xref: /illumos-gate/usr/src/uts/sfmmu/vm/hat_sfmmu.c (revision c211fc479225fa54805cf480633bf6689ca9a2db)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * VM - Hardware Address Translation management for Spitfire MMU.
28  *
29  * This file implements the machine specific hardware translation
30  * needed by the VM system.  The machine independent interface is
31  * described in <vm/hat.h> while the machine dependent interface
32  * and data structures are described in <vm/hat_sfmmu.h>.
33  *
34  * The hat layer manages the address translation hardware as a cache
35  * driven by calls from the higher levels in the VM system.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/kstat.h>
40 #include <vm/hat.h>
41 #include <vm/hat_sfmmu.h>
42 #include <vm/page.h>
43 #include <sys/pte.h>
44 #include <sys/systm.h>
45 #include <sys/mman.h>
46 #include <sys/sysmacros.h>
47 #include <sys/machparam.h>
48 #include <sys/vtrace.h>
49 #include <sys/kmem.h>
50 #include <sys/mmu.h>
51 #include <sys/cmn_err.h>
52 #include <sys/cpu.h>
53 #include <sys/cpuvar.h>
54 #include <sys/debug.h>
55 #include <sys/lgrp.h>
56 #include <sys/archsystm.h>
57 #include <sys/machsystm.h>
58 #include <sys/vmsystm.h>
59 #include <vm/as.h>
60 #include <vm/seg.h>
61 #include <vm/seg_kp.h>
62 #include <vm/seg_kmem.h>
63 #include <vm/seg_kpm.h>
64 #include <vm/rm.h>
65 #include <sys/t_lock.h>
66 #include <sys/obpdefs.h>
67 #include <sys/vm_machparam.h>
68 #include <sys/var.h>
69 #include <sys/trap.h>
70 #include <sys/machtrap.h>
71 #include <sys/scb.h>
72 #include <sys/bitmap.h>
73 #include <sys/machlock.h>
74 #include <sys/membar.h>
75 #include <sys/atomic.h>
76 #include <sys/cpu_module.h>
77 #include <sys/prom_debug.h>
78 #include <sys/ksynch.h>
79 #include <sys/mem_config.h>
80 #include <sys/mem_cage.h>
81 #include <vm/vm_dep.h>
82 #include <vm/xhat_sfmmu.h>
83 #include <sys/fpu/fpusystm.h>
84 #include <vm/mach_kpm.h>
85 #include <sys/callb.h>
86 
87 #ifdef	DEBUG
88 #define	SFMMU_VALIDATE_HMERID(hat, rid, saddr, len)			\
89 	if (SFMMU_IS_SHMERID_VALID(rid)) {				\
90 		caddr_t _eaddr = (saddr) + (len);			\
91 		sf_srd_t *_srdp;					\
92 		sf_region_t *_rgnp;					\
93 		ASSERT((rid) < SFMMU_MAX_HME_REGIONS);			\
94 		ASSERT(SF_RGNMAP_TEST(hat->sfmmu_hmeregion_map, rid));	\
95 		ASSERT((hat) != ksfmmup);				\
96 		_srdp = (hat)->sfmmu_srdp;				\
97 		ASSERT(_srdp != NULL);					\
98 		ASSERT(_srdp->srd_refcnt != 0);				\
99 		_rgnp = _srdp->srd_hmergnp[(rid)];			\
100 		ASSERT(_rgnp != NULL && _rgnp->rgn_id == rid);		\
101 		ASSERT(_rgnp->rgn_refcnt != 0);				\
102 		ASSERT(!(_rgnp->rgn_flags & SFMMU_REGION_FREE));	\
103 		ASSERT((_rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) ==	\
104 		    SFMMU_REGION_HME);					\
105 		ASSERT((saddr) >= _rgnp->rgn_saddr);			\
106 		ASSERT((saddr) < _rgnp->rgn_saddr + _rgnp->rgn_size);	\
107 		ASSERT(_eaddr > _rgnp->rgn_saddr);			\
108 		ASSERT(_eaddr <= _rgnp->rgn_saddr + _rgnp->rgn_size);	\
109 	}
110 
111 #define	SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid) 	 	 \
112 {						 			 \
113 		caddr_t _hsva;						 \
114 		caddr_t _heva;						 \
115 		caddr_t _rsva;					 	 \
116 		caddr_t _reva;					 	 \
117 		int	_ttesz = get_hblk_ttesz(hmeblkp);		 \
118 		int	_flagtte;					 \
119 		ASSERT((srdp)->srd_refcnt != 0);			 \
120 		ASSERT((rid) < SFMMU_MAX_HME_REGIONS);			 \
121 		ASSERT((rgnp)->rgn_id == rid);				 \
122 		ASSERT(!((rgnp)->rgn_flags & SFMMU_REGION_FREE));	 \
123 		ASSERT(((rgnp)->rgn_flags & SFMMU_REGION_TYPE_MASK) ==	 \
124 		    SFMMU_REGION_HME);					 \
125 		ASSERT(_ttesz <= (rgnp)->rgn_pgszc);			 \
126 		_hsva = (caddr_t)get_hblk_base(hmeblkp);		 \
127 		_heva = get_hblk_endaddr(hmeblkp);			 \
128 		_rsva = (caddr_t)P2ALIGN(				 \
129 		    (uintptr_t)(rgnp)->rgn_saddr, HBLK_MIN_BYTES);	 \
130 		_reva = (caddr_t)P2ROUNDUP(				 \
131 		    (uintptr_t)((rgnp)->rgn_saddr + (rgnp)->rgn_size),	 \
132 		    HBLK_MIN_BYTES);					 \
133 		ASSERT(_hsva >= _rsva);				 	 \
134 		ASSERT(_hsva < _reva);				 	 \
135 		ASSERT(_heva > _rsva);				 	 \
136 		ASSERT(_heva <= _reva);				 	 \
137 		_flagtte = (_ttesz < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ :  \
138 			_ttesz;						 \
139 		ASSERT(rgnp->rgn_hmeflags & (0x1 << _flagtte));		 \
140 }
141 
142 #else /* DEBUG */
143 #define	SFMMU_VALIDATE_HMERID(hat, rid, addr, len)
144 #define	SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)
145 #endif /* DEBUG */
146 
147 #if defined(SF_ERRATA_57)
148 extern caddr_t errata57_limit;
149 #endif
150 
151 #define	HME8BLK_SZ_RND		((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
152 				(sizeof (int64_t)))
153 #define	HBLK_RESERVE		((struct hme_blk *)hblk_reserve)
154 
155 #define	HBLK_RESERVE_CNT	128
156 #define	HBLK_RESERVE_MIN	20
157 
158 static struct hme_blk		*freehblkp;
159 static kmutex_t			freehblkp_lock;
160 static int			freehblkcnt;
161 
162 static int64_t			hblk_reserve[HME8BLK_SZ_RND];
163 static kmutex_t			hblk_reserve_lock;
164 static kthread_t		*hblk_reserve_thread;
165 
166 static nucleus_hblk8_info_t	nucleus_hblk8;
167 static nucleus_hblk1_info_t	nucleus_hblk1;
168 
169 /*
170  * Data to manage per-cpu hmeblk pending queues, hmeblks are queued here
171  * after the initial phase of removing an hmeblk from the hash chain, see
172  * the detailed comment in sfmmu_hblk_hash_rm() for further details.
173  */
174 static cpu_hme_pend_t		*cpu_hme_pend;
175 static uint_t			cpu_hme_pend_thresh;
176 /*
177  * SFMMU specific hat functions
178  */
179 void	hat_pagecachectl(struct page *, int);
180 
181 /* flags for hat_pagecachectl */
182 #define	HAT_CACHE	0x1
183 #define	HAT_UNCACHE	0x2
184 #define	HAT_TMPNC	0x4
185 
186 /*
187  * This flag is set to 0 via the MD in platforms that do not support
188  * I-cache coherency in hardware. Used to enable "soft exec" mode.
189  * The MD "coherency" property is optional, and defaults to 1 (because
190  * coherent I-cache is the norm.)
191  */
192 uint_t	icache_is_coherent = 1;
193 
194 /*
195  * Flag to allow the creation of non-cacheable translations
196  * to system memory. It is off by default. At the moment this
197  * flag is used by the ecache error injector. The error injector
198  * will turn it on when creating such a translation then shut it
199  * off when it's finished.
200  */
201 
202 int	sfmmu_allow_nc_trans = 0;
203 
204 /*
205  * Flag to disable large page support.
206  * 	value of 1 => disable all large pages.
207  *	bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
208  *
209  * For example, use the value 0x4 to disable 512K pages.
210  *
211  */
212 #define	LARGE_PAGES_OFF		0x1
213 
214 /*
215  * The disable_large_pages and disable_ism_large_pages variables control
216  * hat_memload_array and the page sizes to be used by ISM and the kernel.
217  *
218  * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
219  * are only used to control which OOB pages to use at upper VM segment creation
220  * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
221  * Their values may come from platform or CPU specific code to disable page
222  * sizes that should not be used.
223  *
224  * WARNING: 512K pages are currently not supported for ISM/DISM.
225  */
226 uint_t	disable_large_pages = 0;
227 uint_t	disable_ism_large_pages = (1 << TTE512K);
228 uint_t	disable_auto_data_large_pages = 0;
229 uint_t	disable_auto_text_large_pages = 0;
230 uint_t	disable_shctx_large_pages = 0;
231 
232 /*
233  * Private sfmmu data structures for hat management
234  */
235 static struct kmem_cache *sfmmuid_cache;
236 static struct kmem_cache *mmuctxdom_cache;
237 
238 /*
239  * Private sfmmu data structures for tsb management
240  */
241 static struct kmem_cache *sfmmu_tsbinfo_cache;
242 static struct kmem_cache *sfmmu_tsb8k_cache;
243 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
244 static vmem_t *kmem_bigtsb_arena;
245 static vmem_t *kmem_tsb_arena;
246 
247 /*
248  * sfmmu static variables for hmeblk resource management.
249  */
250 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
251 static struct kmem_cache *sfmmu8_cache;
252 static struct kmem_cache *sfmmu1_cache;
253 static struct kmem_cache *pa_hment_cache;
254 
255 static kmutex_t 	ism_mlist_lock;	/* mutex for ism mapping list */
256 /*
257  * private data for ism
258  */
259 static struct kmem_cache *ism_blk_cache;
260 static struct kmem_cache *ism_ment_cache;
261 #define	ISMID_STARTADDR	NULL
262 
263 /*
264  * Region management data structures and function declarations.
265  */
266 
267 static void	sfmmu_leave_srd(sfmmu_t *);
268 static int	sfmmu_srdcache_constructor(void *, void *, int);
269 static void	sfmmu_srdcache_destructor(void *, void *);
270 static int	sfmmu_rgncache_constructor(void *, void *, int);
271 static void	sfmmu_rgncache_destructor(void *, void *);
272 static int	sfrgnmap_isnull(sf_region_map_t *);
273 static int	sfhmergnmap_isnull(sf_hmeregion_map_t *);
274 static int	sfmmu_scdcache_constructor(void *, void *, int);
275 static void	sfmmu_scdcache_destructor(void *, void *);
276 static void	sfmmu_rgn_cb_noop(caddr_t, caddr_t, caddr_t,
277     size_t, void *, u_offset_t);
278 
279 static uint_t srd_hashmask = SFMMU_MAX_SRD_BUCKETS - 1;
280 static sf_srd_bucket_t *srd_buckets;
281 static struct kmem_cache *srd_cache;
282 static uint_t srd_rgn_hashmask = SFMMU_MAX_REGION_BUCKETS - 1;
283 static struct kmem_cache *region_cache;
284 static struct kmem_cache *scd_cache;
285 
286 #ifdef sun4v
287 int use_bigtsb_arena = 1;
288 #else
289 int use_bigtsb_arena = 0;
290 #endif
291 
292 /* External /etc/system tunable, for turning on&off the shctx support */
293 int disable_shctx = 0;
294 /* Internal variable, set by MD if the HW supports shctx feature */
295 int shctx_on = 0;
296 
297 /* Internal variable, set by MD if the HW supports the search order register */
298 int pgsz_search_on = 0;
299 /*
300  * External /etc/system tunable, for controlling search order register
301  * support.
302  */
303 int disable_pgsz_search = 0;
304 
305 #ifdef DEBUG
306 static void check_scd_sfmmu_list(sfmmu_t **, sfmmu_t *, int);
307 #endif
308 static void sfmmu_to_scd_list(sfmmu_t **, sfmmu_t *);
309 static void sfmmu_from_scd_list(sfmmu_t **, sfmmu_t *);
310 
311 static sf_scd_t *sfmmu_alloc_scd(sf_srd_t *, sf_region_map_t *);
312 static void sfmmu_find_scd(sfmmu_t *);
313 static void sfmmu_join_scd(sf_scd_t *, sfmmu_t *);
314 static void sfmmu_finish_join_scd(sfmmu_t *);
315 static void sfmmu_leave_scd(sfmmu_t *, uchar_t);
316 static void sfmmu_destroy_scd(sf_srd_t *, sf_scd_t *, sf_region_map_t *);
317 static int sfmmu_alloc_scd_tsbs(sf_srd_t *, sf_scd_t *);
318 static void sfmmu_free_scd_tsbs(sfmmu_t *);
319 static void sfmmu_tsb_inv_ctx(sfmmu_t *);
320 static int find_ism_rid(sfmmu_t *, sfmmu_t *, caddr_t, uint_t *);
321 static void sfmmu_ism_hatflags(sfmmu_t *, int);
322 static int sfmmu_srd_lock_held(sf_srd_t *);
323 static void sfmmu_remove_scd(sf_scd_t **, sf_scd_t *);
324 static void sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *);
325 static void sfmmu_link_scd_to_regions(sf_srd_t *, sf_scd_t *);
326 static void sfmmu_unlink_scd_from_regions(sf_srd_t *, sf_scd_t *);
327 static void sfmmu_link_to_hmeregion(sfmmu_t *, sf_region_t *);
328 static void sfmmu_unlink_from_hmeregion(sfmmu_t *, sf_region_t *);
329 
330 /*
331  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
332  * HAT flags, synchronizing TLB/TSB coherency, and context management.
333  * The lock is hashed on the sfmmup since the case where we need to lock
334  * all processes is rare but does occur (e.g. we need to unload a shared
335  * mapping from all processes using the mapping).  We have a lot of buckets,
336  * and each slab of sfmmu_t's can use about a quarter of them, giving us
337  * a fairly good distribution without wasting too much space and overhead
338  * when we have to grab them all.
339  */
340 #define	SFMMU_NUM_LOCK	128		/* must be power of two */
341 hatlock_t	hat_lock[SFMMU_NUM_LOCK];
342 
343 /*
344  * Hash algorithm optimized for a small number of slabs.
345  *  7 is (highbit((sizeof sfmmu_t)) - 1)
346  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
347  * kmem_cache, and thus they will be sequential within that cache.  In
348  * addition, each new slab will have a different "color" up to cache_maxcolor
349  * which will skew the hashing for each successive slab which is allocated.
350  * If the size of sfmmu_t changed to a larger size, this algorithm may need
351  * to be revisited.
352  */
353 #define	TSB_HASH_SHIFT_BITS (7)
354 #define	PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
355 
356 #ifdef DEBUG
357 int tsb_hash_debug = 0;
358 #define	TSB_HASH(sfmmup)	\
359 	(tsb_hash_debug ? &hat_lock[0] : \
360 	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
361 #else	/* DEBUG */
362 #define	TSB_HASH(sfmmup)	&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
363 #endif	/* DEBUG */
364 
365 
366 /* sfmmu_replace_tsb() return codes. */
367 typedef enum tsb_replace_rc {
368 	TSB_SUCCESS,
369 	TSB_ALLOCFAIL,
370 	TSB_LOSTRACE,
371 	TSB_ALREADY_SWAPPED,
372 	TSB_CANTGROW
373 } tsb_replace_rc_t;
374 
375 /*
376  * Flags for TSB allocation routines.
377  */
378 #define	TSB_ALLOC	0x01
379 #define	TSB_FORCEALLOC	0x02
380 #define	TSB_GROW	0x04
381 #define	TSB_SHRINK	0x08
382 #define	TSB_SWAPIN	0x10
383 
384 /*
385  * Support for HAT callbacks.
386  */
387 #define	SFMMU_MAX_RELOC_CALLBACKS	10
388 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
389 static id_t sfmmu_cb_nextid = 0;
390 static id_t sfmmu_tsb_cb_id;
391 struct sfmmu_callback *sfmmu_cb_table;
392 
393 /*
394  * Kernel page relocation is enabled by default for non-caged
395  * kernel pages.  This has little effect unless segkmem_reloc is
396  * set, since by default kernel memory comes from inside the
397  * kernel cage.
398  */
399 int hat_kpr_enabled = 1;
400 
401 kmutex_t	kpr_mutex;
402 kmutex_t	kpr_suspendlock;
403 kthread_t	*kreloc_thread;
404 
405 /*
406  * Enable VA->PA translation sanity checking on DEBUG kernels.
407  * Disabled by default.  This is incompatible with some
408  * drivers (error injector, RSM) so if it breaks you get
409  * to keep both pieces.
410  */
411 int hat_check_vtop = 0;
412 
413 /*
414  * Private sfmmu routines (prototypes)
415  */
416 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
417 static struct 	hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
418 			struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t,
419 			uint_t);
420 static caddr_t	sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
421 			caddr_t, demap_range_t *, uint_t);
422 static caddr_t	sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
423 			caddr_t, int);
424 static void	sfmmu_hblk_free(struct hme_blk **);
425 static void	sfmmu_hblks_list_purge(struct hme_blk **, int);
426 static uint_t	sfmmu_get_free_hblk(struct hme_blk **, uint_t);
427 static uint_t	sfmmu_put_free_hblk(struct hme_blk *, uint_t);
428 static struct hme_blk *sfmmu_hblk_steal(int);
429 static int	sfmmu_steal_this_hblk(struct hmehash_bucket *,
430 			struct hme_blk *, uint64_t, struct hme_blk *);
431 static caddr_t	sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
432 
433 static void	hat_do_memload_array(struct hat *, caddr_t, size_t,
434 		    struct page **, uint_t, uint_t, uint_t);
435 static void	hat_do_memload(struct hat *, caddr_t, struct page *,
436 		    uint_t, uint_t, uint_t);
437 static void	sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
438 		    uint_t, uint_t, pgcnt_t, uint_t);
439 void		sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
440 			uint_t);
441 static int	sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
442 			uint_t, uint_t);
443 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
444 					caddr_t, int, uint_t);
445 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
446 			struct hmehash_bucket *, caddr_t, uint_t, uint_t,
447 			uint_t);
448 static int	sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
449 			caddr_t, page_t **, uint_t, uint_t);
450 static void	sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
451 
452 static int	sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
453 static pfn_t	sfmmu_uvatopfn(caddr_t, sfmmu_t *, tte_t *);
454 void		sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
455 #ifdef VAC
456 static void	sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
457 static int	sfmmu_vacconflict_array(caddr_t, page_t *, int *);
458 int	tst_tnc(page_t *pp, pgcnt_t);
459 void	conv_tnc(page_t *pp, int);
460 #endif
461 
462 static void	sfmmu_get_ctx(sfmmu_t *);
463 static void	sfmmu_free_sfmmu(sfmmu_t *);
464 
465 static void	sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
466 static void	sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
467 
468 cpuset_t	sfmmu_pageunload(page_t *, struct sf_hment *, int);
469 static void	hat_pagereload(struct page *, struct page *);
470 static cpuset_t	sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
471 #ifdef VAC
472 void	sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
473 static void	sfmmu_page_cache(page_t *, int, int, int);
474 #endif
475 
476 cpuset_t	sfmmu_rgntlb_demap(caddr_t, sf_region_t *,
477     struct hme_blk *, int);
478 static void	sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
479 			pfn_t, int, int, int, int);
480 static void	sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
481 			pfn_t, int);
482 static void	sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
483 static void	sfmmu_tlb_range_demap(demap_range_t *);
484 static void	sfmmu_sync_mmustate(sfmmu_t *);
485 
486 static void 	sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
487 static int	sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
488 			sfmmu_t *);
489 static void	sfmmu_tsb_free(struct tsb_info *);
490 static void	sfmmu_tsbinfo_free(struct tsb_info *);
491 static int	sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
492 			sfmmu_t *);
493 static void	sfmmu_tsb_chk_reloc(sfmmu_t *, hatlock_t *);
494 static void	sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
495 static int	sfmmu_select_tsb_szc(pgcnt_t);
496 static void	sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
497 #define		sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
498 	sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
499 #define		sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
500 	sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
501 static void	sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
502 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
503     hatlock_t *, uint_t);
504 static void	sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
505 
506 #ifdef VAC
507 void	sfmmu_cache_flush(pfn_t, int);
508 void	sfmmu_cache_flushcolor(int, pfn_t);
509 #endif
510 static caddr_t	sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
511 			caddr_t, demap_range_t *, uint_t, int);
512 
513 static uint64_t	sfmmu_vtop_attr(uint_t, int mode, tte_t *);
514 static uint_t	sfmmu_ptov_attr(tte_t *);
515 static caddr_t	sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
516 			caddr_t, demap_range_t *, uint_t);
517 static uint_t	sfmmu_vtop_prot(uint_t, uint_t *);
518 static int	sfmmu_idcache_constructor(void *, void *, int);
519 static void	sfmmu_idcache_destructor(void *, void *);
520 static int	sfmmu_hblkcache_constructor(void *, void *, int);
521 static void	sfmmu_hblkcache_destructor(void *, void *);
522 static void	sfmmu_hblkcache_reclaim(void *);
523 static void	sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
524 			struct hmehash_bucket *);
525 static void	sfmmu_hblk_hash_rm(struct hmehash_bucket *, struct hme_blk *,
526 			struct hme_blk *, struct hme_blk **, int);
527 static void	sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *,
528 			uint64_t);
529 static struct hme_blk *sfmmu_check_pending_hblks(int);
530 static void	sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
531 static void	sfmmu_cleanup_rhblk(sf_srd_t *, caddr_t, uint_t, int);
532 static void	sfmmu_unload_hmeregion_va(sf_srd_t *, uint_t, caddr_t, caddr_t,
533 			int, caddr_t *);
534 static void	sfmmu_unload_hmeregion(sf_srd_t *, sf_region_t *);
535 
536 static void	sfmmu_rm_large_mappings(page_t *, int);
537 
538 static void	hat_lock_init(void);
539 static void	hat_kstat_init(void);
540 static int	sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
541 static void	sfmmu_set_scd_rttecnt(sf_srd_t *, sf_scd_t *);
542 static	int	sfmmu_is_rgnva(sf_srd_t *, caddr_t, ulong_t, ulong_t);
543 static void	sfmmu_check_page_sizes(sfmmu_t *, int);
544 int	fnd_mapping_sz(page_t *);
545 static void	iment_add(struct ism_ment *,  struct hat *);
546 static void	iment_sub(struct ism_ment *, struct hat *);
547 static pgcnt_t	ism_tsb_entries(sfmmu_t *, int szc);
548 extern void	sfmmu_setup_tsbinfo(sfmmu_t *);
549 extern void	sfmmu_clear_utsbinfo(void);
550 
551 static void	sfmmu_ctx_wrap_around(mmu_ctx_t *);
552 
553 /* kpm globals */
554 #ifdef	DEBUG
555 /*
556  * Enable trap level tsbmiss handling
557  */
558 int	kpm_tsbmtl = 1;
559 
560 /*
561  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
562  * required TLB shootdowns in this case, so handle w/ care. Off by default.
563  */
564 int	kpm_tlb_flush;
565 #endif	/* DEBUG */
566 
567 static void	*sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
568 
569 #ifdef DEBUG
570 static void	sfmmu_check_hblk_flist();
571 #endif
572 
573 /*
574  * Semi-private sfmmu data structures.  Some of them are initialize in
575  * startup or in hat_init. Some of them are private but accessed by
576  * assembly code or mach_sfmmu.c
577  */
578 struct hmehash_bucket *uhme_hash;	/* user hmeblk hash table */
579 struct hmehash_bucket *khme_hash;	/* kernel hmeblk hash table */
580 uint64_t	uhme_hash_pa;		/* PA of uhme_hash */
581 uint64_t	khme_hash_pa;		/* PA of khme_hash */
582 int 		uhmehash_num;		/* # of buckets in user hash table */
583 int 		khmehash_num;		/* # of buckets in kernel hash table */
584 
585 uint_t		max_mmu_ctxdoms = 0;	/* max context domains in the system */
586 mmu_ctx_t	**mmu_ctxs_tbl;		/* global array of context domains */
587 uint64_t	mmu_saved_gnum = 0;	/* to init incoming MMUs' gnums */
588 
589 #define	DEFAULT_NUM_CTXS_PER_MMU 8192
590 uint_t	nctxs = DEFAULT_NUM_CTXS_PER_MMU;
591 
592 int		cache;			/* describes system cache */
593 
594 caddr_t		ktsb_base;		/* kernel 8k-indexed tsb base address */
595 uint64_t	ktsb_pbase;		/* kernel 8k-indexed tsb phys address */
596 int		ktsb_szcode;		/* kernel 8k-indexed tsb size code */
597 int		ktsb_sz;		/* kernel 8k-indexed tsb size */
598 
599 caddr_t		ktsb4m_base;		/* kernel 4m-indexed tsb base address */
600 uint64_t	ktsb4m_pbase;		/* kernel 4m-indexed tsb phys address */
601 int		ktsb4m_szcode;		/* kernel 4m-indexed tsb size code */
602 int		ktsb4m_sz;		/* kernel 4m-indexed tsb size */
603 
604 uint64_t	kpm_tsbbase;		/* kernel seg_kpm 4M TSB base address */
605 int		kpm_tsbsz;		/* kernel seg_kpm 4M TSB size code */
606 uint64_t	kpmsm_tsbbase;		/* kernel seg_kpm 8K TSB base address */
607 int		kpmsm_tsbsz;		/* kernel seg_kpm 8K TSB size code */
608 
609 #ifndef sun4v
610 int		utsb_dtlb_ttenum = -1;	/* index in TLB for utsb locked TTE */
611 int		utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
612 int		dtlb_resv_ttenum;	/* index in TLB of first reserved TTE */
613 caddr_t		utsb_vabase;		/* reserved kernel virtual memory */
614 caddr_t		utsb4m_vabase;		/* for trap handler TSB accesses */
615 #endif /* sun4v */
616 uint64_t	tsb_alloc_bytes = 0;	/* bytes allocated to TSBs */
617 vmem_t		*kmem_tsb_default_arena[NLGRPS_MAX];	/* For dynamic TSBs */
618 vmem_t		*kmem_bigtsb_default_arena[NLGRPS_MAX]; /* dynamic 256M TSBs */
619 
620 /*
621  * Size to use for TSB slabs.  Future platforms that support page sizes
622  * larger than 4M may wish to change these values, and provide their own
623  * assembly macros for building and decoding the TSB base register contents.
624  * Note disable_large_pages will override the value set here.
625  */
626 static	uint_t tsb_slab_ttesz = TTE4M;
627 size_t	tsb_slab_size = MMU_PAGESIZE4M;
628 uint_t	tsb_slab_shift = MMU_PAGESHIFT4M;
629 /* PFN mask for TTE */
630 size_t	tsb_slab_mask = MMU_PAGEOFFSET4M >> MMU_PAGESHIFT;
631 
632 /*
633  * Size to use for TSB slabs.  These are used only when 256M tsb arenas
634  * exist.
635  */
636 static uint_t	bigtsb_slab_ttesz = TTE256M;
637 static size_t	bigtsb_slab_size = MMU_PAGESIZE256M;
638 static uint_t	bigtsb_slab_shift = MMU_PAGESHIFT256M;
639 /* 256M page alignment for 8K pfn */
640 static size_t	bigtsb_slab_mask = MMU_PAGEOFFSET256M >> MMU_PAGESHIFT;
641 
642 /* largest TSB size to grow to, will be smaller on smaller memory systems */
643 static int	tsb_max_growsize = 0;
644 
645 /*
646  * Tunable parameters dealing with TSB policies.
647  */
648 
649 /*
650  * This undocumented tunable forces all 8K TSBs to be allocated from
651  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
652  */
653 #ifdef	DEBUG
654 int	tsb_forceheap = 0;
655 #endif	/* DEBUG */
656 
657 /*
658  * Decide whether to use per-lgroup arenas, or one global set of
659  * TSB arenas.  The default is not to break up per-lgroup, since
660  * most platforms don't recognize any tangible benefit from it.
661  */
662 int	tsb_lgrp_affinity = 0;
663 
664 /*
665  * Used for growing the TSB based on the process RSS.
666  * tsb_rss_factor is based on the smallest TSB, and is
667  * shifted by the TSB size to determine if we need to grow.
668  * The default will grow the TSB if the number of TTEs for
669  * this page size exceeds 75% of the number of TSB entries,
670  * which should _almost_ eliminate all conflict misses
671  * (at the expense of using up lots and lots of memory).
672  */
673 #define	TSB_RSS_FACTOR		(TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
674 #define	SFMMU_RSS_TSBSIZE(tsbszc)	(tsb_rss_factor << tsbszc)
675 #define	SELECT_TSB_SIZECODE(pgcnt) ( \
676 	(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
677 	default_tsb_size)
678 #define	TSB_OK_SHRINK()	\
679 	(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
680 #define	TSB_OK_GROW()	\
681 	(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
682 
683 int	enable_tsb_rss_sizing = 1;
684 int	tsb_rss_factor	= (int)TSB_RSS_FACTOR;
685 
686 /* which TSB size code to use for new address spaces or if rss sizing off */
687 int default_tsb_size = TSB_8K_SZCODE;
688 
689 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
690 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
691 #define	TSB_ALLOC_HIWATER_FACTOR_DEFAULT	32
692 
693 #ifdef DEBUG
694 static int tsb_random_size = 0;	/* set to 1 to test random tsb sizes on alloc */
695 static int tsb_grow_stress = 0;	/* if set to 1, keep replacing TSB w/ random */
696 static int tsb_alloc_mtbf = 0;	/* fail allocation every n attempts */
697 static int tsb_alloc_fail_mtbf = 0;
698 static int tsb_alloc_count = 0;
699 #endif /* DEBUG */
700 
701 /* if set to 1, will remap valid TTEs when growing TSB. */
702 int tsb_remap_ttes = 1;
703 
704 /*
705  * If we have more than this many mappings, allocate a second TSB.
706  * This default is chosen because the I/D fully associative TLBs are
707  * assumed to have at least 8 available entries. Platforms with a
708  * larger fully-associative TLB could probably override the default.
709  */
710 
711 #ifdef sun4v
712 int tsb_sectsb_threshold = 0;
713 #else
714 int tsb_sectsb_threshold = 8;
715 #endif
716 
717 /*
718  * kstat data
719  */
720 struct sfmmu_global_stat sfmmu_global_stat;
721 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
722 
723 /*
724  * Global data
725  */
726 sfmmu_t 	*ksfmmup;		/* kernel's hat id */
727 
728 #ifdef DEBUG
729 static void	chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
730 #endif
731 
732 /* sfmmu locking operations */
733 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
734 static int	sfmmu_mlspl_held(struct page *, int);
735 
736 kmutex_t *sfmmu_page_enter(page_t *);
737 void	sfmmu_page_exit(kmutex_t *);
738 int	sfmmu_page_spl_held(struct page *);
739 
740 /* sfmmu internal locking operations - accessed directly */
741 static void	sfmmu_mlist_reloc_enter(page_t *, page_t *,
742 				kmutex_t **, kmutex_t **);
743 static void	sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
744 static hatlock_t *sfmmu_hat_tryenter(sfmmu_t *);
745 static void	sfmmu_hat_lock_all(void);
746 static void	sfmmu_hat_unlock_all(void);
747 static void	sfmmu_ismhat_enter(sfmmu_t *, int);
748 static void	sfmmu_ismhat_exit(sfmmu_t *, int);
749 
750 /*
751  * Array of mutexes protecting a page's mapping list and p_nrm field.
752  *
753  * The hash function looks complicated, but is made up so that:
754  *
755  * "pp" not shifted, so adjacent pp values will hash to different cache lines
756  *  (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
757  *
758  * "pp" >> mml_shift, incorporates more source bits into the hash result
759  *
760  *  "& (mml_table_size - 1), should be faster than using remainder "%"
761  *
762  * Hopefully, mml_table, mml_table_size and mml_shift are all in the same
763  * cacheline, since they get declared next to each other below. We'll trust
764  * ld not to do something random.
765  */
766 #ifdef	DEBUG
767 int mlist_hash_debug = 0;
768 #define	MLIST_HASH(pp)	(mlist_hash_debug ? &mml_table[0] : \
769 	&mml_table[((uintptr_t)(pp) + \
770 	((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
771 #else	/* !DEBUG */
772 #define	MLIST_HASH(pp)   &mml_table[ \
773 	((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
774 #endif	/* !DEBUG */
775 
776 kmutex_t		*mml_table;
777 uint_t			mml_table_sz;	/* must be a power of 2 */
778 uint_t			mml_shift;	/* log2(mml_table_sz) + 3 for align */
779 
780 kpm_hlk_t	*kpmp_table;
781 uint_t		kpmp_table_sz;	/* must be a power of 2 */
782 uchar_t		kpmp_shift;
783 
784 kpm_shlk_t	*kpmp_stable;
785 uint_t		kpmp_stable_sz;	/* must be a power of 2 */
786 
787 /*
788  * SPL_HASH was improved to avoid false cache line sharing
789  */
790 #define	SPL_TABLE_SIZE	128
791 #define	SPL_MASK	(SPL_TABLE_SIZE - 1)
792 #define	SPL_SHIFT	7		/* log2(SPL_TABLE_SIZE) */
793 
794 #define	SPL_INDEX(pp) \
795 	((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
796 	((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
797 	(SPL_TABLE_SIZE - 1))
798 
799 #define	SPL_HASH(pp)    \
800 	(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
801 
802 static	pad_mutex_t	sfmmu_page_lock[SPL_TABLE_SIZE];
803 
804 
805 /*
806  * hat_unload_callback() will group together callbacks in order
807  * to avoid xt_sync() calls.  This is the maximum size of the group.
808  */
809 #define	MAX_CB_ADDR	32
810 
811 tte_t	hw_tte;
812 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
813 
814 static char	*mmu_ctx_kstat_names[] = {
815 	"mmu_ctx_tsb_exceptions",
816 	"mmu_ctx_tsb_raise_exception",
817 	"mmu_ctx_wrap_around",
818 };
819 
820 /*
821  * Wrapper for vmem_xalloc since vmem_create only allows limited
822  * parameters for vm_source_alloc functions.  This function allows us
823  * to specify alignment consistent with the size of the object being
824  * allocated.
825  */
826 static void *
827 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
828 {
829 	return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
830 }
831 
832 /* Common code for setting tsb_alloc_hiwater. */
833 #define	SFMMU_SET_TSB_ALLOC_HIWATER(pages)	tsb_alloc_hiwater = \
834 		ptob(pages) / tsb_alloc_hiwater_factor
835 
836 /*
837  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
838  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
839  * TTEs to represent all those physical pages.  We round this up by using
840  * 1<<highbit().  To figure out which size code to use, remember that the size
841  * code is just an amount to shift the smallest TSB size to get the size of
842  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
843  * highbit() - 1) to get the size code for the smallest TSB that can represent
844  * all of physical memory, while erring on the side of too much.
845  *
846  * Restrict tsb_max_growsize to make sure that:
847  *	1) TSBs can't grow larger than the TSB slab size
848  *	2) TSBs can't grow larger than UTSB_MAX_SZCODE.
849  */
850 #define	SFMMU_SET_TSB_MAX_GROWSIZE(pages) {				\
851 	int	_i, _szc, _slabszc, _tsbszc;				\
852 									\
853 	_i = highbit(pages);						\
854 	if ((1 << (_i - 1)) == (pages))					\
855 		_i--;		/* 2^n case, round down */              \
856 	_szc = _i - TSB_START_SIZE;					\
857 	_slabszc = bigtsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); \
858 	_tsbszc = MIN(_szc, _slabszc);                                  \
859 	tsb_max_growsize = MIN(_tsbszc, UTSB_MAX_SZCODE);               \
860 }
861 
862 /*
863  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
864  * tsb_info which handles that TTE size.
865  */
866 #define	SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) {			\
867 	(tsbinfop) = (sfmmup)->sfmmu_tsb;				\
868 	ASSERT(((tsbinfop)->tsb_flags & TSB_SHAREDCTX) ||		\
869 	    sfmmu_hat_lock_held(sfmmup));				\
870 	if ((tte_szc) >= TTE4M)	{					\
871 		ASSERT((tsbinfop) != NULL);				\
872 		(tsbinfop) = (tsbinfop)->tsb_next;			\
873 	}								\
874 }
875 
876 /*
877  * Macro to use to unload entries from the TSB.
878  * It has knowledge of which page sizes get replicated in the TSB
879  * and will call the appropriate unload routine for the appropriate size.
880  */
881 #define	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, ismhat)		\
882 {									\
883 	int ttesz = get_hblk_ttesz(hmeblkp);				\
884 	if (ttesz == TTE8K || ttesz == TTE4M) {				\
885 		sfmmu_unload_tsb(sfmmup, addr, ttesz);			\
886 	} else {							\
887 		caddr_t sva = ismhat ? addr : 				\
888 		    (caddr_t)get_hblk_base(hmeblkp);			\
889 		caddr_t eva = sva + get_hblk_span(hmeblkp);		\
890 		ASSERT(addr >= sva && addr < eva);			\
891 		sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);	\
892 	}								\
893 }
894 
895 
896 /* Update tsb_alloc_hiwater after memory is configured. */
897 /*ARGSUSED*/
898 static void
899 sfmmu_update_post_add(void *arg, pgcnt_t delta_pages)
900 {
901 	/* Assumes physmem has already been updated. */
902 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
903 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
904 }
905 
906 /*
907  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
908  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
909  * deleted.
910  */
911 /*ARGSUSED*/
912 static int
913 sfmmu_update_pre_del(void *arg, pgcnt_t delta_pages)
914 {
915 	return (0);
916 }
917 
918 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
919 /*ARGSUSED*/
920 static void
921 sfmmu_update_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
922 {
923 	/*
924 	 * Whether the delete was cancelled or not, just go ahead and update
925 	 * tsb_alloc_hiwater and tsb_max_growsize.
926 	 */
927 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
928 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
929 }
930 
931 static kphysm_setup_vector_t sfmmu_update_vec = {
932 	KPHYSM_SETUP_VECTOR_VERSION,	/* version */
933 	sfmmu_update_post_add,		/* post_add */
934 	sfmmu_update_pre_del,		/* pre_del */
935 	sfmmu_update_post_del		/* post_del */
936 };
937 
938 
939 /*
940  * HME_BLK HASH PRIMITIVES
941  */
942 
943 /*
944  * Enter a hme on the mapping list for page pp.
945  * When large pages are more prevalent in the system we might want to
946  * keep the mapping list in ascending order by the hment size. For now,
947  * small pages are more frequent, so don't slow it down.
948  */
949 #define	HME_ADD(hme, pp)					\
950 {								\
951 	ASSERT(sfmmu_mlist_held(pp));				\
952 								\
953 	hme->hme_prev = NULL;					\
954 	hme->hme_next = pp->p_mapping;				\
955 	hme->hme_page = pp;					\
956 	if (pp->p_mapping) {					\
957 		((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
958 		ASSERT(pp->p_share > 0);			\
959 	} else  {						\
960 		/* EMPTY */					\
961 		ASSERT(pp->p_share == 0);			\
962 	}							\
963 	pp->p_mapping = hme;					\
964 	pp->p_share++;						\
965 }
966 
967 /*
968  * Enter a hme on the mapping list for page pp.
969  * If we are unmapping a large translation, we need to make sure that the
970  * change is reflect in the corresponding bit of the p_index field.
971  */
972 #define	HME_SUB(hme, pp)					\
973 {								\
974 	ASSERT(sfmmu_mlist_held(pp));				\
975 	ASSERT(hme->hme_page == pp || IS_PAHME(hme));		\
976 								\
977 	if (pp->p_mapping == NULL) {				\
978 		panic("hme_remove - no mappings");		\
979 	}							\
980 								\
981 	membar_stst();	/* ensure previous stores finish */	\
982 								\
983 	ASSERT(pp->p_share > 0);				\
984 	pp->p_share--;						\
985 								\
986 	if (hme->hme_prev) {					\
987 		ASSERT(pp->p_mapping != hme);			\
988 		ASSERT(hme->hme_prev->hme_page == pp ||		\
989 			IS_PAHME(hme->hme_prev));		\
990 		hme->hme_prev->hme_next = hme->hme_next;	\
991 	} else {						\
992 		ASSERT(pp->p_mapping == hme);			\
993 		pp->p_mapping = hme->hme_next;			\
994 		ASSERT((pp->p_mapping == NULL) ?		\
995 			(pp->p_share == 0) : 1);		\
996 	}							\
997 								\
998 	if (hme->hme_next) {					\
999 		ASSERT(hme->hme_next->hme_page == pp ||		\
1000 			IS_PAHME(hme->hme_next));		\
1001 		hme->hme_next->hme_prev = hme->hme_prev;	\
1002 	}							\
1003 								\
1004 	/* zero out the entry */				\
1005 	hme->hme_next = NULL;					\
1006 	hme->hme_prev = NULL;					\
1007 	hme->hme_page = NULL;					\
1008 								\
1009 	if (hme_size(hme) > TTE8K) {				\
1010 		/* remove mappings for remainder of large pg */	\
1011 		sfmmu_rm_large_mappings(pp, hme_size(hme));	\
1012 	}							\
1013 }
1014 
1015 /*
1016  * This function returns the hment given the hme_blk and a vaddr.
1017  * It assumes addr has already been checked to belong to hme_blk's
1018  * range.
1019  */
1020 #define	HBLKTOHME(hment, hmeblkp, addr)					\
1021 {									\
1022 	int index;							\
1023 	HBLKTOHME_IDX(hment, hmeblkp, addr, index)			\
1024 }
1025 
1026 /*
1027  * Version of HBLKTOHME that also returns the index in hmeblkp
1028  * of the hment.
1029  */
1030 #define	HBLKTOHME_IDX(hment, hmeblkp, addr, idx)			\
1031 {									\
1032 	ASSERT(in_hblk_range((hmeblkp), (addr)));			\
1033 									\
1034 	if (get_hblk_ttesz(hmeblkp) == TTE8K) {				\
1035 		idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
1036 	} else								\
1037 		idx = 0;						\
1038 									\
1039 	(hment) = &(hmeblkp)->hblk_hme[idx];				\
1040 }
1041 
1042 /*
1043  * Disable any page sizes not supported by the CPU
1044  */
1045 void
1046 hat_init_pagesizes()
1047 {
1048 	int 		i;
1049 
1050 	mmu_exported_page_sizes = 0;
1051 	for (i = TTE8K; i < max_mmu_page_sizes; i++) {
1052 
1053 		szc_2_userszc[i] = (uint_t)-1;
1054 		userszc_2_szc[i] = (uint_t)-1;
1055 
1056 		if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
1057 			disable_large_pages |= (1 << i);
1058 		} else {
1059 			szc_2_userszc[i] = mmu_exported_page_sizes;
1060 			userszc_2_szc[mmu_exported_page_sizes] = i;
1061 			mmu_exported_page_sizes++;
1062 		}
1063 	}
1064 
1065 	disable_ism_large_pages |= disable_large_pages;
1066 	disable_auto_data_large_pages = disable_large_pages;
1067 	disable_auto_text_large_pages = disable_large_pages;
1068 	disable_shctx_large_pages |= disable_large_pages;
1069 
1070 	/*
1071 	 * Initialize mmu-specific large page sizes.
1072 	 */
1073 	if (&mmu_large_pages_disabled) {
1074 		disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
1075 		disable_shctx_large_pages |= disable_large_pages;
1076 		disable_ism_large_pages |=
1077 		    mmu_large_pages_disabled(HAT_LOAD_SHARE);
1078 		disable_auto_data_large_pages |=
1079 		    mmu_large_pages_disabled(HAT_AUTO_DATA);
1080 		disable_auto_text_large_pages |=
1081 		    mmu_large_pages_disabled(HAT_AUTO_TEXT);
1082 	}
1083 }
1084 
1085 /*
1086  * Initialize the hardware address translation structures.
1087  */
1088 void
1089 hat_init(void)
1090 {
1091 	int 		i;
1092 	uint_t		sz;
1093 	size_t		size;
1094 
1095 	hat_lock_init();
1096 	hat_kstat_init();
1097 
1098 	/*
1099 	 * Hardware-only bits in a TTE
1100 	 */
1101 	MAKE_TTE_MASK(&hw_tte);
1102 
1103 	hat_init_pagesizes();
1104 
1105 	/* Initialize the hash locks */
1106 	for (i = 0; i < khmehash_num; i++) {
1107 		mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1108 		    MUTEX_DEFAULT, NULL);
1109 		khme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1110 	}
1111 	for (i = 0; i < uhmehash_num; i++) {
1112 		mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1113 		    MUTEX_DEFAULT, NULL);
1114 		uhme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1115 	}
1116 	khmehash_num--;		/* make sure counter starts from 0 */
1117 	uhmehash_num--;		/* make sure counter starts from 0 */
1118 
1119 	/*
1120 	 * Allocate context domain structures.
1121 	 *
1122 	 * A platform may choose to modify max_mmu_ctxdoms in
1123 	 * set_platform_defaults(). If a platform does not define
1124 	 * a set_platform_defaults() or does not choose to modify
1125 	 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
1126 	 *
1127 	 * For sun4v, there will be one global context domain, this is to
1128 	 * avoid the ldom cpu substitution problem.
1129 	 *
1130 	 * For all platforms that have CPUs sharing MMUs, this
1131 	 * value must be defined.
1132 	 */
1133 	if (max_mmu_ctxdoms == 0) {
1134 #ifndef sun4v
1135 		max_mmu_ctxdoms = max_ncpus;
1136 #else /* sun4v */
1137 		max_mmu_ctxdoms = 1;
1138 #endif /* sun4v */
1139 	}
1140 
1141 	size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
1142 	mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
1143 
1144 	/* mmu_ctx_t is 64 bytes aligned */
1145 	mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
1146 	    sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
1147 	/*
1148 	 * MMU context domain initialization for the Boot CPU.
1149 	 * This needs the context domains array allocated above.
1150 	 */
1151 	mutex_enter(&cpu_lock);
1152 	sfmmu_cpu_init(CPU);
1153 	mutex_exit(&cpu_lock);
1154 
1155 	/*
1156 	 * Intialize ism mapping list lock.
1157 	 */
1158 
1159 	mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1160 
1161 	/*
1162 	 * Each sfmmu structure carries an array of MMU context info
1163 	 * structures, one per context domain. The size of this array depends
1164 	 * on the maximum number of context domains. So, the size of the
1165 	 * sfmmu structure varies per platform.
1166 	 *
1167 	 * sfmmu is allocated from static arena, because trap
1168 	 * handler at TL > 0 is not allowed to touch kernel relocatable
1169 	 * memory. sfmmu's alignment is changed to 64 bytes from
1170 	 * default 8 bytes, as the lower 6 bits will be used to pass
1171 	 * pgcnt to vtag_flush_pgcnt_tl1.
1172 	 */
1173 	size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1174 
1175 	sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1176 	    64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1177 	    NULL, NULL, static_arena, 0);
1178 
1179 	sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1180 	    sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1181 
1182 	/*
1183 	 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1184 	 * from the heap when low on memory or when TSB_FORCEALLOC is
1185 	 * specified, don't use magazines to cache them--we want to return
1186 	 * them to the system as quickly as possible.
1187 	 */
1188 	sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1189 	    MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1190 	    static_arena, KMC_NOMAGAZINE);
1191 
1192 	/*
1193 	 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1194 	 * memory, which corresponds to the old static reserve for TSBs.
1195 	 * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1196 	 * memory we'll allocate for TSB slabs; beyond this point TSB
1197 	 * allocations will be taken from the kernel heap (via
1198 	 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1199 	 * consumer.
1200 	 */
1201 	if (tsb_alloc_hiwater_factor == 0) {
1202 		tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1203 	}
1204 	SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1205 
1206 	for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1207 		if (!(disable_large_pages & (1 << sz)))
1208 			break;
1209 	}
1210 
1211 	if (sz < tsb_slab_ttesz) {
1212 		tsb_slab_ttesz = sz;
1213 		tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1214 		tsb_slab_size = 1 << tsb_slab_shift;
1215 		tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1216 		use_bigtsb_arena = 0;
1217 	} else if (use_bigtsb_arena &&
1218 	    (disable_large_pages & (1 << bigtsb_slab_ttesz))) {
1219 		use_bigtsb_arena = 0;
1220 	}
1221 
1222 	if (!use_bigtsb_arena) {
1223 		bigtsb_slab_shift = tsb_slab_shift;
1224 	}
1225 	SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1226 
1227 	/*
1228 	 * On smaller memory systems, allocate TSB memory in smaller chunks
1229 	 * than the default 4M slab size. We also honor disable_large_pages
1230 	 * here.
1231 	 *
1232 	 * The trap handlers need to be patched with the final slab shift,
1233 	 * since they need to be able to construct the TSB pointer at runtime.
1234 	 */
1235 	if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1236 	    !(disable_large_pages & (1 << TTE512K))) {
1237 		tsb_slab_ttesz = TTE512K;
1238 		tsb_slab_shift = MMU_PAGESHIFT512K;
1239 		tsb_slab_size = MMU_PAGESIZE512K;
1240 		tsb_slab_mask = MMU_PAGEOFFSET512K >> MMU_PAGESHIFT;
1241 		use_bigtsb_arena = 0;
1242 	}
1243 
1244 	if (!use_bigtsb_arena) {
1245 		bigtsb_slab_ttesz = tsb_slab_ttesz;
1246 		bigtsb_slab_shift = tsb_slab_shift;
1247 		bigtsb_slab_size = tsb_slab_size;
1248 		bigtsb_slab_mask = tsb_slab_mask;
1249 	}
1250 
1251 
1252 	/*
1253 	 * Set up memory callback to update tsb_alloc_hiwater and
1254 	 * tsb_max_growsize.
1255 	 */
1256 	i = kphysm_setup_func_register(&sfmmu_update_vec, (void *) 0);
1257 	ASSERT(i == 0);
1258 
1259 	/*
1260 	 * kmem_tsb_arena is the source from which large TSB slabs are
1261 	 * drawn.  The quantum of this arena corresponds to the largest
1262 	 * TSB size we can dynamically allocate for user processes.
1263 	 * Currently it must also be a supported page size since we
1264 	 * use exactly one translation entry to map each slab page.
1265 	 *
1266 	 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1267 	 * which most TSBs are allocated.  Since most TSB allocations are
1268 	 * typically 8K we have a kmem cache we stack on top of each
1269 	 * kmem_tsb_default_arena to speed up those allocations.
1270 	 *
1271 	 * Note the two-level scheme of arenas is required only
1272 	 * because vmem_create doesn't allow us to specify alignment
1273 	 * requirements.  If this ever changes the code could be
1274 	 * simplified to use only one level of arenas.
1275 	 *
1276 	 * If 256M page support exists on sun4v, 256MB kmem_bigtsb_arena
1277 	 * will be provided in addition to the 4M kmem_tsb_arena.
1278 	 */
1279 	if (use_bigtsb_arena) {
1280 		kmem_bigtsb_arena = vmem_create("kmem_bigtsb", NULL, 0,
1281 		    bigtsb_slab_size, sfmmu_vmem_xalloc_aligned_wrapper,
1282 		    vmem_xfree, heap_arena, 0, VM_SLEEP);
1283 	}
1284 
1285 	kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1286 	    sfmmu_vmem_xalloc_aligned_wrapper,
1287 	    vmem_xfree, heap_arena, 0, VM_SLEEP);
1288 
1289 	if (tsb_lgrp_affinity) {
1290 		char s[50];
1291 		for (i = 0; i < NLGRPS_MAX; i++) {
1292 			if (use_bigtsb_arena) {
1293 				(void) sprintf(s, "kmem_bigtsb_lgrp%d", i);
1294 				kmem_bigtsb_default_arena[i] = vmem_create(s,
1295 				    NULL, 0, 2 * tsb_slab_size,
1296 				    sfmmu_tsb_segkmem_alloc,
1297 				    sfmmu_tsb_segkmem_free, kmem_bigtsb_arena,
1298 				    0, VM_SLEEP | VM_BESTFIT);
1299 			}
1300 
1301 			(void) sprintf(s, "kmem_tsb_lgrp%d", i);
1302 			kmem_tsb_default_arena[i] = vmem_create(s,
1303 			    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1304 			    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1305 			    VM_SLEEP | VM_BESTFIT);
1306 
1307 			(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1308 			sfmmu_tsb_cache[i] = kmem_cache_create(s,
1309 			    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1310 			    kmem_tsb_default_arena[i], 0);
1311 		}
1312 	} else {
1313 		if (use_bigtsb_arena) {
1314 			kmem_bigtsb_default_arena[0] =
1315 			    vmem_create("kmem_bigtsb_default", NULL, 0,
1316 			    2 * tsb_slab_size, sfmmu_tsb_segkmem_alloc,
1317 			    sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 0,
1318 			    VM_SLEEP | VM_BESTFIT);
1319 		}
1320 
1321 		kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1322 		    NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1323 		    sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1324 		    VM_SLEEP | VM_BESTFIT);
1325 		sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1326 		    PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1327 		    kmem_tsb_default_arena[0], 0);
1328 	}
1329 
1330 	sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1331 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1332 	    sfmmu_hblkcache_destructor,
1333 	    sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1334 	    hat_memload_arena, KMC_NOHASH);
1335 
1336 	hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1337 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
1338 
1339 	sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1340 	    HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1341 	    sfmmu_hblkcache_destructor,
1342 	    NULL, (void *)HME1BLK_SZ,
1343 	    hat_memload1_arena, KMC_NOHASH);
1344 
1345 	pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1346 	    0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1347 
1348 	ism_blk_cache = kmem_cache_create("ism_blk_cache",
1349 	    sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1350 	    NULL, NULL, static_arena, KMC_NOHASH);
1351 
1352 	ism_ment_cache = kmem_cache_create("ism_ment_cache",
1353 	    sizeof (ism_ment_t), 0, NULL, NULL,
1354 	    NULL, NULL, NULL, 0);
1355 
1356 	/*
1357 	 * We grab the first hat for the kernel,
1358 	 */
1359 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1360 	kas.a_hat = hat_alloc(&kas);
1361 	AS_LOCK_EXIT(&kas, &kas.a_lock);
1362 
1363 	/*
1364 	 * Initialize hblk_reserve.
1365 	 */
1366 	((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1367 	    va_to_pa((caddr_t)hblk_reserve);
1368 
1369 #ifndef UTSB_PHYS
1370 	/*
1371 	 * Reserve some kernel virtual address space for the locked TTEs
1372 	 * that allow us to probe the TSB from TL>0.
1373 	 */
1374 	utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1375 	    0, 0, NULL, NULL, VM_SLEEP);
1376 	utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1377 	    0, 0, NULL, NULL, VM_SLEEP);
1378 #endif
1379 
1380 #ifdef VAC
1381 	/*
1382 	 * The big page VAC handling code assumes VAC
1383 	 * will not be bigger than the smallest big
1384 	 * page- which is 64K.
1385 	 */
1386 	if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1387 		cmn_err(CE_PANIC, "VAC too big!");
1388 	}
1389 #endif
1390 
1391 	(void) xhat_init();
1392 
1393 	uhme_hash_pa = va_to_pa(uhme_hash);
1394 	khme_hash_pa = va_to_pa(khme_hash);
1395 
1396 	/*
1397 	 * Initialize relocation locks. kpr_suspendlock is held
1398 	 * at PIL_MAX to prevent interrupts from pinning the holder
1399 	 * of a suspended TTE which may access it leading to a
1400 	 * deadlock condition.
1401 	 */
1402 	mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1403 	mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1404 
1405 	/*
1406 	 * If Shared context support is disabled via /etc/system
1407 	 * set shctx_on to 0 here if it was set to 1 earlier in boot
1408 	 * sequence by cpu module initialization code.
1409 	 */
1410 	if (shctx_on && disable_shctx) {
1411 		shctx_on = 0;
1412 	}
1413 
1414 	/*
1415 	 * If support for page size search is disabled via /etc/system
1416 	 * set pgsz_search_on to 0 here.
1417 	 */
1418 	if (pgsz_search_on && disable_pgsz_search) {
1419 		pgsz_search_on = 0;
1420 	}
1421 
1422 	if (shctx_on) {
1423 		srd_buckets = kmem_zalloc(SFMMU_MAX_SRD_BUCKETS *
1424 		    sizeof (srd_buckets[0]), KM_SLEEP);
1425 		for (i = 0; i < SFMMU_MAX_SRD_BUCKETS; i++) {
1426 			mutex_init(&srd_buckets[i].srdb_lock, NULL,
1427 			    MUTEX_DEFAULT, NULL);
1428 		}
1429 
1430 		srd_cache = kmem_cache_create("srd_cache", sizeof (sf_srd_t),
1431 		    0, sfmmu_srdcache_constructor, sfmmu_srdcache_destructor,
1432 		    NULL, NULL, NULL, 0);
1433 		region_cache = kmem_cache_create("region_cache",
1434 		    sizeof (sf_region_t), 0, sfmmu_rgncache_constructor,
1435 		    sfmmu_rgncache_destructor, NULL, NULL, NULL, 0);
1436 		scd_cache = kmem_cache_create("scd_cache", sizeof (sf_scd_t),
1437 		    0, sfmmu_scdcache_constructor,  sfmmu_scdcache_destructor,
1438 		    NULL, NULL, NULL, 0);
1439 	}
1440 
1441 	/*
1442 	 * Pre-allocate hrm_hashtab before enabling the collection of
1443 	 * refmod statistics.  Allocating on the fly would mean us
1444 	 * running the risk of suffering recursive mutex enters or
1445 	 * deadlocks.
1446 	 */
1447 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1448 	    KM_SLEEP);
1449 
1450 	/* Allocate per-cpu pending freelist of hmeblks */
1451 	cpu_hme_pend = kmem_zalloc((NCPU * sizeof (cpu_hme_pend_t)) + 64,
1452 	    KM_SLEEP);
1453 	cpu_hme_pend = (cpu_hme_pend_t *)P2ROUNDUP(
1454 	    (uintptr_t)cpu_hme_pend, 64);
1455 
1456 	for (i = 0; i < NCPU; i++) {
1457 		mutex_init(&cpu_hme_pend[i].chp_mutex, NULL, MUTEX_DEFAULT,
1458 		    NULL);
1459 	}
1460 
1461 	if (cpu_hme_pend_thresh == 0) {
1462 		cpu_hme_pend_thresh = CPU_HME_PEND_THRESH;
1463 	}
1464 }
1465 
1466 /*
1467  * Initialize locking for the hat layer, called early during boot.
1468  */
1469 static void
1470 hat_lock_init()
1471 {
1472 	int i;
1473 
1474 	/*
1475 	 * initialize the array of mutexes protecting a page's mapping
1476 	 * list and p_nrm field.
1477 	 */
1478 	for (i = 0; i < mml_table_sz; i++)
1479 		mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
1480 
1481 	if (kpm_enable) {
1482 		for (i = 0; i < kpmp_table_sz; i++) {
1483 			mutex_init(&kpmp_table[i].khl_mutex, NULL,
1484 			    MUTEX_DEFAULT, NULL);
1485 		}
1486 	}
1487 
1488 	/*
1489 	 * Initialize array of mutex locks that protects sfmmu fields and
1490 	 * TSB lists.
1491 	 */
1492 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
1493 		mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1494 		    NULL);
1495 }
1496 
1497 #define	SFMMU_KERNEL_MAXVA \
1498 	(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1499 
1500 /*
1501  * Allocate a hat structure.
1502  * Called when an address space first uses a hat.
1503  */
1504 struct hat *
1505 hat_alloc(struct as *as)
1506 {
1507 	sfmmu_t *sfmmup;
1508 	int i;
1509 	uint64_t cnum;
1510 	extern uint_t get_color_start(struct as *);
1511 
1512 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1513 	sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1514 	sfmmup->sfmmu_as = as;
1515 	sfmmup->sfmmu_flags = 0;
1516 	sfmmup->sfmmu_tteflags = 0;
1517 	sfmmup->sfmmu_rtteflags = 0;
1518 	LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1519 
1520 	if (as == &kas) {
1521 		ksfmmup = sfmmup;
1522 		sfmmup->sfmmu_cext = 0;
1523 		cnum = KCONTEXT;
1524 
1525 		sfmmup->sfmmu_clrstart = 0;
1526 		sfmmup->sfmmu_tsb = NULL;
1527 		/*
1528 		 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1529 		 * to setup tsb_info for ksfmmup.
1530 		 */
1531 	} else {
1532 
1533 		/*
1534 		 * Just set to invalid ctx. When it faults, it will
1535 		 * get a valid ctx. This would avoid the situation
1536 		 * where we get a ctx, but it gets stolen and then
1537 		 * we fault when we try to run and so have to get
1538 		 * another ctx.
1539 		 */
1540 		sfmmup->sfmmu_cext = 0;
1541 		cnum = INVALID_CONTEXT;
1542 
1543 		/* initialize original physical page coloring bin */
1544 		sfmmup->sfmmu_clrstart = get_color_start(as);
1545 #ifdef DEBUG
1546 		if (tsb_random_size) {
1547 			uint32_t randval = (uint32_t)gettick() >> 4;
1548 			int size = randval % (tsb_max_growsize + 1);
1549 
1550 			/* chose a random tsb size for stress testing */
1551 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1552 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1553 		} else
1554 #endif /* DEBUG */
1555 			(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1556 			    default_tsb_size,
1557 			    TSB8K|TSB64K|TSB512K, 0, sfmmup);
1558 		sfmmup->sfmmu_flags = HAT_SWAPPED | HAT_ALLCTX_INVALID;
1559 		ASSERT(sfmmup->sfmmu_tsb != NULL);
1560 	}
1561 
1562 	ASSERT(max_mmu_ctxdoms > 0);
1563 	for (i = 0; i < max_mmu_ctxdoms; i++) {
1564 		sfmmup->sfmmu_ctxs[i].cnum = cnum;
1565 		sfmmup->sfmmu_ctxs[i].gnum = 0;
1566 	}
1567 
1568 	for (i = 0; i < max_mmu_page_sizes; i++) {
1569 		sfmmup->sfmmu_ttecnt[i] = 0;
1570 		sfmmup->sfmmu_scdrttecnt[i] = 0;
1571 		sfmmup->sfmmu_ismttecnt[i] = 0;
1572 		sfmmup->sfmmu_scdismttecnt[i] = 0;
1573 		sfmmup->sfmmu_pgsz[i] = TTE8K;
1574 	}
1575 	sfmmup->sfmmu_tsb0_4minflcnt = 0;
1576 	sfmmup->sfmmu_iblk = NULL;
1577 	sfmmup->sfmmu_ismhat = 0;
1578 	sfmmup->sfmmu_scdhat = 0;
1579 	sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1580 	if (sfmmup == ksfmmup) {
1581 		CPUSET_ALL(sfmmup->sfmmu_cpusran);
1582 	} else {
1583 		CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1584 	}
1585 	sfmmup->sfmmu_free = 0;
1586 	sfmmup->sfmmu_rmstat = 0;
1587 	sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1588 	sfmmup->sfmmu_xhat_provider = NULL;
1589 	cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1590 	sfmmup->sfmmu_srdp = NULL;
1591 	SF_RGNMAP_ZERO(sfmmup->sfmmu_region_map);
1592 	bzero(sfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
1593 	sfmmup->sfmmu_scdp = NULL;
1594 	sfmmup->sfmmu_scd_link.next = NULL;
1595 	sfmmup->sfmmu_scd_link.prev = NULL;
1596 
1597 	if (&mmu_set_pgsz_order && sfmmup !=  ksfmmup) {
1598 		mmu_set_pgsz_order(sfmmup, 0);
1599 		sfmmu_init_pgsz_hv(sfmmup);
1600 	}
1601 	return (sfmmup);
1602 }
1603 
1604 /*
1605  * Create per-MMU context domain kstats for a given MMU ctx.
1606  */
1607 static void
1608 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1609 {
1610 	mmu_ctx_stat_t	stat;
1611 	kstat_t		*mmu_kstat;
1612 
1613 	ASSERT(MUTEX_HELD(&cpu_lock));
1614 	ASSERT(mmu_ctxp->mmu_kstat == NULL);
1615 
1616 	mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1617 	    "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1618 
1619 	if (mmu_kstat == NULL) {
1620 		cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1621 		    mmu_ctxp->mmu_idx);
1622 	} else {
1623 		mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1624 		for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1625 			kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1626 			    mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1627 		mmu_ctxp->mmu_kstat = mmu_kstat;
1628 		kstat_install(mmu_kstat);
1629 	}
1630 }
1631 
1632 /*
1633  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1634  * context domain information for a given CPU. If a platform does not
1635  * specify that interface, then the function below is used instead to return
1636  * default information. The defaults are as follows:
1637  *
1638  *	- For sun4u systems there's one MMU context domain per CPU.
1639  *	  This default is used by all sun4u systems except OPL. OPL systems
1640  *	  provide platform specific interface to map CPU ids to MMU ids
1641  *	  because on OPL more than 1 CPU shares a single MMU.
1642  *        Note that on sun4v, there is one global context domain for
1643  *	  the entire system. This is to avoid running into potential problem
1644  *	  with ldom physical cpu substitution feature.
1645  *	- The number of MMU context IDs supported on any CPU in the
1646  *	  system is 8K.
1647  */
1648 /*ARGSUSED*/
1649 static void
1650 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1651 {
1652 	infop->mmu_nctxs = nctxs;
1653 #ifndef sun4v
1654 	infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1655 #else /* sun4v */
1656 	infop->mmu_idx = 0;
1657 #endif /* sun4v */
1658 }
1659 
1660 /*
1661  * Called during CPU initialization to set the MMU context-related information
1662  * for a CPU.
1663  *
1664  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1665  */
1666 void
1667 sfmmu_cpu_init(cpu_t *cp)
1668 {
1669 	mmu_ctx_info_t	info;
1670 	mmu_ctx_t	*mmu_ctxp;
1671 
1672 	ASSERT(MUTEX_HELD(&cpu_lock));
1673 
1674 	if (&plat_cpuid_to_mmu_ctx_info == NULL)
1675 		sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1676 	else
1677 		plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1678 
1679 	ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1680 
1681 	if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1682 		/* Each mmu_ctx is cacheline aligned. */
1683 		mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1684 		bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1685 
1686 		mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1687 		    (void *)ipltospl(DISP_LEVEL));
1688 		mmu_ctxp->mmu_idx = info.mmu_idx;
1689 		mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1690 		/*
1691 		 * Globally for lifetime of a system,
1692 		 * gnum must always increase.
1693 		 * mmu_saved_gnum is protected by the cpu_lock.
1694 		 */
1695 		mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1696 		mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1697 
1698 		sfmmu_mmu_kstat_create(mmu_ctxp);
1699 
1700 		mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1701 	} else {
1702 		ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1703 	}
1704 
1705 	/*
1706 	 * The mmu_lock is acquired here to prevent races with
1707 	 * the wrap-around code.
1708 	 */
1709 	mutex_enter(&mmu_ctxp->mmu_lock);
1710 
1711 
1712 	mmu_ctxp->mmu_ncpus++;
1713 	CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1714 	CPU_MMU_IDX(cp) = info.mmu_idx;
1715 	CPU_MMU_CTXP(cp) = mmu_ctxp;
1716 
1717 	mutex_exit(&mmu_ctxp->mmu_lock);
1718 }
1719 
1720 /*
1721  * Called to perform MMU context-related cleanup for a CPU.
1722  */
1723 void
1724 sfmmu_cpu_cleanup(cpu_t *cp)
1725 {
1726 	mmu_ctx_t	*mmu_ctxp;
1727 
1728 	ASSERT(MUTEX_HELD(&cpu_lock));
1729 
1730 	mmu_ctxp = CPU_MMU_CTXP(cp);
1731 	ASSERT(mmu_ctxp != NULL);
1732 
1733 	/*
1734 	 * The mmu_lock is acquired here to prevent races with
1735 	 * the wrap-around code.
1736 	 */
1737 	mutex_enter(&mmu_ctxp->mmu_lock);
1738 
1739 	CPU_MMU_CTXP(cp) = NULL;
1740 
1741 	CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1742 	if (--mmu_ctxp->mmu_ncpus == 0) {
1743 		mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1744 		mutex_exit(&mmu_ctxp->mmu_lock);
1745 		mutex_destroy(&mmu_ctxp->mmu_lock);
1746 
1747 		if (mmu_ctxp->mmu_kstat)
1748 			kstat_delete(mmu_ctxp->mmu_kstat);
1749 
1750 		/* mmu_saved_gnum is protected by the cpu_lock. */
1751 		if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1752 			mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1753 
1754 		kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1755 
1756 		return;
1757 	}
1758 
1759 	mutex_exit(&mmu_ctxp->mmu_lock);
1760 }
1761 
1762 /*
1763  * Hat_setup, makes an address space context the current active one.
1764  * In sfmmu this translates to setting the secondary context with the
1765  * corresponding context.
1766  */
1767 void
1768 hat_setup(struct hat *sfmmup, int allocflag)
1769 {
1770 	hatlock_t *hatlockp;
1771 
1772 	/* Init needs some special treatment. */
1773 	if (allocflag == HAT_INIT) {
1774 		/*
1775 		 * Make sure that we have
1776 		 * 1. a TSB
1777 		 * 2. a valid ctx that doesn't get stolen after this point.
1778 		 */
1779 		hatlockp = sfmmu_hat_enter(sfmmup);
1780 
1781 		/*
1782 		 * Swap in the TSB.  hat_init() allocates tsbinfos without
1783 		 * TSBs, but we need one for init, since the kernel does some
1784 		 * special things to set up its stack and needs the TSB to
1785 		 * resolve page faults.
1786 		 */
1787 		sfmmu_tsb_swapin(sfmmup, hatlockp);
1788 
1789 		sfmmu_get_ctx(sfmmup);
1790 
1791 		sfmmu_hat_exit(hatlockp);
1792 	} else {
1793 		ASSERT(allocflag == HAT_ALLOC);
1794 
1795 		hatlockp = sfmmu_hat_enter(sfmmup);
1796 		kpreempt_disable();
1797 
1798 		CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1799 		/*
1800 		 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1801 		 * pagesize bits don't matter in this case since we are passing
1802 		 * INVALID_CONTEXT to it.
1803 		 * Compatibility Note: hw takes care of MMU_SCONTEXT1
1804 		 */
1805 		sfmmu_setctx_sec(INVALID_CONTEXT);
1806 		sfmmu_clear_utsbinfo();
1807 
1808 		kpreempt_enable();
1809 		sfmmu_hat_exit(hatlockp);
1810 	}
1811 }
1812 
1813 /*
1814  * Free all the translation resources for the specified address space.
1815  * Called from as_free when an address space is being destroyed.
1816  */
1817 void
1818 hat_free_start(struct hat *sfmmup)
1819 {
1820 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1821 	ASSERT(sfmmup != ksfmmup);
1822 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1823 
1824 	sfmmup->sfmmu_free = 1;
1825 	if (sfmmup->sfmmu_scdp != NULL) {
1826 		sfmmu_leave_scd(sfmmup, 0);
1827 	}
1828 
1829 	ASSERT(sfmmup->sfmmu_scdp == NULL);
1830 }
1831 
1832 void
1833 hat_free_end(struct hat *sfmmup)
1834 {
1835 	int i;
1836 
1837 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1838 	ASSERT(sfmmup->sfmmu_free == 1);
1839 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1840 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1841 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1842 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1843 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1844 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1845 
1846 	if (sfmmup->sfmmu_rmstat) {
1847 		hat_freestat(sfmmup->sfmmu_as, NULL);
1848 	}
1849 
1850 	while (sfmmup->sfmmu_tsb != NULL) {
1851 		struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1852 		sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1853 		sfmmup->sfmmu_tsb = next;
1854 	}
1855 
1856 	if (sfmmup->sfmmu_srdp != NULL) {
1857 		sfmmu_leave_srd(sfmmup);
1858 		ASSERT(sfmmup->sfmmu_srdp == NULL);
1859 		for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1860 			if (sfmmup->sfmmu_hmeregion_links[i] != NULL) {
1861 				kmem_free(sfmmup->sfmmu_hmeregion_links[i],
1862 				    SFMMU_L2_HMERLINKS_SIZE);
1863 				sfmmup->sfmmu_hmeregion_links[i] = NULL;
1864 			}
1865 		}
1866 	}
1867 	sfmmu_free_sfmmu(sfmmup);
1868 
1869 #ifdef DEBUG
1870 	for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1871 		ASSERT(sfmmup->sfmmu_hmeregion_links[i] == NULL);
1872 	}
1873 #endif
1874 
1875 	kmem_cache_free(sfmmuid_cache, sfmmup);
1876 }
1877 
1878 /*
1879  * Set up any translation structures, for the specified address space,
1880  * that are needed or preferred when the process is being swapped in.
1881  */
1882 /* ARGSUSED */
1883 void
1884 hat_swapin(struct hat *hat)
1885 {
1886 	ASSERT(hat->sfmmu_xhat_provider == NULL);
1887 }
1888 
1889 /*
1890  * Free all of the translation resources, for the specified address space,
1891  * that can be freed while the process is swapped out. Called from as_swapout.
1892  * Also, free up the ctx that this process was using.
1893  */
1894 void
1895 hat_swapout(struct hat *sfmmup)
1896 {
1897 	struct hmehash_bucket *hmebp;
1898 	struct hme_blk *hmeblkp;
1899 	struct hme_blk *pr_hblk = NULL;
1900 	struct hme_blk *nx_hblk;
1901 	int i;
1902 	struct hme_blk *list = NULL;
1903 	hatlock_t *hatlockp;
1904 	struct tsb_info *tsbinfop;
1905 	struct free_tsb {
1906 		struct free_tsb *next;
1907 		struct tsb_info *tsbinfop;
1908 	};			/* free list of TSBs */
1909 	struct free_tsb *freelist, *last, *next;
1910 
1911 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1912 	SFMMU_STAT(sf_swapout);
1913 
1914 	/*
1915 	 * There is no way to go from an as to all its translations in sfmmu.
1916 	 * Here is one of the times when we take the big hit and traverse
1917 	 * the hash looking for hme_blks to free up.  Not only do we free up
1918 	 * this as hme_blks but all those that are free.  We are obviously
1919 	 * swapping because we need memory so let's free up as much
1920 	 * as we can.
1921 	 *
1922 	 * Note that we don't flush TLB/TSB here -- it's not necessary
1923 	 * because:
1924 	 *  1) we free the ctx we're using and throw away the TSB(s);
1925 	 *  2) processes aren't runnable while being swapped out.
1926 	 */
1927 	ASSERT(sfmmup != KHATID);
1928 	for (i = 0; i <= UHMEHASH_SZ; i++) {
1929 		hmebp = &uhme_hash[i];
1930 		SFMMU_HASH_LOCK(hmebp);
1931 		hmeblkp = hmebp->hmeblkp;
1932 		pr_hblk = NULL;
1933 		while (hmeblkp) {
1934 
1935 			ASSERT(!hmeblkp->hblk_xhat_bit);
1936 
1937 			if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
1938 			    !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
1939 				ASSERT(!hmeblkp->hblk_shared);
1940 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
1941 				    (caddr_t)get_hblk_base(hmeblkp),
1942 				    get_hblk_endaddr(hmeblkp),
1943 				    NULL, HAT_UNLOAD);
1944 			}
1945 			nx_hblk = hmeblkp->hblk_next;
1946 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
1947 				ASSERT(!hmeblkp->hblk_lckcnt);
1948 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
1949 				    &list, 0);
1950 			} else {
1951 				pr_hblk = hmeblkp;
1952 			}
1953 			hmeblkp = nx_hblk;
1954 		}
1955 		SFMMU_HASH_UNLOCK(hmebp);
1956 	}
1957 
1958 	sfmmu_hblks_list_purge(&list, 0);
1959 
1960 	/*
1961 	 * Now free up the ctx so that others can reuse it.
1962 	 */
1963 	hatlockp = sfmmu_hat_enter(sfmmup);
1964 
1965 	sfmmu_invalidate_ctx(sfmmup);
1966 
1967 	/*
1968 	 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
1969 	 * If TSBs were never swapped in, just return.
1970 	 * This implies that we don't support partial swapping
1971 	 * of TSBs -- either all are swapped out, or none are.
1972 	 *
1973 	 * We must hold the HAT lock here to prevent racing with another
1974 	 * thread trying to unmap TTEs from the TSB or running the post-
1975 	 * relocator after relocating the TSB's memory.  Unfortunately, we
1976 	 * can't free memory while holding the HAT lock or we could
1977 	 * deadlock, so we build a list of TSBs to be freed after marking
1978 	 * the tsbinfos as swapped out and free them after dropping the
1979 	 * lock.
1980 	 */
1981 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
1982 		sfmmu_hat_exit(hatlockp);
1983 		return;
1984 	}
1985 
1986 	SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
1987 	last = freelist = NULL;
1988 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
1989 	    tsbinfop = tsbinfop->tsb_next) {
1990 		ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
1991 
1992 		/*
1993 		 * Cast the TSB into a struct free_tsb and put it on the free
1994 		 * list.
1995 		 */
1996 		if (freelist == NULL) {
1997 			last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
1998 		} else {
1999 			last->next = (struct free_tsb *)tsbinfop->tsb_va;
2000 			last = last->next;
2001 		}
2002 		last->next = NULL;
2003 		last->tsbinfop = tsbinfop;
2004 		tsbinfop->tsb_flags |= TSB_SWAPPED;
2005 		/*
2006 		 * Zero out the TTE to clear the valid bit.
2007 		 * Note we can't use a value like 0xbad because we want to
2008 		 * ensure diagnostic bits are NEVER set on TTEs that might
2009 		 * be loaded.  The intent is to catch any invalid access
2010 		 * to the swapped TSB, such as a thread running with a valid
2011 		 * context without first calling sfmmu_tsb_swapin() to
2012 		 * allocate TSB memory.
2013 		 */
2014 		tsbinfop->tsb_tte.ll = 0;
2015 	}
2016 
2017 	/* Now we can drop the lock and free the TSB memory. */
2018 	sfmmu_hat_exit(hatlockp);
2019 	for (; freelist != NULL; freelist = next) {
2020 		next = freelist->next;
2021 		sfmmu_tsb_free(freelist->tsbinfop);
2022 	}
2023 }
2024 
2025 /*
2026  * Duplicate the translations of an as into another newas
2027  */
2028 /* ARGSUSED */
2029 int
2030 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
2031 	uint_t flag)
2032 {
2033 	sf_srd_t *srdp;
2034 	sf_scd_t *scdp;
2035 	int i;
2036 	extern uint_t get_color_start(struct as *);
2037 
2038 	ASSERT(hat->sfmmu_xhat_provider == NULL);
2039 	ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW) ||
2040 	    (flag == HAT_DUP_SRD));
2041 	ASSERT(hat != ksfmmup);
2042 	ASSERT(newhat != ksfmmup);
2043 	ASSERT(flag != HAT_DUP_ALL || hat->sfmmu_srdp == newhat->sfmmu_srdp);
2044 
2045 	if (flag == HAT_DUP_COW) {
2046 		panic("hat_dup: HAT_DUP_COW not supported");
2047 	}
2048 
2049 	if (flag == HAT_DUP_SRD && ((srdp = hat->sfmmu_srdp) != NULL)) {
2050 		ASSERT(srdp->srd_evp != NULL);
2051 		VN_HOLD(srdp->srd_evp);
2052 		ASSERT(srdp->srd_refcnt > 0);
2053 		newhat->sfmmu_srdp = srdp;
2054 		atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1);
2055 	}
2056 
2057 	/*
2058 	 * HAT_DUP_ALL flag is used after as duplication is done.
2059 	 */
2060 	if (flag == HAT_DUP_ALL && ((srdp = newhat->sfmmu_srdp) != NULL)) {
2061 		ASSERT(newhat->sfmmu_srdp->srd_refcnt >= 2);
2062 		newhat->sfmmu_rtteflags = hat->sfmmu_rtteflags;
2063 		if (hat->sfmmu_flags & HAT_4MTEXT_FLAG) {
2064 			newhat->sfmmu_flags |= HAT_4MTEXT_FLAG;
2065 		}
2066 
2067 		/* check if need to join scd */
2068 		if ((scdp = hat->sfmmu_scdp) != NULL &&
2069 		    newhat->sfmmu_scdp != scdp) {
2070 			int ret;
2071 			SF_RGNMAP_IS_SUBSET(&newhat->sfmmu_region_map,
2072 			    &scdp->scd_region_map, ret);
2073 			ASSERT(ret);
2074 			sfmmu_join_scd(scdp, newhat);
2075 			ASSERT(newhat->sfmmu_scdp == scdp &&
2076 			    scdp->scd_refcnt >= 2);
2077 			for (i = 0; i < max_mmu_page_sizes; i++) {
2078 				newhat->sfmmu_ismttecnt[i] =
2079 				    hat->sfmmu_ismttecnt[i];
2080 				newhat->sfmmu_scdismttecnt[i] =
2081 				    hat->sfmmu_scdismttecnt[i];
2082 			}
2083 		} else if (&mmu_set_pgsz_order) {
2084 			mmu_set_pgsz_order(newhat, 0);
2085 		}
2086 
2087 		sfmmu_check_page_sizes(newhat, 1);
2088 	}
2089 
2090 	if (flag == HAT_DUP_ALL && consistent_coloring == 0 &&
2091 	    update_proc_pgcolorbase_after_fork != 0) {
2092 		hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as);
2093 	}
2094 	return (0);
2095 }
2096 
2097 void
2098 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
2099 	uint_t attr, uint_t flags)
2100 {
2101 	hat_do_memload(hat, addr, pp, attr, flags,
2102 	    SFMMU_INVALID_SHMERID);
2103 }
2104 
2105 void
2106 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
2107 	uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
2108 {
2109 	uint_t rid;
2110 	if (rcookie == HAT_INVALID_REGION_COOKIE ||
2111 	    hat->sfmmu_xhat_provider != NULL) {
2112 		hat_do_memload(hat, addr, pp, attr, flags,
2113 		    SFMMU_INVALID_SHMERID);
2114 		return;
2115 	}
2116 	rid = (uint_t)((uint64_t)rcookie);
2117 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2118 	hat_do_memload(hat, addr, pp, attr, flags, rid);
2119 }
2120 
2121 /*
2122  * Set up addr to map to page pp with protection prot.
2123  * As an optimization we also load the TSB with the
2124  * corresponding tte but it is no big deal if  the tte gets kicked out.
2125  */
2126 static void
2127 hat_do_memload(struct hat *hat, caddr_t addr, struct page *pp,
2128 	uint_t attr, uint_t flags, uint_t rid)
2129 {
2130 	tte_t tte;
2131 
2132 
2133 	ASSERT(hat != NULL);
2134 	ASSERT(PAGE_LOCKED(pp));
2135 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2136 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2137 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2138 	SFMMU_VALIDATE_HMERID(hat, rid, addr, MMU_PAGESIZE);
2139 
2140 	if (PP_ISFREE(pp)) {
2141 		panic("hat_memload: loading a mapping to free page %p",
2142 		    (void *)pp);
2143 	}
2144 
2145 	if (hat->sfmmu_xhat_provider) {
2146 		/* no regions for xhats */
2147 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
2148 		XHAT_MEMLOAD(hat, addr, pp, attr, flags);
2149 		return;
2150 	}
2151 
2152 	ASSERT((hat == ksfmmup) ||
2153 	    AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
2154 
2155 	if (flags & ~SFMMU_LOAD_ALLFLAG)
2156 		cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
2157 		    flags & ~SFMMU_LOAD_ALLFLAG);
2158 
2159 	if (hat->sfmmu_rmstat)
2160 		hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
2161 
2162 #if defined(SF_ERRATA_57)
2163 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2164 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2165 	    !(flags & HAT_LOAD_SHARE)) {
2166 		cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
2167 		    " page executable");
2168 		attr &= ~PROT_EXEC;
2169 	}
2170 #endif
2171 
2172 	sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2173 	(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags, rid);
2174 
2175 	/*
2176 	 * Check TSB and TLB page sizes.
2177 	 */
2178 	if ((flags & HAT_LOAD_SHARE) == 0) {
2179 		sfmmu_check_page_sizes(hat, 1);
2180 	}
2181 }
2182 
2183 /*
2184  * hat_devload can be called to map real memory (e.g.
2185  * /dev/kmem) and even though hat_devload will determine pf is
2186  * for memory, it will be unable to get a shared lock on the
2187  * page (because someone else has it exclusively) and will
2188  * pass dp = NULL.  If tteload doesn't get a non-NULL
2189  * page pointer it can't cache memory.
2190  */
2191 void
2192 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
2193 	uint_t attr, int flags)
2194 {
2195 	tte_t tte;
2196 	struct page *pp = NULL;
2197 	int use_lgpg = 0;
2198 
2199 	ASSERT(hat != NULL);
2200 
2201 	if (hat->sfmmu_xhat_provider) {
2202 		XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
2203 		return;
2204 	}
2205 
2206 	ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2207 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2208 	ASSERT((hat == ksfmmup) ||
2209 	    AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
2210 	if (len == 0)
2211 		panic("hat_devload: zero len");
2212 	if (flags & ~SFMMU_LOAD_ALLFLAG)
2213 		cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
2214 		    flags & ~SFMMU_LOAD_ALLFLAG);
2215 
2216 #if defined(SF_ERRATA_57)
2217 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2218 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2219 	    !(flags & HAT_LOAD_SHARE)) {
2220 		cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
2221 		    " page executable");
2222 		attr &= ~PROT_EXEC;
2223 	}
2224 #endif
2225 
2226 	/*
2227 	 * If it's a memory page find its pp
2228 	 */
2229 	if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
2230 		pp = page_numtopp_nolock(pfn);
2231 		if (pp == NULL) {
2232 			flags |= HAT_LOAD_NOCONSIST;
2233 		} else {
2234 			if (PP_ISFREE(pp)) {
2235 				panic("hat_memload: loading "
2236 				    "a mapping to free page %p",
2237 				    (void *)pp);
2238 			}
2239 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
2240 				panic("hat_memload: loading a mapping "
2241 				    "to unlocked relocatable page %p",
2242 				    (void *)pp);
2243 			}
2244 			ASSERT(len == MMU_PAGESIZE);
2245 		}
2246 	}
2247 
2248 	if (hat->sfmmu_rmstat)
2249 		hat_resvstat(len, hat->sfmmu_as, addr);
2250 
2251 	if (flags & HAT_LOAD_NOCONSIST) {
2252 		attr |= SFMMU_UNCACHEVTTE;
2253 		use_lgpg = 1;
2254 	}
2255 	if (!pf_is_memory(pfn)) {
2256 		attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
2257 		use_lgpg = 1;
2258 		switch (attr & HAT_ORDER_MASK) {
2259 			case HAT_STRICTORDER:
2260 			case HAT_UNORDERED_OK:
2261 				/*
2262 				 * we set the side effect bit for all non
2263 				 * memory mappings unless merging is ok
2264 				 */
2265 				attr |= SFMMU_SIDEFFECT;
2266 				break;
2267 			case HAT_MERGING_OK:
2268 			case HAT_LOADCACHING_OK:
2269 			case HAT_STORECACHING_OK:
2270 				break;
2271 			default:
2272 				panic("hat_devload: bad attr");
2273 				break;
2274 		}
2275 	}
2276 	while (len) {
2277 		if (!use_lgpg) {
2278 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
2279 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2280 			    flags, SFMMU_INVALID_SHMERID);
2281 			len -= MMU_PAGESIZE;
2282 			addr += MMU_PAGESIZE;
2283 			pfn++;
2284 			continue;
2285 		}
2286 		/*
2287 		 *  try to use large pages, check va/pa alignments
2288 		 *  Note that 32M/256M page sizes are not (yet) supported.
2289 		 */
2290 		if ((len >= MMU_PAGESIZE4M) &&
2291 		    !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
2292 		    !(disable_large_pages & (1 << TTE4M)) &&
2293 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
2294 			sfmmu_memtte(&tte, pfn, attr, TTE4M);
2295 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2296 			    flags, SFMMU_INVALID_SHMERID);
2297 			len -= MMU_PAGESIZE4M;
2298 			addr += MMU_PAGESIZE4M;
2299 			pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
2300 		} else if ((len >= MMU_PAGESIZE512K) &&
2301 		    !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
2302 		    !(disable_large_pages & (1 << TTE512K)) &&
2303 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
2304 			sfmmu_memtte(&tte, pfn, attr, TTE512K);
2305 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2306 			    flags, SFMMU_INVALID_SHMERID);
2307 			len -= MMU_PAGESIZE512K;
2308 			addr += MMU_PAGESIZE512K;
2309 			pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
2310 		} else if ((len >= MMU_PAGESIZE64K) &&
2311 		    !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
2312 		    !(disable_large_pages & (1 << TTE64K)) &&
2313 		    !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
2314 			sfmmu_memtte(&tte, pfn, attr, TTE64K);
2315 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2316 			    flags, SFMMU_INVALID_SHMERID);
2317 			len -= MMU_PAGESIZE64K;
2318 			addr += MMU_PAGESIZE64K;
2319 			pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
2320 		} else {
2321 			sfmmu_memtte(&tte, pfn, attr, TTE8K);
2322 			(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2323 			    flags, SFMMU_INVALID_SHMERID);
2324 			len -= MMU_PAGESIZE;
2325 			addr += MMU_PAGESIZE;
2326 			pfn++;
2327 		}
2328 	}
2329 
2330 	/*
2331 	 * Check TSB and TLB page sizes.
2332 	 */
2333 	if ((flags & HAT_LOAD_SHARE) == 0) {
2334 		sfmmu_check_page_sizes(hat, 1);
2335 	}
2336 }
2337 
2338 void
2339 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2340 	struct page **pps, uint_t attr, uint_t flags)
2341 {
2342 	hat_do_memload_array(hat, addr, len, pps, attr, flags,
2343 	    SFMMU_INVALID_SHMERID);
2344 }
2345 
2346 void
2347 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
2348 	struct page **pps, uint_t attr, uint_t flags,
2349 	hat_region_cookie_t rcookie)
2350 {
2351 	uint_t rid;
2352 	if (rcookie == HAT_INVALID_REGION_COOKIE ||
2353 	    hat->sfmmu_xhat_provider != NULL) {
2354 		hat_do_memload_array(hat, addr, len, pps, attr, flags,
2355 		    SFMMU_INVALID_SHMERID);
2356 		return;
2357 	}
2358 	rid = (uint_t)((uint64_t)rcookie);
2359 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2360 	hat_do_memload_array(hat, addr, len, pps, attr, flags, rid);
2361 }
2362 
2363 /*
2364  * Map the largest extend possible out of the page array. The array may NOT
2365  * be in order.  The largest possible mapping a page can have
2366  * is specified in the p_szc field.  The p_szc field
2367  * cannot change as long as there any mappings (large or small)
2368  * to any of the pages that make up the large page. (ie. any
2369  * promotion/demotion of page size is not up to the hat but up to
2370  * the page free list manager).  The array
2371  * should consist of properly aligned contigous pages that are
2372  * part of a big page for a large mapping to be created.
2373  */
2374 static void
2375 hat_do_memload_array(struct hat *hat, caddr_t addr, size_t len,
2376 	struct page **pps, uint_t attr, uint_t flags, uint_t rid)
2377 {
2378 	int  ttesz;
2379 	size_t mapsz;
2380 	pgcnt_t	numpg, npgs;
2381 	tte_t tte;
2382 	page_t *pp;
2383 	uint_t large_pages_disable;
2384 
2385 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2386 	SFMMU_VALIDATE_HMERID(hat, rid, addr, len);
2387 
2388 	if (hat->sfmmu_xhat_provider) {
2389 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
2390 		XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
2391 		return;
2392 	}
2393 
2394 	if (hat->sfmmu_rmstat)
2395 		hat_resvstat(len, hat->sfmmu_as, addr);
2396 
2397 #if defined(SF_ERRATA_57)
2398 	if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2399 	    (addr < errata57_limit) && (attr & PROT_EXEC) &&
2400 	    !(flags & HAT_LOAD_SHARE)) {
2401 		cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2402 		    "user page executable");
2403 		attr &= ~PROT_EXEC;
2404 	}
2405 #endif
2406 
2407 	/* Get number of pages */
2408 	npgs = len >> MMU_PAGESHIFT;
2409 
2410 	if (flags & HAT_LOAD_SHARE) {
2411 		large_pages_disable = disable_ism_large_pages;
2412 	} else {
2413 		large_pages_disable = disable_large_pages;
2414 	}
2415 
2416 	if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2417 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2418 		    rid);
2419 		return;
2420 	}
2421 
2422 	while (npgs >= NHMENTS) {
2423 		pp = *pps;
2424 		for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2425 			/*
2426 			 * Check if this page size is disabled.
2427 			 */
2428 			if (large_pages_disable & (1 << ttesz))
2429 				continue;
2430 
2431 			numpg = TTEPAGES(ttesz);
2432 			mapsz = numpg << MMU_PAGESHIFT;
2433 			if ((npgs >= numpg) &&
2434 			    IS_P2ALIGNED(addr, mapsz) &&
2435 			    IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2436 				/*
2437 				 * At this point we have enough pages and
2438 				 * we know the virtual address and the pfn
2439 				 * are properly aligned.  We still need
2440 				 * to check for physical contiguity but since
2441 				 * it is very likely that this is the case
2442 				 * we will assume they are so and undo
2443 				 * the request if necessary.  It would
2444 				 * be great if we could get a hint flag
2445 				 * like HAT_CONTIG which would tell us
2446 				 * the pages are contigous for sure.
2447 				 */
2448 				sfmmu_memtte(&tte, (*pps)->p_pagenum,
2449 				    attr, ttesz);
2450 				if (!sfmmu_tteload_array(hat, &tte, addr,
2451 				    pps, flags, rid)) {
2452 					break;
2453 				}
2454 			}
2455 		}
2456 		if (ttesz == TTE8K) {
2457 			/*
2458 			 * We were not able to map array using a large page
2459 			 * batch a hmeblk or fraction at a time.
2460 			 */
2461 			numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2462 			    & (NHMENTS-1);
2463 			numpg = NHMENTS - numpg;
2464 			ASSERT(numpg <= npgs);
2465 			mapsz = numpg * MMU_PAGESIZE;
2466 			sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2467 			    numpg, rid);
2468 		}
2469 		addr += mapsz;
2470 		npgs -= numpg;
2471 		pps += numpg;
2472 	}
2473 
2474 	if (npgs) {
2475 		sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2476 		    rid);
2477 	}
2478 
2479 	/*
2480 	 * Check TSB and TLB page sizes.
2481 	 */
2482 	if ((flags & HAT_LOAD_SHARE) == 0) {
2483 		sfmmu_check_page_sizes(hat, 1);
2484 	}
2485 }
2486 
2487 /*
2488  * Function tries to batch 8K pages into the same hme blk.
2489  */
2490 static void
2491 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2492 		    uint_t attr, uint_t flags, pgcnt_t npgs, uint_t rid)
2493 {
2494 	tte_t	tte;
2495 	page_t *pp;
2496 	struct hmehash_bucket *hmebp;
2497 	struct hme_blk *hmeblkp;
2498 	int	index;
2499 
2500 	while (npgs) {
2501 		/*
2502 		 * Acquire the hash bucket.
2503 		 */
2504 		hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K,
2505 		    rid);
2506 		ASSERT(hmebp);
2507 
2508 		/*
2509 		 * Find the hment block.
2510 		 */
2511 		hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2512 		    TTE8K, flags, rid);
2513 		ASSERT(hmeblkp);
2514 
2515 		do {
2516 			/*
2517 			 * Make the tte.
2518 			 */
2519 			pp = *pps;
2520 			sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2521 
2522 			/*
2523 			 * Add the translation.
2524 			 */
2525 			(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2526 			    vaddr, pps, flags, rid);
2527 
2528 			/*
2529 			 * Goto next page.
2530 			 */
2531 			pps++;
2532 			npgs--;
2533 
2534 			/*
2535 			 * Goto next address.
2536 			 */
2537 			vaddr += MMU_PAGESIZE;
2538 
2539 			/*
2540 			 * Don't crossover into a different hmentblk.
2541 			 */
2542 			index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2543 			    (NHMENTS-1));
2544 
2545 		} while (index != 0 && npgs != 0);
2546 
2547 		/*
2548 		 * Release the hash bucket.
2549 		 */
2550 
2551 		sfmmu_tteload_release_hashbucket(hmebp);
2552 	}
2553 }
2554 
2555 /*
2556  * Construct a tte for a page:
2557  *
2558  * tte_valid = 1
2559  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2560  * tte_size = size
2561  * tte_nfo = attr & HAT_NOFAULT
2562  * tte_ie = attr & HAT_STRUCTURE_LE
2563  * tte_hmenum = hmenum
2564  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2565  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2566  * tte_ref = 1 (optimization)
2567  * tte_wr_perm = attr & PROT_WRITE;
2568  * tte_no_sync = attr & HAT_NOSYNC
2569  * tte_lock = attr & SFMMU_LOCKTTE
2570  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2571  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2572  * tte_e = attr & SFMMU_SIDEFFECT
2573  * tte_priv = !(attr & PROT_USER)
2574  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2575  * tte_glb = 0
2576  */
2577 void
2578 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2579 {
2580 	ASSERT((attr & ~(SFMMU_LOAD_ALLATTR | HAT_ATTR_NOSOFTEXEC)) == 0);
2581 
2582 	ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2583 	ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2584 
2585 	if (TTE_IS_NOSYNC(ttep)) {
2586 		TTE_SET_REF(ttep);
2587 		if (TTE_IS_WRITABLE(ttep)) {
2588 			TTE_SET_MOD(ttep);
2589 		}
2590 	}
2591 	if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2592 		panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2593 	}
2594 
2595 	/*
2596 	 * Disable hardware execute permission to force a fault if
2597 	 * this page is executed, so we can detect the execution.  Set
2598 	 * the soft exec bit to remember that this TTE has execute
2599 	 * permission.
2600 	 */
2601 	if (TTE_IS_EXECUTABLE(ttep) && (attr & HAT_ATTR_NOSOFTEXEC) == 0 &&
2602 	    icache_is_coherent == 0) {
2603 		TTE_CLR_EXEC(ttep);
2604 		TTE_SET_SOFTEXEC(ttep);
2605 	}
2606 }
2607 
2608 /*
2609  * This function will add a translation to the hme_blk and allocate the
2610  * hme_blk if one does not exist.
2611  * If a page structure is specified then it will add the
2612  * corresponding hment to the mapping list.
2613  * It will also update the hmenum field for the tte.
2614  *
2615  * Currently this function is only used for kernel mappings.
2616  * So pass invalid region to sfmmu_tteload_array().
2617  */
2618 void
2619 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2620 	uint_t flags)
2621 {
2622 	ASSERT(sfmmup == ksfmmup);
2623 	(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags,
2624 	    SFMMU_INVALID_SHMERID);
2625 }
2626 
2627 /*
2628  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2629  * Assumes that a particular page size may only be resident in one TSB.
2630  */
2631 static void
2632 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2633 {
2634 	struct tsb_info *tsbinfop = NULL;
2635 	uint64_t tag;
2636 	struct tsbe *tsbe_addr;
2637 	uint64_t tsb_base;
2638 	uint_t tsb_size;
2639 	int vpshift = MMU_PAGESHIFT;
2640 	int phys = 0;
2641 
2642 	if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2643 		phys = ktsb_phys;
2644 		if (ttesz >= TTE4M) {
2645 #ifndef sun4v
2646 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2647 #endif
2648 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2649 			tsb_size = ktsb4m_szcode;
2650 		} else {
2651 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2652 			tsb_size = ktsb_szcode;
2653 		}
2654 	} else {
2655 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2656 
2657 		/*
2658 		 * If there isn't a TSB for this page size, or the TSB is
2659 		 * swapped out, there is nothing to do.  Note that the latter
2660 		 * case seems impossible but can occur if hat_pageunload()
2661 		 * is called on an ISM mapping while the process is swapped
2662 		 * out.
2663 		 */
2664 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2665 			return;
2666 
2667 		/*
2668 		 * If another thread is in the middle of relocating a TSB
2669 		 * we can't unload the entry so set a flag so that the
2670 		 * TSB will be flushed before it can be accessed by the
2671 		 * process.
2672 		 */
2673 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2674 			if (ttep == NULL)
2675 				tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2676 			return;
2677 		}
2678 #if defined(UTSB_PHYS)
2679 		phys = 1;
2680 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2681 #else
2682 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2683 #endif
2684 		tsb_size = tsbinfop->tsb_szc;
2685 	}
2686 	if (ttesz >= TTE4M)
2687 		vpshift = MMU_PAGESHIFT4M;
2688 
2689 	tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2690 	tag = sfmmu_make_tsbtag(vaddr);
2691 
2692 	if (ttep == NULL) {
2693 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2694 	} else {
2695 		if (ttesz >= TTE4M) {
2696 			SFMMU_STAT(sf_tsb_load4m);
2697 		} else {
2698 			SFMMU_STAT(sf_tsb_load8k);
2699 		}
2700 
2701 		sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2702 	}
2703 }
2704 
2705 /*
2706  * Unmap all entries from [start, end) matching the given page size.
2707  *
2708  * This function is used primarily to unmap replicated 64K or 512K entries
2709  * from the TSB that are inserted using the base page size TSB pointer, but
2710  * it may also be called to unmap a range of addresses from the TSB.
2711  */
2712 void
2713 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2714 {
2715 	struct tsb_info *tsbinfop;
2716 	uint64_t tag;
2717 	struct tsbe *tsbe_addr;
2718 	caddr_t vaddr;
2719 	uint64_t tsb_base;
2720 	int vpshift, vpgsz;
2721 	uint_t tsb_size;
2722 	int phys = 0;
2723 
2724 	/*
2725 	 * Assumptions:
2726 	 *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2727 	 *  at a time shooting down any valid entries we encounter.
2728 	 *
2729 	 *  If ttesz >= 4M we walk the range 4M at a time shooting
2730 	 *  down any valid mappings we find.
2731 	 */
2732 	if (sfmmup == ksfmmup) {
2733 		phys = ktsb_phys;
2734 		if (ttesz >= TTE4M) {
2735 #ifndef sun4v
2736 			ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2737 #endif
2738 			tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2739 			tsb_size = ktsb4m_szcode;
2740 		} else {
2741 			tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2742 			tsb_size = ktsb_szcode;
2743 		}
2744 	} else {
2745 		SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2746 
2747 		/*
2748 		 * If there isn't a TSB for this page size, or the TSB is
2749 		 * swapped out, there is nothing to do.  Note that the latter
2750 		 * case seems impossible but can occur if hat_pageunload()
2751 		 * is called on an ISM mapping while the process is swapped
2752 		 * out.
2753 		 */
2754 		if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2755 			return;
2756 
2757 		/*
2758 		 * If another thread is in the middle of relocating a TSB
2759 		 * we can't unload the entry so set a flag so that the
2760 		 * TSB will be flushed before it can be accessed by the
2761 		 * process.
2762 		 */
2763 		if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2764 			tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2765 			return;
2766 		}
2767 #if defined(UTSB_PHYS)
2768 		phys = 1;
2769 		tsb_base = (uint64_t)tsbinfop->tsb_pa;
2770 #else
2771 		tsb_base = (uint64_t)tsbinfop->tsb_va;
2772 #endif
2773 		tsb_size = tsbinfop->tsb_szc;
2774 	}
2775 	if (ttesz >= TTE4M) {
2776 		vpshift = MMU_PAGESHIFT4M;
2777 		vpgsz = MMU_PAGESIZE4M;
2778 	} else {
2779 		vpshift = MMU_PAGESHIFT;
2780 		vpgsz = MMU_PAGESIZE;
2781 	}
2782 
2783 	for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2784 		tag = sfmmu_make_tsbtag(vaddr);
2785 		tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2786 		sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2787 	}
2788 }
2789 
2790 /*
2791  * Select the optimum TSB size given the number of mappings
2792  * that need to be cached.
2793  */
2794 static int
2795 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2796 {
2797 	int szc = 0;
2798 
2799 #ifdef DEBUG
2800 	if (tsb_grow_stress) {
2801 		uint32_t randval = (uint32_t)gettick() >> 4;
2802 		return (randval % (tsb_max_growsize + 1));
2803 	}
2804 #endif	/* DEBUG */
2805 
2806 	while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2807 		szc++;
2808 	return (szc);
2809 }
2810 
2811 /*
2812  * This function will add a translation to the hme_blk and allocate the
2813  * hme_blk if one does not exist.
2814  * If a page structure is specified then it will add the
2815  * corresponding hment to the mapping list.
2816  * It will also update the hmenum field for the tte.
2817  * Furthermore, it attempts to create a large page translation
2818  * for <addr,hat> at page array pps.  It assumes addr and first
2819  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2820  */
2821 static int
2822 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2823 	page_t **pps, uint_t flags, uint_t rid)
2824 {
2825 	struct hmehash_bucket *hmebp;
2826 	struct hme_blk *hmeblkp;
2827 	int 	ret;
2828 	uint_t	size;
2829 
2830 	/*
2831 	 * Get mapping size.
2832 	 */
2833 	size = TTE_CSZ(ttep);
2834 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2835 
2836 	/*
2837 	 * Acquire the hash bucket.
2838 	 */
2839 	hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size, rid);
2840 	ASSERT(hmebp);
2841 
2842 	/*
2843 	 * Find the hment block.
2844 	 */
2845 	hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags,
2846 	    rid);
2847 	ASSERT(hmeblkp);
2848 
2849 	/*
2850 	 * Add the translation.
2851 	 */
2852 	ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags,
2853 	    rid);
2854 
2855 	/*
2856 	 * Release the hash bucket.
2857 	 */
2858 	sfmmu_tteload_release_hashbucket(hmebp);
2859 
2860 	return (ret);
2861 }
2862 
2863 /*
2864  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2865  */
2866 static struct hmehash_bucket *
2867 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size,
2868     uint_t rid)
2869 {
2870 	struct hmehash_bucket *hmebp;
2871 	int hmeshift;
2872 	void *htagid = sfmmutohtagid(sfmmup, rid);
2873 
2874 	ASSERT(htagid != NULL);
2875 
2876 	hmeshift = HME_HASH_SHIFT(size);
2877 
2878 	hmebp = HME_HASH_FUNCTION(htagid, vaddr, hmeshift);
2879 
2880 	SFMMU_HASH_LOCK(hmebp);
2881 
2882 	return (hmebp);
2883 }
2884 
2885 /*
2886  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2887  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2888  * allocated.
2889  */
2890 static struct hme_blk *
2891 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2892 	caddr_t vaddr, uint_t size, uint_t flags, uint_t rid)
2893 {
2894 	hmeblk_tag hblktag;
2895 	int hmeshift;
2896 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2897 
2898 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
2899 
2900 	hblktag.htag_id = sfmmutohtagid(sfmmup, rid);
2901 	ASSERT(hblktag.htag_id != NULL);
2902 	hmeshift = HME_HASH_SHIFT(size);
2903 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2904 	hblktag.htag_rehash = HME_HASH_REHASH(size);
2905 	hblktag.htag_rid = rid;
2906 
2907 ttearray_realloc:
2908 
2909 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
2910 
2911 	/*
2912 	 * We block until hblk_reserve_lock is released; it's held by
2913 	 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2914 	 * replaced by a hblk from sfmmu8_cache.
2915 	 */
2916 	if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2917 	    hblk_reserve_thread != curthread) {
2918 		SFMMU_HASH_UNLOCK(hmebp);
2919 		mutex_enter(&hblk_reserve_lock);
2920 		mutex_exit(&hblk_reserve_lock);
2921 		SFMMU_STAT(sf_hblk_reserve_hit);
2922 		SFMMU_HASH_LOCK(hmebp);
2923 		goto ttearray_realloc;
2924 	}
2925 
2926 	if (hmeblkp == NULL) {
2927 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2928 		    hblktag, flags, rid);
2929 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2930 		ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2931 	} else {
2932 		/*
2933 		 * It is possible for 8k and 64k hblks to collide since they
2934 		 * have the same rehash value. This is because we
2935 		 * lazily free hblks and 8K/64K blks could be lingering.
2936 		 * If we find size mismatch we free the block and & try again.
2937 		 */
2938 		if (get_hblk_ttesz(hmeblkp) != size) {
2939 			ASSERT(!hmeblkp->hblk_vcnt);
2940 			ASSERT(!hmeblkp->hblk_hmecnt);
2941 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
2942 			    &list, 0);
2943 			goto ttearray_realloc;
2944 		}
2945 		if (hmeblkp->hblk_shw_bit) {
2946 			/*
2947 			 * if the hblk was previously used as a shadow hblk then
2948 			 * we will change it to a normal hblk
2949 			 */
2950 			ASSERT(!hmeblkp->hblk_shared);
2951 			if (hmeblkp->hblk_shw_mask) {
2952 				sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2953 				ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2954 				goto ttearray_realloc;
2955 			} else {
2956 				hmeblkp->hblk_shw_bit = 0;
2957 			}
2958 		}
2959 		SFMMU_STAT(sf_hblk_hit);
2960 	}
2961 
2962 	/*
2963 	 * hat_memload() should never call kmem_cache_free() for kernel hmeblks;
2964 	 * see block comment showing the stacktrace in sfmmu_hblk_alloc();
2965 	 * set the flag parameter to 1 so that sfmmu_hblks_list_purge() will
2966 	 * just add these hmeblks to the per-cpu pending queue.
2967 	 */
2968 	sfmmu_hblks_list_purge(&list, 1);
2969 
2970 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
2971 	ASSERT(!hmeblkp->hblk_shw_bit);
2972 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2973 	ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2974 	ASSERT(hmeblkp->hblk_tag.htag_rid == rid);
2975 
2976 	return (hmeblkp);
2977 }
2978 
2979 /*
2980  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2981  * otherwise.
2982  */
2983 static int
2984 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2985 	caddr_t vaddr, page_t **pps, uint_t flags, uint_t rid)
2986 {
2987 	page_t *pp = *pps;
2988 	int hmenum, size, remap;
2989 	tte_t tteold, flush_tte;
2990 #ifdef DEBUG
2991 	tte_t orig_old;
2992 #endif /* DEBUG */
2993 	struct sf_hment *sfhme;
2994 	kmutex_t *pml, *pmtx;
2995 	hatlock_t *hatlockp;
2996 	int myflt;
2997 
2998 	/*
2999 	 * remove this panic when we decide to let user virtual address
3000 	 * space be >= USERLIMIT.
3001 	 */
3002 	if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
3003 		panic("user addr %p in kernel space", (void *)vaddr);
3004 #if defined(TTE_IS_GLOBAL)
3005 	if (TTE_IS_GLOBAL(ttep))
3006 		panic("sfmmu_tteload: creating global tte");
3007 #endif
3008 
3009 #ifdef DEBUG
3010 	if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
3011 	    !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
3012 		panic("sfmmu_tteload: non cacheable memory tte");
3013 #endif /* DEBUG */
3014 
3015 	/* don't simulate dirty bit for writeable ISM/DISM mappings */
3016 	if ((flags & HAT_LOAD_SHARE) && TTE_IS_WRITABLE(ttep)) {
3017 		TTE_SET_REF(ttep);
3018 		TTE_SET_MOD(ttep);
3019 	}
3020 
3021 	if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
3022 	    !TTE_IS_MOD(ttep)) {
3023 		/*
3024 		 * Don't load TSB for dummy as in ISM.  Also don't preload
3025 		 * the TSB if the TTE isn't writable since we're likely to
3026 		 * fault on it again -- preloading can be fairly expensive.
3027 		 */
3028 		flags |= SFMMU_NO_TSBLOAD;
3029 	}
3030 
3031 	size = TTE_CSZ(ttep);
3032 	switch (size) {
3033 	case TTE8K:
3034 		SFMMU_STAT(sf_tteload8k);
3035 		break;
3036 	case TTE64K:
3037 		SFMMU_STAT(sf_tteload64k);
3038 		break;
3039 	case TTE512K:
3040 		SFMMU_STAT(sf_tteload512k);
3041 		break;
3042 	case TTE4M:
3043 		SFMMU_STAT(sf_tteload4m);
3044 		break;
3045 	case (TTE32M):
3046 		SFMMU_STAT(sf_tteload32m);
3047 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3048 		break;
3049 	case (TTE256M):
3050 		SFMMU_STAT(sf_tteload256m);
3051 		ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3052 		break;
3053 	}
3054 
3055 	ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
3056 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
3057 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3058 	ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3059 
3060 	HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
3061 
3062 	/*
3063 	 * Need to grab mlist lock here so that pageunload
3064 	 * will not change tte behind us.
3065 	 */
3066 	if (pp) {
3067 		pml = sfmmu_mlist_enter(pp);
3068 	}
3069 
3070 	sfmmu_copytte(&sfhme->hme_tte, &tteold);
3071 	/*
3072 	 * Look for corresponding hment and if valid verify
3073 	 * pfns are equal.
3074 	 */
3075 	remap = TTE_IS_VALID(&tteold);
3076 	if (remap) {
3077 		pfn_t	new_pfn, old_pfn;
3078 
3079 		old_pfn = TTE_TO_PFN(vaddr, &tteold);
3080 		new_pfn = TTE_TO_PFN(vaddr, ttep);
3081 
3082 		if (flags & HAT_LOAD_REMAP) {
3083 			/* make sure we are remapping same type of pages */
3084 			if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
3085 				panic("sfmmu_tteload - tte remap io<->memory");
3086 			}
3087 			if (old_pfn != new_pfn &&
3088 			    (pp != NULL || sfhme->hme_page != NULL)) {
3089 				panic("sfmmu_tteload - tte remap pp != NULL");
3090 			}
3091 		} else if (old_pfn != new_pfn) {
3092 			panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
3093 			    (void *)hmeblkp);
3094 		}
3095 		ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
3096 
3097 		if (TTE_IS_EXECUTABLE(&tteold) && TTE_IS_SOFTEXEC(ttep)) {
3098 			TTE_SET_EXEC(ttep);
3099 		}
3100 	}
3101 
3102 	if (pp) {
3103 		/*
3104 		 * If we know that this page will be executed, because
3105 		 * it was in the past (PP_ISEXEC is already true), or
3106 		 * if the caller says it will likely be executed
3107 		 * (HAT_LOAD_TEXT is true), then there is no need to
3108 		 * dynamically detect execution with a soft exec
3109 		 * fault. Enable hardware execute permission now.
3110 		 */
3111 		if ((PP_ISEXEC(pp) || (flags & HAT_LOAD_TEXT)) &&
3112 		    TTE_IS_SOFTEXEC(ttep)) {
3113 			TTE_SET_EXEC(ttep);
3114 		}
3115 
3116 		if (size == TTE8K) {
3117 #ifdef VAC
3118 			/*
3119 			 * Handle VAC consistency
3120 			 */
3121 			if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
3122 				sfmmu_vac_conflict(sfmmup, vaddr, pp);
3123 			}
3124 #endif
3125 
3126 			if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3127 				pmtx = sfmmu_page_enter(pp);
3128 				PP_CLRRO(pp);
3129 				sfmmu_page_exit(pmtx);
3130 			} else if (!PP_ISMAPPED(pp) &&
3131 			    (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
3132 				pmtx = sfmmu_page_enter(pp);
3133 				if (!(PP_ISMOD(pp))) {
3134 					PP_SETRO(pp);
3135 				}
3136 				sfmmu_page_exit(pmtx);
3137 			}
3138 
3139 			if (TTE_EXECUTED(ttep)) {
3140 				pmtx = sfmmu_page_enter(pp);
3141 				PP_SETEXEC(pp);
3142 				sfmmu_page_exit(pmtx);
3143 			}
3144 
3145 		} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
3146 			/*
3147 			 * sfmmu_pagearray_setup failed so return
3148 			 */
3149 			sfmmu_mlist_exit(pml);
3150 			return (1);
3151 		}
3152 
3153 	} else if (TTE_IS_SOFTEXEC(ttep)) {
3154 		TTE_SET_EXEC(ttep);
3155 	}
3156 
3157 	/*
3158 	 * Make sure hment is not on a mapping list.
3159 	 */
3160 	ASSERT(remap || (sfhme->hme_page == NULL));
3161 
3162 	/* if it is not a remap then hme->next better be NULL */
3163 	ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
3164 
3165 	if (flags & HAT_LOAD_LOCK) {
3166 		if ((hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
3167 			panic("too high lckcnt-hmeblk %p",
3168 			    (void *)hmeblkp);
3169 		}
3170 		atomic_add_32(&hmeblkp->hblk_lckcnt, 1);
3171 
3172 		HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
3173 	}
3174 
3175 #ifdef VAC
3176 	if (pp && PP_ISNC(pp)) {
3177 		/*
3178 		 * If the physical page is marked to be uncacheable, like
3179 		 * by a vac conflict, make sure the new mapping is also
3180 		 * uncacheable.
3181 		 */
3182 		TTE_CLR_VCACHEABLE(ttep);
3183 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
3184 	}
3185 #endif
3186 	ttep->tte_hmenum = hmenum;
3187 
3188 #ifdef DEBUG
3189 	orig_old = tteold;
3190 #endif /* DEBUG */
3191 
3192 	while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
3193 		if ((sfmmup == KHATID) &&
3194 		    (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
3195 			sfmmu_copytte(&sfhme->hme_tte, &tteold);
3196 		}
3197 #ifdef DEBUG
3198 		chk_tte(&orig_old, &tteold, ttep, hmeblkp);
3199 #endif /* DEBUG */
3200 	}
3201 	ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
3202 
3203 	if (!TTE_IS_VALID(&tteold)) {
3204 
3205 		atomic_add_16(&hmeblkp->hblk_vcnt, 1);
3206 		if (rid == SFMMU_INVALID_SHMERID) {
3207 			atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
3208 		} else {
3209 			sf_srd_t *srdp = sfmmup->sfmmu_srdp;
3210 			sf_region_t *rgnp = srdp->srd_hmergnp[rid];
3211 			/*
3212 			 * We already accounted for region ttecnt's in sfmmu
3213 			 * during hat_join_region() processing. Here we
3214 			 * only update ttecnt's in region struture.
3215 			 */
3216 			atomic_add_long(&rgnp->rgn_ttecnt[size], 1);
3217 		}
3218 	}
3219 
3220 	myflt = (astosfmmu(curthread->t_procp->p_as) == sfmmup);
3221 	if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
3222 	    sfmmup != ksfmmup) {
3223 		uchar_t tteflag = 1 << size;
3224 		if (rid == SFMMU_INVALID_SHMERID) {
3225 			if (!(sfmmup->sfmmu_tteflags & tteflag)) {
3226 				hatlockp = sfmmu_hat_enter(sfmmup);
3227 				sfmmup->sfmmu_tteflags |= tteflag;
3228 				if (&mmu_set_pgsz_order) {
3229 					mmu_set_pgsz_order(sfmmup, 1);
3230 				}
3231 				sfmmu_hat_exit(hatlockp);
3232 			}
3233 		} else if (!(sfmmup->sfmmu_rtteflags & tteflag)) {
3234 			hatlockp = sfmmu_hat_enter(sfmmup);
3235 			sfmmup->sfmmu_rtteflags |= tteflag;
3236 			if (&mmu_set_pgsz_order && sfmmup !=  ksfmmup) {
3237 				mmu_set_pgsz_order(sfmmup, 1);
3238 			}
3239 			sfmmu_hat_exit(hatlockp);
3240 		}
3241 		/*
3242 		 * Update the current CPU tsbmiss area, so the current thread
3243 		 * won't need to take the tsbmiss for the new pagesize.
3244 		 * The other threads in the process will update their tsb
3245 		 * miss area lazily in sfmmu_tsbmiss_exception() when they
3246 		 * fail to find the translation for a newly added pagesize.
3247 		 */
3248 		if (size > TTE64K && myflt) {
3249 			struct tsbmiss *tsbmp;
3250 			kpreempt_disable();
3251 			tsbmp = &tsbmiss_area[CPU->cpu_id];
3252 			if (rid == SFMMU_INVALID_SHMERID) {
3253 				if (!(tsbmp->uhat_tteflags & tteflag)) {
3254 					tsbmp->uhat_tteflags |= tteflag;
3255 				}
3256 			} else {
3257 				if (!(tsbmp->uhat_rtteflags & tteflag)) {
3258 					tsbmp->uhat_rtteflags |= tteflag;
3259 				}
3260 			}
3261 			kpreempt_enable();
3262 		}
3263 	}
3264 
3265 	if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
3266 	    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
3267 		hatlockp = sfmmu_hat_enter(sfmmup);
3268 		SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
3269 		sfmmu_hat_exit(hatlockp);
3270 	}
3271 
3272 	flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
3273 	    hw_tte.tte_intlo;
3274 	flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
3275 	    hw_tte.tte_inthi;
3276 
3277 	if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
3278 		/*
3279 		 * If remap and new tte differs from old tte we need
3280 		 * to sync the mod bit and flush TLB/TSB.  We don't
3281 		 * need to sync ref bit because we currently always set
3282 		 * ref bit in tteload.
3283 		 */
3284 		ASSERT(TTE_IS_REF(ttep));
3285 		if (TTE_IS_MOD(&tteold) || (TTE_EXECUTED(&tteold) &&
3286 		    !TTE_IS_EXECUTABLE(ttep))) {
3287 			sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
3288 		}
3289 		/*
3290 		 * hwtte bits shouldn't change for SRD hmeblks as long as SRD
3291 		 * hmes are only used for read only text. Adding this code for
3292 		 * completeness and future use of shared hmeblks with writable
3293 		 * mappings of VMODSORT vnodes.
3294 		 */
3295 		if (hmeblkp->hblk_shared) {
3296 			cpuset_t cpuset = sfmmu_rgntlb_demap(vaddr,
3297 			    sfmmup->sfmmu_srdp->srd_hmergnp[rid], hmeblkp, 1);
3298 			xt_sync(cpuset);
3299 			SFMMU_STAT_ADD(sf_region_remap_demap, 1);
3300 		} else {
3301 			sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
3302 			xt_sync(sfmmup->sfmmu_cpusran);
3303 		}
3304 	}
3305 
3306 	if ((flags & SFMMU_NO_TSBLOAD) == 0) {
3307 		/*
3308 		 * We only preload 8K and 4M mappings into the TSB, since
3309 		 * 64K and 512K mappings are replicated and hence don't
3310 		 * have a single, unique TSB entry. Ditto for 32M/256M.
3311 		 */
3312 		if (size == TTE8K || size == TTE4M) {
3313 			sf_scd_t *scdp;
3314 			hatlockp = sfmmu_hat_enter(sfmmup);
3315 			/*
3316 			 * Don't preload private TSB if the mapping is used
3317 			 * by the shctx in the SCD.
3318 			 */
3319 			scdp = sfmmup->sfmmu_scdp;
3320 			if (rid == SFMMU_INVALID_SHMERID || scdp == NULL ||
3321 			    !SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
3322 				sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte,
3323 				    size);
3324 			}
3325 			sfmmu_hat_exit(hatlockp);
3326 		}
3327 	}
3328 	if (pp) {
3329 		if (!remap) {
3330 			HME_ADD(sfhme, pp);
3331 			atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
3332 			ASSERT(hmeblkp->hblk_hmecnt > 0);
3333 
3334 			/*
3335 			 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
3336 			 * see pageunload() for comment.
3337 			 */
3338 		}
3339 		sfmmu_mlist_exit(pml);
3340 	}
3341 
3342 	return (0);
3343 }
3344 /*
3345  * Function unlocks hash bucket.
3346  */
3347 static void
3348 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
3349 {
3350 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3351 	SFMMU_HASH_UNLOCK(hmebp);
3352 }
3353 
3354 /*
3355  * function which checks and sets up page array for a large
3356  * translation.  Will set p_vcolor, p_index, p_ro fields.
3357  * Assumes addr and pfnum of first page are properly aligned.
3358  * Will check for physical contiguity. If check fails it return
3359  * non null.
3360  */
3361 static int
3362 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
3363 {
3364 	int 	i, index, ttesz;
3365 	pfn_t	pfnum;
3366 	pgcnt_t	npgs;
3367 	page_t *pp, *pp1;
3368 	kmutex_t *pmtx;
3369 #ifdef VAC
3370 	int osz;
3371 	int cflags = 0;
3372 	int vac_err = 0;
3373 #endif
3374 	int newidx = 0;
3375 
3376 	ttesz = TTE_CSZ(ttep);
3377 
3378 	ASSERT(ttesz > TTE8K);
3379 
3380 	npgs = TTEPAGES(ttesz);
3381 	index = PAGESZ_TO_INDEX(ttesz);
3382 
3383 	pfnum = (*pps)->p_pagenum;
3384 	ASSERT(IS_P2ALIGNED(pfnum, npgs));
3385 
3386 	/*
3387 	 * Save the first pp so we can do HAT_TMPNC at the end.
3388 	 */
3389 	pp1 = *pps;
3390 #ifdef VAC
3391 	osz = fnd_mapping_sz(pp1);
3392 #endif
3393 
3394 	for (i = 0; i < npgs; i++, pps++) {
3395 		pp = *pps;
3396 		ASSERT(PAGE_LOCKED(pp));
3397 		ASSERT(pp->p_szc >= ttesz);
3398 		ASSERT(pp->p_szc == pp1->p_szc);
3399 		ASSERT(sfmmu_mlist_held(pp));
3400 
3401 		/*
3402 		 * XXX is it possible to maintain P_RO on the root only?
3403 		 */
3404 		if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3405 			pmtx = sfmmu_page_enter(pp);
3406 			PP_CLRRO(pp);
3407 			sfmmu_page_exit(pmtx);
3408 		} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
3409 		    !PP_ISMOD(pp)) {
3410 			pmtx = sfmmu_page_enter(pp);
3411 			if (!(PP_ISMOD(pp))) {
3412 				PP_SETRO(pp);
3413 			}
3414 			sfmmu_page_exit(pmtx);
3415 		}
3416 
3417 		if (TTE_EXECUTED(ttep)) {
3418 			pmtx = sfmmu_page_enter(pp);
3419 			PP_SETEXEC(pp);
3420 			sfmmu_page_exit(pmtx);
3421 		}
3422 
3423 		/*
3424 		 * If this is a remap we skip vac & contiguity checks.
3425 		 */
3426 		if (remap)
3427 			continue;
3428 
3429 		/*
3430 		 * set p_vcolor and detect any vac conflicts.
3431 		 */
3432 #ifdef VAC
3433 		if (vac_err == 0) {
3434 			vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
3435 
3436 		}
3437 #endif
3438 
3439 		/*
3440 		 * Save current index in case we need to undo it.
3441 		 * Note: "PAGESZ_TO_INDEX(sz)	(1 << (sz))"
3442 		 *	"SFMMU_INDEX_SHIFT	6"
3443 		 *	 "SFMMU_INDEX_MASK	((1 << SFMMU_INDEX_SHIFT) - 1)"
3444 		 *	 "PP_MAPINDEX(p_index)	(p_index & SFMMU_INDEX_MASK)"
3445 		 *
3446 		 * So:	index = PAGESZ_TO_INDEX(ttesz);
3447 		 *	if ttesz == 1 then index = 0x2
3448 		 *		    2 then index = 0x4
3449 		 *		    3 then index = 0x8
3450 		 *		    4 then index = 0x10
3451 		 *		    5 then index = 0x20
3452 		 * The code below checks if it's a new pagesize (ie, newidx)
3453 		 * in case we need to take it back out of p_index,
3454 		 * and then or's the new index into the existing index.
3455 		 */
3456 		if ((PP_MAPINDEX(pp) & index) == 0)
3457 			newidx = 1;
3458 		pp->p_index = (PP_MAPINDEX(pp) | index);
3459 
3460 		/*
3461 		 * contiguity check
3462 		 */
3463 		if (pp->p_pagenum != pfnum) {
3464 			/*
3465 			 * If we fail the contiguity test then
3466 			 * the only thing we need to fix is the p_index field.
3467 			 * We might get a few extra flushes but since this
3468 			 * path is rare that is ok.  The p_ro field will
3469 			 * get automatically fixed on the next tteload to
3470 			 * the page.  NO TNC bit is set yet.
3471 			 */
3472 			while (i >= 0) {
3473 				pp = *pps;
3474 				if (newidx)
3475 					pp->p_index = (PP_MAPINDEX(pp) &
3476 					    ~index);
3477 				pps--;
3478 				i--;
3479 			}
3480 			return (1);
3481 		}
3482 		pfnum++;
3483 		addr += MMU_PAGESIZE;
3484 	}
3485 
3486 #ifdef VAC
3487 	if (vac_err) {
3488 		if (ttesz > osz) {
3489 			/*
3490 			 * There are some smaller mappings that causes vac
3491 			 * conflicts. Convert all existing small mappings to
3492 			 * TNC.
3493 			 */
3494 			SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3495 			sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3496 			    npgs);
3497 		} else {
3498 			/* EMPTY */
3499 			/*
3500 			 * If there exists an big page mapping,
3501 			 * that means the whole existing big page
3502 			 * has TNC setting already. No need to covert to
3503 			 * TNC again.
3504 			 */
3505 			ASSERT(PP_ISTNC(pp1));
3506 		}
3507 	}
3508 #endif	/* VAC */
3509 
3510 	return (0);
3511 }
3512 
3513 #ifdef VAC
3514 /*
3515  * Routine that detects vac consistency for a large page. It also
3516  * sets virtual color for all pp's for this big mapping.
3517  */
3518 static int
3519 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3520 {
3521 	int vcolor, ocolor;
3522 
3523 	ASSERT(sfmmu_mlist_held(pp));
3524 
3525 	if (PP_ISNC(pp)) {
3526 		return (HAT_TMPNC);
3527 	}
3528 
3529 	vcolor = addr_to_vcolor(addr);
3530 	if (PP_NEWPAGE(pp)) {
3531 		PP_SET_VCOLOR(pp, vcolor);
3532 		return (0);
3533 	}
3534 
3535 	ocolor = PP_GET_VCOLOR(pp);
3536 	if (ocolor == vcolor) {
3537 		return (0);
3538 	}
3539 
3540 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
3541 		/*
3542 		 * Previous user of page had a differnet color
3543 		 * but since there are no current users
3544 		 * we just flush the cache and change the color.
3545 		 * As an optimization for large pages we flush the
3546 		 * entire cache of that color and set a flag.
3547 		 */
3548 		SFMMU_STAT(sf_pgcolor_conflict);
3549 		if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3550 			CacheColor_SetFlushed(*cflags, ocolor);
3551 			sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3552 		}
3553 		PP_SET_VCOLOR(pp, vcolor);
3554 		return (0);
3555 	}
3556 
3557 	/*
3558 	 * We got a real conflict with a current mapping.
3559 	 * set flags to start unencaching all mappings
3560 	 * and return failure so we restart looping
3561 	 * the pp array from the beginning.
3562 	 */
3563 	return (HAT_TMPNC);
3564 }
3565 #endif	/* VAC */
3566 
3567 /*
3568  * creates a large page shadow hmeblk for a tte.
3569  * The purpose of this routine is to allow us to do quick unloads because
3570  * the vm layer can easily pass a very large but sparsely populated range.
3571  */
3572 static struct hme_blk *
3573 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3574 {
3575 	struct hmehash_bucket *hmebp;
3576 	hmeblk_tag hblktag;
3577 	int hmeshift, size, vshift;
3578 	uint_t shw_mask, newshw_mask;
3579 	struct hme_blk *hmeblkp;
3580 
3581 	ASSERT(sfmmup != KHATID);
3582 	if (mmu_page_sizes == max_mmu_page_sizes) {
3583 		ASSERT(ttesz < TTE256M);
3584 	} else {
3585 		ASSERT(ttesz < TTE4M);
3586 		ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3587 		ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3588 	}
3589 
3590 	if (ttesz == TTE8K) {
3591 		size = TTE512K;
3592 	} else {
3593 		size = ++ttesz;
3594 	}
3595 
3596 	hblktag.htag_id = sfmmup;
3597 	hmeshift = HME_HASH_SHIFT(size);
3598 	hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3599 	hblktag.htag_rehash = HME_HASH_REHASH(size);
3600 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3601 	hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3602 
3603 	SFMMU_HASH_LOCK(hmebp);
3604 
3605 	HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3606 	ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3607 	if (hmeblkp == NULL) {
3608 		hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3609 		    hblktag, flags, SFMMU_INVALID_SHMERID);
3610 	}
3611 	ASSERT(hmeblkp);
3612 	if (!hmeblkp->hblk_shw_mask) {
3613 		/*
3614 		 * if this is a unused hblk it was just allocated or could
3615 		 * potentially be a previous large page hblk so we need to
3616 		 * set the shadow bit.
3617 		 */
3618 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3619 		hmeblkp->hblk_shw_bit = 1;
3620 	} else if (hmeblkp->hblk_shw_bit == 0) {
3621 		panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3622 		    (void *)hmeblkp);
3623 	}
3624 	ASSERT(hmeblkp->hblk_shw_bit == 1);
3625 	ASSERT(!hmeblkp->hblk_shared);
3626 	vshift = vaddr_to_vshift(hblktag, vaddr, size);
3627 	ASSERT(vshift < 8);
3628 	/*
3629 	 * Atomically set shw mask bit
3630 	 */
3631 	do {
3632 		shw_mask = hmeblkp->hblk_shw_mask;
3633 		newshw_mask = shw_mask | (1 << vshift);
3634 		newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3635 		    newshw_mask);
3636 	} while (newshw_mask != shw_mask);
3637 
3638 	SFMMU_HASH_UNLOCK(hmebp);
3639 
3640 	return (hmeblkp);
3641 }
3642 
3643 /*
3644  * This routine cleanup a previous shadow hmeblk and changes it to
3645  * a regular hblk.  This happens rarely but it is possible
3646  * when a process wants to use large pages and there are hblks still
3647  * lying around from the previous as that used these hmeblks.
3648  * The alternative was to cleanup the shadow hblks at unload time
3649  * but since so few user processes actually use large pages, it is
3650  * better to be lazy and cleanup at this time.
3651  */
3652 static void
3653 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3654 	struct hmehash_bucket *hmebp)
3655 {
3656 	caddr_t addr, endaddr;
3657 	int hashno, size;
3658 
3659 	ASSERT(hmeblkp->hblk_shw_bit);
3660 	ASSERT(!hmeblkp->hblk_shared);
3661 
3662 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3663 
3664 	if (!hmeblkp->hblk_shw_mask) {
3665 		hmeblkp->hblk_shw_bit = 0;
3666 		return;
3667 	}
3668 	addr = (caddr_t)get_hblk_base(hmeblkp);
3669 	endaddr = get_hblk_endaddr(hmeblkp);
3670 	size = get_hblk_ttesz(hmeblkp);
3671 	hashno = size - 1;
3672 	ASSERT(hashno > 0);
3673 	SFMMU_HASH_UNLOCK(hmebp);
3674 
3675 	sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3676 
3677 	SFMMU_HASH_LOCK(hmebp);
3678 }
3679 
3680 static void
3681 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3682 	int hashno)
3683 {
3684 	int hmeshift, shadow = 0;
3685 	hmeblk_tag hblktag;
3686 	struct hmehash_bucket *hmebp;
3687 	struct hme_blk *hmeblkp;
3688 	struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3689 
3690 	ASSERT(hashno > 0);
3691 	hblktag.htag_id = sfmmup;
3692 	hblktag.htag_rehash = hashno;
3693 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3694 
3695 	hmeshift = HME_HASH_SHIFT(hashno);
3696 
3697 	while (addr < endaddr) {
3698 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3699 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3700 		SFMMU_HASH_LOCK(hmebp);
3701 		/* inline HME_HASH_SEARCH */
3702 		hmeblkp = hmebp->hmeblkp;
3703 		pr_hblk = NULL;
3704 		while (hmeblkp) {
3705 			if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3706 				/* found hme_blk */
3707 				ASSERT(!hmeblkp->hblk_shared);
3708 				if (hmeblkp->hblk_shw_bit) {
3709 					if (hmeblkp->hblk_shw_mask) {
3710 						shadow = 1;
3711 						sfmmu_shadow_hcleanup(sfmmup,
3712 						    hmeblkp, hmebp);
3713 						break;
3714 					} else {
3715 						hmeblkp->hblk_shw_bit = 0;
3716 					}
3717 				}
3718 
3719 				/*
3720 				 * Hblk_hmecnt and hblk_vcnt could be non zero
3721 				 * since hblk_unload() does not gurantee that.
3722 				 *
3723 				 * XXX - this could cause tteload() to spin
3724 				 * where sfmmu_shadow_hcleanup() is called.
3725 				 */
3726 			}
3727 
3728 			nx_hblk = hmeblkp->hblk_next;
3729 			if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3730 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3731 				    &list, 0);
3732 			} else {
3733 				pr_hblk = hmeblkp;
3734 			}
3735 			hmeblkp = nx_hblk;
3736 		}
3737 
3738 		SFMMU_HASH_UNLOCK(hmebp);
3739 
3740 		if (shadow) {
3741 			/*
3742 			 * We found another shadow hblk so cleaned its
3743 			 * children.  We need to go back and cleanup
3744 			 * the original hblk so we don't change the
3745 			 * addr.
3746 			 */
3747 			shadow = 0;
3748 		} else {
3749 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
3750 			    (1 << hmeshift));
3751 		}
3752 	}
3753 	sfmmu_hblks_list_purge(&list, 0);
3754 }
3755 
3756 /*
3757  * This routine's job is to delete stale invalid shared hmeregions hmeblks that
3758  * may still linger on after pageunload.
3759  */
3760 static void
3761 sfmmu_cleanup_rhblk(sf_srd_t *srdp, caddr_t addr, uint_t rid, int ttesz)
3762 {
3763 	int hmeshift;
3764 	hmeblk_tag hblktag;
3765 	struct hmehash_bucket *hmebp;
3766 	struct hme_blk *hmeblkp;
3767 	struct hme_blk *pr_hblk;
3768 	struct hme_blk *list = NULL;
3769 
3770 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3771 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3772 
3773 	hmeshift = HME_HASH_SHIFT(ttesz);
3774 	hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3775 	hblktag.htag_rehash = ttesz;
3776 	hblktag.htag_rid = rid;
3777 	hblktag.htag_id = srdp;
3778 	hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3779 
3780 	SFMMU_HASH_LOCK(hmebp);
3781 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3782 	if (hmeblkp != NULL) {
3783 		ASSERT(hmeblkp->hblk_shared);
3784 		ASSERT(!hmeblkp->hblk_shw_bit);
3785 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3786 			panic("sfmmu_cleanup_rhblk: valid hmeblk");
3787 		}
3788 		ASSERT(!hmeblkp->hblk_lckcnt);
3789 		sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3790 		    &list, 0);
3791 	}
3792 	SFMMU_HASH_UNLOCK(hmebp);
3793 	sfmmu_hblks_list_purge(&list, 0);
3794 }
3795 
3796 /* ARGSUSED */
3797 static void
3798 sfmmu_rgn_cb_noop(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
3799     size_t r_size, void *r_obj, u_offset_t r_objoff)
3800 {
3801 }
3802 
3803 /*
3804  * Searches for an hmeblk which maps addr, then unloads this mapping
3805  * and updates *eaddrp, if the hmeblk is found.
3806  */
3807 static void
3808 sfmmu_unload_hmeregion_va(sf_srd_t *srdp, uint_t rid, caddr_t addr,
3809     caddr_t eaddr, int ttesz, caddr_t *eaddrp)
3810 {
3811 	int hmeshift;
3812 	hmeblk_tag hblktag;
3813 	struct hmehash_bucket *hmebp;
3814 	struct hme_blk *hmeblkp;
3815 	struct hme_blk *pr_hblk;
3816 	struct hme_blk *list = NULL;
3817 
3818 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3819 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3820 	ASSERT(ttesz >= HBLK_MIN_TTESZ);
3821 
3822 	hmeshift = HME_HASH_SHIFT(ttesz);
3823 	hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3824 	hblktag.htag_rehash = ttesz;
3825 	hblktag.htag_rid = rid;
3826 	hblktag.htag_id = srdp;
3827 	hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3828 
3829 	SFMMU_HASH_LOCK(hmebp);
3830 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3831 	if (hmeblkp != NULL) {
3832 		ASSERT(hmeblkp->hblk_shared);
3833 		ASSERT(!hmeblkp->hblk_lckcnt);
3834 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3835 			*eaddrp = sfmmu_hblk_unload(NULL, hmeblkp, addr,
3836 			    eaddr, NULL, HAT_UNLOAD);
3837 			ASSERT(*eaddrp > addr);
3838 		}
3839 		ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3840 		sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3841 		    &list, 0);
3842 	}
3843 	SFMMU_HASH_UNLOCK(hmebp);
3844 	sfmmu_hblks_list_purge(&list, 0);
3845 }
3846 
3847 static void
3848 sfmmu_unload_hmeregion(sf_srd_t *srdp, sf_region_t *rgnp)
3849 {
3850 	int ttesz = rgnp->rgn_pgszc;
3851 	size_t rsz = rgnp->rgn_size;
3852 	caddr_t rsaddr = rgnp->rgn_saddr;
3853 	caddr_t readdr = rsaddr + rsz;
3854 	caddr_t rhsaddr;
3855 	caddr_t va;
3856 	uint_t rid = rgnp->rgn_id;
3857 	caddr_t cbsaddr;
3858 	caddr_t cbeaddr;
3859 	hat_rgn_cb_func_t rcbfunc;
3860 	ulong_t cnt;
3861 
3862 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3863 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3864 
3865 	ASSERT(IS_P2ALIGNED(rsaddr, TTEBYTES(ttesz)));
3866 	ASSERT(IS_P2ALIGNED(rsz, TTEBYTES(ttesz)));
3867 	if (ttesz < HBLK_MIN_TTESZ) {
3868 		ttesz = HBLK_MIN_TTESZ;
3869 		rhsaddr = (caddr_t)P2ALIGN((uintptr_t)rsaddr, HBLK_MIN_BYTES);
3870 	} else {
3871 		rhsaddr = rsaddr;
3872 	}
3873 
3874 	if ((rcbfunc = rgnp->rgn_cb_function) == NULL) {
3875 		rcbfunc = sfmmu_rgn_cb_noop;
3876 	}
3877 
3878 	while (ttesz >= HBLK_MIN_TTESZ) {
3879 		cbsaddr = rsaddr;
3880 		cbeaddr = rsaddr;
3881 		if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3882 			ttesz--;
3883 			continue;
3884 		}
3885 		cnt = 0;
3886 		va = rsaddr;
3887 		while (va < readdr) {
3888 			ASSERT(va >= rhsaddr);
3889 			if (va != cbeaddr) {
3890 				if (cbeaddr != cbsaddr) {
3891 					ASSERT(cbeaddr > cbsaddr);
3892 					(*rcbfunc)(cbsaddr, cbeaddr,
3893 					    rsaddr, rsz, rgnp->rgn_obj,
3894 					    rgnp->rgn_objoff);
3895 				}
3896 				cbsaddr = va;
3897 				cbeaddr = va;
3898 			}
3899 			sfmmu_unload_hmeregion_va(srdp, rid, va, readdr,
3900 			    ttesz, &cbeaddr);
3901 			cnt++;
3902 			va = rhsaddr + (cnt << TTE_PAGE_SHIFT(ttesz));
3903 		}
3904 		if (cbeaddr != cbsaddr) {
3905 			ASSERT(cbeaddr > cbsaddr);
3906 			(*rcbfunc)(cbsaddr, cbeaddr, rsaddr,
3907 			    rsz, rgnp->rgn_obj,
3908 			    rgnp->rgn_objoff);
3909 		}
3910 		ttesz--;
3911 	}
3912 }
3913 
3914 /*
3915  * Release one hardware address translation lock on the given address range.
3916  */
3917 void
3918 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3919 {
3920 	struct hmehash_bucket *hmebp;
3921 	hmeblk_tag hblktag;
3922 	int hmeshift, hashno = 1;
3923 	struct hme_blk *hmeblkp, *list = NULL;
3924 	caddr_t endaddr;
3925 
3926 	ASSERT(sfmmup != NULL);
3927 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3928 
3929 	ASSERT((sfmmup == ksfmmup) ||
3930 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3931 	ASSERT((len & MMU_PAGEOFFSET) == 0);
3932 	endaddr = addr + len;
3933 	hblktag.htag_id = sfmmup;
3934 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3935 
3936 	/*
3937 	 * Spitfire supports 4 page sizes.
3938 	 * Most pages are expected to be of the smallest page size (8K) and
3939 	 * these will not need to be rehashed. 64K pages also don't need to be
3940 	 * rehashed because an hmeblk spans 64K of address space. 512K pages
3941 	 * might need 1 rehash and and 4M pages might need 2 rehashes.
3942 	 */
3943 	while (addr < endaddr) {
3944 		hmeshift = HME_HASH_SHIFT(hashno);
3945 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3946 		hblktag.htag_rehash = hashno;
3947 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3948 
3949 		SFMMU_HASH_LOCK(hmebp);
3950 
3951 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3952 		if (hmeblkp != NULL) {
3953 			ASSERT(!hmeblkp->hblk_shared);
3954 			/*
3955 			 * If we encounter a shadow hmeblk then
3956 			 * we know there are no valid hmeblks mapping
3957 			 * this address at this size or larger.
3958 			 * Just increment address by the smallest
3959 			 * page size.
3960 			 */
3961 			if (hmeblkp->hblk_shw_bit) {
3962 				addr += MMU_PAGESIZE;
3963 			} else {
3964 				addr = sfmmu_hblk_unlock(hmeblkp, addr,
3965 				    endaddr);
3966 			}
3967 			SFMMU_HASH_UNLOCK(hmebp);
3968 			hashno = 1;
3969 			continue;
3970 		}
3971 		SFMMU_HASH_UNLOCK(hmebp);
3972 
3973 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3974 			/*
3975 			 * We have traversed the whole list and rehashed
3976 			 * if necessary without finding the address to unlock
3977 			 * which should never happen.
3978 			 */
3979 			panic("sfmmu_unlock: addr not found. "
3980 			    "addr %p hat %p", (void *)addr, (void *)sfmmup);
3981 		} else {
3982 			hashno++;
3983 		}
3984 	}
3985 
3986 	sfmmu_hblks_list_purge(&list, 0);
3987 }
3988 
3989 void
3990 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len,
3991     hat_region_cookie_t rcookie)
3992 {
3993 	sf_srd_t *srdp;
3994 	sf_region_t *rgnp;
3995 	int ttesz;
3996 	uint_t rid;
3997 	caddr_t eaddr;
3998 	caddr_t va;
3999 	int hmeshift;
4000 	hmeblk_tag hblktag;
4001 	struct hmehash_bucket *hmebp;
4002 	struct hme_blk *hmeblkp;
4003 	struct hme_blk *pr_hblk;
4004 	struct hme_blk *list;
4005 
4006 	if (rcookie == HAT_INVALID_REGION_COOKIE) {
4007 		hat_unlock(sfmmup, addr, len);
4008 		return;
4009 	}
4010 
4011 	ASSERT(sfmmup != NULL);
4012 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4013 	ASSERT(sfmmup != ksfmmup);
4014 
4015 	srdp = sfmmup->sfmmu_srdp;
4016 	rid = (uint_t)((uint64_t)rcookie);
4017 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
4018 	eaddr = addr + len;
4019 	va = addr;
4020 	list = NULL;
4021 	rgnp = srdp->srd_hmergnp[rid];
4022 	SFMMU_VALIDATE_HMERID(sfmmup, rid, addr, len);
4023 
4024 	ASSERT(IS_P2ALIGNED(addr, TTEBYTES(rgnp->rgn_pgszc)));
4025 	ASSERT(IS_P2ALIGNED(len, TTEBYTES(rgnp->rgn_pgszc)));
4026 	if (rgnp->rgn_pgszc < HBLK_MIN_TTESZ) {
4027 		ttesz = HBLK_MIN_TTESZ;
4028 	} else {
4029 		ttesz = rgnp->rgn_pgszc;
4030 	}
4031 	while (va < eaddr) {
4032 		while (ttesz < rgnp->rgn_pgszc &&
4033 		    IS_P2ALIGNED(va, TTEBYTES(ttesz + 1))) {
4034 			ttesz++;
4035 		}
4036 		while (ttesz >= HBLK_MIN_TTESZ) {
4037 			if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
4038 				ttesz--;
4039 				continue;
4040 			}
4041 			hmeshift = HME_HASH_SHIFT(ttesz);
4042 			hblktag.htag_bspage = HME_HASH_BSPAGE(va, hmeshift);
4043 			hblktag.htag_rehash = ttesz;
4044 			hblktag.htag_rid = rid;
4045 			hblktag.htag_id = srdp;
4046 			hmebp = HME_HASH_FUNCTION(srdp, va, hmeshift);
4047 			SFMMU_HASH_LOCK(hmebp);
4048 			HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk,
4049 			    &list);
4050 			if (hmeblkp == NULL) {
4051 				SFMMU_HASH_UNLOCK(hmebp);
4052 				ttesz--;
4053 				continue;
4054 			}
4055 			ASSERT(hmeblkp->hblk_shared);
4056 			va = sfmmu_hblk_unlock(hmeblkp, va, eaddr);
4057 			ASSERT(va >= eaddr ||
4058 			    IS_P2ALIGNED((uintptr_t)va, TTEBYTES(ttesz)));
4059 			SFMMU_HASH_UNLOCK(hmebp);
4060 			break;
4061 		}
4062 		if (ttesz < HBLK_MIN_TTESZ) {
4063 			panic("hat_unlock_region: addr not found "
4064 			    "addr %p hat %p", (void *)va, (void *)sfmmup);
4065 		}
4066 	}
4067 	sfmmu_hblks_list_purge(&list, 0);
4068 }
4069 
4070 /*
4071  * Function to unlock a range of addresses in an hmeblk.  It returns the
4072  * next address that needs to be unlocked.
4073  * Should be called with the hash lock held.
4074  */
4075 static caddr_t
4076 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
4077 {
4078 	struct sf_hment *sfhme;
4079 	tte_t tteold, ttemod;
4080 	int ttesz, ret;
4081 
4082 	ASSERT(in_hblk_range(hmeblkp, addr));
4083 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4084 
4085 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4086 	ttesz = get_hblk_ttesz(hmeblkp);
4087 
4088 	HBLKTOHME(sfhme, hmeblkp, addr);
4089 	while (addr < endaddr) {
4090 readtte:
4091 		sfmmu_copytte(&sfhme->hme_tte, &tteold);
4092 		if (TTE_IS_VALID(&tteold)) {
4093 
4094 			ttemod = tteold;
4095 
4096 			ret = sfmmu_modifytte_try(&tteold, &ttemod,
4097 			    &sfhme->hme_tte);
4098 
4099 			if (ret < 0)
4100 				goto readtte;
4101 
4102 			if (hmeblkp->hblk_lckcnt == 0)
4103 				panic("zero hblk lckcnt");
4104 
4105 			if (((uintptr_t)addr + TTEBYTES(ttesz)) >
4106 			    (uintptr_t)endaddr)
4107 				panic("can't unlock large tte");
4108 
4109 			ASSERT(hmeblkp->hblk_lckcnt > 0);
4110 			atomic_add_32(&hmeblkp->hblk_lckcnt, -1);
4111 			HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
4112 		} else {
4113 			panic("sfmmu_hblk_unlock: invalid tte");
4114 		}
4115 		addr += TTEBYTES(ttesz);
4116 		sfhme++;
4117 	}
4118 	return (addr);
4119 }
4120 
4121 /*
4122  * Physical Address Mapping Framework
4123  *
4124  * General rules:
4125  *
4126  * (1) Applies only to seg_kmem memory pages. To make things easier,
4127  *     seg_kpm addresses are also accepted by the routines, but nothing
4128  *     is done with them since by definition their PA mappings are static.
4129  * (2) hat_add_callback() may only be called while holding the page lock
4130  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
4131  *     or passing HAC_PAGELOCK flag.
4132  * (3) prehandler() and posthandler() may not call hat_add_callback() or
4133  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
4134  *     callbacks may not sleep or acquire adaptive mutex locks.
4135  * (4) Either prehandler() or posthandler() (but not both) may be specified
4136  *     as being NULL.  Specifying an errhandler() is optional.
4137  *
4138  * Details of using the framework:
4139  *
4140  * registering a callback (hat_register_callback())
4141  *
4142  *	Pass prehandler, posthandler, errhandler addresses
4143  *	as described below. If capture_cpus argument is nonzero,
4144  *	suspend callback to the prehandler will occur with CPUs
4145  *	captured and executing xc_loop() and CPUs will remain
4146  *	captured until after the posthandler suspend callback
4147  *	occurs.
4148  *
4149  * adding a callback (hat_add_callback())
4150  *
4151  *      as_pagelock();
4152  *	hat_add_callback();
4153  *      save returned pfn in private data structures or program registers;
4154  *      as_pageunlock();
4155  *
4156  * prehandler()
4157  *
4158  *	Stop all accesses by physical address to this memory page.
4159  *	Called twice: the first, PRESUSPEND, is a context safe to acquire
4160  *	adaptive locks. The second, SUSPEND, is called at high PIL with
4161  *	CPUs captured so adaptive locks may NOT be acquired (and all spin
4162  *	locks must be XCALL_PIL or higher locks).
4163  *
4164  *	May return the following errors:
4165  *		EIO:	A fatal error has occurred. This will result in panic.
4166  *		EAGAIN:	The page cannot be suspended. This will fail the
4167  *			relocation.
4168  *		0:	Success.
4169  *
4170  * posthandler()
4171  *
4172  *      Save new pfn in private data structures or program registers;
4173  *	not allowed to fail (non-zero return values will result in panic).
4174  *
4175  * errhandler()
4176  *
4177  *	called when an error occurs related to the callback.  Currently
4178  *	the only such error is HAT_CB_ERR_LEAKED which indicates that
4179  *	a page is being freed, but there are still outstanding callback(s)
4180  *	registered on the page.
4181  *
4182  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
4183  *
4184  *	stop using physical address
4185  *	hat_delete_callback();
4186  *
4187  */
4188 
4189 /*
4190  * Register a callback class.  Each subsystem should do this once and
4191  * cache the id_t returned for use in setting up and tearing down callbacks.
4192  *
4193  * There is no facility for removing callback IDs once they are created;
4194  * the "key" should be unique for each module, so in case a module is unloaded
4195  * and subsequently re-loaded, we can recycle the module's previous entry.
4196  */
4197 id_t
4198 hat_register_callback(int key,
4199 	int (*prehandler)(caddr_t, uint_t, uint_t, void *),
4200 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
4201 	int (*errhandler)(caddr_t, uint_t, uint_t, void *),
4202 	int capture_cpus)
4203 {
4204 	id_t id;
4205 
4206 	/*
4207 	 * Search the table for a pre-existing callback associated with
4208 	 * the identifier "key".  If one exists, we re-use that entry in
4209 	 * the table for this instance, otherwise we assign the next
4210 	 * available table slot.
4211 	 */
4212 	for (id = 0; id < sfmmu_max_cb_id; id++) {
4213 		if (sfmmu_cb_table[id].key == key)
4214 			break;
4215 	}
4216 
4217 	if (id == sfmmu_max_cb_id) {
4218 		id = sfmmu_cb_nextid++;
4219 		if (id >= sfmmu_max_cb_id)
4220 			panic("hat_register_callback: out of callback IDs");
4221 	}
4222 
4223 	ASSERT(prehandler != NULL || posthandler != NULL);
4224 
4225 	sfmmu_cb_table[id].key = key;
4226 	sfmmu_cb_table[id].prehandler = prehandler;
4227 	sfmmu_cb_table[id].posthandler = posthandler;
4228 	sfmmu_cb_table[id].errhandler = errhandler;
4229 	sfmmu_cb_table[id].capture_cpus = capture_cpus;
4230 
4231 	return (id);
4232 }
4233 
4234 #define	HAC_COOKIE_NONE	(void *)-1
4235 
4236 /*
4237  * Add relocation callbacks to the specified addr/len which will be called
4238  * when relocating the associated page. See the description of pre and
4239  * posthandler above for more details.
4240  *
4241  * If HAC_PAGELOCK is included in flags, the underlying memory page is
4242  * locked internally so the caller must be able to deal with the callback
4243  * running even before this function has returned.  If HAC_PAGELOCK is not
4244  * set, it is assumed that the underlying memory pages are locked.
4245  *
4246  * Since the caller must track the individual page boundaries anyway,
4247  * we only allow a callback to be added to a single page (large
4248  * or small).  Thus [addr, addr + len) MUST be contained within a single
4249  * page.
4250  *
4251  * Registering multiple callbacks on the same [addr, addr+len) is supported,
4252  * _provided_that_ a unique parameter is specified for each callback.
4253  * If multiple callbacks are registered on the same range the callback will
4254  * be invoked with each unique parameter. Registering the same callback with
4255  * the same argument more than once will result in corrupted kernel state.
4256  *
4257  * Returns the pfn of the underlying kernel page in *rpfn
4258  * on success, or PFN_INVALID on failure.
4259  *
4260  * cookiep (if passed) provides storage space for an opaque cookie
4261  * to return later to hat_delete_callback(). This cookie makes the callback
4262  * deletion significantly quicker by avoiding a potentially lengthy hash
4263  * search.
4264  *
4265  * Returns values:
4266  *    0:      success
4267  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
4268  *    EINVAL: callback ID is not valid
4269  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
4270  *            space
4271  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
4272  */
4273 int
4274 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
4275 	void *pvt, pfn_t *rpfn, void **cookiep)
4276 {
4277 	struct 		hmehash_bucket *hmebp;
4278 	hmeblk_tag 	hblktag;
4279 	struct hme_blk	*hmeblkp;
4280 	int 		hmeshift, hashno;
4281 	caddr_t 	saddr, eaddr, baseaddr;
4282 	struct pa_hment *pahmep;
4283 	struct sf_hment *sfhmep, *osfhmep;
4284 	kmutex_t	*pml;
4285 	tte_t   	tte;
4286 	page_t		*pp;
4287 	vnode_t		*vp;
4288 	u_offset_t	off;
4289 	pfn_t		pfn;
4290 	int		kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
4291 	int		locked = 0;
4292 
4293 	/*
4294 	 * For KPM mappings, just return the physical address since we
4295 	 * don't need to register any callbacks.
4296 	 */
4297 	if (IS_KPM_ADDR(vaddr)) {
4298 		uint64_t paddr;
4299 		SFMMU_KPM_VTOP(vaddr, paddr);
4300 		*rpfn = btop(paddr);
4301 		if (cookiep != NULL)
4302 			*cookiep = HAC_COOKIE_NONE;
4303 		return (0);
4304 	}
4305 
4306 	if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
4307 		*rpfn = PFN_INVALID;
4308 		return (EINVAL);
4309 	}
4310 
4311 	if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
4312 		*rpfn = PFN_INVALID;
4313 		return (ENOMEM);
4314 	}
4315 
4316 	sfhmep = &pahmep->sfment;
4317 
4318 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4319 	eaddr = saddr + len;
4320 
4321 rehash:
4322 	/* Find the mapping(s) for this page */
4323 	for (hashno = TTE64K, hmeblkp = NULL;
4324 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
4325 	    hashno++) {
4326 		hmeshift = HME_HASH_SHIFT(hashno);
4327 		hblktag.htag_id = ksfmmup;
4328 		hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4329 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4330 		hblktag.htag_rehash = hashno;
4331 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4332 
4333 		SFMMU_HASH_LOCK(hmebp);
4334 
4335 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4336 
4337 		if (hmeblkp == NULL)
4338 			SFMMU_HASH_UNLOCK(hmebp);
4339 	}
4340 
4341 	if (hmeblkp == NULL) {
4342 		kmem_cache_free(pa_hment_cache, pahmep);
4343 		*rpfn = PFN_INVALID;
4344 		return (ENXIO);
4345 	}
4346 
4347 	ASSERT(!hmeblkp->hblk_shared);
4348 
4349 	HBLKTOHME(osfhmep, hmeblkp, saddr);
4350 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
4351 
4352 	if (!TTE_IS_VALID(&tte)) {
4353 		SFMMU_HASH_UNLOCK(hmebp);
4354 		kmem_cache_free(pa_hment_cache, pahmep);
4355 		*rpfn = PFN_INVALID;
4356 		return (ENXIO);
4357 	}
4358 
4359 	/*
4360 	 * Make sure the boundaries for the callback fall within this
4361 	 * single mapping.
4362 	 */
4363 	baseaddr = (caddr_t)get_hblk_base(hmeblkp);
4364 	ASSERT(saddr >= baseaddr);
4365 	if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
4366 		SFMMU_HASH_UNLOCK(hmebp);
4367 		kmem_cache_free(pa_hment_cache, pahmep);
4368 		*rpfn = PFN_INVALID;
4369 		return (ERANGE);
4370 	}
4371 
4372 	pfn = sfmmu_ttetopfn(&tte, vaddr);
4373 
4374 	/*
4375 	 * The pfn may not have a page_t underneath in which case we
4376 	 * just return it. This can happen if we are doing I/O to a
4377 	 * static portion of the kernel's address space, for instance.
4378 	 */
4379 	pp = osfhmep->hme_page;
4380 	if (pp == NULL) {
4381 		SFMMU_HASH_UNLOCK(hmebp);
4382 		kmem_cache_free(pa_hment_cache, pahmep);
4383 		*rpfn = pfn;
4384 		if (cookiep)
4385 			*cookiep = HAC_COOKIE_NONE;
4386 		return (0);
4387 	}
4388 	ASSERT(pp == PP_PAGEROOT(pp));
4389 
4390 	vp = pp->p_vnode;
4391 	off = pp->p_offset;
4392 
4393 	pml = sfmmu_mlist_enter(pp);
4394 
4395 	if (flags & HAC_PAGELOCK) {
4396 		if (!page_trylock(pp, SE_SHARED)) {
4397 			/*
4398 			 * Somebody is holding SE_EXCL lock. Might
4399 			 * even be hat_page_relocate(). Drop all
4400 			 * our locks, lookup the page in &kvp, and
4401 			 * retry. If it doesn't exist in &kvp and &zvp,
4402 			 * then we must be dealing with a kernel mapped
4403 			 * page which doesn't actually belong to
4404 			 * segkmem so we punt.
4405 			 */
4406 			sfmmu_mlist_exit(pml);
4407 			SFMMU_HASH_UNLOCK(hmebp);
4408 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4409 
4410 			/* check zvp before giving up */
4411 			if (pp == NULL)
4412 				pp = page_lookup(&zvp, (u_offset_t)saddr,
4413 				    SE_SHARED);
4414 
4415 			/* Okay, we didn't find it, give up */
4416 			if (pp == NULL) {
4417 				kmem_cache_free(pa_hment_cache, pahmep);
4418 				*rpfn = pfn;
4419 				if (cookiep)
4420 					*cookiep = HAC_COOKIE_NONE;
4421 				return (0);
4422 			}
4423 			page_unlock(pp);
4424 			goto rehash;
4425 		}
4426 		locked = 1;
4427 	}
4428 
4429 	if (!PAGE_LOCKED(pp) && !panicstr)
4430 		panic("hat_add_callback: page 0x%p not locked", (void *)pp);
4431 
4432 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4433 	    pp->p_offset != off) {
4434 		/*
4435 		 * The page moved before we got our hands on it.  Drop
4436 		 * all the locks and try again.
4437 		 */
4438 		ASSERT((flags & HAC_PAGELOCK) != 0);
4439 		sfmmu_mlist_exit(pml);
4440 		SFMMU_HASH_UNLOCK(hmebp);
4441 		page_unlock(pp);
4442 		locked = 0;
4443 		goto rehash;
4444 	}
4445 
4446 	if (!VN_ISKAS(vp)) {
4447 		/*
4448 		 * This is not a segkmem page but another page which
4449 		 * has been kernel mapped. It had better have at least
4450 		 * a share lock on it. Return the pfn.
4451 		 */
4452 		sfmmu_mlist_exit(pml);
4453 		SFMMU_HASH_UNLOCK(hmebp);
4454 		if (locked)
4455 			page_unlock(pp);
4456 		kmem_cache_free(pa_hment_cache, pahmep);
4457 		ASSERT(PAGE_LOCKED(pp));
4458 		*rpfn = pfn;
4459 		if (cookiep)
4460 			*cookiep = HAC_COOKIE_NONE;
4461 		return (0);
4462 	}
4463 
4464 	/*
4465 	 * Setup this pa_hment and link its embedded dummy sf_hment into
4466 	 * the mapping list.
4467 	 */
4468 	pp->p_share++;
4469 	pahmep->cb_id = callback_id;
4470 	pahmep->addr = vaddr;
4471 	pahmep->len = len;
4472 	pahmep->refcnt = 1;
4473 	pahmep->flags = 0;
4474 	pahmep->pvt = pvt;
4475 
4476 	sfhmep->hme_tte.ll = 0;
4477 	sfhmep->hme_data = pahmep;
4478 	sfhmep->hme_prev = osfhmep;
4479 	sfhmep->hme_next = osfhmep->hme_next;
4480 
4481 	if (osfhmep->hme_next)
4482 		osfhmep->hme_next->hme_prev = sfhmep;
4483 
4484 	osfhmep->hme_next = sfhmep;
4485 
4486 	sfmmu_mlist_exit(pml);
4487 	SFMMU_HASH_UNLOCK(hmebp);
4488 
4489 	if (locked)
4490 		page_unlock(pp);
4491 
4492 	*rpfn = pfn;
4493 	if (cookiep)
4494 		*cookiep = (void *)pahmep;
4495 
4496 	return (0);
4497 }
4498 
4499 /*
4500  * Remove the relocation callbacks from the specified addr/len.
4501  */
4502 void
4503 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
4504 	void *cookie)
4505 {
4506 	struct		hmehash_bucket *hmebp;
4507 	hmeblk_tag	hblktag;
4508 	struct hme_blk	*hmeblkp;
4509 	int		hmeshift, hashno;
4510 	caddr_t		saddr;
4511 	struct pa_hment	*pahmep;
4512 	struct sf_hment	*sfhmep, *osfhmep;
4513 	kmutex_t	*pml;
4514 	tte_t		tte;
4515 	page_t		*pp;
4516 	vnode_t		*vp;
4517 	u_offset_t	off;
4518 	int		locked = 0;
4519 
4520 	/*
4521 	 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
4522 	 * remove so just return.
4523 	 */
4524 	if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
4525 		return;
4526 
4527 	saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4528 
4529 rehash:
4530 	/* Find the mapping(s) for this page */
4531 	for (hashno = TTE64K, hmeblkp = NULL;
4532 	    hmeblkp == NULL && hashno <= mmu_hashcnt;
4533 	    hashno++) {
4534 		hmeshift = HME_HASH_SHIFT(hashno);
4535 		hblktag.htag_id = ksfmmup;
4536 		hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4537 		hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4538 		hblktag.htag_rehash = hashno;
4539 		hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4540 
4541 		SFMMU_HASH_LOCK(hmebp);
4542 
4543 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4544 
4545 		if (hmeblkp == NULL)
4546 			SFMMU_HASH_UNLOCK(hmebp);
4547 	}
4548 
4549 	if (hmeblkp == NULL)
4550 		return;
4551 
4552 	ASSERT(!hmeblkp->hblk_shared);
4553 
4554 	HBLKTOHME(osfhmep, hmeblkp, saddr);
4555 
4556 	sfmmu_copytte(&osfhmep->hme_tte, &tte);
4557 	if (!TTE_IS_VALID(&tte)) {
4558 		SFMMU_HASH_UNLOCK(hmebp);
4559 		return;
4560 	}
4561 
4562 	pp = osfhmep->hme_page;
4563 	if (pp == NULL) {
4564 		SFMMU_HASH_UNLOCK(hmebp);
4565 		ASSERT(cookie == NULL);
4566 		return;
4567 	}
4568 
4569 	vp = pp->p_vnode;
4570 	off = pp->p_offset;
4571 
4572 	pml = sfmmu_mlist_enter(pp);
4573 
4574 	if (flags & HAC_PAGELOCK) {
4575 		if (!page_trylock(pp, SE_SHARED)) {
4576 			/*
4577 			 * Somebody is holding SE_EXCL lock. Might
4578 			 * even be hat_page_relocate(). Drop all
4579 			 * our locks, lookup the page in &kvp, and
4580 			 * retry. If it doesn't exist in &kvp and &zvp,
4581 			 * then we must be dealing with a kernel mapped
4582 			 * page which doesn't actually belong to
4583 			 * segkmem so we punt.
4584 			 */
4585 			sfmmu_mlist_exit(pml);
4586 			SFMMU_HASH_UNLOCK(hmebp);
4587 			pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4588 			/* check zvp before giving up */
4589 			if (pp == NULL)
4590 				pp = page_lookup(&zvp, (u_offset_t)saddr,
4591 				    SE_SHARED);
4592 
4593 			if (pp == NULL) {
4594 				ASSERT(cookie == NULL);
4595 				return;
4596 			}
4597 			page_unlock(pp);
4598 			goto rehash;
4599 		}
4600 		locked = 1;
4601 	}
4602 
4603 	ASSERT(PAGE_LOCKED(pp));
4604 
4605 	if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4606 	    pp->p_offset != off) {
4607 		/*
4608 		 * The page moved before we got our hands on it.  Drop
4609 		 * all the locks and try again.
4610 		 */
4611 		ASSERT((flags & HAC_PAGELOCK) != 0);
4612 		sfmmu_mlist_exit(pml);
4613 		SFMMU_HASH_UNLOCK(hmebp);
4614 		page_unlock(pp);
4615 		locked = 0;
4616 		goto rehash;
4617 	}
4618 
4619 	if (!VN_ISKAS(vp)) {
4620 		/*
4621 		 * This is not a segkmem page but another page which
4622 		 * has been kernel mapped.
4623 		 */
4624 		sfmmu_mlist_exit(pml);
4625 		SFMMU_HASH_UNLOCK(hmebp);
4626 		if (locked)
4627 			page_unlock(pp);
4628 		ASSERT(cookie == NULL);
4629 		return;
4630 	}
4631 
4632 	if (cookie != NULL) {
4633 		pahmep = (struct pa_hment *)cookie;
4634 		sfhmep = &pahmep->sfment;
4635 	} else {
4636 		for (sfhmep = pp->p_mapping; sfhmep != NULL;
4637 		    sfhmep = sfhmep->hme_next) {
4638 
4639 			/*
4640 			 * skip va<->pa mappings
4641 			 */
4642 			if (!IS_PAHME(sfhmep))
4643 				continue;
4644 
4645 			pahmep = sfhmep->hme_data;
4646 			ASSERT(pahmep != NULL);
4647 
4648 			/*
4649 			 * if pa_hment matches, remove it
4650 			 */
4651 			if ((pahmep->pvt == pvt) &&
4652 			    (pahmep->addr == vaddr) &&
4653 			    (pahmep->len == len)) {
4654 				break;
4655 			}
4656 		}
4657 	}
4658 
4659 	if (sfhmep == NULL) {
4660 		if (!panicstr) {
4661 			panic("hat_delete_callback: pa_hment not found, pp %p",
4662 			    (void *)pp);
4663 		}
4664 		return;
4665 	}
4666 
4667 	/*
4668 	 * Note: at this point a valid kernel mapping must still be
4669 	 * present on this page.
4670 	 */
4671 	pp->p_share--;
4672 	if (pp->p_share <= 0)
4673 		panic("hat_delete_callback: zero p_share");
4674 
4675 	if (--pahmep->refcnt == 0) {
4676 		if (pahmep->flags != 0)
4677 			panic("hat_delete_callback: pa_hment is busy");
4678 
4679 		/*
4680 		 * Remove sfhmep from the mapping list for the page.
4681 		 */
4682 		if (sfhmep->hme_prev) {
4683 			sfhmep->hme_prev->hme_next = sfhmep->hme_next;
4684 		} else {
4685 			pp->p_mapping = sfhmep->hme_next;
4686 		}
4687 
4688 		if (sfhmep->hme_next)
4689 			sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
4690 
4691 		sfmmu_mlist_exit(pml);
4692 		SFMMU_HASH_UNLOCK(hmebp);
4693 
4694 		if (locked)
4695 			page_unlock(pp);
4696 
4697 		kmem_cache_free(pa_hment_cache, pahmep);
4698 		return;
4699 	}
4700 
4701 	sfmmu_mlist_exit(pml);
4702 	SFMMU_HASH_UNLOCK(hmebp);
4703 	if (locked)
4704 		page_unlock(pp);
4705 }
4706 
4707 /*
4708  * hat_probe returns 1 if the translation for the address 'addr' is
4709  * loaded, zero otherwise.
4710  *
4711  * hat_probe should be used only for advisorary purposes because it may
4712  * occasionally return the wrong value. The implementation must guarantee that
4713  * returning the wrong value is a very rare event. hat_probe is used
4714  * to implement optimizations in the segment drivers.
4715  *
4716  */
4717 int
4718 hat_probe(struct hat *sfmmup, caddr_t addr)
4719 {
4720 	pfn_t pfn;
4721 	tte_t tte;
4722 
4723 	ASSERT(sfmmup != NULL);
4724 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4725 
4726 	ASSERT((sfmmup == ksfmmup) ||
4727 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4728 
4729 	if (sfmmup == ksfmmup) {
4730 		while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4731 		    == PFN_SUSPENDED) {
4732 			sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4733 		}
4734 	} else {
4735 		pfn = sfmmu_uvatopfn(addr, sfmmup, NULL);
4736 	}
4737 
4738 	if (pfn != PFN_INVALID)
4739 		return (1);
4740 	else
4741 		return (0);
4742 }
4743 
4744 ssize_t
4745 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4746 {
4747 	tte_t tte;
4748 
4749 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4750 
4751 	if (sfmmup == ksfmmup) {
4752 		if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4753 			return (-1);
4754 		}
4755 	} else {
4756 		if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4757 			return (-1);
4758 		}
4759 	}
4760 
4761 	ASSERT(TTE_IS_VALID(&tte));
4762 	return (TTEBYTES(TTE_CSZ(&tte)));
4763 }
4764 
4765 uint_t
4766 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4767 {
4768 	tte_t tte;
4769 
4770 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4771 
4772 	if (sfmmup == ksfmmup) {
4773 		if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4774 			tte.ll = 0;
4775 		}
4776 	} else {
4777 		if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4778 			tte.ll = 0;
4779 		}
4780 	}
4781 	if (TTE_IS_VALID(&tte)) {
4782 		*attr = sfmmu_ptov_attr(&tte);
4783 		return (0);
4784 	}
4785 	*attr = 0;
4786 	return ((uint_t)0xffffffff);
4787 }
4788 
4789 /*
4790  * Enables more attributes on specified address range (ie. logical OR)
4791  */
4792 void
4793 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4794 {
4795 	if (hat->sfmmu_xhat_provider) {
4796 		XHAT_SETATTR(hat, addr, len, attr);
4797 		return;
4798 	} else {
4799 		/*
4800 		 * This must be a CPU HAT. If the address space has
4801 		 * XHATs attached, change attributes for all of them,
4802 		 * just in case
4803 		 */
4804 		ASSERT(hat->sfmmu_as != NULL);
4805 		if (hat->sfmmu_as->a_xhat != NULL)
4806 			xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4807 	}
4808 
4809 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4810 }
4811 
4812 /*
4813  * Assigns attributes to the specified address range.  All the attributes
4814  * are specified.
4815  */
4816 void
4817 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4818 {
4819 	if (hat->sfmmu_xhat_provider) {
4820 		XHAT_CHGATTR(hat, addr, len, attr);
4821 		return;
4822 	} else {
4823 		/*
4824 		 * This must be a CPU HAT. If the address space has
4825 		 * XHATs attached, change attributes for all of them,
4826 		 * just in case
4827 		 */
4828 		ASSERT(hat->sfmmu_as != NULL);
4829 		if (hat->sfmmu_as->a_xhat != NULL)
4830 			xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4831 	}
4832 
4833 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4834 }
4835 
4836 /*
4837  * Remove attributes on the specified address range (ie. loginal NAND)
4838  */
4839 void
4840 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4841 {
4842 	if (hat->sfmmu_xhat_provider) {
4843 		XHAT_CLRATTR(hat, addr, len, attr);
4844 		return;
4845 	} else {
4846 		/*
4847 		 * This must be a CPU HAT. If the address space has
4848 		 * XHATs attached, change attributes for all of them,
4849 		 * just in case
4850 		 */
4851 		ASSERT(hat->sfmmu_as != NULL);
4852 		if (hat->sfmmu_as->a_xhat != NULL)
4853 			xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4854 	}
4855 
4856 	sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4857 }
4858 
4859 /*
4860  * Change attributes on an address range to that specified by attr and mode.
4861  */
4862 static void
4863 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4864 	int mode)
4865 {
4866 	struct hmehash_bucket *hmebp;
4867 	hmeblk_tag hblktag;
4868 	int hmeshift, hashno = 1;
4869 	struct hme_blk *hmeblkp, *list = NULL;
4870 	caddr_t endaddr;
4871 	cpuset_t cpuset;
4872 	demap_range_t dmr;
4873 
4874 	CPUSET_ZERO(cpuset);
4875 
4876 	ASSERT((sfmmup == ksfmmup) ||
4877 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4878 	ASSERT((len & MMU_PAGEOFFSET) == 0);
4879 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4880 
4881 	if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4882 	    ((addr + len) > (caddr_t)USERLIMIT)) {
4883 		panic("user addr %p in kernel space",
4884 		    (void *)addr);
4885 	}
4886 
4887 	endaddr = addr + len;
4888 	hblktag.htag_id = sfmmup;
4889 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4890 	DEMAP_RANGE_INIT(sfmmup, &dmr);
4891 
4892 	while (addr < endaddr) {
4893 		hmeshift = HME_HASH_SHIFT(hashno);
4894 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4895 		hblktag.htag_rehash = hashno;
4896 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4897 
4898 		SFMMU_HASH_LOCK(hmebp);
4899 
4900 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4901 		if (hmeblkp != NULL) {
4902 			ASSERT(!hmeblkp->hblk_shared);
4903 			/*
4904 			 * We've encountered a shadow hmeblk so skip the range
4905 			 * of the next smaller mapping size.
4906 			 */
4907 			if (hmeblkp->hblk_shw_bit) {
4908 				ASSERT(sfmmup != ksfmmup);
4909 				ASSERT(hashno > 1);
4910 				addr = (caddr_t)P2END((uintptr_t)addr,
4911 				    TTEBYTES(hashno - 1));
4912 			} else {
4913 				addr = sfmmu_hblk_chgattr(sfmmup,
4914 				    hmeblkp, addr, endaddr, &dmr, attr, mode);
4915 			}
4916 			SFMMU_HASH_UNLOCK(hmebp);
4917 			hashno = 1;
4918 			continue;
4919 		}
4920 		SFMMU_HASH_UNLOCK(hmebp);
4921 
4922 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4923 			/*
4924 			 * We have traversed the whole list and rehashed
4925 			 * if necessary without finding the address to chgattr.
4926 			 * This is ok, so we increment the address by the
4927 			 * smallest hmeblk range for kernel mappings or for
4928 			 * user mappings with no large pages, and the largest
4929 			 * hmeblk range, to account for shadow hmeblks, for
4930 			 * user mappings with large pages and continue.
4931 			 */
4932 			if (sfmmup == ksfmmup)
4933 				addr = (caddr_t)P2END((uintptr_t)addr,
4934 				    TTEBYTES(1));
4935 			else
4936 				addr = (caddr_t)P2END((uintptr_t)addr,
4937 				    TTEBYTES(hashno));
4938 			hashno = 1;
4939 		} else {
4940 			hashno++;
4941 		}
4942 	}
4943 
4944 	sfmmu_hblks_list_purge(&list, 0);
4945 	DEMAP_RANGE_FLUSH(&dmr);
4946 	cpuset = sfmmup->sfmmu_cpusran;
4947 	xt_sync(cpuset);
4948 }
4949 
4950 /*
4951  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4952  * next addres that needs to be chgattr.
4953  * It should be called with the hash lock held.
4954  * XXX It should be possible to optimize chgattr by not flushing every time but
4955  * on the other hand:
4956  * 1. do one flush crosscall.
4957  * 2. only flush if we are increasing permissions (make sure this will work)
4958  */
4959 static caddr_t
4960 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4961 	caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4962 {
4963 	tte_t tte, tteattr, tteflags, ttemod;
4964 	struct sf_hment *sfhmep;
4965 	int ttesz;
4966 	struct page *pp = NULL;
4967 	kmutex_t *pml, *pmtx;
4968 	int ret;
4969 	int use_demap_range;
4970 #if defined(SF_ERRATA_57)
4971 	int check_exec;
4972 #endif
4973 
4974 	ASSERT(in_hblk_range(hmeblkp, addr));
4975 	ASSERT(hmeblkp->hblk_shw_bit == 0);
4976 	ASSERT(!hmeblkp->hblk_shared);
4977 
4978 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4979 	ttesz = get_hblk_ttesz(hmeblkp);
4980 
4981 	/*
4982 	 * Flush the current demap region if addresses have been
4983 	 * skipped or the page size doesn't match.
4984 	 */
4985 	use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4986 	if (use_demap_range) {
4987 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4988 	} else {
4989 		DEMAP_RANGE_FLUSH(dmrp);
4990 	}
4991 
4992 	tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4993 #if defined(SF_ERRATA_57)
4994 	check_exec = (sfmmup != ksfmmup) &&
4995 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4996 	    TTE_IS_EXECUTABLE(&tteattr);
4997 #endif
4998 	HBLKTOHME(sfhmep, hmeblkp, addr);
4999 	while (addr < endaddr) {
5000 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5001 		if (TTE_IS_VALID(&tte)) {
5002 			if ((tte.ll & tteflags.ll) == tteattr.ll) {
5003 				/*
5004 				 * if the new attr is the same as old
5005 				 * continue
5006 				 */
5007 				goto next_addr;
5008 			}
5009 			if (!TTE_IS_WRITABLE(&tteattr)) {
5010 				/*
5011 				 * make sure we clear hw modify bit if we
5012 				 * removing write protections
5013 				 */
5014 				tteflags.tte_intlo |= TTE_HWWR_INT;
5015 			}
5016 
5017 			pml = NULL;
5018 			pp = sfhmep->hme_page;
5019 			if (pp) {
5020 				pml = sfmmu_mlist_enter(pp);
5021 			}
5022 
5023 			if (pp != sfhmep->hme_page) {
5024 				/*
5025 				 * tte must have been unloaded.
5026 				 */
5027 				ASSERT(pml);
5028 				sfmmu_mlist_exit(pml);
5029 				continue;
5030 			}
5031 
5032 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5033 
5034 			ttemod = tte;
5035 			ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
5036 			ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
5037 
5038 #if defined(SF_ERRATA_57)
5039 			if (check_exec && addr < errata57_limit)
5040 				ttemod.tte_exec_perm = 0;
5041 #endif
5042 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5043 			    &sfhmep->hme_tte);
5044 
5045 			if (ret < 0) {
5046 				/* tte changed underneath us */
5047 				if (pml) {
5048 					sfmmu_mlist_exit(pml);
5049 				}
5050 				continue;
5051 			}
5052 
5053 			if ((tteflags.tte_intlo & TTE_HWWR_INT) ||
5054 			    (TTE_EXECUTED(&tte) &&
5055 			    !TTE_IS_EXECUTABLE(&ttemod))) {
5056 				/*
5057 				 * need to sync if clearing modify/exec bit.
5058 				 */
5059 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5060 			}
5061 
5062 			if (pp && PP_ISRO(pp)) {
5063 				if (tteattr.tte_intlo & TTE_WRPRM_INT) {
5064 					pmtx = sfmmu_page_enter(pp);
5065 					PP_CLRRO(pp);
5066 					sfmmu_page_exit(pmtx);
5067 				}
5068 			}
5069 
5070 			if (ret > 0 && use_demap_range) {
5071 				DEMAP_RANGE_MARKPG(dmrp, addr);
5072 			} else if (ret > 0) {
5073 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5074 			}
5075 
5076 			if (pml) {
5077 				sfmmu_mlist_exit(pml);
5078 			}
5079 		}
5080 next_addr:
5081 		addr += TTEBYTES(ttesz);
5082 		sfhmep++;
5083 		DEMAP_RANGE_NEXTPG(dmrp);
5084 	}
5085 	return (addr);
5086 }
5087 
5088 /*
5089  * This routine converts virtual attributes to physical ones.  It will
5090  * update the tteflags field with the tte mask corresponding to the attributes
5091  * affected and it returns the new attributes.  It will also clear the modify
5092  * bit if we are taking away write permission.  This is necessary since the
5093  * modify bit is the hardware permission bit and we need to clear it in order
5094  * to detect write faults.
5095  */
5096 static uint64_t
5097 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
5098 {
5099 	tte_t ttevalue;
5100 
5101 	ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
5102 
5103 	switch (mode) {
5104 	case SFMMU_CHGATTR:
5105 		/* all attributes specified */
5106 		ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
5107 		ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
5108 		ttemaskp->tte_inthi = TTEINTHI_ATTR;
5109 		ttemaskp->tte_intlo = TTEINTLO_ATTR;
5110 		if (!icache_is_coherent) {
5111 			if (!(attr & PROT_EXEC)) {
5112 				TTE_SET_SOFTEXEC(ttemaskp);
5113 			} else {
5114 				TTE_CLR_EXEC(ttemaskp);
5115 				TTE_SET_SOFTEXEC(&ttevalue);
5116 			}
5117 		}
5118 		break;
5119 	case SFMMU_SETATTR:
5120 		ASSERT(!(attr & ~HAT_PROT_MASK));
5121 		ttemaskp->ll = 0;
5122 		ttevalue.ll = 0;
5123 		/*
5124 		 * a valid tte implies exec and read for sfmmu
5125 		 * so no need to do anything about them.
5126 		 * since priviledged access implies user access
5127 		 * PROT_USER doesn't make sense either.
5128 		 */
5129 		if (attr & PROT_WRITE) {
5130 			ttemaskp->tte_intlo |= TTE_WRPRM_INT;
5131 			ttevalue.tte_intlo |= TTE_WRPRM_INT;
5132 		}
5133 		break;
5134 	case SFMMU_CLRATTR:
5135 		/* attributes will be nand with current ones */
5136 		if (attr & ~(PROT_WRITE | PROT_USER)) {
5137 			panic("sfmmu: attr %x not supported", attr);
5138 		}
5139 		ttemaskp->ll = 0;
5140 		ttevalue.ll = 0;
5141 		if (attr & PROT_WRITE) {
5142 			/* clear both writable and modify bit */
5143 			ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
5144 		}
5145 		if (attr & PROT_USER) {
5146 			ttemaskp->tte_intlo |= TTE_PRIV_INT;
5147 			ttevalue.tte_intlo |= TTE_PRIV_INT;
5148 		}
5149 		break;
5150 	default:
5151 		panic("sfmmu_vtop_attr: bad mode %x", mode);
5152 	}
5153 	ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
5154 	return (ttevalue.ll);
5155 }
5156 
5157 static uint_t
5158 sfmmu_ptov_attr(tte_t *ttep)
5159 {
5160 	uint_t attr;
5161 
5162 	ASSERT(TTE_IS_VALID(ttep));
5163 
5164 	attr = PROT_READ;
5165 
5166 	if (TTE_IS_WRITABLE(ttep)) {
5167 		attr |= PROT_WRITE;
5168 	}
5169 	if (TTE_IS_EXECUTABLE(ttep)) {
5170 		attr |= PROT_EXEC;
5171 	}
5172 	if (TTE_IS_SOFTEXEC(ttep)) {
5173 		attr |= PROT_EXEC;
5174 	}
5175 	if (!TTE_IS_PRIVILEGED(ttep)) {
5176 		attr |= PROT_USER;
5177 	}
5178 	if (TTE_IS_NFO(ttep)) {
5179 		attr |= HAT_NOFAULT;
5180 	}
5181 	if (TTE_IS_NOSYNC(ttep)) {
5182 		attr |= HAT_NOSYNC;
5183 	}
5184 	if (TTE_IS_SIDEFFECT(ttep)) {
5185 		attr |= SFMMU_SIDEFFECT;
5186 	}
5187 	if (!TTE_IS_VCACHEABLE(ttep)) {
5188 		attr |= SFMMU_UNCACHEVTTE;
5189 	}
5190 	if (!TTE_IS_PCACHEABLE(ttep)) {
5191 		attr |= SFMMU_UNCACHEPTTE;
5192 	}
5193 	return (attr);
5194 }
5195 
5196 /*
5197  * hat_chgprot is a deprecated hat call.  New segment drivers
5198  * should store all attributes and use hat_*attr calls.
5199  *
5200  * Change the protections in the virtual address range
5201  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
5202  * then remove write permission, leaving the other
5203  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
5204  *
5205  */
5206 void
5207 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
5208 {
5209 	struct hmehash_bucket *hmebp;
5210 	hmeblk_tag hblktag;
5211 	int hmeshift, hashno = 1;
5212 	struct hme_blk *hmeblkp, *list = NULL;
5213 	caddr_t endaddr;
5214 	cpuset_t cpuset;
5215 	demap_range_t dmr;
5216 
5217 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5218 	ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
5219 
5220 	if (sfmmup->sfmmu_xhat_provider) {
5221 		XHAT_CHGPROT(sfmmup, addr, len, vprot);
5222 		return;
5223 	} else {
5224 		/*
5225 		 * This must be a CPU HAT. If the address space has
5226 		 * XHATs attached, change attributes for all of them,
5227 		 * just in case
5228 		 */
5229 		ASSERT(sfmmup->sfmmu_as != NULL);
5230 		if (sfmmup->sfmmu_as->a_xhat != NULL)
5231 			xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
5232 	}
5233 
5234 	CPUSET_ZERO(cpuset);
5235 
5236 	if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
5237 	    ((addr + len) > (caddr_t)USERLIMIT)) {
5238 		panic("user addr %p vprot %x in kernel space",
5239 		    (void *)addr, vprot);
5240 	}
5241 	endaddr = addr + len;
5242 	hblktag.htag_id = sfmmup;
5243 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5244 	DEMAP_RANGE_INIT(sfmmup, &dmr);
5245 
5246 	while (addr < endaddr) {
5247 		hmeshift = HME_HASH_SHIFT(hashno);
5248 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5249 		hblktag.htag_rehash = hashno;
5250 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5251 
5252 		SFMMU_HASH_LOCK(hmebp);
5253 
5254 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5255 		if (hmeblkp != NULL) {
5256 			ASSERT(!hmeblkp->hblk_shared);
5257 			/*
5258 			 * We've encountered a shadow hmeblk so skip the range
5259 			 * of the next smaller mapping size.
5260 			 */
5261 			if (hmeblkp->hblk_shw_bit) {
5262 				ASSERT(sfmmup != ksfmmup);
5263 				ASSERT(hashno > 1);
5264 				addr = (caddr_t)P2END((uintptr_t)addr,
5265 				    TTEBYTES(hashno - 1));
5266 			} else {
5267 				addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
5268 				    addr, endaddr, &dmr, vprot);
5269 			}
5270 			SFMMU_HASH_UNLOCK(hmebp);
5271 			hashno = 1;
5272 			continue;
5273 		}
5274 		SFMMU_HASH_UNLOCK(hmebp);
5275 
5276 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5277 			/*
5278 			 * We have traversed the whole list and rehashed
5279 			 * if necessary without finding the address to chgprot.
5280 			 * This is ok so we increment the address by the
5281 			 * smallest hmeblk range for kernel mappings and the
5282 			 * largest hmeblk range, to account for shadow hmeblks,
5283 			 * for user mappings and continue.
5284 			 */
5285 			if (sfmmup == ksfmmup)
5286 				addr = (caddr_t)P2END((uintptr_t)addr,
5287 				    TTEBYTES(1));
5288 			else
5289 				addr = (caddr_t)P2END((uintptr_t)addr,
5290 				    TTEBYTES(hashno));
5291 			hashno = 1;
5292 		} else {
5293 			hashno++;
5294 		}
5295 	}
5296 
5297 	sfmmu_hblks_list_purge(&list, 0);
5298 	DEMAP_RANGE_FLUSH(&dmr);
5299 	cpuset = sfmmup->sfmmu_cpusran;
5300 	xt_sync(cpuset);
5301 }
5302 
5303 /*
5304  * This function chgprots a range of addresses in an hmeblk.  It returns the
5305  * next addres that needs to be chgprot.
5306  * It should be called with the hash lock held.
5307  * XXX It shold be possible to optimize chgprot by not flushing every time but
5308  * on the other hand:
5309  * 1. do one flush crosscall.
5310  * 2. only flush if we are increasing permissions (make sure this will work)
5311  */
5312 static caddr_t
5313 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5314 	caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
5315 {
5316 	uint_t pprot;
5317 	tte_t tte, ttemod;
5318 	struct sf_hment *sfhmep;
5319 	uint_t tteflags;
5320 	int ttesz;
5321 	struct page *pp = NULL;
5322 	kmutex_t *pml, *pmtx;
5323 	int ret;
5324 	int use_demap_range;
5325 #if defined(SF_ERRATA_57)
5326 	int check_exec;
5327 #endif
5328 
5329 	ASSERT(in_hblk_range(hmeblkp, addr));
5330 	ASSERT(hmeblkp->hblk_shw_bit == 0);
5331 	ASSERT(!hmeblkp->hblk_shared);
5332 
5333 #ifdef DEBUG
5334 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5335 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
5336 		panic("sfmmu_hblk_chgprot: partial chgprot of large page");
5337 	}
5338 #endif /* DEBUG */
5339 
5340 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5341 	ttesz = get_hblk_ttesz(hmeblkp);
5342 
5343 	pprot = sfmmu_vtop_prot(vprot, &tteflags);
5344 #if defined(SF_ERRATA_57)
5345 	check_exec = (sfmmup != ksfmmup) &&
5346 	    AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
5347 	    ((vprot & PROT_EXEC) == PROT_EXEC);
5348 #endif
5349 	HBLKTOHME(sfhmep, hmeblkp, addr);
5350 
5351 	/*
5352 	 * Flush the current demap region if addresses have been
5353 	 * skipped or the page size doesn't match.
5354 	 */
5355 	use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
5356 	if (use_demap_range) {
5357 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5358 	} else {
5359 		DEMAP_RANGE_FLUSH(dmrp);
5360 	}
5361 
5362 	while (addr < endaddr) {
5363 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
5364 		if (TTE_IS_VALID(&tte)) {
5365 			if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
5366 				/*
5367 				 * if the new protection is the same as old
5368 				 * continue
5369 				 */
5370 				goto next_addr;
5371 			}
5372 			pml = NULL;
5373 			pp = sfhmep->hme_page;
5374 			if (pp) {
5375 				pml = sfmmu_mlist_enter(pp);
5376 			}
5377 			if (pp != sfhmep->hme_page) {
5378 				/*
5379 				 * tte most have been unloaded
5380 				 * underneath us.  Recheck
5381 				 */
5382 				ASSERT(pml);
5383 				sfmmu_mlist_exit(pml);
5384 				continue;
5385 			}
5386 
5387 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5388 
5389 			ttemod = tte;
5390 			TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
5391 			ASSERT(TTE_IS_SOFTEXEC(&tte) ==
5392 			    TTE_IS_SOFTEXEC(&ttemod));
5393 			ASSERT(TTE_IS_EXECUTABLE(&tte) ==
5394 			    TTE_IS_EXECUTABLE(&ttemod));
5395 
5396 #if defined(SF_ERRATA_57)
5397 			if (check_exec && addr < errata57_limit)
5398 				ttemod.tte_exec_perm = 0;
5399 #endif
5400 			ret = sfmmu_modifytte_try(&tte, &ttemod,
5401 			    &sfhmep->hme_tte);
5402 
5403 			if (ret < 0) {
5404 				/* tte changed underneath us */
5405 				if (pml) {
5406 					sfmmu_mlist_exit(pml);
5407 				}
5408 				continue;
5409 			}
5410 
5411 			if (tteflags & TTE_HWWR_INT) {
5412 				/*
5413 				 * need to sync if we are clearing modify bit.
5414 				 */
5415 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
5416 			}
5417 
5418 			if (pp && PP_ISRO(pp)) {
5419 				if (pprot & TTE_WRPRM_INT) {
5420 					pmtx = sfmmu_page_enter(pp);
5421 					PP_CLRRO(pp);
5422 					sfmmu_page_exit(pmtx);
5423 				}
5424 			}
5425 
5426 			if (ret > 0 && use_demap_range) {
5427 				DEMAP_RANGE_MARKPG(dmrp, addr);
5428 			} else if (ret > 0) {
5429 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5430 			}
5431 
5432 			if (pml) {
5433 				sfmmu_mlist_exit(pml);
5434 			}
5435 		}
5436 next_addr:
5437 		addr += TTEBYTES(ttesz);
5438 		sfhmep++;
5439 		DEMAP_RANGE_NEXTPG(dmrp);
5440 	}
5441 	return (addr);
5442 }
5443 
5444 /*
5445  * This routine is deprecated and should only be used by hat_chgprot.
5446  * The correct routine is sfmmu_vtop_attr.
5447  * This routine converts virtual page protections to physical ones.  It will
5448  * update the tteflags field with the tte mask corresponding to the protections
5449  * affected and it returns the new protections.  It will also clear the modify
5450  * bit if we are taking away write permission.  This is necessary since the
5451  * modify bit is the hardware permission bit and we need to clear it in order
5452  * to detect write faults.
5453  * It accepts the following special protections:
5454  * ~PROT_WRITE = remove write permissions.
5455  * ~PROT_USER = remove user permissions.
5456  */
5457 static uint_t
5458 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
5459 {
5460 	if (vprot == (uint_t)~PROT_WRITE) {
5461 		*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
5462 		return (0);		/* will cause wrprm to be cleared */
5463 	}
5464 	if (vprot == (uint_t)~PROT_USER) {
5465 		*tteflagsp = TTE_PRIV_INT;
5466 		return (0);		/* will cause privprm to be cleared */
5467 	}
5468 	if ((vprot == 0) || (vprot == PROT_USER) ||
5469 	    ((vprot & PROT_ALL) != vprot)) {
5470 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5471 	}
5472 
5473 	switch (vprot) {
5474 	case (PROT_READ):
5475 	case (PROT_EXEC):
5476 	case (PROT_EXEC | PROT_READ):
5477 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5478 		return (TTE_PRIV_INT); 		/* set prv and clr wrt */
5479 	case (PROT_WRITE):
5480 	case (PROT_WRITE | PROT_READ):
5481 	case (PROT_EXEC | PROT_WRITE):
5482 	case (PROT_EXEC | PROT_WRITE | PROT_READ):
5483 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5484 		return (TTE_PRIV_INT | TTE_WRPRM_INT); 	/* set prv and wrt */
5485 	case (PROT_USER | PROT_READ):
5486 	case (PROT_USER | PROT_EXEC):
5487 	case (PROT_USER | PROT_EXEC | PROT_READ):
5488 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5489 		return (0); 			/* clr prv and wrt */
5490 	case (PROT_USER | PROT_WRITE):
5491 	case (PROT_USER | PROT_WRITE | PROT_READ):
5492 	case (PROT_USER | PROT_EXEC | PROT_WRITE):
5493 	case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
5494 		*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5495 		return (TTE_WRPRM_INT); 	/* clr prv and set wrt */
5496 	default:
5497 		panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5498 	}
5499 	return (0);
5500 }
5501 
5502 /*
5503  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
5504  * the normal algorithm would take too long for a very large VA range with
5505  * few real mappings. This routine just walks thru all HMEs in the global
5506  * hash table to find and remove mappings.
5507  */
5508 static void
5509 hat_unload_large_virtual(
5510 	struct hat		*sfmmup,
5511 	caddr_t			startaddr,
5512 	size_t			len,
5513 	uint_t			flags,
5514 	hat_callback_t		*callback)
5515 {
5516 	struct hmehash_bucket *hmebp;
5517 	struct hme_blk *hmeblkp;
5518 	struct hme_blk *pr_hblk = NULL;
5519 	struct hme_blk *nx_hblk;
5520 	struct hme_blk *list = NULL;
5521 	int i;
5522 	demap_range_t dmr, *dmrp;
5523 	cpuset_t cpuset;
5524 	caddr_t	endaddr = startaddr + len;
5525 	caddr_t	sa;
5526 	caddr_t	ea;
5527 	caddr_t	cb_sa[MAX_CB_ADDR];
5528 	caddr_t	cb_ea[MAX_CB_ADDR];
5529 	int	addr_cnt = 0;
5530 	int	a = 0;
5531 
5532 	if (sfmmup->sfmmu_free) {
5533 		dmrp = NULL;
5534 	} else {
5535 		dmrp = &dmr;
5536 		DEMAP_RANGE_INIT(sfmmup, dmrp);
5537 	}
5538 
5539 	/*
5540 	 * Loop through all the hash buckets of HME blocks looking for matches.
5541 	 */
5542 	for (i = 0; i <= UHMEHASH_SZ; i++) {
5543 		hmebp = &uhme_hash[i];
5544 		SFMMU_HASH_LOCK(hmebp);
5545 		hmeblkp = hmebp->hmeblkp;
5546 		pr_hblk = NULL;
5547 		while (hmeblkp) {
5548 			nx_hblk = hmeblkp->hblk_next;
5549 
5550 			/*
5551 			 * skip if not this context, if a shadow block or
5552 			 * if the mapping is not in the requested range
5553 			 */
5554 			if (hmeblkp->hblk_tag.htag_id != sfmmup ||
5555 			    hmeblkp->hblk_shw_bit ||
5556 			    (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
5557 			    (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
5558 				pr_hblk = hmeblkp;
5559 				goto next_block;
5560 			}
5561 
5562 			ASSERT(!hmeblkp->hblk_shared);
5563 			/*
5564 			 * unload if there are any current valid mappings
5565 			 */
5566 			if (hmeblkp->hblk_vcnt != 0 ||
5567 			    hmeblkp->hblk_hmecnt != 0)
5568 				(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
5569 				    sa, ea, dmrp, flags);
5570 
5571 			/*
5572 			 * on unmap we also release the HME block itself, once
5573 			 * all mappings are gone.
5574 			 */
5575 			if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
5576 			    !hmeblkp->hblk_vcnt &&
5577 			    !hmeblkp->hblk_hmecnt) {
5578 				ASSERT(!hmeblkp->hblk_lckcnt);
5579 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5580 				    &list, 0);
5581 			} else {
5582 				pr_hblk = hmeblkp;
5583 			}
5584 
5585 			if (callback == NULL)
5586 				goto next_block;
5587 
5588 			/*
5589 			 * HME blocks may span more than one page, but we may be
5590 			 * unmapping only one page, so check for a smaller range
5591 			 * for the callback
5592 			 */
5593 			if (sa < startaddr)
5594 				sa = startaddr;
5595 			if (--ea > endaddr)
5596 				ea = endaddr - 1;
5597 
5598 			cb_sa[addr_cnt] = sa;
5599 			cb_ea[addr_cnt] = ea;
5600 			if (++addr_cnt == MAX_CB_ADDR) {
5601 				if (dmrp != NULL) {
5602 					DEMAP_RANGE_FLUSH(dmrp);
5603 					cpuset = sfmmup->sfmmu_cpusran;
5604 					xt_sync(cpuset);
5605 				}
5606 
5607 				for (a = 0; a < MAX_CB_ADDR; ++a) {
5608 					callback->hcb_start_addr = cb_sa[a];
5609 					callback->hcb_end_addr = cb_ea[a];
5610 					callback->hcb_function(callback);
5611 				}
5612 				addr_cnt = 0;
5613 			}
5614 
5615 next_block:
5616 			hmeblkp = nx_hblk;
5617 		}
5618 		SFMMU_HASH_UNLOCK(hmebp);
5619 	}
5620 
5621 	sfmmu_hblks_list_purge(&list, 0);
5622 	if (dmrp != NULL) {
5623 		DEMAP_RANGE_FLUSH(dmrp);
5624 		cpuset = sfmmup->sfmmu_cpusran;
5625 		xt_sync(cpuset);
5626 	}
5627 
5628 	for (a = 0; a < addr_cnt; ++a) {
5629 		callback->hcb_start_addr = cb_sa[a];
5630 		callback->hcb_end_addr = cb_ea[a];
5631 		callback->hcb_function(callback);
5632 	}
5633 
5634 	/*
5635 	 * Check TSB and TLB page sizes if the process isn't exiting.
5636 	 */
5637 	if (!sfmmup->sfmmu_free)
5638 		sfmmu_check_page_sizes(sfmmup, 0);
5639 }
5640 
5641 /*
5642  * Unload all the mappings in the range [addr..addr+len). addr and len must
5643  * be MMU_PAGESIZE aligned.
5644  */
5645 
5646 extern struct seg *segkmap;
5647 #define	ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
5648 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
5649 
5650 
5651 void
5652 hat_unload_callback(
5653 	struct hat *sfmmup,
5654 	caddr_t addr,
5655 	size_t len,
5656 	uint_t flags,
5657 	hat_callback_t *callback)
5658 {
5659 	struct hmehash_bucket *hmebp;
5660 	hmeblk_tag hblktag;
5661 	int hmeshift, hashno, iskernel;
5662 	struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
5663 	caddr_t endaddr;
5664 	cpuset_t cpuset;
5665 	int addr_count = 0;
5666 	int a;
5667 	caddr_t cb_start_addr[MAX_CB_ADDR];
5668 	caddr_t cb_end_addr[MAX_CB_ADDR];
5669 	int issegkmap = ISSEGKMAP(sfmmup, addr);
5670 	demap_range_t dmr, *dmrp;
5671 
5672 	if (sfmmup->sfmmu_xhat_provider) {
5673 		XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
5674 		return;
5675 	} else {
5676 		/*
5677 		 * This must be a CPU HAT. If the address space has
5678 		 * XHATs attached, unload the mappings for all of them,
5679 		 * just in case
5680 		 */
5681 		ASSERT(sfmmup->sfmmu_as != NULL);
5682 		if (sfmmup->sfmmu_as->a_xhat != NULL)
5683 			xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
5684 			    len, flags, callback);
5685 	}
5686 
5687 	ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
5688 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5689 
5690 	ASSERT(sfmmup != NULL);
5691 	ASSERT((len & MMU_PAGEOFFSET) == 0);
5692 	ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5693 
5694 	/*
5695 	 * Probing through a large VA range (say 63 bits) will be slow, even
5696 	 * at 4 Meg steps between the probes. So, when the virtual address range
5697 	 * is very large, search the HME entries for what to unload.
5698 	 *
5699 	 *	len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5700 	 *
5701 	 *	UHMEHASH_SZ is number of hash buckets to examine
5702 	 *
5703 	 */
5704 	if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5705 		hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5706 		return;
5707 	}
5708 
5709 	CPUSET_ZERO(cpuset);
5710 
5711 	/*
5712 	 * If the process is exiting, we can save a lot of fuss since
5713 	 * we'll flush the TLB when we free the ctx anyway.
5714 	 */
5715 	if (sfmmup->sfmmu_free)
5716 		dmrp = NULL;
5717 	else
5718 		dmrp = &dmr;
5719 
5720 	DEMAP_RANGE_INIT(sfmmup, dmrp);
5721 	endaddr = addr + len;
5722 	hblktag.htag_id = sfmmup;
5723 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5724 
5725 	/*
5726 	 * It is likely for the vm to call unload over a wide range of
5727 	 * addresses that are actually very sparsely populated by
5728 	 * translations.  In order to speed this up the sfmmu hat supports
5729 	 * the concept of shadow hmeblks. Dummy large page hmeblks that
5730 	 * correspond to actual small translations are allocated at tteload
5731 	 * time and are referred to as shadow hmeblks.  Now, during unload
5732 	 * time, we first check if we have a shadow hmeblk for that
5733 	 * translation.  The absence of one means the corresponding address
5734 	 * range is empty and can be skipped.
5735 	 *
5736 	 * The kernel is an exception to above statement and that is why
5737 	 * we don't use shadow hmeblks and hash starting from the smallest
5738 	 * page size.
5739 	 */
5740 	if (sfmmup == KHATID) {
5741 		iskernel = 1;
5742 		hashno = TTE64K;
5743 	} else {
5744 		iskernel = 0;
5745 		if (mmu_page_sizes == max_mmu_page_sizes) {
5746 			hashno = TTE256M;
5747 		} else {
5748 			hashno = TTE4M;
5749 		}
5750 	}
5751 	while (addr < endaddr) {
5752 		hmeshift = HME_HASH_SHIFT(hashno);
5753 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5754 		hblktag.htag_rehash = hashno;
5755 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5756 
5757 		SFMMU_HASH_LOCK(hmebp);
5758 
5759 		HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
5760 		if (hmeblkp == NULL) {
5761 			/*
5762 			 * didn't find an hmeblk. skip the appropiate
5763 			 * address range.
5764 			 */
5765 			SFMMU_HASH_UNLOCK(hmebp);
5766 			if (iskernel) {
5767 				if (hashno < mmu_hashcnt) {
5768 					hashno++;
5769 					continue;
5770 				} else {
5771 					hashno = TTE64K;
5772 					addr = (caddr_t)roundup((uintptr_t)addr
5773 					    + 1, MMU_PAGESIZE64K);
5774 					continue;
5775 				}
5776 			}
5777 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5778 			    (1 << hmeshift));
5779 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5780 				ASSERT(hashno == TTE64K);
5781 				continue;
5782 			}
5783 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5784 				hashno = TTE512K;
5785 				continue;
5786 			}
5787 			if (mmu_page_sizes == max_mmu_page_sizes) {
5788 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5789 					hashno = TTE4M;
5790 					continue;
5791 				}
5792 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5793 					hashno = TTE32M;
5794 					continue;
5795 				}
5796 				hashno = TTE256M;
5797 				continue;
5798 			} else {
5799 				hashno = TTE4M;
5800 				continue;
5801 			}
5802 		}
5803 		ASSERT(hmeblkp);
5804 		ASSERT(!hmeblkp->hblk_shared);
5805 		if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5806 			/*
5807 			 * If the valid count is zero we can skip the range
5808 			 * mapped by this hmeblk.
5809 			 * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5810 			 * is used by segment drivers as a hint
5811 			 * that the mapping resource won't be used any longer.
5812 			 * The best example of this is during exit().
5813 			 */
5814 			addr = (caddr_t)roundup((uintptr_t)addr + 1,
5815 			    get_hblk_span(hmeblkp));
5816 			if ((flags & HAT_UNLOAD_UNMAP) ||
5817 			    (iskernel && !issegkmap)) {
5818 				sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5819 				    &list, 0);
5820 			}
5821 			SFMMU_HASH_UNLOCK(hmebp);
5822 
5823 			if (iskernel) {
5824 				hashno = TTE64K;
5825 				continue;
5826 			}
5827 			if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5828 				ASSERT(hashno == TTE64K);
5829 				continue;
5830 			}
5831 			if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5832 				hashno = TTE512K;
5833 				continue;
5834 			}
5835 			if (mmu_page_sizes == max_mmu_page_sizes) {
5836 				if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5837 					hashno = TTE4M;
5838 					continue;
5839 				}
5840 				if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5841 					hashno = TTE32M;
5842 					continue;
5843 				}
5844 				hashno = TTE256M;
5845 				continue;
5846 			} else {
5847 				hashno = TTE4M;
5848 				continue;
5849 			}
5850 		}
5851 		if (hmeblkp->hblk_shw_bit) {
5852 			/*
5853 			 * If we encounter a shadow hmeblk we know there is
5854 			 * smaller sized hmeblks mapping the same address space.
5855 			 * Decrement the hash size and rehash.
5856 			 */
5857 			ASSERT(sfmmup != KHATID);
5858 			hashno--;
5859 			SFMMU_HASH_UNLOCK(hmebp);
5860 			continue;
5861 		}
5862 
5863 		/*
5864 		 * track callback address ranges.
5865 		 * only start a new range when it's not contiguous
5866 		 */
5867 		if (callback != NULL) {
5868 			if (addr_count > 0 &&
5869 			    addr == cb_end_addr[addr_count - 1])
5870 				--addr_count;
5871 			else
5872 				cb_start_addr[addr_count] = addr;
5873 		}
5874 
5875 		addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5876 		    dmrp, flags);
5877 
5878 		if (callback != NULL)
5879 			cb_end_addr[addr_count++] = addr;
5880 
5881 		if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5882 		    !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5883 			sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 0);
5884 		}
5885 		SFMMU_HASH_UNLOCK(hmebp);
5886 
5887 		/*
5888 		 * Notify our caller as to exactly which pages
5889 		 * have been unloaded. We do these in clumps,
5890 		 * to minimize the number of xt_sync()s that need to occur.
5891 		 */
5892 		if (callback != NULL && addr_count == MAX_CB_ADDR) {
5893 			DEMAP_RANGE_FLUSH(dmrp);
5894 			if (dmrp != NULL) {
5895 				cpuset = sfmmup->sfmmu_cpusran;
5896 				xt_sync(cpuset);
5897 			}
5898 
5899 			for (a = 0; a < MAX_CB_ADDR; ++a) {
5900 				callback->hcb_start_addr = cb_start_addr[a];
5901 				callback->hcb_end_addr = cb_end_addr[a];
5902 				callback->hcb_function(callback);
5903 			}
5904 			addr_count = 0;
5905 		}
5906 		if (iskernel) {
5907 			hashno = TTE64K;
5908 			continue;
5909 		}
5910 		if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5911 			ASSERT(hashno == TTE64K);
5912 			continue;
5913 		}
5914 		if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5915 			hashno = TTE512K;
5916 			continue;
5917 		}
5918 		if (mmu_page_sizes == max_mmu_page_sizes) {
5919 			if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5920 				hashno = TTE4M;
5921 				continue;
5922 			}
5923 			if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5924 				hashno = TTE32M;
5925 				continue;
5926 			}
5927 			hashno = TTE256M;
5928 		} else {
5929 			hashno = TTE4M;
5930 		}
5931 	}
5932 
5933 	sfmmu_hblks_list_purge(&list, 0);
5934 	DEMAP_RANGE_FLUSH(dmrp);
5935 	if (dmrp != NULL) {
5936 		cpuset = sfmmup->sfmmu_cpusran;
5937 		xt_sync(cpuset);
5938 	}
5939 	if (callback && addr_count != 0) {
5940 		for (a = 0; a < addr_count; ++a) {
5941 			callback->hcb_start_addr = cb_start_addr[a];
5942 			callback->hcb_end_addr = cb_end_addr[a];
5943 			callback->hcb_function(callback);
5944 		}
5945 	}
5946 
5947 	/*
5948 	 * Check TSB and TLB page sizes if the process isn't exiting.
5949 	 */
5950 	if (!sfmmup->sfmmu_free)
5951 		sfmmu_check_page_sizes(sfmmup, 0);
5952 }
5953 
5954 /*
5955  * Unload all the mappings in the range [addr..addr+len). addr and len must
5956  * be MMU_PAGESIZE aligned.
5957  */
5958 void
5959 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5960 {
5961 	if (sfmmup->sfmmu_xhat_provider) {
5962 		XHAT_UNLOAD(sfmmup, addr, len, flags);
5963 		return;
5964 	}
5965 	hat_unload_callback(sfmmup, addr, len, flags, NULL);
5966 }
5967 
5968 
5969 /*
5970  * Find the largest mapping size for this page.
5971  */
5972 int
5973 fnd_mapping_sz(page_t *pp)
5974 {
5975 	int sz;
5976 	int p_index;
5977 
5978 	p_index = PP_MAPINDEX(pp);
5979 
5980 	sz = 0;
5981 	p_index >>= 1;	/* don't care about 8K bit */
5982 	for (; p_index; p_index >>= 1) {
5983 		sz++;
5984 	}
5985 
5986 	return (sz);
5987 }
5988 
5989 /*
5990  * This function unloads a range of addresses for an hmeblk.
5991  * It returns the next address to be unloaded.
5992  * It should be called with the hash lock held.
5993  */
5994 static caddr_t
5995 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5996 	caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5997 {
5998 	tte_t	tte, ttemod;
5999 	struct	sf_hment *sfhmep;
6000 	int	ttesz;
6001 	long	ttecnt;
6002 	page_t *pp;
6003 	kmutex_t *pml;
6004 	int ret;
6005 	int use_demap_range;
6006 
6007 	ASSERT(in_hblk_range(hmeblkp, addr));
6008 	ASSERT(!hmeblkp->hblk_shw_bit);
6009 	ASSERT(sfmmup != NULL || hmeblkp->hblk_shared);
6010 	ASSERT(sfmmup == NULL || !hmeblkp->hblk_shared);
6011 	ASSERT(dmrp == NULL || !hmeblkp->hblk_shared);
6012 
6013 #ifdef DEBUG
6014 	if (get_hblk_ttesz(hmeblkp) != TTE8K &&
6015 	    (endaddr < get_hblk_endaddr(hmeblkp))) {
6016 		panic("sfmmu_hblk_unload: partial unload of large page");
6017 	}
6018 #endif /* DEBUG */
6019 
6020 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6021 	ttesz = get_hblk_ttesz(hmeblkp);
6022 
6023 	use_demap_range = ((dmrp == NULL) ||
6024 	    (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
6025 
6026 	if (use_demap_range) {
6027 		DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
6028 	} else {
6029 		DEMAP_RANGE_FLUSH(dmrp);
6030 	}
6031 	ttecnt = 0;
6032 	HBLKTOHME(sfhmep, hmeblkp, addr);
6033 
6034 	while (addr < endaddr) {
6035 		pml = NULL;
6036 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6037 		if (TTE_IS_VALID(&tte)) {
6038 			pp = sfhmep->hme_page;
6039 			if (pp != NULL) {
6040 				pml = sfmmu_mlist_enter(pp);
6041 			}
6042 
6043 			/*
6044 			 * Verify if hme still points to 'pp' now that
6045 			 * we have p_mapping lock.
6046 			 */
6047 			if (sfhmep->hme_page != pp) {
6048 				if (pp != NULL && sfhmep->hme_page != NULL) {
6049 					ASSERT(pml != NULL);
6050 					sfmmu_mlist_exit(pml);
6051 					/* Re-start this iteration. */
6052 					continue;
6053 				}
6054 				ASSERT((pp != NULL) &&
6055 				    (sfhmep->hme_page == NULL));
6056 				goto tte_unloaded;
6057 			}
6058 
6059 			/*
6060 			 * This point on we have both HASH and p_mapping
6061 			 * lock.
6062 			 */
6063 			ASSERT(pp == sfhmep->hme_page);
6064 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6065 
6066 			/*
6067 			 * We need to loop on modify tte because it is
6068 			 * possible for pagesync to come along and
6069 			 * change the software bits beneath us.
6070 			 *
6071 			 * Page_unload can also invalidate the tte after
6072 			 * we read tte outside of p_mapping lock.
6073 			 */
6074 again:
6075 			ttemod = tte;
6076 
6077 			TTE_SET_INVALID(&ttemod);
6078 			ret = sfmmu_modifytte_try(&tte, &ttemod,
6079 			    &sfhmep->hme_tte);
6080 
6081 			if (ret <= 0) {
6082 				if (TTE_IS_VALID(&tte)) {
6083 					ASSERT(ret < 0);
6084 					goto again;
6085 				}
6086 				if (pp != NULL) {
6087 					panic("sfmmu_hblk_unload: pp = 0x%p "
6088 					    "tte became invalid under mlist"
6089 					    " lock = 0x%p", (void *)pp,
6090 					    (void *)pml);
6091 				}
6092 				continue;
6093 			}
6094 
6095 			if (!(flags & HAT_UNLOAD_NOSYNC) ||
6096 			    (pp != NULL && TTE_EXECUTED(&tte))) {
6097 				sfmmu_ttesync(sfmmup, addr, &tte, pp);
6098 			}
6099 
6100 			/*
6101 			 * Ok- we invalidated the tte. Do the rest of the job.
6102 			 */
6103 			ttecnt++;
6104 
6105 			if (flags & HAT_UNLOAD_UNLOCK) {
6106 				ASSERT(hmeblkp->hblk_lckcnt > 0);
6107 				atomic_add_32(&hmeblkp->hblk_lckcnt, -1);
6108 				HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
6109 			}
6110 
6111 			/*
6112 			 * Normally we would need to flush the page
6113 			 * from the virtual cache at this point in
6114 			 * order to prevent a potential cache alias
6115 			 * inconsistency.
6116 			 * The particular scenario we need to worry
6117 			 * about is:
6118 			 * Given:  va1 and va2 are two virtual address
6119 			 * that alias and map the same physical
6120 			 * address.
6121 			 * 1.   mapping exists from va1 to pa and data
6122 			 * has been read into the cache.
6123 			 * 2.   unload va1.
6124 			 * 3.   load va2 and modify data using va2.
6125 			 * 4    unload va2.
6126 			 * 5.   load va1 and reference data.  Unless we
6127 			 * flush the data cache when we unload we will
6128 			 * get stale data.
6129 			 * Fortunately, page coloring eliminates the
6130 			 * above scenario by remembering the color a
6131 			 * physical page was last or is currently
6132 			 * mapped to.  Now, we delay the flush until
6133 			 * the loading of translations.  Only when the
6134 			 * new translation is of a different color
6135 			 * are we forced to flush.
6136 			 */
6137 			if (use_demap_range) {
6138 				/*
6139 				 * Mark this page as needing a demap.
6140 				 */
6141 				DEMAP_RANGE_MARKPG(dmrp, addr);
6142 			} else {
6143 				ASSERT(sfmmup != NULL);
6144 				ASSERT(!hmeblkp->hblk_shared);
6145 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
6146 				    sfmmup->sfmmu_free, 0);
6147 			}
6148 
6149 			if (pp) {
6150 				/*
6151 				 * Remove the hment from the mapping list
6152 				 */
6153 				ASSERT(hmeblkp->hblk_hmecnt > 0);
6154 
6155 				/*
6156 				 * Again, we cannot
6157 				 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
6158 				 */
6159 				HME_SUB(sfhmep, pp);
6160 				membar_stst();
6161 				atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6162 			}
6163 
6164 			ASSERT(hmeblkp->hblk_vcnt > 0);
6165 			atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6166 
6167 			ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6168 			    !hmeblkp->hblk_lckcnt);
6169 
6170 #ifdef VAC
6171 			if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
6172 				if (PP_ISTNC(pp)) {
6173 					/*
6174 					 * If page was temporary
6175 					 * uncached, try to recache
6176 					 * it. Note that HME_SUB() was
6177 					 * called above so p_index and
6178 					 * mlist had been updated.
6179 					 */
6180 					conv_tnc(pp, ttesz);
6181 				} else if (pp->p_mapping == NULL) {
6182 					ASSERT(kpm_enable);
6183 					/*
6184 					 * Page is marked to be in VAC conflict
6185 					 * to an existing kpm mapping and/or is
6186 					 * kpm mapped using only the regular
6187 					 * pagesize.
6188 					 */
6189 					sfmmu_kpm_hme_unload(pp);
6190 				}
6191 			}
6192 #endif	/* VAC */
6193 		} else if ((pp = sfhmep->hme_page) != NULL) {
6194 				/*
6195 				 * TTE is invalid but the hme
6196 				 * still exists. let pageunload
6197 				 * complete its job.
6198 				 */
6199 				ASSERT(pml == NULL);
6200 				pml = sfmmu_mlist_enter(pp);
6201 				if (sfhmep->hme_page != NULL) {
6202 					sfmmu_mlist_exit(pml);
6203 					continue;
6204 				}
6205 				ASSERT(sfhmep->hme_page == NULL);
6206 		} else if (hmeblkp->hblk_hmecnt != 0) {
6207 			/*
6208 			 * pageunload may have not finished decrementing
6209 			 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
6210 			 * wait for pageunload to finish. Rely on pageunload
6211 			 * to decrement hblk_hmecnt after hblk_vcnt.
6212 			 */
6213 			pfn_t pfn = TTE_TO_TTEPFN(&tte);
6214 			ASSERT(pml == NULL);
6215 			if (pf_is_memory(pfn)) {
6216 				pp = page_numtopp_nolock(pfn);
6217 				if (pp != NULL) {
6218 					pml = sfmmu_mlist_enter(pp);
6219 					sfmmu_mlist_exit(pml);
6220 					pml = NULL;
6221 				}
6222 			}
6223 		}
6224 
6225 tte_unloaded:
6226 		/*
6227 		 * At this point, the tte we are looking at
6228 		 * should be unloaded, and hme has been unlinked
6229 		 * from page too. This is important because in
6230 		 * pageunload, it does ttesync() then HME_SUB.
6231 		 * We need to make sure HME_SUB has been completed
6232 		 * so we know ttesync() has been completed. Otherwise,
6233 		 * at exit time, after return from hat layer, VM will
6234 		 * release as structure which hat_setstat() (called
6235 		 * by ttesync()) needs.
6236 		 */
6237 #ifdef DEBUG
6238 		{
6239 			tte_t	dtte;
6240 
6241 			ASSERT(sfhmep->hme_page == NULL);
6242 
6243 			sfmmu_copytte(&sfhmep->hme_tte, &dtte);
6244 			ASSERT(!TTE_IS_VALID(&dtte));
6245 		}
6246 #endif
6247 
6248 		if (pml) {
6249 			sfmmu_mlist_exit(pml);
6250 		}
6251 
6252 		addr += TTEBYTES(ttesz);
6253 		sfhmep++;
6254 		DEMAP_RANGE_NEXTPG(dmrp);
6255 	}
6256 	/*
6257 	 * For shared hmeblks this routine is only called when region is freed
6258 	 * and no longer referenced.  So no need to decrement ttecnt
6259 	 * in the region structure here.
6260 	 */
6261 	if (ttecnt > 0 && sfmmup != NULL) {
6262 		atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
6263 	}
6264 	return (addr);
6265 }
6266 
6267 /*
6268  * Synchronize all the mappings in the range [addr..addr+len).
6269  * Can be called with clearflag having two states:
6270  * HAT_SYNC_DONTZERO means just return the rm stats
6271  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
6272  */
6273 void
6274 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
6275 {
6276 	struct hmehash_bucket *hmebp;
6277 	hmeblk_tag hblktag;
6278 	int hmeshift, hashno = 1;
6279 	struct hme_blk *hmeblkp, *list = NULL;
6280 	caddr_t endaddr;
6281 	cpuset_t cpuset;
6282 
6283 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
6284 	ASSERT((sfmmup == ksfmmup) ||
6285 	    AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
6286 	ASSERT((len & MMU_PAGEOFFSET) == 0);
6287 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6288 	    (clearflag == HAT_SYNC_ZERORM));
6289 
6290 	CPUSET_ZERO(cpuset);
6291 
6292 	endaddr = addr + len;
6293 	hblktag.htag_id = sfmmup;
6294 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
6295 
6296 	/*
6297 	 * Spitfire supports 4 page sizes.
6298 	 * Most pages are expected to be of the smallest page
6299 	 * size (8K) and these will not need to be rehashed. 64K
6300 	 * pages also don't need to be rehashed because the an hmeblk
6301 	 * spans 64K of address space. 512K pages might need 1 rehash and
6302 	 * and 4M pages 2 rehashes.
6303 	 */
6304 	while (addr < endaddr) {
6305 		hmeshift = HME_HASH_SHIFT(hashno);
6306 		hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
6307 		hblktag.htag_rehash = hashno;
6308 		hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
6309 
6310 		SFMMU_HASH_LOCK(hmebp);
6311 
6312 		HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
6313 		if (hmeblkp != NULL) {
6314 			ASSERT(!hmeblkp->hblk_shared);
6315 			/*
6316 			 * We've encountered a shadow hmeblk so skip the range
6317 			 * of the next smaller mapping size.
6318 			 */
6319 			if (hmeblkp->hblk_shw_bit) {
6320 				ASSERT(sfmmup != ksfmmup);
6321 				ASSERT(hashno > 1);
6322 				addr = (caddr_t)P2END((uintptr_t)addr,
6323 				    TTEBYTES(hashno - 1));
6324 			} else {
6325 				addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
6326 				    addr, endaddr, clearflag);
6327 			}
6328 			SFMMU_HASH_UNLOCK(hmebp);
6329 			hashno = 1;
6330 			continue;
6331 		}
6332 		SFMMU_HASH_UNLOCK(hmebp);
6333 
6334 		if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
6335 			/*
6336 			 * We have traversed the whole list and rehashed
6337 			 * if necessary without finding the address to sync.
6338 			 * This is ok so we increment the address by the
6339 			 * smallest hmeblk range for kernel mappings and the
6340 			 * largest hmeblk range, to account for shadow hmeblks,
6341 			 * for user mappings and continue.
6342 			 */
6343 			if (sfmmup == ksfmmup)
6344 				addr = (caddr_t)P2END((uintptr_t)addr,
6345 				    TTEBYTES(1));
6346 			else
6347 				addr = (caddr_t)P2END((uintptr_t)addr,
6348 				    TTEBYTES(hashno));
6349 			hashno = 1;
6350 		} else {
6351 			hashno++;
6352 		}
6353 	}
6354 	sfmmu_hblks_list_purge(&list, 0);
6355 	cpuset = sfmmup->sfmmu_cpusran;
6356 	xt_sync(cpuset);
6357 }
6358 
6359 static caddr_t
6360 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
6361 	caddr_t endaddr, int clearflag)
6362 {
6363 	tte_t	tte, ttemod;
6364 	struct sf_hment *sfhmep;
6365 	int ttesz;
6366 	struct page *pp;
6367 	kmutex_t *pml;
6368 	int ret;
6369 
6370 	ASSERT(hmeblkp->hblk_shw_bit == 0);
6371 	ASSERT(!hmeblkp->hblk_shared);
6372 
6373 	endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6374 
6375 	ttesz = get_hblk_ttesz(hmeblkp);
6376 	HBLKTOHME(sfhmep, hmeblkp, addr);
6377 
6378 	while (addr < endaddr) {
6379 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6380 		if (TTE_IS_VALID(&tte)) {
6381 			pml = NULL;
6382 			pp = sfhmep->hme_page;
6383 			if (pp) {
6384 				pml = sfmmu_mlist_enter(pp);
6385 			}
6386 			if (pp != sfhmep->hme_page) {
6387 				/*
6388 				 * tte most have been unloaded
6389 				 * underneath us.  Recheck
6390 				 */
6391 				ASSERT(pml);
6392 				sfmmu_mlist_exit(pml);
6393 				continue;
6394 			}
6395 
6396 			ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6397 
6398 			if (clearflag == HAT_SYNC_ZERORM) {
6399 				ttemod = tte;
6400 				TTE_CLR_RM(&ttemod);
6401 				ret = sfmmu_modifytte_try(&tte, &ttemod,
6402 				    &sfhmep->hme_tte);
6403 				if (ret < 0) {
6404 					if (pml) {
6405 						sfmmu_mlist_exit(pml);
6406 					}
6407 					continue;
6408 				}
6409 
6410 				if (ret > 0) {
6411 					sfmmu_tlb_demap(addr, sfmmup,
6412 					    hmeblkp, 0, 0);
6413 				}
6414 			}
6415 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
6416 			if (pml) {
6417 				sfmmu_mlist_exit(pml);
6418 			}
6419 		}
6420 		addr += TTEBYTES(ttesz);
6421 		sfhmep++;
6422 	}
6423 	return (addr);
6424 }
6425 
6426 /*
6427  * This function will sync a tte to the page struct and it will
6428  * update the hat stats. Currently it allows us to pass a NULL pp
6429  * and we will simply update the stats.  We may want to change this
6430  * so we only keep stats for pages backed by pp's.
6431  */
6432 static void
6433 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
6434 {
6435 	uint_t rm = 0;
6436 	int sz = TTE_CSZ(ttep);
6437 	pgcnt_t	npgs;
6438 
6439 	ASSERT(TTE_IS_VALID(ttep));
6440 
6441 	if (!TTE_IS_NOSYNC(ttep)) {
6442 
6443 		if (TTE_IS_REF(ttep))
6444 			rm |= P_REF;
6445 
6446 		if (TTE_IS_MOD(ttep))
6447 			rm |= P_MOD;
6448 
6449 		if (rm != 0) {
6450 			if (sfmmup != NULL && sfmmup->sfmmu_rmstat) {
6451 				int i;
6452 				caddr_t	vaddr = addr;
6453 
6454 				for (i = 0; i < TTEPAGES(sz); i++) {
6455 					hat_setstat(sfmmup->sfmmu_as, vaddr,
6456 					    MMU_PAGESIZE, rm);
6457 					vaddr += MMU_PAGESIZE;
6458 				}
6459 			}
6460 		}
6461 	}
6462 
6463 	if (!pp)
6464 		return;
6465 
6466 	/*
6467 	 * If software says this page is executable, and the page was
6468 	 * in fact executed (indicated by hardware exec permission
6469 	 * being enabled), then set P_EXEC on the page to remember
6470 	 * that it was executed. The I$ will be flushed when the page
6471 	 * is reassigned.
6472 	 */
6473 	if (TTE_EXECUTED(ttep)) {
6474 		rm |= P_EXEC;
6475 	} else if (rm == 0) {
6476 		return;
6477 	}
6478 
6479 	/*
6480 	 * XXX I want to use cas to update nrm bits but they
6481 	 * currently belong in common/vm and not in hat where
6482 	 * they should be.
6483 	 * The nrm bits are protected by the same mutex as
6484 	 * the one that protects the page's mapping list.
6485 	 */
6486 	ASSERT(sfmmu_mlist_held(pp));
6487 	/*
6488 	 * If the tte is for a large page, we need to sync all the
6489 	 * pages covered by the tte.
6490 	 */
6491 	if (sz != TTE8K) {
6492 		ASSERT(pp->p_szc != 0);
6493 		pp = PP_GROUPLEADER(pp, sz);
6494 		ASSERT(sfmmu_mlist_held(pp));
6495 	}
6496 
6497 	/* Get number of pages from tte size. */
6498 	npgs = TTEPAGES(sz);
6499 
6500 	do {
6501 		ASSERT(pp);
6502 		ASSERT(sfmmu_mlist_held(pp));
6503 		if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
6504 		    ((rm & P_MOD) != 0 && !PP_ISMOD(pp)) ||
6505 		    ((rm & P_EXEC) != 0 && !PP_ISEXEC(pp)))
6506 			hat_page_setattr(pp, rm);
6507 
6508 		/*
6509 		 * Are we done? If not, we must have a large mapping.
6510 		 * For large mappings we need to sync the rest of the pages
6511 		 * covered by this tte; goto the next page.
6512 		 */
6513 	} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
6514 }
6515 
6516 /*
6517  * Execute pre-callback handler of each pa_hment linked to pp
6518  *
6519  * Inputs:
6520  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
6521  *   capture_cpus: pointer to return value (below)
6522  *
6523  * Returns:
6524  *   Propagates the subsystem callback return values back to the caller;
6525  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
6526  *   is zero if all of the pa_hments are of a type that do not require
6527  *   capturing CPUs prior to suspending the mapping, else it is 1.
6528  */
6529 static int
6530 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
6531 {
6532 	struct sf_hment	*sfhmep;
6533 	struct pa_hment *pahmep;
6534 	int (*f)(caddr_t, uint_t, uint_t, void *);
6535 	int		ret;
6536 	id_t		id;
6537 	int		locked = 0;
6538 	kmutex_t	*pml;
6539 
6540 	ASSERT(PAGE_EXCL(pp));
6541 	if (!sfmmu_mlist_held(pp)) {
6542 		pml = sfmmu_mlist_enter(pp);
6543 		locked = 1;
6544 	}
6545 
6546 	if (capture_cpus)
6547 		*capture_cpus = 0;
6548 
6549 top:
6550 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6551 		/*
6552 		 * skip sf_hments corresponding to VA<->PA mappings;
6553 		 * for pa_hment's, hme_tte.ll is zero
6554 		 */
6555 		if (!IS_PAHME(sfhmep))
6556 			continue;
6557 
6558 		pahmep = sfhmep->hme_data;
6559 		ASSERT(pahmep != NULL);
6560 
6561 		/*
6562 		 * skip if pre-handler has been called earlier in this loop
6563 		 */
6564 		if (pahmep->flags & flag)
6565 			continue;
6566 
6567 		id = pahmep->cb_id;
6568 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6569 		if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
6570 			*capture_cpus = 1;
6571 		if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
6572 			pahmep->flags |= flag;
6573 			continue;
6574 		}
6575 
6576 		/*
6577 		 * Drop the mapping list lock to avoid locking order issues.
6578 		 */
6579 		if (locked)
6580 			sfmmu_mlist_exit(pml);
6581 
6582 		ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
6583 		if (ret != 0)
6584 			return (ret);	/* caller must do the cleanup */
6585 
6586 		if (locked) {
6587 			pml = sfmmu_mlist_enter(pp);
6588 			pahmep->flags |= flag;
6589 			goto top;
6590 		}
6591 
6592 		pahmep->flags |= flag;
6593 	}
6594 
6595 	if (locked)
6596 		sfmmu_mlist_exit(pml);
6597 
6598 	return (0);
6599 }
6600 
6601 /*
6602  * Execute post-callback handler of each pa_hment linked to pp
6603  *
6604  * Same overall assumptions and restrictions apply as for
6605  * hat_pageprocess_precallbacks().
6606  */
6607 static void
6608 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
6609 {
6610 	pfn_t pgpfn = pp->p_pagenum;
6611 	pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
6612 	pfn_t newpfn;
6613 	struct sf_hment *sfhmep;
6614 	struct pa_hment *pahmep;
6615 	int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
6616 	id_t	id;
6617 	int	locked = 0;
6618 	kmutex_t *pml;
6619 
6620 	ASSERT(PAGE_EXCL(pp));
6621 	if (!sfmmu_mlist_held(pp)) {
6622 		pml = sfmmu_mlist_enter(pp);
6623 		locked = 1;
6624 	}
6625 
6626 top:
6627 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6628 		/*
6629 		 * skip sf_hments corresponding to VA<->PA mappings;
6630 		 * for pa_hment's, hme_tte.ll is zero
6631 		 */
6632 		if (!IS_PAHME(sfhmep))
6633 			continue;
6634 
6635 		pahmep = sfhmep->hme_data;
6636 		ASSERT(pahmep != NULL);
6637 
6638 		if ((pahmep->flags & flag) == 0)
6639 			continue;
6640 
6641 		pahmep->flags &= ~flag;
6642 
6643 		id = pahmep->cb_id;
6644 		ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6645 		if ((f = sfmmu_cb_table[id].posthandler) == NULL)
6646 			continue;
6647 
6648 		/*
6649 		 * Convert the base page PFN into the constituent PFN
6650 		 * which is needed by the callback handler.
6651 		 */
6652 		newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
6653 
6654 		/*
6655 		 * Drop the mapping list lock to avoid locking order issues.
6656 		 */
6657 		if (locked)
6658 			sfmmu_mlist_exit(pml);
6659 
6660 		if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
6661 		    != 0)
6662 			panic("sfmmu: posthandler failed");
6663 
6664 		if (locked) {
6665 			pml = sfmmu_mlist_enter(pp);
6666 			goto top;
6667 		}
6668 	}
6669 
6670 	if (locked)
6671 		sfmmu_mlist_exit(pml);
6672 }
6673 
6674 /*
6675  * Suspend locked kernel mapping
6676  */
6677 void
6678 hat_pagesuspend(struct page *pp)
6679 {
6680 	struct sf_hment *sfhmep;
6681 	sfmmu_t *sfmmup;
6682 	tte_t tte, ttemod;
6683 	struct hme_blk *hmeblkp;
6684 	caddr_t addr;
6685 	int index, cons;
6686 	cpuset_t cpuset;
6687 
6688 	ASSERT(PAGE_EXCL(pp));
6689 	ASSERT(sfmmu_mlist_held(pp));
6690 
6691 	mutex_enter(&kpr_suspendlock);
6692 
6693 	/*
6694 	 * We're about to suspend a kernel mapping so mark this thread as
6695 	 * non-traceable by DTrace. This prevents us from running into issues
6696 	 * with probe context trying to touch a suspended page
6697 	 * in the relocation codepath itself.
6698 	 */
6699 	curthread->t_flag |= T_DONTDTRACE;
6700 
6701 	index = PP_MAPINDEX(pp);
6702 	cons = TTE8K;
6703 
6704 retry:
6705 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6706 
6707 		if (IS_PAHME(sfhmep))
6708 			continue;
6709 
6710 		if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6711 			continue;
6712 
6713 		/*
6714 		 * Loop until we successfully set the suspend bit in
6715 		 * the TTE.
6716 		 */
6717 again:
6718 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
6719 		ASSERT(TTE_IS_VALID(&tte));
6720 
6721 		ttemod = tte;
6722 		TTE_SET_SUSPEND(&ttemod);
6723 		if (sfmmu_modifytte_try(&tte, &ttemod,
6724 		    &sfhmep->hme_tte) < 0)
6725 			goto again;
6726 
6727 		/*
6728 		 * Invalidate TSB entry
6729 		 */
6730 		hmeblkp = sfmmu_hmetohblk(sfhmep);
6731 
6732 		sfmmup = hblktosfmmu(hmeblkp);
6733 		ASSERT(sfmmup == ksfmmup);
6734 		ASSERT(!hmeblkp->hblk_shared);
6735 
6736 		addr = tte_to_vaddr(hmeblkp, tte);
6737 
6738 		/*
6739 		 * No need to make sure that the TSB for this sfmmu is
6740 		 * not being relocated since it is ksfmmup and thus it
6741 		 * will never be relocated.
6742 		 */
6743 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
6744 
6745 		/*
6746 		 * Update xcall stats
6747 		 */
6748 		cpuset = cpu_ready_set;
6749 		CPUSET_DEL(cpuset, CPU->cpu_id);
6750 
6751 		/* LINTED: constant in conditional context */
6752 		SFMMU_XCALL_STATS(ksfmmup);
6753 
6754 		/*
6755 		 * Flush TLB entry on remote CPU's
6756 		 */
6757 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6758 		    (uint64_t)ksfmmup);
6759 		xt_sync(cpuset);
6760 
6761 		/*
6762 		 * Flush TLB entry on local CPU
6763 		 */
6764 		vtag_flushpage(addr, (uint64_t)ksfmmup);
6765 	}
6766 
6767 	while (index != 0) {
6768 		index = index >> 1;
6769 		if (index != 0)
6770 			cons++;
6771 		if (index & 0x1) {
6772 			pp = PP_GROUPLEADER(pp, cons);
6773 			goto retry;
6774 		}
6775 	}
6776 }
6777 
6778 #ifdef	DEBUG
6779 
6780 #define	N_PRLE	1024
6781 struct prle {
6782 	page_t *targ;
6783 	page_t *repl;
6784 	int status;
6785 	int pausecpus;
6786 	hrtime_t whence;
6787 };
6788 
6789 static struct prle page_relocate_log[N_PRLE];
6790 static int prl_entry;
6791 static kmutex_t prl_mutex;
6792 
6793 #define	PAGE_RELOCATE_LOG(t, r, s, p)					\
6794 	mutex_enter(&prl_mutex);					\
6795 	page_relocate_log[prl_entry].targ = *(t);			\
6796 	page_relocate_log[prl_entry].repl = *(r);			\
6797 	page_relocate_log[prl_entry].status = (s);			\
6798 	page_relocate_log[prl_entry].pausecpus = (p);			\
6799 	page_relocate_log[prl_entry].whence = gethrtime();		\
6800 	prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;	\
6801 	mutex_exit(&prl_mutex);
6802 
6803 #else	/* !DEBUG */
6804 #define	PAGE_RELOCATE_LOG(t, r, s, p)
6805 #endif
6806 
6807 /*
6808  * Core Kernel Page Relocation Algorithm
6809  *
6810  * Input:
6811  *
6812  * target : 	constituent pages are SE_EXCL locked.
6813  * replacement:	constituent pages are SE_EXCL locked.
6814  *
6815  * Output:
6816  *
6817  * nrelocp:	number of pages relocated
6818  */
6819 int
6820 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6821 {
6822 	page_t		*targ, *repl;
6823 	page_t		*tpp, *rpp;
6824 	kmutex_t	*low, *high;
6825 	spgcnt_t	npages, i;
6826 	page_t		*pl = NULL;
6827 	uint_t		ppattr;
6828 	int		old_pil;
6829 	cpuset_t	cpuset;
6830 	int		cap_cpus;
6831 	int		ret;
6832 #ifdef VAC
6833 	int		cflags = 0;
6834 #endif
6835 
6836 	if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
6837 		PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6838 		return (EAGAIN);
6839 	}
6840 
6841 	mutex_enter(&kpr_mutex);
6842 	kreloc_thread = curthread;
6843 
6844 	targ = *target;
6845 	repl = *replacement;
6846 	ASSERT(repl != NULL);
6847 	ASSERT(targ->p_szc == repl->p_szc);
6848 
6849 	npages = page_get_pagecnt(targ->p_szc);
6850 
6851 	/*
6852 	 * unload VA<->PA mappings that are not locked
6853 	 */
6854 	tpp = targ;
6855 	for (i = 0; i < npages; i++) {
6856 		(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6857 		tpp++;
6858 	}
6859 
6860 	/*
6861 	 * Do "presuspend" callbacks, in a context from which we can still
6862 	 * block as needed. Note that we don't hold the mapping list lock
6863 	 * of "targ" at this point due to potential locking order issues;
6864 	 * we assume that between the hat_pageunload() above and holding
6865 	 * the SE_EXCL lock that the mapping list *cannot* change at this
6866 	 * point.
6867 	 */
6868 	ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6869 	if (ret != 0) {
6870 		/*
6871 		 * EIO translates to fatal error, for all others cleanup
6872 		 * and return EAGAIN.
6873 		 */
6874 		ASSERT(ret != EIO);
6875 		hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6876 		PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6877 		kreloc_thread = NULL;
6878 		mutex_exit(&kpr_mutex);
6879 		return (EAGAIN);
6880 	}
6881 
6882 	/*
6883 	 * acquire p_mapping list lock for both the target and replacement
6884 	 * root pages.
6885 	 *
6886 	 * low and high refer to the need to grab the mlist locks in a
6887 	 * specific order in order to prevent race conditions.  Thus the
6888 	 * lower lock must be grabbed before the higher lock.
6889 	 *
6890 	 * This will block hat_unload's accessing p_mapping list.  Since
6891 	 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6892 	 * blocked.  Thus, no one else will be accessing the p_mapping list
6893 	 * while we suspend and reload the locked mapping below.
6894 	 */
6895 	tpp = targ;
6896 	rpp = repl;
6897 	sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6898 
6899 	kpreempt_disable();
6900 
6901 	/*
6902 	 * We raise our PIL to 13 so that we don't get captured by
6903 	 * another CPU or pinned by an interrupt thread.  We can't go to
6904 	 * PIL 14 since the nexus driver(s) may need to interrupt at
6905 	 * that level in the case of IOMMU pseudo mappings.
6906 	 */
6907 	cpuset = cpu_ready_set;
6908 	CPUSET_DEL(cpuset, CPU->cpu_id);
6909 	if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6910 		old_pil = splr(XCALL_PIL);
6911 	} else {
6912 		old_pil = -1;
6913 		xc_attention(cpuset);
6914 	}
6915 	ASSERT(getpil() == XCALL_PIL);
6916 
6917 	/*
6918 	 * Now do suspend callbacks. In the case of an IOMMU mapping
6919 	 * this will suspend all DMA activity to the page while it is
6920 	 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6921 	 * may be captured at this point we should have acquired any needed
6922 	 * locks in the presuspend callback.
6923 	 */
6924 	ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6925 	if (ret != 0) {
6926 		repl = targ;
6927 		goto suspend_fail;
6928 	}
6929 
6930 	/*
6931 	 * Raise the PIL yet again, this time to block all high-level
6932 	 * interrupts on this CPU. This is necessary to prevent an
6933 	 * interrupt routine from pinning the thread which holds the
6934 	 * mapping suspended and then touching the suspended page.
6935 	 *
6936 	 * Once the page is suspended we also need to be careful to
6937 	 * avoid calling any functions which touch any seg_kmem memory
6938 	 * since that memory may be backed by the very page we are
6939 	 * relocating in here!
6940 	 */
6941 	hat_pagesuspend(targ);
6942 
6943 	/*
6944 	 * Now that we are confident everybody has stopped using this page,
6945 	 * copy the page contents.  Note we use a physical copy to prevent
6946 	 * locking issues and to avoid fpRAS because we can't handle it in
6947 	 * this context.
6948 	 */
6949 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6950 #ifdef VAC
6951 		/*
6952 		 * If the replacement has a different vcolor than
6953 		 * the one being replacd, we need to handle VAC
6954 		 * consistency for it just as we were setting up
6955 		 * a new mapping to it.
6956 		 */
6957 		if ((PP_GET_VCOLOR(rpp) != NO_VCOLOR) &&
6958 		    (tpp->p_vcolor != rpp->p_vcolor) &&
6959 		    !CacheColor_IsFlushed(cflags, PP_GET_VCOLOR(rpp))) {
6960 			CacheColor_SetFlushed(cflags, PP_GET_VCOLOR(rpp));
6961 			sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6962 			    rpp->p_pagenum);
6963 		}
6964 #endif
6965 		/*
6966 		 * Copy the contents of the page.
6967 		 */
6968 		ppcopy_kernel(tpp, rpp);
6969 	}
6970 
6971 	tpp = targ;
6972 	rpp = repl;
6973 	for (i = 0; i < npages; i++, tpp++, rpp++) {
6974 		/*
6975 		 * Copy attributes.  VAC consistency was handled above,
6976 		 * if required.
6977 		 */
6978 		ppattr = hat_page_getattr(tpp, (P_MOD | P_REF | P_RO));
6979 		page_clr_all_props(rpp, 0);
6980 		page_set_props(rpp, ppattr);
6981 		rpp->p_index = tpp->p_index;
6982 		tpp->p_index = 0;
6983 #ifdef VAC
6984 		rpp->p_vcolor = tpp->p_vcolor;
6985 #endif
6986 	}
6987 
6988 	/*
6989 	 * First, unsuspend the page, if we set the suspend bit, and transfer
6990 	 * the mapping list from the target page to the replacement page.
6991 	 * Next process postcallbacks; since pa_hment's are linked only to the
6992 	 * p_mapping list of root page, we don't iterate over the constituent
6993 	 * pages.
6994 	 */
6995 	hat_pagereload(targ, repl);
6996 
6997 suspend_fail:
6998 	hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6999 
7000 	/*
7001 	 * Now lower our PIL and release any captured CPUs since we
7002 	 * are out of the "danger zone".  After this it will again be
7003 	 * safe to acquire adaptive mutex locks, or to drop them...
7004 	 */
7005 	if (old_pil != -1) {
7006 		splx(old_pil);
7007 	} else {
7008 		xc_dismissed(cpuset);
7009 	}
7010 
7011 	kpreempt_enable();
7012 
7013 	sfmmu_mlist_reloc_exit(low, high);
7014 
7015 	/*
7016 	 * Postsuspend callbacks should drop any locks held across
7017 	 * the suspend callbacks.  As before, we don't hold the mapping
7018 	 * list lock at this point.. our assumption is that the mapping
7019 	 * list still can't change due to our holding SE_EXCL lock and
7020 	 * there being no unlocked mappings left. Hence the restriction
7021 	 * on calling context to hat_delete_callback()
7022 	 */
7023 	hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
7024 	if (ret != 0) {
7025 		/*
7026 		 * The second presuspend call failed: we got here through
7027 		 * the suspend_fail label above.
7028 		 */
7029 		ASSERT(ret != EIO);
7030 		PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
7031 		kreloc_thread = NULL;
7032 		mutex_exit(&kpr_mutex);
7033 		return (EAGAIN);
7034 	}
7035 
7036 	/*
7037 	 * Now that we're out of the performance critical section we can
7038 	 * take care of updating the hash table, since we still
7039 	 * hold all the pages locked SE_EXCL at this point we
7040 	 * needn't worry about things changing out from under us.
7041 	 */
7042 	tpp = targ;
7043 	rpp = repl;
7044 	for (i = 0; i < npages; i++, tpp++, rpp++) {
7045 
7046 		/*
7047 		 * replace targ with replacement in page_hash table
7048 		 */
7049 		targ = tpp;
7050 		page_relocate_hash(rpp, targ);
7051 
7052 		/*
7053 		 * concatenate target; caller of platform_page_relocate()
7054 		 * expects target to be concatenated after returning.
7055 		 */
7056 		ASSERT(targ->p_next == targ);
7057 		ASSERT(targ->p_prev == targ);
7058 		page_list_concat(&pl, &targ);
7059 	}
7060 
7061 	ASSERT(*target == pl);
7062 	*nrelocp = npages;
7063 	PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
7064 	kreloc_thread = NULL;
7065 	mutex_exit(&kpr_mutex);
7066 	return (0);
7067 }
7068 
7069 /*
7070  * Called when stray pa_hments are found attached to a page which is
7071  * being freed.  Notify the subsystem which attached the pa_hment of
7072  * the error if it registered a suitable handler, else panic.
7073  */
7074 static void
7075 sfmmu_pahment_leaked(struct pa_hment *pahmep)
7076 {
7077 	id_t cb_id = pahmep->cb_id;
7078 
7079 	ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
7080 	if (sfmmu_cb_table[cb_id].errhandler != NULL) {
7081 		if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
7082 		    HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
7083 			return;		/* non-fatal */
7084 	}
7085 	panic("pa_hment leaked: 0x%p", (void *)pahmep);
7086 }
7087 
7088 /*
7089  * Remove all mappings to page 'pp'.
7090  */
7091 int
7092 hat_pageunload(struct page *pp, uint_t forceflag)
7093 {
7094 	struct page *origpp = pp;
7095 	struct sf_hment *sfhme, *tmphme;
7096 	struct hme_blk *hmeblkp;
7097 	kmutex_t *pml;
7098 #ifdef VAC
7099 	kmutex_t *pmtx;
7100 #endif
7101 	cpuset_t cpuset, tset;
7102 	int index, cons;
7103 	int xhme_blks;
7104 	int pa_hments;
7105 
7106 	ASSERT(PAGE_EXCL(pp));
7107 
7108 retry_xhat:
7109 	tmphme = NULL;
7110 	xhme_blks = 0;
7111 	pa_hments = 0;
7112 	CPUSET_ZERO(cpuset);
7113 
7114 	pml = sfmmu_mlist_enter(pp);
7115 
7116 #ifdef VAC
7117 	if (pp->p_kpmref)
7118 		sfmmu_kpm_pageunload(pp);
7119 	ASSERT(!PP_ISMAPPED_KPM(pp));
7120 #endif
7121 
7122 	index = PP_MAPINDEX(pp);
7123 	cons = TTE8K;
7124 retry:
7125 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7126 		tmphme = sfhme->hme_next;
7127 
7128 		if (IS_PAHME(sfhme)) {
7129 			ASSERT(sfhme->hme_data != NULL);
7130 			pa_hments++;
7131 			continue;
7132 		}
7133 
7134 		hmeblkp = sfmmu_hmetohblk(sfhme);
7135 		if (hmeblkp->hblk_xhat_bit) {
7136 			struct xhat_hme_blk *xblk =
7137 			    (struct xhat_hme_blk *)hmeblkp;
7138 
7139 			(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
7140 			    pp, forceflag, XBLK2PROVBLK(xblk));
7141 
7142 			xhme_blks = 1;
7143 			continue;
7144 		}
7145 
7146 		/*
7147 		 * If there are kernel mappings don't unload them, they will
7148 		 * be suspended.
7149 		 */
7150 		if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
7151 		    hmeblkp->hblk_tag.htag_id == ksfmmup)
7152 			continue;
7153 
7154 		tset = sfmmu_pageunload(pp, sfhme, cons);
7155 		CPUSET_OR(cpuset, tset);
7156 	}
7157 
7158 	while (index != 0) {
7159 		index = index >> 1;
7160 		if (index != 0)
7161 			cons++;
7162 		if (index & 0x1) {
7163 			/* Go to leading page */
7164 			pp = PP_GROUPLEADER(pp, cons);
7165 			ASSERT(sfmmu_mlist_held(pp));
7166 			goto retry;
7167 		}
7168 	}
7169 
7170 	/*
7171 	 * cpuset may be empty if the page was only mapped by segkpm,
7172 	 * in which case we won't actually cross-trap.
7173 	 */
7174 	xt_sync(cpuset);
7175 
7176 	/*
7177 	 * The page should have no mappings at this point, unless
7178 	 * we were called from hat_page_relocate() in which case we
7179 	 * leave the locked mappings which will be suspended later.
7180 	 */
7181 	ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
7182 	    (forceflag == SFMMU_KERNEL_RELOC));
7183 
7184 #ifdef VAC
7185 	if (PP_ISTNC(pp)) {
7186 		if (cons == TTE8K) {
7187 			pmtx = sfmmu_page_enter(pp);
7188 			PP_CLRTNC(pp);
7189 			sfmmu_page_exit(pmtx);
7190 		} else {
7191 			conv_tnc(pp, cons);
7192 		}
7193 	}
7194 #endif	/* VAC */
7195 
7196 	if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
7197 		/*
7198 		 * Unlink any pa_hments and free them, calling back
7199 		 * the responsible subsystem to notify it of the error.
7200 		 * This can occur in situations such as drivers leaking
7201 		 * DMA handles: naughty, but common enough that we'd like
7202 		 * to keep the system running rather than bringing it
7203 		 * down with an obscure error like "pa_hment leaked"
7204 		 * which doesn't aid the user in debugging their driver.
7205 		 */
7206 		for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7207 			tmphme = sfhme->hme_next;
7208 			if (IS_PAHME(sfhme)) {
7209 				struct pa_hment *pahmep = sfhme->hme_data;
7210 				sfmmu_pahment_leaked(pahmep);
7211 				HME_SUB(sfhme, pp);
7212 				kmem_cache_free(pa_hment_cache, pahmep);
7213 			}
7214 		}
7215 
7216 		ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
7217 	}
7218 
7219 	sfmmu_mlist_exit(pml);
7220 
7221 	/*
7222 	 * XHAT may not have finished unloading pages
7223 	 * because some other thread was waiting for
7224 	 * mlist lock and XHAT_PAGEUNLOAD let it do
7225 	 * the job.
7226 	 */
7227 	if (xhme_blks) {
7228 		pp = origpp;
7229 		goto retry_xhat;
7230 	}
7231 
7232 	return (0);
7233 }
7234 
7235 cpuset_t
7236 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
7237 {
7238 	struct hme_blk *hmeblkp;
7239 	sfmmu_t *sfmmup;
7240 	tte_t tte, ttemod;
7241 #ifdef DEBUG
7242 	tte_t orig_old;
7243 #endif /* DEBUG */
7244 	caddr_t addr;
7245 	int ttesz;
7246 	int ret;
7247 	cpuset_t cpuset;
7248 
7249 	ASSERT(pp != NULL);
7250 	ASSERT(sfmmu_mlist_held(pp));
7251 	ASSERT(!PP_ISKAS(pp));
7252 
7253 	CPUSET_ZERO(cpuset);
7254 
7255 	hmeblkp = sfmmu_hmetohblk(sfhme);
7256 
7257 readtte:
7258 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7259 	if (TTE_IS_VALID(&tte)) {
7260 		sfmmup = hblktosfmmu(hmeblkp);
7261 		ttesz = get_hblk_ttesz(hmeblkp);
7262 		/*
7263 		 * Only unload mappings of 'cons' size.
7264 		 */
7265 		if (ttesz != cons)
7266 			return (cpuset);
7267 
7268 		/*
7269 		 * Note that we have p_mapping lock, but no hash lock here.
7270 		 * hblk_unload() has to have both hash lock AND p_mapping
7271 		 * lock before it tries to modify tte. So, the tte could
7272 		 * not become invalid in the sfmmu_modifytte_try() below.
7273 		 */
7274 		ttemod = tte;
7275 #ifdef DEBUG
7276 		orig_old = tte;
7277 #endif /* DEBUG */
7278 
7279 		TTE_SET_INVALID(&ttemod);
7280 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7281 		if (ret < 0) {
7282 #ifdef DEBUG
7283 			/* only R/M bits can change. */
7284 			chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
7285 #endif /* DEBUG */
7286 			goto readtte;
7287 		}
7288 
7289 		if (ret == 0) {
7290 			panic("pageunload: cas failed?");
7291 		}
7292 
7293 		addr = tte_to_vaddr(hmeblkp, tte);
7294 
7295 		if (hmeblkp->hblk_shared) {
7296 			sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7297 			uint_t rid = hmeblkp->hblk_tag.htag_rid;
7298 			sf_region_t *rgnp;
7299 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7300 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7301 			ASSERT(srdp != NULL);
7302 			rgnp = srdp->srd_hmergnp[rid];
7303 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7304 			cpuset = sfmmu_rgntlb_demap(addr, rgnp, hmeblkp, 1);
7305 			sfmmu_ttesync(NULL, addr, &tte, pp);
7306 			ASSERT(rgnp->rgn_ttecnt[ttesz] > 0);
7307 			atomic_add_long(&rgnp->rgn_ttecnt[ttesz], -1);
7308 		} else {
7309 			sfmmu_ttesync(sfmmup, addr, &tte, pp);
7310 			atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
7311 
7312 			/*
7313 			 * We need to flush the page from the virtual cache
7314 			 * in order to prevent a virtual cache alias
7315 			 * inconsistency. The particular scenario we need
7316 			 * to worry about is:
7317 			 * Given:  va1 and va2 are two virtual address that
7318 			 * alias and will map the same physical address.
7319 			 * 1.   mapping exists from va1 to pa and data has
7320 			 *	been read into the cache.
7321 			 * 2.   unload va1.
7322 			 * 3.   load va2 and modify data using va2.
7323 			 * 4    unload va2.
7324 			 * 5.   load va1 and reference data.  Unless we flush
7325 			 *	the data cache when we unload we will get
7326 			 *	stale data.
7327 			 * This scenario is taken care of by using virtual
7328 			 * page coloring.
7329 			 */
7330 			if (sfmmup->sfmmu_ismhat) {
7331 				/*
7332 				 * Flush TSBs, TLBs and caches
7333 				 * of every process
7334 				 * sharing this ism segment.
7335 				 */
7336 				sfmmu_hat_lock_all();
7337 				mutex_enter(&ism_mlist_lock);
7338 				kpreempt_disable();
7339 				sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
7340 				    pp->p_pagenum, CACHE_NO_FLUSH);
7341 				kpreempt_enable();
7342 				mutex_exit(&ism_mlist_lock);
7343 				sfmmu_hat_unlock_all();
7344 				cpuset = cpu_ready_set;
7345 			} else {
7346 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7347 				cpuset = sfmmup->sfmmu_cpusran;
7348 			}
7349 		}
7350 
7351 		/*
7352 		 * Hme_sub has to run after ttesync() and a_rss update.
7353 		 * See hblk_unload().
7354 		 */
7355 		HME_SUB(sfhme, pp);
7356 		membar_stst();
7357 
7358 		/*
7359 		 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
7360 		 * since pteload may have done a HME_ADD() right after
7361 		 * we did the HME_SUB() above. Hmecnt is now maintained
7362 		 * by cas only. no lock guranteed its value. The only
7363 		 * gurantee we have is the hmecnt should not be less than
7364 		 * what it should be so the hblk will not be taken away.
7365 		 * It's also important that we decremented the hmecnt after
7366 		 * we are done with hmeblkp so that this hmeblk won't be
7367 		 * stolen.
7368 		 */
7369 		ASSERT(hmeblkp->hblk_hmecnt > 0);
7370 		ASSERT(hmeblkp->hblk_vcnt > 0);
7371 		atomic_add_16(&hmeblkp->hblk_vcnt, -1);
7372 		atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
7373 		/*
7374 		 * This is bug 4063182.
7375 		 * XXX: fixme
7376 		 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
7377 		 *	!hmeblkp->hblk_lckcnt);
7378 		 */
7379 	} else {
7380 		panic("invalid tte? pp %p &tte %p",
7381 		    (void *)pp, (void *)&tte);
7382 	}
7383 
7384 	return (cpuset);
7385 }
7386 
7387 /*
7388  * While relocating a kernel page, this function will move the mappings
7389  * from tpp to dpp and modify any associated data with these mappings.
7390  * It also unsuspends the suspended kernel mapping.
7391  */
7392 static void
7393 hat_pagereload(struct page *tpp, struct page *dpp)
7394 {
7395 	struct sf_hment *sfhme;
7396 	tte_t tte, ttemod;
7397 	int index, cons;
7398 
7399 	ASSERT(getpil() == PIL_MAX);
7400 	ASSERT(sfmmu_mlist_held(tpp));
7401 	ASSERT(sfmmu_mlist_held(dpp));
7402 
7403 	index = PP_MAPINDEX(tpp);
7404 	cons = TTE8K;
7405 
7406 	/* Update real mappings to the page */
7407 retry:
7408 	for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
7409 		if (IS_PAHME(sfhme))
7410 			continue;
7411 		sfmmu_copytte(&sfhme->hme_tte, &tte);
7412 		ttemod = tte;
7413 
7414 		/*
7415 		 * replace old pfn with new pfn in TTE
7416 		 */
7417 		PFN_TO_TTE(ttemod, dpp->p_pagenum);
7418 
7419 		/*
7420 		 * clear suspend bit
7421 		 */
7422 		ASSERT(TTE_IS_SUSPEND(&ttemod));
7423 		TTE_CLR_SUSPEND(&ttemod);
7424 
7425 		if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
7426 			panic("hat_pagereload(): sfmmu_modifytte_try() failed");
7427 
7428 		/*
7429 		 * set hme_page point to new page
7430 		 */
7431 		sfhme->hme_page = dpp;
7432 	}
7433 
7434 	/*
7435 	 * move p_mapping list from old page to new page
7436 	 */
7437 	dpp->p_mapping = tpp->p_mapping;
7438 	tpp->p_mapping = NULL;
7439 	dpp->p_share = tpp->p_share;
7440 	tpp->p_share = 0;
7441 
7442 	while (index != 0) {
7443 		index = index >> 1;
7444 		if (index != 0)
7445 			cons++;
7446 		if (index & 0x1) {
7447 			tpp = PP_GROUPLEADER(tpp, cons);
7448 			dpp = PP_GROUPLEADER(dpp, cons);
7449 			goto retry;
7450 		}
7451 	}
7452 
7453 	curthread->t_flag &= ~T_DONTDTRACE;
7454 	mutex_exit(&kpr_suspendlock);
7455 }
7456 
7457 uint_t
7458 hat_pagesync(struct page *pp, uint_t clearflag)
7459 {
7460 	struct sf_hment *sfhme, *tmphme = NULL;
7461 	struct hme_blk *hmeblkp;
7462 	kmutex_t *pml;
7463 	cpuset_t cpuset, tset;
7464 	int	index, cons;
7465 	extern	ulong_t po_share;
7466 	page_t	*save_pp = pp;
7467 	int	stop_on_sh = 0;
7468 	uint_t	shcnt;
7469 
7470 	CPUSET_ZERO(cpuset);
7471 
7472 	if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
7473 		return (PP_GENERIC_ATTR(pp));
7474 	}
7475 
7476 	if ((clearflag & HAT_SYNC_ZERORM) == 0) {
7477 		if ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(pp)) {
7478 			return (PP_GENERIC_ATTR(pp));
7479 		}
7480 		if ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(pp)) {
7481 			return (PP_GENERIC_ATTR(pp));
7482 		}
7483 		if (clearflag & HAT_SYNC_STOPON_SHARED) {
7484 			if (pp->p_share > po_share) {
7485 				hat_page_setattr(pp, P_REF);
7486 				return (PP_GENERIC_ATTR(pp));
7487 			}
7488 			stop_on_sh = 1;
7489 			shcnt = 0;
7490 		}
7491 	}
7492 
7493 	clearflag &= ~HAT_SYNC_STOPON_SHARED;
7494 	pml = sfmmu_mlist_enter(pp);
7495 	index = PP_MAPINDEX(pp);
7496 	cons = TTE8K;
7497 retry:
7498 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7499 		/*
7500 		 * We need to save the next hment on the list since
7501 		 * it is possible for pagesync to remove an invalid hment
7502 		 * from the list.
7503 		 */
7504 		tmphme = sfhme->hme_next;
7505 		if (IS_PAHME(sfhme))
7506 			continue;
7507 		/*
7508 		 * If we are looking for large mappings and this hme doesn't
7509 		 * reach the range we are seeking, just ignore it.
7510 		 */
7511 		hmeblkp = sfmmu_hmetohblk(sfhme);
7512 		if (hmeblkp->hblk_xhat_bit)
7513 			continue;
7514 
7515 		if (hme_size(sfhme) < cons)
7516 			continue;
7517 
7518 		if (stop_on_sh) {
7519 			if (hmeblkp->hblk_shared) {
7520 				sf_srd_t *srdp = hblktosrd(hmeblkp);
7521 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
7522 				sf_region_t *rgnp;
7523 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7524 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7525 				ASSERT(srdp != NULL);
7526 				rgnp = srdp->srd_hmergnp[rid];
7527 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
7528 				    rgnp, rid);
7529 				shcnt += rgnp->rgn_refcnt;
7530 			} else {
7531 				shcnt++;
7532 			}
7533 			if (shcnt > po_share) {
7534 				/*
7535 				 * tell the pager to spare the page this time
7536 				 * around.
7537 				 */
7538 				hat_page_setattr(save_pp, P_REF);
7539 				index = 0;
7540 				break;
7541 			}
7542 		}
7543 		tset = sfmmu_pagesync(pp, sfhme,
7544 		    clearflag & ~HAT_SYNC_STOPON_RM);
7545 		CPUSET_OR(cpuset, tset);
7546 
7547 		/*
7548 		 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
7549 		 * as the "ref" or "mod" is set or share cnt exceeds po_share.
7550 		 */
7551 		if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
7552 		    (((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
7553 		    ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)))) {
7554 			index = 0;
7555 			break;
7556 		}
7557 	}
7558 
7559 	while (index) {
7560 		index = index >> 1;
7561 		cons++;
7562 		if (index & 0x1) {
7563 			/* Go to leading page */
7564 			pp = PP_GROUPLEADER(pp, cons);
7565 			goto retry;
7566 		}
7567 	}
7568 
7569 	xt_sync(cpuset);
7570 	sfmmu_mlist_exit(pml);
7571 	return (PP_GENERIC_ATTR(save_pp));
7572 }
7573 
7574 /*
7575  * Get all the hardware dependent attributes for a page struct
7576  */
7577 static cpuset_t
7578 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
7579 	uint_t clearflag)
7580 {
7581 	caddr_t addr;
7582 	tte_t tte, ttemod;
7583 	struct hme_blk *hmeblkp;
7584 	int ret;
7585 	sfmmu_t *sfmmup;
7586 	cpuset_t cpuset;
7587 
7588 	ASSERT(pp != NULL);
7589 	ASSERT(sfmmu_mlist_held(pp));
7590 	ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
7591 	    (clearflag == HAT_SYNC_ZERORM));
7592 
7593 	SFMMU_STAT(sf_pagesync);
7594 
7595 	CPUSET_ZERO(cpuset);
7596 
7597 sfmmu_pagesync_retry:
7598 
7599 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7600 	if (TTE_IS_VALID(&tte)) {
7601 		hmeblkp = sfmmu_hmetohblk(sfhme);
7602 		sfmmup = hblktosfmmu(hmeblkp);
7603 		addr = tte_to_vaddr(hmeblkp, tte);
7604 		if (clearflag == HAT_SYNC_ZERORM) {
7605 			ttemod = tte;
7606 			TTE_CLR_RM(&ttemod);
7607 			ret = sfmmu_modifytte_try(&tte, &ttemod,
7608 			    &sfhme->hme_tte);
7609 			if (ret < 0) {
7610 				/*
7611 				 * cas failed and the new value is not what
7612 				 * we want.
7613 				 */
7614 				goto sfmmu_pagesync_retry;
7615 			}
7616 
7617 			if (ret > 0) {
7618 				/* we win the cas */
7619 				if (hmeblkp->hblk_shared) {
7620 					sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7621 					uint_t rid =
7622 					    hmeblkp->hblk_tag.htag_rid;
7623 					sf_region_t *rgnp;
7624 					ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7625 					ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7626 					ASSERT(srdp != NULL);
7627 					rgnp = srdp->srd_hmergnp[rid];
7628 					SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7629 					    srdp, rgnp, rid);
7630 					cpuset = sfmmu_rgntlb_demap(addr,
7631 					    rgnp, hmeblkp, 1);
7632 				} else {
7633 					sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
7634 					    0, 0);
7635 					cpuset = sfmmup->sfmmu_cpusran;
7636 				}
7637 			}
7638 		}
7639 		sfmmu_ttesync(hmeblkp->hblk_shared ? NULL : sfmmup, addr,
7640 		    &tte, pp);
7641 	}
7642 	return (cpuset);
7643 }
7644 
7645 /*
7646  * Remove write permission from a mappings to a page, so that
7647  * we can detect the next modification of it. This requires modifying
7648  * the TTE then invalidating (demap) any TLB entry using that TTE.
7649  * This code is similar to sfmmu_pagesync().
7650  */
7651 static cpuset_t
7652 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
7653 {
7654 	caddr_t addr;
7655 	tte_t tte;
7656 	tte_t ttemod;
7657 	struct hme_blk *hmeblkp;
7658 	int ret;
7659 	sfmmu_t *sfmmup;
7660 	cpuset_t cpuset;
7661 
7662 	ASSERT(pp != NULL);
7663 	ASSERT(sfmmu_mlist_held(pp));
7664 
7665 	CPUSET_ZERO(cpuset);
7666 	SFMMU_STAT(sf_clrwrt);
7667 
7668 retry:
7669 
7670 	sfmmu_copytte(&sfhme->hme_tte, &tte);
7671 	if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
7672 		hmeblkp = sfmmu_hmetohblk(sfhme);
7673 
7674 		/*
7675 		 * xhat mappings should never be to a VMODSORT page.
7676 		 */
7677 		ASSERT(hmeblkp->hblk_xhat_bit == 0);
7678 
7679 		sfmmup = hblktosfmmu(hmeblkp);
7680 		addr = tte_to_vaddr(hmeblkp, tte);
7681 
7682 		ttemod = tte;
7683 		TTE_CLR_WRT(&ttemod);
7684 		TTE_CLR_MOD(&ttemod);
7685 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7686 
7687 		/*
7688 		 * if cas failed and the new value is not what
7689 		 * we want retry
7690 		 */
7691 		if (ret < 0)
7692 			goto retry;
7693 
7694 		/* we win the cas */
7695 		if (ret > 0) {
7696 			if (hmeblkp->hblk_shared) {
7697 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7698 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
7699 				sf_region_t *rgnp;
7700 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7701 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7702 				ASSERT(srdp != NULL);
7703 				rgnp = srdp->srd_hmergnp[rid];
7704 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7705 				    srdp, rgnp, rid);
7706 				cpuset = sfmmu_rgntlb_demap(addr,
7707 				    rgnp, hmeblkp, 1);
7708 			} else {
7709 				sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7710 				cpuset = sfmmup->sfmmu_cpusran;
7711 			}
7712 		}
7713 	}
7714 
7715 	return (cpuset);
7716 }
7717 
7718 /*
7719  * Walk all mappings of a page, removing write permission and clearing the
7720  * ref/mod bits. This code is similar to hat_pagesync()
7721  */
7722 static void
7723 hat_page_clrwrt(page_t *pp)
7724 {
7725 	struct sf_hment *sfhme;
7726 	struct sf_hment *tmphme = NULL;
7727 	kmutex_t *pml;
7728 	cpuset_t cpuset;
7729 	cpuset_t tset;
7730 	int	index;
7731 	int	 cons;
7732 
7733 	CPUSET_ZERO(cpuset);
7734 
7735 	pml = sfmmu_mlist_enter(pp);
7736 	index = PP_MAPINDEX(pp);
7737 	cons = TTE8K;
7738 retry:
7739 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7740 		tmphme = sfhme->hme_next;
7741 
7742 		/*
7743 		 * If we are looking for large mappings and this hme doesn't
7744 		 * reach the range we are seeking, just ignore its.
7745 		 */
7746 
7747 		if (hme_size(sfhme) < cons)
7748 			continue;
7749 
7750 		tset = sfmmu_pageclrwrt(pp, sfhme);
7751 		CPUSET_OR(cpuset, tset);
7752 	}
7753 
7754 	while (index) {
7755 		index = index >> 1;
7756 		cons++;
7757 		if (index & 0x1) {
7758 			/* Go to leading page */
7759 			pp = PP_GROUPLEADER(pp, cons);
7760 			goto retry;
7761 		}
7762 	}
7763 
7764 	xt_sync(cpuset);
7765 	sfmmu_mlist_exit(pml);
7766 }
7767 
7768 /*
7769  * Set the given REF/MOD/RO bits for the given page.
7770  * For a vnode with a sorted v_pages list, we need to change
7771  * the attributes and the v_pages list together under page_vnode_mutex.
7772  */
7773 void
7774 hat_page_setattr(page_t *pp, uint_t flag)
7775 {
7776 	vnode_t		*vp = pp->p_vnode;
7777 	page_t		**listp;
7778 	kmutex_t	*pmtx;
7779 	kmutex_t	*vphm = NULL;
7780 	int		noshuffle;
7781 
7782 	noshuffle = flag & P_NSH;
7783 	flag &= ~P_NSH;
7784 
7785 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO | P_EXEC)));
7786 
7787 	/*
7788 	 * nothing to do if attribute already set
7789 	 */
7790 	if ((pp->p_nrm & flag) == flag)
7791 		return;
7792 
7793 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
7794 	    !noshuffle) {
7795 		vphm = page_vnode_mutex(vp);
7796 		mutex_enter(vphm);
7797 	}
7798 
7799 	pmtx = sfmmu_page_enter(pp);
7800 	pp->p_nrm |= flag;
7801 	sfmmu_page_exit(pmtx);
7802 
7803 	if (vphm != NULL) {
7804 		/*
7805 		 * Some File Systems examine v_pages for NULL w/o
7806 		 * grabbing the vphm mutex. Must not let it become NULL when
7807 		 * pp is the only page on the list.
7808 		 */
7809 		if (pp->p_vpnext != pp) {
7810 			page_vpsub(&vp->v_pages, pp);
7811 			if (vp->v_pages != NULL)
7812 				listp = &vp->v_pages->p_vpprev->p_vpnext;
7813 			else
7814 				listp = &vp->v_pages;
7815 			page_vpadd(listp, pp);
7816 		}
7817 		mutex_exit(vphm);
7818 	}
7819 }
7820 
7821 void
7822 hat_page_clrattr(page_t *pp, uint_t flag)
7823 {
7824 	vnode_t		*vp = pp->p_vnode;
7825 	kmutex_t	*pmtx;
7826 
7827 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7828 
7829 	pmtx = sfmmu_page_enter(pp);
7830 
7831 	/*
7832 	 * Caller is expected to hold page's io lock for VMODSORT to work
7833 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7834 	 * bit is cleared.
7835 	 * We don't have assert to avoid tripping some existing third party
7836 	 * code. The dirty page is moved back to top of the v_page list
7837 	 * after IO is done in pvn_write_done().
7838 	 */
7839 	pp->p_nrm &= ~flag;
7840 	sfmmu_page_exit(pmtx);
7841 
7842 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7843 
7844 		/*
7845 		 * VMODSORT works by removing write permissions and getting
7846 		 * a fault when a page is made dirty. At this point
7847 		 * we need to remove write permission from all mappings
7848 		 * to this page.
7849 		 */
7850 		hat_page_clrwrt(pp);
7851 	}
7852 }
7853 
7854 uint_t
7855 hat_page_getattr(page_t *pp, uint_t flag)
7856 {
7857 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7858 	return ((uint_t)(pp->p_nrm & flag));
7859 }
7860 
7861 /*
7862  * DEBUG kernels: verify that a kernel va<->pa translation
7863  * is safe by checking the underlying page_t is in a page
7864  * relocation-safe state.
7865  */
7866 #ifdef	DEBUG
7867 void
7868 sfmmu_check_kpfn(pfn_t pfn)
7869 {
7870 	page_t *pp;
7871 	int index, cons;
7872 
7873 	if (hat_check_vtop == 0)
7874 		return;
7875 
7876 	if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
7877 		return;
7878 
7879 	pp = page_numtopp_nolock(pfn);
7880 	if (!pp)
7881 		return;
7882 
7883 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7884 		return;
7885 
7886 	/*
7887 	 * Handed a large kernel page, we dig up the root page since we
7888 	 * know the root page might have the lock also.
7889 	 */
7890 	if (pp->p_szc != 0) {
7891 		index = PP_MAPINDEX(pp);
7892 		cons = TTE8K;
7893 again:
7894 		while (index != 0) {
7895 			index >>= 1;
7896 			if (index != 0)
7897 				cons++;
7898 			if (index & 0x1) {
7899 				pp = PP_GROUPLEADER(pp, cons);
7900 				goto again;
7901 			}
7902 		}
7903 	}
7904 
7905 	if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7906 		return;
7907 
7908 	/*
7909 	 * Pages need to be locked or allocated "permanent" (either from
7910 	 * static_arena arena or explicitly setting PG_NORELOC when calling
7911 	 * page_create_va()) for VA->PA translations to be valid.
7912 	 */
7913 	if (!PP_ISNORELOC(pp))
7914 		panic("Illegal VA->PA translation, pp 0x%p not permanent",
7915 		    (void *)pp);
7916 	else
7917 		panic("Illegal VA->PA translation, pp 0x%p not locked",
7918 		    (void *)pp);
7919 }
7920 #endif	/* DEBUG */
7921 
7922 /*
7923  * Returns a page frame number for a given virtual address.
7924  * Returns PFN_INVALID to indicate an invalid mapping
7925  */
7926 pfn_t
7927 hat_getpfnum(struct hat *hat, caddr_t addr)
7928 {
7929 	pfn_t pfn;
7930 	tte_t tte;
7931 
7932 	/*
7933 	 * We would like to
7934 	 * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7935 	 * but we can't because the iommu driver will call this
7936 	 * routine at interrupt time and it can't grab the as lock
7937 	 * or it will deadlock: A thread could have the as lock
7938 	 * and be waiting for io.  The io can't complete
7939 	 * because the interrupt thread is blocked trying to grab
7940 	 * the as lock.
7941 	 */
7942 
7943 	ASSERT(hat->sfmmu_xhat_provider == NULL);
7944 
7945 	if (hat == ksfmmup) {
7946 		if (IS_KMEM_VA_LARGEPAGE(addr)) {
7947 			ASSERT(segkmem_lpszc > 0);
7948 			pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7949 			if (pfn != PFN_INVALID) {
7950 				sfmmu_check_kpfn(pfn);
7951 				return (pfn);
7952 			}
7953 		} else if (segkpm && IS_KPM_ADDR(addr)) {
7954 			return (sfmmu_kpm_vatopfn(addr));
7955 		}
7956 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7957 		    == PFN_SUSPENDED) {
7958 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7959 		}
7960 		sfmmu_check_kpfn(pfn);
7961 		return (pfn);
7962 	} else {
7963 		return (sfmmu_uvatopfn(addr, hat, NULL));
7964 	}
7965 }
7966 
7967 /*
7968  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
7969  * Use hat_getpfnum(kas.a_hat, ...) instead.
7970  *
7971  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
7972  * but can't right now due to the fact that some software has grown to use
7973  * this interface incorrectly. So for now when the interface is misused,
7974  * return a warning to the user that in the future it won't work in the
7975  * way they're abusing it, and carry on (after disabling page relocation).
7976  */
7977 pfn_t
7978 hat_getkpfnum(caddr_t addr)
7979 {
7980 	pfn_t pfn;
7981 	tte_t tte;
7982 	int badcaller = 0;
7983 	extern int segkmem_reloc;
7984 
7985 	if (segkpm && IS_KPM_ADDR(addr)) {
7986 		badcaller = 1;
7987 		pfn = sfmmu_kpm_vatopfn(addr);
7988 	} else {
7989 		while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7990 		    == PFN_SUSPENDED) {
7991 			sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7992 		}
7993 		badcaller = pf_is_memory(pfn);
7994 	}
7995 
7996 	if (badcaller) {
7997 		/*
7998 		 * We can't return PFN_INVALID or the caller may panic
7999 		 * or corrupt the system.  The only alternative is to
8000 		 * disable page relocation at this point for all kernel
8001 		 * memory.  This will impact any callers of page_relocate()
8002 		 * such as FMA or DR.
8003 		 *
8004 		 * RFE: Add junk here to spit out an ereport so the sysadmin
8005 		 * can be advised that he should upgrade his device driver
8006 		 * so that this doesn't happen.
8007 		 */
8008 		hat_getkpfnum_badcall(caller());
8009 		if (hat_kpr_enabled && segkmem_reloc) {
8010 			hat_kpr_enabled = 0;
8011 			segkmem_reloc = 0;
8012 			cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
8013 		}
8014 	}
8015 	return (pfn);
8016 }
8017 
8018 /*
8019  * This routine will return both pfn and tte for the vaddr.
8020  */
8021 static pfn_t
8022 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup, tte_t *ttep)
8023 {
8024 	struct hmehash_bucket *hmebp;
8025 	hmeblk_tag hblktag;
8026 	int hmeshift, hashno = 1;
8027 	struct hme_blk *hmeblkp = NULL;
8028 	tte_t tte;
8029 
8030 	struct sf_hment *sfhmep;
8031 	pfn_t pfn;
8032 
8033 	/* support for ISM */
8034 	ism_map_t	*ism_map;
8035 	ism_blk_t	*ism_blkp;
8036 	int		i;
8037 	sfmmu_t *ism_hatid = NULL;
8038 	sfmmu_t *locked_hatid = NULL;
8039 	sfmmu_t	*sv_sfmmup = sfmmup;
8040 	caddr_t	sv_vaddr = vaddr;
8041 	sf_srd_t *srdp;
8042 
8043 	if (ttep == NULL) {
8044 		ttep = &tte;
8045 	} else {
8046 		ttep->ll = 0;
8047 	}
8048 
8049 	ASSERT(sfmmup != ksfmmup);
8050 	SFMMU_STAT(sf_user_vtop);
8051 	/*
8052 	 * Set ism_hatid if vaddr falls in a ISM segment.
8053 	 */
8054 	ism_blkp = sfmmup->sfmmu_iblk;
8055 	if (ism_blkp != NULL) {
8056 		sfmmu_ismhat_enter(sfmmup, 0);
8057 		locked_hatid = sfmmup;
8058 	}
8059 	while (ism_blkp != NULL && ism_hatid == NULL) {
8060 		ism_map = ism_blkp->iblk_maps;
8061 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
8062 			if (vaddr >= ism_start(ism_map[i]) &&
8063 			    vaddr < ism_end(ism_map[i])) {
8064 				sfmmup = ism_hatid = ism_map[i].imap_ismhat;
8065 				vaddr = (caddr_t)(vaddr -
8066 				    ism_start(ism_map[i]));
8067 				break;
8068 			}
8069 		}
8070 		ism_blkp = ism_blkp->iblk_next;
8071 	}
8072 	if (locked_hatid) {
8073 		sfmmu_ismhat_exit(locked_hatid, 0);
8074 	}
8075 
8076 	hblktag.htag_id = sfmmup;
8077 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
8078 	do {
8079 		hmeshift = HME_HASH_SHIFT(hashno);
8080 		hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
8081 		hblktag.htag_rehash = hashno;
8082 		hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
8083 
8084 		SFMMU_HASH_LOCK(hmebp);
8085 
8086 		HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
8087 		if (hmeblkp != NULL) {
8088 			ASSERT(!hmeblkp->hblk_shared);
8089 			HBLKTOHME(sfhmep, hmeblkp, vaddr);
8090 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
8091 			SFMMU_HASH_UNLOCK(hmebp);
8092 			if (TTE_IS_VALID(ttep)) {
8093 				pfn = TTE_TO_PFN(vaddr, ttep);
8094 				return (pfn);
8095 			}
8096 			break;
8097 		}
8098 		SFMMU_HASH_UNLOCK(hmebp);
8099 		hashno++;
8100 	} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
8101 
8102 	if (SF_HMERGNMAP_ISNULL(sv_sfmmup)) {
8103 		return (PFN_INVALID);
8104 	}
8105 	srdp = sv_sfmmup->sfmmu_srdp;
8106 	ASSERT(srdp != NULL);
8107 	ASSERT(srdp->srd_refcnt != 0);
8108 	hblktag.htag_id = srdp;
8109 	hashno = 1;
8110 	do {
8111 		hmeshift = HME_HASH_SHIFT(hashno);
8112 		hblktag.htag_bspage = HME_HASH_BSPAGE(sv_vaddr, hmeshift);
8113 		hblktag.htag_rehash = hashno;
8114 		hmebp = HME_HASH_FUNCTION(srdp, sv_vaddr, hmeshift);
8115 
8116 		SFMMU_HASH_LOCK(hmebp);
8117 		for (hmeblkp = hmebp->hmeblkp; hmeblkp != NULL;
8118 		    hmeblkp = hmeblkp->hblk_next) {
8119 			uint_t rid;
8120 			sf_region_t *rgnp;
8121 			caddr_t rsaddr;
8122 			caddr_t readdr;
8123 
8124 			if (!HTAGS_EQ_SHME(hmeblkp->hblk_tag, hblktag,
8125 			    sv_sfmmup->sfmmu_hmeregion_map)) {
8126 				continue;
8127 			}
8128 			ASSERT(hmeblkp->hblk_shared);
8129 			rid = hmeblkp->hblk_tag.htag_rid;
8130 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8131 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8132 			rgnp = srdp->srd_hmergnp[rid];
8133 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
8134 			HBLKTOHME(sfhmep, hmeblkp, sv_vaddr);
8135 			sfmmu_copytte(&sfhmep->hme_tte, ttep);
8136 			rsaddr = rgnp->rgn_saddr;
8137 			readdr = rsaddr + rgnp->rgn_size;
8138 #ifdef DEBUG
8139 			if (TTE_IS_VALID(ttep) ||
8140 			    get_hblk_ttesz(hmeblkp) > TTE8K) {
8141 				caddr_t eva = tte_to_evaddr(hmeblkp, ttep);
8142 				ASSERT(eva > sv_vaddr);
8143 				ASSERT(sv_vaddr >= rsaddr);
8144 				ASSERT(sv_vaddr < readdr);
8145 				ASSERT(eva <= readdr);
8146 			}
8147 #endif /* DEBUG */
8148 			/*
8149 			 * Continue the search if we
8150 			 * found an invalid 8K tte outside of the area
8151 			 * covered by this hmeblk's region.
8152 			 */
8153 			if (TTE_IS_VALID(ttep)) {
8154 				SFMMU_HASH_UNLOCK(hmebp);
8155 				pfn = TTE_TO_PFN(sv_vaddr, ttep);
8156 				return (pfn);
8157 			} else if (get_hblk_ttesz(hmeblkp) > TTE8K ||
8158 			    (sv_vaddr >= rsaddr && sv_vaddr < readdr)) {
8159 				SFMMU_HASH_UNLOCK(hmebp);
8160 				pfn = PFN_INVALID;
8161 				return (pfn);
8162 			}
8163 		}
8164 		SFMMU_HASH_UNLOCK(hmebp);
8165 		hashno++;
8166 	} while (hashno <= mmu_hashcnt);
8167 	return (PFN_INVALID);
8168 }
8169 
8170 
8171 /*
8172  * For compatability with AT&T and later optimizations
8173  */
8174 /* ARGSUSED */
8175 void
8176 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
8177 {
8178 	ASSERT(hat != NULL);
8179 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8180 }
8181 
8182 /*
8183  * Return the number of mappings to a particular page.  This number is an
8184  * approximation of the number of people sharing the page.
8185  *
8186  * shared hmeblks or ism hmeblks are counted as 1 mapping here.
8187  * hat_page_checkshare() can be used to compare threshold to share
8188  * count that reflects the number of region sharers albeit at higher cost.
8189  */
8190 ulong_t
8191 hat_page_getshare(page_t *pp)
8192 {
8193 	page_t *spp = pp;	/* start page */
8194 	kmutex_t *pml;
8195 	ulong_t	cnt;
8196 	int index, sz = TTE64K;
8197 
8198 	/*
8199 	 * We need to grab the mlist lock to make sure any outstanding
8200 	 * load/unloads complete.  Otherwise we could return zero
8201 	 * even though the unload(s) hasn't finished yet.
8202 	 */
8203 	pml = sfmmu_mlist_enter(spp);
8204 	cnt = spp->p_share;
8205 
8206 #ifdef VAC
8207 	if (kpm_enable)
8208 		cnt += spp->p_kpmref;
8209 #endif
8210 
8211 	/*
8212 	 * If we have any large mappings, we count the number of
8213 	 * mappings that this large page is part of.
8214 	 */
8215 	index = PP_MAPINDEX(spp);
8216 	index >>= 1;
8217 	while (index) {
8218 		pp = PP_GROUPLEADER(spp, sz);
8219 		if ((index & 0x1) && pp != spp) {
8220 			cnt += pp->p_share;
8221 			spp = pp;
8222 		}
8223 		index >>= 1;
8224 		sz++;
8225 	}
8226 	sfmmu_mlist_exit(pml);
8227 	return (cnt);
8228 }
8229 
8230 /*
8231  * Return 1 if the number of mappings exceeds sh_thresh. Return 0
8232  * otherwise. Count shared hmeblks by region's refcnt.
8233  */
8234 int
8235 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
8236 {
8237 	kmutex_t *pml;
8238 	ulong_t	cnt = 0;
8239 	int index, sz = TTE8K;
8240 	struct sf_hment *sfhme, *tmphme = NULL;
8241 	struct hme_blk *hmeblkp;
8242 
8243 	pml = sfmmu_mlist_enter(pp);
8244 
8245 	if (kpm_enable)
8246 		cnt = pp->p_kpmref;
8247 
8248 	if (pp->p_share + cnt > sh_thresh) {
8249 		sfmmu_mlist_exit(pml);
8250 		return (1);
8251 	}
8252 
8253 	index = PP_MAPINDEX(pp);
8254 
8255 again:
8256 	for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
8257 		tmphme = sfhme->hme_next;
8258 		if (IS_PAHME(sfhme)) {
8259 			continue;
8260 		}
8261 
8262 		hmeblkp = sfmmu_hmetohblk(sfhme);
8263 		if (hmeblkp->hblk_xhat_bit) {
8264 			cnt++;
8265 			if (cnt > sh_thresh) {
8266 				sfmmu_mlist_exit(pml);
8267 				return (1);
8268 			}
8269 			continue;
8270 		}
8271 		if (hme_size(sfhme) != sz) {
8272 			continue;
8273 		}
8274 
8275 		if (hmeblkp->hblk_shared) {
8276 			sf_srd_t *srdp = hblktosrd(hmeblkp);
8277 			uint_t rid = hmeblkp->hblk_tag.htag_rid;
8278 			sf_region_t *rgnp;
8279 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8280 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8281 			ASSERT(srdp != NULL);
8282 			rgnp = srdp->srd_hmergnp[rid];
8283 			SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
8284 			    rgnp, rid);
8285 			cnt += rgnp->rgn_refcnt;
8286 		} else {
8287 			cnt++;
8288 		}
8289 		if (cnt > sh_thresh) {
8290 			sfmmu_mlist_exit(pml);
8291 			return (1);
8292 		}
8293 	}
8294 
8295 	index >>= 1;
8296 	sz++;
8297 	while (index) {
8298 		pp = PP_GROUPLEADER(pp, sz);
8299 		ASSERT(sfmmu_mlist_held(pp));
8300 		if (index & 0x1) {
8301 			goto again;
8302 		}
8303 		index >>= 1;
8304 		sz++;
8305 	}
8306 	sfmmu_mlist_exit(pml);
8307 	return (0);
8308 }
8309 
8310 /*
8311  * Unload all large mappings to the pp and reset the p_szc field of every
8312  * constituent page according to the remaining mappings.
8313  *
8314  * pp must be locked SE_EXCL. Even though no other constituent pages are
8315  * locked it's legal to unload the large mappings to the pp because all
8316  * constituent pages of large locked mappings have to be locked SE_SHARED.
8317  * This means if we have SE_EXCL lock on one of constituent pages none of the
8318  * large mappings to pp are locked.
8319  *
8320  * Decrease p_szc field starting from the last constituent page and ending
8321  * with the root page. This method is used because other threads rely on the
8322  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
8323  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
8324  * ensures that p_szc changes of the constituent pages appears atomic for all
8325  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
8326  *
8327  * This mechanism is only used for file system pages where it's not always
8328  * possible to get SE_EXCL locks on all constituent pages to demote the size
8329  * code (as is done for anonymous or kernel large pages).
8330  *
8331  * See more comments in front of sfmmu_mlspl_enter().
8332  */
8333 void
8334 hat_page_demote(page_t *pp)
8335 {
8336 	int index;
8337 	int sz;
8338 	cpuset_t cpuset;
8339 	int sync = 0;
8340 	page_t *rootpp;
8341 	struct sf_hment *sfhme;
8342 	struct sf_hment *tmphme = NULL;
8343 	struct hme_blk *hmeblkp;
8344 	uint_t pszc;
8345 	page_t *lastpp;
8346 	cpuset_t tset;
8347 	pgcnt_t npgs;
8348 	kmutex_t *pml;
8349 	kmutex_t *pmtx = NULL;
8350 
8351 	ASSERT(PAGE_EXCL(pp));
8352 	ASSERT(!PP_ISFREE(pp));
8353 	ASSERT(!PP_ISKAS(pp));
8354 	ASSERT(page_szc_lock_assert(pp));
8355 	pml = sfmmu_mlist_enter(pp);
8356 
8357 	pszc = pp->p_szc;
8358 	if (pszc == 0) {
8359 		goto out;
8360 	}
8361 
8362 	index = PP_MAPINDEX(pp) >> 1;
8363 
8364 	if (index) {
8365 		CPUSET_ZERO(cpuset);
8366 		sz = TTE64K;
8367 		sync = 1;
8368 	}
8369 
8370 	while (index) {
8371 		if (!(index & 0x1)) {
8372 			index >>= 1;
8373 			sz++;
8374 			continue;
8375 		}
8376 		ASSERT(sz <= pszc);
8377 		rootpp = PP_GROUPLEADER(pp, sz);
8378 		for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
8379 			tmphme = sfhme->hme_next;
8380 			ASSERT(!IS_PAHME(sfhme));
8381 			hmeblkp = sfmmu_hmetohblk(sfhme);
8382 			if (hme_size(sfhme) != sz) {
8383 				continue;
8384 			}
8385 			if (hmeblkp->hblk_xhat_bit) {
8386 				cmn_err(CE_PANIC,
8387 				    "hat_page_demote: xhat hmeblk");
8388 			}
8389 			tset = sfmmu_pageunload(rootpp, sfhme, sz);
8390 			CPUSET_OR(cpuset, tset);
8391 		}
8392 		if (index >>= 1) {
8393 			sz++;
8394 		}
8395 	}
8396 
8397 	ASSERT(!PP_ISMAPPED_LARGE(pp));
8398 
8399 	if (sync) {
8400 		xt_sync(cpuset);
8401 #ifdef VAC
8402 		if (PP_ISTNC(pp)) {
8403 			conv_tnc(rootpp, sz);
8404 		}
8405 #endif	/* VAC */
8406 	}
8407 
8408 	pmtx = sfmmu_page_enter(pp);
8409 
8410 	ASSERT(pp->p_szc == pszc);
8411 	rootpp = PP_PAGEROOT(pp);
8412 	ASSERT(rootpp->p_szc == pszc);
8413 	lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
8414 
8415 	while (lastpp != rootpp) {
8416 		sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
8417 		ASSERT(sz < pszc);
8418 		npgs = (sz == 0) ? 1 : TTEPAGES(sz);
8419 		ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
8420 		while (--npgs > 0) {
8421 			lastpp->p_szc = (uchar_t)sz;
8422 			lastpp = PP_PAGEPREV(lastpp);
8423 		}
8424 		if (sz) {
8425 			/*
8426 			 * make sure before current root's pszc
8427 			 * is updated all updates to constituent pages pszc
8428 			 * fields are globally visible.
8429 			 */
8430 			membar_producer();
8431 		}
8432 		lastpp->p_szc = sz;
8433 		ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
8434 		if (lastpp != rootpp) {
8435 			lastpp = PP_PAGEPREV(lastpp);
8436 		}
8437 	}
8438 	if (sz == 0) {
8439 		/* the loop above doesn't cover this case */
8440 		rootpp->p_szc = 0;
8441 	}
8442 out:
8443 	ASSERT(pp->p_szc == 0);
8444 	if (pmtx != NULL) {
8445 		sfmmu_page_exit(pmtx);
8446 	}
8447 	sfmmu_mlist_exit(pml);
8448 }
8449 
8450 /*
8451  * Refresh the HAT ismttecnt[] element for size szc.
8452  * Caller must have set ISM busy flag to prevent mapping
8453  * lists from changing while we're traversing them.
8454  */
8455 pgcnt_t
8456 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
8457 {
8458 	ism_blk_t	*ism_blkp = sfmmup->sfmmu_iblk;
8459 	ism_map_t	*ism_map;
8460 	pgcnt_t		npgs = 0;
8461 	pgcnt_t		npgs_scd = 0;
8462 	int		j;
8463 	sf_scd_t	*scdp;
8464 	uchar_t		rid;
8465 	hatlock_t 	*hatlockp;
8466 	int		ismnotinscd = 0;
8467 
8468 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
8469 	scdp = sfmmup->sfmmu_scdp;
8470 
8471 	for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
8472 		ism_map = ism_blkp->iblk_maps;
8473 		for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) {
8474 			rid = ism_map[j].imap_rid;
8475 			ASSERT(rid == SFMMU_INVALID_ISMRID ||
8476 			    rid < sfmmup->sfmmu_srdp->srd_next_ismrid);
8477 
8478 			if (scdp != NULL && rid != SFMMU_INVALID_ISMRID &&
8479 			    SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
8480 				/* ISM is in sfmmup's SCD */
8481 				npgs_scd +=
8482 				    ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8483 			} else {
8484 				/* ISMs is not in SCD */
8485 				npgs +=
8486 				    ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8487 				ismnotinscd = 1;
8488 			}
8489 		}
8490 	}
8491 
8492 	if (&mmu_set_pgsz_order) {
8493 		hatlockp = sfmmu_hat_enter(sfmmup);
8494 		if (ismnotinscd) {
8495 			SFMMU_FLAGS_SET(sfmmup, HAT_ISMNOTINSCD);
8496 		} else {
8497 			SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMNOTINSCD);
8498 		}
8499 		sfmmu_hat_exit(hatlockp);
8500 	}
8501 
8502 	sfmmup->sfmmu_ismttecnt[szc] = npgs;
8503 	sfmmup->sfmmu_scdismttecnt[szc] = npgs_scd;
8504 	return (npgs);
8505 }
8506 
8507 /*
8508  * Yield the memory claim requirement for an address space.
8509  *
8510  * This is currently implemented as the number of bytes that have active
8511  * hardware translations that have page structures.  Therefore, it can
8512  * underestimate the traditional resident set size, eg, if the
8513  * physical page is present and the hardware translation is missing;
8514  * and it can overestimate the rss, eg, if there are active
8515  * translations to a frame buffer with page structs.
8516  * Also, it does not take sharing into account.
8517  *
8518  * Note that we don't acquire locks here since this function is most often
8519  * called from the clock thread.
8520  */
8521 size_t
8522 hat_get_mapped_size(struct hat *hat)
8523 {
8524 	size_t		assize = 0;
8525 	int 		i;
8526 
8527 	if (hat == NULL)
8528 		return (0);
8529 
8530 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8531 
8532 	for (i = 0; i < mmu_page_sizes; i++)
8533 		assize += ((pgcnt_t)hat->sfmmu_ttecnt[i] +
8534 		    (pgcnt_t)hat->sfmmu_scdrttecnt[i]) * TTEBYTES(i);
8535 
8536 	if (hat->sfmmu_iblk == NULL)
8537 		return (assize);
8538 
8539 	for (i = 0; i < mmu_page_sizes; i++)
8540 		assize += ((pgcnt_t)hat->sfmmu_ismttecnt[i] +
8541 		    (pgcnt_t)hat->sfmmu_scdismttecnt[i]) * TTEBYTES(i);
8542 
8543 	return (assize);
8544 }
8545 
8546 int
8547 hat_stats_enable(struct hat *hat)
8548 {
8549 	hatlock_t	*hatlockp;
8550 
8551 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8552 
8553 	hatlockp = sfmmu_hat_enter(hat);
8554 	hat->sfmmu_rmstat++;
8555 	sfmmu_hat_exit(hatlockp);
8556 	return (1);
8557 }
8558 
8559 void
8560 hat_stats_disable(struct hat *hat)
8561 {
8562 	hatlock_t	*hatlockp;
8563 
8564 	ASSERT(hat->sfmmu_xhat_provider == NULL);
8565 
8566 	hatlockp = sfmmu_hat_enter(hat);
8567 	hat->sfmmu_rmstat--;
8568 	sfmmu_hat_exit(hatlockp);
8569 }
8570 
8571 /*
8572  * Routines for entering or removing  ourselves from the
8573  * ism_hat's mapping list. This is used for both private and
8574  * SCD hats.
8575  */
8576 static void
8577 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
8578 {
8579 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
8580 
8581 	iment->iment_prev = NULL;
8582 	iment->iment_next = ism_hat->sfmmu_iment;
8583 	if (ism_hat->sfmmu_iment) {
8584 		ism_hat->sfmmu_iment->iment_prev = iment;
8585 	}
8586 	ism_hat->sfmmu_iment = iment;
8587 }
8588 
8589 static void
8590 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
8591 {
8592 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
8593 
8594 	if (ism_hat->sfmmu_iment == NULL) {
8595 		panic("ism map entry remove - no entries");
8596 	}
8597 
8598 	if (iment->iment_prev) {
8599 		ASSERT(ism_hat->sfmmu_iment != iment);
8600 		iment->iment_prev->iment_next = iment->iment_next;
8601 	} else {
8602 		ASSERT(ism_hat->sfmmu_iment == iment);
8603 		ism_hat->sfmmu_iment = iment->iment_next;
8604 	}
8605 
8606 	if (iment->iment_next) {
8607 		iment->iment_next->iment_prev = iment->iment_prev;
8608 	}
8609 
8610 	/*
8611 	 * zero out the entry
8612 	 */
8613 	iment->iment_next = NULL;
8614 	iment->iment_prev = NULL;
8615 	iment->iment_hat =  NULL;
8616 }
8617 
8618 /*
8619  * Hat_share()/unshare() return an (non-zero) error
8620  * when saddr and daddr are not properly aligned.
8621  *
8622  * The top level mapping element determines the alignment
8623  * requirement for saddr and daddr, depending on different
8624  * architectures.
8625  *
8626  * When hat_share()/unshare() are not supported,
8627  * HATOP_SHARE()/UNSHARE() return 0
8628  */
8629 int
8630 hat_share(struct hat *sfmmup, caddr_t addr,
8631 	struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
8632 {
8633 	ism_blk_t	*ism_blkp;
8634 	ism_blk_t	*new_iblk;
8635 	ism_map_t 	*ism_map;
8636 	ism_ment_t	*ism_ment;
8637 	int		i, added;
8638 	hatlock_t	*hatlockp;
8639 	int		reload_mmu = 0;
8640 	uint_t		ismshift = page_get_shift(ismszc);
8641 	size_t		ismpgsz = page_get_pagesize(ismszc);
8642 	uint_t		ismmask = (uint_t)ismpgsz - 1;
8643 	size_t		sh_size = ISM_SHIFT(ismshift, len);
8644 	ushort_t	ismhatflag;
8645 	hat_region_cookie_t rcookie;
8646 	sf_scd_t	*old_scdp;
8647 
8648 #ifdef DEBUG
8649 	caddr_t		eaddr = addr + len;
8650 #endif /* DEBUG */
8651 
8652 	ASSERT(ism_hatid != NULL && sfmmup != NULL);
8653 	ASSERT(sptaddr == ISMID_STARTADDR);
8654 	/*
8655 	 * Check the alignment.
8656 	 */
8657 	if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
8658 		return (EINVAL);
8659 
8660 	/*
8661 	 * Check size alignment.
8662 	 */
8663 	if (!ISM_ALIGNED(ismshift, len))
8664 		return (EINVAL);
8665 
8666 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
8667 
8668 	/*
8669 	 * Allocate ism_ment for the ism_hat's mapping list, and an
8670 	 * ism map blk in case we need one.  We must do our
8671 	 * allocations before acquiring locks to prevent a deadlock
8672 	 * in the kmem allocator on the mapping list lock.
8673 	 */
8674 	new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
8675 	ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
8676 
8677 	/*
8678 	 * Serialize ISM mappings with the ISM busy flag, and also the
8679 	 * trap handlers.
8680 	 */
8681 	sfmmu_ismhat_enter(sfmmup, 0);
8682 
8683 	/*
8684 	 * Allocate an ism map blk if necessary.
8685 	 */
8686 	if (sfmmup->sfmmu_iblk == NULL) {
8687 		sfmmup->sfmmu_iblk = new_iblk;
8688 		bzero(new_iblk, sizeof (*new_iblk));
8689 		new_iblk->iblk_nextpa = (uint64_t)-1;
8690 		membar_stst();	/* make sure next ptr visible to all CPUs */
8691 		sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
8692 		reload_mmu = 1;
8693 		new_iblk = NULL;
8694 	}
8695 
8696 #ifdef DEBUG
8697 	/*
8698 	 * Make sure mapping does not already exist.
8699 	 */
8700 	ism_blkp = sfmmup->sfmmu_iblk;
8701 	while (ism_blkp != NULL) {
8702 		ism_map = ism_blkp->iblk_maps;
8703 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
8704 			if ((addr >= ism_start(ism_map[i]) &&
8705 			    addr < ism_end(ism_map[i])) ||
8706 			    eaddr > ism_start(ism_map[i]) &&
8707 			    eaddr <= ism_end(ism_map[i])) {
8708 				panic("sfmmu_share: Already mapped!");
8709 			}
8710 		}
8711 		ism_blkp = ism_blkp->iblk_next;
8712 	}
8713 #endif /* DEBUG */
8714 
8715 	ASSERT(ismszc >= TTE4M);
8716 	if (ismszc == TTE4M) {
8717 		ismhatflag = HAT_4M_FLAG;
8718 	} else if (ismszc == TTE32M) {
8719 		ismhatflag = HAT_32M_FLAG;
8720 	} else if (ismszc == TTE256M) {
8721 		ismhatflag = HAT_256M_FLAG;
8722 	}
8723 	/*
8724 	 * Add mapping to first available mapping slot.
8725 	 */
8726 	ism_blkp = sfmmup->sfmmu_iblk;
8727 	added = 0;
8728 	while (!added) {
8729 		ism_map = ism_blkp->iblk_maps;
8730 		for (i = 0; i < ISM_MAP_SLOTS; i++)  {
8731 			if (ism_map[i].imap_ismhat == NULL) {
8732 
8733 				ism_map[i].imap_ismhat = ism_hatid;
8734 				ism_map[i].imap_vb_shift = (uchar_t)ismshift;
8735 				ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8736 				ism_map[i].imap_hatflags = ismhatflag;
8737 				ism_map[i].imap_sz_mask = ismmask;
8738 				/*
8739 				 * imap_seg is checked in ISM_CHECK to see if
8740 				 * non-NULL, then other info assumed valid.
8741 				 */
8742 				membar_stst();
8743 				ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
8744 				ism_map[i].imap_ment = ism_ment;
8745 
8746 				/*
8747 				 * Now add ourselves to the ism_hat's
8748 				 * mapping list.
8749 				 */
8750 				ism_ment->iment_hat = sfmmup;
8751 				ism_ment->iment_base_va = addr;
8752 				ism_hatid->sfmmu_ismhat = 1;
8753 				mutex_enter(&ism_mlist_lock);
8754 				iment_add(ism_ment, ism_hatid);
8755 				mutex_exit(&ism_mlist_lock);
8756 				added = 1;
8757 				break;
8758 			}
8759 		}
8760 		if (!added && ism_blkp->iblk_next == NULL) {
8761 			ism_blkp->iblk_next = new_iblk;
8762 			new_iblk = NULL;
8763 			bzero(ism_blkp->iblk_next,
8764 			    sizeof (*ism_blkp->iblk_next));
8765 			ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
8766 			membar_stst();
8767 			ism_blkp->iblk_nextpa =
8768 			    va_to_pa((caddr_t)ism_blkp->iblk_next);
8769 		}
8770 		ism_blkp = ism_blkp->iblk_next;
8771 	}
8772 
8773 	/*
8774 	 * After calling hat_join_region, sfmmup may join a new SCD or
8775 	 * move from the old scd to a new scd, in which case, we want to
8776 	 * shrink the sfmmup's private tsb size, i.e., pass shrink to
8777 	 * sfmmu_check_page_sizes at the end of this routine.
8778 	 */
8779 	old_scdp = sfmmup->sfmmu_scdp;
8780 
8781 	rcookie = hat_join_region(sfmmup, addr, len, (void *)ism_hatid, 0,
8782 	    PROT_ALL, ismszc, NULL, HAT_REGION_ISM);
8783 	if (rcookie != HAT_INVALID_REGION_COOKIE) {
8784 		ism_map[i].imap_rid = (uchar_t)((uint64_t)rcookie);
8785 	}
8786 	/*
8787 	 * Update our counters for this sfmmup's ism mappings.
8788 	 */
8789 	for (i = 0; i <= ismszc; i++) {
8790 		if (!(disable_ism_large_pages & (1 << i)))
8791 			(void) ism_tsb_entries(sfmmup, i);
8792 	}
8793 
8794 	/*
8795 	 * For ISM and DISM we do not support 512K pages, so we only only
8796 	 * search the 4M and 8K/64K hashes for 4 pagesize cpus, and search the
8797 	 * 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
8798 	 *
8799 	 * Need to set 32M/256M ISM flags to make sure
8800 	 * sfmmu_check_page_sizes() enables them on Panther.
8801 	 */
8802 	ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
8803 
8804 	switch (ismszc) {
8805 	case TTE256M:
8806 		if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_ISM)) {
8807 			hatlockp = sfmmu_hat_enter(sfmmup);
8808 			SFMMU_FLAGS_SET(sfmmup, HAT_256M_ISM);
8809 			sfmmu_hat_exit(hatlockp);
8810 		}
8811 		break;
8812 	case TTE32M:
8813 		if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_ISM)) {
8814 			hatlockp = sfmmu_hat_enter(sfmmup);
8815 			SFMMU_FLAGS_SET(sfmmup, HAT_32M_ISM);
8816 			sfmmu_hat_exit(hatlockp);
8817 		}
8818 		break;
8819 	default:
8820 		break;
8821 	}
8822 
8823 	/*
8824 	 * If we updated the ismblkpa for this HAT we must make
8825 	 * sure all CPUs running this process reload their tsbmiss area.
8826 	 * Otherwise they will fail to load the mappings in the tsbmiss
8827 	 * handler and will loop calling pagefault().
8828 	 */
8829 	if (reload_mmu) {
8830 		hatlockp = sfmmu_hat_enter(sfmmup);
8831 		sfmmu_sync_mmustate(sfmmup);
8832 		sfmmu_hat_exit(hatlockp);
8833 	}
8834 
8835 	if (&mmu_set_pgsz_order) {
8836 		hatlockp = sfmmu_hat_enter(sfmmup);
8837 		mmu_set_pgsz_order(sfmmup, 1);
8838 		sfmmu_hat_exit(hatlockp);
8839 	}
8840 	sfmmu_ismhat_exit(sfmmup, 0);
8841 
8842 	/*
8843 	 * Free up ismblk if we didn't use it.
8844 	 */
8845 	if (new_iblk != NULL)
8846 		kmem_cache_free(ism_blk_cache, new_iblk);
8847 
8848 	/*
8849 	 * Check TSB and TLB page sizes.
8850 	 */
8851 	if (sfmmup->sfmmu_scdp != NULL && old_scdp != sfmmup->sfmmu_scdp) {
8852 		sfmmu_check_page_sizes(sfmmup, 0);
8853 	} else {
8854 		sfmmu_check_page_sizes(sfmmup, 1);
8855 	}
8856 	return (0);
8857 }
8858 
8859 /*
8860  * hat_unshare removes exactly one ism_map from
8861  * this process's as.  It expects multiple calls
8862  * to hat_unshare for multiple shm segments.
8863  */
8864 void
8865 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
8866 {
8867 	ism_map_t 	*ism_map;
8868 	ism_ment_t	*free_ment = NULL;
8869 	ism_blk_t	*ism_blkp;
8870 	struct hat	*ism_hatid;
8871 	int 		found, i;
8872 	hatlock_t	*hatlockp;
8873 	struct tsb_info	*tsbinfo;
8874 	uint_t		ismshift = page_get_shift(ismszc);
8875 	size_t		sh_size = ISM_SHIFT(ismshift, len);
8876 	uchar_t		ism_rid;
8877 	sf_scd_t	*old_scdp;
8878 
8879 	ASSERT(ISM_ALIGNED(ismshift, addr));
8880 	ASSERT(ISM_ALIGNED(ismshift, len));
8881 	ASSERT(sfmmup != NULL);
8882 	ASSERT(sfmmup != ksfmmup);
8883 
8884 	if (sfmmup->sfmmu_xhat_provider) {
8885 		XHAT_UNSHARE(sfmmup, addr, len);
8886 		return;
8887 	} else {
8888 		/*
8889 		 * This must be a CPU HAT. If the address space has
8890 		 * XHATs attached, inform all XHATs that ISM segment
8891 		 * is going away
8892 		 */
8893 		ASSERT(sfmmup->sfmmu_as != NULL);
8894 		if (sfmmup->sfmmu_as->a_xhat != NULL)
8895 			xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
8896 	}
8897 
8898 	/*
8899 	 * Make sure that during the entire time ISM mappings are removed,
8900 	 * the trap handlers serialize behind us, and that no one else
8901 	 * can be mucking with ISM mappings.  This also lets us get away
8902 	 * with not doing expensive cross calls to flush the TLB -- we
8903 	 * just discard the context, flush the entire TSB, and call it
8904 	 * a day.
8905 	 */
8906 	sfmmu_ismhat_enter(sfmmup, 0);
8907 
8908 	/*
8909 	 * Remove the mapping.
8910 	 *
8911 	 * We can't have any holes in the ism map.
8912 	 * The tsb miss code while searching the ism map will
8913 	 * stop on an empty map slot.  So we must move
8914 	 * everyone past the hole up 1 if any.
8915 	 *
8916 	 * Also empty ism map blks are not freed until the
8917 	 * process exits. This is to prevent a MT race condition
8918 	 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
8919 	 */
8920 	found = 0;
8921 	ism_blkp = sfmmup->sfmmu_iblk;
8922 	while (!found && ism_blkp != NULL) {
8923 		ism_map = ism_blkp->iblk_maps;
8924 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
8925 			if (addr == ism_start(ism_map[i]) &&
8926 			    sh_size == (size_t)(ism_size(ism_map[i]))) {
8927 				found = 1;
8928 				break;
8929 			}
8930 		}
8931 		if (!found)
8932 			ism_blkp = ism_blkp->iblk_next;
8933 	}
8934 
8935 	if (found) {
8936 		ism_hatid = ism_map[i].imap_ismhat;
8937 		ism_rid = ism_map[i].imap_rid;
8938 		ASSERT(ism_hatid != NULL);
8939 		ASSERT(ism_hatid->sfmmu_ismhat == 1);
8940 
8941 		/*
8942 		 * After hat_leave_region, the sfmmup may leave SCD,
8943 		 * in which case, we want to grow the private tsb size when
8944 		 * calling sfmmu_check_page_sizes at the end of the routine.
8945 		 */
8946 		old_scdp = sfmmup->sfmmu_scdp;
8947 		/*
8948 		 * Then remove ourselves from the region.
8949 		 */
8950 		if (ism_rid != SFMMU_INVALID_ISMRID) {
8951 			hat_leave_region(sfmmup, (void *)((uint64_t)ism_rid),
8952 			    HAT_REGION_ISM);
8953 		}
8954 
8955 		/*
8956 		 * And now guarantee that any other cpu
8957 		 * that tries to process an ISM miss
8958 		 * will go to tl=0.
8959 		 */
8960 		hatlockp = sfmmu_hat_enter(sfmmup);
8961 		sfmmu_invalidate_ctx(sfmmup);
8962 		sfmmu_hat_exit(hatlockp);
8963 
8964 		/*
8965 		 * Remove ourselves from the ism mapping list.
8966 		 */
8967 		mutex_enter(&ism_mlist_lock);
8968 		iment_sub(ism_map[i].imap_ment, ism_hatid);
8969 		mutex_exit(&ism_mlist_lock);
8970 		free_ment = ism_map[i].imap_ment;
8971 
8972 		/*
8973 		 * We delete the ism map by copying
8974 		 * the next map over the current one.
8975 		 * We will take the next one in the maps
8976 		 * array or from the next ism_blk.
8977 		 */
8978 		while (ism_blkp != NULL) {
8979 			ism_map = ism_blkp->iblk_maps;
8980 			while (i < (ISM_MAP_SLOTS - 1)) {
8981 				ism_map[i] = ism_map[i + 1];
8982 				i++;
8983 			}
8984 			/* i == (ISM_MAP_SLOTS - 1) */
8985 			ism_blkp = ism_blkp->iblk_next;
8986 			if (ism_blkp != NULL) {
8987 				ism_map[i] = ism_blkp->iblk_maps[0];
8988 				i = 0;
8989 			} else {
8990 				ism_map[i].imap_seg = 0;
8991 				ism_map[i].imap_vb_shift = 0;
8992 				ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8993 				ism_map[i].imap_hatflags = 0;
8994 				ism_map[i].imap_sz_mask = 0;
8995 				ism_map[i].imap_ismhat = NULL;
8996 				ism_map[i].imap_ment = NULL;
8997 			}
8998 		}
8999 
9000 		/*
9001 		 * Now flush entire TSB for the process, since
9002 		 * demapping page by page can be too expensive.
9003 		 * We don't have to flush the TLB here anymore
9004 		 * since we switch to a new TLB ctx instead.
9005 		 * Also, there is no need to flush if the process
9006 		 * is exiting since the TSB will be freed later.
9007 		 */
9008 		if (!sfmmup->sfmmu_free) {
9009 			hatlockp = sfmmu_hat_enter(sfmmup);
9010 			for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
9011 			    tsbinfo = tsbinfo->tsb_next) {
9012 				if (tsbinfo->tsb_flags & TSB_SWAPPED)
9013 					continue;
9014 				if (tsbinfo->tsb_flags & TSB_RELOC_FLAG) {
9015 					tsbinfo->tsb_flags |=
9016 					    TSB_FLUSH_NEEDED;
9017 					continue;
9018 				}
9019 
9020 				sfmmu_inv_tsb(tsbinfo->tsb_va,
9021 				    TSB_BYTES(tsbinfo->tsb_szc));
9022 			}
9023 			sfmmu_hat_exit(hatlockp);
9024 		}
9025 	}
9026 
9027 	/*
9028 	 * Update our counters for this sfmmup's ism mappings.
9029 	 */
9030 	for (i = 0; i <= ismszc; i++) {
9031 		if (!(disable_ism_large_pages & (1 << i)))
9032 			(void) ism_tsb_entries(sfmmup, i);
9033 	}
9034 
9035 	if (&mmu_set_pgsz_order) {
9036 		hatlockp = sfmmu_hat_enter(sfmmup);
9037 		mmu_set_pgsz_order(sfmmup, 1);
9038 		sfmmu_hat_exit(hatlockp);
9039 	}
9040 	sfmmu_ismhat_exit(sfmmup, 0);
9041 
9042 	/*
9043 	 * We must do our freeing here after dropping locks
9044 	 * to prevent a deadlock in the kmem allocator on the
9045 	 * mapping list lock.
9046 	 */
9047 	if (free_ment != NULL)
9048 		kmem_cache_free(ism_ment_cache, free_ment);
9049 
9050 	/*
9051 	 * Check TSB and TLB page sizes if the process isn't exiting.
9052 	 */
9053 	if (!sfmmup->sfmmu_free) {
9054 		if (found && old_scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
9055 			sfmmu_check_page_sizes(sfmmup, 1);
9056 		} else {
9057 			sfmmu_check_page_sizes(sfmmup, 0);
9058 		}
9059 	}
9060 }
9061 
9062 /* ARGSUSED */
9063 static int
9064 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
9065 {
9066 	/* void *buf is sfmmu_t pointer */
9067 	bzero(buf, sizeof (sfmmu_t));
9068 
9069 	return (0);
9070 }
9071 
9072 /* ARGSUSED */
9073 static void
9074 sfmmu_idcache_destructor(void *buf, void *cdrarg)
9075 {
9076 	/* void *buf is sfmmu_t pointer */
9077 }
9078 
9079 /*
9080  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
9081  * field to be the pa of this hmeblk
9082  */
9083 /* ARGSUSED */
9084 static int
9085 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
9086 {
9087 	struct hme_blk *hmeblkp;
9088 
9089 	bzero(buf, (size_t)cdrarg);
9090 	hmeblkp = (struct hme_blk *)buf;
9091 	hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
9092 
9093 #ifdef	HBLK_TRACE
9094 	mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
9095 #endif	/* HBLK_TRACE */
9096 
9097 	return (0);
9098 }
9099 
9100 /* ARGSUSED */
9101 static void
9102 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
9103 {
9104 
9105 #ifdef	HBLK_TRACE
9106 
9107 	struct hme_blk *hmeblkp;
9108 
9109 	hmeblkp = (struct hme_blk *)buf;
9110 	mutex_destroy(&hmeblkp->hblk_audit_lock);
9111 
9112 #endif	/* HBLK_TRACE */
9113 }
9114 
9115 #define	SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
9116 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
9117 /*
9118  * The kmem allocator will callback into our reclaim routine when the system
9119  * is running low in memory.  We traverse the hash and free up all unused but
9120  * still cached hme_blks.  We also traverse the free list and free them up
9121  * as well.
9122  */
9123 /*ARGSUSED*/
9124 static void
9125 sfmmu_hblkcache_reclaim(void *cdrarg)
9126 {
9127 	int i;
9128 	struct hmehash_bucket *hmebp;
9129 	struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
9130 	static struct hmehash_bucket *uhmehash_reclaim_hand;
9131 	static struct hmehash_bucket *khmehash_reclaim_hand;
9132 	struct hme_blk *list = NULL, *last_hmeblkp;
9133 	cpuset_t cpuset = cpu_ready_set;
9134 	cpu_hme_pend_t *cpuhp;
9135 
9136 	/* Free up hmeblks on the cpu pending lists */
9137 	for (i = 0; i < NCPU; i++) {
9138 		cpuhp = &cpu_hme_pend[i];
9139 		if (cpuhp->chp_listp != NULL)  {
9140 			mutex_enter(&cpuhp->chp_mutex);
9141 			if (cpuhp->chp_listp == NULL) {
9142 				mutex_exit(&cpuhp->chp_mutex);
9143 				continue;
9144 			}
9145 			for (last_hmeblkp = cpuhp->chp_listp;
9146 			    last_hmeblkp->hblk_next != NULL;
9147 			    last_hmeblkp = last_hmeblkp->hblk_next)
9148 				;
9149 			last_hmeblkp->hblk_next = list;
9150 			list = cpuhp->chp_listp;
9151 			cpuhp->chp_listp = NULL;
9152 			cpuhp->chp_count = 0;
9153 			mutex_exit(&cpuhp->chp_mutex);
9154 		}
9155 
9156 	}
9157 
9158 	if (list != NULL) {
9159 		kpreempt_disable();
9160 		CPUSET_DEL(cpuset, CPU->cpu_id);
9161 		xt_sync(cpuset);
9162 		xt_sync(cpuset);
9163 		kpreempt_enable();
9164 		sfmmu_hblk_free(&list);
9165 		list = NULL;
9166 	}
9167 
9168 	hmebp = uhmehash_reclaim_hand;
9169 	if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
9170 		uhmehash_reclaim_hand = hmebp = uhme_hash;
9171 	uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9172 
9173 	for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9174 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9175 			hmeblkp = hmebp->hmeblkp;
9176 			pr_hblk = NULL;
9177 			while (hmeblkp) {
9178 				nx_hblk = hmeblkp->hblk_next;
9179 				if (!hmeblkp->hblk_vcnt &&
9180 				    !hmeblkp->hblk_hmecnt) {
9181 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9182 					    pr_hblk, &list, 0);
9183 				} else {
9184 					pr_hblk = hmeblkp;
9185 				}
9186 				hmeblkp = nx_hblk;
9187 			}
9188 			SFMMU_HASH_UNLOCK(hmebp);
9189 		}
9190 		if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
9191 			hmebp = uhme_hash;
9192 	}
9193 
9194 	hmebp = khmehash_reclaim_hand;
9195 	if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
9196 		khmehash_reclaim_hand = hmebp = khme_hash;
9197 	khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9198 
9199 	for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9200 		if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9201 			hmeblkp = hmebp->hmeblkp;
9202 			pr_hblk = NULL;
9203 			while (hmeblkp) {
9204 				nx_hblk = hmeblkp->hblk_next;
9205 				if (!hmeblkp->hblk_vcnt &&
9206 				    !hmeblkp->hblk_hmecnt) {
9207 					sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9208 					    pr_hblk, &list, 0);
9209 				} else {
9210 					pr_hblk = hmeblkp;
9211 				}
9212 				hmeblkp = nx_hblk;
9213 			}
9214 			SFMMU_HASH_UNLOCK(hmebp);
9215 		}
9216 		if (hmebp++ == &khme_hash[KHMEHASH_SZ])
9217 			hmebp = khme_hash;
9218 	}
9219 	sfmmu_hblks_list_purge(&list, 0);
9220 }
9221 
9222 /*
9223  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
9224  * same goes for sfmmu_get_addrvcolor().
9225  *
9226  * This function will return the virtual color for the specified page. The
9227  * virtual color corresponds to this page current mapping or its last mapping.
9228  * It is used by memory allocators to choose addresses with the correct
9229  * alignment so vac consistency is automatically maintained.  If the page
9230  * has no color it returns -1.
9231  */
9232 /*ARGSUSED*/
9233 int
9234 sfmmu_get_ppvcolor(struct page *pp)
9235 {
9236 #ifdef VAC
9237 	int color;
9238 
9239 	if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
9240 		return (-1);
9241 	}
9242 	color = PP_GET_VCOLOR(pp);
9243 	ASSERT(color < mmu_btop(shm_alignment));
9244 	return (color);
9245 #else
9246 	return (-1);
9247 #endif	/* VAC */
9248 }
9249 
9250 /*
9251  * This function will return the desired alignment for vac consistency
9252  * (vac color) given a virtual address.  If no vac is present it returns -1.
9253  */
9254 /*ARGSUSED*/
9255 int
9256 sfmmu_get_addrvcolor(caddr_t vaddr)
9257 {
9258 #ifdef VAC
9259 	if (cache & CACHE_VAC) {
9260 		return (addr_to_vcolor(vaddr));
9261 	} else {
9262 		return (-1);
9263 	}
9264 #else
9265 	return (-1);
9266 #endif	/* VAC */
9267 }
9268 
9269 #ifdef VAC
9270 /*
9271  * Check for conflicts.
9272  * A conflict exists if the new and existent mappings do not match in
9273  * their "shm_alignment fields. If conflicts exist, the existant mappings
9274  * are flushed unless one of them is locked. If one of them is locked, then
9275  * the mappings are flushed and converted to non-cacheable mappings.
9276  */
9277 static void
9278 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
9279 {
9280 	struct hat *tmphat;
9281 	struct sf_hment *sfhmep, *tmphme = NULL;
9282 	struct hme_blk *hmeblkp;
9283 	int vcolor;
9284 	tte_t tte;
9285 
9286 	ASSERT(sfmmu_mlist_held(pp));
9287 	ASSERT(!PP_ISNC(pp));		/* page better be cacheable */
9288 
9289 	vcolor = addr_to_vcolor(addr);
9290 	if (PP_NEWPAGE(pp)) {
9291 		PP_SET_VCOLOR(pp, vcolor);
9292 		return;
9293 	}
9294 
9295 	if (PP_GET_VCOLOR(pp) == vcolor) {
9296 		return;
9297 	}
9298 
9299 	if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
9300 		/*
9301 		 * Previous user of page had a different color
9302 		 * but since there are no current users
9303 		 * we just flush the cache and change the color.
9304 		 */
9305 		SFMMU_STAT(sf_pgcolor_conflict);
9306 		sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9307 		PP_SET_VCOLOR(pp, vcolor);
9308 		return;
9309 	}
9310 
9311 	/*
9312 	 * If we get here we have a vac conflict with a current
9313 	 * mapping.  VAC conflict policy is as follows.
9314 	 * - The default is to unload the other mappings unless:
9315 	 * - If we have a large mapping we uncache the page.
9316 	 * We need to uncache the rest of the large page too.
9317 	 * - If any of the mappings are locked we uncache the page.
9318 	 * - If the requested mapping is inconsistent
9319 	 * with another mapping and that mapping
9320 	 * is in the same address space we have to
9321 	 * make it non-cached.  The default thing
9322 	 * to do is unload the inconsistent mapping
9323 	 * but if they are in the same address space
9324 	 * we run the risk of unmapping the pc or the
9325 	 * stack which we will use as we return to the user,
9326 	 * in which case we can then fault on the thing
9327 	 * we just unloaded and get into an infinite loop.
9328 	 */
9329 	if (PP_ISMAPPED_LARGE(pp)) {
9330 		int sz;
9331 
9332 		/*
9333 		 * Existing mapping is for big pages. We don't unload
9334 		 * existing big mappings to satisfy new mappings.
9335 		 * Always convert all mappings to TNC.
9336 		 */
9337 		sz = fnd_mapping_sz(pp);
9338 		pp = PP_GROUPLEADER(pp, sz);
9339 		SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
9340 		sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
9341 		    TTEPAGES(sz));
9342 
9343 		return;
9344 	}
9345 
9346 	/*
9347 	 * check if any mapping is in same as or if it is locked
9348 	 * since in that case we need to uncache.
9349 	 */
9350 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9351 		tmphme = sfhmep->hme_next;
9352 		if (IS_PAHME(sfhmep))
9353 			continue;
9354 		hmeblkp = sfmmu_hmetohblk(sfhmep);
9355 		if (hmeblkp->hblk_xhat_bit)
9356 			continue;
9357 		tmphat = hblktosfmmu(hmeblkp);
9358 		sfmmu_copytte(&sfhmep->hme_tte, &tte);
9359 		ASSERT(TTE_IS_VALID(&tte));
9360 		if (hmeblkp->hblk_shared || tmphat == hat ||
9361 		    hmeblkp->hblk_lckcnt) {
9362 			/*
9363 			 * We have an uncache conflict
9364 			 */
9365 			SFMMU_STAT(sf_uncache_conflict);
9366 			sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
9367 			return;
9368 		}
9369 	}
9370 
9371 	/*
9372 	 * We have an unload conflict
9373 	 * We have already checked for LARGE mappings, therefore
9374 	 * the remaining mapping(s) must be TTE8K.
9375 	 */
9376 	SFMMU_STAT(sf_unload_conflict);
9377 
9378 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9379 		tmphme = sfhmep->hme_next;
9380 		if (IS_PAHME(sfhmep))
9381 			continue;
9382 		hmeblkp = sfmmu_hmetohblk(sfhmep);
9383 		if (hmeblkp->hblk_xhat_bit)
9384 			continue;
9385 		ASSERT(!hmeblkp->hblk_shared);
9386 		(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
9387 	}
9388 
9389 	if (PP_ISMAPPED_KPM(pp))
9390 		sfmmu_kpm_vac_unload(pp, addr);
9391 
9392 	/*
9393 	 * Unloads only do TLB flushes so we need to flush the
9394 	 * cache here.
9395 	 */
9396 	sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9397 	PP_SET_VCOLOR(pp, vcolor);
9398 }
9399 
9400 /*
9401  * Whenever a mapping is unloaded and the page is in TNC state,
9402  * we see if the page can be made cacheable again. 'pp' is
9403  * the page that we just unloaded a mapping from, the size
9404  * of mapping that was unloaded is 'ottesz'.
9405  * Remark:
9406  * The recache policy for mpss pages can leave a performance problem
9407  * under the following circumstances:
9408  * . A large page in uncached mode has just been unmapped.
9409  * . All constituent pages are TNC due to a conflicting small mapping.
9410  * . There are many other, non conflicting, small mappings around for
9411  *   a lot of the constituent pages.
9412  * . We're called w/ the "old" groupleader page and the old ottesz,
9413  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
9414  *   we end up w/ TTE8K or npages == 1.
9415  * . We call tst_tnc w/ the old groupleader only, and if there is no
9416  *   conflict, we re-cache only this page.
9417  * . All other small mappings are not checked and will be left in TNC mode.
9418  * The problem is not very serious because:
9419  * . mpss is actually only defined for heap and stack, so the probability
9420  *   is not very high that a large page mapping exists in parallel to a small
9421  *   one (this is possible, but seems to be bad programming style in the
9422  *   appl).
9423  * . The problem gets a little bit more serious, when those TNC pages
9424  *   have to be mapped into kernel space, e.g. for networking.
9425  * . When VAC alias conflicts occur in applications, this is regarded
9426  *   as an application bug. So if kstat's show them, the appl should
9427  *   be changed anyway.
9428  */
9429 void
9430 conv_tnc(page_t *pp, int ottesz)
9431 {
9432 	int cursz, dosz;
9433 	pgcnt_t curnpgs, dopgs;
9434 	pgcnt_t pg64k;
9435 	page_t *pp2;
9436 
9437 	/*
9438 	 * Determine how big a range we check for TNC and find
9439 	 * leader page. cursz is the size of the biggest
9440 	 * mapping that still exist on 'pp'.
9441 	 */
9442 	if (PP_ISMAPPED_LARGE(pp)) {
9443 		cursz = fnd_mapping_sz(pp);
9444 	} else {
9445 		cursz = TTE8K;
9446 	}
9447 
9448 	if (ottesz >= cursz) {
9449 		dosz = ottesz;
9450 		pp2 = pp;
9451 	} else {
9452 		dosz = cursz;
9453 		pp2 = PP_GROUPLEADER(pp, dosz);
9454 	}
9455 
9456 	pg64k = TTEPAGES(TTE64K);
9457 	dopgs = TTEPAGES(dosz);
9458 
9459 	ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
9460 
9461 	while (dopgs != 0) {
9462 		curnpgs = TTEPAGES(cursz);
9463 		if (tst_tnc(pp2, curnpgs)) {
9464 			SFMMU_STAT_ADD(sf_recache, curnpgs);
9465 			sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
9466 			    curnpgs);
9467 		}
9468 
9469 		ASSERT(dopgs >= curnpgs);
9470 		dopgs -= curnpgs;
9471 
9472 		if (dopgs == 0) {
9473 			break;
9474 		}
9475 
9476 		pp2 = PP_PAGENEXT_N(pp2, curnpgs);
9477 		if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
9478 			cursz = fnd_mapping_sz(pp2);
9479 		} else {
9480 			cursz = TTE8K;
9481 		}
9482 	}
9483 }
9484 
9485 /*
9486  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
9487  * returns 0 otherwise. Note that oaddr argument is valid for only
9488  * 8k pages.
9489  */
9490 int
9491 tst_tnc(page_t *pp, pgcnt_t npages)
9492 {
9493 	struct	sf_hment *sfhme;
9494 	struct	hme_blk *hmeblkp;
9495 	tte_t	tte;
9496 	caddr_t	vaddr;
9497 	int	clr_valid = 0;
9498 	int 	color, color1, bcolor;
9499 	int	i, ncolors;
9500 
9501 	ASSERT(pp != NULL);
9502 	ASSERT(!(cache & CACHE_WRITEBACK));
9503 
9504 	if (npages > 1) {
9505 		ncolors = CACHE_NUM_COLOR;
9506 	}
9507 
9508 	for (i = 0; i < npages; i++) {
9509 		ASSERT(sfmmu_mlist_held(pp));
9510 		ASSERT(PP_ISTNC(pp));
9511 		ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
9512 
9513 		if (PP_ISPNC(pp)) {
9514 			return (0);
9515 		}
9516 
9517 		clr_valid = 0;
9518 		if (PP_ISMAPPED_KPM(pp)) {
9519 			caddr_t kpmvaddr;
9520 
9521 			ASSERT(kpm_enable);
9522 			kpmvaddr = hat_kpm_page2va(pp, 1);
9523 			ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
9524 			color1 = addr_to_vcolor(kpmvaddr);
9525 			clr_valid = 1;
9526 		}
9527 
9528 		for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9529 			if (IS_PAHME(sfhme))
9530 				continue;
9531 			hmeblkp = sfmmu_hmetohblk(sfhme);
9532 			if (hmeblkp->hblk_xhat_bit)
9533 				continue;
9534 
9535 			sfmmu_copytte(&sfhme->hme_tte, &tte);
9536 			ASSERT(TTE_IS_VALID(&tte));
9537 
9538 			vaddr = tte_to_vaddr(hmeblkp, tte);
9539 			color = addr_to_vcolor(vaddr);
9540 
9541 			if (npages > 1) {
9542 				/*
9543 				 * If there is a big mapping, make sure
9544 				 * 8K mapping is consistent with the big
9545 				 * mapping.
9546 				 */
9547 				bcolor = i % ncolors;
9548 				if (color != bcolor) {
9549 					return (0);
9550 				}
9551 			}
9552 			if (!clr_valid) {
9553 				clr_valid = 1;
9554 				color1 = color;
9555 			}
9556 
9557 			if (color1 != color) {
9558 				return (0);
9559 			}
9560 		}
9561 
9562 		pp = PP_PAGENEXT(pp);
9563 	}
9564 
9565 	return (1);
9566 }
9567 
9568 void
9569 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
9570 	pgcnt_t npages)
9571 {
9572 	kmutex_t *pmtx;
9573 	int i, ncolors, bcolor;
9574 	kpm_hlk_t *kpmp;
9575 	cpuset_t cpuset;
9576 
9577 	ASSERT(pp != NULL);
9578 	ASSERT(!(cache & CACHE_WRITEBACK));
9579 
9580 	kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
9581 	pmtx = sfmmu_page_enter(pp);
9582 
9583 	/*
9584 	 * Fast path caching single unmapped page
9585 	 */
9586 	if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
9587 	    flags == HAT_CACHE) {
9588 		PP_CLRTNC(pp);
9589 		PP_CLRPNC(pp);
9590 		sfmmu_page_exit(pmtx);
9591 		sfmmu_kpm_kpmp_exit(kpmp);
9592 		return;
9593 	}
9594 
9595 	/*
9596 	 * We need to capture all cpus in order to change cacheability
9597 	 * because we can't allow one cpu to access the same physical
9598 	 * page using a cacheable and a non-cachebale mapping at the same
9599 	 * time. Since we may end up walking the ism mapping list
9600 	 * have to grab it's lock now since we can't after all the
9601 	 * cpus have been captured.
9602 	 */
9603 	sfmmu_hat_lock_all();
9604 	mutex_enter(&ism_mlist_lock);
9605 	kpreempt_disable();
9606 	cpuset = cpu_ready_set;
9607 	xc_attention(cpuset);
9608 
9609 	if (npages > 1) {
9610 		/*
9611 		 * Make sure all colors are flushed since the
9612 		 * sfmmu_page_cache() only flushes one color-
9613 		 * it does not know big pages.
9614 		 */
9615 		ncolors = CACHE_NUM_COLOR;
9616 		if (flags & HAT_TMPNC) {
9617 			for (i = 0; i < ncolors; i++) {
9618 				sfmmu_cache_flushcolor(i, pp->p_pagenum);
9619 			}
9620 			cache_flush_flag = CACHE_NO_FLUSH;
9621 		}
9622 	}
9623 
9624 	for (i = 0; i < npages; i++) {
9625 
9626 		ASSERT(sfmmu_mlist_held(pp));
9627 
9628 		if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
9629 
9630 			if (npages > 1) {
9631 				bcolor = i % ncolors;
9632 			} else {
9633 				bcolor = NO_VCOLOR;
9634 			}
9635 
9636 			sfmmu_page_cache(pp, flags, cache_flush_flag,
9637 			    bcolor);
9638 		}
9639 
9640 		pp = PP_PAGENEXT(pp);
9641 	}
9642 
9643 	xt_sync(cpuset);
9644 	xc_dismissed(cpuset);
9645 	mutex_exit(&ism_mlist_lock);
9646 	sfmmu_hat_unlock_all();
9647 	sfmmu_page_exit(pmtx);
9648 	sfmmu_kpm_kpmp_exit(kpmp);
9649 	kpreempt_enable();
9650 }
9651 
9652 /*
9653  * This function changes the virtual cacheability of all mappings to a
9654  * particular page.  When changing from uncache to cacheable the mappings will
9655  * only be changed if all of them have the same virtual color.
9656  * We need to flush the cache in all cpus.  It is possible that
9657  * a process referenced a page as cacheable but has sinced exited
9658  * and cleared the mapping list.  We still to flush it but have no
9659  * state so all cpus is the only alternative.
9660  */
9661 static void
9662 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
9663 {
9664 	struct	sf_hment *sfhme;
9665 	struct	hme_blk *hmeblkp;
9666 	sfmmu_t *sfmmup;
9667 	tte_t	tte, ttemod;
9668 	caddr_t	vaddr;
9669 	int	ret, color;
9670 	pfn_t	pfn;
9671 
9672 	color = bcolor;
9673 	pfn = pp->p_pagenum;
9674 
9675 	for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9676 
9677 		if (IS_PAHME(sfhme))
9678 			continue;
9679 		hmeblkp = sfmmu_hmetohblk(sfhme);
9680 
9681 		if (hmeblkp->hblk_xhat_bit)
9682 			continue;
9683 
9684 		sfmmu_copytte(&sfhme->hme_tte, &tte);
9685 		ASSERT(TTE_IS_VALID(&tte));
9686 		vaddr = tte_to_vaddr(hmeblkp, tte);
9687 		color = addr_to_vcolor(vaddr);
9688 
9689 #ifdef DEBUG
9690 		if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
9691 			ASSERT(color == bcolor);
9692 		}
9693 #endif
9694 
9695 		ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
9696 
9697 		ttemod = tte;
9698 		if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
9699 			TTE_CLR_VCACHEABLE(&ttemod);
9700 		} else {	/* flags & HAT_CACHE */
9701 			TTE_SET_VCACHEABLE(&ttemod);
9702 		}
9703 		ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
9704 		if (ret < 0) {
9705 			/*
9706 			 * Since all cpus are captured modifytte should not
9707 			 * fail.
9708 			 */
9709 			panic("sfmmu_page_cache: write to tte failed");
9710 		}
9711 
9712 		sfmmup = hblktosfmmu(hmeblkp);
9713 		if (cache_flush_flag == CACHE_FLUSH) {
9714 			/*
9715 			 * Flush TSBs, TLBs and caches
9716 			 */
9717 			if (hmeblkp->hblk_shared) {
9718 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9719 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
9720 				sf_region_t *rgnp;
9721 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9722 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9723 				ASSERT(srdp != NULL);
9724 				rgnp = srdp->srd_hmergnp[rid];
9725 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9726 				    srdp, rgnp, rid);
9727 				(void) sfmmu_rgntlb_demap(vaddr, rgnp,
9728 				    hmeblkp, 0);
9729 				sfmmu_cache_flush(pfn, addr_to_vcolor(vaddr));
9730 			} else if (sfmmup->sfmmu_ismhat) {
9731 				if (flags & HAT_CACHE) {
9732 					SFMMU_STAT(sf_ism_recache);
9733 				} else {
9734 					SFMMU_STAT(sf_ism_uncache);
9735 				}
9736 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9737 				    pfn, CACHE_FLUSH);
9738 			} else {
9739 				sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
9740 				    pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
9741 			}
9742 
9743 			/*
9744 			 * all cache entries belonging to this pfn are
9745 			 * now flushed.
9746 			 */
9747 			cache_flush_flag = CACHE_NO_FLUSH;
9748 		} else {
9749 			/*
9750 			 * Flush only TSBs and TLBs.
9751 			 */
9752 			if (hmeblkp->hblk_shared) {
9753 				sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9754 				uint_t rid = hmeblkp->hblk_tag.htag_rid;
9755 				sf_region_t *rgnp;
9756 				ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9757 				ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9758 				ASSERT(srdp != NULL);
9759 				rgnp = srdp->srd_hmergnp[rid];
9760 				SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9761 				    srdp, rgnp, rid);
9762 				(void) sfmmu_rgntlb_demap(vaddr, rgnp,
9763 				    hmeblkp, 0);
9764 			} else if (sfmmup->sfmmu_ismhat) {
9765 				if (flags & HAT_CACHE) {
9766 					SFMMU_STAT(sf_ism_recache);
9767 				} else {
9768 					SFMMU_STAT(sf_ism_uncache);
9769 				}
9770 				sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9771 				    pfn, CACHE_NO_FLUSH);
9772 			} else {
9773 				sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
9774 			}
9775 		}
9776 	}
9777 
9778 	if (PP_ISMAPPED_KPM(pp))
9779 		sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
9780 
9781 	switch (flags) {
9782 
9783 		default:
9784 			panic("sfmmu_pagecache: unknown flags");
9785 			break;
9786 
9787 		case HAT_CACHE:
9788 			PP_CLRTNC(pp);
9789 			PP_CLRPNC(pp);
9790 			PP_SET_VCOLOR(pp, color);
9791 			break;
9792 
9793 		case HAT_TMPNC:
9794 			PP_SETTNC(pp);
9795 			PP_SET_VCOLOR(pp, NO_VCOLOR);
9796 			break;
9797 
9798 		case HAT_UNCACHE:
9799 			PP_SETPNC(pp);
9800 			PP_CLRTNC(pp);
9801 			PP_SET_VCOLOR(pp, NO_VCOLOR);
9802 			break;
9803 	}
9804 }
9805 #endif	/* VAC */
9806 
9807 
9808 /*
9809  * Wrapper routine used to return a context.
9810  *
9811  * It's the responsibility of the caller to guarantee that the
9812  * process serializes on calls here by taking the HAT lock for
9813  * the hat.
9814  *
9815  */
9816 static void
9817 sfmmu_get_ctx(sfmmu_t *sfmmup)
9818 {
9819 	mmu_ctx_t *mmu_ctxp;
9820 	uint_t pstate_save;
9821 	int ret;
9822 
9823 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9824 	ASSERT(sfmmup != ksfmmup);
9825 
9826 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)) {
9827 		sfmmu_setup_tsbinfo(sfmmup);
9828 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_ALLCTX_INVALID);
9829 	}
9830 
9831 	kpreempt_disable();
9832 
9833 	mmu_ctxp = CPU_MMU_CTXP(CPU);
9834 	ASSERT(mmu_ctxp);
9835 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
9836 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
9837 
9838 	/*
9839 	 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
9840 	 */
9841 	if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
9842 		sfmmu_ctx_wrap_around(mmu_ctxp);
9843 
9844 	/*
9845 	 * Let the MMU set up the page sizes to use for
9846 	 * this context in the TLB. Don't program 2nd dtlb for ism hat.
9847 	 */
9848 	if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
9849 		mmu_set_ctx_page_sizes(sfmmup);
9850 	}
9851 
9852 	/*
9853 	 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
9854 	 * interrupts disabled to prevent race condition with wrap-around
9855 	 * ctx invalidatation. In sun4v, ctx invalidation also involves
9856 	 * a HV call to set the number of TSBs to 0. If interrupts are not
9857 	 * disabled until after sfmmu_load_mmustate is complete TSBs may
9858 	 * become assigned to INVALID_CONTEXT. This is not allowed.
9859 	 */
9860 	pstate_save = sfmmu_disable_intrs();
9861 
9862 	if (sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE) &&
9863 	    sfmmup->sfmmu_scdp != NULL) {
9864 		sf_scd_t *scdp = sfmmup->sfmmu_scdp;
9865 		sfmmu_t *scsfmmup = scdp->scd_sfmmup;
9866 		ret = sfmmu_alloc_ctx(scsfmmup, 1, CPU, SFMMU_SHARED);
9867 		/* debug purpose only */
9868 		ASSERT(!ret || scsfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
9869 		    != INVALID_CONTEXT);
9870 	}
9871 	sfmmu_load_mmustate(sfmmup);
9872 
9873 	sfmmu_enable_intrs(pstate_save);
9874 
9875 	kpreempt_enable();
9876 }
9877 
9878 /*
9879  * When all cnums are used up in a MMU, cnum will wrap around to the
9880  * next generation and start from 2.
9881  */
9882 static void
9883 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp)
9884 {
9885 
9886 	/* caller must have disabled the preemption */
9887 	ASSERT(curthread->t_preempt >= 1);
9888 	ASSERT(mmu_ctxp != NULL);
9889 
9890 	/* acquire Per-MMU (PM) spin lock */
9891 	mutex_enter(&mmu_ctxp->mmu_lock);
9892 
9893 	/* re-check to see if wrap-around is needed */
9894 	if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
9895 		goto done;
9896 
9897 	SFMMU_MMU_STAT(mmu_wrap_around);
9898 
9899 	/* update gnum */
9900 	ASSERT(mmu_ctxp->mmu_gnum != 0);
9901 	mmu_ctxp->mmu_gnum++;
9902 	if (mmu_ctxp->mmu_gnum == 0 ||
9903 	    mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
9904 		cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
9905 		    (void *)mmu_ctxp);
9906 	}
9907 
9908 	if (mmu_ctxp->mmu_ncpus > 1) {
9909 		cpuset_t cpuset;
9910 
9911 		membar_enter(); /* make sure updated gnum visible */
9912 
9913 		SFMMU_XCALL_STATS(NULL);
9914 
9915 		/* xcall to others on the same MMU to invalidate ctx */
9916 		cpuset = mmu_ctxp->mmu_cpuset;
9917 		ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id));
9918 		CPUSET_DEL(cpuset, CPU->cpu_id);
9919 		CPUSET_AND(cpuset, cpu_ready_set);
9920 
9921 		/*
9922 		 * Pass in INVALID_CONTEXT as the first parameter to
9923 		 * sfmmu_raise_tsb_exception, which invalidates the context
9924 		 * of any process running on the CPUs in the MMU.
9925 		 */
9926 		xt_some(cpuset, sfmmu_raise_tsb_exception,
9927 		    INVALID_CONTEXT, INVALID_CONTEXT);
9928 		xt_sync(cpuset);
9929 
9930 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
9931 	}
9932 
9933 	if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
9934 		sfmmu_setctx_sec(INVALID_CONTEXT);
9935 		sfmmu_clear_utsbinfo();
9936 	}
9937 
9938 	/*
9939 	 * No xcall is needed here. For sun4u systems all CPUs in context
9940 	 * domain share a single physical MMU therefore it's enough to flush
9941 	 * TLB on local CPU. On sun4v systems we use 1 global context
9942 	 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
9943 	 * handler. Note that vtag_flushall_uctxs() is called
9944 	 * for Ultra II machine, where the equivalent flushall functionality
9945 	 * is implemented in SW, and only user ctx TLB entries are flushed.
9946 	 */
9947 	if (&vtag_flushall_uctxs != NULL) {
9948 		vtag_flushall_uctxs();
9949 	} else {
9950 		vtag_flushall();
9951 	}
9952 
9953 	/* reset mmu cnum, skips cnum 0 and 1 */
9954 	mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
9955 
9956 done:
9957 	mutex_exit(&mmu_ctxp->mmu_lock);
9958 }
9959 
9960 
9961 /*
9962  * For multi-threaded process, set the process context to INVALID_CONTEXT
9963  * so that it faults and reloads the MMU state from TL=0. For single-threaded
9964  * process, we can just load the MMU state directly without having to
9965  * set context invalid. Caller must hold the hat lock since we don't
9966  * acquire it here.
9967  */
9968 static void
9969 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
9970 {
9971 	uint_t cnum;
9972 	uint_t pstate_save;
9973 
9974 	ASSERT(sfmmup != ksfmmup);
9975 	ASSERT(sfmmu_hat_lock_held(sfmmup));
9976 
9977 	kpreempt_disable();
9978 
9979 	/*
9980 	 * We check whether the pass'ed-in sfmmup is the same as the
9981 	 * current running proc. This is to makes sure the current proc
9982 	 * stays single-threaded if it already is.
9983 	 */
9984 	if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
9985 	    (curthread->t_procp->p_lwpcnt == 1)) {
9986 		/* single-thread */
9987 		cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
9988 		if (cnum != INVALID_CONTEXT) {
9989 			uint_t curcnum;
9990 			/*
9991 			 * Disable interrupts to prevent race condition
9992 			 * with sfmmu_ctx_wrap_around ctx invalidation.
9993 			 * In sun4v, ctx invalidation involves setting
9994 			 * TSB to NULL, hence, interrupts should be disabled
9995 			 * untill after sfmmu_load_mmustate is completed.
9996 			 */
9997 			pstate_save = sfmmu_disable_intrs();
9998 			curcnum = sfmmu_getctx_sec();
9999 			if (curcnum == cnum)
10000 				sfmmu_load_mmustate(sfmmup);
10001 			sfmmu_enable_intrs(pstate_save);
10002 			ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
10003 		}
10004 	} else {
10005 		/*
10006 		 * multi-thread
10007 		 * or when sfmmup is not the same as the curproc.
10008 		 */
10009 		sfmmu_invalidate_ctx(sfmmup);
10010 	}
10011 
10012 	kpreempt_enable();
10013 }
10014 
10015 
10016 /*
10017  * Replace the specified TSB with a new TSB.  This function gets called when
10018  * we grow, shrink or swapin a TSB.  When swapping in a TSB (TSB_SWAPIN), the
10019  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
10020  * (8K).
10021  *
10022  * Caller must hold the HAT lock, but should assume any tsb_info
10023  * pointers it has are no longer valid after calling this function.
10024  *
10025  * Return values:
10026  *	TSB_ALLOCFAIL	Failed to allocate a TSB, due to memory constraints
10027  *	TSB_LOSTRACE	HAT is busy, i.e. another thread is already doing
10028  *			something to this tsbinfo/TSB
10029  *	TSB_SUCCESS	Operation succeeded
10030  */
10031 static tsb_replace_rc_t
10032 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
10033     hatlock_t *hatlockp, uint_t flags)
10034 {
10035 	struct tsb_info *new_tsbinfo = NULL;
10036 	struct tsb_info *curtsb, *prevtsb;
10037 	uint_t tte_sz_mask;
10038 	int i;
10039 
10040 	ASSERT(sfmmup != ksfmmup);
10041 	ASSERT(sfmmup->sfmmu_ismhat == 0);
10042 	ASSERT(sfmmu_hat_lock_held(sfmmup));
10043 	ASSERT(szc <= tsb_max_growsize);
10044 
10045 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
10046 		return (TSB_LOSTRACE);
10047 
10048 	/*
10049 	 * Find the tsb_info ahead of this one in the list, and
10050 	 * also make sure that the tsb_info passed in really
10051 	 * exists!
10052 	 */
10053 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
10054 	    curtsb != old_tsbinfo && curtsb != NULL;
10055 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
10056 		;
10057 	ASSERT(curtsb != NULL);
10058 
10059 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10060 		/*
10061 		 * The process is swapped out, so just set the new size
10062 		 * code.  When it swaps back in, we'll allocate a new one
10063 		 * of the new chosen size.
10064 		 */
10065 		curtsb->tsb_szc = szc;
10066 		return (TSB_SUCCESS);
10067 	}
10068 	SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
10069 
10070 	tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
10071 
10072 	/*
10073 	 * All initialization is done inside of sfmmu_tsbinfo_alloc().
10074 	 * If we fail to allocate a TSB, exit.
10075 	 *
10076 	 * If tsb grows with new tsb size > 4M and old tsb size < 4M,
10077 	 * then try 4M slab after the initial alloc fails.
10078 	 *
10079 	 * If tsb swapin with tsb size > 4M, then try 4M after the
10080 	 * initial alloc fails.
10081 	 */
10082 	sfmmu_hat_exit(hatlockp);
10083 	if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc,
10084 	    tte_sz_mask, flags, sfmmup) &&
10085 	    (!(flags & (TSB_GROW | TSB_SWAPIN)) || (szc <= TSB_4M_SZCODE) ||
10086 	    (!(flags & TSB_SWAPIN) &&
10087 	    (old_tsbinfo->tsb_szc >= TSB_4M_SZCODE)) ||
10088 	    sfmmu_tsbinfo_alloc(&new_tsbinfo, TSB_4M_SZCODE,
10089 	    tte_sz_mask, flags, sfmmup))) {
10090 		(void) sfmmu_hat_enter(sfmmup);
10091 		if (!(flags & TSB_SWAPIN))
10092 			SFMMU_STAT(sf_tsb_resize_failures);
10093 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10094 		return (TSB_ALLOCFAIL);
10095 	}
10096 	(void) sfmmu_hat_enter(sfmmup);
10097 
10098 	/*
10099 	 * Re-check to make sure somebody else didn't muck with us while we
10100 	 * didn't hold the HAT lock.  If the process swapped out, fine, just
10101 	 * exit; this can happen if we try to shrink the TSB from the context
10102 	 * of another process (such as on an ISM unmap), though it is rare.
10103 	 */
10104 	if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
10105 		SFMMU_STAT(sf_tsb_resize_failures);
10106 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10107 		sfmmu_hat_exit(hatlockp);
10108 		sfmmu_tsbinfo_free(new_tsbinfo);
10109 		(void) sfmmu_hat_enter(sfmmup);
10110 		return (TSB_LOSTRACE);
10111 	}
10112 
10113 #ifdef	DEBUG
10114 	/* Reverify that the tsb_info still exists.. for debugging only */
10115 	for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
10116 	    curtsb != old_tsbinfo && curtsb != NULL;
10117 	    prevtsb = curtsb, curtsb = curtsb->tsb_next)
10118 		;
10119 	ASSERT(curtsb != NULL);
10120 #endif	/* DEBUG */
10121 
10122 	/*
10123 	 * Quiesce any CPUs running this process on their next TLB miss
10124 	 * so they atomically see the new tsb_info.  We temporarily set the
10125 	 * context to invalid context so new threads that come on processor
10126 	 * after we do the xcall to cpusran will also serialize behind the
10127 	 * HAT lock on TLB miss and will see the new TSB.  Since this short
10128 	 * race with a new thread coming on processor is relatively rare,
10129 	 * this synchronization mechanism should be cheaper than always
10130 	 * pausing all CPUs for the duration of the setup, which is what
10131 	 * the old implementation did.  This is particuarly true if we are
10132 	 * copying a huge chunk of memory around during that window.
10133 	 *
10134 	 * The memory barriers are to make sure things stay consistent
10135 	 * with resume() since it does not hold the HAT lock while
10136 	 * walking the list of tsb_info structures.
10137 	 */
10138 	if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
10139 		/* The TSB is either growing or shrinking. */
10140 		sfmmu_invalidate_ctx(sfmmup);
10141 	} else {
10142 		/*
10143 		 * It is illegal to swap in TSBs from a process other
10144 		 * than a process being swapped in.  This in turn
10145 		 * implies we do not have a valid MMU context here
10146 		 * since a process needs one to resolve translation
10147 		 * misses.
10148 		 */
10149 		ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
10150 	}
10151 
10152 #ifdef DEBUG
10153 	ASSERT(max_mmu_ctxdoms > 0);
10154 
10155 	/*
10156 	 * Process should have INVALID_CONTEXT on all MMUs
10157 	 */
10158 	for (i = 0; i < max_mmu_ctxdoms; i++) {
10159 
10160 		ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
10161 	}
10162 #endif
10163 
10164 	new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
10165 	membar_stst();	/* strict ordering required */
10166 	if (prevtsb)
10167 		prevtsb->tsb_next = new_tsbinfo;
10168 	else
10169 		sfmmup->sfmmu_tsb = new_tsbinfo;
10170 	membar_enter();	/* make sure new TSB globally visible */
10171 
10172 	/*
10173 	 * We need to migrate TSB entries from the old TSB to the new TSB
10174 	 * if tsb_remap_ttes is set and the TSB is growing.
10175 	 */
10176 	if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
10177 		sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
10178 
10179 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10180 
10181 	/*
10182 	 * Drop the HAT lock to free our old tsb_info.
10183 	 */
10184 	sfmmu_hat_exit(hatlockp);
10185 
10186 	if ((flags & TSB_GROW) == TSB_GROW) {
10187 		SFMMU_STAT(sf_tsb_grow);
10188 	} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
10189 		SFMMU_STAT(sf_tsb_shrink);
10190 	}
10191 
10192 	sfmmu_tsbinfo_free(old_tsbinfo);
10193 
10194 	(void) sfmmu_hat_enter(sfmmup);
10195 	return (TSB_SUCCESS);
10196 }
10197 
10198 /*
10199  * This function will re-program hat pgsz array, and invalidate the
10200  * process' context, forcing the process to switch to another
10201  * context on the next TLB miss, and therefore start using the
10202  * TLB that is reprogrammed for the new page sizes.
10203  */
10204 void
10205 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
10206 {
10207 	int i;
10208 	hatlock_t *hatlockp = NULL;
10209 
10210 	hatlockp = sfmmu_hat_enter(sfmmup);
10211 	/* USIII+-IV+ optimization, requires hat lock */
10212 	if (tmp_pgsz) {
10213 		for (i = 0; i < mmu_page_sizes; i++)
10214 			sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
10215 	}
10216 	SFMMU_STAT(sf_tlb_reprog_pgsz);
10217 
10218 	sfmmu_invalidate_ctx(sfmmup);
10219 
10220 	sfmmu_hat_exit(hatlockp);
10221 }
10222 
10223 /*
10224  * The scd_rttecnt field in the SCD must be updated to take account of the
10225  * regions which it contains.
10226  */
10227 static void
10228 sfmmu_set_scd_rttecnt(sf_srd_t *srdp, sf_scd_t *scdp)
10229 {
10230 	uint_t rid;
10231 	uint_t i, j;
10232 	ulong_t w;
10233 	sf_region_t *rgnp;
10234 
10235 	ASSERT(srdp != NULL);
10236 
10237 	for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
10238 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
10239 			continue;
10240 		}
10241 
10242 		j = 0;
10243 		while (w) {
10244 			if (!(w & 0x1)) {
10245 				j++;
10246 				w >>= 1;
10247 				continue;
10248 			}
10249 			rid = (i << BT_ULSHIFT) | j;
10250 			j++;
10251 			w >>= 1;
10252 
10253 			ASSERT(SFMMU_IS_SHMERID_VALID(rid));
10254 			ASSERT(rid < SFMMU_MAX_HME_REGIONS);
10255 			rgnp = srdp->srd_hmergnp[rid];
10256 			ASSERT(rgnp->rgn_refcnt > 0);
10257 			ASSERT(rgnp->rgn_id == rid);
10258 
10259 			scdp->scd_rttecnt[rgnp->rgn_pgszc] +=
10260 			    rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
10261 
10262 			/*
10263 			 * Maintain the tsb0 inflation cnt for the regions
10264 			 * in the SCD.
10265 			 */
10266 			if (rgnp->rgn_pgszc >= TTE4M) {
10267 				scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt +=
10268 				    rgnp->rgn_size >>
10269 				    (TTE_PAGE_SHIFT(TTE8K) + 2);
10270 			}
10271 		}
10272 	}
10273 }
10274 
10275 /*
10276  * This function assumes that there are either four or six supported page
10277  * sizes and at most two programmable TLBs, so we need to decide which
10278  * page sizes are most important and then tell the MMU layer so it
10279  * can adjust the TLB page sizes accordingly (if supported).
10280  *
10281  * If these assumptions change, this function will need to be
10282  * updated to support whatever the new limits are.
10283  *
10284  * The growing flag is nonzero if we are growing the address space,
10285  * and zero if it is shrinking.  This allows us to decide whether
10286  * to grow or shrink our TSB, depending upon available memory
10287  * conditions.
10288  */
10289 static void
10290 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
10291 {
10292 	uint64_t ttecnt[MMU_PAGE_SIZES];
10293 	uint64_t tte8k_cnt, tte4m_cnt;
10294 	uint8_t i;
10295 	int sectsb_thresh;
10296 
10297 	/*
10298 	 * Kernel threads, processes with small address spaces not using
10299 	 * large pages, and dummy ISM HATs need not apply.
10300 	 */
10301 	if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
10302 		return;
10303 
10304 	if (!SFMMU_LGPGS_INUSE(sfmmup) &&
10305 	    sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
10306 		return;
10307 
10308 	for (i = 0; i < mmu_page_sizes; i++) {
10309 		ttecnt[i] = sfmmup->sfmmu_ttecnt[i] +
10310 		    sfmmup->sfmmu_ismttecnt[i];
10311 	}
10312 
10313 	/* Check pagesizes in use, and possibly reprogram DTLB. */
10314 	if (&mmu_check_page_sizes)
10315 		mmu_check_page_sizes(sfmmup, ttecnt);
10316 
10317 	/*
10318 	 * Calculate the number of 8k ttes to represent the span of these
10319 	 * pages.
10320 	 */
10321 	tte8k_cnt = ttecnt[TTE8K] +
10322 	    (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
10323 	    (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
10324 	if (mmu_page_sizes == max_mmu_page_sizes) {
10325 		tte4m_cnt = ttecnt[TTE4M] +
10326 		    (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
10327 		    (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
10328 	} else {
10329 		tte4m_cnt = ttecnt[TTE4M];
10330 	}
10331 
10332 	/*
10333 	 * Inflate tte8k_cnt to allow for region large page allocation failure.
10334 	 */
10335 	tte8k_cnt += sfmmup->sfmmu_tsb0_4minflcnt;
10336 
10337 	/*
10338 	 * Inflate TSB sizes by a factor of 2 if this process
10339 	 * uses 4M text pages to minimize extra conflict misses
10340 	 * in the first TSB since without counting text pages
10341 	 * 8K TSB may become too small.
10342 	 *
10343 	 * Also double the size of the second TSB to minimize
10344 	 * extra conflict misses due to competition between 4M text pages
10345 	 * and data pages.
10346 	 *
10347 	 * We need to adjust the second TSB allocation threshold by the
10348 	 * inflation factor, since there is no point in creating a second
10349 	 * TSB when we know all the mappings can fit in the I/D TLBs.
10350 	 */
10351 	sectsb_thresh = tsb_sectsb_threshold;
10352 	if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
10353 		tte8k_cnt <<= 1;
10354 		tte4m_cnt <<= 1;
10355 		sectsb_thresh <<= 1;
10356 	}
10357 
10358 	/*
10359 	 * Check to see if our TSB is the right size; we may need to
10360 	 * grow or shrink it.  If the process is small, our work is
10361 	 * finished at this point.
10362 	 */
10363 	if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
10364 		return;
10365 	}
10366 	sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
10367 }
10368 
10369 static void
10370 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
10371 	uint64_t tte4m_cnt, int sectsb_thresh)
10372 {
10373 	int tsb_bits;
10374 	uint_t tsb_szc;
10375 	struct tsb_info *tsbinfop;
10376 	hatlock_t *hatlockp = NULL;
10377 
10378 	hatlockp = sfmmu_hat_enter(sfmmup);
10379 	ASSERT(hatlockp != NULL);
10380 	tsbinfop = sfmmup->sfmmu_tsb;
10381 	ASSERT(tsbinfop != NULL);
10382 
10383 	/*
10384 	 * If we're growing, select the size based on RSS.  If we're
10385 	 * shrinking, leave some room so we don't have to turn around and
10386 	 * grow again immediately.
10387 	 */
10388 	if (growing)
10389 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
10390 	else
10391 		tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
10392 
10393 	if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10394 	    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10395 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10396 		    hatlockp, TSB_SHRINK);
10397 	} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
10398 		(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10399 		    hatlockp, TSB_GROW);
10400 	}
10401 	tsbinfop = sfmmup->sfmmu_tsb;
10402 
10403 	/*
10404 	 * With the TLB and first TSB out of the way, we need to see if
10405 	 * we need a second TSB for 4M pages.  If we managed to reprogram
10406 	 * the TLB page sizes above, the process will start using this new
10407 	 * TSB right away; otherwise, it will start using it on the next
10408 	 * context switch.  Either way, it's no big deal so there's no
10409 	 * synchronization with the trap handlers here unless we grow the
10410 	 * TSB (in which case it's required to prevent using the old one
10411 	 * after it's freed). Note: second tsb is required for 32M/256M
10412 	 * page sizes.
10413 	 */
10414 	if (tte4m_cnt > sectsb_thresh) {
10415 		/*
10416 		 * If we're growing, select the size based on RSS.  If we're
10417 		 * shrinking, leave some room so we don't have to turn
10418 		 * around and grow again immediately.
10419 		 */
10420 		if (growing)
10421 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
10422 		else
10423 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
10424 		if (tsbinfop->tsb_next == NULL) {
10425 			struct tsb_info *newtsb;
10426 			int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
10427 			    0 : TSB_ALLOC;
10428 
10429 			sfmmu_hat_exit(hatlockp);
10430 
10431 			/*
10432 			 * Try to allocate a TSB for 4[32|256]M pages.  If we
10433 			 * can't get the size we want, retry w/a minimum sized
10434 			 * TSB.  If that still didn't work, give up; we can
10435 			 * still run without one.
10436 			 */
10437 			tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
10438 			    TSB4M|TSB32M|TSB256M:TSB4M;
10439 			if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
10440 			    allocflags, sfmmup)) &&
10441 			    (tsb_szc <= TSB_4M_SZCODE ||
10442 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
10443 			    tsb_bits, allocflags, sfmmup)) &&
10444 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
10445 			    tsb_bits, allocflags, sfmmup)) {
10446 				return;
10447 			}
10448 
10449 			hatlockp = sfmmu_hat_enter(sfmmup);
10450 
10451 			sfmmu_invalidate_ctx(sfmmup);
10452 
10453 			if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
10454 				sfmmup->sfmmu_tsb->tsb_next = newtsb;
10455 				SFMMU_STAT(sf_tsb_sectsb_create);
10456 				sfmmu_hat_exit(hatlockp);
10457 				return;
10458 			} else {
10459 				/*
10460 				 * It's annoying, but possible for us
10461 				 * to get here.. we dropped the HAT lock
10462 				 * because of locking order in the kmem
10463 				 * allocator, and while we were off getting
10464 				 * our memory, some other thread decided to
10465 				 * do us a favor and won the race to get a
10466 				 * second TSB for this process.  Sigh.
10467 				 */
10468 				sfmmu_hat_exit(hatlockp);
10469 				sfmmu_tsbinfo_free(newtsb);
10470 				return;
10471 			}
10472 		}
10473 
10474 		/*
10475 		 * We have a second TSB, see if it's big enough.
10476 		 */
10477 		tsbinfop = tsbinfop->tsb_next;
10478 
10479 		/*
10480 		 * Check to see if our second TSB is the right size;
10481 		 * we may need to grow or shrink it.
10482 		 * To prevent thrashing (e.g. growing the TSB on a
10483 		 * subsequent map operation), only try to shrink if
10484 		 * the TSB reach exceeds twice the virtual address
10485 		 * space size.
10486 		 */
10487 		if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10488 		    (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10489 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10490 			    tsb_szc, hatlockp, TSB_SHRINK);
10491 		} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
10492 		    TSB_OK_GROW()) {
10493 			(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10494 			    tsb_szc, hatlockp, TSB_GROW);
10495 		}
10496 	}
10497 
10498 	sfmmu_hat_exit(hatlockp);
10499 }
10500 
10501 /*
10502  * Free up a sfmmu
10503  * Since the sfmmu is currently embedded in the hat struct we simply zero
10504  * out our fields and free up the ism map blk list if any.
10505  */
10506 static void
10507 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
10508 {
10509 	ism_blk_t	*blkp, *nx_blkp;
10510 #ifdef	DEBUG
10511 	ism_map_t	*map;
10512 	int 		i;
10513 #endif
10514 
10515 	ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
10516 	ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
10517 	ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
10518 	ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
10519 	ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
10520 	ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
10521 	ASSERT(SF_RGNMAP_ISNULL(sfmmup));
10522 
10523 	sfmmup->sfmmu_free = 0;
10524 	sfmmup->sfmmu_ismhat = 0;
10525 
10526 	blkp = sfmmup->sfmmu_iblk;
10527 	sfmmup->sfmmu_iblk = NULL;
10528 
10529 	while (blkp) {
10530 #ifdef	DEBUG
10531 		map = blkp->iblk_maps;
10532 		for (i = 0; i < ISM_MAP_SLOTS; i++) {
10533 			ASSERT(map[i].imap_seg == 0);
10534 			ASSERT(map[i].imap_ismhat == NULL);
10535 			ASSERT(map[i].imap_ment == NULL);
10536 		}
10537 #endif
10538 		nx_blkp = blkp->iblk_next;
10539 		blkp->iblk_next = NULL;
10540 		blkp->iblk_nextpa = (uint64_t)-1;
10541 		kmem_cache_free(ism_blk_cache, blkp);
10542 		blkp = nx_blkp;
10543 	}
10544 }
10545 
10546 /*
10547  * Locking primitves accessed by HATLOCK macros
10548  */
10549 
10550 #define	SFMMU_SPL_MTX	(0x0)
10551 #define	SFMMU_ML_MTX	(0x1)
10552 
10553 #define	SFMMU_MLSPL_MTX(type, pg)	(((type) == SFMMU_SPL_MTX) ? \
10554 					    SPL_HASH(pg) : MLIST_HASH(pg))
10555 
10556 kmutex_t *
10557 sfmmu_page_enter(struct page *pp)
10558 {
10559 	return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
10560 }
10561 
10562 void
10563 sfmmu_page_exit(kmutex_t *spl)
10564 {
10565 	mutex_exit(spl);
10566 }
10567 
10568 int
10569 sfmmu_page_spl_held(struct page *pp)
10570 {
10571 	return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
10572 }
10573 
10574 kmutex_t *
10575 sfmmu_mlist_enter(struct page *pp)
10576 {
10577 	return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
10578 }
10579 
10580 void
10581 sfmmu_mlist_exit(kmutex_t *mml)
10582 {
10583 	mutex_exit(mml);
10584 }
10585 
10586 int
10587 sfmmu_mlist_held(struct page *pp)
10588 {
10589 
10590 	return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
10591 }
10592 
10593 /*
10594  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
10595  * sfmmu_mlist_enter() case mml_table lock array is used and for
10596  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
10597  *
10598  * The lock is taken on a root page so that it protects an operation on all
10599  * constituent pages of a large page pp belongs to.
10600  *
10601  * The routine takes a lock from the appropriate array. The lock is determined
10602  * by hashing the root page. After taking the lock this routine checks if the
10603  * root page has the same size code that was used to determine the root (i.e
10604  * that root hasn't changed).  If root page has the expected p_szc field we
10605  * have the right lock and it's returned to the caller. If root's p_szc
10606  * decreased we release the lock and retry from the beginning.  This case can
10607  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
10608  * value and taking the lock. The number of retries due to p_szc decrease is
10609  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
10610  * determined by hashing pp itself.
10611  *
10612  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
10613  * possible that p_szc can increase. To increase p_szc a thread has to lock
10614  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
10615  * callers that don't hold a page locked recheck if hmeblk through which pp
10616  * was found still maps this pp.  If it doesn't map it anymore returned lock
10617  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
10618  * p_szc increase after taking the lock it returns this lock without further
10619  * retries because in this case the caller doesn't care about which lock was
10620  * taken. The caller will drop it right away.
10621  *
10622  * After the routine returns it's guaranteed that hat_page_demote() can't
10623  * change p_szc field of any of constituent pages of a large page pp belongs
10624  * to as long as pp was either locked at least SHARED prior to this call or
10625  * the caller finds that hment that pointed to this pp still references this
10626  * pp (this also assumes that the caller holds hme hash bucket lock so that
10627  * the same pp can't be remapped into the same hmeblk after it was unmapped by
10628  * hat_pageunload()).
10629  */
10630 static kmutex_t *
10631 sfmmu_mlspl_enter(struct page *pp, int type)
10632 {
10633 	kmutex_t	*mtx;
10634 	uint_t		prev_rszc = UINT_MAX;
10635 	page_t		*rootpp;
10636 	uint_t		szc;
10637 	uint_t		rszc;
10638 	uint_t		pszc = pp->p_szc;
10639 
10640 	ASSERT(pp != NULL);
10641 
10642 again:
10643 	if (pszc == 0) {
10644 		mtx = SFMMU_MLSPL_MTX(type, pp);
10645 		mutex_enter(mtx);
10646 		return (mtx);
10647 	}
10648 
10649 	/* The lock lives in the root page */
10650 	rootpp = PP_GROUPLEADER(pp, pszc);
10651 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
10652 	mutex_enter(mtx);
10653 
10654 	/*
10655 	 * Return mml in the following 3 cases:
10656 	 *
10657 	 * 1) If pp itself is root since if its p_szc decreased before we took
10658 	 * the lock pp is still the root of smaller szc page. And if its p_szc
10659 	 * increased it doesn't matter what lock we return (see comment in
10660 	 * front of this routine).
10661 	 *
10662 	 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
10663 	 * large page we have the right lock since any previous potential
10664 	 * hat_page_demote() is done demoting from greater than current root's
10665 	 * p_szc because hat_page_demote() changes root's p_szc last. No
10666 	 * further hat_page_demote() can start or be in progress since it
10667 	 * would need the same lock we currently hold.
10668 	 *
10669 	 * 3) If rootpp's p_szc increased since previous iteration it doesn't
10670 	 * matter what lock we return (see comment in front of this routine).
10671 	 */
10672 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
10673 	    rszc >= prev_rszc) {
10674 		return (mtx);
10675 	}
10676 
10677 	/*
10678 	 * hat_page_demote() could have decreased root's p_szc.
10679 	 * In this case pp's p_szc must also be smaller than pszc.
10680 	 * Retry.
10681 	 */
10682 	if (rszc < pszc) {
10683 		szc = pp->p_szc;
10684 		if (szc < pszc) {
10685 			mutex_exit(mtx);
10686 			pszc = szc;
10687 			goto again;
10688 		}
10689 		/*
10690 		 * pp's p_szc increased after it was decreased.
10691 		 * page cannot be mapped. Return current lock. The caller
10692 		 * will drop it right away.
10693 		 */
10694 		return (mtx);
10695 	}
10696 
10697 	/*
10698 	 * root's p_szc is greater than pp's p_szc.
10699 	 * hat_page_demote() is not done with all pages
10700 	 * yet. Wait for it to complete.
10701 	 */
10702 	mutex_exit(mtx);
10703 	rootpp = PP_GROUPLEADER(rootpp, rszc);
10704 	mtx = SFMMU_MLSPL_MTX(type, rootpp);
10705 	mutex_enter(mtx);
10706 	mutex_exit(mtx);
10707 	prev_rszc = rszc;
10708 	goto again;
10709 }
10710 
10711 static int
10712 sfmmu_mlspl_held(struct page *pp, int type)
10713 {
10714 	kmutex_t	*mtx;
10715 
10716 	ASSERT(pp != NULL);
10717 	/* The lock lives in the root page */
10718 	pp = PP_PAGEROOT(pp);
10719 	ASSERT(pp != NULL);
10720 
10721 	mtx = SFMMU_MLSPL_MTX(type, pp);
10722 	return (MUTEX_HELD(mtx));
10723 }
10724 
10725 static uint_t
10726 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
10727 {
10728 	struct  hme_blk *hblkp;
10729 
10730 
10731 	if (freehblkp != NULL) {
10732 		mutex_enter(&freehblkp_lock);
10733 		if (freehblkp != NULL) {
10734 			/*
10735 			 * If the current thread is owning hblk_reserve OR
10736 			 * critical request from sfmmu_hblk_steal()
10737 			 * let it succeed even if freehblkcnt is really low.
10738 			 */
10739 			if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
10740 				SFMMU_STAT(sf_get_free_throttle);
10741 				mutex_exit(&freehblkp_lock);
10742 				return (0);
10743 			}
10744 			freehblkcnt--;
10745 			*hmeblkpp = freehblkp;
10746 			hblkp = *hmeblkpp;
10747 			freehblkp = hblkp->hblk_next;
10748 			mutex_exit(&freehblkp_lock);
10749 			hblkp->hblk_next = NULL;
10750 			SFMMU_STAT(sf_get_free_success);
10751 
10752 			ASSERT(hblkp->hblk_hmecnt == 0);
10753 			ASSERT(hblkp->hblk_vcnt == 0);
10754 			ASSERT(hblkp->hblk_nextpa == va_to_pa((caddr_t)hblkp));
10755 
10756 			return (1);
10757 		}
10758 		mutex_exit(&freehblkp_lock);
10759 	}
10760 
10761 	/* Check cpu hblk pending queues */
10762 	if ((*hmeblkpp = sfmmu_check_pending_hblks(TTE8K)) != NULL) {
10763 		hblkp = *hmeblkpp;
10764 		hblkp->hblk_next = NULL;
10765 		hblkp->hblk_nextpa = va_to_pa((caddr_t)hblkp);
10766 
10767 		ASSERT(hblkp->hblk_hmecnt == 0);
10768 		ASSERT(hblkp->hblk_vcnt == 0);
10769 
10770 		return (1);
10771 	}
10772 
10773 	SFMMU_STAT(sf_get_free_fail);
10774 	return (0);
10775 }
10776 
10777 static uint_t
10778 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
10779 {
10780 	struct  hme_blk *hblkp;
10781 
10782 	ASSERT(hmeblkp->hblk_hmecnt == 0);
10783 	ASSERT(hmeblkp->hblk_vcnt == 0);
10784 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10785 
10786 	/*
10787 	 * If the current thread is mapping into kernel space,
10788 	 * let it succede even if freehblkcnt is max
10789 	 * so that it will avoid freeing it to kmem.
10790 	 * This will prevent stack overflow due to
10791 	 * possible recursion since kmem_cache_free()
10792 	 * might require creation of a slab which
10793 	 * in turn needs an hmeblk to map that slab;
10794 	 * let's break this vicious chain at the first
10795 	 * opportunity.
10796 	 */
10797 	if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10798 		mutex_enter(&freehblkp_lock);
10799 		if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10800 			SFMMU_STAT(sf_put_free_success);
10801 			freehblkcnt++;
10802 			hmeblkp->hblk_next = freehblkp;
10803 			freehblkp = hmeblkp;
10804 			mutex_exit(&freehblkp_lock);
10805 			return (1);
10806 		}
10807 		mutex_exit(&freehblkp_lock);
10808 	}
10809 
10810 	/*
10811 	 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
10812 	 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
10813 	 * we are not in the process of mapping into kernel space.
10814 	 */
10815 	ASSERT(!critical);
10816 	while (freehblkcnt > HBLK_RESERVE_CNT) {
10817 		mutex_enter(&freehblkp_lock);
10818 		if (freehblkcnt > HBLK_RESERVE_CNT) {
10819 			freehblkcnt--;
10820 			hblkp = freehblkp;
10821 			freehblkp = hblkp->hblk_next;
10822 			mutex_exit(&freehblkp_lock);
10823 			ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
10824 			kmem_cache_free(sfmmu8_cache, hblkp);
10825 			continue;
10826 		}
10827 		mutex_exit(&freehblkp_lock);
10828 	}
10829 	SFMMU_STAT(sf_put_free_fail);
10830 	return (0);
10831 }
10832 
10833 static void
10834 sfmmu_hblk_swap(struct hme_blk *new)
10835 {
10836 	struct hme_blk *old, *hblkp, *prev;
10837 	uint64_t newpa;
10838 	caddr_t	base, vaddr, endaddr;
10839 	struct hmehash_bucket *hmebp;
10840 	struct sf_hment *osfhme, *nsfhme;
10841 	page_t *pp;
10842 	kmutex_t *pml;
10843 	tte_t tte;
10844 	struct hme_blk *list = NULL;
10845 
10846 #ifdef	DEBUG
10847 	hmeblk_tag		hblktag;
10848 	struct hme_blk		*found;
10849 #endif
10850 	old = HBLK_RESERVE;
10851 	ASSERT(!old->hblk_shared);
10852 
10853 	/*
10854 	 * save pa before bcopy clobbers it
10855 	 */
10856 	newpa = new->hblk_nextpa;
10857 
10858 	base = (caddr_t)get_hblk_base(old);
10859 	endaddr = base + get_hblk_span(old);
10860 
10861 	/*
10862 	 * acquire hash bucket lock.
10863 	 */
10864 	hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K,
10865 	    SFMMU_INVALID_SHMERID);
10866 
10867 	/*
10868 	 * copy contents from old to new
10869 	 */
10870 	bcopy((void *)old, (void *)new, HME8BLK_SZ);
10871 
10872 	/*
10873 	 * add new to hash chain
10874 	 */
10875 	sfmmu_hblk_hash_add(hmebp, new, newpa);
10876 
10877 	/*
10878 	 * search hash chain for hblk_reserve; this needs to be performed
10879 	 * after adding new, otherwise prev won't correspond to the hblk which
10880 	 * is prior to old in hash chain when we call sfmmu_hblk_hash_rm to
10881 	 * remove old later.
10882 	 */
10883 	for (prev = NULL,
10884 	    hblkp = hmebp->hmeblkp; hblkp != NULL && hblkp != old;
10885 	    prev = hblkp, hblkp = hblkp->hblk_next)
10886 		;
10887 
10888 	if (hblkp != old)
10889 		panic("sfmmu_hblk_swap: hblk_reserve not found");
10890 
10891 	/*
10892 	 * p_mapping list is still pointing to hments in hblk_reserve;
10893 	 * fix up p_mapping list so that they point to hments in new.
10894 	 *
10895 	 * Since all these mappings are created by hblk_reserve_thread
10896 	 * on the way and it's using at least one of the buffers from each of
10897 	 * the newly minted slabs, there is no danger of any of these
10898 	 * mappings getting unloaded by another thread.
10899 	 *
10900 	 * tsbmiss could only modify ref/mod bits of hments in old/new.
10901 	 * Since all of these hments hold mappings established by segkmem
10902 	 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
10903 	 * have no meaning for the mappings in hblk_reserve.  hments in
10904 	 * old and new are identical except for ref/mod bits.
10905 	 */
10906 	for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
10907 
10908 		HBLKTOHME(osfhme, old, vaddr);
10909 		sfmmu_copytte(&osfhme->hme_tte, &tte);
10910 
10911 		if (TTE_IS_VALID(&tte)) {
10912 			if ((pp = osfhme->hme_page) == NULL)
10913 				panic("sfmmu_hblk_swap: page not mapped");
10914 
10915 			pml = sfmmu_mlist_enter(pp);
10916 
10917 			if (pp != osfhme->hme_page)
10918 				panic("sfmmu_hblk_swap: mapping changed");
10919 
10920 			HBLKTOHME(nsfhme, new, vaddr);
10921 
10922 			HME_ADD(nsfhme, pp);
10923 			HME_SUB(osfhme, pp);
10924 
10925 			sfmmu_mlist_exit(pml);
10926 		}
10927 	}
10928 
10929 	/*
10930 	 * remove old from hash chain
10931 	 */
10932 	sfmmu_hblk_hash_rm(hmebp, old, prev, &list, 1);
10933 
10934 #ifdef	DEBUG
10935 
10936 	hblktag.htag_id = ksfmmup;
10937 	hblktag.htag_rid = SFMMU_INVALID_SHMERID;
10938 	hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
10939 	hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
10940 	HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
10941 
10942 	if (found != new)
10943 		panic("sfmmu_hblk_swap: new hblk not found");
10944 #endif
10945 
10946 	SFMMU_HASH_UNLOCK(hmebp);
10947 
10948 	/*
10949 	 * Reset hblk_reserve
10950 	 */
10951 	bzero((void *)old, HME8BLK_SZ);
10952 	old->hblk_nextpa = va_to_pa((caddr_t)old);
10953 }
10954 
10955 /*
10956  * Grab the mlist mutex for both pages passed in.
10957  *
10958  * low and high will be returned as pointers to the mutexes for these pages.
10959  * low refers to the mutex residing in the lower bin of the mlist hash, while
10960  * high refers to the mutex residing in the higher bin of the mlist hash.  This
10961  * is due to the locking order restrictions on the same thread grabbing
10962  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
10963  *
10964  * If both pages hash to the same mutex, only grab that single mutex, and
10965  * high will be returned as NULL
10966  * If the pages hash to different bins in the hash, grab the lower addressed
10967  * lock first and then the higher addressed lock in order to follow the locking
10968  * rules involved with the same thread grabbing multiple mlist mutexes.
10969  * low and high will both have non-NULL values.
10970  */
10971 static void
10972 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
10973     kmutex_t **low, kmutex_t **high)
10974 {
10975 	kmutex_t	*mml_targ, *mml_repl;
10976 
10977 	/*
10978 	 * no need to do the dance around szc as in sfmmu_mlist_enter()
10979 	 * because this routine is only called by hat_page_relocate() and all
10980 	 * targ and repl pages are already locked EXCL so szc can't change.
10981 	 */
10982 
10983 	mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
10984 	mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
10985 
10986 	if (mml_targ == mml_repl) {
10987 		*low = mml_targ;
10988 		*high = NULL;
10989 	} else {
10990 		if (mml_targ < mml_repl) {
10991 			*low = mml_targ;
10992 			*high = mml_repl;
10993 		} else {
10994 			*low = mml_repl;
10995 			*high = mml_targ;
10996 		}
10997 	}
10998 
10999 	mutex_enter(*low);
11000 	if (*high)
11001 		mutex_enter(*high);
11002 }
11003 
11004 static void
11005 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
11006 {
11007 	if (high)
11008 		mutex_exit(high);
11009 	mutex_exit(low);
11010 }
11011 
11012 hatlock_t *
11013 sfmmu_hat_enter(sfmmu_t *sfmmup)
11014 {
11015 	hatlock_t	*hatlockp;
11016 
11017 	if (sfmmup != ksfmmup) {
11018 		hatlockp = TSB_HASH(sfmmup);
11019 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
11020 		return (hatlockp);
11021 	}
11022 	return (NULL);
11023 }
11024 
11025 static hatlock_t *
11026 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
11027 {
11028 	hatlock_t	*hatlockp;
11029 
11030 	if (sfmmup != ksfmmup) {
11031 		hatlockp = TSB_HASH(sfmmup);
11032 		if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
11033 			return (NULL);
11034 		return (hatlockp);
11035 	}
11036 	return (NULL);
11037 }
11038 
11039 void
11040 sfmmu_hat_exit(hatlock_t *hatlockp)
11041 {
11042 	if (hatlockp != NULL)
11043 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
11044 }
11045 
11046 static void
11047 sfmmu_hat_lock_all(void)
11048 {
11049 	int i;
11050 	for (i = 0; i < SFMMU_NUM_LOCK; i++)
11051 		mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
11052 }
11053 
11054 static void
11055 sfmmu_hat_unlock_all(void)
11056 {
11057 	int i;
11058 	for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
11059 		mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
11060 }
11061 
11062 int
11063 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
11064 {
11065 	ASSERT(sfmmup != ksfmmup);
11066 	return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
11067 }
11068 
11069 /*
11070  * Locking primitives to provide consistency between ISM unmap
11071  * and other operations.  Since ISM unmap can take a long time, we
11072  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
11073  * contention on the hatlock buckets while ISM segments are being
11074  * unmapped.  The tradeoff is that the flags don't prevent priority
11075  * inversion from occurring, so we must request kernel priority in
11076  * case we have to sleep to keep from getting buried while holding
11077  * the HAT_ISMBUSY flag set, which in turn could block other kernel
11078  * threads from running (for example, in sfmmu_uvatopfn()).
11079  */
11080 static void
11081 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
11082 {
11083 	hatlock_t *hatlockp;
11084 
11085 	THREAD_KPRI_REQUEST();
11086 	if (!hatlock_held)
11087 		hatlockp = sfmmu_hat_enter(sfmmup);
11088 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
11089 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11090 	SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
11091 	if (!hatlock_held)
11092 		sfmmu_hat_exit(hatlockp);
11093 }
11094 
11095 static void
11096 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
11097 {
11098 	hatlock_t *hatlockp;
11099 
11100 	if (!hatlock_held)
11101 		hatlockp = sfmmu_hat_enter(sfmmup);
11102 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
11103 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
11104 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11105 	if (!hatlock_held)
11106 		sfmmu_hat_exit(hatlockp);
11107 	THREAD_KPRI_RELEASE();
11108 }
11109 
11110 /*
11111  *
11112  * Algorithm:
11113  *
11114  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
11115  *	hblks.
11116  *
11117  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
11118  *
11119  * 		(a) try to return an hblk from reserve pool of free hblks;
11120  *		(b) if the reserve pool is empty, acquire hblk_reserve_lock
11121  *		    and return hblk_reserve.
11122  *
11123  * (3) call kmem_cache_alloc() to allocate hblk;
11124  *
11125  *		(a) if hblk_reserve_lock is held by the current thread,
11126  *		    atomically replace hblk_reserve by the hblk that is
11127  *		    returned by kmem_cache_alloc; release hblk_reserve_lock
11128  *		    and call kmem_cache_alloc() again.
11129  *		(b) if reserve pool is not full, add the hblk that is
11130  *		    returned by kmem_cache_alloc to reserve pool and
11131  *		    call kmem_cache_alloc again.
11132  *
11133  */
11134 static struct hme_blk *
11135 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
11136 	struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
11137 	uint_t flags, uint_t rid)
11138 {
11139 	struct hme_blk *hmeblkp = NULL;
11140 	struct hme_blk *newhblkp;
11141 	struct hme_blk *shw_hblkp = NULL;
11142 	struct kmem_cache *sfmmu_cache = NULL;
11143 	uint64_t hblkpa;
11144 	ulong_t index;
11145 	uint_t owner;		/* set to 1 if using hblk_reserve */
11146 	uint_t forcefree;
11147 	int sleep;
11148 	sf_srd_t *srdp;
11149 	sf_region_t *rgnp;
11150 
11151 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11152 	ASSERT(hblktag.htag_rid == rid);
11153 	SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
11154 	ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11155 	    IS_P2ALIGNED(vaddr, TTEBYTES(size)));
11156 
11157 	/*
11158 	 * If segkmem is not created yet, allocate from static hmeblks
11159 	 * created at the end of startup_modules().  See the block comment
11160 	 * in startup_modules() describing how we estimate the number of
11161 	 * static hmeblks that will be needed during re-map.
11162 	 */
11163 	if (!hblk_alloc_dynamic) {
11164 
11165 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11166 
11167 		if (size == TTE8K) {
11168 			index = nucleus_hblk8.index;
11169 			if (index >= nucleus_hblk8.len) {
11170 				/*
11171 				 * If we panic here, see startup_modules() to
11172 				 * make sure that we are calculating the
11173 				 * number of hblk8's that we need correctly.
11174 				 */
11175 				prom_panic("no nucleus hblk8 to allocate");
11176 			}
11177 			hmeblkp =
11178 			    (struct hme_blk *)&nucleus_hblk8.list[index];
11179 			nucleus_hblk8.index++;
11180 			SFMMU_STAT(sf_hblk8_nalloc);
11181 		} else {
11182 			index = nucleus_hblk1.index;
11183 			if (nucleus_hblk1.index >= nucleus_hblk1.len) {
11184 				/*
11185 				 * If we panic here, see startup_modules().
11186 				 * Most likely you need to update the
11187 				 * calculation of the number of hblk1 elements
11188 				 * that the kernel needs to boot.
11189 				 */
11190 				prom_panic("no nucleus hblk1 to allocate");
11191 			}
11192 			hmeblkp =
11193 			    (struct hme_blk *)&nucleus_hblk1.list[index];
11194 			nucleus_hblk1.index++;
11195 			SFMMU_STAT(sf_hblk1_nalloc);
11196 		}
11197 
11198 		goto hblk_init;
11199 	}
11200 
11201 	SFMMU_HASH_UNLOCK(hmebp);
11202 
11203 	if (sfmmup != KHATID && !SFMMU_IS_SHMERID_VALID(rid)) {
11204 		if (mmu_page_sizes == max_mmu_page_sizes) {
11205 			if (size < TTE256M)
11206 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11207 				    size, flags);
11208 		} else {
11209 			if (size < TTE4M)
11210 				shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11211 				    size, flags);
11212 		}
11213 	} else if (SFMMU_IS_SHMERID_VALID(rid)) {
11214 		/*
11215 		 * Shared hmes use per region bitmaps in rgn_hmeflag
11216 		 * rather than shadow hmeblks to keep track of the
11217 		 * mapping sizes which have been allocated for the region.
11218 		 * Here we cleanup old invalid hmeblks with this rid,
11219 		 * which may be left around by pageunload().
11220 		 */
11221 		int ttesz;
11222 		caddr_t va;
11223 		caddr_t	eva = vaddr + TTEBYTES(size);
11224 
11225 		ASSERT(sfmmup != KHATID);
11226 
11227 		srdp = sfmmup->sfmmu_srdp;
11228 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11229 		rgnp = srdp->srd_hmergnp[rid];
11230 		ASSERT(rgnp != NULL && rgnp->rgn_id == rid);
11231 		ASSERT(rgnp->rgn_refcnt != 0);
11232 		ASSERT(size <= rgnp->rgn_pgszc);
11233 
11234 		ttesz = HBLK_MIN_TTESZ;
11235 		do {
11236 			if (!(rgnp->rgn_hmeflags & (0x1 << ttesz))) {
11237 				continue;
11238 			}
11239 
11240 			if (ttesz > size && ttesz != HBLK_MIN_TTESZ) {
11241 				sfmmu_cleanup_rhblk(srdp, vaddr, rid, ttesz);
11242 			} else if (ttesz < size) {
11243 				for (va = vaddr; va < eva;
11244 				    va += TTEBYTES(ttesz)) {
11245 					sfmmu_cleanup_rhblk(srdp, va, rid,
11246 					    ttesz);
11247 				}
11248 			}
11249 		} while (++ttesz <= rgnp->rgn_pgszc);
11250 	}
11251 
11252 fill_hblk:
11253 	owner = (hblk_reserve_thread == curthread) ? 1 : 0;
11254 
11255 	if (owner && size == TTE8K) {
11256 
11257 		ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11258 		/*
11259 		 * We are really in a tight spot. We already own
11260 		 * hblk_reserve and we need another hblk.  In anticipation
11261 		 * of this kind of scenario, we specifically set aside
11262 		 * HBLK_RESERVE_MIN number of hblks to be used exclusively
11263 		 * by owner of hblk_reserve.
11264 		 */
11265 		SFMMU_STAT(sf_hblk_recurse_cnt);
11266 
11267 		if (!sfmmu_get_free_hblk(&hmeblkp, 1))
11268 			panic("sfmmu_hblk_alloc: reserve list is empty");
11269 
11270 		goto hblk_verify;
11271 	}
11272 
11273 	ASSERT(!owner);
11274 
11275 	if ((flags & HAT_NO_KALLOC) == 0) {
11276 
11277 		sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
11278 		sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
11279 
11280 		if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
11281 			hmeblkp = sfmmu_hblk_steal(size);
11282 		} else {
11283 			/*
11284 			 * if we are the owner of hblk_reserve,
11285 			 * swap hblk_reserve with hmeblkp and
11286 			 * start a fresh life.  Hope things go
11287 			 * better this time.
11288 			 */
11289 			if (hblk_reserve_thread == curthread) {
11290 				ASSERT(sfmmu_cache == sfmmu8_cache);
11291 				sfmmu_hblk_swap(hmeblkp);
11292 				hblk_reserve_thread = NULL;
11293 				mutex_exit(&hblk_reserve_lock);
11294 				goto fill_hblk;
11295 			}
11296 			/*
11297 			 * let's donate this hblk to our reserve list if
11298 			 * we are not mapping kernel range
11299 			 */
11300 			if (size == TTE8K && sfmmup != KHATID) {
11301 				if (sfmmu_put_free_hblk(hmeblkp, 0))
11302 					goto fill_hblk;
11303 			}
11304 		}
11305 	} else {
11306 		/*
11307 		 * We are here to map the slab in sfmmu8_cache; let's
11308 		 * check if we could tap our reserve list; if successful,
11309 		 * this will avoid the pain of going thru sfmmu_hblk_swap
11310 		 */
11311 		SFMMU_STAT(sf_hblk_slab_cnt);
11312 		if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
11313 			/*
11314 			 * let's start hblk_reserve dance
11315 			 */
11316 			SFMMU_STAT(sf_hblk_reserve_cnt);
11317 			owner = 1;
11318 			mutex_enter(&hblk_reserve_lock);
11319 			hmeblkp = HBLK_RESERVE;
11320 			hblk_reserve_thread = curthread;
11321 		}
11322 	}
11323 
11324 hblk_verify:
11325 	ASSERT(hmeblkp != NULL);
11326 	set_hblk_sz(hmeblkp, size);
11327 	ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
11328 	SFMMU_HASH_LOCK(hmebp);
11329 	HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11330 	if (newhblkp != NULL) {
11331 		SFMMU_HASH_UNLOCK(hmebp);
11332 		if (hmeblkp != HBLK_RESERVE) {
11333 			/*
11334 			 * This is really tricky!
11335 			 *
11336 			 * vmem_alloc(vmem_seg_arena)
11337 			 *  vmem_alloc(vmem_internal_arena)
11338 			 *   segkmem_alloc(heap_arena)
11339 			 *    vmem_alloc(heap_arena)
11340 			 *    page_create()
11341 			 *    hat_memload()
11342 			 *	kmem_cache_free()
11343 			 *	 kmem_cache_alloc()
11344 			 *	  kmem_slab_create()
11345 			 *	   vmem_alloc(kmem_internal_arena)
11346 			 *	    segkmem_alloc(heap_arena)
11347 			 *		vmem_alloc(heap_arena)
11348 			 *		page_create()
11349 			 *		hat_memload()
11350 			 *		  kmem_cache_free()
11351 			 *		...
11352 			 *
11353 			 * Thus, hat_memload() could call kmem_cache_free
11354 			 * for enough number of times that we could easily
11355 			 * hit the bottom of the stack or run out of reserve
11356 			 * list of vmem_seg structs.  So, we must donate
11357 			 * this hblk to reserve list if it's allocated
11358 			 * from sfmmu8_cache *and* mapping kernel range.
11359 			 * We don't need to worry about freeing hmeblk1's
11360 			 * to kmem since they don't map any kmem slabs.
11361 			 *
11362 			 * Note: When segkmem supports largepages, we must
11363 			 * free hmeblk1's to reserve list as well.
11364 			 */
11365 			forcefree = (sfmmup == KHATID) ? 1 : 0;
11366 			if (size == TTE8K &&
11367 			    sfmmu_put_free_hblk(hmeblkp, forcefree)) {
11368 				goto re_verify;
11369 			}
11370 			ASSERT(sfmmup != KHATID);
11371 			kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11372 		} else {
11373 			/*
11374 			 * Hey! we don't need hblk_reserve any more.
11375 			 */
11376 			ASSERT(owner);
11377 			hblk_reserve_thread = NULL;
11378 			mutex_exit(&hblk_reserve_lock);
11379 			owner = 0;
11380 		}
11381 re_verify:
11382 		/*
11383 		 * let's check if the goodies are still present
11384 		 */
11385 		SFMMU_HASH_LOCK(hmebp);
11386 		HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11387 		if (newhblkp != NULL) {
11388 			/*
11389 			 * return newhblkp if it's not hblk_reserve;
11390 			 * if newhblkp is hblk_reserve, return it
11391 			 * _only if_ we are the owner of hblk_reserve.
11392 			 */
11393 			if (newhblkp != HBLK_RESERVE || owner) {
11394 				ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11395 				    newhblkp->hblk_shared);
11396 				ASSERT(SFMMU_IS_SHMERID_VALID(rid) ||
11397 				    !newhblkp->hblk_shared);
11398 				return (newhblkp);
11399 			} else {
11400 				/*
11401 				 * we just hit hblk_reserve in the hash and
11402 				 * we are not the owner of that;
11403 				 *
11404 				 * block until hblk_reserve_thread completes
11405 				 * swapping hblk_reserve and try the dance
11406 				 * once again.
11407 				 */
11408 				SFMMU_HASH_UNLOCK(hmebp);
11409 				mutex_enter(&hblk_reserve_lock);
11410 				mutex_exit(&hblk_reserve_lock);
11411 				SFMMU_STAT(sf_hblk_reserve_hit);
11412 				goto fill_hblk;
11413 			}
11414 		} else {
11415 			/*
11416 			 * it's no more! try the dance once again.
11417 			 */
11418 			SFMMU_HASH_UNLOCK(hmebp);
11419 			goto fill_hblk;
11420 		}
11421 	}
11422 
11423 hblk_init:
11424 	if (SFMMU_IS_SHMERID_VALID(rid)) {
11425 		uint16_t tteflag = 0x1 <<
11426 		    ((size < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : size);
11427 
11428 		if (!(rgnp->rgn_hmeflags & tteflag)) {
11429 			atomic_or_16(&rgnp->rgn_hmeflags, tteflag);
11430 		}
11431 		hmeblkp->hblk_shared = 1;
11432 	} else {
11433 		hmeblkp->hblk_shared = 0;
11434 	}
11435 	set_hblk_sz(hmeblkp, size);
11436 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11437 	hmeblkp->hblk_next = (struct hme_blk *)NULL;
11438 	hmeblkp->hblk_tag = hblktag;
11439 	hmeblkp->hblk_shadow = shw_hblkp;
11440 	hblkpa = hmeblkp->hblk_nextpa;
11441 	hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
11442 
11443 	ASSERT(get_hblk_ttesz(hmeblkp) == size);
11444 	ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
11445 	ASSERT(hmeblkp->hblk_hmecnt == 0);
11446 	ASSERT(hmeblkp->hblk_vcnt == 0);
11447 	ASSERT(hmeblkp->hblk_lckcnt == 0);
11448 	ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11449 	sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
11450 	return (hmeblkp);
11451 }
11452 
11453 /*
11454  * This function cleans up the hme_blk and returns it to the free list.
11455  */
11456 /* ARGSUSED */
11457 static void
11458 sfmmu_hblk_free(struct hme_blk **listp)
11459 {
11460 	struct hme_blk *hmeblkp, *next_hmeblkp;
11461 	int		size;
11462 	uint_t		critical;
11463 	uint64_t	hblkpa;
11464 
11465 	ASSERT(*listp != NULL);
11466 
11467 	hmeblkp = *listp;
11468 	while (hmeblkp != NULL) {
11469 		next_hmeblkp = hmeblkp->hblk_next;
11470 		ASSERT(!hmeblkp->hblk_hmecnt);
11471 		ASSERT(!hmeblkp->hblk_vcnt);
11472 		ASSERT(!hmeblkp->hblk_lckcnt);
11473 		ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
11474 		ASSERT(hmeblkp->hblk_shared == 0);
11475 		ASSERT(hmeblkp->hblk_shw_bit == 0);
11476 		ASSERT(hmeblkp->hblk_shadow == NULL);
11477 
11478 		hblkpa = va_to_pa((caddr_t)hmeblkp);
11479 		ASSERT(hblkpa != (uint64_t)-1);
11480 		critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
11481 
11482 		size = get_hblk_ttesz(hmeblkp);
11483 		hmeblkp->hblk_next = NULL;
11484 		hmeblkp->hblk_nextpa = hblkpa;
11485 
11486 		if (hmeblkp->hblk_nuc_bit == 0) {
11487 
11488 			if (size != TTE8K ||
11489 			    !sfmmu_put_free_hblk(hmeblkp, critical))
11490 				kmem_cache_free(get_hblk_cache(hmeblkp),
11491 				    hmeblkp);
11492 		}
11493 		hmeblkp = next_hmeblkp;
11494 	}
11495 }
11496 
11497 #define	BUCKETS_TO_SEARCH_BEFORE_UNLOAD	30
11498 #define	SFMMU_HBLK_STEAL_THRESHOLD 5
11499 
11500 static uint_t sfmmu_hblk_steal_twice;
11501 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
11502 
11503 /*
11504  * Steal a hmeblk from user or kernel hme hash lists.
11505  * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
11506  * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
11507  * tap into critical reserve of freehblkp.
11508  * Note: We remain looping in this routine until we find one.
11509  */
11510 static struct hme_blk *
11511 sfmmu_hblk_steal(int size)
11512 {
11513 	static struct hmehash_bucket *uhmehash_steal_hand = NULL;
11514 	struct hmehash_bucket *hmebp;
11515 	struct hme_blk *hmeblkp = NULL, *pr_hblk;
11516 	uint64_t hblkpa;
11517 	int i;
11518 	uint_t loop_cnt = 0, critical;
11519 
11520 	for (;;) {
11521 		/* Check cpu hblk pending queues */
11522 		if ((hmeblkp = sfmmu_check_pending_hblks(size)) != NULL) {
11523 			hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
11524 			ASSERT(hmeblkp->hblk_hmecnt == 0);
11525 			ASSERT(hmeblkp->hblk_vcnt == 0);
11526 			return (hmeblkp);
11527 		}
11528 
11529 		if (size == TTE8K) {
11530 			critical =
11531 			    (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
11532 			if (sfmmu_get_free_hblk(&hmeblkp, critical))
11533 				return (hmeblkp);
11534 		}
11535 
11536 		hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
11537 		    uhmehash_steal_hand;
11538 		ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
11539 
11540 		for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
11541 		    BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
11542 			SFMMU_HASH_LOCK(hmebp);
11543 			hmeblkp = hmebp->hmeblkp;
11544 			hblkpa = hmebp->hmeh_nextpa;
11545 			pr_hblk = NULL;
11546 			while (hmeblkp) {
11547 				/*
11548 				 * check if it is a hmeblk that is not locked
11549 				 * and not shared. skip shadow hmeblks with
11550 				 * shadow_mask set i.e valid count non zero.
11551 				 */
11552 				if ((get_hblk_ttesz(hmeblkp) == size) &&
11553 				    (hmeblkp->hblk_shw_bit == 0 ||
11554 				    hmeblkp->hblk_vcnt == 0) &&
11555 				    (hmeblkp->hblk_lckcnt == 0)) {
11556 					/*
11557 					 * there is a high probability that we
11558 					 * will find a free one. search some
11559 					 * buckets for a free hmeblk initially
11560 					 * before unloading a valid hmeblk.
11561 					 */
11562 					if ((hmeblkp->hblk_vcnt == 0 &&
11563 					    hmeblkp->hblk_hmecnt == 0) || (i >=
11564 					    BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
11565 						if (sfmmu_steal_this_hblk(hmebp,
11566 						    hmeblkp, hblkpa, pr_hblk)) {
11567 							/*
11568 							 * Hblk is unloaded
11569 							 * successfully
11570 							 */
11571 							break;
11572 						}
11573 					}
11574 				}
11575 				pr_hblk = hmeblkp;
11576 				hblkpa = hmeblkp->hblk_nextpa;
11577 				hmeblkp = hmeblkp->hblk_next;
11578 			}
11579 
11580 			SFMMU_HASH_UNLOCK(hmebp);
11581 			if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
11582 				hmebp = uhme_hash;
11583 		}
11584 		uhmehash_steal_hand = hmebp;
11585 
11586 		if (hmeblkp != NULL)
11587 			break;
11588 
11589 		/*
11590 		 * in the worst case, look for a free one in the kernel
11591 		 * hash table.
11592 		 */
11593 		for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
11594 			SFMMU_HASH_LOCK(hmebp);
11595 			hmeblkp = hmebp->hmeblkp;
11596 			hblkpa = hmebp->hmeh_nextpa;
11597 			pr_hblk = NULL;
11598 			while (hmeblkp) {
11599 				/*
11600 				 * check if it is free hmeblk
11601 				 */
11602 				if ((get_hblk_ttesz(hmeblkp) == size) &&
11603 				    (hmeblkp->hblk_lckcnt == 0) &&
11604 				    (hmeblkp->hblk_vcnt == 0) &&
11605 				    (hmeblkp->hblk_hmecnt == 0)) {
11606 					if (sfmmu_steal_this_hblk(hmebp,
11607 					    hmeblkp, hblkpa, pr_hblk)) {
11608 						break;
11609 					} else {
11610 						/*
11611 						 * Cannot fail since we have
11612 						 * hash lock.
11613 						 */
11614 						panic("fail to steal?");
11615 					}
11616 				}
11617 
11618 				pr_hblk = hmeblkp;
11619 				hblkpa = hmeblkp->hblk_nextpa;
11620 				hmeblkp = hmeblkp->hblk_next;
11621 			}
11622 
11623 			SFMMU_HASH_UNLOCK(hmebp);
11624 			if (hmebp++ == &khme_hash[KHMEHASH_SZ])
11625 				hmebp = khme_hash;
11626 		}
11627 
11628 		if (hmeblkp != NULL)
11629 			break;
11630 		sfmmu_hblk_steal_twice++;
11631 	}
11632 	return (hmeblkp);
11633 }
11634 
11635 /*
11636  * This routine does real work to prepare a hblk to be "stolen" by
11637  * unloading the mappings, updating shadow counts ....
11638  * It returns 1 if the block is ready to be reused (stolen), or 0
11639  * means the block cannot be stolen yet- pageunload is still working
11640  * on this hblk.
11641  */
11642 static int
11643 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11644 	uint64_t hblkpa, struct hme_blk *pr_hblk)
11645 {
11646 	int shw_size, vshift;
11647 	struct hme_blk *shw_hblkp;
11648 	caddr_t vaddr;
11649 	uint_t shw_mask, newshw_mask;
11650 	struct hme_blk *list = NULL;
11651 
11652 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11653 
11654 	/*
11655 	 * check if the hmeblk is free, unload if necessary
11656 	 */
11657 	if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11658 		sfmmu_t *sfmmup;
11659 		demap_range_t dmr;
11660 
11661 		sfmmup = hblktosfmmu(hmeblkp);
11662 		if (hmeblkp->hblk_shared || sfmmup->sfmmu_ismhat) {
11663 			return (0);
11664 		}
11665 		DEMAP_RANGE_INIT(sfmmup, &dmr);
11666 		(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
11667 		    (caddr_t)get_hblk_base(hmeblkp),
11668 		    get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
11669 		DEMAP_RANGE_FLUSH(&dmr);
11670 		if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11671 			/*
11672 			 * Pageunload is working on the same hblk.
11673 			 */
11674 			return (0);
11675 		}
11676 
11677 		sfmmu_hblk_steal_unload_count++;
11678 	}
11679 
11680 	ASSERT(hmeblkp->hblk_lckcnt == 0);
11681 	ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
11682 
11683 	sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 1);
11684 	hmeblkp->hblk_nextpa = hblkpa;
11685 
11686 	shw_hblkp = hmeblkp->hblk_shadow;
11687 	if (shw_hblkp) {
11688 		ASSERT(!hmeblkp->hblk_shared);
11689 		shw_size = get_hblk_ttesz(shw_hblkp);
11690 		vaddr = (caddr_t)get_hblk_base(hmeblkp);
11691 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11692 		ASSERT(vshift < 8);
11693 		/*
11694 		 * Atomically clear shadow mask bit
11695 		 */
11696 		do {
11697 			shw_mask = shw_hblkp->hblk_shw_mask;
11698 			ASSERT(shw_mask & (1 << vshift));
11699 			newshw_mask = shw_mask & ~(1 << vshift);
11700 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
11701 			    shw_mask, newshw_mask);
11702 		} while (newshw_mask != shw_mask);
11703 		hmeblkp->hblk_shadow = NULL;
11704 	}
11705 
11706 	/*
11707 	 * remove shadow bit if we are stealing an unused shadow hmeblk.
11708 	 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
11709 	 * we are indeed allocating a shadow hmeblk.
11710 	 */
11711 	hmeblkp->hblk_shw_bit = 0;
11712 
11713 	if (hmeblkp->hblk_shared) {
11714 		sf_srd_t	*srdp;
11715 		sf_region_t	*rgnp;
11716 		uint_t		rid;
11717 
11718 		srdp = hblktosrd(hmeblkp);
11719 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11720 		rid = hmeblkp->hblk_tag.htag_rid;
11721 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11722 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11723 		rgnp = srdp->srd_hmergnp[rid];
11724 		ASSERT(rgnp != NULL);
11725 		SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11726 		hmeblkp->hblk_shared = 0;
11727 	}
11728 
11729 	sfmmu_hblk_steal_count++;
11730 	SFMMU_STAT(sf_steal_count);
11731 
11732 	return (1);
11733 }
11734 
11735 struct hme_blk *
11736 sfmmu_hmetohblk(struct sf_hment *sfhme)
11737 {
11738 	struct hme_blk *hmeblkp;
11739 	struct sf_hment *sfhme0;
11740 	struct hme_blk *hblk_dummy = 0;
11741 
11742 	/*
11743 	 * No dummy sf_hments, please.
11744 	 */
11745 	ASSERT(sfhme->hme_tte.ll != 0);
11746 
11747 	sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
11748 	hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
11749 	    (uintptr_t)&hblk_dummy->hblk_hme[0]);
11750 
11751 	return (hmeblkp);
11752 }
11753 
11754 /*
11755  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
11756  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
11757  * KM_SLEEP allocation.
11758  *
11759  * Return 0 on success, -1 otherwise.
11760  */
11761 static void
11762 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11763 {
11764 	struct tsb_info *tsbinfop, *next;
11765 	tsb_replace_rc_t rc;
11766 	boolean_t gotfirst = B_FALSE;
11767 
11768 	ASSERT(sfmmup != ksfmmup);
11769 	ASSERT(sfmmu_hat_lock_held(sfmmup));
11770 
11771 	while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
11772 		cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11773 	}
11774 
11775 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11776 		SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
11777 	} else {
11778 		return;
11779 	}
11780 
11781 	ASSERT(sfmmup->sfmmu_tsb != NULL);
11782 
11783 	/*
11784 	 * Loop over all tsbinfo's replacing them with ones that actually have
11785 	 * a TSB.  If any of the replacements ever fail, bail out of the loop.
11786 	 */
11787 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
11788 		ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
11789 		next = tsbinfop->tsb_next;
11790 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
11791 		    hatlockp, TSB_SWAPIN);
11792 		if (rc != TSB_SUCCESS) {
11793 			break;
11794 		}
11795 		gotfirst = B_TRUE;
11796 	}
11797 
11798 	switch (rc) {
11799 	case TSB_SUCCESS:
11800 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11801 		cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11802 		return;
11803 	case TSB_LOSTRACE:
11804 		break;
11805 	case TSB_ALLOCFAIL:
11806 		break;
11807 	default:
11808 		panic("sfmmu_replace_tsb returned unrecognized failure code "
11809 		    "%d", rc);
11810 	}
11811 
11812 	/*
11813 	 * In this case, we failed to get one of our TSBs.  If we failed to
11814 	 * get the first TSB, get one of minimum size (8KB).  Walk the list
11815 	 * and throw away the tsbinfos, starting where the allocation failed;
11816 	 * we can get by with just one TSB as long as we don't leave the
11817 	 * SWAPPED tsbinfo structures lying around.
11818 	 */
11819 	tsbinfop = sfmmup->sfmmu_tsb;
11820 	next = tsbinfop->tsb_next;
11821 	tsbinfop->tsb_next = NULL;
11822 
11823 	sfmmu_hat_exit(hatlockp);
11824 	for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
11825 		next = tsbinfop->tsb_next;
11826 		sfmmu_tsbinfo_free(tsbinfop);
11827 	}
11828 	hatlockp = sfmmu_hat_enter(sfmmup);
11829 
11830 	/*
11831 	 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
11832 	 * pages.
11833 	 */
11834 	if (!gotfirst) {
11835 		tsbinfop = sfmmup->sfmmu_tsb;
11836 		rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
11837 		    hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
11838 		ASSERT(rc == TSB_SUCCESS);
11839 	}
11840 
11841 	SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11842 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11843 }
11844 
11845 static int
11846 sfmmu_is_rgnva(sf_srd_t *srdp, caddr_t addr, ulong_t w, ulong_t bmw)
11847 {
11848 	ulong_t bix = 0;
11849 	uint_t rid;
11850 	sf_region_t *rgnp;
11851 
11852 	ASSERT(srdp != NULL);
11853 	ASSERT(srdp->srd_refcnt != 0);
11854 
11855 	w <<= BT_ULSHIFT;
11856 	while (bmw) {
11857 		if (!(bmw & 0x1)) {
11858 			bix++;
11859 			bmw >>= 1;
11860 			continue;
11861 		}
11862 		rid = w | bix;
11863 		rgnp = srdp->srd_hmergnp[rid];
11864 		ASSERT(rgnp->rgn_refcnt > 0);
11865 		ASSERT(rgnp->rgn_id == rid);
11866 		if (addr < rgnp->rgn_saddr ||
11867 		    addr >= (rgnp->rgn_saddr + rgnp->rgn_size)) {
11868 			bix++;
11869 			bmw >>= 1;
11870 		} else {
11871 			return (1);
11872 		}
11873 	}
11874 	return (0);
11875 }
11876 
11877 /*
11878  * Handle exceptions for low level tsb_handler.
11879  *
11880  * There are many scenarios that could land us here:
11881  *
11882  * If the context is invalid we land here. The context can be invalid
11883  * for 3 reasons: 1) we couldn't allocate a new context and now need to
11884  * perform a wrap around operation in order to allocate a new context.
11885  * 2) Context was invalidated to change pagesize programming 3) ISMs or
11886  * TSBs configuration is changeing for this process and we are forced into
11887  * here to do a syncronization operation. If the context is valid we can
11888  * be here from window trap hanlder. In this case just call trap to handle
11889  * the fault.
11890  *
11891  * Note that the process will run in INVALID_CONTEXT before
11892  * faulting into here and subsequently loading the MMU registers
11893  * (including the TSB base register) associated with this process.
11894  * For this reason, the trap handlers must all test for
11895  * INVALID_CONTEXT before attempting to access any registers other
11896  * than the context registers.
11897  */
11898 void
11899 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
11900 {
11901 	sfmmu_t *sfmmup, *shsfmmup;
11902 	uint_t ctxtype;
11903 	klwp_id_t lwp;
11904 	char lwp_save_state;
11905 	hatlock_t *hatlockp, *shatlockp;
11906 	struct tsb_info *tsbinfop;
11907 	struct tsbmiss *tsbmp;
11908 	sf_scd_t *scdp;
11909 
11910 	SFMMU_STAT(sf_tsb_exceptions);
11911 	SFMMU_MMU_STAT(mmu_tsb_exceptions);
11912 	sfmmup = astosfmmu(curthread->t_procp->p_as);
11913 	/*
11914 	 * note that in sun4u, tagacces register contains ctxnum
11915 	 * while sun4v passes ctxtype in the tagaccess register.
11916 	 */
11917 	ctxtype = tagaccess & TAGACC_CTX_MASK;
11918 
11919 	ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
11920 	ASSERT(sfmmup->sfmmu_ismhat == 0);
11921 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
11922 	    ctxtype == INVALID_CONTEXT);
11923 
11924 	if (ctxtype != INVALID_CONTEXT && traptype != T_DATA_PROT) {
11925 		/*
11926 		 * We may land here because shme bitmap and pagesize
11927 		 * flags are updated lazily in tsbmiss area on other cpus.
11928 		 * If we detect here that tsbmiss area is out of sync with
11929 		 * sfmmu update it and retry the trapped instruction.
11930 		 * Otherwise call trap().
11931 		 */
11932 		int ret = 0;
11933 		uchar_t tteflag_mask = (1 << TTE64K) | (1 << TTE8K);
11934 		caddr_t addr = (caddr_t)(tagaccess & TAGACC_VADDR_MASK);
11935 
11936 		/*
11937 		 * Must set lwp state to LWP_SYS before
11938 		 * trying to acquire any adaptive lock
11939 		 */
11940 		lwp = ttolwp(curthread);
11941 		ASSERT(lwp);
11942 		lwp_save_state = lwp->lwp_state;
11943 		lwp->lwp_state = LWP_SYS;
11944 
11945 		hatlockp = sfmmu_hat_enter(sfmmup);
11946 		kpreempt_disable();
11947 		tsbmp = &tsbmiss_area[CPU->cpu_id];
11948 		ASSERT(sfmmup == tsbmp->usfmmup);
11949 		if (((tsbmp->uhat_tteflags ^ sfmmup->sfmmu_tteflags) &
11950 		    ~tteflag_mask) ||
11951 		    ((tsbmp->uhat_rtteflags ^  sfmmup->sfmmu_rtteflags) &
11952 		    ~tteflag_mask)) {
11953 			tsbmp->uhat_tteflags = sfmmup->sfmmu_tteflags;
11954 			tsbmp->uhat_rtteflags = sfmmup->sfmmu_rtteflags;
11955 			ret = 1;
11956 		}
11957 		if (sfmmup->sfmmu_srdp != NULL) {
11958 			ulong_t *sm = sfmmup->sfmmu_hmeregion_map.bitmap;
11959 			ulong_t *tm = tsbmp->shmermap;
11960 			ulong_t i;
11961 			for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
11962 				ulong_t d = tm[i] ^ sm[i];
11963 				if (d) {
11964 					if (d & sm[i]) {
11965 						if (!ret && sfmmu_is_rgnva(
11966 						    sfmmup->sfmmu_srdp,
11967 						    addr, i, d & sm[i])) {
11968 							ret = 1;
11969 						}
11970 					}
11971 					tm[i] = sm[i];
11972 				}
11973 			}
11974 		}
11975 		kpreempt_enable();
11976 		sfmmu_hat_exit(hatlockp);
11977 		lwp->lwp_state = lwp_save_state;
11978 		if (ret) {
11979 			return;
11980 		}
11981 	} else if (ctxtype == INVALID_CONTEXT) {
11982 		/*
11983 		 * First, make sure we come out of here with a valid ctx,
11984 		 * since if we don't get one we'll simply loop on the
11985 		 * faulting instruction.
11986 		 *
11987 		 * If the ISM mappings are changing, the TSB is relocated,
11988 		 * the process is swapped, the process is joining SCD or
11989 		 * leaving SCD or shared regions we serialize behind the
11990 		 * controlling thread with hat lock, sfmmu_flags and
11991 		 * sfmmu_tsb_cv condition variable.
11992 		 */
11993 
11994 		/*
11995 		 * Must set lwp state to LWP_SYS before
11996 		 * trying to acquire any adaptive lock
11997 		 */
11998 		lwp = ttolwp(curthread);
11999 		ASSERT(lwp);
12000 		lwp_save_state = lwp->lwp_state;
12001 		lwp->lwp_state = LWP_SYS;
12002 
12003 		hatlockp = sfmmu_hat_enter(sfmmup);
12004 retry:
12005 		if ((scdp = sfmmup->sfmmu_scdp) != NULL) {
12006 			shsfmmup = scdp->scd_sfmmup;
12007 			ASSERT(shsfmmup != NULL);
12008 
12009 			for (tsbinfop = shsfmmup->sfmmu_tsb; tsbinfop != NULL;
12010 			    tsbinfop = tsbinfop->tsb_next) {
12011 				if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
12012 					/* drop the private hat lock */
12013 					sfmmu_hat_exit(hatlockp);
12014 					/* acquire the shared hat lock */
12015 					shatlockp = sfmmu_hat_enter(shsfmmup);
12016 					/*
12017 					 * recheck to see if anything changed
12018 					 * after we drop the private hat lock.
12019 					 */
12020 					if (sfmmup->sfmmu_scdp == scdp &&
12021 					    shsfmmup == scdp->scd_sfmmup) {
12022 						sfmmu_tsb_chk_reloc(shsfmmup,
12023 						    shatlockp);
12024 					}
12025 					sfmmu_hat_exit(shatlockp);
12026 					hatlockp = sfmmu_hat_enter(sfmmup);
12027 					goto retry;
12028 				}
12029 			}
12030 		}
12031 
12032 		for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
12033 		    tsbinfop = tsbinfop->tsb_next) {
12034 			if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
12035 				cv_wait(&sfmmup->sfmmu_tsb_cv,
12036 				    HATLOCK_MUTEXP(hatlockp));
12037 				goto retry;
12038 			}
12039 		}
12040 
12041 		/*
12042 		 * Wait for ISM maps to be updated.
12043 		 */
12044 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12045 			cv_wait(&sfmmup->sfmmu_tsb_cv,
12046 			    HATLOCK_MUTEXP(hatlockp));
12047 			goto retry;
12048 		}
12049 
12050 		/* Is this process joining an SCD? */
12051 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
12052 			/*
12053 			 * Flush private TSB and setup shared TSB.
12054 			 * sfmmu_finish_join_scd() does not drop the
12055 			 * hat lock.
12056 			 */
12057 			sfmmu_finish_join_scd(sfmmup);
12058 			SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
12059 		}
12060 
12061 		/*
12062 		 * If we're swapping in, get TSB(s).  Note that we must do
12063 		 * this before we get a ctx or load the MMU state.  Once
12064 		 * we swap in we have to recheck to make sure the TSB(s) and
12065 		 * ISM mappings didn't change while we slept.
12066 		 */
12067 		if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
12068 			sfmmu_tsb_swapin(sfmmup, hatlockp);
12069 			goto retry;
12070 		}
12071 
12072 		sfmmu_get_ctx(sfmmup);
12073 
12074 		sfmmu_hat_exit(hatlockp);
12075 		/*
12076 		 * Must restore lwp_state if not calling
12077 		 * trap() for further processing. Restore
12078 		 * it anyway.
12079 		 */
12080 		lwp->lwp_state = lwp_save_state;
12081 		return;
12082 	}
12083 	trap(rp, (caddr_t)tagaccess, traptype, 0);
12084 }
12085 
12086 static void
12087 sfmmu_tsb_chk_reloc(sfmmu_t *sfmmup, hatlock_t *hatlockp)
12088 {
12089 	struct tsb_info *tp;
12090 
12091 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12092 
12093 	for (tp = sfmmup->sfmmu_tsb; tp != NULL; tp = tp->tsb_next) {
12094 		if (tp->tsb_flags & TSB_RELOC_FLAG) {
12095 			cv_wait(&sfmmup->sfmmu_tsb_cv,
12096 			    HATLOCK_MUTEXP(hatlockp));
12097 			break;
12098 		}
12099 	}
12100 }
12101 
12102 /*
12103  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
12104  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
12105  * rather than spinning to avoid send mondo timeouts with
12106  * interrupts enabled. When the lock is acquired it is immediately
12107  * released and we return back to sfmmu_vatopfn just after
12108  * the GET_TTE call.
12109  */
12110 void
12111 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
12112 {
12113 	struct page	**pp;
12114 
12115 	(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
12116 	as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
12117 }
12118 
12119 /*
12120  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
12121  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
12122  * cross traps which cannot be handled while spinning in the
12123  * trap handlers. Simply enter and exit the kpr_suspendlock spin
12124  * mutex, which is held by the holder of the suspend bit, and then
12125  * retry the trapped instruction after unwinding.
12126  */
12127 /*ARGSUSED*/
12128 void
12129 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
12130 {
12131 	ASSERT(curthread != kreloc_thread);
12132 	mutex_enter(&kpr_suspendlock);
12133 	mutex_exit(&kpr_suspendlock);
12134 }
12135 
12136 /*
12137  * This routine could be optimized to reduce the number of xcalls by flushing
12138  * the entire TLBs if region reference count is above some threshold but the
12139  * tradeoff will depend on the size of the TLB. So for now flush the specific
12140  * page a context at a time.
12141  *
12142  * If uselocks is 0 then it's called after all cpus were captured and all the
12143  * hat locks were taken. In this case don't take the region lock by relying on
12144  * the order of list region update operations in hat_join_region(),
12145  * hat_leave_region() and hat_dup_region(). The ordering in those routines
12146  * guarantees that list is always forward walkable and reaches active sfmmus
12147  * regardless of where xc_attention() captures a cpu.
12148  */
12149 cpuset_t
12150 sfmmu_rgntlb_demap(caddr_t addr, sf_region_t *rgnp,
12151     struct hme_blk *hmeblkp, int uselocks)
12152 {
12153 	sfmmu_t	*sfmmup;
12154 	cpuset_t cpuset;
12155 	cpuset_t rcpuset;
12156 	hatlock_t *hatlockp;
12157 	uint_t rid = rgnp->rgn_id;
12158 	sf_rgn_link_t *rlink;
12159 	sf_scd_t *scdp;
12160 
12161 	ASSERT(hmeblkp->hblk_shared);
12162 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
12163 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
12164 
12165 	CPUSET_ZERO(rcpuset);
12166 	if (uselocks) {
12167 		mutex_enter(&rgnp->rgn_mutex);
12168 	}
12169 	sfmmup = rgnp->rgn_sfmmu_head;
12170 	while (sfmmup != NULL) {
12171 		if (uselocks) {
12172 			hatlockp = sfmmu_hat_enter(sfmmup);
12173 		}
12174 
12175 		/*
12176 		 * When an SCD is created the SCD hat is linked on the sfmmu
12177 		 * region lists for each hme region which is part of the
12178 		 * SCD. If we find an SCD hat, when walking these lists,
12179 		 * then we flush the shared TSBs, if we find a private hat,
12180 		 * which is part of an SCD, but where the region
12181 		 * is not part of the SCD then we flush the private TSBs.
12182 		 *
12183 		 * If the Rock page size register is present, then SCDs
12184 		 * may contain both shared and private pages, so we cannot
12185 		 * use this optimization to avoid flushing private TSBs.
12186 		 */
12187 		if (pgsz_search_on == 0 &&
12188 		    !sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12189 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
12190 			scdp = sfmmup->sfmmu_scdp;
12191 			if (SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
12192 				if (uselocks) {
12193 					sfmmu_hat_exit(hatlockp);
12194 				}
12195 				goto next;
12196 			}
12197 		}
12198 
12199 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12200 
12201 		kpreempt_disable();
12202 		cpuset = sfmmup->sfmmu_cpusran;
12203 		CPUSET_AND(cpuset, cpu_ready_set);
12204 		CPUSET_DEL(cpuset, CPU->cpu_id);
12205 		SFMMU_XCALL_STATS(sfmmup);
12206 		xt_some(cpuset, vtag_flushpage_tl1,
12207 		    (uint64_t)addr, (uint64_t)sfmmup);
12208 		vtag_flushpage(addr, (uint64_t)sfmmup);
12209 		if (uselocks) {
12210 			sfmmu_hat_exit(hatlockp);
12211 		}
12212 		kpreempt_enable();
12213 		CPUSET_OR(rcpuset, cpuset);
12214 
12215 next:
12216 		/* LINTED: constant in conditional context */
12217 		SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
12218 		ASSERT(rlink != NULL);
12219 		sfmmup = rlink->next;
12220 	}
12221 	if (uselocks) {
12222 		mutex_exit(&rgnp->rgn_mutex);
12223 	}
12224 	return (rcpuset);
12225 }
12226 
12227 /*
12228  * This routine takes an sfmmu pointer and the va for an adddress in an
12229  * ISM region as input and returns the corresponding region id in ism_rid.
12230  * The return value of 1 indicates that a region has been found and ism_rid
12231  * is valid, otherwise 0 is returned.
12232  */
12233 static int
12234 find_ism_rid(sfmmu_t *sfmmup, sfmmu_t *ism_sfmmup, caddr_t va, uint_t *ism_rid)
12235 {
12236 	ism_blk_t	*ism_blkp;
12237 	int		i;
12238 	ism_map_t	*ism_map;
12239 #ifdef DEBUG
12240 	struct hat	*ism_hatid;
12241 #endif
12242 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12243 
12244 	ism_blkp = sfmmup->sfmmu_iblk;
12245 	while (ism_blkp != NULL) {
12246 		ism_map = ism_blkp->iblk_maps;
12247 		for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
12248 			if ((va >= ism_start(ism_map[i])) &&
12249 			    (va < ism_end(ism_map[i]))) {
12250 
12251 				*ism_rid = ism_map[i].imap_rid;
12252 #ifdef DEBUG
12253 				ism_hatid = ism_map[i].imap_ismhat;
12254 				ASSERT(ism_hatid == ism_sfmmup);
12255 				ASSERT(ism_hatid->sfmmu_ismhat);
12256 #endif
12257 				return (1);
12258 			}
12259 		}
12260 		ism_blkp = ism_blkp->iblk_next;
12261 	}
12262 	return (0);
12263 }
12264 
12265 /*
12266  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
12267  * This routine may be called with all cpu's captured. Therefore, the
12268  * caller is responsible for holding all locks and disabling kernel
12269  * preemption.
12270  */
12271 /* ARGSUSED */
12272 static void
12273 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
12274 	struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
12275 {
12276 	cpuset_t 	cpuset;
12277 	caddr_t 	va;
12278 	ism_ment_t	*ment;
12279 	sfmmu_t		*sfmmup;
12280 #ifdef VAC
12281 	int 		vcolor;
12282 #endif
12283 
12284 	sf_scd_t	*scdp;
12285 	uint_t		ism_rid;
12286 
12287 	ASSERT(!hmeblkp->hblk_shared);
12288 	/*
12289 	 * Walk the ism_hat's mapping list and flush the page
12290 	 * from every hat sharing this ism_hat. This routine
12291 	 * may be called while all cpu's have been captured.
12292 	 * Therefore we can't attempt to grab any locks. For now
12293 	 * this means we will protect the ism mapping list under
12294 	 * a single lock which will be grabbed by the caller.
12295 	 * If hat_share/unshare scalibility becomes a performance
12296 	 * problem then we may need to re-think ism mapping list locking.
12297 	 */
12298 	ASSERT(ism_sfmmup->sfmmu_ismhat);
12299 	ASSERT(MUTEX_HELD(&ism_mlist_lock));
12300 	addr = addr - ISMID_STARTADDR;
12301 
12302 	for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
12303 
12304 		sfmmup = ment->iment_hat;
12305 
12306 		va = ment->iment_base_va;
12307 		va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
12308 
12309 		/*
12310 		 * When an SCD is created the SCD hat is linked on the ism
12311 		 * mapping lists for each ISM segment which is part of the
12312 		 * SCD. If we find an SCD hat, when walking these lists,
12313 		 * then we flush the shared TSBs, if we find a private hat,
12314 		 * which is part of an SCD, but where the region
12315 		 * corresponding to this va is not part of the SCD then we
12316 		 * flush the private TSBs.
12317 		 *
12318 		 * If the Rock page size register is present, then SCDs
12319 		 * may contain both shared and private pages, so we cannot
12320 		 * use this optimization to avoid flushing private TSBs.
12321 		 */
12322 		if (pgsz_search_on == 0 &&
12323 		    !sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12324 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD) &&
12325 		    !SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12326 			if (!find_ism_rid(sfmmup, ism_sfmmup, va,
12327 			    &ism_rid)) {
12328 				cmn_err(CE_PANIC,
12329 				    "can't find matching ISM rid!");
12330 			}
12331 
12332 			scdp = sfmmup->sfmmu_scdp;
12333 			if (SFMMU_IS_ISMRID_VALID(ism_rid) &&
12334 			    SF_RGNMAP_TEST(scdp->scd_ismregion_map,
12335 			    ism_rid)) {
12336 				continue;
12337 			}
12338 		}
12339 		SFMMU_UNLOAD_TSB(va, sfmmup, hmeblkp, 1);
12340 
12341 		cpuset = sfmmup->sfmmu_cpusran;
12342 		CPUSET_AND(cpuset, cpu_ready_set);
12343 		CPUSET_DEL(cpuset, CPU->cpu_id);
12344 		SFMMU_XCALL_STATS(sfmmup);
12345 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
12346 		    (uint64_t)sfmmup);
12347 		vtag_flushpage(va, (uint64_t)sfmmup);
12348 
12349 #ifdef VAC
12350 		/*
12351 		 * Flush D$
12352 		 * When flushing D$ we must flush all
12353 		 * cpu's. See sfmmu_cache_flush().
12354 		 */
12355 		if (cache_flush_flag == CACHE_FLUSH) {
12356 			cpuset = cpu_ready_set;
12357 			CPUSET_DEL(cpuset, CPU->cpu_id);
12358 
12359 			SFMMU_XCALL_STATS(sfmmup);
12360 			vcolor = addr_to_vcolor(va);
12361 			xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12362 			vac_flushpage(pfnum, vcolor);
12363 		}
12364 #endif	/* VAC */
12365 	}
12366 }
12367 
12368 /*
12369  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
12370  * a particular virtual address and ctx.  If noflush is set we do not
12371  * flush the TLB/TSB.  This function may or may not be called with the
12372  * HAT lock held.
12373  */
12374 static void
12375 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12376 	pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
12377 	int hat_lock_held)
12378 {
12379 #ifdef VAC
12380 	int vcolor;
12381 #endif
12382 	cpuset_t cpuset;
12383 	hatlock_t *hatlockp;
12384 
12385 	ASSERT(!hmeblkp->hblk_shared);
12386 
12387 #if defined(lint) && !defined(VAC)
12388 	pfnum = pfnum;
12389 	cpu_flag = cpu_flag;
12390 	cache_flush_flag = cache_flush_flag;
12391 #endif
12392 
12393 	/*
12394 	 * There is no longer a need to protect against ctx being
12395 	 * stolen here since we don't store the ctx in the TSB anymore.
12396 	 */
12397 #ifdef VAC
12398 	vcolor = addr_to_vcolor(addr);
12399 #endif
12400 
12401 	/*
12402 	 * We must hold the hat lock during the flush of TLB,
12403 	 * to avoid a race with sfmmu_invalidate_ctx(), where
12404 	 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12405 	 * causing TLB demap routine to skip flush on that MMU.
12406 	 * If the context on a MMU has already been set to
12407 	 * INVALID_CONTEXT, we just get an extra flush on
12408 	 * that MMU.
12409 	 */
12410 	if (!hat_lock_held && !tlb_noflush)
12411 		hatlockp = sfmmu_hat_enter(sfmmup);
12412 
12413 	kpreempt_disable();
12414 	if (!tlb_noflush) {
12415 		/*
12416 		 * Flush the TSB and TLB.
12417 		 */
12418 		SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12419 
12420 		cpuset = sfmmup->sfmmu_cpusran;
12421 		CPUSET_AND(cpuset, cpu_ready_set);
12422 		CPUSET_DEL(cpuset, CPU->cpu_id);
12423 
12424 		SFMMU_XCALL_STATS(sfmmup);
12425 
12426 		xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
12427 		    (uint64_t)sfmmup);
12428 
12429 		vtag_flushpage(addr, (uint64_t)sfmmup);
12430 	}
12431 
12432 	if (!hat_lock_held && !tlb_noflush)
12433 		sfmmu_hat_exit(hatlockp);
12434 
12435 #ifdef VAC
12436 	/*
12437 	 * Flush the D$
12438 	 *
12439 	 * Even if the ctx is stolen, we need to flush the
12440 	 * cache. Our ctx stealer only flushes the TLBs.
12441 	 */
12442 	if (cache_flush_flag == CACHE_FLUSH) {
12443 		if (cpu_flag & FLUSH_ALL_CPUS) {
12444 			cpuset = cpu_ready_set;
12445 		} else {
12446 			cpuset = sfmmup->sfmmu_cpusran;
12447 			CPUSET_AND(cpuset, cpu_ready_set);
12448 		}
12449 		CPUSET_DEL(cpuset, CPU->cpu_id);
12450 		SFMMU_XCALL_STATS(sfmmup);
12451 		xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12452 		vac_flushpage(pfnum, vcolor);
12453 	}
12454 #endif	/* VAC */
12455 	kpreempt_enable();
12456 }
12457 
12458 /*
12459  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
12460  * address and ctx.  If noflush is set we do not currently do anything.
12461  * This function may or may not be called with the HAT lock held.
12462  */
12463 static void
12464 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12465 	int tlb_noflush, int hat_lock_held)
12466 {
12467 	cpuset_t cpuset;
12468 	hatlock_t *hatlockp;
12469 
12470 	ASSERT(!hmeblkp->hblk_shared);
12471 
12472 	/*
12473 	 * If the process is exiting we have nothing to do.
12474 	 */
12475 	if (tlb_noflush)
12476 		return;
12477 
12478 	/*
12479 	 * Flush TSB.
12480 	 */
12481 	if (!hat_lock_held)
12482 		hatlockp = sfmmu_hat_enter(sfmmup);
12483 	SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12484 
12485 	kpreempt_disable();
12486 
12487 	cpuset = sfmmup->sfmmu_cpusran;
12488 	CPUSET_AND(cpuset, cpu_ready_set);
12489 	CPUSET_DEL(cpuset, CPU->cpu_id);
12490 
12491 	SFMMU_XCALL_STATS(sfmmup);
12492 	xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
12493 
12494 	vtag_flushpage(addr, (uint64_t)sfmmup);
12495 
12496 	if (!hat_lock_held)
12497 		sfmmu_hat_exit(hatlockp);
12498 
12499 	kpreempt_enable();
12500 
12501 }
12502 
12503 /*
12504  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
12505  * call handler that can flush a range of pages to save on xcalls.
12506  */
12507 static int sfmmu_xcall_save;
12508 
12509 /*
12510  * this routine is never used for demaping addresses backed by SRD hmeblks.
12511  */
12512 static void
12513 sfmmu_tlb_range_demap(demap_range_t *dmrp)
12514 {
12515 	sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
12516 	hatlock_t *hatlockp;
12517 	cpuset_t cpuset;
12518 	uint64_t sfmmu_pgcnt;
12519 	pgcnt_t pgcnt = 0;
12520 	int pgunload = 0;
12521 	int dirtypg = 0;
12522 	caddr_t addr = dmrp->dmr_addr;
12523 	caddr_t eaddr;
12524 	uint64_t bitvec = dmrp->dmr_bitvec;
12525 
12526 	ASSERT(bitvec & 1);
12527 
12528 	/*
12529 	 * Flush TSB and calculate number of pages to flush.
12530 	 */
12531 	while (bitvec != 0) {
12532 		dirtypg = 0;
12533 		/*
12534 		 * Find the first page to flush and then count how many
12535 		 * pages there are after it that also need to be flushed.
12536 		 * This way the number of TSB flushes is minimized.
12537 		 */
12538 		while ((bitvec & 1) == 0) {
12539 			pgcnt++;
12540 			addr += MMU_PAGESIZE;
12541 			bitvec >>= 1;
12542 		}
12543 		while (bitvec & 1) {
12544 			dirtypg++;
12545 			bitvec >>= 1;
12546 		}
12547 		eaddr = addr + ptob(dirtypg);
12548 		hatlockp = sfmmu_hat_enter(sfmmup);
12549 		sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
12550 		sfmmu_hat_exit(hatlockp);
12551 		pgunload += dirtypg;
12552 		addr = eaddr;
12553 		pgcnt += dirtypg;
12554 	}
12555 
12556 	ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
12557 	if (sfmmup->sfmmu_free == 0) {
12558 		addr = dmrp->dmr_addr;
12559 		bitvec = dmrp->dmr_bitvec;
12560 
12561 		/*
12562 		 * make sure it has SFMMU_PGCNT_SHIFT bits only,
12563 		 * as it will be used to pack argument for xt_some
12564 		 */
12565 		ASSERT((pgcnt > 0) &&
12566 		    (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
12567 
12568 		/*
12569 		 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
12570 		 * the low 6 bits of sfmmup. This is doable since pgcnt
12571 		 * always >= 1.
12572 		 */
12573 		ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
12574 		sfmmu_pgcnt = (uint64_t)sfmmup |
12575 		    ((pgcnt - 1) & SFMMU_PGCNT_MASK);
12576 
12577 		/*
12578 		 * We must hold the hat lock during the flush of TLB,
12579 		 * to avoid a race with sfmmu_invalidate_ctx(), where
12580 		 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12581 		 * causing TLB demap routine to skip flush on that MMU.
12582 		 * If the context on a MMU has already been set to
12583 		 * INVALID_CONTEXT, we just get an extra flush on
12584 		 * that MMU.
12585 		 */
12586 		hatlockp = sfmmu_hat_enter(sfmmup);
12587 		kpreempt_disable();
12588 
12589 		cpuset = sfmmup->sfmmu_cpusran;
12590 		CPUSET_AND(cpuset, cpu_ready_set);
12591 		CPUSET_DEL(cpuset, CPU->cpu_id);
12592 
12593 		SFMMU_XCALL_STATS(sfmmup);
12594 		xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
12595 		    sfmmu_pgcnt);
12596 
12597 		for (; bitvec != 0; bitvec >>= 1) {
12598 			if (bitvec & 1)
12599 				vtag_flushpage(addr, (uint64_t)sfmmup);
12600 			addr += MMU_PAGESIZE;
12601 		}
12602 		kpreempt_enable();
12603 		sfmmu_hat_exit(hatlockp);
12604 
12605 		sfmmu_xcall_save += (pgunload-1);
12606 	}
12607 	dmrp->dmr_bitvec = 0;
12608 }
12609 
12610 /*
12611  * In cases where we need to synchronize with TLB/TSB miss trap
12612  * handlers, _and_ need to flush the TLB, it's a lot easier to
12613  * throw away the context from the process than to do a
12614  * special song and dance to keep things consistent for the
12615  * handlers.
12616  *
12617  * Since the process suddenly ends up without a context and our caller
12618  * holds the hat lock, threads that fault after this function is called
12619  * will pile up on the lock.  We can then do whatever we need to
12620  * atomically from the context of the caller.  The first blocked thread
12621  * to resume executing will get the process a new context, and the
12622  * process will resume executing.
12623  *
12624  * One added advantage of this approach is that on MMUs that
12625  * support a "flush all" operation, we will delay the flush until
12626  * cnum wrap-around, and then flush the TLB one time.  This
12627  * is rather rare, so it's a lot less expensive than making 8000
12628  * x-calls to flush the TLB 8000 times.
12629  *
12630  * A per-process (PP) lock is used to synchronize ctx allocations in
12631  * resume() and ctx invalidations here.
12632  */
12633 void
12634 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
12635 {
12636 	cpuset_t cpuset;
12637 	int cnum, currcnum;
12638 	mmu_ctx_t *mmu_ctxp;
12639 	int i;
12640 	uint_t pstate_save;
12641 
12642 	SFMMU_STAT(sf_ctx_inv);
12643 
12644 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12645 	ASSERT(sfmmup != ksfmmup);
12646 
12647 	kpreempt_disable();
12648 
12649 	mmu_ctxp = CPU_MMU_CTXP(CPU);
12650 	ASSERT(mmu_ctxp);
12651 	ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
12652 	ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
12653 
12654 	currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
12655 
12656 	pstate_save = sfmmu_disable_intrs();
12657 
12658 	lock_set(&sfmmup->sfmmu_ctx_lock);	/* acquire PP lock */
12659 	/* set HAT cnum invalid across all context domains. */
12660 	for (i = 0; i < max_mmu_ctxdoms; i++) {
12661 
12662 		cnum = 	sfmmup->sfmmu_ctxs[i].cnum;
12663 		if (cnum == INVALID_CONTEXT) {
12664 			continue;
12665 		}
12666 
12667 		sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
12668 	}
12669 	membar_enter();	/* make sure globally visible to all CPUs */
12670 	lock_clear(&sfmmup->sfmmu_ctx_lock);	/* release PP lock */
12671 
12672 	sfmmu_enable_intrs(pstate_save);
12673 
12674 	cpuset = sfmmup->sfmmu_cpusran;
12675 	CPUSET_DEL(cpuset, CPU->cpu_id);
12676 	CPUSET_AND(cpuset, cpu_ready_set);
12677 	if (!CPUSET_ISNULL(cpuset)) {
12678 		SFMMU_XCALL_STATS(sfmmup);
12679 		xt_some(cpuset, sfmmu_raise_tsb_exception,
12680 		    (uint64_t)sfmmup, INVALID_CONTEXT);
12681 		xt_sync(cpuset);
12682 		SFMMU_STAT(sf_tsb_raise_exception);
12683 		SFMMU_MMU_STAT(mmu_tsb_raise_exception);
12684 	}
12685 
12686 	/*
12687 	 * If the hat to-be-invalidated is the same as the current
12688 	 * process on local CPU we need to invalidate
12689 	 * this CPU context as well.
12690 	 */
12691 	if ((sfmmu_getctx_sec() == currcnum) &&
12692 	    (currcnum != INVALID_CONTEXT)) {
12693 		/* sets shared context to INVALID too */
12694 		sfmmu_setctx_sec(INVALID_CONTEXT);
12695 		sfmmu_clear_utsbinfo();
12696 	}
12697 
12698 	SFMMU_FLAGS_SET(sfmmup, HAT_ALLCTX_INVALID);
12699 
12700 	kpreempt_enable();
12701 
12702 	/*
12703 	 * we hold the hat lock, so nobody should allocate a context
12704 	 * for us yet
12705 	 */
12706 	ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
12707 }
12708 
12709 #ifdef VAC
12710 /*
12711  * We need to flush the cache in all cpus.  It is possible that
12712  * a process referenced a page as cacheable but has sinced exited
12713  * and cleared the mapping list.  We still to flush it but have no
12714  * state so all cpus is the only alternative.
12715  */
12716 void
12717 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
12718 {
12719 	cpuset_t cpuset;
12720 
12721 	kpreempt_disable();
12722 	cpuset = cpu_ready_set;
12723 	CPUSET_DEL(cpuset, CPU->cpu_id);
12724 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
12725 	xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12726 	xt_sync(cpuset);
12727 	vac_flushpage(pfnum, vcolor);
12728 	kpreempt_enable();
12729 }
12730 
12731 void
12732 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
12733 {
12734 	cpuset_t cpuset;
12735 
12736 	ASSERT(vcolor >= 0);
12737 
12738 	kpreempt_disable();
12739 	cpuset = cpu_ready_set;
12740 	CPUSET_DEL(cpuset, CPU->cpu_id);
12741 	SFMMU_XCALL_STATS(NULL);	/* account to any ctx */
12742 	xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
12743 	xt_sync(cpuset);
12744 	vac_flushcolor(vcolor, pfnum);
12745 	kpreempt_enable();
12746 }
12747 #endif	/* VAC */
12748 
12749 /*
12750  * We need to prevent processes from accessing the TSB using a cached physical
12751  * address.  It's alright if they try to access the TSB via virtual address
12752  * since they will just fault on that virtual address once the mapping has
12753  * been suspended.
12754  */
12755 #pragma weak sendmondo_in_recover
12756 
12757 /* ARGSUSED */
12758 static int
12759 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
12760 {
12761 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12762 	sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12763 	hatlock_t *hatlockp;
12764 	sf_scd_t *scdp;
12765 
12766 	if (flags != HAT_PRESUSPEND)
12767 		return (0);
12768 
12769 	/*
12770 	 * If tsb is a shared TSB with TSB_SHAREDCTX set, sfmmup must
12771 	 * be a shared hat, then set SCD's tsbinfo's flag.
12772 	 * If tsb is not shared, sfmmup is a private hat, then set
12773 	 * its private tsbinfo's flag.
12774 	 */
12775 	hatlockp = sfmmu_hat_enter(sfmmup);
12776 	tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
12777 
12778 	if (!(tsbinfop->tsb_flags & TSB_SHAREDCTX)) {
12779 		sfmmu_tsb_inv_ctx(sfmmup);
12780 		sfmmu_hat_exit(hatlockp);
12781 	} else {
12782 		/* release lock on the shared hat */
12783 		sfmmu_hat_exit(hatlockp);
12784 		/* sfmmup is a shared hat */
12785 		ASSERT(sfmmup->sfmmu_scdhat);
12786 		scdp = sfmmup->sfmmu_scdp;
12787 		ASSERT(scdp != NULL);
12788 		/* get private hat from the scd list */
12789 		mutex_enter(&scdp->scd_mutex);
12790 		sfmmup = scdp->scd_sf_list;
12791 		while (sfmmup != NULL) {
12792 			hatlockp = sfmmu_hat_enter(sfmmup);
12793 			/*
12794 			 * We do not call sfmmu_tsb_inv_ctx here because
12795 			 * sendmondo_in_recover check is only needed for
12796 			 * sun4u.
12797 			 */
12798 			sfmmu_invalidate_ctx(sfmmup);
12799 			sfmmu_hat_exit(hatlockp);
12800 			sfmmup = sfmmup->sfmmu_scd_link.next;
12801 
12802 		}
12803 		mutex_exit(&scdp->scd_mutex);
12804 	}
12805 	return (0);
12806 }
12807 
12808 static void
12809 sfmmu_tsb_inv_ctx(sfmmu_t *sfmmup)
12810 {
12811 	extern uint32_t sendmondo_in_recover;
12812 
12813 	ASSERT(sfmmu_hat_lock_held(sfmmup));
12814 
12815 	/*
12816 	 * For Cheetah+ Erratum 25:
12817 	 * Wait for any active recovery to finish.  We can't risk
12818 	 * relocating the TSB of the thread running mondo_recover_proc()
12819 	 * since, if we did that, we would deadlock.  The scenario we are
12820 	 * trying to avoid is as follows:
12821 	 *
12822 	 * THIS CPU			RECOVER CPU
12823 	 * --------			-----------
12824 	 *				Begins recovery, walking through TSB
12825 	 * hat_pagesuspend() TSB TTE
12826 	 *				TLB miss on TSB TTE, spins at TL1
12827 	 * xt_sync()
12828 	 *	send_mondo_timeout()
12829 	 *	mondo_recover_proc()
12830 	 *	((deadlocked))
12831 	 *
12832 	 * The second half of the workaround is that mondo_recover_proc()
12833 	 * checks to see if the tsb_info has the RELOC flag set, and if it
12834 	 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
12835 	 * and hence avoiding the TLB miss that could result in a deadlock.
12836 	 */
12837 	if (&sendmondo_in_recover) {
12838 		membar_enter();	/* make sure RELOC flag visible */
12839 		while (sendmondo_in_recover) {
12840 			drv_usecwait(1);
12841 			membar_consumer();
12842 		}
12843 	}
12844 
12845 	sfmmu_invalidate_ctx(sfmmup);
12846 }
12847 
12848 /* ARGSUSED */
12849 static int
12850 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
12851 	void *tsbinfo, pfn_t newpfn)
12852 {
12853 	hatlock_t *hatlockp;
12854 	struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12855 	sfmmu_t	*sfmmup = tsbinfop->tsb_sfmmu;
12856 
12857 	if (flags != HAT_POSTUNSUSPEND)
12858 		return (0);
12859 
12860 	hatlockp = sfmmu_hat_enter(sfmmup);
12861 
12862 	SFMMU_STAT(sf_tsb_reloc);
12863 
12864 	/*
12865 	 * The process may have swapped out while we were relocating one
12866 	 * of its TSBs.  If so, don't bother doing the setup since the
12867 	 * process can't be using the memory anymore.
12868 	 */
12869 	if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
12870 		ASSERT(va == tsbinfop->tsb_va);
12871 		sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
12872 
12873 		if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
12874 			sfmmu_inv_tsb(tsbinfop->tsb_va,
12875 			    TSB_BYTES(tsbinfop->tsb_szc));
12876 			tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
12877 		}
12878 	}
12879 
12880 	membar_exit();
12881 	tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
12882 	cv_broadcast(&sfmmup->sfmmu_tsb_cv);
12883 
12884 	sfmmu_hat_exit(hatlockp);
12885 
12886 	return (0);
12887 }
12888 
12889 /*
12890  * Allocate and initialize a tsb_info structure.  Note that we may or may not
12891  * allocate a TSB here, depending on the flags passed in.
12892  */
12893 static int
12894 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
12895 	uint_t flags, sfmmu_t *sfmmup)
12896 {
12897 	int err;
12898 
12899 	*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
12900 	    sfmmu_tsbinfo_cache, KM_SLEEP);
12901 
12902 	if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
12903 	    tsb_szc, flags, sfmmup)) != 0) {
12904 		kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
12905 		SFMMU_STAT(sf_tsb_allocfail);
12906 		*tsbinfopp = NULL;
12907 		return (err);
12908 	}
12909 	SFMMU_STAT(sf_tsb_alloc);
12910 
12911 	/*
12912 	 * Bump the TSB size counters for this TSB size.
12913 	 */
12914 	(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
12915 	return (0);
12916 }
12917 
12918 static void
12919 sfmmu_tsb_free(struct tsb_info *tsbinfo)
12920 {
12921 	caddr_t tsbva = tsbinfo->tsb_va;
12922 	uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
12923 	struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
12924 	vmem_t	*vmp = tsbinfo->tsb_vmp;
12925 
12926 	/*
12927 	 * If we allocated this TSB from relocatable kernel memory, then we
12928 	 * need to uninstall the callback handler.
12929 	 */
12930 	if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
12931 		uintptr_t slab_mask;
12932 		caddr_t slab_vaddr;
12933 		page_t **ppl;
12934 		int ret;
12935 
12936 		ASSERT(tsb_size <= MMU_PAGESIZE4M || use_bigtsb_arena);
12937 		if (tsb_size > MMU_PAGESIZE4M)
12938 			slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12939 		else
12940 			slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12941 		slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
12942 
12943 		ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
12944 		ASSERT(ret == 0);
12945 		hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
12946 		    0, NULL);
12947 		as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
12948 	}
12949 
12950 	if (kmem_cachep != NULL) {
12951 		kmem_cache_free(kmem_cachep, tsbva);
12952 	} else {
12953 		vmem_xfree(vmp, (void *)tsbva, tsb_size);
12954 	}
12955 	tsbinfo->tsb_va = (caddr_t)0xbad00bad;
12956 	atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
12957 }
12958 
12959 static void
12960 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
12961 {
12962 	if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
12963 		sfmmu_tsb_free(tsbinfo);
12964 	}
12965 	kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
12966 
12967 }
12968 
12969 /*
12970  * Setup all the references to physical memory for this tsbinfo.
12971  * The underlying page(s) must be locked.
12972  */
12973 static void
12974 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
12975 {
12976 	ASSERT(pfn != PFN_INVALID);
12977 	ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
12978 
12979 #ifndef sun4v
12980 	if (tsbinfo->tsb_szc == 0) {
12981 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
12982 		    PROT_WRITE|PROT_READ, TTE8K);
12983 	} else {
12984 		/*
12985 		 * Round down PA and use a large mapping; the handlers will
12986 		 * compute the TSB pointer at the correct offset into the
12987 		 * big virtual page.  NOTE: this assumes all TSBs larger
12988 		 * than 8K must come from physically contiguous slabs of
12989 		 * size tsb_slab_size.
12990 		 */
12991 		sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
12992 		    PROT_WRITE|PROT_READ, tsb_slab_ttesz);
12993 	}
12994 	tsbinfo->tsb_pa = ptob(pfn);
12995 
12996 	TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
12997 	TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
12998 
12999 	ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
13000 	ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
13001 #else /* sun4v */
13002 	tsbinfo->tsb_pa = ptob(pfn);
13003 #endif /* sun4v */
13004 }
13005 
13006 
13007 /*
13008  * Returns zero on success, ENOMEM if over the high water mark,
13009  * or EAGAIN if the caller needs to retry with a smaller TSB
13010  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
13011  *
13012  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
13013  * is specified and the TSB requested is PAGESIZE, though it
13014  * may sleep waiting for memory if sufficient memory is not
13015  * available.
13016  */
13017 static int
13018 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
13019     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
13020 {
13021 	caddr_t vaddr = NULL;
13022 	caddr_t slab_vaddr;
13023 	uintptr_t slab_mask;
13024 	int tsbbytes = TSB_BYTES(tsbcode);
13025 	int lowmem = 0;
13026 	struct kmem_cache *kmem_cachep = NULL;
13027 	vmem_t *vmp = NULL;
13028 	lgrp_id_t lgrpid = LGRP_NONE;
13029 	pfn_t pfn;
13030 	uint_t cbflags = HAC_SLEEP;
13031 	page_t **pplist;
13032 	int ret;
13033 
13034 	ASSERT(tsbbytes <= MMU_PAGESIZE4M || use_bigtsb_arena);
13035 	if (tsbbytes > MMU_PAGESIZE4M)
13036 		slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
13037 	else
13038 		slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
13039 
13040 	if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
13041 		flags |= TSB_ALLOC;
13042 
13043 	ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
13044 
13045 	tsbinfo->tsb_sfmmu = sfmmup;
13046 
13047 	/*
13048 	 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
13049 	 * return.
13050 	 */
13051 	if ((flags & TSB_ALLOC) == 0) {
13052 		tsbinfo->tsb_szc = tsbcode;
13053 		tsbinfo->tsb_ttesz_mask = tteszmask;
13054 		tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
13055 		tsbinfo->tsb_pa = -1;
13056 		tsbinfo->tsb_tte.ll = 0;
13057 		tsbinfo->tsb_next = NULL;
13058 		tsbinfo->tsb_flags = TSB_SWAPPED;
13059 		tsbinfo->tsb_cache = NULL;
13060 		tsbinfo->tsb_vmp = NULL;
13061 		return (0);
13062 	}
13063 
13064 #ifdef DEBUG
13065 	/*
13066 	 * For debugging:
13067 	 * Randomly force allocation failures every tsb_alloc_mtbf
13068 	 * tries if TSB_FORCEALLOC is not specified.  This will
13069 	 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
13070 	 * it is even, to allow testing of both failure paths...
13071 	 */
13072 	if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
13073 	    (tsb_alloc_count++ == tsb_alloc_mtbf)) {
13074 		tsb_alloc_count = 0;
13075 		tsb_alloc_fail_mtbf++;
13076 		return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
13077 	}
13078 #endif	/* DEBUG */
13079 
13080 	/*
13081 	 * Enforce high water mark if we are not doing a forced allocation
13082 	 * and are not shrinking a process' TSB.
13083 	 */
13084 	if ((flags & TSB_SHRINK) == 0 &&
13085 	    (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
13086 		if ((flags & TSB_FORCEALLOC) == 0)
13087 			return (ENOMEM);
13088 		lowmem = 1;
13089 	}
13090 
13091 	/*
13092 	 * Allocate from the correct location based upon the size of the TSB
13093 	 * compared to the base page size, and what memory conditions dictate.
13094 	 * Note we always do nonblocking allocations from the TSB arena since
13095 	 * we don't want memory fragmentation to cause processes to block
13096 	 * indefinitely waiting for memory; until the kernel algorithms that
13097 	 * coalesce large pages are improved this is our best option.
13098 	 *
13099 	 * Algorithm:
13100 	 *	If allocating a "large" TSB (>8K), allocate from the
13101 	 *		appropriate kmem_tsb_default_arena vmem arena
13102 	 *	else if low on memory or the TSB_FORCEALLOC flag is set or
13103 	 *	tsb_forceheap is set
13104 	 *		Allocate from kernel heap via sfmmu_tsb8k_cache with
13105 	 *		KM_SLEEP (never fails)
13106 	 *	else
13107 	 *		Allocate from appropriate sfmmu_tsb_cache with
13108 	 *		KM_NOSLEEP
13109 	 *	endif
13110 	 */
13111 	if (tsb_lgrp_affinity)
13112 		lgrpid = lgrp_home_id(curthread);
13113 	if (lgrpid == LGRP_NONE)
13114 		lgrpid = 0;	/* use lgrp of boot CPU */
13115 
13116 	if (tsbbytes > MMU_PAGESIZE) {
13117 		if (tsbbytes > MMU_PAGESIZE4M) {
13118 			vmp = kmem_bigtsb_default_arena[lgrpid];
13119 			vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
13120 			    0, 0, NULL, NULL, VM_NOSLEEP);
13121 		} else {
13122 			vmp = kmem_tsb_default_arena[lgrpid];
13123 			vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
13124 			    0, 0, NULL, NULL, VM_NOSLEEP);
13125 		}
13126 #ifdef	DEBUG
13127 	} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
13128 #else	/* !DEBUG */
13129 	} else if (lowmem || (flags & TSB_FORCEALLOC)) {
13130 #endif	/* DEBUG */
13131 		kmem_cachep = sfmmu_tsb8k_cache;
13132 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
13133 		ASSERT(vaddr != NULL);
13134 	} else {
13135 		kmem_cachep = sfmmu_tsb_cache[lgrpid];
13136 		vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
13137 	}
13138 
13139 	tsbinfo->tsb_cache = kmem_cachep;
13140 	tsbinfo->tsb_vmp = vmp;
13141 
13142 	if (vaddr == NULL) {
13143 		return (EAGAIN);
13144 	}
13145 
13146 	atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
13147 	kmem_cachep = tsbinfo->tsb_cache;
13148 
13149 	/*
13150 	 * If we are allocating from outside the cage, then we need to
13151 	 * register a relocation callback handler.  Note that for now
13152 	 * since pseudo mappings always hang off of the slab's root page,
13153 	 * we need only lock the first 8K of the TSB slab.  This is a bit
13154 	 * hacky but it is good for performance.
13155 	 */
13156 	if (kmem_cachep != sfmmu_tsb8k_cache) {
13157 		slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
13158 		ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
13159 		ASSERT(ret == 0);
13160 		ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
13161 		    cbflags, (void *)tsbinfo, &pfn, NULL);
13162 
13163 		/*
13164 		 * Need to free up resources if we could not successfully
13165 		 * add the callback function and return an error condition.
13166 		 */
13167 		if (ret != 0) {
13168 			if (kmem_cachep) {
13169 				kmem_cache_free(kmem_cachep, vaddr);
13170 			} else {
13171 				vmem_xfree(vmp, (void *)vaddr, tsbbytes);
13172 			}
13173 			as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
13174 			    S_WRITE);
13175 			return (EAGAIN);
13176 		}
13177 	} else {
13178 		/*
13179 		 * Since allocation of 8K TSBs from heap is rare and occurs
13180 		 * during memory pressure we allocate them from permanent
13181 		 * memory rather than using callbacks to get the PFN.
13182 		 */
13183 		pfn = hat_getpfnum(kas.a_hat, vaddr);
13184 	}
13185 
13186 	tsbinfo->tsb_va = vaddr;
13187 	tsbinfo->tsb_szc = tsbcode;
13188 	tsbinfo->tsb_ttesz_mask = tteszmask;
13189 	tsbinfo->tsb_next = NULL;
13190 	tsbinfo->tsb_flags = 0;
13191 
13192 	sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
13193 
13194 	sfmmu_inv_tsb(vaddr, tsbbytes);
13195 
13196 	if (kmem_cachep != sfmmu_tsb8k_cache) {
13197 		as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
13198 	}
13199 
13200 	return (0);
13201 }
13202 
13203 /*
13204  * Initialize per cpu tsb and per cpu tsbmiss_area
13205  */
13206 void
13207 sfmmu_init_tsbs(void)
13208 {
13209 	int i;
13210 	struct tsbmiss	*tsbmissp;
13211 	struct kpmtsbm	*kpmtsbmp;
13212 #ifndef sun4v
13213 	extern int	dcache_line_mask;
13214 #endif /* sun4v */
13215 	extern uint_t	vac_colors;
13216 
13217 	/*
13218 	 * Init. tsb miss area.
13219 	 */
13220 	tsbmissp = tsbmiss_area;
13221 
13222 	for (i = 0; i < NCPU; tsbmissp++, i++) {
13223 		/*
13224 		 * initialize the tsbmiss area.
13225 		 * Do this for all possible CPUs as some may be added
13226 		 * while the system is running. There is no cost to this.
13227 		 */
13228 		tsbmissp->ksfmmup = ksfmmup;
13229 #ifndef sun4v
13230 		tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
13231 #endif /* sun4v */
13232 		tsbmissp->khashstart =
13233 		    (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
13234 		tsbmissp->uhashstart =
13235 		    (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
13236 		tsbmissp->khashsz = khmehash_num;
13237 		tsbmissp->uhashsz = uhmehash_num;
13238 	}
13239 
13240 	sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
13241 	    sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
13242 
13243 	if (kpm_enable == 0)
13244 		return;
13245 
13246 	/* -- Begin KPM specific init -- */
13247 
13248 	if (kpm_smallpages) {
13249 		/*
13250 		 * If we're using base pagesize pages for seg_kpm
13251 		 * mappings, we use the kernel TSB since we can't afford
13252 		 * to allocate a second huge TSB for these mappings.
13253 		 */
13254 		kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13255 		kpm_tsbsz = ktsb_szcode;
13256 		kpmsm_tsbbase = kpm_tsbbase;
13257 		kpmsm_tsbsz = kpm_tsbsz;
13258 	} else {
13259 		/*
13260 		 * In VAC conflict case, just put the entries in the
13261 		 * kernel 8K indexed TSB for now so we can find them.
13262 		 * This could really be changed in the future if we feel
13263 		 * the need...
13264 		 */
13265 		kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13266 		kpmsm_tsbsz = ktsb_szcode;
13267 		kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
13268 		kpm_tsbsz = ktsb4m_szcode;
13269 	}
13270 
13271 	kpmtsbmp = kpmtsbm_area;
13272 	for (i = 0; i < NCPU; kpmtsbmp++, i++) {
13273 		/*
13274 		 * Initialize the kpmtsbm area.
13275 		 * Do this for all possible CPUs as some may be added
13276 		 * while the system is running. There is no cost to this.
13277 		 */
13278 		kpmtsbmp->vbase = kpm_vbase;
13279 		kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
13280 		kpmtsbmp->sz_shift = kpm_size_shift;
13281 		kpmtsbmp->kpmp_shift = kpmp_shift;
13282 		kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
13283 		if (kpm_smallpages == 0) {
13284 			kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
13285 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
13286 		} else {
13287 			kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
13288 			kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
13289 		}
13290 		kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
13291 		kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
13292 #ifdef	DEBUG
13293 		kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
13294 #endif	/* DEBUG */
13295 		if (ktsb_phys)
13296 			kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
13297 	}
13298 
13299 	/* -- End KPM specific init -- */
13300 }
13301 
13302 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
13303 struct tsb_info ktsb_info[2];
13304 
13305 /*
13306  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
13307  */
13308 void
13309 sfmmu_init_ktsbinfo()
13310 {
13311 	ASSERT(ksfmmup != NULL);
13312 	ASSERT(ksfmmup->sfmmu_tsb == NULL);
13313 	/*
13314 	 * Allocate tsbinfos for kernel and copy in data
13315 	 * to make debug easier and sun4v setup easier.
13316 	 */
13317 	ktsb_info[0].tsb_sfmmu = ksfmmup;
13318 	ktsb_info[0].tsb_szc = ktsb_szcode;
13319 	ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
13320 	ktsb_info[0].tsb_va = ktsb_base;
13321 	ktsb_info[0].tsb_pa = ktsb_pbase;
13322 	ktsb_info[0].tsb_flags = 0;
13323 	ktsb_info[0].tsb_tte.ll = 0;
13324 	ktsb_info[0].tsb_cache = NULL;
13325 
13326 	ktsb_info[1].tsb_sfmmu = ksfmmup;
13327 	ktsb_info[1].tsb_szc = ktsb4m_szcode;
13328 	ktsb_info[1].tsb_ttesz_mask = TSB4M;
13329 	ktsb_info[1].tsb_va = ktsb4m_base;
13330 	ktsb_info[1].tsb_pa = ktsb4m_pbase;
13331 	ktsb_info[1].tsb_flags = 0;
13332 	ktsb_info[1].tsb_tte.ll = 0;
13333 	ktsb_info[1].tsb_cache = NULL;
13334 
13335 	/* Link them into ksfmmup. */
13336 	ktsb_info[0].tsb_next = &ktsb_info[1];
13337 	ktsb_info[1].tsb_next = NULL;
13338 	ksfmmup->sfmmu_tsb = &ktsb_info[0];
13339 
13340 	sfmmu_setup_tsbinfo(ksfmmup);
13341 }
13342 
13343 /*
13344  * Cache the last value returned from va_to_pa().  If the VA specified
13345  * in the current call to cached_va_to_pa() maps to the same Page (as the
13346  * previous call to cached_va_to_pa()), then compute the PA using
13347  * cached info, else call va_to_pa().
13348  *
13349  * Note: this function is neither MT-safe nor consistent in the presence
13350  * of multiple, interleaved threads.  This function was created to enable
13351  * an optimization used during boot (at a point when there's only one thread
13352  * executing on the "boot CPU", and before startup_vm() has been called).
13353  */
13354 static uint64_t
13355 cached_va_to_pa(void *vaddr)
13356 {
13357 	static uint64_t prev_vaddr_base = 0;
13358 	static uint64_t prev_pfn = 0;
13359 
13360 	if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
13361 		return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
13362 	} else {
13363 		uint64_t pa = va_to_pa(vaddr);
13364 
13365 		if (pa != ((uint64_t)-1)) {
13366 			/*
13367 			 * Computed physical address is valid.  Cache its
13368 			 * related info for the next cached_va_to_pa() call.
13369 			 */
13370 			prev_pfn = pa & MMU_PAGEMASK;
13371 			prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
13372 		}
13373 
13374 		return (pa);
13375 	}
13376 }
13377 
13378 /*
13379  * Carve up our nucleus hblk region.  We may allocate more hblks than
13380  * asked due to rounding errors but we are guaranteed to have at least
13381  * enough space to allocate the requested number of hblk8's and hblk1's.
13382  */
13383 void
13384 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
13385 {
13386 	struct hme_blk *hmeblkp;
13387 	size_t hme8blk_sz, hme1blk_sz;
13388 	size_t i;
13389 	size_t hblk8_bound;
13390 	ulong_t j = 0, k = 0;
13391 
13392 	ASSERT(addr != NULL && size != 0);
13393 
13394 	/* Need to use proper structure alignment */
13395 	hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
13396 	hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
13397 
13398 	nucleus_hblk8.list = (void *)addr;
13399 	nucleus_hblk8.index = 0;
13400 
13401 	/*
13402 	 * Use as much memory as possible for hblk8's since we
13403 	 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
13404 	 * We need to hold back enough space for the hblk1's which
13405 	 * we'll allocate next.
13406 	 */
13407 	hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
13408 	for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
13409 		hmeblkp = (struct hme_blk *)addr;
13410 		addr += hme8blk_sz;
13411 		hmeblkp->hblk_nuc_bit = 1;
13412 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13413 	}
13414 	nucleus_hblk8.len = j;
13415 	ASSERT(j >= nhblk8);
13416 	SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
13417 
13418 	nucleus_hblk1.list = (void *)addr;
13419 	nucleus_hblk1.index = 0;
13420 	for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
13421 		hmeblkp = (struct hme_blk *)addr;
13422 		addr += hme1blk_sz;
13423 		hmeblkp->hblk_nuc_bit = 1;
13424 		hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13425 	}
13426 	ASSERT(k >= nhblk1);
13427 	nucleus_hblk1.len = k;
13428 	SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
13429 }
13430 
13431 /*
13432  * This function is currently not supported on this platform. For what
13433  * it's supposed to do, see hat.c and hat_srmmu.c
13434  */
13435 /* ARGSUSED */
13436 faultcode_t
13437 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
13438     uint_t flags)
13439 {
13440 	ASSERT(hat->sfmmu_xhat_provider == NULL);
13441 	return (FC_NOSUPPORT);
13442 }
13443 
13444 /*
13445  * Searchs the mapping list of the page for a mapping of the same size. If not
13446  * found the corresponding bit is cleared in the p_index field. When large
13447  * pages are more prevalent in the system, we can maintain the mapping list
13448  * in order and we don't have to traverse the list each time. Just check the
13449  * next and prev entries, and if both are of different size, we clear the bit.
13450  */
13451 static void
13452 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
13453 {
13454 	struct sf_hment *sfhmep;
13455 	struct hme_blk *hmeblkp;
13456 	int	index;
13457 	pgcnt_t	npgs;
13458 
13459 	ASSERT(ttesz > TTE8K);
13460 
13461 	ASSERT(sfmmu_mlist_held(pp));
13462 
13463 	ASSERT(PP_ISMAPPED_LARGE(pp));
13464 
13465 	/*
13466 	 * Traverse mapping list looking for another mapping of same size.
13467 	 * since we only want to clear index field if all mappings of
13468 	 * that size are gone.
13469 	 */
13470 
13471 	for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
13472 		if (IS_PAHME(sfhmep))
13473 			continue;
13474 		hmeblkp = sfmmu_hmetohblk(sfhmep);
13475 		if (hmeblkp->hblk_xhat_bit)
13476 			continue;
13477 		if (hme_size(sfhmep) == ttesz) {
13478 			/*
13479 			 * another mapping of the same size. don't clear index.
13480 			 */
13481 			return;
13482 		}
13483 	}
13484 
13485 	/*
13486 	 * Clear the p_index bit for large page.
13487 	 */
13488 	index = PAGESZ_TO_INDEX(ttesz);
13489 	npgs = TTEPAGES(ttesz);
13490 	while (npgs-- > 0) {
13491 		ASSERT(pp->p_index & index);
13492 		pp->p_index &= ~index;
13493 		pp = PP_PAGENEXT(pp);
13494 	}
13495 }
13496 
13497 /*
13498  * return supported features
13499  */
13500 /* ARGSUSED */
13501 int
13502 hat_supported(enum hat_features feature, void *arg)
13503 {
13504 	switch (feature) {
13505 	case    HAT_SHARED_PT:
13506 	case	HAT_DYNAMIC_ISM_UNMAP:
13507 	case	HAT_VMODSORT:
13508 		return (1);
13509 	case	HAT_SHARED_REGIONS:
13510 		if (shctx_on)
13511 			return (1);
13512 		else
13513 			return (0);
13514 	default:
13515 		return (0);
13516 	}
13517 }
13518 
13519 void
13520 hat_enter(struct hat *hat)
13521 {
13522 	hatlock_t	*hatlockp;
13523 
13524 	if (hat != ksfmmup) {
13525 		hatlockp = TSB_HASH(hat);
13526 		mutex_enter(HATLOCK_MUTEXP(hatlockp));
13527 	}
13528 }
13529 
13530 void
13531 hat_exit(struct hat *hat)
13532 {
13533 	hatlock_t	*hatlockp;
13534 
13535 	if (hat != ksfmmup) {
13536 		hatlockp = TSB_HASH(hat);
13537 		mutex_exit(HATLOCK_MUTEXP(hatlockp));
13538 	}
13539 }
13540 
13541 /*ARGSUSED*/
13542 void
13543 hat_reserve(struct as *as, caddr_t addr, size_t len)
13544 {
13545 }
13546 
13547 static void
13548 hat_kstat_init(void)
13549 {
13550 	kstat_t *ksp;
13551 
13552 	ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
13553 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
13554 	    KSTAT_FLAG_VIRTUAL);
13555 	if (ksp) {
13556 		ksp->ks_data = (void *) &sfmmu_global_stat;
13557 		kstat_install(ksp);
13558 	}
13559 	ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
13560 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
13561 	    KSTAT_FLAG_VIRTUAL);
13562 	if (ksp) {
13563 		ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
13564 		kstat_install(ksp);
13565 	}
13566 	ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
13567 	    KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
13568 	    KSTAT_FLAG_WRITABLE);
13569 	if (ksp) {
13570 		ksp->ks_update = sfmmu_kstat_percpu_update;
13571 		kstat_install(ksp);
13572 	}
13573 }
13574 
13575 /* ARGSUSED */
13576 static int
13577 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
13578 {
13579 	struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
13580 	struct tsbmiss *tsbm = tsbmiss_area;
13581 	struct kpmtsbm *kpmtsbm = kpmtsbm_area;
13582 	int i;
13583 
13584 	ASSERT(cpu_kstat);
13585 	if (rw == KSTAT_READ) {
13586 		for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
13587 			cpu_kstat->sf_itlb_misses = 0;
13588 			cpu_kstat->sf_dtlb_misses = 0;
13589 			cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
13590 			    tsbm->uprot_traps;
13591 			cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
13592 			    kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
13593 			cpu_kstat->sf_tsb_hits = 0;
13594 			cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
13595 			cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
13596 		}
13597 	} else {
13598 		/* KSTAT_WRITE is used to clear stats */
13599 		for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
13600 			tsbm->utsb_misses = 0;
13601 			tsbm->ktsb_misses = 0;
13602 			tsbm->uprot_traps = 0;
13603 			tsbm->kprot_traps = 0;
13604 			kpmtsbm->kpm_dtlb_misses = 0;
13605 			kpmtsbm->kpm_tsb_misses = 0;
13606 		}
13607 	}
13608 	return (0);
13609 }
13610 
13611 #ifdef	DEBUG
13612 
13613 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
13614 
13615 /*
13616  * A tte checker. *orig_old is the value we read before cas.
13617  *	*cur is the value returned by cas.
13618  *	*new is the desired value when we do the cas.
13619  *
13620  *	*hmeblkp is currently unused.
13621  */
13622 
13623 /* ARGSUSED */
13624 void
13625 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
13626 {
13627 	pfn_t i, j, k;
13628 	int cpuid = CPU->cpu_id;
13629 
13630 	gorig[cpuid] = orig_old;
13631 	gcur[cpuid] = cur;
13632 	gnew[cpuid] = new;
13633 
13634 #ifdef lint
13635 	hmeblkp = hmeblkp;
13636 #endif
13637 
13638 	if (TTE_IS_VALID(orig_old)) {
13639 		if (TTE_IS_VALID(cur)) {
13640 			i = TTE_TO_TTEPFN(orig_old);
13641 			j = TTE_TO_TTEPFN(cur);
13642 			k = TTE_TO_TTEPFN(new);
13643 			if (i != j) {
13644 				/* remap error? */
13645 				panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
13646 			}
13647 
13648 			if (i != k) {
13649 				/* remap error? */
13650 				panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
13651 			}
13652 		} else {
13653 			if (TTE_IS_VALID(new)) {
13654 				panic("chk_tte: invalid cur? ");
13655 			}
13656 
13657 			i = TTE_TO_TTEPFN(orig_old);
13658 			k = TTE_TO_TTEPFN(new);
13659 			if (i != k) {
13660 				panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
13661 			}
13662 		}
13663 	} else {
13664 		if (TTE_IS_VALID(cur)) {
13665 			j = TTE_TO_TTEPFN(cur);
13666 			if (TTE_IS_VALID(new)) {
13667 				k = TTE_TO_TTEPFN(new);
13668 				if (j != k) {
13669 					panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
13670 					    j, k);
13671 				}
13672 			} else {
13673 				panic("chk_tte: why here?");
13674 			}
13675 		} else {
13676 			if (!TTE_IS_VALID(new)) {
13677 				panic("chk_tte: why here2 ?");
13678 			}
13679 		}
13680 	}
13681 }
13682 
13683 #endif /* DEBUG */
13684 
13685 extern void prefetch_tsbe_read(struct tsbe *);
13686 extern void prefetch_tsbe_write(struct tsbe *);
13687 
13688 
13689 /*
13690  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
13691  * us optimal performance on Cheetah+.  You can only have 8 outstanding
13692  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
13693  * prefetch to make the most utilization of the prefetch capability.
13694  */
13695 #define	TSBE_PREFETCH_STRIDE (7)
13696 
13697 void
13698 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
13699 {
13700 	int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
13701 	int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
13702 	int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
13703 	int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
13704 	struct tsbe *old;
13705 	struct tsbe *new;
13706 	struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
13707 	uint64_t va;
13708 	int new_offset;
13709 	int i;
13710 	int vpshift;
13711 	int last_prefetch;
13712 
13713 	if (old_bytes == new_bytes) {
13714 		bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
13715 	} else {
13716 
13717 		/*
13718 		 * A TSBE is 16 bytes which means there are four TSBE's per
13719 		 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
13720 		 */
13721 		old = (struct tsbe *)old_tsbinfo->tsb_va;
13722 		last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
13723 		for (i = 0; i < old_entries; i++, old++) {
13724 			if (((i & (4-1)) == 0) && (i < last_prefetch))
13725 				prefetch_tsbe_read(old);
13726 			if (!old->tte_tag.tag_invalid) {
13727 				/*
13728 				 * We have a valid TTE to remap.  Check the
13729 				 * size.  We won't remap 64K or 512K TTEs
13730 				 * because they span more than one TSB entry
13731 				 * and are indexed using an 8K virt. page.
13732 				 * Ditto for 32M and 256M TTEs.
13733 				 */
13734 				if (TTE_CSZ(&old->tte_data) == TTE64K ||
13735 				    TTE_CSZ(&old->tte_data) == TTE512K)
13736 					continue;
13737 				if (mmu_page_sizes == max_mmu_page_sizes) {
13738 					if (TTE_CSZ(&old->tte_data) == TTE32M ||
13739 					    TTE_CSZ(&old->tte_data) == TTE256M)
13740 						continue;
13741 				}
13742 
13743 				/* clear the lower 22 bits of the va */
13744 				va = *(uint64_t *)old << 22;
13745 				/* turn va into a virtual pfn */
13746 				va >>= 22 - TSB_START_SIZE;
13747 				/*
13748 				 * or in bits from the offset in the tsb
13749 				 * to get the real virtual pfn. These
13750 				 * correspond to bits [21:13] in the va
13751 				 */
13752 				vpshift =
13753 				    TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
13754 				    0x1ff;
13755 				va |= (i << vpshift);
13756 				va >>= vpshift;
13757 				new_offset = va & (new_entries - 1);
13758 				new = new_base + new_offset;
13759 				prefetch_tsbe_write(new);
13760 				*new = *old;
13761 			}
13762 		}
13763 	}
13764 }
13765 
13766 /*
13767  * unused in sfmmu
13768  */
13769 void
13770 hat_dump(void)
13771 {
13772 }
13773 
13774 /*
13775  * Called when a thread is exiting and we have switched to the kernel address
13776  * space.  Perform the same VM initialization resume() uses when switching
13777  * processes.
13778  *
13779  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
13780  * we call it anyway in case the semantics change in the future.
13781  */
13782 /*ARGSUSED*/
13783 void
13784 hat_thread_exit(kthread_t *thd)
13785 {
13786 	uint_t pgsz_cnum;
13787 	uint_t pstate_save;
13788 
13789 	ASSERT(thd->t_procp->p_as == &kas);
13790 
13791 	pgsz_cnum = KCONTEXT;
13792 #ifdef sun4u
13793 	pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
13794 #endif
13795 
13796 	/*
13797 	 * Note that sfmmu_load_mmustate() is currently a no-op for
13798 	 * kernel threads. We need to disable interrupts here,
13799 	 * simply because otherwise sfmmu_load_mmustate() would panic
13800 	 * if the caller does not disable interrupts.
13801 	 */
13802 	pstate_save = sfmmu_disable_intrs();
13803 
13804 	/* Compatibility Note: hw takes care of MMU_SCONTEXT1 */
13805 	sfmmu_setctx_sec(pgsz_cnum);
13806 	sfmmu_load_mmustate(ksfmmup);
13807 	sfmmu_enable_intrs(pstate_save);
13808 }
13809 
13810 
13811 /*
13812  * SRD support
13813  */
13814 #define	SRD_HASH_FUNCTION(vp)	(((((uintptr_t)(vp)) >> 4) ^ \
13815 				    (((uintptr_t)(vp)) >> 11)) & \
13816 				    srd_hashmask)
13817 
13818 /*
13819  * Attach the process to the srd struct associated with the exec vnode
13820  * from which the process is started.
13821  */
13822 void
13823 hat_join_srd(struct hat *sfmmup, vnode_t *evp)
13824 {
13825 	uint_t hash = SRD_HASH_FUNCTION(evp);
13826 	sf_srd_t *srdp;
13827 	sf_srd_t *newsrdp;
13828 
13829 	ASSERT(sfmmup != ksfmmup);
13830 	ASSERT(sfmmup->sfmmu_srdp == NULL);
13831 
13832 	if (!shctx_on) {
13833 		return;
13834 	}
13835 
13836 	VN_HOLD(evp);
13837 
13838 	if (srd_buckets[hash].srdb_srdp != NULL) {
13839 		mutex_enter(&srd_buckets[hash].srdb_lock);
13840 		for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13841 		    srdp = srdp->srd_hash) {
13842 			if (srdp->srd_evp == evp) {
13843 				ASSERT(srdp->srd_refcnt >= 0);
13844 				sfmmup->sfmmu_srdp = srdp;
13845 				atomic_add_32(
13846 				    (volatile uint_t *)&srdp->srd_refcnt, 1);
13847 				mutex_exit(&srd_buckets[hash].srdb_lock);
13848 				return;
13849 			}
13850 		}
13851 		mutex_exit(&srd_buckets[hash].srdb_lock);
13852 	}
13853 	newsrdp = kmem_cache_alloc(srd_cache, KM_SLEEP);
13854 	ASSERT(newsrdp->srd_next_ismrid == 0 && newsrdp->srd_next_hmerid == 0);
13855 
13856 	newsrdp->srd_evp = evp;
13857 	newsrdp->srd_refcnt = 1;
13858 	newsrdp->srd_hmergnfree = NULL;
13859 	newsrdp->srd_ismrgnfree = NULL;
13860 
13861 	mutex_enter(&srd_buckets[hash].srdb_lock);
13862 	for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13863 	    srdp = srdp->srd_hash) {
13864 		if (srdp->srd_evp == evp) {
13865 			ASSERT(srdp->srd_refcnt >= 0);
13866 			sfmmup->sfmmu_srdp = srdp;
13867 			atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1);
13868 			mutex_exit(&srd_buckets[hash].srdb_lock);
13869 			kmem_cache_free(srd_cache, newsrdp);
13870 			return;
13871 		}
13872 	}
13873 	newsrdp->srd_hash = srd_buckets[hash].srdb_srdp;
13874 	srd_buckets[hash].srdb_srdp = newsrdp;
13875 	sfmmup->sfmmu_srdp = newsrdp;
13876 
13877 	mutex_exit(&srd_buckets[hash].srdb_lock);
13878 
13879 }
13880 
13881 static void
13882 sfmmu_leave_srd(sfmmu_t *sfmmup)
13883 {
13884 	vnode_t *evp;
13885 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13886 	uint_t hash;
13887 	sf_srd_t **prev_srdpp;
13888 	sf_region_t *rgnp;
13889 	sf_region_t *nrgnp;
13890 #ifdef DEBUG
13891 	int rgns = 0;
13892 #endif
13893 	int i;
13894 
13895 	ASSERT(sfmmup != ksfmmup);
13896 	ASSERT(srdp != NULL);
13897 	ASSERT(srdp->srd_refcnt > 0);
13898 	ASSERT(sfmmup->sfmmu_scdp == NULL);
13899 	ASSERT(sfmmup->sfmmu_free == 1);
13900 
13901 	sfmmup->sfmmu_srdp = NULL;
13902 	evp = srdp->srd_evp;
13903 	ASSERT(evp != NULL);
13904 	if (atomic_add_32_nv(
13905 	    (volatile uint_t *)&srdp->srd_refcnt, -1)) {
13906 		VN_RELE(evp);
13907 		return;
13908 	}
13909 
13910 	hash = SRD_HASH_FUNCTION(evp);
13911 	mutex_enter(&srd_buckets[hash].srdb_lock);
13912 	for (prev_srdpp = &srd_buckets[hash].srdb_srdp;
13913 	    (srdp = *prev_srdpp) != NULL; prev_srdpp = &srdp->srd_hash) {
13914 		if (srdp->srd_evp == evp) {
13915 			break;
13916 		}
13917 	}
13918 	if (srdp == NULL || srdp->srd_refcnt) {
13919 		mutex_exit(&srd_buckets[hash].srdb_lock);
13920 		VN_RELE(evp);
13921 		return;
13922 	}
13923 	*prev_srdpp = srdp->srd_hash;
13924 	mutex_exit(&srd_buckets[hash].srdb_lock);
13925 
13926 	ASSERT(srdp->srd_refcnt == 0);
13927 	VN_RELE(evp);
13928 
13929 #ifdef DEBUG
13930 	for (i = 0; i < SFMMU_MAX_REGION_BUCKETS; i++) {
13931 		ASSERT(srdp->srd_rgnhash[i] == NULL);
13932 	}
13933 #endif /* DEBUG */
13934 
13935 	/* free each hme regions in the srd */
13936 	for (rgnp = srdp->srd_hmergnfree; rgnp != NULL; rgnp = nrgnp) {
13937 		nrgnp = rgnp->rgn_next;
13938 		ASSERT(rgnp->rgn_id < srdp->srd_next_hmerid);
13939 		ASSERT(rgnp->rgn_refcnt == 0);
13940 		ASSERT(rgnp->rgn_sfmmu_head == NULL);
13941 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13942 		ASSERT(rgnp->rgn_hmeflags == 0);
13943 		ASSERT(srdp->srd_hmergnp[rgnp->rgn_id] == rgnp);
13944 #ifdef DEBUG
13945 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
13946 			ASSERT(rgnp->rgn_ttecnt[i] == 0);
13947 		}
13948 		rgns++;
13949 #endif /* DEBUG */
13950 		kmem_cache_free(region_cache, rgnp);
13951 	}
13952 	ASSERT(rgns == srdp->srd_next_hmerid);
13953 
13954 #ifdef DEBUG
13955 	rgns = 0;
13956 #endif
13957 	/* free each ism rgns in the srd */
13958 	for (rgnp = srdp->srd_ismrgnfree; rgnp != NULL; rgnp = nrgnp) {
13959 		nrgnp = rgnp->rgn_next;
13960 		ASSERT(rgnp->rgn_id < srdp->srd_next_ismrid);
13961 		ASSERT(rgnp->rgn_refcnt == 0);
13962 		ASSERT(rgnp->rgn_sfmmu_head == NULL);
13963 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13964 		ASSERT(srdp->srd_ismrgnp[rgnp->rgn_id] == rgnp);
13965 #ifdef DEBUG
13966 		for (i = 0; i < MMU_PAGE_SIZES; i++) {
13967 			ASSERT(rgnp->rgn_ttecnt[i] == 0);
13968 		}
13969 		rgns++;
13970 #endif /* DEBUG */
13971 		kmem_cache_free(region_cache, rgnp);
13972 	}
13973 	ASSERT(rgns == srdp->srd_next_ismrid);
13974 	ASSERT(srdp->srd_ismbusyrgns == 0);
13975 	ASSERT(srdp->srd_hmebusyrgns == 0);
13976 
13977 	srdp->srd_next_ismrid = 0;
13978 	srdp->srd_next_hmerid = 0;
13979 
13980 	bzero((void *)srdp->srd_ismrgnp,
13981 	    sizeof (sf_region_t *) * SFMMU_MAX_ISM_REGIONS);
13982 	bzero((void *)srdp->srd_hmergnp,
13983 	    sizeof (sf_region_t *) * SFMMU_MAX_HME_REGIONS);
13984 
13985 	ASSERT(srdp->srd_scdp == NULL);
13986 	kmem_cache_free(srd_cache, srdp);
13987 }
13988 
13989 /* ARGSUSED */
13990 static int
13991 sfmmu_srdcache_constructor(void *buf, void *cdrarg, int kmflags)
13992 {
13993 	sf_srd_t *srdp = (sf_srd_t *)buf;
13994 	bzero(buf, sizeof (*srdp));
13995 
13996 	mutex_init(&srdp->srd_mutex, NULL, MUTEX_DEFAULT, NULL);
13997 	mutex_init(&srdp->srd_scd_mutex, NULL, MUTEX_DEFAULT, NULL);
13998 	return (0);
13999 }
14000 
14001 /* ARGSUSED */
14002 static void
14003 sfmmu_srdcache_destructor(void *buf, void *cdrarg)
14004 {
14005 	sf_srd_t *srdp = (sf_srd_t *)buf;
14006 
14007 	mutex_destroy(&srdp->srd_mutex);
14008 	mutex_destroy(&srdp->srd_scd_mutex);
14009 }
14010 
14011 /*
14012  * The caller makes sure hat_join_region()/hat_leave_region() can't be called
14013  * at the same time for the same process and address range. This is ensured by
14014  * the fact that address space is locked as writer when a process joins the
14015  * regions. Therefore there's no need to hold an srd lock during the entire
14016  * execution of hat_join_region()/hat_leave_region().
14017  */
14018 
14019 #define	RGN_HASH_FUNCTION(obj)	(((((uintptr_t)(obj)) >> 4) ^ \
14020 				    (((uintptr_t)(obj)) >> 11)) & \
14021 					srd_rgn_hashmask)
14022 /*
14023  * This routine implements the shared context functionality required when
14024  * attaching a segment to an address space. It must be called from
14025  * hat_share() for D(ISM) segments and from segvn_create() for segments
14026  * with the MAP_PRIVATE and MAP_TEXT flags set. It returns a region_cookie
14027  * which is saved in the private segment data for hme segments and
14028  * the ism_map structure for ism segments.
14029  */
14030 hat_region_cookie_t
14031 hat_join_region(struct hat *sfmmup,
14032 	caddr_t r_saddr,
14033 	size_t r_size,
14034 	void *r_obj,
14035 	u_offset_t r_objoff,
14036 	uchar_t r_perm,
14037 	uchar_t r_pgszc,
14038 	hat_rgn_cb_func_t r_cb_function,
14039 	uint_t flags)
14040 {
14041 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14042 	uint_t rhash;
14043 	uint_t rid;
14044 	hatlock_t *hatlockp;
14045 	sf_region_t *rgnp;
14046 	sf_region_t *new_rgnp = NULL;
14047 	int i;
14048 	uint16_t *nextidp;
14049 	sf_region_t **freelistp;
14050 	int maxids;
14051 	sf_region_t **rarrp;
14052 	uint16_t *busyrgnsp;
14053 	ulong_t rttecnt;
14054 	uchar_t tteflag;
14055 	uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14056 	int text = (r_type == HAT_REGION_TEXT);
14057 
14058 	if (srdp == NULL || r_size == 0) {
14059 		return (HAT_INVALID_REGION_COOKIE);
14060 	}
14061 
14062 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
14063 	ASSERT(sfmmup != ksfmmup);
14064 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
14065 	ASSERT(srdp->srd_refcnt > 0);
14066 	ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14067 	ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14068 	ASSERT(r_pgszc < mmu_page_sizes);
14069 	if (!IS_P2ALIGNED(r_saddr, TTEBYTES(r_pgszc)) ||
14070 	    !IS_P2ALIGNED(r_size, TTEBYTES(r_pgszc))) {
14071 		panic("hat_join_region: region addr or size is not aligned\n");
14072 	}
14073 
14074 
14075 	r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14076 	    SFMMU_REGION_HME;
14077 	/*
14078 	 * Currently only support shared hmes for the read only main text
14079 	 * region.
14080 	 */
14081 	if (r_type == SFMMU_REGION_HME && ((r_obj != srdp->srd_evp) ||
14082 	    (r_perm & PROT_WRITE))) {
14083 		return (HAT_INVALID_REGION_COOKIE);
14084 	}
14085 
14086 	rhash = RGN_HASH_FUNCTION(r_obj);
14087 
14088 	if (r_type == SFMMU_REGION_ISM) {
14089 		nextidp = &srdp->srd_next_ismrid;
14090 		freelistp = &srdp->srd_ismrgnfree;
14091 		maxids = SFMMU_MAX_ISM_REGIONS;
14092 		rarrp = srdp->srd_ismrgnp;
14093 		busyrgnsp = &srdp->srd_ismbusyrgns;
14094 	} else {
14095 		nextidp = &srdp->srd_next_hmerid;
14096 		freelistp = &srdp->srd_hmergnfree;
14097 		maxids = SFMMU_MAX_HME_REGIONS;
14098 		rarrp = srdp->srd_hmergnp;
14099 		busyrgnsp = &srdp->srd_hmebusyrgns;
14100 	}
14101 
14102 	mutex_enter(&srdp->srd_mutex);
14103 
14104 	for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14105 	    rgnp = rgnp->rgn_hash) {
14106 		if (rgnp->rgn_saddr == r_saddr && rgnp->rgn_size == r_size &&
14107 		    rgnp->rgn_obj == r_obj && rgnp->rgn_objoff == r_objoff &&
14108 		    rgnp->rgn_perm == r_perm && rgnp->rgn_pgszc == r_pgszc) {
14109 			break;
14110 		}
14111 	}
14112 
14113 rfound:
14114 	if (rgnp != NULL) {
14115 		ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14116 		ASSERT(rgnp->rgn_cb_function == r_cb_function);
14117 		ASSERT(rgnp->rgn_refcnt >= 0);
14118 		rid = rgnp->rgn_id;
14119 		ASSERT(rid < maxids);
14120 		ASSERT(rarrp[rid] == rgnp);
14121 		ASSERT(rid < *nextidp);
14122 		atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1);
14123 		mutex_exit(&srdp->srd_mutex);
14124 		if (new_rgnp != NULL) {
14125 			kmem_cache_free(region_cache, new_rgnp);
14126 		}
14127 		if (r_type == SFMMU_REGION_HME) {
14128 			int myjoin =
14129 			    (sfmmup == astosfmmu(curthread->t_procp->p_as));
14130 
14131 			sfmmu_link_to_hmeregion(sfmmup, rgnp);
14132 			/*
14133 			 * bitmap should be updated after linking sfmmu on
14134 			 * region list so that pageunload() doesn't skip
14135 			 * TSB/TLB flush. As soon as bitmap is updated another
14136 			 * thread in this process can already start accessing
14137 			 * this region.
14138 			 */
14139 			/*
14140 			 * Normally ttecnt accounting is done as part of
14141 			 * pagefault handling. But a process may not take any
14142 			 * pagefaults on shared hmeblks created by some other
14143 			 * process. To compensate for this assume that the
14144 			 * entire region will end up faulted in using
14145 			 * the region's pagesize.
14146 			 *
14147 			 */
14148 			if (r_pgszc > TTE8K) {
14149 				tteflag = 1 << r_pgszc;
14150 				if (disable_large_pages & tteflag) {
14151 					tteflag = 0;
14152 				}
14153 			} else {
14154 				tteflag = 0;
14155 			}
14156 			if (tteflag && !(sfmmup->sfmmu_rtteflags & tteflag)) {
14157 				hatlockp = sfmmu_hat_enter(sfmmup);
14158 				sfmmup->sfmmu_rtteflags |= tteflag;
14159 				if (&mmu_set_pgsz_order) {
14160 					mmu_set_pgsz_order(sfmmup, 1);
14161 				}
14162 				sfmmu_hat_exit(hatlockp);
14163 			}
14164 			hatlockp = sfmmu_hat_enter(sfmmup);
14165 
14166 			/*
14167 			 * Preallocate 1/4 of ttecnt's in 8K TSB for >= 4M
14168 			 * region to allow for large page allocation failure.
14169 			 */
14170 			if (r_pgszc >= TTE4M) {
14171 				sfmmup->sfmmu_tsb0_4minflcnt +=
14172 				    r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14173 			}
14174 
14175 			/* update sfmmu_ttecnt with the shme rgn ttecnt */
14176 			rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14177 			atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14178 			    rttecnt);
14179 
14180 			if (text && r_pgszc >= TTE4M &&
14181 			    (tteflag || ((disable_large_pages >> TTE4M) &
14182 			    ((1 << (r_pgszc - TTE4M + 1)) - 1))) &&
14183 			    !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
14184 				SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
14185 			}
14186 
14187 			sfmmu_hat_exit(hatlockp);
14188 			/*
14189 			 * On Panther we need to make sure TLB is programmed
14190 			 * to accept 32M/256M pages.  Call
14191 			 * sfmmu_check_page_sizes() now to make sure TLB is
14192 			 * setup before making hmeregions visible to other
14193 			 * threads.
14194 			 */
14195 			sfmmu_check_page_sizes(sfmmup, 1);
14196 			hatlockp = sfmmu_hat_enter(sfmmup);
14197 			SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14198 
14199 			/*
14200 			 * if context is invalid tsb miss exception code will
14201 			 * call sfmmu_check_page_sizes() and update tsbmiss
14202 			 * area later.
14203 			 */
14204 			kpreempt_disable();
14205 			if (myjoin &&
14206 			    (sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
14207 			    != INVALID_CONTEXT)) {
14208 				struct tsbmiss *tsbmp;
14209 
14210 				tsbmp = &tsbmiss_area[CPU->cpu_id];
14211 				ASSERT(sfmmup == tsbmp->usfmmup);
14212 				BT_SET(tsbmp->shmermap, rid);
14213 				if (r_pgszc > TTE64K) {
14214 					tsbmp->uhat_rtteflags |= tteflag;
14215 				}
14216 
14217 			}
14218 			kpreempt_enable();
14219 
14220 			sfmmu_hat_exit(hatlockp);
14221 			ASSERT((hat_region_cookie_t)((uint64_t)rid) !=
14222 			    HAT_INVALID_REGION_COOKIE);
14223 		} else {
14224 			hatlockp = sfmmu_hat_enter(sfmmup);
14225 			SF_RGNMAP_ADD(sfmmup->sfmmu_ismregion_map, rid);
14226 			sfmmu_hat_exit(hatlockp);
14227 		}
14228 		ASSERT(rid < maxids);
14229 
14230 		if (r_type == SFMMU_REGION_ISM) {
14231 			sfmmu_find_scd(sfmmup);
14232 		}
14233 		return ((hat_region_cookie_t)((uint64_t)rid));
14234 	}
14235 
14236 	ASSERT(new_rgnp == NULL);
14237 
14238 	if (*busyrgnsp >= maxids) {
14239 		mutex_exit(&srdp->srd_mutex);
14240 		return (HAT_INVALID_REGION_COOKIE);
14241 	}
14242 
14243 	ASSERT(MUTEX_HELD(&srdp->srd_mutex));
14244 	if (*freelistp != NULL) {
14245 		rgnp = *freelistp;
14246 		*freelistp = rgnp->rgn_next;
14247 		ASSERT(rgnp->rgn_id < *nextidp);
14248 		ASSERT(rgnp->rgn_id < maxids);
14249 		ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
14250 		ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK)
14251 		    == r_type);
14252 		ASSERT(rarrp[rgnp->rgn_id] == rgnp);
14253 		ASSERT(rgnp->rgn_hmeflags == 0);
14254 	} else {
14255 		/*
14256 		 * release local locks before memory allocation.
14257 		 */
14258 		mutex_exit(&srdp->srd_mutex);
14259 
14260 		new_rgnp = kmem_cache_alloc(region_cache, KM_SLEEP);
14261 
14262 		mutex_enter(&srdp->srd_mutex);
14263 		for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14264 		    rgnp = rgnp->rgn_hash) {
14265 			if (rgnp->rgn_saddr == r_saddr &&
14266 			    rgnp->rgn_size == r_size &&
14267 			    rgnp->rgn_obj == r_obj &&
14268 			    rgnp->rgn_objoff == r_objoff &&
14269 			    rgnp->rgn_perm == r_perm &&
14270 			    rgnp->rgn_pgszc == r_pgszc) {
14271 				break;
14272 			}
14273 		}
14274 		if (rgnp != NULL) {
14275 			goto rfound;
14276 		}
14277 
14278 		if (*nextidp >= maxids) {
14279 			mutex_exit(&srdp->srd_mutex);
14280 			goto fail;
14281 		}
14282 		rgnp = new_rgnp;
14283 		new_rgnp = NULL;
14284 		rgnp->rgn_id = (*nextidp)++;
14285 		ASSERT(rgnp->rgn_id < maxids);
14286 		ASSERT(rarrp[rgnp->rgn_id] == NULL);
14287 		rarrp[rgnp->rgn_id] = rgnp;
14288 	}
14289 
14290 	ASSERT(rgnp->rgn_sfmmu_head == NULL);
14291 	ASSERT(rgnp->rgn_hmeflags == 0);
14292 #ifdef DEBUG
14293 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14294 		ASSERT(rgnp->rgn_ttecnt[i] == 0);
14295 	}
14296 #endif
14297 	rgnp->rgn_saddr = r_saddr;
14298 	rgnp->rgn_size = r_size;
14299 	rgnp->rgn_obj = r_obj;
14300 	rgnp->rgn_objoff = r_objoff;
14301 	rgnp->rgn_perm = r_perm;
14302 	rgnp->rgn_pgszc = r_pgszc;
14303 	rgnp->rgn_flags = r_type;
14304 	rgnp->rgn_refcnt = 0;
14305 	rgnp->rgn_cb_function = r_cb_function;
14306 	rgnp->rgn_hash = srdp->srd_rgnhash[rhash];
14307 	srdp->srd_rgnhash[rhash] = rgnp;
14308 	(*busyrgnsp)++;
14309 	ASSERT(*busyrgnsp <= maxids);
14310 	goto rfound;
14311 
14312 fail:
14313 	ASSERT(new_rgnp != NULL);
14314 	kmem_cache_free(region_cache, new_rgnp);
14315 	return (HAT_INVALID_REGION_COOKIE);
14316 }
14317 
14318 /*
14319  * This function implements the shared context functionality required
14320  * when detaching a segment from an address space. It must be called
14321  * from hat_unshare() for all D(ISM) segments and from segvn_unmap(),
14322  * for segments with a valid region_cookie.
14323  * It will also be called from all seg_vn routines which change a
14324  * segment's attributes such as segvn_setprot(), segvn_setpagesize(),
14325  * segvn_clrszc() & segvn_advise(), as well as in the case of COW fault
14326  * from segvn_fault().
14327  */
14328 void
14329 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags)
14330 {
14331 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14332 	sf_scd_t *scdp;
14333 	uint_t rhash;
14334 	uint_t rid = (uint_t)((uint64_t)rcookie);
14335 	hatlock_t *hatlockp = NULL;
14336 	sf_region_t *rgnp;
14337 	sf_region_t **prev_rgnpp;
14338 	sf_region_t *cur_rgnp;
14339 	void *r_obj;
14340 	int i;
14341 	caddr_t	r_saddr;
14342 	caddr_t r_eaddr;
14343 	size_t	r_size;
14344 	uchar_t	r_pgszc;
14345 	uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14346 
14347 	ASSERT(sfmmup != ksfmmup);
14348 	ASSERT(srdp != NULL);
14349 	ASSERT(srdp->srd_refcnt > 0);
14350 	ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14351 	ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14352 	ASSERT(!sfmmup->sfmmu_free || sfmmup->sfmmu_scdp == NULL);
14353 
14354 	r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14355 	    SFMMU_REGION_HME;
14356 
14357 	if (r_type == SFMMU_REGION_ISM) {
14358 		ASSERT(SFMMU_IS_ISMRID_VALID(rid));
14359 		ASSERT(rid < SFMMU_MAX_ISM_REGIONS);
14360 		rgnp = srdp->srd_ismrgnp[rid];
14361 	} else {
14362 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14363 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14364 		rgnp = srdp->srd_hmergnp[rid];
14365 	}
14366 	ASSERT(rgnp != NULL);
14367 	ASSERT(rgnp->rgn_id == rid);
14368 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14369 	ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14370 	ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
14371 
14372 	ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
14373 	if (r_type == SFMMU_REGION_HME && sfmmup->sfmmu_as->a_xhat != NULL) {
14374 		xhat_unload_callback_all(sfmmup->sfmmu_as, rgnp->rgn_saddr,
14375 		    rgnp->rgn_size, 0, NULL);
14376 	}
14377 
14378 	if (sfmmup->sfmmu_free) {
14379 		ulong_t rttecnt;
14380 		r_pgszc = rgnp->rgn_pgszc;
14381 		r_size = rgnp->rgn_size;
14382 
14383 		ASSERT(sfmmup->sfmmu_scdp == NULL);
14384 		if (r_type == SFMMU_REGION_ISM) {
14385 			SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14386 		} else {
14387 			/* update shme rgns ttecnt in sfmmu_ttecnt */
14388 			rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14389 			ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14390 
14391 			atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14392 			    -rttecnt);
14393 
14394 			SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14395 		}
14396 	} else if (r_type == SFMMU_REGION_ISM) {
14397 		hatlockp = sfmmu_hat_enter(sfmmup);
14398 		ASSERT(rid < srdp->srd_next_ismrid);
14399 		SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14400 		scdp = sfmmup->sfmmu_scdp;
14401 		if (scdp != NULL &&
14402 		    SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
14403 			sfmmu_leave_scd(sfmmup, r_type);
14404 			ASSERT(sfmmu_hat_lock_held(sfmmup));
14405 		}
14406 		sfmmu_hat_exit(hatlockp);
14407 	} else {
14408 		ulong_t rttecnt;
14409 		r_pgszc = rgnp->rgn_pgszc;
14410 		r_saddr = rgnp->rgn_saddr;
14411 		r_size = rgnp->rgn_size;
14412 		r_eaddr = r_saddr + r_size;
14413 
14414 		ASSERT(r_type == SFMMU_REGION_HME);
14415 		hatlockp = sfmmu_hat_enter(sfmmup);
14416 		ASSERT(rid < srdp->srd_next_hmerid);
14417 		SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14418 
14419 		/*
14420 		 * If region is part of an SCD call sfmmu_leave_scd().
14421 		 * Otherwise if process is not exiting and has valid context
14422 		 * just drop the context on the floor to lose stale TLB
14423 		 * entries and force the update of tsb miss area to reflect
14424 		 * the new region map. After that clean our TSB entries.
14425 		 */
14426 		scdp = sfmmup->sfmmu_scdp;
14427 		if (scdp != NULL &&
14428 		    SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
14429 			sfmmu_leave_scd(sfmmup, r_type);
14430 			ASSERT(sfmmu_hat_lock_held(sfmmup));
14431 		}
14432 		sfmmu_invalidate_ctx(sfmmup);
14433 
14434 		i = TTE8K;
14435 		while (i < mmu_page_sizes) {
14436 			if (rgnp->rgn_ttecnt[i] != 0) {
14437 				sfmmu_unload_tsb_range(sfmmup, r_saddr,
14438 				    r_eaddr, i);
14439 				if (i < TTE4M) {
14440 					i = TTE4M;
14441 					continue;
14442 				} else {
14443 					break;
14444 				}
14445 			}
14446 			i++;
14447 		}
14448 		/* Remove the preallocated 1/4 8k ttecnt for 4M regions. */
14449 		if (r_pgszc >= TTE4M) {
14450 			rttecnt = r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14451 			ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14452 			    rttecnt);
14453 			sfmmup->sfmmu_tsb0_4minflcnt -= rttecnt;
14454 		}
14455 
14456 		/* update shme rgns ttecnt in sfmmu_ttecnt */
14457 		rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14458 		ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14459 		atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], -rttecnt);
14460 
14461 		sfmmu_hat_exit(hatlockp);
14462 		if (scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
14463 			/* sfmmup left the scd, grow private tsb */
14464 			sfmmu_check_page_sizes(sfmmup, 1);
14465 		} else {
14466 			sfmmu_check_page_sizes(sfmmup, 0);
14467 		}
14468 	}
14469 
14470 	if (r_type == SFMMU_REGION_HME) {
14471 		sfmmu_unlink_from_hmeregion(sfmmup, rgnp);
14472 	}
14473 
14474 	r_obj = rgnp->rgn_obj;
14475 	if (atomic_add_32_nv((volatile uint_t *)&rgnp->rgn_refcnt, -1)) {
14476 		return;
14477 	}
14478 
14479 	/*
14480 	 * looks like nobody uses this region anymore. Free it.
14481 	 */
14482 	rhash = RGN_HASH_FUNCTION(r_obj);
14483 	mutex_enter(&srdp->srd_mutex);
14484 	for (prev_rgnpp = &srdp->srd_rgnhash[rhash];
14485 	    (cur_rgnp = *prev_rgnpp) != NULL;
14486 	    prev_rgnpp = &cur_rgnp->rgn_hash) {
14487 		if (cur_rgnp == rgnp && cur_rgnp->rgn_refcnt == 0) {
14488 			break;
14489 		}
14490 	}
14491 
14492 	if (cur_rgnp == NULL) {
14493 		mutex_exit(&srdp->srd_mutex);
14494 		return;
14495 	}
14496 
14497 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14498 	*prev_rgnpp = rgnp->rgn_hash;
14499 	if (r_type == SFMMU_REGION_ISM) {
14500 		rgnp->rgn_flags |= SFMMU_REGION_FREE;
14501 		ASSERT(rid < srdp->srd_next_ismrid);
14502 		rgnp->rgn_next = srdp->srd_ismrgnfree;
14503 		srdp->srd_ismrgnfree = rgnp;
14504 		ASSERT(srdp->srd_ismbusyrgns > 0);
14505 		srdp->srd_ismbusyrgns--;
14506 		mutex_exit(&srdp->srd_mutex);
14507 		return;
14508 	}
14509 	mutex_exit(&srdp->srd_mutex);
14510 
14511 	/*
14512 	 * Destroy region's hmeblks.
14513 	 */
14514 	sfmmu_unload_hmeregion(srdp, rgnp);
14515 
14516 	rgnp->rgn_hmeflags = 0;
14517 
14518 	ASSERT(rgnp->rgn_sfmmu_head == NULL);
14519 	ASSERT(rgnp->rgn_id == rid);
14520 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
14521 		rgnp->rgn_ttecnt[i] = 0;
14522 	}
14523 	rgnp->rgn_flags |= SFMMU_REGION_FREE;
14524 	mutex_enter(&srdp->srd_mutex);
14525 	ASSERT(rid < srdp->srd_next_hmerid);
14526 	rgnp->rgn_next = srdp->srd_hmergnfree;
14527 	srdp->srd_hmergnfree = rgnp;
14528 	ASSERT(srdp->srd_hmebusyrgns > 0);
14529 	srdp->srd_hmebusyrgns--;
14530 	mutex_exit(&srdp->srd_mutex);
14531 }
14532 
14533 /*
14534  * For now only called for hmeblk regions and not for ISM regions.
14535  */
14536 void
14537 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie)
14538 {
14539 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14540 	uint_t rid = (uint_t)((uint64_t)rcookie);
14541 	sf_region_t *rgnp;
14542 	sf_rgn_link_t *rlink;
14543 	sf_rgn_link_t *hrlink;
14544 	ulong_t	rttecnt;
14545 
14546 	ASSERT(sfmmup != ksfmmup);
14547 	ASSERT(srdp != NULL);
14548 	ASSERT(srdp->srd_refcnt > 0);
14549 
14550 	ASSERT(rid < srdp->srd_next_hmerid);
14551 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14552 	ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14553 
14554 	rgnp = srdp->srd_hmergnp[rid];
14555 	ASSERT(rgnp->rgn_refcnt > 0);
14556 	ASSERT(rgnp->rgn_id == rid);
14557 	ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == SFMMU_REGION_HME);
14558 	ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14559 
14560 	atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1);
14561 
14562 	/* LINTED: constant in conditional context */
14563 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 0);
14564 	ASSERT(rlink != NULL);
14565 	mutex_enter(&rgnp->rgn_mutex);
14566 	ASSERT(rgnp->rgn_sfmmu_head != NULL);
14567 	/* LINTED: constant in conditional context */
14568 	SFMMU_HMERID2RLINKP(rgnp->rgn_sfmmu_head, rid, hrlink, 0, 0);
14569 	ASSERT(hrlink != NULL);
14570 	ASSERT(hrlink->prev == NULL);
14571 	rlink->next = rgnp->rgn_sfmmu_head;
14572 	rlink->prev = NULL;
14573 	hrlink->prev = sfmmup;
14574 	/*
14575 	 * make sure rlink's next field is correct
14576 	 * before making this link visible.
14577 	 */
14578 	membar_stst();
14579 	rgnp->rgn_sfmmu_head = sfmmup;
14580 	mutex_exit(&rgnp->rgn_mutex);
14581 
14582 	/* update sfmmu_ttecnt with the shme rgn ttecnt */
14583 	rttecnt = rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
14584 	atomic_add_long(&sfmmup->sfmmu_ttecnt[rgnp->rgn_pgszc], rttecnt);
14585 	/* update tsb0 inflation count */
14586 	if (rgnp->rgn_pgszc >= TTE4M) {
14587 		sfmmup->sfmmu_tsb0_4minflcnt +=
14588 		    rgnp->rgn_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14589 	}
14590 	/*
14591 	 * Update regionid bitmask without hat lock since no other thread
14592 	 * can update this region bitmask right now.
14593 	 */
14594 	SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14595 }
14596 
14597 /* ARGSUSED */
14598 static int
14599 sfmmu_rgncache_constructor(void *buf, void *cdrarg, int kmflags)
14600 {
14601 	sf_region_t *rgnp = (sf_region_t *)buf;
14602 	bzero(buf, sizeof (*rgnp));
14603 
14604 	mutex_init(&rgnp->rgn_mutex, NULL, MUTEX_DEFAULT, NULL);
14605 
14606 	return (0);
14607 }
14608 
14609 /* ARGSUSED */
14610 static void
14611 sfmmu_rgncache_destructor(void *buf, void *cdrarg)
14612 {
14613 	sf_region_t *rgnp = (sf_region_t *)buf;
14614 	mutex_destroy(&rgnp->rgn_mutex);
14615 }
14616 
14617 static int
14618 sfrgnmap_isnull(sf_region_map_t *map)
14619 {
14620 	int i;
14621 
14622 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14623 		if (map->bitmap[i] != 0) {
14624 			return (0);
14625 		}
14626 	}
14627 	return (1);
14628 }
14629 
14630 static int
14631 sfhmergnmap_isnull(sf_hmeregion_map_t *map)
14632 {
14633 	int i;
14634 
14635 	for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
14636 		if (map->bitmap[i] != 0) {
14637 			return (0);
14638 		}
14639 	}
14640 	return (1);
14641 }
14642 
14643 #ifdef DEBUG
14644 static void
14645 check_scd_sfmmu_list(sfmmu_t **headp, sfmmu_t *sfmmup, int onlist)
14646 {
14647 	sfmmu_t *sp;
14648 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14649 
14650 	for (sp = *headp; sp != NULL; sp = sp->sfmmu_scd_link.next) {
14651 		ASSERT(srdp == sp->sfmmu_srdp);
14652 		if (sp == sfmmup) {
14653 			if (onlist) {
14654 				return;
14655 			} else {
14656 				panic("shctx: sfmmu 0x%p found on scd"
14657 				    "list 0x%p", (void *)sfmmup,
14658 				    (void *)*headp);
14659 			}
14660 		}
14661 	}
14662 	if (onlist) {
14663 		panic("shctx: sfmmu 0x%p not found on scd list 0x%p",
14664 		    (void *)sfmmup, (void *)*headp);
14665 	} else {
14666 		return;
14667 	}
14668 }
14669 #else /* DEBUG */
14670 #define	check_scd_sfmmu_list(headp, sfmmup, onlist)
14671 #endif /* DEBUG */
14672 
14673 /*
14674  * Removes an sfmmu from the SCD sfmmu list.
14675  */
14676 static void
14677 sfmmu_from_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14678 {
14679 	ASSERT(sfmmup->sfmmu_srdp != NULL);
14680 	check_scd_sfmmu_list(headp, sfmmup, 1);
14681 	if (sfmmup->sfmmu_scd_link.prev != NULL) {
14682 		ASSERT(*headp != sfmmup);
14683 		sfmmup->sfmmu_scd_link.prev->sfmmu_scd_link.next =
14684 		    sfmmup->sfmmu_scd_link.next;
14685 	} else {
14686 		ASSERT(*headp == sfmmup);
14687 		*headp = sfmmup->sfmmu_scd_link.next;
14688 	}
14689 	if (sfmmup->sfmmu_scd_link.next != NULL) {
14690 		sfmmup->sfmmu_scd_link.next->sfmmu_scd_link.prev =
14691 		    sfmmup->sfmmu_scd_link.prev;
14692 	}
14693 }
14694 
14695 
14696 /*
14697  * Adds an sfmmu to the start of the queue.
14698  */
14699 static void
14700 sfmmu_to_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14701 {
14702 	check_scd_sfmmu_list(headp, sfmmup, 0);
14703 	sfmmup->sfmmu_scd_link.prev = NULL;
14704 	sfmmup->sfmmu_scd_link.next = *headp;
14705 	if (*headp != NULL)
14706 		(*headp)->sfmmu_scd_link.prev = sfmmup;
14707 	*headp = sfmmup;
14708 }
14709 
14710 /*
14711  * Remove an scd from the start of the queue.
14712  */
14713 static void
14714 sfmmu_remove_scd(sf_scd_t **headp, sf_scd_t *scdp)
14715 {
14716 	if (scdp->scd_prev != NULL) {
14717 		ASSERT(*headp != scdp);
14718 		scdp->scd_prev->scd_next = scdp->scd_next;
14719 	} else {
14720 		ASSERT(*headp == scdp);
14721 		*headp = scdp->scd_next;
14722 	}
14723 
14724 	if (scdp->scd_next != NULL) {
14725 		scdp->scd_next->scd_prev = scdp->scd_prev;
14726 	}
14727 }
14728 
14729 /*
14730  * Add an scd to the start of the queue.
14731  */
14732 static void
14733 sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *scdp)
14734 {
14735 	scdp->scd_prev = NULL;
14736 	scdp->scd_next = *headp;
14737 	if (*headp != NULL) {
14738 		(*headp)->scd_prev = scdp;
14739 	}
14740 	*headp = scdp;
14741 }
14742 
14743 static int
14744 sfmmu_alloc_scd_tsbs(sf_srd_t *srdp, sf_scd_t *scdp)
14745 {
14746 	uint_t rid;
14747 	uint_t i;
14748 	uint_t j;
14749 	ulong_t w;
14750 	sf_region_t *rgnp;
14751 	ulong_t tte8k_cnt = 0;
14752 	ulong_t tte4m_cnt = 0;
14753 	uint_t tsb_szc;
14754 	sfmmu_t *scsfmmup = scdp->scd_sfmmup;
14755 	sfmmu_t	*ism_hatid;
14756 	struct tsb_info *newtsb;
14757 	int szc;
14758 
14759 	ASSERT(srdp != NULL);
14760 
14761 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14762 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14763 			continue;
14764 		}
14765 		j = 0;
14766 		while (w) {
14767 			if (!(w & 0x1)) {
14768 				j++;
14769 				w >>= 1;
14770 				continue;
14771 			}
14772 			rid = (i << BT_ULSHIFT) | j;
14773 			j++;
14774 			w >>= 1;
14775 
14776 			if (rid < SFMMU_MAX_HME_REGIONS) {
14777 				rgnp = srdp->srd_hmergnp[rid];
14778 				ASSERT(rgnp->rgn_id == rid);
14779 				ASSERT(rgnp->rgn_refcnt > 0);
14780 
14781 				if (rgnp->rgn_pgszc < TTE4M) {
14782 					tte8k_cnt += rgnp->rgn_size >>
14783 					    TTE_PAGE_SHIFT(TTE8K);
14784 				} else {
14785 					ASSERT(rgnp->rgn_pgszc >= TTE4M);
14786 					tte4m_cnt += rgnp->rgn_size >>
14787 					    TTE_PAGE_SHIFT(TTE4M);
14788 					/*
14789 					 * Inflate SCD tsb0 by preallocating
14790 					 * 1/4 8k ttecnt for 4M regions to
14791 					 * allow for lgpg alloc failure.
14792 					 */
14793 					tte8k_cnt += rgnp->rgn_size >>
14794 					    (TTE_PAGE_SHIFT(TTE8K) + 2);
14795 				}
14796 			} else {
14797 				rid -= SFMMU_MAX_HME_REGIONS;
14798 				rgnp = srdp->srd_ismrgnp[rid];
14799 				ASSERT(rgnp->rgn_id == rid);
14800 				ASSERT(rgnp->rgn_refcnt > 0);
14801 
14802 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14803 				ASSERT(ism_hatid->sfmmu_ismhat);
14804 
14805 				for (szc = 0; szc < TTE4M; szc++) {
14806 					tte8k_cnt +=
14807 					    ism_hatid->sfmmu_ttecnt[szc] <<
14808 					    TTE_BSZS_SHIFT(szc);
14809 				}
14810 
14811 				ASSERT(rgnp->rgn_pgszc >= TTE4M);
14812 				if (rgnp->rgn_pgszc >= TTE4M) {
14813 					tte4m_cnt += rgnp->rgn_size >>
14814 					    TTE_PAGE_SHIFT(TTE4M);
14815 				}
14816 			}
14817 		}
14818 	}
14819 
14820 	tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
14821 
14822 	/* Allocate both the SCD TSBs here. */
14823 	if (sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14824 	    tsb_szc, TSB8K|TSB64K|TSB512K, TSB_ALLOC, scsfmmup) &&
14825 	    (tsb_szc <= TSB_4M_SZCODE ||
14826 	    sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14827 	    TSB_4M_SZCODE, TSB8K|TSB64K|TSB512K,
14828 	    TSB_ALLOC, scsfmmup))) {
14829 
14830 		SFMMU_STAT(sf_scd_1sttsb_allocfail);
14831 		return (TSB_ALLOCFAIL);
14832 	} else {
14833 		scsfmmup->sfmmu_tsb->tsb_flags |= TSB_SHAREDCTX;
14834 
14835 		if (tte4m_cnt) {
14836 			tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
14837 			if (sfmmu_tsbinfo_alloc(&newtsb, tsb_szc,
14838 			    TSB4M|TSB32M|TSB256M, TSB_ALLOC, scsfmmup) &&
14839 			    (tsb_szc <= TSB_4M_SZCODE ||
14840 			    sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
14841 			    TSB4M|TSB32M|TSB256M,
14842 			    TSB_ALLOC, scsfmmup))) {
14843 				/*
14844 				 * If we fail to allocate the 2nd shared tsb,
14845 				 * just free the 1st tsb, return failure.
14846 				 */
14847 				sfmmu_tsbinfo_free(scsfmmup->sfmmu_tsb);
14848 				SFMMU_STAT(sf_scd_2ndtsb_allocfail);
14849 				return (TSB_ALLOCFAIL);
14850 			} else {
14851 				ASSERT(scsfmmup->sfmmu_tsb->tsb_next == NULL);
14852 				newtsb->tsb_flags |= TSB_SHAREDCTX;
14853 				scsfmmup->sfmmu_tsb->tsb_next = newtsb;
14854 				SFMMU_STAT(sf_scd_2ndtsb_alloc);
14855 			}
14856 		}
14857 		SFMMU_STAT(sf_scd_1sttsb_alloc);
14858 	}
14859 	return (TSB_SUCCESS);
14860 }
14861 
14862 static void
14863 sfmmu_free_scd_tsbs(sfmmu_t *scd_sfmmu)
14864 {
14865 	while (scd_sfmmu->sfmmu_tsb != NULL) {
14866 		struct tsb_info *next = scd_sfmmu->sfmmu_tsb->tsb_next;
14867 		sfmmu_tsbinfo_free(scd_sfmmu->sfmmu_tsb);
14868 		scd_sfmmu->sfmmu_tsb = next;
14869 	}
14870 }
14871 
14872 /*
14873  * Link the sfmmu onto the hme region list.
14874  */
14875 void
14876 sfmmu_link_to_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14877 {
14878 	uint_t rid;
14879 	sf_rgn_link_t *rlink;
14880 	sfmmu_t *head;
14881 	sf_rgn_link_t *hrlink;
14882 
14883 	rid = rgnp->rgn_id;
14884 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14885 
14886 	/* LINTED: constant in conditional context */
14887 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 1);
14888 	ASSERT(rlink != NULL);
14889 	mutex_enter(&rgnp->rgn_mutex);
14890 	if ((head = rgnp->rgn_sfmmu_head) == NULL) {
14891 		rlink->next = NULL;
14892 		rlink->prev = NULL;
14893 		/*
14894 		 * make sure rlink's next field is NULL
14895 		 * before making this link visible.
14896 		 */
14897 		membar_stst();
14898 		rgnp->rgn_sfmmu_head = sfmmup;
14899 	} else {
14900 		/* LINTED: constant in conditional context */
14901 		SFMMU_HMERID2RLINKP(head, rid, hrlink, 0, 0);
14902 		ASSERT(hrlink != NULL);
14903 		ASSERT(hrlink->prev == NULL);
14904 		rlink->next = head;
14905 		rlink->prev = NULL;
14906 		hrlink->prev = sfmmup;
14907 		/*
14908 		 * make sure rlink's next field is correct
14909 		 * before making this link visible.
14910 		 */
14911 		membar_stst();
14912 		rgnp->rgn_sfmmu_head = sfmmup;
14913 	}
14914 	mutex_exit(&rgnp->rgn_mutex);
14915 }
14916 
14917 /*
14918  * Unlink the sfmmu from the hme region list.
14919  */
14920 void
14921 sfmmu_unlink_from_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14922 {
14923 	uint_t rid;
14924 	sf_rgn_link_t *rlink;
14925 
14926 	rid = rgnp->rgn_id;
14927 	ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14928 
14929 	/* LINTED: constant in conditional context */
14930 	SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
14931 	ASSERT(rlink != NULL);
14932 	mutex_enter(&rgnp->rgn_mutex);
14933 	if (rgnp->rgn_sfmmu_head == sfmmup) {
14934 		sfmmu_t *next = rlink->next;
14935 		rgnp->rgn_sfmmu_head = next;
14936 		/*
14937 		 * if we are stopped by xc_attention() after this
14938 		 * point the forward link walking in
14939 		 * sfmmu_rgntlb_demap() will work correctly since the
14940 		 * head correctly points to the next element.
14941 		 */
14942 		membar_stst();
14943 		rlink->next = NULL;
14944 		ASSERT(rlink->prev == NULL);
14945 		if (next != NULL) {
14946 			sf_rgn_link_t *nrlink;
14947 			/* LINTED: constant in conditional context */
14948 			SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14949 			ASSERT(nrlink != NULL);
14950 			ASSERT(nrlink->prev == sfmmup);
14951 			nrlink->prev = NULL;
14952 		}
14953 	} else {
14954 		sfmmu_t *next = rlink->next;
14955 		sfmmu_t *prev = rlink->prev;
14956 		sf_rgn_link_t *prlink;
14957 
14958 		ASSERT(prev != NULL);
14959 		/* LINTED: constant in conditional context */
14960 		SFMMU_HMERID2RLINKP(prev, rid, prlink, 0, 0);
14961 		ASSERT(prlink != NULL);
14962 		ASSERT(prlink->next == sfmmup);
14963 		prlink->next = next;
14964 		/*
14965 		 * if we are stopped by xc_attention()
14966 		 * after this point the forward link walking
14967 		 * will work correctly since the prev element
14968 		 * correctly points to the next element.
14969 		 */
14970 		membar_stst();
14971 		rlink->next = NULL;
14972 		rlink->prev = NULL;
14973 		if (next != NULL) {
14974 			sf_rgn_link_t *nrlink;
14975 			/* LINTED: constant in conditional context */
14976 			SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14977 			ASSERT(nrlink != NULL);
14978 			ASSERT(nrlink->prev == sfmmup);
14979 			nrlink->prev = prev;
14980 		}
14981 	}
14982 	mutex_exit(&rgnp->rgn_mutex);
14983 }
14984 
14985 /*
14986  * Link scd sfmmu onto ism or hme region list for each region in the
14987  * scd region map.
14988  */
14989 void
14990 sfmmu_link_scd_to_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14991 {
14992 	uint_t rid;
14993 	uint_t i;
14994 	uint_t j;
14995 	ulong_t w;
14996 	sf_region_t *rgnp;
14997 	sfmmu_t *scsfmmup;
14998 
14999 	scsfmmup = scdp->scd_sfmmup;
15000 	ASSERT(scsfmmup->sfmmu_scdhat);
15001 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
15002 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
15003 			continue;
15004 		}
15005 		j = 0;
15006 		while (w) {
15007 			if (!(w & 0x1)) {
15008 				j++;
15009 				w >>= 1;
15010 				continue;
15011 			}
15012 			rid = (i << BT_ULSHIFT) | j;
15013 			j++;
15014 			w >>= 1;
15015 
15016 			if (rid < SFMMU_MAX_HME_REGIONS) {
15017 				rgnp = srdp->srd_hmergnp[rid];
15018 				ASSERT(rgnp->rgn_id == rid);
15019 				ASSERT(rgnp->rgn_refcnt > 0);
15020 				sfmmu_link_to_hmeregion(scsfmmup, rgnp);
15021 			} else {
15022 				sfmmu_t *ism_hatid = NULL;
15023 				ism_ment_t *ism_ment;
15024 				rid -= SFMMU_MAX_HME_REGIONS;
15025 				rgnp = srdp->srd_ismrgnp[rid];
15026 				ASSERT(rgnp->rgn_id == rid);
15027 				ASSERT(rgnp->rgn_refcnt > 0);
15028 
15029 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
15030 				ASSERT(ism_hatid->sfmmu_ismhat);
15031 				ism_ment = &scdp->scd_ism_links[rid];
15032 				ism_ment->iment_hat = scsfmmup;
15033 				ism_ment->iment_base_va = rgnp->rgn_saddr;
15034 				mutex_enter(&ism_mlist_lock);
15035 				iment_add(ism_ment, ism_hatid);
15036 				mutex_exit(&ism_mlist_lock);
15037 
15038 			}
15039 		}
15040 	}
15041 }
15042 /*
15043  * Unlink scd sfmmu from ism or hme region list for each region in the
15044  * scd region map.
15045  */
15046 void
15047 sfmmu_unlink_scd_from_regions(sf_srd_t *srdp, sf_scd_t *scdp)
15048 {
15049 	uint_t rid;
15050 	uint_t i;
15051 	uint_t j;
15052 	ulong_t w;
15053 	sf_region_t *rgnp;
15054 	sfmmu_t *scsfmmup;
15055 
15056 	scsfmmup = scdp->scd_sfmmup;
15057 	for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
15058 		if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
15059 			continue;
15060 		}
15061 		j = 0;
15062 		while (w) {
15063 			if (!(w & 0x1)) {
15064 				j++;
15065 				w >>= 1;
15066 				continue;
15067 			}
15068 			rid = (i << BT_ULSHIFT) | j;
15069 			j++;
15070 			w >>= 1;
15071 
15072 			if (rid < SFMMU_MAX_HME_REGIONS) {
15073 				rgnp = srdp->srd_hmergnp[rid];
15074 				ASSERT(rgnp->rgn_id == rid);
15075 				ASSERT(rgnp->rgn_refcnt > 0);
15076 				sfmmu_unlink_from_hmeregion(scsfmmup,
15077 				    rgnp);
15078 
15079 			} else {
15080 				sfmmu_t *ism_hatid = NULL;
15081 				ism_ment_t *ism_ment;
15082 				rid -= SFMMU_MAX_HME_REGIONS;
15083 				rgnp = srdp->srd_ismrgnp[rid];
15084 				ASSERT(rgnp->rgn_id == rid);
15085 				ASSERT(rgnp->rgn_refcnt > 0);
15086 
15087 				ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
15088 				ASSERT(ism_hatid->sfmmu_ismhat);
15089 				ism_ment = &scdp->scd_ism_links[rid];
15090 				ASSERT(ism_ment->iment_hat == scdp->scd_sfmmup);
15091 				ASSERT(ism_ment->iment_base_va ==
15092 				    rgnp->rgn_saddr);
15093 				ism_ment->iment_hat = NULL;
15094 				ism_ment->iment_base_va = 0;
15095 				mutex_enter(&ism_mlist_lock);
15096 				iment_sub(ism_ment, ism_hatid);
15097 				mutex_exit(&ism_mlist_lock);
15098 
15099 			}
15100 		}
15101 	}
15102 }
15103 /*
15104  * Allocates and initialises a new SCD structure, this is called with
15105  * the srd_scd_mutex held and returns with the reference count
15106  * initialised to 1.
15107  */
15108 static sf_scd_t *
15109 sfmmu_alloc_scd(sf_srd_t *srdp, sf_region_map_t *new_map)
15110 {
15111 	sf_scd_t *new_scdp;
15112 	sfmmu_t *scsfmmup;
15113 	int i;
15114 
15115 	ASSERT(MUTEX_HELD(&srdp->srd_scd_mutex));
15116 	new_scdp = kmem_cache_alloc(scd_cache, KM_SLEEP);
15117 
15118 	scsfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
15119 	new_scdp->scd_sfmmup = scsfmmup;
15120 	scsfmmup->sfmmu_srdp = srdp;
15121 	scsfmmup->sfmmu_scdp = new_scdp;
15122 	scsfmmup->sfmmu_tsb0_4minflcnt = 0;
15123 	scsfmmup->sfmmu_scdhat = 1;
15124 	CPUSET_ALL(scsfmmup->sfmmu_cpusran);
15125 	bzero(scsfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
15126 
15127 	ASSERT(max_mmu_ctxdoms > 0);
15128 	for (i = 0; i < max_mmu_ctxdoms; i++) {
15129 		scsfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
15130 		scsfmmup->sfmmu_ctxs[i].gnum = 0;
15131 	}
15132 
15133 	for (i = 0; i < MMU_PAGE_SIZES; i++) {
15134 		new_scdp->scd_rttecnt[i] = 0;
15135 	}
15136 
15137 	new_scdp->scd_region_map = *new_map;
15138 	new_scdp->scd_refcnt = 1;
15139 	if (sfmmu_alloc_scd_tsbs(srdp, new_scdp) != TSB_SUCCESS) {
15140 		kmem_cache_free(scd_cache, new_scdp);
15141 		kmem_cache_free(sfmmuid_cache, scsfmmup);
15142 		return (NULL);
15143 	}
15144 	if (&mmu_init_scd) {
15145 		mmu_init_scd(new_scdp);
15146 	}
15147 	return (new_scdp);
15148 }
15149 
15150 /*
15151  * The first phase of a process joining an SCD. The hat structure is
15152  * linked to the SCD queue and then the HAT_JOIN_SCD sfmmu flag is set
15153  * and a cross-call with context invalidation is used to cause the
15154  * remaining work to be carried out in the sfmmu_tsbmiss_exception()
15155  * routine.
15156  */
15157 static void
15158 sfmmu_join_scd(sf_scd_t *scdp, sfmmu_t *sfmmup)
15159 {
15160 	hatlock_t *hatlockp;
15161 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15162 	int i;
15163 	sf_scd_t *old_scdp;
15164 
15165 	ASSERT(srdp != NULL);
15166 	ASSERT(scdp != NULL);
15167 	ASSERT(scdp->scd_refcnt > 0);
15168 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15169 
15170 	if ((old_scdp = sfmmup->sfmmu_scdp) != NULL) {
15171 		ASSERT(old_scdp != scdp);
15172 
15173 		mutex_enter(&old_scdp->scd_mutex);
15174 		sfmmu_from_scd_list(&old_scdp->scd_sf_list, sfmmup);
15175 		mutex_exit(&old_scdp->scd_mutex);
15176 		/*
15177 		 * sfmmup leaves the old scd. Update sfmmu_ttecnt to
15178 		 * include the shme rgn ttecnt for rgns that
15179 		 * were in the old SCD
15180 		 */
15181 		for (i = 0; i < mmu_page_sizes; i++) {
15182 			ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15183 			    old_scdp->scd_rttecnt[i]);
15184 			atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15185 			    sfmmup->sfmmu_scdrttecnt[i]);
15186 		}
15187 	}
15188 
15189 	/*
15190 	 * Move sfmmu to the scd lists.
15191 	 */
15192 	mutex_enter(&scdp->scd_mutex);
15193 	sfmmu_to_scd_list(&scdp->scd_sf_list, sfmmup);
15194 	mutex_exit(&scdp->scd_mutex);
15195 	SF_SCD_INCR_REF(scdp);
15196 
15197 	hatlockp = sfmmu_hat_enter(sfmmup);
15198 	/*
15199 	 * For a multi-thread process, we must stop
15200 	 * all the other threads before joining the scd.
15201 	 */
15202 
15203 	SFMMU_FLAGS_SET(sfmmup, HAT_JOIN_SCD);
15204 
15205 	sfmmu_invalidate_ctx(sfmmup);
15206 	sfmmup->sfmmu_scdp = scdp;
15207 
15208 	/*
15209 	 * Copy scd_rttecnt into sfmmup's sfmmu_scdrttecnt, and update
15210 	 * sfmmu_ttecnt to not include the rgn ttecnt just joined in SCD.
15211 	 */
15212 	for (i = 0; i < mmu_page_sizes; i++) {
15213 		sfmmup->sfmmu_scdrttecnt[i] = scdp->scd_rttecnt[i];
15214 		ASSERT(sfmmup->sfmmu_ttecnt[i] >= scdp->scd_rttecnt[i]);
15215 		atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15216 		    -sfmmup->sfmmu_scdrttecnt[i]);
15217 		if (!sfmmup->sfmmu_ttecnt[i]) {
15218 			sfmmup->sfmmu_tteflags &= ~(1 << i);
15219 		}
15220 	}
15221 	/* update tsb0 inflation count */
15222 	if (old_scdp != NULL) {
15223 		sfmmup->sfmmu_tsb0_4minflcnt +=
15224 		    old_scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15225 	}
15226 	ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
15227 	    scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt);
15228 	sfmmup->sfmmu_tsb0_4minflcnt -= scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15229 
15230 	if (&mmu_set_pgsz_order) {
15231 		mmu_set_pgsz_order(sfmmup, 0);
15232 	}
15233 	sfmmu_hat_exit(hatlockp);
15234 
15235 	if (old_scdp != NULL) {
15236 		SF_SCD_DECR_REF(srdp, old_scdp);
15237 	}
15238 
15239 }
15240 
15241 /*
15242  * This routine is called by a process to become part of an SCD. It is called
15243  * from sfmmu_tsbmiss_exception() once most of the initial work has been
15244  * done by sfmmu_join_scd(). This routine must not drop the hat lock.
15245  */
15246 static void
15247 sfmmu_finish_join_scd(sfmmu_t *sfmmup)
15248 {
15249 	struct tsb_info	*tsbinfop;
15250 
15251 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15252 	ASSERT(sfmmup->sfmmu_scdp != NULL);
15253 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD));
15254 	ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15255 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID));
15256 
15257 	for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
15258 	    tsbinfop = tsbinfop->tsb_next) {
15259 		if (tsbinfop->tsb_flags & TSB_SWAPPED) {
15260 			continue;
15261 		}
15262 		ASSERT(!(tsbinfop->tsb_flags & TSB_RELOC_FLAG));
15263 
15264 		sfmmu_inv_tsb(tsbinfop->tsb_va,
15265 		    TSB_BYTES(tsbinfop->tsb_szc));
15266 	}
15267 
15268 	/* Set HAT_CTX1_FLAG for all SCD ISMs */
15269 	sfmmu_ism_hatflags(sfmmup, 1);
15270 
15271 	SFMMU_STAT(sf_join_scd);
15272 }
15273 
15274 /*
15275  * This routine is called in order to check if there is an SCD which matches
15276  * the process's region map if not then a new SCD may be created.
15277  */
15278 static void
15279 sfmmu_find_scd(sfmmu_t *sfmmup)
15280 {
15281 	sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15282 	sf_scd_t *scdp, *new_scdp;
15283 	int ret;
15284 
15285 	ASSERT(srdp != NULL);
15286 	ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15287 
15288 	mutex_enter(&srdp->srd_scd_mutex);
15289 	for (scdp = srdp->srd_scdp; scdp != NULL;
15290 	    scdp = scdp->scd_next) {
15291 		SF_RGNMAP_EQUAL(&scdp->scd_region_map,
15292 		    &sfmmup->sfmmu_region_map, SFMMU_RGNMAP_WORDS, ret);
15293 		if (ret == 1) {
15294 			SF_SCD_INCR_REF(scdp);
15295 			mutex_exit(&srdp->srd_scd_mutex);
15296 			sfmmu_join_scd(scdp, sfmmup);
15297 			ASSERT(scdp->scd_refcnt >= 2);
15298 			atomic_add_32((volatile uint32_t *)
15299 			    &scdp->scd_refcnt, -1);
15300 			return;
15301 		} else {
15302 			/*
15303 			 * If the sfmmu region map is a subset of the scd
15304 			 * region map, then the assumption is that this process
15305 			 * will continue attaching to ISM segments until the
15306 			 * region maps are equal.
15307 			 */
15308 			SF_RGNMAP_IS_SUBSET(&scdp->scd_region_map,
15309 			    &sfmmup->sfmmu_region_map, ret);
15310 			if (ret == 1) {
15311 				mutex_exit(&srdp->srd_scd_mutex);
15312 				return;
15313 			}
15314 		}
15315 	}
15316 
15317 	ASSERT(scdp == NULL);
15318 	/*
15319 	 * No matching SCD has been found, create a new one.
15320 	 */
15321 	if ((new_scdp = sfmmu_alloc_scd(srdp, &sfmmup->sfmmu_region_map)) ==
15322 	    NULL) {
15323 		mutex_exit(&srdp->srd_scd_mutex);
15324 		return;
15325 	}
15326 
15327 	/*
15328 	 * sfmmu_alloc_scd() returns with a ref count of 1 on the scd.
15329 	 */
15330 
15331 	/* Set scd_rttecnt for shme rgns in SCD */
15332 	sfmmu_set_scd_rttecnt(srdp, new_scdp);
15333 
15334 	/*
15335 	 * Link scd onto srd_scdp list and scd sfmmu onto region/iment lists.
15336 	 */
15337 	sfmmu_link_scd_to_regions(srdp, new_scdp);
15338 	sfmmu_add_scd(&srdp->srd_scdp, new_scdp);
15339 	SFMMU_STAT_ADD(sf_create_scd, 1);
15340 
15341 	mutex_exit(&srdp->srd_scd_mutex);
15342 	sfmmu_join_scd(new_scdp, sfmmup);
15343 	ASSERT(new_scdp->scd_refcnt >= 2);
15344 	atomic_add_32((volatile uint32_t *)&new_scdp->scd_refcnt, -1);
15345 }
15346 
15347 /*
15348  * This routine is called by a process to remove itself from an SCD. It is
15349  * either called when the processes has detached from a segment or from
15350  * hat_free_start() as a result of calling exit.
15351  */
15352 static void
15353 sfmmu_leave_scd(sfmmu_t *sfmmup, uchar_t r_type)
15354 {
15355 	sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15356 	sf_srd_t *srdp =  sfmmup->sfmmu_srdp;
15357 	hatlock_t *hatlockp = TSB_HASH(sfmmup);
15358 	int i;
15359 
15360 	ASSERT(scdp != NULL);
15361 	ASSERT(srdp != NULL);
15362 
15363 	if (sfmmup->sfmmu_free) {
15364 		/*
15365 		 * If the process is part of an SCD the sfmmu is unlinked
15366 		 * from scd_sf_list.
15367 		 */
15368 		mutex_enter(&scdp->scd_mutex);
15369 		sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15370 		mutex_exit(&scdp->scd_mutex);
15371 		/*
15372 		 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15373 		 * are about to leave the SCD
15374 		 */
15375 		for (i = 0; i < mmu_page_sizes; i++) {
15376 			ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15377 			    scdp->scd_rttecnt[i]);
15378 			atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15379 			    sfmmup->sfmmu_scdrttecnt[i]);
15380 			sfmmup->sfmmu_scdrttecnt[i] = 0;
15381 		}
15382 		sfmmup->sfmmu_scdp = NULL;
15383 
15384 		SF_SCD_DECR_REF(srdp, scdp);
15385 		return;
15386 	}
15387 
15388 	ASSERT(r_type != SFMMU_REGION_ISM ||
15389 	    SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15390 	ASSERT(scdp->scd_refcnt);
15391 	ASSERT(!sfmmup->sfmmu_free);
15392 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15393 	ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15394 
15395 	/*
15396 	 * Wait for ISM maps to be updated.
15397 	 */
15398 	if (r_type != SFMMU_REGION_ISM) {
15399 		while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY) &&
15400 		    sfmmup->sfmmu_scdp != NULL) {
15401 			cv_wait(&sfmmup->sfmmu_tsb_cv,
15402 			    HATLOCK_MUTEXP(hatlockp));
15403 		}
15404 
15405 		if (sfmmup->sfmmu_scdp == NULL) {
15406 			sfmmu_hat_exit(hatlockp);
15407 			return;
15408 		}
15409 		SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
15410 	}
15411 
15412 	if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
15413 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
15414 		/*
15415 		 * Since HAT_JOIN_SCD was set our context
15416 		 * is still invalid.
15417 		 */
15418 	} else {
15419 		/*
15420 		 * For a multi-thread process, we must stop
15421 		 * all the other threads before leaving the scd.
15422 		 */
15423 
15424 		sfmmu_invalidate_ctx(sfmmup);
15425 	}
15426 
15427 	/* Clear all the rid's for ISM, delete flags, etc */
15428 	ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15429 	sfmmu_ism_hatflags(sfmmup, 0);
15430 
15431 	/*
15432 	 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15433 	 * are in SCD before this sfmmup leaves the SCD.
15434 	 */
15435 	for (i = 0; i < mmu_page_sizes; i++) {
15436 		ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15437 		    scdp->scd_rttecnt[i]);
15438 		atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15439 		    sfmmup->sfmmu_scdrttecnt[i]);
15440 		if (sfmmup->sfmmu_ttecnt[i] &&
15441 		    (sfmmup->sfmmu_tteflags & (1 << i)) == 0) {
15442 			sfmmup->sfmmu_tteflags |= (1 << i);
15443 		}
15444 		sfmmup->sfmmu_scdrttecnt[i] = 0;
15445 		/* update ismttecnt to include SCD ism before hat leaves SCD */
15446 		sfmmup->sfmmu_ismttecnt[i] += sfmmup->sfmmu_scdismttecnt[i];
15447 		sfmmup->sfmmu_scdismttecnt[i] = 0;
15448 	}
15449 	/* update tsb0 inflation count */
15450 	sfmmup->sfmmu_tsb0_4minflcnt += scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15451 
15452 	if (r_type != SFMMU_REGION_ISM) {
15453 		SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
15454 	}
15455 	sfmmup->sfmmu_scdp = NULL;
15456 
15457 	if (&mmu_set_pgsz_order) {
15458 		mmu_set_pgsz_order(sfmmup, 0);
15459 	}
15460 	sfmmu_hat_exit(hatlockp);
15461 
15462 	/*
15463 	 * Unlink sfmmu from scd_sf_list this can be done without holding
15464 	 * the hat lock as we hold the sfmmu_as lock which prevents
15465 	 * hat_join_region from adding this thread to the scd again. Other
15466 	 * threads check if sfmmu_scdp is NULL under hat lock and if it's NULL
15467 	 * they won't get here, since sfmmu_leave_scd() clears sfmmu_scdp
15468 	 * while holding the hat lock.
15469 	 */
15470 	mutex_enter(&scdp->scd_mutex);
15471 	sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15472 	mutex_exit(&scdp->scd_mutex);
15473 	SFMMU_STAT(sf_leave_scd);
15474 
15475 	SF_SCD_DECR_REF(srdp, scdp);
15476 	hatlockp = sfmmu_hat_enter(sfmmup);
15477 
15478 }
15479 
15480 /*
15481  * Unlink and free up an SCD structure with a reference count of 0.
15482  */
15483 static void
15484 sfmmu_destroy_scd(sf_srd_t *srdp, sf_scd_t *scdp, sf_region_map_t *scd_rmap)
15485 {
15486 	sfmmu_t *scsfmmup;
15487 	sf_scd_t *sp;
15488 	hatlock_t *shatlockp;
15489 	int i, ret;
15490 
15491 	mutex_enter(&srdp->srd_scd_mutex);
15492 	for (sp = srdp->srd_scdp; sp != NULL; sp = sp->scd_next) {
15493 		if (sp == scdp)
15494 			break;
15495 	}
15496 	if (sp == NULL || sp->scd_refcnt) {
15497 		mutex_exit(&srdp->srd_scd_mutex);
15498 		return;
15499 	}
15500 
15501 	/*
15502 	 * It is possible that the scd has been freed and reallocated with a
15503 	 * different region map while we've been waiting for the srd_scd_mutex.
15504 	 */
15505 	SF_RGNMAP_EQUAL(scd_rmap, &sp->scd_region_map,
15506 	    SFMMU_RGNMAP_WORDS, ret);
15507 	if (ret != 1) {
15508 		mutex_exit(&srdp->srd_scd_mutex);
15509 		return;
15510 	}
15511 
15512 	ASSERT(scdp->scd_sf_list == NULL);
15513 	/*
15514 	 * Unlink scd from srd_scdp list.
15515 	 */
15516 	sfmmu_remove_scd(&srdp->srd_scdp, scdp);
15517 	mutex_exit(&srdp->srd_scd_mutex);
15518 
15519 	sfmmu_unlink_scd_from_regions(srdp, scdp);
15520 
15521 	/* Clear shared context tsb and release ctx */
15522 	scsfmmup = scdp->scd_sfmmup;
15523 
15524 	/*
15525 	 * create a barrier so that scd will not be destroyed
15526 	 * if other thread still holds the same shared hat lock.
15527 	 * E.g., sfmmu_tsbmiss_exception() needs to acquire the
15528 	 * shared hat lock before checking the shared tsb reloc flag.
15529 	 */
15530 	shatlockp = sfmmu_hat_enter(scsfmmup);
15531 	sfmmu_hat_exit(shatlockp);
15532 
15533 	sfmmu_free_scd_tsbs(scsfmmup);
15534 
15535 	for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
15536 		if (scsfmmup->sfmmu_hmeregion_links[i] != NULL) {
15537 			kmem_free(scsfmmup->sfmmu_hmeregion_links[i],
15538 			    SFMMU_L2_HMERLINKS_SIZE);
15539 			scsfmmup->sfmmu_hmeregion_links[i] = NULL;
15540 		}
15541 	}
15542 	kmem_cache_free(sfmmuid_cache, scsfmmup);
15543 	kmem_cache_free(scd_cache, scdp);
15544 	SFMMU_STAT(sf_destroy_scd);
15545 }
15546 
15547 /*
15548  * Modifies the HAT_CTX1_FLAG for each of the ISM segments which correspond to
15549  * bits which are set in the ism_region_map parameter. This flag indicates to
15550  * the tsbmiss handler that mapping for these segments should be loaded using
15551  * the shared context.
15552  */
15553 static void
15554 sfmmu_ism_hatflags(sfmmu_t *sfmmup, int addflag)
15555 {
15556 	sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15557 	ism_blk_t *ism_blkp;
15558 	ism_map_t *ism_map;
15559 	int i, rid;
15560 
15561 	ASSERT(sfmmup->sfmmu_iblk != NULL);
15562 	ASSERT(scdp != NULL);
15563 	/*
15564 	 * Note that the caller either set HAT_ISMBUSY flag or checked
15565 	 * under hat lock that HAT_ISMBUSY was not set by another thread.
15566 	 */
15567 	ASSERT(sfmmu_hat_lock_held(sfmmup));
15568 
15569 	ism_blkp = sfmmup->sfmmu_iblk;
15570 	while (ism_blkp != NULL) {
15571 		ism_map = ism_blkp->iblk_maps;
15572 		for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
15573 			rid = ism_map[i].imap_rid;
15574 			if (rid == SFMMU_INVALID_ISMRID) {
15575 				continue;
15576 			}
15577 			ASSERT(rid >= 0 && rid < SFMMU_MAX_ISM_REGIONS);
15578 			if (SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid) &&
15579 			    addflag) {
15580 				ism_map[i].imap_hatflags |=
15581 				    HAT_CTX1_FLAG;
15582 			} else {
15583 				ism_map[i].imap_hatflags &=
15584 				    ~HAT_CTX1_FLAG;
15585 			}
15586 		}
15587 		ism_blkp = ism_blkp->iblk_next;
15588 	}
15589 }
15590 
15591 static int
15592 sfmmu_srd_lock_held(sf_srd_t *srdp)
15593 {
15594 	return (MUTEX_HELD(&srdp->srd_mutex));
15595 }
15596 
15597 /* ARGSUSED */
15598 static int
15599 sfmmu_scdcache_constructor(void *buf, void *cdrarg, int kmflags)
15600 {
15601 	sf_scd_t *scdp = (sf_scd_t *)buf;
15602 
15603 	bzero(buf, sizeof (sf_scd_t));
15604 	mutex_init(&scdp->scd_mutex, NULL, MUTEX_DEFAULT, NULL);
15605 	return (0);
15606 }
15607 
15608 /* ARGSUSED */
15609 static void
15610 sfmmu_scdcache_destructor(void *buf, void *cdrarg)
15611 {
15612 	sf_scd_t *scdp = (sf_scd_t *)buf;
15613 
15614 	mutex_destroy(&scdp->scd_mutex);
15615 }
15616 
15617 /*
15618  * The listp parameter is a pointer to a list of hmeblks which are partially
15619  * freed as result of calling sfmmu_hblk_hash_rm(), the last phase of the
15620  * freeing process is to cross-call all cpus to ensure that there are no
15621  * remaining cached references.
15622  *
15623  * If the local generation number is less than the global then we can free
15624  * hmeblks which are already on the pending queue as another cpu has completed
15625  * the cross-call.
15626  *
15627  * We cross-call to make sure that there are no threads on other cpus accessing
15628  * these hmblks and then complete the process of freeing them under the
15629  * following conditions:
15630  * 	The total number of pending hmeblks is greater than the threshold
15631  *	The reserve list has fewer than HBLK_RESERVE_CNT hmeblks
15632  *	It is at least 1 second since the last time we cross-called
15633  *
15634  * Otherwise, we add the hmeblks to the per-cpu pending queue.
15635  */
15636 static void
15637 sfmmu_hblks_list_purge(struct hme_blk **listp, int dontfree)
15638 {
15639 	struct hme_blk *hblkp, *pr_hblkp = NULL;
15640 	int		count = 0;
15641 	cpuset_t	cpuset = cpu_ready_set;
15642 	cpu_hme_pend_t	*cpuhp;
15643 	timestruc_t	now;
15644 	int		one_second_expired = 0;
15645 
15646 	gethrestime_lasttick(&now);
15647 
15648 	for (hblkp = *listp; hblkp != NULL; hblkp = hblkp->hblk_next) {
15649 		ASSERT(hblkp->hblk_shw_bit == 0);
15650 		ASSERT(hblkp->hblk_shared == 0);
15651 		count++;
15652 		pr_hblkp = hblkp;
15653 	}
15654 
15655 	cpuhp = &cpu_hme_pend[CPU->cpu_seqid];
15656 	mutex_enter(&cpuhp->chp_mutex);
15657 
15658 	if ((cpuhp->chp_count + count) == 0) {
15659 		mutex_exit(&cpuhp->chp_mutex);
15660 		return;
15661 	}
15662 
15663 	if ((now.tv_sec - cpuhp->chp_timestamp) > 1) {
15664 		one_second_expired  = 1;
15665 	}
15666 
15667 	if (!dontfree && (freehblkcnt < HBLK_RESERVE_CNT ||
15668 	    (cpuhp->chp_count + count) > cpu_hme_pend_thresh ||
15669 	    one_second_expired)) {
15670 		/* Append global list to local */
15671 		if (pr_hblkp == NULL) {
15672 			*listp = cpuhp->chp_listp;
15673 		} else {
15674 			pr_hblkp->hblk_next = cpuhp->chp_listp;
15675 		}
15676 		cpuhp->chp_listp = NULL;
15677 		cpuhp->chp_count = 0;
15678 		cpuhp->chp_timestamp = now.tv_sec;
15679 		mutex_exit(&cpuhp->chp_mutex);
15680 
15681 		kpreempt_disable();
15682 		CPUSET_DEL(cpuset, CPU->cpu_id);
15683 		xt_sync(cpuset);
15684 		xt_sync(cpuset);
15685 		kpreempt_enable();
15686 
15687 		/*
15688 		 * At this stage we know that no trap handlers on other
15689 		 * cpus can have references to hmeblks on the list.
15690 		 */
15691 		sfmmu_hblk_free(listp);
15692 	} else if (*listp != NULL) {
15693 		pr_hblkp->hblk_next = cpuhp->chp_listp;
15694 		cpuhp->chp_listp = *listp;
15695 		cpuhp->chp_count += count;
15696 		*listp = NULL;
15697 		mutex_exit(&cpuhp->chp_mutex);
15698 	} else {
15699 		mutex_exit(&cpuhp->chp_mutex);
15700 	}
15701 }
15702 
15703 /*
15704  * Add an hmeblk to the the hash list.
15705  */
15706 void
15707 sfmmu_hblk_hash_add(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15708 	uint64_t hblkpa)
15709 {
15710 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15711 #ifdef	DEBUG
15712 	if (hmebp->hmeblkp == NULL) {
15713 		ASSERT(hmebp->hmeh_nextpa == HMEBLK_ENDPA);
15714 	}
15715 #endif /* DEBUG */
15716 
15717 	hmeblkp->hblk_nextpa = hmebp->hmeh_nextpa;
15718 	/*
15719 	 * Since the TSB miss handler now does not lock the hash chain before
15720 	 * walking it, make sure that the hmeblks nextpa is globally visible
15721 	 * before we make the hmeblk globally visible by updating the chain root
15722 	 * pointer in the hash bucket.
15723 	 */
15724 	membar_producer();
15725 	hmebp->hmeh_nextpa = hblkpa;
15726 	hmeblkp->hblk_next = hmebp->hmeblkp;
15727 	hmebp->hmeblkp = hmeblkp;
15728 
15729 }
15730 
15731 /*
15732  * This function is the first part of a 2 part process to remove an hmeblk
15733  * from the hash chain. In this phase we unlink the hmeblk from the hash chain
15734  * but leave the next physical pointer unchanged. The hmeblk is then linked onto
15735  * a per-cpu pending list using the virtual address pointer.
15736  *
15737  * TSB miss trap handlers that start after this phase will no longer see
15738  * this hmeblk. TSB miss handlers that still cache this hmeblk in a register
15739  * can still use it for further chain traversal because we haven't yet modifed
15740  * the next physical pointer or freed it.
15741  *
15742  * In the second phase of hmeblk removal we'll issue a barrier xcall before
15743  * we reuse or free this hmeblk. This will make sure all lingering references to
15744  * the hmeblk after first phase disappear before we finally reclaim it.
15745  * This scheme eliminates the need for TSB miss handlers to lock hmeblk chains
15746  * during their traversal.
15747  *
15748  * The hmehash_mutex must be held when calling this function.
15749  *
15750  * Input:
15751  *	 hmebp - hme hash bucket pointer
15752  *	 hmeblkp - address of hmeblk to be removed
15753  *	 pr_hblk - virtual address of previous hmeblkp
15754  *	 listp - pointer to list of hmeblks linked by virtual address
15755  *	 free_now flag - indicates that a complete removal from the hash chains
15756  *			 is necessary.
15757  *
15758  * It is inefficient to use the free_now flag as a cross-call is required to
15759  * remove a single hmeblk from the hash chain but is necessary when hmeblks are
15760  * in short supply.
15761  */
15762 void
15763 sfmmu_hblk_hash_rm(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15764     struct hme_blk *pr_hblk, struct hme_blk **listp,
15765     int free_now)
15766 {
15767 	int shw_size, vshift;
15768 	struct hme_blk *shw_hblkp;
15769 	uint_t		shw_mask, newshw_mask;
15770 	caddr_t		vaddr;
15771 	int		size;
15772 	cpuset_t cpuset = cpu_ready_set;
15773 
15774 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15775 
15776 	if (hmebp->hmeblkp == hmeblkp) {
15777 		hmebp->hmeh_nextpa = hmeblkp->hblk_nextpa;
15778 		hmebp->hmeblkp = hmeblkp->hblk_next;
15779 	} else {
15780 		pr_hblk->hblk_nextpa = hmeblkp->hblk_nextpa;
15781 		pr_hblk->hblk_next = hmeblkp->hblk_next;
15782 	}
15783 
15784 	size = get_hblk_ttesz(hmeblkp);
15785 	shw_hblkp = hmeblkp->hblk_shadow;
15786 	if (shw_hblkp) {
15787 		ASSERT(hblktosfmmu(hmeblkp) != KHATID);
15788 		ASSERT(!hmeblkp->hblk_shared);
15789 #ifdef	DEBUG
15790 		if (mmu_page_sizes == max_mmu_page_sizes) {
15791 			ASSERT(size < TTE256M);
15792 		} else {
15793 			ASSERT(size < TTE4M);
15794 		}
15795 #endif /* DEBUG */
15796 
15797 		shw_size = get_hblk_ttesz(shw_hblkp);
15798 		vaddr = (caddr_t)get_hblk_base(hmeblkp);
15799 		vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
15800 		ASSERT(vshift < 8);
15801 		/*
15802 		 * Atomically clear shadow mask bit
15803 		 */
15804 		do {
15805 			shw_mask = shw_hblkp->hblk_shw_mask;
15806 			ASSERT(shw_mask & (1 << vshift));
15807 			newshw_mask = shw_mask & ~(1 << vshift);
15808 			newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
15809 			    shw_mask, newshw_mask);
15810 		} while (newshw_mask != shw_mask);
15811 		hmeblkp->hblk_shadow = NULL;
15812 	}
15813 	hmeblkp->hblk_shw_bit = 0;
15814 
15815 	if (hmeblkp->hblk_shared) {
15816 #ifdef	DEBUG
15817 		sf_srd_t	*srdp;
15818 		sf_region_t	*rgnp;
15819 		uint_t		rid;
15820 
15821 		srdp = hblktosrd(hmeblkp);
15822 		ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
15823 		rid = hmeblkp->hblk_tag.htag_rid;
15824 		ASSERT(SFMMU_IS_SHMERID_VALID(rid));
15825 		ASSERT(rid < SFMMU_MAX_HME_REGIONS);
15826 		rgnp = srdp->srd_hmergnp[rid];
15827 		ASSERT(rgnp != NULL);
15828 		SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
15829 #endif /* DEBUG */
15830 		hmeblkp->hblk_shared = 0;
15831 	}
15832 	if (free_now) {
15833 		kpreempt_disable();
15834 		CPUSET_DEL(cpuset, CPU->cpu_id);
15835 		xt_sync(cpuset);
15836 		xt_sync(cpuset);
15837 		kpreempt_enable();
15838 
15839 		hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
15840 		hmeblkp->hblk_next = NULL;
15841 	} else {
15842 		/* Append hmeblkp to listp for processing later. */
15843 		hmeblkp->hblk_next = *listp;
15844 		*listp = hmeblkp;
15845 	}
15846 }
15847 
15848 /*
15849  * This routine is called when memory is in short supply and returns a free
15850  * hmeblk of the requested size from the cpu pending lists.
15851  */
15852 static struct hme_blk *
15853 sfmmu_check_pending_hblks(int size)
15854 {
15855 	int i;
15856 	struct hme_blk *hmeblkp = NULL, *last_hmeblkp;
15857 	int found_hmeblk;
15858 	cpuset_t cpuset = cpu_ready_set;
15859 	cpu_hme_pend_t *cpuhp;
15860 
15861 	/* Flush cpu hblk pending queues */
15862 	for (i = 0; i < NCPU; i++) {
15863 		cpuhp = &cpu_hme_pend[i];
15864 		if (cpuhp->chp_listp != NULL)  {
15865 			mutex_enter(&cpuhp->chp_mutex);
15866 			if (cpuhp->chp_listp == NULL)  {
15867 				mutex_exit(&cpuhp->chp_mutex);
15868 				continue;
15869 			}
15870 			found_hmeblk = 0;
15871 			last_hmeblkp = NULL;
15872 			for (hmeblkp = cpuhp->chp_listp; hmeblkp != NULL;
15873 			    hmeblkp = hmeblkp->hblk_next) {
15874 				if (get_hblk_ttesz(hmeblkp) == size) {
15875 					if (last_hmeblkp == NULL) {
15876 						cpuhp->chp_listp =
15877 						    hmeblkp->hblk_next;
15878 					} else {
15879 						last_hmeblkp->hblk_next =
15880 						    hmeblkp->hblk_next;
15881 					}
15882 					ASSERT(cpuhp->chp_count > 0);
15883 					cpuhp->chp_count--;
15884 					found_hmeblk = 1;
15885 					break;
15886 				} else {
15887 					last_hmeblkp = hmeblkp;
15888 				}
15889 			}
15890 			mutex_exit(&cpuhp->chp_mutex);
15891 
15892 			if (found_hmeblk) {
15893 				kpreempt_disable();
15894 				CPUSET_DEL(cpuset, CPU->cpu_id);
15895 				xt_sync(cpuset);
15896 				xt_sync(cpuset);
15897 				kpreempt_enable();
15898 				return (hmeblkp);
15899 			}
15900 		}
15901 	}
15902 	return (NULL);
15903 }
15904