729 	/* free each ism rgns in the srd */
13730 	for (rgnp = srdp->srd_ismrgnfree; rgnp != NULL; rgnp = nrgnp) {
13731 		nrgnp = rgnp->rgn_next;
13732 		ASSERT(rgnp->rgn_id < srdp->srd_next_ismrid);
13733 		ASSERT(rgnp->rgn_refcnt == 0);
13734 		ASSERT(rgnp->rgn_sfmmu_head == NULL);
13735 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13736 		ASSERT(srdp->srd_ismrgnp[rgnp->rgn_id] == rgnp);
13737 #ifdef DEBUG
13738 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
13739 			ASSERT(rgnp->rgn_ttecnt[i] == 0);
13740 		}
13741 		rgns++;
13742 #endif /* DEBUG */
13743 		kmem_cache_free(region_cache, rgnp);
13744 	}
13745 	ASSERT(rgns == srdp->srd_next_ismrid);
13746 	ASSERT(srdp->srd_ismbusyrgns == 0);
13747 	ASSERT(srdp->srd_hmebusyrgns == 0);
13748 
13749 	srdp->srd_next_ismrid = 0;
13750 	srdp->srd_next_hmerid = 0;
13751 
13752 	bzero((void *)srdp->srd_ismrgnp,
13753 	    sizeof (sf_region_t *) * SFMMU_MAX_ISM_REGIONS);
13754 	bzero((void *)srdp->srd_hmergnp,
13755 	    sizeof (sf_region_t *) * SFMMU_MAX_HME_REGIONS);
13756 
13757 	ASSERT(srdp->srd_scdp == NULL);
13758 	kmem_cache_free(srd_cache, srdp);
13759 }
13760 
13761 /* ARGSUSED */
13762 static int
13763 sfmmu_srdcache_constructor(void *buf, void *cdrarg, int kmflags)
13764 {
13765 	sf_srd_t *srdp = (sf_srd_t *)buf;
13766 	bzero(buf, sizeof (*srdp));
13767 
13768 	mutex_init(&srdp->srd_mutex, NULL, MUTEX_DEFAULT, NULL);
13769 	mutex_init(&srdp->srd_scd_mutex, NULL, MUTEX_DEFAULT, NULL);
13770 	return (0);
13771 }
13772 
13773 /* ARGSUSED */
13774 static void
13775 sfmmu_srdcache_destructor(void *buf, void *cdrarg)
13776 {
13777 	sf_srd_t *srdp = (sf_srd_t *)buf;
13778 
13779 	mutex_destroy(&srdp->srd_mutex);
13780 	mutex_destroy(&srdp->srd_scd_mutex);
13781 }
13782 
13783 /*
13784  * The caller makes sure hat_join_region()/hat_leave_region() can't be called
13785  * at the same time for the same process and address range. This is ensured by
13786  * the fact that address space is locked as writer when a process joins the
13787  * regions. Therefore there's no need to hold an srd lock during the entire
13788  * execution of hat_join_region()/hat_leave_region().
13789  */
13790 
13791 #define	RGN_HASH_FUNCTION(obj)	(((((uintptr_t)(obj)) >> 4) ^ \
13792 				    (((uintptr_t)(obj)) >> 11)) & \
13793 					srd_rgn_hashmask)
13794 /*
13795  * This routine implements the shared context functionality required when
13796  * attaching a segment to an address space. It must be called from
13797  * hat_share() for D(ISM) segments and from segvn_create() for segments
13798  * with the MAP_PRIVATE and MAP_TEXT flags set. It returns a region_cookie
13799  * which is saved in the private segment data for hme segments and
13800  * the ism_map structure for ism segments.
13801  */
13802 hat_region_cookie_t
13803 hat_join_region(struct hat *sfmmup, caddr_t r_saddr, size_t r_size,
13804     void *r_obj, u_offset_t r_objoff, uchar_t r_perm, uchar_t r_pgszc,
13805     hat_rgn_cb_func_t r_cb_function, uint_t flags)
13806 {
13807 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13808 	uint_t rhash;
13809 	uint_t rid;
13810 	hatlock_t *hatlockp;
13811 	sf_region_t *rgnp;
13812 	sf_region_t *new_rgnp = NULL;
13813 	int i;
13814 	uint16_t *nextidp;
13815 	sf_region_t **freelistp;
13816 	int maxids;
13817 	sf_region_t **rarrp;
13818 	uint16_t *busyrgnsp;
13819 	ulong_t rttecnt;
13820 	uchar_t tteflag;
13821 	uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
13822 	int text = (r_type == HAT_REGION_TEXT);
13823 
13824 	if (srdp == NULL || r_size == 0) {
13825 		return (HAT_INVALID_REGION_COOKIE);
13826 	}
13827 
13828 	ASSERT(sfmmup != ksfmmup);
13829 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
13830 	ASSERT(srdp->srd_refcnt > 0);
13831 	ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
13832 	ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
13833 	ASSERT(r_pgszc < mmu_page_sizes);
13834 	if (!IS_P2ALIGNED(r_saddr, TTEBYTES(r_pgszc)) ||
13835 	    !IS_P2ALIGNED(r_size, TTEBYTES(r_pgszc))) {
13836 		panic("hat_join_region: region addr or size is not aligned\n");
13837 	}
13838 
13839 
13840 	r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
13841 	    SFMMU_REGION_HME;
13842 	/*
13843 	 * Currently only support shared hmes for the read only main text
13844 	 * region.
13845 	 */
13846 	if (r_type == SFMMU_REGION_HME && ((r_obj != srdp->srd_evp) ||
13847 	    (r_perm & PROT_WRITE))) {
13848 		return (HAT_INVALID_REGION_COOKIE);
13849 	}
13850 
13851 	rhash = RGN_HASH_FUNCTION(r_obj);
13852 
13853 	if (r_type == SFMMU_REGION_ISM) {
13854 		nextidp = &srdp->srd_next_ismrid;
13855 		freelistp = &srdp->srd_ismrgnfree;
13856 		maxids = SFMMU_MAX_ISM_REGIONS;
13857 		rarrp = srdp->srd_ismrgnp;
13858 		busyrgnsp = &srdp->srd_ismbusyrgns;
13859 	} else {
13860 		nextidp = &srdp->srd_next_hmerid;
13861 		freelistp = &srdp->srd_hmergnfree;
13862 		maxids = SFMMU_MAX_HME_REGIONS;
13863 		rarrp = srdp->srd_hmergnp;
13864 		busyrgnsp = &srdp->srd_hmebusyrgns;
13865 	}
13866 
13867 	mutex_enter(&srdp->srd_mutex);
13868 
13869 	for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
13870 	    rgnp = rgnp->rgn_hash) {
13871 		if (rgnp->rgn_saddr == r_saddr && rgnp->rgn_size == r_size &&
13872 		    rgnp->rgn_obj == r_obj && rgnp->rgn_objoff == r_objoff &&
13873 		    rgnp->rgn_perm == r_perm && rgnp->rgn_pgszc == r_pgszc) {
13874 			break;
13875 		}
13876 	}
13877 
13878 rfound:
13879 	if (rgnp != NULL) {
13880 		ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
13881 		ASSERT(rgnp->rgn_cb_function == r_cb_function);
13882 		ASSERT(rgnp->rgn_refcnt >= 0);
13883 		rid = rgnp->rgn_id;
13884 		ASSERT(rid < maxids);
13885 		ASSERT(rarrp[rid] == rgnp);
13886 		ASSERT(rid < *nextidp);
13887 		atomic_inc_32((volatile uint_t *)&rgnp->rgn_refcnt);
13888 		mutex_exit(&srdp->srd_mutex);
13889 		if (new_rgnp != NULL) {
13890 			kmem_cache_free(region_cache, new_rgnp);
13891 		}
13892 		if (r_type == SFMMU_REGION_HME) {
13893 			int myjoin =
13894 			    (sfmmup == astosfmmu(curthread->t_procp->p_as));
13895 
13896 			sfmmu_link_to_hmeregion(sfmmup, rgnp);
13897 			/*
13898 			 * bitmap should be updated after linking sfmmu on
13899 			 * region list so that pageunload() doesn't skip
13900 			 * TSB/TLB flush. As soon as bitmap is updated another
13901 			 * thread in this process can already start accessing
13902 			 * this region.
13903 			 */
13904 			/*
13905 			 * Normally ttecnt accounting is done as part of
13906 			 * pagefault handling. But a process may not take any
13907 			 * pagefaults on shared hmeblks created by some other
13908 			 * process. To compensate for this assume that the
13909 			 * entire region will end up faulted in using
13910 			 * the region's pagesize.
13911 			 *
13912 			 */
13913 			if (r_pgszc > TTE8K) {
13914 				tteflag = 1 << r_pgszc;
13915 				if (disable_large_pages & tteflag) {
13916 					tteflag = 0;
13917 				}
13918 			} else {
13919 				tteflag = 0;
13920 			}
13921 			if (tteflag && !(sfmmup->sfmmu_rtteflags & tteflag)) {
13922 				hatlockp = sfmmu_hat_enter(sfmmup);
13923 				sfmmup->sfmmu_rtteflags |= tteflag;
13924 				sfmmu_hat_exit(hatlockp);
13925 			}
13926 			hatlockp = sfmmu_hat_enter(sfmmup);
13927 
13928 			/*
13929 			 * Preallocate 1/4 of ttecnt's in 8K TSB for >= 4M
13930 			 * region to allow for large page allocation failure.
13931 			 */
13932 			if (r_pgszc >= TTE4M) {
13933 				sfmmup->sfmmu_tsb0_4minflcnt +=
13934 				    r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
13935 			}
13936 
13937 			/* update sfmmu_ttecnt with the shme rgn ttecnt */
13938 			rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
13939 			atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
13940 			    rttecnt);
13941 
13942 			if (text && r_pgszc >= TTE4M &&
13943 			    (tteflag || ((disable_large_pages >> TTE4M) &
13944 			    ((1 << (r_pgszc - TTE4M + 1)) - 1))) &&
13945 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
13946 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
13947 			}
13948 
13949 			sfmmu_hat_exit(hatlockp);
13950 			/*
13951 			 * On Panther we need to make sure TLB is programmed
13952 			 * to accept 32M/256M pages.  Call
13953 			 * sfmmu_check_page_sizes() now to make sure TLB is
13954 			 * setup before making hmeregions visible to other
13955 			 * threads.
13956 			 */
13957 			sfmmu_check_page_sizes(sfmmup, 1);
13958 			hatlockp = sfmmu_hat_enter(sfmmup);
13959 			SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
13960 
13961 			/*
13962 			 * if context is invalid tsb miss exception code will
13963 			 * call sfmmu_check_page_sizes() and update tsbmiss
13964 			 * area later.
13965 			 */
13966 			kpreempt_disable();
13967 			if (myjoin &&
13968 			    (sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
13969 			    != INVALID_CONTEXT)) {
13970 				struct tsbmiss *tsbmp;
13971 
13972 				tsbmp = &tsbmiss_area[CPU->cpu_id];
13973 				ASSERT(sfmmup == tsbmp->usfmmup);
13974 				BT_SET(tsbmp->shmermap, rid);
13975 				if (r_pgszc > TTE64K) {
13976 					tsbmp->uhat_rtteflags |= tteflag;
13977 				}
13978 
13979 			}
13980 			kpreempt_enable();
13981 
13982 			sfmmu_hat_exit(hatlockp);
13983 			ASSERT((hat_region_cookie_t)((uint64_t)rid) !=
13984 			    HAT_INVALID_REGION_COOKIE);
13985 		} else {
13986 			hatlockp = sfmmu_hat_enter(sfmmup);
13987 			SF_RGNMAP_ADD(sfmmup->sfmmu_ismregion_map, rid);
13988 			sfmmu_hat_exit(hatlockp);
13989 		}
13990 		ASSERT(rid < maxids);
13991 
13992 		if (r_type == SFMMU_REGION_ISM) {
13993 			sfmmu_find_scd(sfmmup);
13994 		}
13995 		return ((hat_region_cookie_t)((uint64_t)rid));
13996 	}
13997 
13998 	ASSERT(new_rgnp == NULL);
13999 
14000 	if (*busyrgnsp >= maxids) {
14001 		mutex_exit(&srdp->srd_mutex);
14002 		return (HAT_INVALID_REGION_COOKIE);
14003 	}
14004 
14005 	ASSERT(MUTEX_HELD(&srdp->srd_mutex));
14006 	if (*freelistp != NULL) {
14007 		rgnp = *freelistp;
14008 		*freelistp = rgnp->rgn_next;
14009 		ASSERT(rgnp->rgn_id < *nextidp);
14010 		ASSERT(rgnp->rgn_id < maxids);
14011 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
14012 		ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK)
14013 		    == r_type);
14014 		ASSERT(rarrp[rgnp->rgn_id] == rgnp);
14015 		ASSERT(rgnp->rgn_hmeflags == 0);
14016 	} else {
14017 		/*
14018 		 * release local locks before memory allocation.
14019 		 */
14020 		mutex_exit(&srdp->srd_mutex);
14021 
14022 		new_rgnp = kmem_cache_alloc(region_cache, KM_SLEEP);
14023 
14024 		mutex_enter(&srdp->srd_mutex);
14025 		for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14026 		    rgnp = rgnp->rgn_hash) {
14027 			if (rgnp->rgn_saddr == r_saddr &&
14028 			    rgnp->rgn_size == r_size &&
14029 			    rgnp->rgn_obj == r_obj &&
14030 			    rgnp->rgn_objoff == r_objoff &&
14031 			    rgnp->rgn_perm == r_perm &&
14032 			    rgnp->rgn_pgszc == r_pgszc) {
14033 				break;
14034 			}
14035 		}
14036 		if (rgnp != NULL) {
14037 			goto rfound;
14038 		}
14039 
14040 		if (*nextidp >= maxids) {
14041 			mutex_exit(&srdp->srd_mutex);
14042 			goto fail;
14043 		}
14044 		rgnp = new_rgnp;
14045 		new_rgnp = NULL;
14046 		rgnp->rgn_id = (*nextidp)++;
14047 		ASSERT(rgnp->rgn_id < maxids);
14048 		ASSERT(rarrp[rgnp->rgn_id] == NULL);
14049 		rarrp[rgnp->rgn_id] = rgnp;
14050 	}
14051 
14052 	ASSERT(rgnp->rgn_sfmmu_head == NULL);
14053 	ASSERT(rgnp->rgn_hmeflags == 0);
14054 #ifdef DEBUG
14055 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14056 		ASSERT(rgnp->rgn_ttecnt[i] == 0);
14057 	}
14058 #endif
14059 	rgnp->rgn_saddr = r_saddr;
14060 	rgnp->rgn_size = r_size;
14061 	rgnp->rgn_obj = r_obj;
14062 	rgnp->rgn_objoff = r_objoff;
14063 	rgnp->rgn_perm = r_perm;
14064 	rgnp->rgn_pgszc = r_pgszc;
14065 	rgnp->rgn_flags = r_type;
14066 	rgnp->rgn_refcnt = 0;
14067 	rgnp->rgn_cb_function = r_cb_function;
14068 	rgnp->rgn_hash = srdp->srd_rgnhash[rhash];
14069 	srdp->srd_rgnhash[rhash] = rgnp;
14070 	(*busyrgnsp)++;
14071 	ASSERT(*busyrgnsp <= maxids);
14072 	goto rfound;
14073 
14074 fail:
14075 	ASSERT(new_rgnp != NULL);
14076 	kmem_cache_free(region_cache, new_rgnp);
14077 	return (HAT_INVALID_REGION_COOKIE);
14078 }
14079 
14080 /*
14081  * This function implements the shared context functionality required
14082  * when detaching a segment from an address space. It must be called
14083  * from hat_unshare() for all D(ISM) segments and from segvn_unmap(),
14084  * for segments with a valid region_cookie.
14085  * It will also be called from all seg_vn routines which change a
14086  * segment's attributes such as segvn_setprot(), segvn_setpagesize(),
14087  * segvn_clrszc() & segvn_advise(), as well as in the case of COW fault
14088  * from segvn_fault().
14089  */
14090 void
14091 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags)
14092 {
14093 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14094 	sf_scd_t *scdp;
14095 	uint_t rhash;
14096 	uint_t rid = (uint_t)((uint64_t)rcookie);
14097 	hatlock_t *hatlockp = NULL;
14098 	sf_region_t *rgnp;
14099 	sf_region_t **prev_rgnpp;
14100 	sf_region_t *cur_rgnp;
14101 	void *r_obj;
14102 	int i;
14103 	caddr_t	r_saddr;
14104 	caddr_t r_eaddr;
14105 	size_t	r_size;
14106 	uchar_t	r_pgszc;
14107 	uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14108 
14109 	ASSERT(sfmmup != ksfmmup);
14110 	ASSERT(srdp != NULL);
14111 	ASSERT(srdp->srd_refcnt > 0);
14112 	ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14113 	ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14114 	ASSERT(!sfmmup->sfmmu_free || sfmmup->sfmmu_scdp == NULL);
14115 
14116 	r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14117 	    SFMMU_REGION_HME;
14118 
14119 	if (r_type == SFMMU_REGION_ISM) {
14120 		ASSERT(SFMMU_IS_ISMRID_VALID(rid));
14121 		ASSERT(rid < SFMMU_MAX_ISM_REGIONS);
14122 		rgnp = srdp->srd_ismrgnp[rid];
14123 	} else {
14124 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14125 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14126 		rgnp = srdp->srd_hmergnp[rid];
14127 	}
14128 	ASSERT(rgnp != NULL);
14129 	ASSERT(rgnp->rgn_id == rid);
14130 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14131 	ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14132 	ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as));
14133 
14134 	if (sfmmup->sfmmu_free) {
14135 		ulong_t rttecnt;
14136 		r_pgszc = rgnp->rgn_pgszc;
14137 		r_size = rgnp->rgn_size;
14138 
14139 		ASSERT(sfmmup->sfmmu_scdp == NULL);
14140 		if (r_type == SFMMU_REGION_ISM) {
14141 			SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14142 		} else {
14143 			/* update shme rgns ttecnt in sfmmu_ttecnt */
14144 			rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14145 			ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14146 
14147 			atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14148 			    -rttecnt);
14149 
14150 			SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14151 		}
14152 	} else if (r_type == SFMMU_REGION_ISM) {
14153 		hatlockp = sfmmu_hat_enter(sfmmup);
14154 		ASSERT(rid < srdp->srd_next_ismrid);
14155 		SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14156 		scdp = sfmmup->sfmmu_scdp;
14157 		if (scdp != NULL &&
14158 		    SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
14159 			sfmmu_leave_scd(sfmmup, r_type);
14160 			ASSERT(sfmmu_hat_lock_held(sfmmup));
14161 		}
14162 		sfmmu_hat_exit(hatlockp);
14163 	} else {
14164 		ulong_t rttecnt;
14165 		r_pgszc = rgnp->rgn_pgszc;
14166 		r_saddr = rgnp->rgn_saddr;
14167 		r_size = rgnp->rgn_size;
14168 		r_eaddr = r_saddr + r_size;
14169 
14170 		ASSERT(r_type == SFMMU_REGION_HME);
14171 		hatlockp = sfmmu_hat_enter(sfmmup);
14172 		ASSERT(rid < srdp->srd_next_hmerid);
14173 		SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14174 
14175 		/*
14176 		 * If region is part of an SCD call sfmmu_leave_scd().
14177 		 * Otherwise if process is not exiting and has valid context
14178 		 * just drop the context on the floor to lose stale TLB
14179 		 * entries and force the update of tsb miss area to reflect
14180 		 * the new region map. After that clean our TSB entries.
14181 		 */
14182 		scdp = sfmmup->sfmmu_scdp;
14183 		if (scdp != NULL &&
14184 		    SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
14185 			sfmmu_leave_scd(sfmmup, r_type);
14186 			ASSERT(sfmmu_hat_lock_held(sfmmup));
14187 		}
14188 		sfmmu_invalidate_ctx(sfmmup);
14189 
14190 		i = TTE8K;
14191 		while (i < mmu_page_sizes) {
14192 			if (rgnp->rgn_ttecnt[i] != 0) {
14193 				sfmmu_unload_tsb_range(sfmmup, r_saddr,
14194 				    r_eaddr, i);
14195 				if (i < TTE4M) {
14196 					i = TTE4M;
14197 					continue;
14198 				} else {
14199 					break;
14200 				}
14201 			}
14202 			i++;
14203 		}
14204 		/* Remove the preallocated 1/4 8k ttecnt for 4M regions. */
14205 		if (r_pgszc >= TTE4M) {
14206 			rttecnt = r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14207 			ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14208 			    rttecnt);
14209 			sfmmup->sfmmu_tsb0_4minflcnt -= rttecnt;
14210 		}
14211 
14212 		/* update shme rgns ttecnt in sfmmu_ttecnt */
14213 		rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14214 		ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14215 		atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], -rttecnt);
14216 
14217 		sfmmu_hat_exit(hatlockp);
14218 		if (scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
14219 			/* sfmmup left the scd, grow private tsb */
14220 			sfmmu_check_page_sizes(sfmmup, 1);
14221 		} else {
14222 			sfmmu_check_page_sizes(sfmmup, 0);
14223 		}
14224 	}
14225 
14226 	if (r_type == SFMMU_REGION_HME) {
14227 		sfmmu_unlink_from_hmeregion(sfmmup, rgnp);
14228 	}
14229 
14230 	r_obj = rgnp->rgn_obj;
14231 	if (atomic_dec_32_nv((volatile uint_t *)&rgnp->rgn_refcnt)) {
14232 		return;
14233 	}
14234 
14235 	/*
14236 	 * looks like nobody uses this region anymore. Free it.
14237 	 */
14238 	rhash = RGN_HASH_FUNCTION(r_obj);
14239 	mutex_enter(&srdp->srd_mutex);
14240 	for (prev_rgnpp = &srdp->srd_rgnhash[rhash];
14241 	    (cur_rgnp = *prev_rgnpp) != NULL;
14242 	    prev_rgnpp = &cur_rgnp->rgn_hash) {
14243 		if (cur_rgnp == rgnp && cur_rgnp->rgn_refcnt == 0) {
14244 			break;
14245 		}
14246 	}
14247 
14248 	if (cur_rgnp == NULL) {
14249 		mutex_exit(&srdp->srd_mutex);
14250 		return;
14251 	}
14252 
14253 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14254 	*prev_rgnpp = rgnp->rgn_hash;
14255 	if (r_type == SFMMU_REGION_ISM) {
14256 		rgnp->rgn_flags |= SFMMU_REGION_FREE;
14257 		ASSERT(rid < srdp->srd_next_ismrid);
14258 		rgnp->rgn_next = srdp->srd_ismrgnfree;
14259 		srdp->srd_ismrgnfree = rgnp;
14260 		ASSERT(srdp->srd_ismbusyrgns > 0);
14261 		srdp->srd_ismbusyrgns--;
14262 		mutex_exit(&srdp->srd_mutex);
14263 		return;
14264 	}
14265 	mutex_exit(&srdp->srd_mutex);
14266 
14267 	/*
14268 	 * Destroy region's hmeblks.
14269 	 */
14270 	sfmmu_unload_hmeregion(srdp, rgnp);
14271 
14272 	rgnp->rgn_hmeflags = 0;
14273 
14274 	ASSERT(rgnp->rgn_sfmmu_head == NULL);
14275 	ASSERT(rgnp->rgn_id == rid);
14276 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14277 		rgnp->rgn_ttecnt[i] = 0;
14278 	}
14279 	rgnp->rgn_flags |= SFMMU_REGION_FREE;
14280 	mutex_enter(&srdp->srd_mutex);
14281 	ASSERT(rid < srdp->srd_next_hmerid);
14282 	rgnp->rgn_next = srdp->srd_hmergnfree;
14283 	srdp->srd_hmergnfree = rgnp;
14284 	ASSERT(srdp->srd_hmebusyrgns > 0);
14285 	srdp->srd_hmebusyrgns--;
14286 	mutex_exit(&srdp->srd_mutex);
14287 }
14288 
14289 /*
14290  * For now only called for hmeblk regions and not for ISM regions.
14291  */
14292 void
14293 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie)
14294 {
14295 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14296 	uint_t rid = (uint_t)((uint64_t)rcookie);
14297 	sf_region_t *rgnp;
14298 	sf_rgn_link_t *rlink;
14299 	sf_rgn_link_t *hrlink;
14300 	ulong_t	rttecnt;
14301 
14302 	ASSERT(sfmmup != ksfmmup);
14303 	ASSERT(srdp != NULL);
14304 	ASSERT(srdp->srd_refcnt > 0);
14305 
14306 	ASSERT(rid < srdp->srd_next_hmerid);
14307 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14308 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14309 
14310 	rgnp = srdp->srd_hmergnp[rid];
14311 	ASSERT(rgnp->rgn_refcnt > 0);
14312 	ASSERT(rgnp->rgn_id == rid);
14313 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == SFMMU_REGION_HME);
14314 	ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14315 
14316 	atomic_inc_32((volatile uint_t *)&rgnp->rgn_refcnt);
14317 
14318 	/* LINTED: constant in conditional context */
14319 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 0);
14320 	ASSERT(rlink != NULL);
14321 	mutex_enter(&rgnp->rgn_mutex);
14322 	ASSERT(rgnp->rgn_sfmmu_head != NULL);
14323 	/* LINTED: constant in conditional context */
14324 	SFMMU_HMERID2RLINKP(rgnp->rgn_sfmmu_head, rid, hrlink, 0, 0);
14325 	ASSERT(hrlink != NULL);
14326 	ASSERT(hrlink->prev == NULL);
14327 	rlink->next = rgnp->rgn_sfmmu_head;
14328 	rlink->prev = NULL;
14329 	hrlink->prev = sfmmup;
14330 	/*
14331 	 * make sure rlink's next field is correct
14332 	 * before making this link visible.
14333 	 */
14334 	membar_stst();
14335 	rgnp->rgn_sfmmu_head = sfmmup;
14336 	mutex_exit(&rgnp->rgn_mutex);
14337 
14338 	/* update sfmmu_ttecnt with the shme rgn ttecnt */
14339 	rttecnt = rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
14340 	atomic_add_long(&sfmmup->sfmmu_ttecnt[rgnp->rgn_pgszc], rttecnt);
14341 	/* update tsb0 inflation count */
14342 	if (rgnp->rgn_pgszc >= TTE4M) {
14343 		sfmmup->sfmmu_tsb0_4minflcnt +=
14344 		    rgnp->rgn_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14345 	}
14346 	/*
14347 	 * Update regionid bitmask without hat lock since no other thread
14348 	 * can update this region bitmask right now.
14349 	 */
14350 	SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14351 }
14352 
14353 /* ARGSUSED */
14354 static int
14355 sfmmu_rgncache_constructor(void *buf, void *cdrarg, int kmflags)
14356 {
14357 	sf_region_t *rgnp = (sf_region_t *)buf;
14358 	bzero(buf, sizeof (*rgnp));
14359 
14360 	mutex_init(&rgnp->rgn_mutex, NULL, MUTEX_DEFAULT, NULL);
14361 
14362 	return (0);
14363 }
14364 
14365 /* ARGSUSED */
14366 static void
14367 sfmmu_rgncache_destructor(void *buf, void *cdrarg)
14368 {
14369 	sf_region_t *rgnp = (sf_region_t *)buf;
14370 	mutex_destroy(&rgnp->rgn_mutex);
14371 }
14372 
14373 static int
14374 sfrgnmap_isnull(sf_region_map_t *map)
14375 {
14376 	int i;
14377 
14378 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14379 		if (map->bitmap[i] != 0) {
14380 			return (0);
14381 		}
14382 	}
14383 	return (1);
14384 }
14385 
14386 static int
14387 sfhmergnmap_isnull(sf_hmeregion_map_t *map)
14388 {
14389 	int i;
14390 
14391 	for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
14392 		if (map->bitmap[i] != 0) {
14393 			return (0);
14394 		}
14395 	}
14396 	return (1);
14397 }
14398 
14399 #ifdef DEBUG
14400 static void
14401 check_scd_sfmmu_list(sfmmu_t **headp, sfmmu_t *sfmmup, int onlist)
14402 {
14403 	sfmmu_t *sp;
14404 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14405 
14406 	for (sp = *headp; sp != NULL; sp = sp->sfmmu_scd_link.next) {
14407 		ASSERT(srdp == sp->sfmmu_srdp);
14408 		if (sp == sfmmup) {
14409 			if (onlist) {
14410 				return;
14411 			} else {
14412 				panic("shctx: sfmmu 0x%p found on scd"
14413 				    "list 0x%p", (void *)sfmmup,
14414 				    (void *)*headp);
14415 			}
14416 		}
14417 	}
14418 	if (onlist) {
14419 		panic("shctx: sfmmu 0x%p not found on scd list 0x%p",
14420 		    (void *)sfmmup, (void *)*headp);
14421 	} else {
14422 		return;
14423 	}
14424 }
14425 #else /* DEBUG */
14426 #define	check_scd_sfmmu_list(headp, sfmmup, onlist)
14427 #endif /* DEBUG */
14428 
14429 /*
14430  * Removes an sfmmu from the SCD sfmmu list.
14431  */
14432 static void
14433 sfmmu_from_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14434 {
14435 	ASSERT(sfmmup->sfmmu_srdp != NULL);
14436 	check_scd_sfmmu_list(headp, sfmmup, 1);
14437 	if (sfmmup->sfmmu_scd_link.prev != NULL) {
14438 		ASSERT(*headp != sfmmup);
14439 		sfmmup->sfmmu_scd_link.prev->sfmmu_scd_link.next =
14440 		    sfmmup->sfmmu_scd_link.next;
14441 	} else {
14442 		ASSERT(*headp == sfmmup);
14443 		*headp = sfmmup->sfmmu_scd_link.next;
14444 	}
14445 	if (sfmmup->sfmmu_scd_link.next != NULL) {
14446 		sfmmup->sfmmu_scd_link.next->sfmmu_scd_link.prev =
14447 		    sfmmup->sfmmu_scd_link.prev;
14448 	}
14449 }
14450 
14451 
14452 /*
14453  * Adds an sfmmu to the start of the queue.
14454  */
14455 static void
14456 sfmmu_to_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14457 {
14458 	check_scd_sfmmu_list(headp, sfmmup, 0);
14459 	sfmmup->sfmmu_scd_link.prev = NULL;
14460 	sfmmup->sfmmu_scd_link.next = *headp;
14461 	if (*headp != NULL)
14462 		(*headp)->sfmmu_scd_link.prev = sfmmup;
14463 	*headp = sfmmup;
14464 }
14465 
14466 /*
14467  * Remove an scd from the start of the queue.
14468  */
14469 static void
14470 sfmmu_remove_scd(sf_scd_t **headp, sf_scd_t *scdp)
14471 {
14472 	if (scdp->scd_prev != NULL) {
14473 		ASSERT(*headp != scdp);
14474 		scdp->scd_prev->scd_next = scdp->scd_next;
14475 	} else {
14476 		ASSERT(*headp == scdp);
14477 		*headp = scdp->scd_next;
14478 	}
14479 
14480 	if (scdp->scd_next != NULL) {
14481 		scdp->scd_next->scd_prev = scdp->scd_prev;
14482 	}
14483 }
14484 
14485 /*
14486  * Add an scd to the start of the queue.
14487  */
14488 static void
14489 sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *scdp)
14490 {
14491 	scdp->scd_prev = NULL;
14492 	scdp->scd_next = *headp;
14493 	if (*headp != NULL) {
14494 		(*headp)->scd_prev = scdp;
14495 	}
14496 	*headp = scdp;
14497 }
14498 
14499 static int
14500 sfmmu_alloc_scd_tsbs(sf_srd_t *srdp, sf_scd_t *scdp)
14501 {
14502 	uint_t rid;
14503 	uint_t i;
14504 	uint_t j;
14505 	ulong_t w;
14506 	sf_region_t *rgnp;
14507 	ulong_t tte8k_cnt = 0;
14508 	ulong_t tte4m_cnt = 0;
14509 	uint_t tsb_szc;
14510 	sfmmu_t *scsfmmup = scdp->scd_sfmmup;
14511 	sfmmu_t	*ism_hatid;
14512 	struct tsb_info *newtsb;
14513 	int szc;
14514 
14515 	ASSERT(srdp != NULL);
14516 
14517 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14518 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14519 			continue;
14520 		}
14521 		j = 0;
14522 		while (w) {
14523 			if (!(w & 0x1)) {
14524 				j++;
14525 				w >>= 1;
14526 				continue;
14527 			}
14528 			rid = (i << BT_ULSHIFT) | j;
14529 			j++;
14530 			w >>= 1;
14531 
14532 			if (rid < SFMMU_MAX_HME_REGIONS) {
14533 				rgnp = srdp->srd_hmergnp[rid];
14534 				ASSERT(rgnp->rgn_id == rid);
14535 				ASSERT(rgnp->rgn_refcnt > 0);
14536 
14537 				if (rgnp->rgn_pgszc < TTE4M) {
14538 					tte8k_cnt += rgnp->rgn_size >>
14539 					    TTE_PAGE_SHIFT(TTE8K);
14540 				} else {
14541 					ASSERT(rgnp->rgn_pgszc >= TTE4M);
14542 					tte4m_cnt += rgnp->rgn_size >>
14543 					    TTE_PAGE_SHIFT(TTE4M);
14544 					/*
14545 					 * Inflate SCD tsb0 by preallocating
14546 					 * 1/4 8k ttecnt for 4M regions to
14547 					 * allow for lgpg alloc failure.
14548 					 */
14549 					tte8k_cnt += rgnp->rgn_size >>
14550 					    (TTE_PAGE_SHIFT(TTE8K) + 2);
14551 				}
14552 			} else {
14553 				rid -= SFMMU_MAX_HME_REGIONS;
14554 				rgnp = srdp->srd_ismrgnp[rid];
14555 				ASSERT(rgnp->rgn_id == rid);
14556 				ASSERT(rgnp->rgn_refcnt > 0);
14557 
14558 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14559 				ASSERT(ism_hatid->sfmmu_ismhat);
14560 
14561 				for (szc = 0; szc < TTE4M; szc++) {
14562 					tte8k_cnt +=
14563 					    ism_hatid->sfmmu_ttecnt[szc] <<
14564 					    TTE_BSZS_SHIFT(szc);
14565 				}
14566 
14567 				ASSERT(rgnp->rgn_pgszc >= TTE4M);
14568 				if (rgnp->rgn_pgszc >= TTE4M) {
14569 					tte4m_cnt += rgnp->rgn_size >>
14570 					    TTE_PAGE_SHIFT(TTE4M);
14571 				}
14572 			}
14573 		}
14574 	}
14575 
14576 	tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
14577 
14578 	/* Allocate both the SCD TSBs here. */
14579 	if (sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14580 	    tsb_szc, TSB8K|TSB64K|TSB512K, TSB_ALLOC, scsfmmup) &&
14581 	    (tsb_szc <= TSB_4M_SZCODE ||
14582 	    sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14583 	    TSB_4M_SZCODE, TSB8K|TSB64K|TSB512K,
14584 	    TSB_ALLOC, scsfmmup))) {
14585 
14586 		SFMMU_STAT(sf_scd_1sttsb_allocfail);
14587 		return (TSB_ALLOCFAIL);
14588 	} else {
14589 		scsfmmup->sfmmu_tsb->tsb_flags |= TSB_SHAREDCTX;
14590 
14591 		if (tte4m_cnt) {
14592 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
14593 			if (sfmmu_tsbinfo_alloc(&newtsb, tsb_szc,
14594 			    TSB4M|TSB32M|TSB256M, TSB_ALLOC, scsfmmup) &&
14595 			    (tsb_szc <= TSB_4M_SZCODE ||
14596 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
14597 			    TSB4M|TSB32M|TSB256M,
14598 			    TSB_ALLOC, scsfmmup))) {
14599 				/*
14600 				 * If we fail to allocate the 2nd shared tsb,
14601 				 * just free the 1st tsb, return failure.
14602 				 */
14603 				sfmmu_tsbinfo_free(scsfmmup->sfmmu_tsb);
14604 				SFMMU_STAT(sf_scd_2ndtsb_allocfail);
14605 				return (TSB_ALLOCFAIL);
14606 			} else {
14607 				ASSERT(scsfmmup->sfmmu_tsb->tsb_next == NULL);
14608 				newtsb->tsb_flags |= TSB_SHAREDCTX;
14609 				scsfmmup->sfmmu_tsb->tsb_next = newtsb;
14610 				SFMMU_STAT(sf_scd_2ndtsb_alloc);
14611 			}
14612 		}
14613 		SFMMU_STAT(sf_scd_1sttsb_alloc);
14614 	}
14615 	return (TSB_SUCCESS);
14616 }
14617 
14618 static void
14619 sfmmu_free_scd_tsbs(sfmmu_t *scd_sfmmu)
14620 {
14621 	while (scd_sfmmu->sfmmu_tsb != NULL) {
14622 		struct tsb_info *next = scd_sfmmu->sfmmu_tsb->tsb_next;
14623 		sfmmu_tsbinfo_free(scd_sfmmu->sfmmu_tsb);
14624 		scd_sfmmu->sfmmu_tsb = next;
14625 	}
14626 }
14627 
14628 /*
14629  * Link the sfmmu onto the hme region list.
14630  */
14631 void
14632 sfmmu_link_to_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14633 {
14634 	uint_t rid;
14635 	sf_rgn_link_t *rlink;
14636 	sfmmu_t *head;
14637 	sf_rgn_link_t *hrlink;
14638 
14639 	rid = rgnp->rgn_id;
14640 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14641 
14642 	/* LINTED: constant in conditional context */
14643 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 1);
14644 	ASSERT(rlink != NULL);
14645 	mutex_enter(&rgnp->rgn_mutex);
14646 	if ((head = rgnp->rgn_sfmmu_head) == NULL) {
14647 		rlink->next = NULL;
14648 		rlink->prev = NULL;
14649 		/*
14650 		 * make sure rlink's next field is NULL
14651 		 * before making this link visible.
14652 		 */
14653 		membar_stst();
14654 		rgnp->rgn_sfmmu_head = sfmmup;
14655 	} else {
14656 		/* LINTED: constant in conditional context */
14657 		SFMMU_HMERID2RLINKP(head, rid, hrlink, 0, 0);
14658 		ASSERT(hrlink != NULL);
14659 		ASSERT(hrlink->prev == NULL);
14660 		rlink->next = head;
14661 		rlink->prev = NULL;
14662 		hrlink->prev = sfmmup;
14663 		/*
14664 		 * make sure rlink's next field is correct
14665 		 * before making this link visible.
14666 		 */
14667 		membar_stst();
14668 		rgnp->rgn_sfmmu_head = sfmmup;
14669 	}
14670 	mutex_exit(&rgnp->rgn_mutex);
14671 }
14672 
14673 /*
14674  * Unlink the sfmmu from the hme region list.
14675  */
14676 void
14677 sfmmu_unlink_from_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14678 {
14679 	uint_t rid;
14680 	sf_rgn_link_t *rlink;
14681 
14682 	rid = rgnp->rgn_id;
14683 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14684 
14685 	/* LINTED: constant in conditional context */
14686 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
14687 	ASSERT(rlink != NULL);
14688 	mutex_enter(&rgnp->rgn_mutex);
14689 	if (rgnp->rgn_sfmmu_head == sfmmup) {
14690 		sfmmu_t *next = rlink->next;
14691 		rgnp->rgn_sfmmu_head = next;
14692 		/*
14693 		 * if we are stopped by xc_attention() after this
14694 		 * point the forward link walking in
14695 		 * sfmmu_rgntlb_demap() will work correctly since the
14696 		 * head correctly points to the next element.
14697 		 */
14698 		membar_stst();
14699 		rlink->next = NULL;
14700 		ASSERT(rlink->prev == NULL);
14701 		if (next != NULL) {
14702 			sf_rgn_link_t *nrlink;
14703 			/* LINTED: constant in conditional context */
14704 			SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14705 			ASSERT(nrlink != NULL);
14706 			ASSERT(nrlink->prev == sfmmup);
14707 			nrlink->prev = NULL;
14708 		}
14709 	} else {
14710 		sfmmu_t *next = rlink->next;
14711 		sfmmu_t *prev = rlink->prev;
14712 		sf_rgn_link_t *prlink;
14713 
14714 		ASSERT(prev != NULL);
14715 		/* LINTED: constant in conditional context */
14716 		SFMMU_HMERID2RLINKP(prev, rid, prlink, 0, 0);
14717 		ASSERT(prlink != NULL);
14718 		ASSERT(prlink->next == sfmmup);
14719 		prlink->next = next;
14720 		/*
14721 		 * if we are stopped by xc_attention()
14722 		 * after this point the forward link walking
14723 		 * will work correctly since the prev element
14724 		 * correctly points to the next element.
14725 		 */
14726 		membar_stst();
14727 		rlink->next = NULL;
14728 		rlink->prev = NULL;
14729 		if (next != NULL) {
14730 			sf_rgn_link_t *nrlink;
14731 			/* LINTED: constant in conditional context */
14732 			SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14733 			ASSERT(nrlink != NULL);
14734 			ASSERT(nrlink->prev == sfmmup);
14735 			nrlink->prev = prev;
14736 		}
14737 	}
14738 	mutex_exit(&rgnp->rgn_mutex);
14739 }
14740 
14741 /*
14742  * Link scd sfmmu onto ism or hme region list for each region in the
14743  * scd region map.
14744  */
14745 void
14746 sfmmu_link_scd_to_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14747 {
14748 	uint_t rid;
14749 	uint_t i;
14750 	uint_t j;
14751 	ulong_t w;
14752 	sf_region_t *rgnp;
14753 	sfmmu_t *scsfmmup;
14754 
14755 	scsfmmup = scdp->scd_sfmmup;
14756 	ASSERT(scsfmmup->sfmmu_scdhat);
14757 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14758 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14759 			continue;
14760 		}
14761 		j = 0;
14762 		while (w) {
14763 			if (!(w & 0x1)) {
14764 				j++;
14765 				w >>= 1;
14766 				continue;
14767 			}
14768 			rid = (i << BT_ULSHIFT) | j;
14769 			j++;
14770 			w >>= 1;
14771 
14772 			if (rid < SFMMU_MAX_HME_REGIONS) {
14773 				rgnp = srdp->srd_hmergnp[rid];
14774 				ASSERT(rgnp->rgn_id == rid);
14775 				ASSERT(rgnp->rgn_refcnt > 0);
14776 				sfmmu_link_to_hmeregion(scsfmmup, rgnp);
14777 			} else {
14778 				sfmmu_t *ism_hatid = NULL;
14779 				ism_ment_t *ism_ment;
14780 				rid -= SFMMU_MAX_HME_REGIONS;
14781 				rgnp = srdp->srd_ismrgnp[rid];
14782 				ASSERT(rgnp->rgn_id == rid);
14783 				ASSERT(rgnp->rgn_refcnt > 0);
14784 
14785 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14786 				ASSERT(ism_hatid->sfmmu_ismhat);
14787 				ism_ment = &scdp->scd_ism_links[rid];
14788 				ism_ment->iment_hat = scsfmmup;
14789 				ism_ment->iment_base_va = rgnp->rgn_saddr;
14790 				mutex_enter(&ism_mlist_lock);
14791 				iment_add(ism_ment, ism_hatid);
14792 				mutex_exit(&ism_mlist_lock);
14793 
14794 			}
14795 		}
14796 	}
14797 }
14798 /*
14799  * Unlink scd sfmmu from ism or hme region list for each region in the
14800  * scd region map.
14801  */
14802 void
14803 sfmmu_unlink_scd_from_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14804 {
14805 	uint_t rid;
14806 	uint_t i;
14807 	uint_t j;
14808 	ulong_t w;
14809 	sf_region_t *rgnp;
14810 	sfmmu_t *scsfmmup;
14811 
14812 	scsfmmup = scdp->scd_sfmmup;
14813 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14814 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14815 			continue;
14816 		}
14817 		j = 0;
14818 		while (w) {
14819 			if (!(w & 0x1)) {
14820 				j++;
14821 				w >>= 1;
14822 				continue;
14823 			}
14824 			rid = (i << BT_ULSHIFT) | j;
14825 			j++;
14826 			w >>= 1;
14827 
14828 			if (rid < SFMMU_MAX_HME_REGIONS) {
14829 				rgnp = srdp->srd_hmergnp[rid];
14830 				ASSERT(rgnp->rgn_id == rid);
14831 				ASSERT(rgnp->rgn_refcnt > 0);
14832 				sfmmu_unlink_from_hmeregion(scsfmmup,
14833 				    rgnp);
14834 
14835 			} else {
14836 				sfmmu_t *ism_hatid = NULL;
14837 				ism_ment_t *ism_ment;
14838 				rid -= SFMMU_MAX_HME_REGIONS;
14839 				rgnp = srdp->srd_ismrgnp[rid];
14840 				ASSERT(rgnp->rgn_id == rid);
14841 				ASSERT(rgnp->rgn_refcnt > 0);
14842 
14843 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14844 				ASSERT(ism_hatid->sfmmu_ismhat);
14845 				ism_ment = &scdp->scd_ism_links[rid];
14846 				ASSERT(ism_ment->iment_hat == scdp->scd_sfmmup);
14847 				ASSERT(ism_ment->iment_base_va ==
14848 				    rgnp->rgn_saddr);
14849 				mutex_enter(&ism_mlist_lock);
14850 				iment_sub(ism_ment, ism_hatid);
14851 				mutex_exit(&ism_mlist_lock);
14852 
14853 			}
14854 		}
14855 	}
14856 }
14857 /*
14858  * Allocates and initialises a new SCD structure, this is called with
14859  * the srd_scd_mutex held and returns with the reference count
14860  * initialised to 1.
14861  */
14862 static sf_scd_t *
14863 sfmmu_alloc_scd(sf_srd_t *srdp, sf_region_map_t *new_map)
14864 {
14865 	sf_scd_t *new_scdp;
14866 	sfmmu_t *scsfmmup;
14867 	int i;
14868 
14869 	ASSERT(MUTEX_HELD(&srdp->srd_scd_mutex));
14870 	new_scdp = kmem_cache_alloc(scd_cache, KM_SLEEP);
14871 
14872 	scsfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
14873 	new_scdp->scd_sfmmup = scsfmmup;
14874 	scsfmmup->sfmmu_srdp = srdp;
14875 	scsfmmup->sfmmu_scdp = new_scdp;
14876 	scsfmmup->sfmmu_tsb0_4minflcnt = 0;
14877 	scsfmmup->sfmmu_scdhat = 1;
14878 	CPUSET_ALL(scsfmmup->sfmmu_cpusran);
14879 	bzero(scsfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
14880 
14881 	ASSERT(max_mmu_ctxdoms > 0);
14882 	for (i = 0; i < max_mmu_ctxdoms; i++) {
14883 		scsfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
14884 		scsfmmup->sfmmu_ctxs[i].gnum = 0;
14885 	}
14886 
14887 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14888 		new_scdp->scd_rttecnt[i] = 0;
14889 	}
14890 
14891 	new_scdp->scd_region_map = *new_map;
14892 	new_scdp->scd_refcnt = 1;
14893 	if (sfmmu_alloc_scd_tsbs(srdp, new_scdp) != TSB_SUCCESS) {
14894 		kmem_cache_free(scd_cache, new_scdp);
14895 		kmem_cache_free(sfmmuid_cache, scsfmmup);
14896 		return (NULL);
14897 	}
14898 	if (&mmu_init_scd) {
14899 		mmu_init_scd(new_scdp);
14900 	}
14901 	return (new_scdp);
14902 }
14903 
14904 /*
14905  * The first phase of a process joining an SCD. The hat structure is
14906  * linked to the SCD queue and then the HAT_JOIN_SCD sfmmu flag is set
14907  * and a cross-call with context invalidation is used to cause the
14908  * remaining work to be carried out in the sfmmu_tsbmiss_exception()
14909  * routine.
14910  */
14911 static void
14912 sfmmu_join_scd(sf_scd_t *scdp, sfmmu_t *sfmmup)
14913 {
14914 	hatlock_t *hatlockp;
14915 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14916 	int i;
14917 	sf_scd_t *old_scdp;
14918 
14919 	ASSERT(srdp != NULL);
14920 	ASSERT(scdp != NULL);
14921 	ASSERT(scdp->scd_refcnt > 0);
14922 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
14923 
14924 	if ((old_scdp = sfmmup->sfmmu_scdp) != NULL) {
14925 		ASSERT(old_scdp != scdp);
14926 
14927 		mutex_enter(&old_scdp->scd_mutex);
14928 		sfmmu_from_scd_list(&old_scdp->scd_sf_list, sfmmup);
14929 		mutex_exit(&old_scdp->scd_mutex);
14930 		/*
14931 		 * sfmmup leaves the old scd. Update sfmmu_ttecnt to
14932 		 * include the shme rgn ttecnt for rgns that
14933 		 * were in the old SCD
14934 		 */
14935 		for (i = 0; i < mmu_page_sizes; i++) {
14936 			ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
14937 			    old_scdp->scd_rttecnt[i]);
14938 			atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
14939 			    sfmmup->sfmmu_scdrttecnt[i]);
14940 		}
14941 	}
14942 
14943 	/*
14944 	 * Move sfmmu to the scd lists.
14945 	 */
14946 	mutex_enter(&scdp->scd_mutex);
14947 	sfmmu_to_scd_list(&scdp->scd_sf_list, sfmmup);
14948 	mutex_exit(&scdp->scd_mutex);
14949 	SF_SCD_INCR_REF(scdp);
14950 
14951 	hatlockp = sfmmu_hat_enter(sfmmup);
14952 	/*
14953 	 * For a multi-thread process, we must stop
14954 	 * all the other threads before joining the scd.
14955 	 */
14956 
14957 	SFMMU_FLAGS_SET(sfmmup, HAT_JOIN_SCD);
14958 
14959 	sfmmu_invalidate_ctx(sfmmup);
14960 	sfmmup->sfmmu_scdp = scdp;
14961 
14962 	/*
14963 	 * Copy scd_rttecnt into sfmmup's sfmmu_scdrttecnt, and update
14964 	 * sfmmu_ttecnt to not include the rgn ttecnt just joined in SCD.
14965 	 */
14966 	for (i = 0; i < mmu_page_sizes; i++) {
14967 		sfmmup->sfmmu_scdrttecnt[i] = scdp->scd_rttecnt[i];
14968 		ASSERT(sfmmup->sfmmu_ttecnt[i] >= scdp->scd_rttecnt[i]);
14969 		atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
14970 		    -sfmmup->sfmmu_scdrttecnt[i]);
14971 	}
14972 	/* update tsb0 inflation count */
14973 	if (old_scdp != NULL) {
14974 		sfmmup->sfmmu_tsb0_4minflcnt +=
14975 		    old_scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
14976 	}
14977 	ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14978 	    scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt);
14979 	sfmmup->sfmmu_tsb0_4minflcnt -= scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
14980 
14981 	sfmmu_hat_exit(hatlockp);
14982 
14983 	if (old_scdp != NULL) {
14984 		SF_SCD_DECR_REF(srdp, old_scdp);
14985 	}
14986 
14987 }
14988 
14989 /*
14990  * This routine is called by a process to become part of an SCD. It is called
14991  * from sfmmu_tsbmiss_exception() once most of the initial work has been
14992  * done by sfmmu_join_scd(). This routine must not drop the hat lock.
14993  */
14994 static void
14995 sfmmu_finish_join_scd(sfmmu_t *sfmmup)
14996 {
14997 	struct tsb_info	*tsbinfop;
14998 
14999 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15000 	ASSERT(sfmmup->sfmmu_scdp != NULL);
15001 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD));
15002 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15003 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID));
15004 
15005 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
15006 	    tsbinfop = tsbinfop->tsb_next) {
15007 		if (tsbinfop->tsb_flags & TSB_SWAPPED) {
15008 			continue;
15009 		}
15010 		ASSERT(!(tsbinfop->tsb_flags & TSB_RELOC_FLAG));
15011 
15012 		sfmmu_inv_tsb(tsbinfop->tsb_va,
15013 		    TSB_BYTES(tsbinfop->tsb_szc));
15014 	}
15015 
15016 	/* Set HAT_CTX1_FLAG for all SCD ISMs */
15017 	sfmmu_ism_hatflags(sfmmup, 1);
15018 
15019 	SFMMU_STAT(sf_join_scd);
15020 }
15021 
15022 /*
15023  * This routine is called in order to check if there is an SCD which matches
15024  * the process's region map if not then a new SCD may be created.
15025  */
15026 static void
15027 sfmmu_find_scd(sfmmu_t *sfmmup)
15028 {
15029 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15030 	sf_scd_t *scdp, *new_scdp;
15031 	int ret;
15032 
15033 	ASSERT(srdp != NULL);
15034 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
15035 
15036 	mutex_enter(&srdp->srd_scd_mutex);
15037 	for (scdp = srdp->srd_scdp; scdp != NULL;
15038 	    scdp = scdp->scd_next) {
15039 		SF_RGNMAP_EQUAL(&scdp->scd_region_map,
15040 		    &sfmmup->sfmmu_region_map, ret);
15041 		if (ret == 1) {
15042 			SF_SCD_INCR_REF(scdp);
15043 			mutex_exit(&srdp->srd_scd_mutex);
15044 			sfmmu_join_scd(scdp, sfmmup);
15045 			ASSERT(scdp->scd_refcnt >= 2);
15046 			atomic_dec_32((volatile uint32_t *)&scdp->scd_refcnt);
15047 			return;
15048 		} else {
15049 			/*
15050 			 * If the sfmmu region map is a subset of the scd
15051 			 * region map, then the assumption is that this process
15052 			 * will continue attaching to ISM segments until the
15053 			 * region maps are equal.
15054 			 */
15055 			SF_RGNMAP_IS_SUBSET(&scdp->scd_region_map,
15056 			    &sfmmup->sfmmu_region_map, ret);
15057 			if (ret == 1) {
15058 				mutex_exit(&srdp->srd_scd_mutex);
15059 				return;
15060 			}
15061 		}
15062 	}
15063 
15064 	ASSERT(scdp == NULL);
15065 	/*
15066 	 * No matching SCD has been found, create a new one.
15067 	 */
15068 	if ((new_scdp = sfmmu_alloc_scd(srdp, &sfmmup->sfmmu_region_map)) ==
15069 	    NULL) {
15070 		mutex_exit(&srdp->srd_scd_mutex);
15071 		return;
15072 	}
15073 
15074 	/*
15075 	 * sfmmu_alloc_scd() returns with a ref count of 1 on the scd.
15076 	 */
15077 
15078 	/* Set scd_rttecnt for shme rgns in SCD */
15079 	sfmmu_set_scd_rttecnt(srdp, new_scdp);
15080 
15081 	/*
15082 	 * Link scd onto srd_scdp list and scd sfmmu onto region/iment lists.
15083 	 */
15084 	sfmmu_link_scd_to_regions(srdp, new_scdp);
15085 	sfmmu_add_scd(&srdp->srd_scdp, new_scdp);
15086 	SFMMU_STAT_ADD(sf_create_scd, 1);
15087 
15088 	mutex_exit(&srdp->srd_scd_mutex);
15089 	sfmmu_join_scd(new_scdp, sfmmup);
15090 	ASSERT(new_scdp->scd_refcnt >= 2);
15091 	atomic_dec_32((volatile uint32_t *)&new_scdp->scd_refcnt);
15092 }
15093 
15094 /*
15095  * This routine is called by a process to remove itself from an SCD. It is
15096  * either called when the processes has detached from a segment or from
15097  * hat_free_start() as a result of calling exit.
15098  */
15099 static void
15100 sfmmu_leave_scd(sfmmu_t *sfmmup, uchar_t r_type)
15101 {
15102 	sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15103 	sf_srd_t *srdp =  sfmmup->sfmmu_srdp;
15104 	hatlock_t *hatlockp = TSB_HASH(sfmmup);
15105 	int i;
15106 
15107 	ASSERT(scdp != NULL);
15108 	ASSERT(srdp != NULL);
15109 
15110 	if (sfmmup->sfmmu_free) {
15111 		/*
15112 		 * If the process is part of an SCD the sfmmu is unlinked
15113 		 * from scd_sf_list.
15114 		 */
15115 		mutex_enter(&scdp->scd_mutex);
15116 		sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15117 		mutex_exit(&scdp->scd_mutex);
15118 		/*
15119 		 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15120 		 * are about to leave the SCD
15121 		 */
15122 		for (i = 0; i < mmu_page_sizes; i++) {
15123 			ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15124 			    scdp->scd_rttecnt[i]);
15125 			atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15126 			    sfmmup->sfmmu_scdrttecnt[i]);
15127 			sfmmup->sfmmu_scdrttecnt[i] = 0;
15128 		}
15129 		sfmmup->sfmmu_scdp = NULL;
15130 
15131 		SF_SCD_DECR_REF(srdp, scdp);
15132 		return;
15133 	}
15134 
15135 	ASSERT(r_type != SFMMU_REGION_ISM ||
15136 	    SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15137 	ASSERT(scdp->scd_refcnt);
15138 	ASSERT(!sfmmup->sfmmu_free);
15139 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15140 	ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as));
15141 
15142 	/*
15143 	 * Wait for ISM maps to be updated.
15144 	 */
15145 	if (r_type != SFMMU_REGION_ISM) {
15146 		while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY) &&
15147 		    sfmmup->sfmmu_scdp != NULL) {
15148 			cv_wait(&sfmmup->sfmmu_tsb_cv,
15149 			    HATLOCK_MUTEXP(hatlockp));
15150 		}
15151 
15152 		if (sfmmup->sfmmu_scdp == NULL) {
15153 			sfmmu_hat_exit(hatlockp);
15154 			return;
15155 		}
15156 		SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
15157 	}
15158 
15159 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
15160 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
15161 		/*
15162 		 * Since HAT_JOIN_SCD was set our context
15163 		 * is still invalid.
15164 		 */
15165 	} else {
15166 		/*
15167 		 * For a multi-thread process, we must stop
15168 		 * all the other threads before leaving the scd.
15169 		 */
15170 
15171 		sfmmu_invalidate_ctx(sfmmup);
15172 	}
15173 
15174 	/* Clear all the rid's for ISM, delete flags, etc */
15175 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15176 	sfmmu_ism_hatflags(sfmmup, 0);
15177 
15178 	/*
15179 	 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15180 	 * are in SCD before this sfmmup leaves the SCD.
15181 	 */
15182 	for (i = 0; i < mmu_page_sizes; i++) {
15183 		ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15184 		    scdp->scd_rttecnt[i]);
15185 		atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15186 		    sfmmup->sfmmu_scdrttecnt[i]);
15187 		sfmmup->sfmmu_scdrttecnt[i] = 0;
15188 		/* update ismttecnt to include SCD ism before hat leaves SCD */
15189 		sfmmup->sfmmu_ismttecnt[i] += sfmmup->sfmmu_scdismttecnt[i];
15190 		sfmmup->sfmmu_scdismttecnt[i] = 0;
15191 	}
15192 	/* update tsb0 inflation count */
15193 	sfmmup->sfmmu_tsb0_4minflcnt += scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15194 
15195 	if (r_type != SFMMU_REGION_ISM) {
15196 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
15197 	}
15198 	sfmmup->sfmmu_scdp = NULL;
15199 
15200 	sfmmu_hat_exit(hatlockp);
15201 
15202 	/*
15203 	 * Unlink sfmmu from scd_sf_list this can be done without holding
15204 	 * the hat lock as we hold the sfmmu_as lock which prevents
15205 	 * hat_join_region from adding this thread to the scd again. Other
15206 	 * threads check if sfmmu_scdp is NULL under hat lock and if it's NULL
15207 	 * they won't get here, since sfmmu_leave_scd() clears sfmmu_scdp
15208 	 * while holding the hat lock.
15209 	 */
15210 	mutex_enter(&scdp->scd_mutex);
15211 	sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15212 	mutex_exit(&scdp->scd_mutex);
15213 	SFMMU_STAT(sf_leave_scd);
15214 
15215 	SF_SCD_DECR_REF(srdp, scdp);
15216 	hatlockp = sfmmu_hat_enter(sfmmup);
15217 
15218 }
15219 
15220 /*
15221  * Unlink and free up an SCD structure with a reference count of 0.
15222  */
15223 static void
15224 sfmmu_destroy_scd(sf_srd_t *srdp, sf_scd_t *scdp, sf_region_map_t *scd_rmap)
15225 {
15226 	sfmmu_t *scsfmmup;
15227 	sf_scd_t *sp;
15228 	hatlock_t *shatlockp;
15229 	int i, ret;
15230 
15231 	mutex_enter(&srdp->srd_scd_mutex);
15232 	for (sp = srdp->srd_scdp; sp != NULL; sp = sp->scd_next) {
15233 		if (sp == scdp)
15234 			break;
15235 	}
15236 	if (sp == NULL || sp->scd_refcnt) {
15237 		mutex_exit(&srdp->srd_scd_mutex);
15238 		return;
15239 	}
15240 
15241 	/*
15242 	 * It is possible that the scd has been freed and reallocated with a
15243 	 * different region map while we've been waiting for the srd_scd_mutex.
15244 	 */
15245 	SF_RGNMAP_EQUAL(scd_rmap, &sp->scd_region_map, ret);
15246 	if (ret != 1) {
15247 		mutex_exit(&srdp->srd_scd_mutex);
15248 		return;
15249 	}
15250 
15251 	ASSERT(scdp->scd_sf_list == NULL);
15252 	/*
15253 	 * Unlink scd from srd_scdp list.
15254 	 */
15255 	sfmmu_remove_scd(&srdp->srd_scdp, scdp);
15256 	mutex_exit(&srdp->srd_scd_mutex);
15257 
15258 	sfmmu_unlink_scd_from_regions(srdp, scdp);
15259 
15260 	/* Clear shared context tsb and release ctx */
15261 	scsfmmup = scdp->scd_sfmmup;
15262 
15263 	/*
15264 	 * create a barrier so that scd will not be destroyed
15265 	 * if other thread still holds the same shared hat lock.
15266 	 * E.g., sfmmu_tsbmiss_exception() needs to acquire the
15267 	 * shared hat lock before checking the shared tsb reloc flag.
15268 	 */
15269 	shatlockp = sfmmu_hat_enter(scsfmmup);
15270 	sfmmu_hat_exit(shatlockp);
15271 
15272 	sfmmu_free_scd_tsbs(scsfmmup);
15273 
15274 	for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
15275 		if (scsfmmup->sfmmu_hmeregion_links[i] != NULL) {
15276 			kmem_free(scsfmmup->sfmmu_hmeregion_links[i],
15277 			    SFMMU_L2_HMERLINKS_SIZE);
15278 			scsfmmup->sfmmu_hmeregion_links[i] = NULL;
15279 		}
15280 	}
15281 	kmem_cache_free(sfmmuid_cache, scsfmmup);
15282 	kmem_cache_free(scd_cache, scdp);
15283 	SFMMU_STAT(sf_destroy_scd);
15284 }
15285 
15286 /*
15287  * Modifies the HAT_CTX1_FLAG for each of the ISM segments which correspond to
15288  * bits which are set in the ism_region_map parameter. This flag indicates to
15289  * the tsbmiss handler that mapping for these segments should be loaded using
15290  * the shared context.
15291  */
15292 static void
15293 sfmmu_ism_hatflags(sfmmu_t *sfmmup, int addflag)
15294 {
15295 	sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15296 	ism_blk_t *ism_blkp;
15297 	ism_map_t *ism_map;
15298 	int i, rid;
15299 
15300 	ASSERT(sfmmup->sfmmu_iblk != NULL);
15301 	ASSERT(scdp != NULL);
15302 	/*
15303 	 * Note that the caller either set HAT_ISMBUSY flag or checked
15304 	 * under hat lock that HAT_ISMBUSY was not set by another thread.
15305 	 */
15306 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15307 
15308 	ism_blkp = sfmmup->sfmmu_iblk;
15309 	while (ism_blkp != NULL) {
15310 		ism_map = ism_blkp->iblk_maps;
15311 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
15312 			rid = ism_map[i].imap_rid;
15313 			if (rid == SFMMU_INVALID_ISMRID) {
15314 				continue;
15315 			}
15316 			ASSERT(rid >= 0 && rid < SFMMU_MAX_ISM_REGIONS);
15317 			if (SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid) &&
15318 			    addflag) {
15319 				ism_map[i].imap_hatflags |=
15320 				    HAT_CTX1_FLAG;
15321 			} else {
15322 				ism_map[i].imap_hatflags &=
15323 				    ~HAT_CTX1_FLAG;
15324 			}
15325 		}
15326 		ism_blkp = ism_blkp->iblk_next;
15327 	}
15328 }
15329 
15330 static int
15331 sfmmu_srd_lock_held(sf_srd_t *srdp)
15332 {
15333 	return (MUTEX_HELD(&srdp->srd_mutex));
15334 }
15335 
15336 /* ARGSUSED */
15337 static int
15338 sfmmu_scdcache_constructor(void *buf, void *cdrarg, int kmflags)
15339 {
15340 	sf_scd_t *scdp = (sf_scd_t *)buf;
15341 
15342 	bzero(buf, sizeof (sf_scd_t));
15343 	mutex_init(&scdp->scd_mutex, NULL, MUTEX_DEFAULT, NULL);
15344 	return (0);
15345 }
15346 
15347 /* ARGSUSED */
15348 static void
15349 sfmmu_scdcache_destructor(void *buf, void *cdrarg)
15350 {
15351 	sf_scd_t *scdp = (sf_scd_t *)buf;
15352 
15353 	mutex_destroy(&scdp->scd_mutex);
15354 }
15355 
15356 /*
15357  * The listp parameter is a pointer to a list of hmeblks which are partially
15358  * freed as result of calling sfmmu_hblk_hash_rm(), the last phase of the
15359  * freeing process is to cross-call all cpus to ensure that there are no
15360  * remaining cached references.
15361  *
15362  * If the local generation number is less than the global then we can free
15363  * hmeblks which are already on the pending queue as another cpu has completed
15364  * the cross-call.
15365  *
15366  * We cross-call to make sure that there are no threads on other cpus accessing
15367  * these hmblks and then complete the process of freeing them under the
15368  * following conditions:
15369  *	The total number of pending hmeblks is greater than the threshold
15370  *	The reserve list has fewer than HBLK_RESERVE_CNT hmeblks
15371  *	It is at least 1 second since the last time we cross-called
15372  *
15373  * Otherwise, we add the hmeblks to the per-cpu pending queue.
15374  */
15375 static void
15376 sfmmu_hblks_list_purge(struct hme_blk **listp, int dontfree)
15377 {
15378 	struct hme_blk *hblkp, *pr_hblkp = NULL;
15379 	int		count = 0;
15380 	cpuset_t	cpuset = cpu_ready_set;
15381 	cpu_hme_pend_t	*cpuhp;
15382 	timestruc_t	now;
15383 	int		one_second_expired = 0;
15384 
15385 	gethrestime_lasttick(&now);
15386 
15387 	for (hblkp = *listp; hblkp != NULL; hblkp = hblkp->hblk_next) {
15388 		ASSERT(hblkp->hblk_shw_bit == 0);
15389 		ASSERT(hblkp->hblk_shared == 0);
15390 		count++;
15391 		pr_hblkp = hblkp;
15392 	}
15393 
15394 	cpuhp = &cpu_hme_pend[CPU->cpu_seqid];
15395 	mutex_enter(&cpuhp->chp_mutex);
15396 
15397 	if ((cpuhp->chp_count + count) == 0) {
15398 		mutex_exit(&cpuhp->chp_mutex);
15399 		return;
15400 	}
15401 
15402 	if ((now.tv_sec - cpuhp->chp_timestamp) > 1) {
15403 		one_second_expired  = 1;
15404 	}
15405 
15406 	if (!dontfree && (freehblkcnt < HBLK_RESERVE_CNT ||
15407 	    (cpuhp->chp_count + count) > cpu_hme_pend_thresh ||
15408 	    one_second_expired)) {
15409 		/* Append global list to local */
15410 		if (pr_hblkp == NULL) {
15411 			*listp = cpuhp->chp_listp;
15412 		} else {
15413 			pr_hblkp->hblk_next = cpuhp->chp_listp;
15414 		}
15415 		cpuhp->chp_listp = NULL;
15416 		cpuhp->chp_count = 0;
15417 		cpuhp->chp_timestamp = now.tv_sec;
15418 		mutex_exit(&cpuhp->chp_mutex);
15419 
15420 		kpreempt_disable();
15421 		CPUSET_DEL(cpuset, CPU->cpu_id);
15422 		xt_sync(cpuset);
15423 		xt_sync(cpuset);
15424 		kpreempt_enable();
15425 
15426 		/*
15427 		 * At this stage we know that no trap handlers on other
15428 		 * cpus can have references to hmeblks on the list.
15429 		 */
15430 		sfmmu_hblk_free(listp);
15431 	} else if (*listp != NULL) {
15432 		pr_hblkp->hblk_next = cpuhp->chp_listp;
15433 		cpuhp->chp_listp = *listp;
15434 		cpuhp->chp_count += count;
15435 		*listp = NULL;
15436 		mutex_exit(&cpuhp->chp_mutex);
15437 	} else {
15438 		mutex_exit(&cpuhp->chp_mutex);
15439 	}
15440 }
15441 
15442 /*
15443  * Add an hmeblk to the the hash list.
15444  */
15445 void
15446 sfmmu_hblk_hash_add(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15447     uint64_t hblkpa)
15448 {
15449 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15450 #ifdef	DEBUG
15451 	if (hmebp->hmeblkp == NULL) {
15452 		ASSERT(hmebp->hmeh_nextpa == HMEBLK_ENDPA);
15453 	}
15454 #endif /* DEBUG */
15455 
15456 	hmeblkp->hblk_nextpa = hmebp->hmeh_nextpa;
15457 	/*
15458 	 * Since the TSB miss handler now does not lock the hash chain before
15459 	 * walking it, make sure that the hmeblks nextpa is globally visible
15460 	 * before we make the hmeblk globally visible by updating the chain root
15461 	 * pointer in the hash bucket.
15462 	 */
15463 	membar_producer();
15464 	hmebp->hmeh_nextpa = hblkpa;
15465 	hmeblkp->hblk_next = hmebp->hmeblkp;
15466 	hmebp->hmeblkp = hmeblkp;
15467 
15468 }
15469 
15470 /*
15471  * This function is the first part of a 2 part process to remove an hmeblk
15472  * from the hash chain. In this phase we unlink the hmeblk from the hash chain
15473  * but leave the next physical pointer unchanged. The hmeblk is then linked onto
15474  * a per-cpu pending list using the virtual address pointer.
15475  *
15476  * TSB miss trap handlers that start after this phase will no longer see
15477  * this hmeblk. TSB miss handlers that still cache this hmeblk in a register
15478  * can still use it for further chain traversal because we haven't yet modifed
15479  * the next physical pointer or freed it.
15480  *
15481  * In the second phase of hmeblk removal we'll issue a barrier xcall before
15482  * we reuse or free this hmeblk. This will make sure all lingering references to
15483  * the hmeblk after first phase disappear before we finally reclaim it.
15484  * This scheme eliminates the need for TSB miss handlers to lock hmeblk chains
15485  * during their traversal.
15486  *
15487  * The hmehash_mutex must be held when calling this function.
15488  *
15489  * Input:
15490  *	 hmebp - hme hash bucket pointer
15491  *	 hmeblkp - address of hmeblk to be removed
15492  *	 pr_hblk - virtual address of previous hmeblkp
15493  *	 listp - pointer to list of hmeblks linked by virtual address
15494  *	 free_now flag - indicates that a complete removal from the hash chains
15495  *			 is necessary.
15496  *
15497  * It is inefficient to use the free_now flag as a cross-call is required to
15498  * remove a single hmeblk from the hash chain but is necessary when hmeblks are
15499  * in short supply.
15500  */
15501 void
15502 sfmmu_hblk_hash_rm(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15503     struct hme_blk *pr_hblk, struct hme_blk **listp, int free_now)
15504 {
15505 	int shw_size, vshift;
15506 	struct hme_blk *shw_hblkp;
15507 	uint_t		shw_mask, newshw_mask;
15508 	caddr_t		vaddr;
15509 	int		size;
15510 	cpuset_t cpuset = cpu_ready_set;
15511 
15512 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15513 
15514 	if (hmebp->hmeblkp == hmeblkp) {
15515 		hmebp->hmeh_nextpa = hmeblkp->hblk_nextpa;
15516 		hmebp->hmeblkp = hmeblkp->hblk_next;
15517 	} else {
15518 		pr_hblk->hblk_nextpa = hmeblkp->hblk_nextpa;
15519 		pr_hblk->hblk_next = hmeblkp->hblk_next;
15520 	}
15521 
15522 	size = get_hblk_ttesz(hmeblkp);
15523 	shw_hblkp = hmeblkp->hblk_shadow;
15524 	if (shw_hblkp) {
15525 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
15526 		ASSERT(!hmeblkp->hblk_shared);
15527 #ifdef	DEBUG
15528 		if (mmu_page_sizes == max_mmu_page_sizes) {
15529 			ASSERT(size < TTE256M);
15530 		} else {
15531 			ASSERT(size < TTE4M);
15532 		}
15533 #endif /* DEBUG */
15534 
15535 		shw_size = get_hblk_ttesz(shw_hblkp);
15536 		vaddr = (caddr_t)get_hblk_base(hmeblkp);
15537 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
15538 		ASSERT(vshift < 8);
15539 		/*
15540 		 * Atomically clear shadow mask bit
15541 		 */
15542 		do {
15543 			shw_mask = shw_hblkp->hblk_shw_mask;
15544 			ASSERT(shw_mask & (1 << vshift));
15545 			newshw_mask = shw_mask & ~(1 << vshift);
15546 			newshw_mask = atomic_cas_32(&shw_hblkp->hblk_shw_mask,
15547 			    shw_mask, newshw_mask);
15548 		} while (newshw_mask != shw_mask);
15549 		hmeblkp->hblk_shadow = NULL;
15550 	}
15551 	hmeblkp->hblk_shw_bit = 0;
15552 
15553 	if (hmeblkp->hblk_shared) {
15554 #ifdef	DEBUG
15555 		sf_srd_t	*srdp;
15556 		sf_region_t	*rgnp;
15557 		uint_t		rid;
15558 
15559 		srdp = hblktosrd(hmeblkp);
15560 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
15561 		rid = hmeblkp->hblk_tag.htag_rid;
15562 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
15563 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
15564 		rgnp = srdp->srd_hmergnp[rid];
15565 		ASSERT(rgnp != NULL);
15566 		SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
15567 #endif /* DEBUG */
15568 		hmeblkp->hblk_shared = 0;
15569 	}
15570 	if (free_now) {
15571 		kpreempt_disable();
15572 		CPUSET_DEL(cpuset, CPU->cpu_id);
15573 		xt_sync(cpuset);
15574 		xt_sync(cpuset);
15575 		kpreempt_enable();
15576 
15577 		hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
15578 		hmeblkp->hblk_next = NULL;
15579 	} else {
15580 		/* Append hmeblkp to listp for processing later. */
15581 		hmeblkp->hblk_next = *listp;
15582 		*listp = hmeblkp;
15583 	}
15584 }
15585 
15586 /*
15587  * This routine is called when memory is in short supply and returns a free
15588  * hmeblk of the requested size from the cpu pending lists.
15589  */
15590 static struct hme_blk *
15591 sfmmu_check_pending_hblks(int size)
15592 {
15593 	int i;
15594 	struct hme_blk *hmeblkp = NULL, *last_hmeblkp;
15595 	int found_hmeblk;
15596 	cpuset_t cpuset = cpu_ready_set;
15597 	cpu_hme_pend_t *cpuhp;
15598 
15599 	/* Flush cpu hblk pending queues */
15600 	for (i = 0; i < NCPU; i++) {
15601 		cpuhp = &cpu_hme_pend[i];
15602 		if (cpuhp->chp_listp != NULL)  {
15603 			mutex_enter(&cpuhp->chp_mutex);
15604 			if (cpuhp->chp_listp == NULL)  {
15605 				mutex_exit(&cpuhp->chp_mutex);
15606 				continue;
15607 			}
15608 			found_hmeblk = 0;
15609 			last_hmeblkp = NULL;
15610 			for (hmeblkp = cpuhp->chp_listp; hmeblkp != NULL;
15611 			    hmeblkp = hmeblkp->hblk_next) {
15612 				if (get_hblk_ttesz(hmeblkp) == size) {
15613 					if (last_hmeblkp == NULL) {
15614 						cpuhp->chp_listp =
15615 						    hmeblkp->hblk_next;
15616 					} else {
15617 						last_hmeblkp->hblk_next =
15618 						    hmeblkp->hblk_next;
15619 					}
15620 					ASSERT(cpuhp->chp_count > 0);
15621 					cpuhp->chp_count--;
15622 					found_hmeblk = 1;
15623 					break;
15624 				} else {
15625 					last_hmeblkp = hmeblkp;
15626 				}
15627 			}
15628 			mutex_exit(&cpuhp->chp_mutex);
15629 
15630 			if (found_hmeblk) {
15631 				kpreempt_disable();
15632 				CPUSET_DEL(cpuset, CPU->cpu_id);
15633 				xt_sync(cpuset);
15634 				xt_sync(cpuset);
15635 				kpreempt_enable();
15636 				return (hmeblkp);
15637 			}
15638 		}
15639 	}
15640 	return (NULL);
15641 }
15642