1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * VM - Hardware Address Translation management for Spitfire MMU. 28 * 29 * This file implements the machine specific hardware translation 30 * needed by the VM system. The machine independent interface is 31 * described in <vm/hat.h> while the machine dependent interface 32 * and data structures are described in <vm/hat_sfmmu.h>. 33 * 34 * The hat layer manages the address translation hardware as a cache 35 * driven by calls from the higher levels in the VM system. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/kstat.h> 40 #include <vm/hat.h> 41 #include <vm/hat_sfmmu.h> 42 #include <vm/page.h> 43 #include <sys/pte.h> 44 #include <sys/systm.h> 45 #include <sys/mman.h> 46 #include <sys/sysmacros.h> 47 #include <sys/machparam.h> 48 #include <sys/vtrace.h> 49 #include <sys/kmem.h> 50 #include <sys/mmu.h> 51 #include <sys/cmn_err.h> 52 #include <sys/cpu.h> 53 #include <sys/cpuvar.h> 54 #include <sys/debug.h> 55 #include <sys/lgrp.h> 56 #include <sys/archsystm.h> 57 #include <sys/machsystm.h> 58 #include <sys/vmsystm.h> 59 #include <vm/as.h> 60 #include <vm/seg.h> 61 #include <vm/seg_kp.h> 62 #include <vm/seg_kmem.h> 63 #include <vm/seg_kpm.h> 64 #include <vm/rm.h> 65 #include <sys/t_lock.h> 66 #include <sys/obpdefs.h> 67 #include <sys/vm_machparam.h> 68 #include <sys/var.h> 69 #include <sys/trap.h> 70 #include <sys/machtrap.h> 71 #include <sys/scb.h> 72 #include <sys/bitmap.h> 73 #include <sys/machlock.h> 74 #include <sys/membar.h> 75 #include <sys/atomic.h> 76 #include <sys/cpu_module.h> 77 #include <sys/prom_debug.h> 78 #include <sys/ksynch.h> 79 #include <sys/mem_config.h> 80 #include <sys/mem_cage.h> 81 #include <vm/vm_dep.h> 82 #include <vm/xhat_sfmmu.h> 83 #include <sys/fpu/fpusystm.h> 84 #include <vm/mach_kpm.h> 85 #include <sys/callb.h> 86 87 #ifdef DEBUG 88 #define SFMMU_VALIDATE_HMERID(hat, rid, saddr, len) \ 89 if (SFMMU_IS_SHMERID_VALID(rid)) { \ 90 caddr_t _eaddr = (saddr) + (len); \ 91 sf_srd_t *_srdp; \ 92 sf_region_t *_rgnp; \ 93 ASSERT((rid) < SFMMU_MAX_HME_REGIONS); \ 94 ASSERT(SF_RGNMAP_TEST(hat->sfmmu_hmeregion_map, rid)); \ 95 ASSERT((hat) != ksfmmup); \ 96 _srdp = (hat)->sfmmu_srdp; \ 97 ASSERT(_srdp != NULL); \ 98 ASSERT(_srdp->srd_refcnt != 0); \ 99 _rgnp = _srdp->srd_hmergnp[(rid)]; \ 100 ASSERT(_rgnp != NULL && _rgnp->rgn_id == rid); \ 101 ASSERT(_rgnp->rgn_refcnt != 0); \ 102 ASSERT(!(_rgnp->rgn_flags & SFMMU_REGION_FREE)); \ 103 ASSERT((_rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == \ 104 SFMMU_REGION_HME); \ 105 ASSERT((saddr) >= _rgnp->rgn_saddr); \ 106 ASSERT((saddr) < _rgnp->rgn_saddr + _rgnp->rgn_size); \ 107 ASSERT(_eaddr > _rgnp->rgn_saddr); \ 108 ASSERT(_eaddr <= _rgnp->rgn_saddr + _rgnp->rgn_size); \ 109 } 110 111 #define SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid) \ 112 { \ 113 caddr_t _hsva; \ 114 caddr_t _heva; \ 115 caddr_t _rsva; \ 116 caddr_t _reva; \ 117 int _ttesz = get_hblk_ttesz(hmeblkp); \ 118 int _flagtte; \ 119 ASSERT((srdp)->srd_refcnt != 0); \ 120 ASSERT((rid) < SFMMU_MAX_HME_REGIONS); \ 121 ASSERT((rgnp)->rgn_id == rid); \ 122 ASSERT(!((rgnp)->rgn_flags & SFMMU_REGION_FREE)); \ 123 ASSERT(((rgnp)->rgn_flags & SFMMU_REGION_TYPE_MASK) == \ 124 SFMMU_REGION_HME); \ 125 ASSERT(_ttesz <= (rgnp)->rgn_pgszc); \ 126 _hsva = (caddr_t)get_hblk_base(hmeblkp); \ 127 _heva = get_hblk_endaddr(hmeblkp); \ 128 _rsva = (caddr_t)P2ALIGN( \ 129 (uintptr_t)(rgnp)->rgn_saddr, HBLK_MIN_BYTES); \ 130 _reva = (caddr_t)P2ROUNDUP( \ 131 (uintptr_t)((rgnp)->rgn_saddr + (rgnp)->rgn_size), \ 132 HBLK_MIN_BYTES); \ 133 ASSERT(_hsva >= _rsva); \ 134 ASSERT(_hsva < _reva); \ 135 ASSERT(_heva > _rsva); \ 136 ASSERT(_heva <= _reva); \ 137 _flagtte = (_ttesz < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : \ 138 _ttesz; \ 139 ASSERT(rgnp->rgn_hmeflags & (0x1 << _flagtte)); \ 140 } 141 142 #else /* DEBUG */ 143 #define SFMMU_VALIDATE_HMERID(hat, rid, addr, len) 144 #define SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid) 145 #endif /* DEBUG */ 146 147 #if defined(SF_ERRATA_57) 148 extern caddr_t errata57_limit; 149 #endif 150 151 #define HME8BLK_SZ_RND ((roundup(HME8BLK_SZ, sizeof (int64_t))) / \ 152 (sizeof (int64_t))) 153 #define HBLK_RESERVE ((struct hme_blk *)hblk_reserve) 154 155 #define HBLK_RESERVE_CNT 128 156 #define HBLK_RESERVE_MIN 20 157 158 static struct hme_blk *freehblkp; 159 static kmutex_t freehblkp_lock; 160 static int freehblkcnt; 161 162 static int64_t hblk_reserve[HME8BLK_SZ_RND]; 163 static kmutex_t hblk_reserve_lock; 164 static kthread_t *hblk_reserve_thread; 165 166 static nucleus_hblk8_info_t nucleus_hblk8; 167 static nucleus_hblk1_info_t nucleus_hblk1; 168 169 /* 170 * Data to manage per-cpu hmeblk pending queues, hmeblks are queued here 171 * after the initial phase of removing an hmeblk from the hash chain, see 172 * the detailed comment in sfmmu_hblk_hash_rm() for further details. 173 */ 174 static cpu_hme_pend_t *cpu_hme_pend; 175 static uint_t cpu_hme_pend_thresh; 176 /* 177 * SFMMU specific hat functions 178 */ 179 void hat_pagecachectl(struct page *, int); 180 181 /* flags for hat_pagecachectl */ 182 #define HAT_CACHE 0x1 183 #define HAT_UNCACHE 0x2 184 #define HAT_TMPNC 0x4 185 186 /* 187 * Flag to allow the creation of non-cacheable translations 188 * to system memory. It is off by default. At the moment this 189 * flag is used by the ecache error injector. The error injector 190 * will turn it on when creating such a translation then shut it 191 * off when it's finished. 192 */ 193 194 int sfmmu_allow_nc_trans = 0; 195 196 /* 197 * Flag to disable large page support. 198 * value of 1 => disable all large pages. 199 * bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively. 200 * 201 * For example, use the value 0x4 to disable 512K pages. 202 * 203 */ 204 #define LARGE_PAGES_OFF 0x1 205 206 /* 207 * The disable_large_pages and disable_ism_large_pages variables control 208 * hat_memload_array and the page sizes to be used by ISM and the kernel. 209 * 210 * The disable_auto_data_large_pages and disable_auto_text_large_pages variables 211 * are only used to control which OOB pages to use at upper VM segment creation 212 * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines. 213 * Their values may come from platform or CPU specific code to disable page 214 * sizes that should not be used. 215 * 216 * WARNING: 512K pages are currently not supported for ISM/DISM. 217 */ 218 uint_t disable_large_pages = 0; 219 uint_t disable_ism_large_pages = (1 << TTE512K); 220 uint_t disable_auto_data_large_pages = 0; 221 uint_t disable_auto_text_large_pages = 0; 222 223 /* 224 * Private sfmmu data structures for hat management 225 */ 226 static struct kmem_cache *sfmmuid_cache; 227 static struct kmem_cache *mmuctxdom_cache; 228 229 /* 230 * Private sfmmu data structures for tsb management 231 */ 232 static struct kmem_cache *sfmmu_tsbinfo_cache; 233 static struct kmem_cache *sfmmu_tsb8k_cache; 234 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX]; 235 static vmem_t *kmem_bigtsb_arena; 236 static vmem_t *kmem_tsb_arena; 237 238 /* 239 * sfmmu static variables for hmeblk resource management. 240 */ 241 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */ 242 static struct kmem_cache *sfmmu8_cache; 243 static struct kmem_cache *sfmmu1_cache; 244 static struct kmem_cache *pa_hment_cache; 245 246 static kmutex_t ism_mlist_lock; /* mutex for ism mapping list */ 247 /* 248 * private data for ism 249 */ 250 static struct kmem_cache *ism_blk_cache; 251 static struct kmem_cache *ism_ment_cache; 252 #define ISMID_STARTADDR NULL 253 254 /* 255 * Region management data structures and function declarations. 256 */ 257 258 static void sfmmu_leave_srd(sfmmu_t *); 259 static int sfmmu_srdcache_constructor(void *, void *, int); 260 static void sfmmu_srdcache_destructor(void *, void *); 261 static int sfmmu_rgncache_constructor(void *, void *, int); 262 static void sfmmu_rgncache_destructor(void *, void *); 263 static int sfrgnmap_isnull(sf_region_map_t *); 264 static int sfhmergnmap_isnull(sf_hmeregion_map_t *); 265 static int sfmmu_scdcache_constructor(void *, void *, int); 266 static void sfmmu_scdcache_destructor(void *, void *); 267 static void sfmmu_rgn_cb_noop(caddr_t, caddr_t, caddr_t, 268 size_t, void *, u_offset_t); 269 270 static uint_t srd_hashmask = SFMMU_MAX_SRD_BUCKETS - 1; 271 static sf_srd_bucket_t *srd_buckets; 272 static struct kmem_cache *srd_cache; 273 static uint_t srd_rgn_hashmask = SFMMU_MAX_REGION_BUCKETS - 1; 274 static struct kmem_cache *region_cache; 275 static struct kmem_cache *scd_cache; 276 277 #ifdef sun4v 278 int use_bigtsb_arena = 1; 279 #else 280 int use_bigtsb_arena = 0; 281 #endif 282 283 /* External /etc/system tunable, for turning on&off the shctx support */ 284 int disable_shctx = 0; 285 /* Internal variable, set by MD if the HW supports shctx feature */ 286 int shctx_on = 0; 287 288 #ifdef DEBUG 289 static void check_scd_sfmmu_list(sfmmu_t **, sfmmu_t *, int); 290 #endif 291 static void sfmmu_to_scd_list(sfmmu_t **, sfmmu_t *); 292 static void sfmmu_from_scd_list(sfmmu_t **, sfmmu_t *); 293 294 static sf_scd_t *sfmmu_alloc_scd(sf_srd_t *, sf_region_map_t *); 295 static void sfmmu_find_scd(sfmmu_t *); 296 static void sfmmu_join_scd(sf_scd_t *, sfmmu_t *); 297 static void sfmmu_finish_join_scd(sfmmu_t *); 298 static void sfmmu_leave_scd(sfmmu_t *, uchar_t); 299 static void sfmmu_destroy_scd(sf_srd_t *, sf_scd_t *, sf_region_map_t *); 300 static int sfmmu_alloc_scd_tsbs(sf_srd_t *, sf_scd_t *); 301 static void sfmmu_free_scd_tsbs(sfmmu_t *); 302 static void sfmmu_tsb_inv_ctx(sfmmu_t *); 303 static int find_ism_rid(sfmmu_t *, sfmmu_t *, caddr_t, uint_t *); 304 static void sfmmu_ism_hatflags(sfmmu_t *, int); 305 static int sfmmu_srd_lock_held(sf_srd_t *); 306 static void sfmmu_remove_scd(sf_scd_t **, sf_scd_t *); 307 static void sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *); 308 static void sfmmu_link_scd_to_regions(sf_srd_t *, sf_scd_t *); 309 static void sfmmu_unlink_scd_from_regions(sf_srd_t *, sf_scd_t *); 310 static void sfmmu_link_to_hmeregion(sfmmu_t *, sf_region_t *); 311 static void sfmmu_unlink_from_hmeregion(sfmmu_t *, sf_region_t *); 312 313 /* 314 * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists, 315 * HAT flags, synchronizing TLB/TSB coherency, and context management. 316 * The lock is hashed on the sfmmup since the case where we need to lock 317 * all processes is rare but does occur (e.g. we need to unload a shared 318 * mapping from all processes using the mapping). We have a lot of buckets, 319 * and each slab of sfmmu_t's can use about a quarter of them, giving us 320 * a fairly good distribution without wasting too much space and overhead 321 * when we have to grab them all. 322 */ 323 #define SFMMU_NUM_LOCK 128 /* must be power of two */ 324 hatlock_t hat_lock[SFMMU_NUM_LOCK]; 325 326 /* 327 * Hash algorithm optimized for a small number of slabs. 328 * 7 is (highbit((sizeof sfmmu_t)) - 1) 329 * This hash algorithm is based upon the knowledge that sfmmu_t's come from a 330 * kmem_cache, and thus they will be sequential within that cache. In 331 * addition, each new slab will have a different "color" up to cache_maxcolor 332 * which will skew the hashing for each successive slab which is allocated. 333 * If the size of sfmmu_t changed to a larger size, this algorithm may need 334 * to be revisited. 335 */ 336 #define TSB_HASH_SHIFT_BITS (7) 337 #define PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS) 338 339 #ifdef DEBUG 340 int tsb_hash_debug = 0; 341 #define TSB_HASH(sfmmup) \ 342 (tsb_hash_debug ? &hat_lock[0] : \ 343 &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]) 344 #else /* DEBUG */ 345 #define TSB_HASH(sfmmup) &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)] 346 #endif /* DEBUG */ 347 348 349 /* sfmmu_replace_tsb() return codes. */ 350 typedef enum tsb_replace_rc { 351 TSB_SUCCESS, 352 TSB_ALLOCFAIL, 353 TSB_LOSTRACE, 354 TSB_ALREADY_SWAPPED, 355 TSB_CANTGROW 356 } tsb_replace_rc_t; 357 358 /* 359 * Flags for TSB allocation routines. 360 */ 361 #define TSB_ALLOC 0x01 362 #define TSB_FORCEALLOC 0x02 363 #define TSB_GROW 0x04 364 #define TSB_SHRINK 0x08 365 #define TSB_SWAPIN 0x10 366 367 /* 368 * Support for HAT callbacks. 369 */ 370 #define SFMMU_MAX_RELOC_CALLBACKS 10 371 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS; 372 static id_t sfmmu_cb_nextid = 0; 373 static id_t sfmmu_tsb_cb_id; 374 struct sfmmu_callback *sfmmu_cb_table; 375 376 /* 377 * Kernel page relocation is enabled by default for non-caged 378 * kernel pages. This has little effect unless segkmem_reloc is 379 * set, since by default kernel memory comes from inside the 380 * kernel cage. 381 */ 382 int hat_kpr_enabled = 1; 383 384 kmutex_t kpr_mutex; 385 kmutex_t kpr_suspendlock; 386 kthread_t *kreloc_thread; 387 388 /* 389 * Enable VA->PA translation sanity checking on DEBUG kernels. 390 * Disabled by default. This is incompatible with some 391 * drivers (error injector, RSM) so if it breaks you get 392 * to keep both pieces. 393 */ 394 int hat_check_vtop = 0; 395 396 /* 397 * Private sfmmu routines (prototypes) 398 */ 399 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t); 400 static struct hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t, 401 struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t, 402 uint_t); 403 static caddr_t sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t, 404 caddr_t, demap_range_t *, uint_t); 405 static caddr_t sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t, 406 caddr_t, int); 407 static void sfmmu_hblk_free(struct hme_blk **); 408 static void sfmmu_hblks_list_purge(struct hme_blk **, int); 409 static uint_t sfmmu_get_free_hblk(struct hme_blk **, uint_t); 410 static uint_t sfmmu_put_free_hblk(struct hme_blk *, uint_t); 411 static struct hme_blk *sfmmu_hblk_steal(int); 412 static int sfmmu_steal_this_hblk(struct hmehash_bucket *, 413 struct hme_blk *, uint64_t, struct hme_blk *); 414 static caddr_t sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t); 415 416 static void hat_do_memload_array(struct hat *, caddr_t, size_t, 417 struct page **, uint_t, uint_t, uint_t); 418 static void hat_do_memload(struct hat *, caddr_t, struct page *, 419 uint_t, uint_t, uint_t); 420 static void sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **, 421 uint_t, uint_t, pgcnt_t, uint_t); 422 void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *, 423 uint_t); 424 static int sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **, 425 uint_t, uint_t); 426 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *, 427 caddr_t, int, uint_t); 428 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *, 429 struct hmehash_bucket *, caddr_t, uint_t, uint_t, 430 uint_t); 431 static int sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *, 432 caddr_t, page_t **, uint_t, uint_t); 433 static void sfmmu_tteload_release_hashbucket(struct hmehash_bucket *); 434 435 static int sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int); 436 static pfn_t sfmmu_uvatopfn(caddr_t, sfmmu_t *, tte_t *); 437 void sfmmu_memtte(tte_t *, pfn_t, uint_t, int); 438 #ifdef VAC 439 static void sfmmu_vac_conflict(struct hat *, caddr_t, page_t *); 440 static int sfmmu_vacconflict_array(caddr_t, page_t *, int *); 441 int tst_tnc(page_t *pp, pgcnt_t); 442 void conv_tnc(page_t *pp, int); 443 #endif 444 445 static void sfmmu_get_ctx(sfmmu_t *); 446 static void sfmmu_free_sfmmu(sfmmu_t *); 447 448 static void sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *); 449 static void sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int); 450 451 cpuset_t sfmmu_pageunload(page_t *, struct sf_hment *, int); 452 static void hat_pagereload(struct page *, struct page *); 453 static cpuset_t sfmmu_pagesync(page_t *, struct sf_hment *, uint_t); 454 #ifdef VAC 455 void sfmmu_page_cache_array(page_t *, int, int, pgcnt_t); 456 static void sfmmu_page_cache(page_t *, int, int, int); 457 #endif 458 459 cpuset_t sfmmu_rgntlb_demap(caddr_t, sf_region_t *, 460 struct hme_blk *, int); 461 static void sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *, 462 pfn_t, int, int, int, int); 463 static void sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *, 464 pfn_t, int); 465 static void sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int); 466 static void sfmmu_tlb_range_demap(demap_range_t *); 467 static void sfmmu_invalidate_ctx(sfmmu_t *); 468 static void sfmmu_sync_mmustate(sfmmu_t *); 469 470 static void sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t); 471 static int sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t, 472 sfmmu_t *); 473 static void sfmmu_tsb_free(struct tsb_info *); 474 static void sfmmu_tsbinfo_free(struct tsb_info *); 475 static int sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t, 476 sfmmu_t *); 477 static void sfmmu_tsb_chk_reloc(sfmmu_t *, hatlock_t *); 478 static void sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *); 479 static int sfmmu_select_tsb_szc(pgcnt_t); 480 static void sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int); 481 #define sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \ 482 sfmmu_mod_tsb(sfmmup, vaddr, tte, szc) 483 #define sfmmu_unload_tsb(sfmmup, vaddr, szc) \ 484 sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc) 485 static void sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *); 486 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t, 487 hatlock_t *, uint_t); 488 static void sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int); 489 490 #ifdef VAC 491 void sfmmu_cache_flush(pfn_t, int); 492 void sfmmu_cache_flushcolor(int, pfn_t); 493 #endif 494 static caddr_t sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t, 495 caddr_t, demap_range_t *, uint_t, int); 496 497 static uint64_t sfmmu_vtop_attr(uint_t, int mode, tte_t *); 498 static uint_t sfmmu_ptov_attr(tte_t *); 499 static caddr_t sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t, 500 caddr_t, demap_range_t *, uint_t); 501 static uint_t sfmmu_vtop_prot(uint_t, uint_t *); 502 static int sfmmu_idcache_constructor(void *, void *, int); 503 static void sfmmu_idcache_destructor(void *, void *); 504 static int sfmmu_hblkcache_constructor(void *, void *, int); 505 static void sfmmu_hblkcache_destructor(void *, void *); 506 static void sfmmu_hblkcache_reclaim(void *); 507 static void sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *, 508 struct hmehash_bucket *); 509 static void sfmmu_hblk_hash_rm(struct hmehash_bucket *, struct hme_blk *, 510 struct hme_blk *, struct hme_blk **, int); 511 static void sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *, 512 uint64_t); 513 static struct hme_blk *sfmmu_check_pending_hblks(int); 514 static void sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int); 515 static void sfmmu_cleanup_rhblk(sf_srd_t *, caddr_t, uint_t, int); 516 static void sfmmu_unload_hmeregion_va(sf_srd_t *, uint_t, caddr_t, caddr_t, 517 int, caddr_t *); 518 static void sfmmu_unload_hmeregion(sf_srd_t *, sf_region_t *); 519 520 static void sfmmu_rm_large_mappings(page_t *, int); 521 522 static void hat_lock_init(void); 523 static void hat_kstat_init(void); 524 static int sfmmu_kstat_percpu_update(kstat_t *ksp, int rw); 525 static void sfmmu_set_scd_rttecnt(sf_srd_t *, sf_scd_t *); 526 static int sfmmu_is_rgnva(sf_srd_t *, caddr_t, ulong_t, ulong_t); 527 static void sfmmu_check_page_sizes(sfmmu_t *, int); 528 int fnd_mapping_sz(page_t *); 529 static void iment_add(struct ism_ment *, struct hat *); 530 static void iment_sub(struct ism_ment *, struct hat *); 531 static pgcnt_t ism_tsb_entries(sfmmu_t *, int szc); 532 extern void sfmmu_setup_tsbinfo(sfmmu_t *); 533 extern void sfmmu_clear_utsbinfo(void); 534 535 static void sfmmu_ctx_wrap_around(mmu_ctx_t *); 536 537 extern int vpm_enable; 538 539 /* kpm globals */ 540 #ifdef DEBUG 541 /* 542 * Enable trap level tsbmiss handling 543 */ 544 int kpm_tsbmtl = 1; 545 546 /* 547 * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the 548 * required TLB shootdowns in this case, so handle w/ care. Off by default. 549 */ 550 int kpm_tlb_flush; 551 #endif /* DEBUG */ 552 553 static void *sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int); 554 555 #ifdef DEBUG 556 static void sfmmu_check_hblk_flist(); 557 #endif 558 559 /* 560 * Semi-private sfmmu data structures. Some of them are initialize in 561 * startup or in hat_init. Some of them are private but accessed by 562 * assembly code or mach_sfmmu.c 563 */ 564 struct hmehash_bucket *uhme_hash; /* user hmeblk hash table */ 565 struct hmehash_bucket *khme_hash; /* kernel hmeblk hash table */ 566 uint64_t uhme_hash_pa; /* PA of uhme_hash */ 567 uint64_t khme_hash_pa; /* PA of khme_hash */ 568 int uhmehash_num; /* # of buckets in user hash table */ 569 int khmehash_num; /* # of buckets in kernel hash table */ 570 571 uint_t max_mmu_ctxdoms = 0; /* max context domains in the system */ 572 mmu_ctx_t **mmu_ctxs_tbl; /* global array of context domains */ 573 uint64_t mmu_saved_gnum = 0; /* to init incoming MMUs' gnums */ 574 575 #define DEFAULT_NUM_CTXS_PER_MMU 8192 576 static uint_t nctxs = DEFAULT_NUM_CTXS_PER_MMU; 577 578 int cache; /* describes system cache */ 579 580 caddr_t ktsb_base; /* kernel 8k-indexed tsb base address */ 581 uint64_t ktsb_pbase; /* kernel 8k-indexed tsb phys address */ 582 int ktsb_szcode; /* kernel 8k-indexed tsb size code */ 583 int ktsb_sz; /* kernel 8k-indexed tsb size */ 584 585 caddr_t ktsb4m_base; /* kernel 4m-indexed tsb base address */ 586 uint64_t ktsb4m_pbase; /* kernel 4m-indexed tsb phys address */ 587 int ktsb4m_szcode; /* kernel 4m-indexed tsb size code */ 588 int ktsb4m_sz; /* kernel 4m-indexed tsb size */ 589 590 uint64_t kpm_tsbbase; /* kernel seg_kpm 4M TSB base address */ 591 int kpm_tsbsz; /* kernel seg_kpm 4M TSB size code */ 592 uint64_t kpmsm_tsbbase; /* kernel seg_kpm 8K TSB base address */ 593 int kpmsm_tsbsz; /* kernel seg_kpm 8K TSB size code */ 594 595 #ifndef sun4v 596 int utsb_dtlb_ttenum = -1; /* index in TLB for utsb locked TTE */ 597 int utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */ 598 int dtlb_resv_ttenum; /* index in TLB of first reserved TTE */ 599 caddr_t utsb_vabase; /* reserved kernel virtual memory */ 600 caddr_t utsb4m_vabase; /* for trap handler TSB accesses */ 601 #endif /* sun4v */ 602 uint64_t tsb_alloc_bytes = 0; /* bytes allocated to TSBs */ 603 vmem_t *kmem_tsb_default_arena[NLGRPS_MAX]; /* For dynamic TSBs */ 604 vmem_t *kmem_bigtsb_default_arena[NLGRPS_MAX]; /* dynamic 256M TSBs */ 605 606 /* 607 * Size to use for TSB slabs. Future platforms that support page sizes 608 * larger than 4M may wish to change these values, and provide their own 609 * assembly macros for building and decoding the TSB base register contents. 610 * Note disable_large_pages will override the value set here. 611 */ 612 static uint_t tsb_slab_ttesz = TTE4M; 613 size_t tsb_slab_size = MMU_PAGESIZE4M; 614 uint_t tsb_slab_shift = MMU_PAGESHIFT4M; 615 /* PFN mask for TTE */ 616 size_t tsb_slab_mask = MMU_PAGEOFFSET4M >> MMU_PAGESHIFT; 617 618 /* 619 * Size to use for TSB slabs. These are used only when 256M tsb arenas 620 * exist. 621 */ 622 static uint_t bigtsb_slab_ttesz = TTE256M; 623 static size_t bigtsb_slab_size = MMU_PAGESIZE256M; 624 static uint_t bigtsb_slab_shift = MMU_PAGESHIFT256M; 625 /* 256M page alignment for 8K pfn */ 626 static size_t bigtsb_slab_mask = MMU_PAGEOFFSET256M >> MMU_PAGESHIFT; 627 628 /* largest TSB size to grow to, will be smaller on smaller memory systems */ 629 static int tsb_max_growsize = 0; 630 631 /* 632 * Tunable parameters dealing with TSB policies. 633 */ 634 635 /* 636 * This undocumented tunable forces all 8K TSBs to be allocated from 637 * the kernel heap rather than from the kmem_tsb_default_arena arenas. 638 */ 639 #ifdef DEBUG 640 int tsb_forceheap = 0; 641 #endif /* DEBUG */ 642 643 /* 644 * Decide whether to use per-lgroup arenas, or one global set of 645 * TSB arenas. The default is not to break up per-lgroup, since 646 * most platforms don't recognize any tangible benefit from it. 647 */ 648 int tsb_lgrp_affinity = 0; 649 650 /* 651 * Used for growing the TSB based on the process RSS. 652 * tsb_rss_factor is based on the smallest TSB, and is 653 * shifted by the TSB size to determine if we need to grow. 654 * The default will grow the TSB if the number of TTEs for 655 * this page size exceeds 75% of the number of TSB entries, 656 * which should _almost_ eliminate all conflict misses 657 * (at the expense of using up lots and lots of memory). 658 */ 659 #define TSB_RSS_FACTOR (TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75) 660 #define SFMMU_RSS_TSBSIZE(tsbszc) (tsb_rss_factor << tsbszc) 661 #define SELECT_TSB_SIZECODE(pgcnt) ( \ 662 (enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \ 663 default_tsb_size) 664 #define TSB_OK_SHRINK() \ 665 (tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree) 666 #define TSB_OK_GROW() \ 667 (tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree) 668 669 int enable_tsb_rss_sizing = 1; 670 int tsb_rss_factor = (int)TSB_RSS_FACTOR; 671 672 /* which TSB size code to use for new address spaces or if rss sizing off */ 673 int default_tsb_size = TSB_8K_SZCODE; 674 675 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */ 676 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */ 677 #define TSB_ALLOC_HIWATER_FACTOR_DEFAULT 32 678 679 #ifdef DEBUG 680 static int tsb_random_size = 0; /* set to 1 to test random tsb sizes on alloc */ 681 static int tsb_grow_stress = 0; /* if set to 1, keep replacing TSB w/ random */ 682 static int tsb_alloc_mtbf = 0; /* fail allocation every n attempts */ 683 static int tsb_alloc_fail_mtbf = 0; 684 static int tsb_alloc_count = 0; 685 #endif /* DEBUG */ 686 687 /* if set to 1, will remap valid TTEs when growing TSB. */ 688 int tsb_remap_ttes = 1; 689 690 /* 691 * If we have more than this many mappings, allocate a second TSB. 692 * This default is chosen because the I/D fully associative TLBs are 693 * assumed to have at least 8 available entries. Platforms with a 694 * larger fully-associative TLB could probably override the default. 695 */ 696 697 #ifdef sun4v 698 int tsb_sectsb_threshold = 0; 699 #else 700 int tsb_sectsb_threshold = 8; 701 #endif 702 703 /* 704 * kstat data 705 */ 706 struct sfmmu_global_stat sfmmu_global_stat; 707 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat; 708 709 /* 710 * Global data 711 */ 712 sfmmu_t *ksfmmup; /* kernel's hat id */ 713 714 #ifdef DEBUG 715 static void chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *); 716 #endif 717 718 /* sfmmu locking operations */ 719 static kmutex_t *sfmmu_mlspl_enter(struct page *, int); 720 static int sfmmu_mlspl_held(struct page *, int); 721 722 kmutex_t *sfmmu_page_enter(page_t *); 723 void sfmmu_page_exit(kmutex_t *); 724 int sfmmu_page_spl_held(struct page *); 725 726 /* sfmmu internal locking operations - accessed directly */ 727 static void sfmmu_mlist_reloc_enter(page_t *, page_t *, 728 kmutex_t **, kmutex_t **); 729 static void sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *); 730 static hatlock_t * 731 sfmmu_hat_enter(sfmmu_t *); 732 static hatlock_t * 733 sfmmu_hat_tryenter(sfmmu_t *); 734 static void sfmmu_hat_exit(hatlock_t *); 735 static void sfmmu_hat_lock_all(void); 736 static void sfmmu_hat_unlock_all(void); 737 static void sfmmu_ismhat_enter(sfmmu_t *, int); 738 static void sfmmu_ismhat_exit(sfmmu_t *, int); 739 740 /* 741 * Array of mutexes protecting a page's mapping list and p_nrm field. 742 * 743 * The hash function looks complicated, but is made up so that: 744 * 745 * "pp" not shifted, so adjacent pp values will hash to different cache lines 746 * (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock) 747 * 748 * "pp" >> mml_shift, incorporates more source bits into the hash result 749 * 750 * "& (mml_table_size - 1), should be faster than using remainder "%" 751 * 752 * Hopefully, mml_table, mml_table_size and mml_shift are all in the same 753 * cacheline, since they get declared next to each other below. We'll trust 754 * ld not to do something random. 755 */ 756 #ifdef DEBUG 757 int mlist_hash_debug = 0; 758 #define MLIST_HASH(pp) (mlist_hash_debug ? &mml_table[0] : \ 759 &mml_table[((uintptr_t)(pp) + \ 760 ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]) 761 #else /* !DEBUG */ 762 #define MLIST_HASH(pp) &mml_table[ \ 763 ((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)] 764 #endif /* !DEBUG */ 765 766 kmutex_t *mml_table; 767 uint_t mml_table_sz; /* must be a power of 2 */ 768 uint_t mml_shift; /* log2(mml_table_sz) + 3 for align */ 769 770 kpm_hlk_t *kpmp_table; 771 uint_t kpmp_table_sz; /* must be a power of 2 */ 772 uchar_t kpmp_shift; 773 774 kpm_shlk_t *kpmp_stable; 775 uint_t kpmp_stable_sz; /* must be a power of 2 */ 776 777 /* 778 * SPL_HASH was improved to avoid false cache line sharing 779 */ 780 #define SPL_TABLE_SIZE 128 781 #define SPL_MASK (SPL_TABLE_SIZE - 1) 782 #define SPL_SHIFT 7 /* log2(SPL_TABLE_SIZE) */ 783 784 #define SPL_INDEX(pp) \ 785 ((((uintptr_t)(pp) >> SPL_SHIFT) ^ \ 786 ((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \ 787 (SPL_TABLE_SIZE - 1)) 788 789 #define SPL_HASH(pp) \ 790 (&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex) 791 792 static pad_mutex_t sfmmu_page_lock[SPL_TABLE_SIZE]; 793 794 795 /* 796 * hat_unload_callback() will group together callbacks in order 797 * to avoid xt_sync() calls. This is the maximum size of the group. 798 */ 799 #define MAX_CB_ADDR 32 800 801 tte_t hw_tte; 802 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT; 803 804 static char *mmu_ctx_kstat_names[] = { 805 "mmu_ctx_tsb_exceptions", 806 "mmu_ctx_tsb_raise_exception", 807 "mmu_ctx_wrap_around", 808 }; 809 810 /* 811 * Wrapper for vmem_xalloc since vmem_create only allows limited 812 * parameters for vm_source_alloc functions. This function allows us 813 * to specify alignment consistent with the size of the object being 814 * allocated. 815 */ 816 static void * 817 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag) 818 { 819 return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag)); 820 } 821 822 /* Common code for setting tsb_alloc_hiwater. */ 823 #define SFMMU_SET_TSB_ALLOC_HIWATER(pages) tsb_alloc_hiwater = \ 824 ptob(pages) / tsb_alloc_hiwater_factor 825 826 /* 827 * Set tsb_max_growsize to allow at most all of physical memory to be mapped by 828 * a single TSB. physmem is the number of physical pages so we need physmem 8K 829 * TTEs to represent all those physical pages. We round this up by using 830 * 1<<highbit(). To figure out which size code to use, remember that the size 831 * code is just an amount to shift the smallest TSB size to get the size of 832 * this TSB. So we subtract that size, TSB_START_SIZE, from highbit() (or 833 * highbit() - 1) to get the size code for the smallest TSB that can represent 834 * all of physical memory, while erring on the side of too much. 835 * 836 * Restrict tsb_max_growsize to make sure that: 837 * 1) TSBs can't grow larger than the TSB slab size 838 * 2) TSBs can't grow larger than UTSB_MAX_SZCODE. 839 */ 840 #define SFMMU_SET_TSB_MAX_GROWSIZE(pages) { \ 841 int _i, _szc, _slabszc, _tsbszc; \ 842 \ 843 _i = highbit(pages); \ 844 if ((1 << (_i - 1)) == (pages)) \ 845 _i--; /* 2^n case, round down */ \ 846 _szc = _i - TSB_START_SIZE; \ 847 _slabszc = bigtsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); \ 848 _tsbszc = MIN(_szc, _slabszc); \ 849 tsb_max_growsize = MIN(_tsbszc, UTSB_MAX_SZCODE); \ 850 } 851 852 /* 853 * Given a pointer to an sfmmu and a TTE size code, return a pointer to the 854 * tsb_info which handles that TTE size. 855 */ 856 #define SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) { \ 857 (tsbinfop) = (sfmmup)->sfmmu_tsb; \ 858 ASSERT(((tsbinfop)->tsb_flags & TSB_SHAREDCTX) || \ 859 sfmmu_hat_lock_held(sfmmup)); \ 860 if ((tte_szc) >= TTE4M) { \ 861 ASSERT((tsbinfop) != NULL); \ 862 (tsbinfop) = (tsbinfop)->tsb_next; \ 863 } \ 864 } 865 866 /* 867 * Macro to use to unload entries from the TSB. 868 * It has knowledge of which page sizes get replicated in the TSB 869 * and will call the appropriate unload routine for the appropriate size. 870 */ 871 #define SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, ismhat) \ 872 { \ 873 int ttesz = get_hblk_ttesz(hmeblkp); \ 874 if (ttesz == TTE8K || ttesz == TTE4M) { \ 875 sfmmu_unload_tsb(sfmmup, addr, ttesz); \ 876 } else { \ 877 caddr_t sva = ismhat ? addr : \ 878 (caddr_t)get_hblk_base(hmeblkp); \ 879 caddr_t eva = sva + get_hblk_span(hmeblkp); \ 880 ASSERT(addr >= sva && addr < eva); \ 881 sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz); \ 882 } \ 883 } 884 885 886 /* Update tsb_alloc_hiwater after memory is configured. */ 887 /*ARGSUSED*/ 888 static void 889 sfmmu_update_post_add(void *arg, pgcnt_t delta_pages) 890 { 891 /* Assumes physmem has already been updated. */ 892 SFMMU_SET_TSB_ALLOC_HIWATER(physmem); 893 SFMMU_SET_TSB_MAX_GROWSIZE(physmem); 894 } 895 896 /* 897 * Update tsb_alloc_hiwater before memory is deleted. We'll do nothing here 898 * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is 899 * deleted. 900 */ 901 /*ARGSUSED*/ 902 static int 903 sfmmu_update_pre_del(void *arg, pgcnt_t delta_pages) 904 { 905 return (0); 906 } 907 908 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */ 909 /*ARGSUSED*/ 910 static void 911 sfmmu_update_post_del(void *arg, pgcnt_t delta_pages, int cancelled) 912 { 913 /* 914 * Whether the delete was cancelled or not, just go ahead and update 915 * tsb_alloc_hiwater and tsb_max_growsize. 916 */ 917 SFMMU_SET_TSB_ALLOC_HIWATER(physmem); 918 SFMMU_SET_TSB_MAX_GROWSIZE(physmem); 919 } 920 921 static kphysm_setup_vector_t sfmmu_update_vec = { 922 KPHYSM_SETUP_VECTOR_VERSION, /* version */ 923 sfmmu_update_post_add, /* post_add */ 924 sfmmu_update_pre_del, /* pre_del */ 925 sfmmu_update_post_del /* post_del */ 926 }; 927 928 929 /* 930 * HME_BLK HASH PRIMITIVES 931 */ 932 933 /* 934 * Enter a hme on the mapping list for page pp. 935 * When large pages are more prevalent in the system we might want to 936 * keep the mapping list in ascending order by the hment size. For now, 937 * small pages are more frequent, so don't slow it down. 938 */ 939 #define HME_ADD(hme, pp) \ 940 { \ 941 ASSERT(sfmmu_mlist_held(pp)); \ 942 \ 943 hme->hme_prev = NULL; \ 944 hme->hme_next = pp->p_mapping; \ 945 hme->hme_page = pp; \ 946 if (pp->p_mapping) { \ 947 ((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\ 948 ASSERT(pp->p_share > 0); \ 949 } else { \ 950 /* EMPTY */ \ 951 ASSERT(pp->p_share == 0); \ 952 } \ 953 pp->p_mapping = hme; \ 954 pp->p_share++; \ 955 } 956 957 /* 958 * Enter a hme on the mapping list for page pp. 959 * If we are unmapping a large translation, we need to make sure that the 960 * change is reflect in the corresponding bit of the p_index field. 961 */ 962 #define HME_SUB(hme, pp) \ 963 { \ 964 ASSERT(sfmmu_mlist_held(pp)); \ 965 ASSERT(hme->hme_page == pp || IS_PAHME(hme)); \ 966 \ 967 if (pp->p_mapping == NULL) { \ 968 panic("hme_remove - no mappings"); \ 969 } \ 970 \ 971 membar_stst(); /* ensure previous stores finish */ \ 972 \ 973 ASSERT(pp->p_share > 0); \ 974 pp->p_share--; \ 975 \ 976 if (hme->hme_prev) { \ 977 ASSERT(pp->p_mapping != hme); \ 978 ASSERT(hme->hme_prev->hme_page == pp || \ 979 IS_PAHME(hme->hme_prev)); \ 980 hme->hme_prev->hme_next = hme->hme_next; \ 981 } else { \ 982 ASSERT(pp->p_mapping == hme); \ 983 pp->p_mapping = hme->hme_next; \ 984 ASSERT((pp->p_mapping == NULL) ? \ 985 (pp->p_share == 0) : 1); \ 986 } \ 987 \ 988 if (hme->hme_next) { \ 989 ASSERT(hme->hme_next->hme_page == pp || \ 990 IS_PAHME(hme->hme_next)); \ 991 hme->hme_next->hme_prev = hme->hme_prev; \ 992 } \ 993 \ 994 /* zero out the entry */ \ 995 hme->hme_next = NULL; \ 996 hme->hme_prev = NULL; \ 997 hme->hme_page = NULL; \ 998 \ 999 if (hme_size(hme) > TTE8K) { \ 1000 /* remove mappings for remainder of large pg */ \ 1001 sfmmu_rm_large_mappings(pp, hme_size(hme)); \ 1002 } \ 1003 } 1004 1005 /* 1006 * This function returns the hment given the hme_blk and a vaddr. 1007 * It assumes addr has already been checked to belong to hme_blk's 1008 * range. 1009 */ 1010 #define HBLKTOHME(hment, hmeblkp, addr) \ 1011 { \ 1012 int index; \ 1013 HBLKTOHME_IDX(hment, hmeblkp, addr, index) \ 1014 } 1015 1016 /* 1017 * Version of HBLKTOHME that also returns the index in hmeblkp 1018 * of the hment. 1019 */ 1020 #define HBLKTOHME_IDX(hment, hmeblkp, addr, idx) \ 1021 { \ 1022 ASSERT(in_hblk_range((hmeblkp), (addr))); \ 1023 \ 1024 if (get_hblk_ttesz(hmeblkp) == TTE8K) { \ 1025 idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \ 1026 } else \ 1027 idx = 0; \ 1028 \ 1029 (hment) = &(hmeblkp)->hblk_hme[idx]; \ 1030 } 1031 1032 /* 1033 * Disable any page sizes not supported by the CPU 1034 */ 1035 void 1036 hat_init_pagesizes() 1037 { 1038 int i; 1039 1040 mmu_exported_page_sizes = 0; 1041 for (i = TTE8K; i < max_mmu_page_sizes; i++) { 1042 1043 szc_2_userszc[i] = (uint_t)-1; 1044 userszc_2_szc[i] = (uint_t)-1; 1045 1046 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) { 1047 disable_large_pages |= (1 << i); 1048 } else { 1049 szc_2_userszc[i] = mmu_exported_page_sizes; 1050 userszc_2_szc[mmu_exported_page_sizes] = i; 1051 mmu_exported_page_sizes++; 1052 } 1053 } 1054 1055 disable_ism_large_pages |= disable_large_pages; 1056 disable_auto_data_large_pages = disable_large_pages; 1057 disable_auto_text_large_pages = disable_large_pages; 1058 1059 /* 1060 * Initialize mmu-specific large page sizes. 1061 */ 1062 if (&mmu_large_pages_disabled) { 1063 disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD); 1064 disable_ism_large_pages |= 1065 mmu_large_pages_disabled(HAT_LOAD_SHARE); 1066 disable_auto_data_large_pages |= 1067 mmu_large_pages_disabled(HAT_AUTO_DATA); 1068 disable_auto_text_large_pages |= 1069 mmu_large_pages_disabled(HAT_AUTO_TEXT); 1070 } 1071 } 1072 1073 /* 1074 * Initialize the hardware address translation structures. 1075 */ 1076 void 1077 hat_init(void) 1078 { 1079 int i; 1080 uint_t sz; 1081 size_t size; 1082 1083 hat_lock_init(); 1084 hat_kstat_init(); 1085 1086 /* 1087 * Hardware-only bits in a TTE 1088 */ 1089 MAKE_TTE_MASK(&hw_tte); 1090 1091 hat_init_pagesizes(); 1092 1093 /* Initialize the hash locks */ 1094 for (i = 0; i < khmehash_num; i++) { 1095 mutex_init(&khme_hash[i].hmehash_mutex, NULL, 1096 MUTEX_DEFAULT, NULL); 1097 khme_hash[i].hmeh_nextpa = HMEBLK_ENDPA; 1098 } 1099 for (i = 0; i < uhmehash_num; i++) { 1100 mutex_init(&uhme_hash[i].hmehash_mutex, NULL, 1101 MUTEX_DEFAULT, NULL); 1102 uhme_hash[i].hmeh_nextpa = HMEBLK_ENDPA; 1103 } 1104 khmehash_num--; /* make sure counter starts from 0 */ 1105 uhmehash_num--; /* make sure counter starts from 0 */ 1106 1107 /* 1108 * Allocate context domain structures. 1109 * 1110 * A platform may choose to modify max_mmu_ctxdoms in 1111 * set_platform_defaults(). If a platform does not define 1112 * a set_platform_defaults() or does not choose to modify 1113 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU. 1114 * 1115 * For sun4v, there will be one global context domain, this is to 1116 * avoid the ldom cpu substitution problem. 1117 * 1118 * For all platforms that have CPUs sharing MMUs, this 1119 * value must be defined. 1120 */ 1121 if (max_mmu_ctxdoms == 0) { 1122 #ifndef sun4v 1123 max_mmu_ctxdoms = max_ncpus; 1124 #else /* sun4v */ 1125 max_mmu_ctxdoms = 1; 1126 #endif /* sun4v */ 1127 } 1128 1129 size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *); 1130 mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP); 1131 1132 /* mmu_ctx_t is 64 bytes aligned */ 1133 mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache", 1134 sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0); 1135 /* 1136 * MMU context domain initialization for the Boot CPU. 1137 * This needs the context domains array allocated above. 1138 */ 1139 mutex_enter(&cpu_lock); 1140 sfmmu_cpu_init(CPU); 1141 mutex_exit(&cpu_lock); 1142 1143 /* 1144 * Intialize ism mapping list lock. 1145 */ 1146 1147 mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL); 1148 1149 /* 1150 * Each sfmmu structure carries an array of MMU context info 1151 * structures, one per context domain. The size of this array depends 1152 * on the maximum number of context domains. So, the size of the 1153 * sfmmu structure varies per platform. 1154 * 1155 * sfmmu is allocated from static arena, because trap 1156 * handler at TL > 0 is not allowed to touch kernel relocatable 1157 * memory. sfmmu's alignment is changed to 64 bytes from 1158 * default 8 bytes, as the lower 6 bits will be used to pass 1159 * pgcnt to vtag_flush_pgcnt_tl1. 1160 */ 1161 size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1); 1162 1163 sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size, 1164 64, sfmmu_idcache_constructor, sfmmu_idcache_destructor, 1165 NULL, NULL, static_arena, 0); 1166 1167 sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache", 1168 sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0); 1169 1170 /* 1171 * Since we only use the tsb8k cache to "borrow" pages for TSBs 1172 * from the heap when low on memory or when TSB_FORCEALLOC is 1173 * specified, don't use magazines to cache them--we want to return 1174 * them to the system as quickly as possible. 1175 */ 1176 sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache", 1177 MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL, 1178 static_arena, KMC_NOMAGAZINE); 1179 1180 /* 1181 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical 1182 * memory, which corresponds to the old static reserve for TSBs. 1183 * tsb_alloc_hiwater_factor defaults to 32. This caps the amount of 1184 * memory we'll allocate for TSB slabs; beyond this point TSB 1185 * allocations will be taken from the kernel heap (via 1186 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem 1187 * consumer. 1188 */ 1189 if (tsb_alloc_hiwater_factor == 0) { 1190 tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT; 1191 } 1192 SFMMU_SET_TSB_ALLOC_HIWATER(physmem); 1193 1194 for (sz = tsb_slab_ttesz; sz > 0; sz--) { 1195 if (!(disable_large_pages & (1 << sz))) 1196 break; 1197 } 1198 1199 if (sz < tsb_slab_ttesz) { 1200 tsb_slab_ttesz = sz; 1201 tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz; 1202 tsb_slab_size = 1 << tsb_slab_shift; 1203 tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1; 1204 use_bigtsb_arena = 0; 1205 } else if (use_bigtsb_arena && 1206 (disable_large_pages & (1 << bigtsb_slab_ttesz))) { 1207 use_bigtsb_arena = 0; 1208 } 1209 1210 if (!use_bigtsb_arena) { 1211 bigtsb_slab_shift = tsb_slab_shift; 1212 } 1213 SFMMU_SET_TSB_MAX_GROWSIZE(physmem); 1214 1215 /* 1216 * On smaller memory systems, allocate TSB memory in smaller chunks 1217 * than the default 4M slab size. We also honor disable_large_pages 1218 * here. 1219 * 1220 * The trap handlers need to be patched with the final slab shift, 1221 * since they need to be able to construct the TSB pointer at runtime. 1222 */ 1223 if ((tsb_max_growsize <= TSB_512K_SZCODE) && 1224 !(disable_large_pages & (1 << TTE512K))) { 1225 tsb_slab_ttesz = TTE512K; 1226 tsb_slab_shift = MMU_PAGESHIFT512K; 1227 tsb_slab_size = MMU_PAGESIZE512K; 1228 tsb_slab_mask = MMU_PAGEOFFSET512K >> MMU_PAGESHIFT; 1229 use_bigtsb_arena = 0; 1230 } 1231 1232 if (!use_bigtsb_arena) { 1233 bigtsb_slab_ttesz = tsb_slab_ttesz; 1234 bigtsb_slab_shift = tsb_slab_shift; 1235 bigtsb_slab_size = tsb_slab_size; 1236 bigtsb_slab_mask = tsb_slab_mask; 1237 } 1238 1239 1240 /* 1241 * Set up memory callback to update tsb_alloc_hiwater and 1242 * tsb_max_growsize. 1243 */ 1244 i = kphysm_setup_func_register(&sfmmu_update_vec, (void *) 0); 1245 ASSERT(i == 0); 1246 1247 /* 1248 * kmem_tsb_arena is the source from which large TSB slabs are 1249 * drawn. The quantum of this arena corresponds to the largest 1250 * TSB size we can dynamically allocate for user processes. 1251 * Currently it must also be a supported page size since we 1252 * use exactly one translation entry to map each slab page. 1253 * 1254 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from 1255 * which most TSBs are allocated. Since most TSB allocations are 1256 * typically 8K we have a kmem cache we stack on top of each 1257 * kmem_tsb_default_arena to speed up those allocations. 1258 * 1259 * Note the two-level scheme of arenas is required only 1260 * because vmem_create doesn't allow us to specify alignment 1261 * requirements. If this ever changes the code could be 1262 * simplified to use only one level of arenas. 1263 * 1264 * If 256M page support exists on sun4v, 256MB kmem_bigtsb_arena 1265 * will be provided in addition to the 4M kmem_tsb_arena. 1266 */ 1267 if (use_bigtsb_arena) { 1268 kmem_bigtsb_arena = vmem_create("kmem_bigtsb", NULL, 0, 1269 bigtsb_slab_size, sfmmu_vmem_xalloc_aligned_wrapper, 1270 vmem_xfree, heap_arena, 0, VM_SLEEP); 1271 } 1272 1273 kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size, 1274 sfmmu_vmem_xalloc_aligned_wrapper, 1275 vmem_xfree, heap_arena, 0, VM_SLEEP); 1276 1277 if (tsb_lgrp_affinity) { 1278 char s[50]; 1279 for (i = 0; i < NLGRPS_MAX; i++) { 1280 if (use_bigtsb_arena) { 1281 (void) sprintf(s, "kmem_bigtsb_lgrp%d", i); 1282 kmem_bigtsb_default_arena[i] = vmem_create(s, 1283 NULL, 0, 2 * tsb_slab_size, 1284 sfmmu_tsb_segkmem_alloc, 1285 sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 1286 0, VM_SLEEP | VM_BESTFIT); 1287 } 1288 1289 (void) sprintf(s, "kmem_tsb_lgrp%d", i); 1290 kmem_tsb_default_arena[i] = vmem_create(s, 1291 NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc, 1292 sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0, 1293 VM_SLEEP | VM_BESTFIT); 1294 1295 (void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i); 1296 sfmmu_tsb_cache[i] = kmem_cache_create(s, 1297 PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL, 1298 kmem_tsb_default_arena[i], 0); 1299 } 1300 } else { 1301 if (use_bigtsb_arena) { 1302 kmem_bigtsb_default_arena[0] = 1303 vmem_create("kmem_bigtsb_default", NULL, 0, 1304 2 * tsb_slab_size, sfmmu_tsb_segkmem_alloc, 1305 sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 0, 1306 VM_SLEEP | VM_BESTFIT); 1307 } 1308 1309 kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default", 1310 NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc, 1311 sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0, 1312 VM_SLEEP | VM_BESTFIT); 1313 sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache", 1314 PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL, 1315 kmem_tsb_default_arena[0], 0); 1316 } 1317 1318 sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ, 1319 HMEBLK_ALIGN, sfmmu_hblkcache_constructor, 1320 sfmmu_hblkcache_destructor, 1321 sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ, 1322 hat_memload_arena, KMC_NOHASH); 1323 1324 hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE, 1325 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 1326 1327 sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ, 1328 HMEBLK_ALIGN, sfmmu_hblkcache_constructor, 1329 sfmmu_hblkcache_destructor, 1330 NULL, (void *)HME1BLK_SZ, 1331 hat_memload1_arena, KMC_NOHASH); 1332 1333 pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ, 1334 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH); 1335 1336 ism_blk_cache = kmem_cache_create("ism_blk_cache", 1337 sizeof (ism_blk_t), ecache_alignsize, NULL, NULL, 1338 NULL, NULL, static_arena, KMC_NOHASH); 1339 1340 ism_ment_cache = kmem_cache_create("ism_ment_cache", 1341 sizeof (ism_ment_t), 0, NULL, NULL, 1342 NULL, NULL, NULL, 0); 1343 1344 /* 1345 * We grab the first hat for the kernel, 1346 */ 1347 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 1348 kas.a_hat = hat_alloc(&kas); 1349 AS_LOCK_EXIT(&kas, &kas.a_lock); 1350 1351 /* 1352 * Initialize hblk_reserve. 1353 */ 1354 ((struct hme_blk *)hblk_reserve)->hblk_nextpa = 1355 va_to_pa((caddr_t)hblk_reserve); 1356 1357 #ifndef UTSB_PHYS 1358 /* 1359 * Reserve some kernel virtual address space for the locked TTEs 1360 * that allow us to probe the TSB from TL>0. 1361 */ 1362 utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size, 1363 0, 0, NULL, NULL, VM_SLEEP); 1364 utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size, 1365 0, 0, NULL, NULL, VM_SLEEP); 1366 #endif 1367 1368 #ifdef VAC 1369 /* 1370 * The big page VAC handling code assumes VAC 1371 * will not be bigger than the smallest big 1372 * page- which is 64K. 1373 */ 1374 if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) { 1375 cmn_err(CE_PANIC, "VAC too big!"); 1376 } 1377 #endif 1378 1379 (void) xhat_init(); 1380 1381 uhme_hash_pa = va_to_pa(uhme_hash); 1382 khme_hash_pa = va_to_pa(khme_hash); 1383 1384 /* 1385 * Initialize relocation locks. kpr_suspendlock is held 1386 * at PIL_MAX to prevent interrupts from pinning the holder 1387 * of a suspended TTE which may access it leading to a 1388 * deadlock condition. 1389 */ 1390 mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL); 1391 mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX); 1392 1393 /* 1394 * If Shared context support is disabled via /etc/system 1395 * set shctx_on to 0 here if it was set to 1 earlier in boot 1396 * sequence by cpu module initialization code. 1397 */ 1398 if (shctx_on && disable_shctx) { 1399 shctx_on = 0; 1400 } 1401 1402 if (shctx_on) { 1403 srd_buckets = kmem_zalloc(SFMMU_MAX_SRD_BUCKETS * 1404 sizeof (srd_buckets[0]), KM_SLEEP); 1405 for (i = 0; i < SFMMU_MAX_SRD_BUCKETS; i++) { 1406 mutex_init(&srd_buckets[i].srdb_lock, NULL, 1407 MUTEX_DEFAULT, NULL); 1408 } 1409 1410 srd_cache = kmem_cache_create("srd_cache", sizeof (sf_srd_t), 1411 0, sfmmu_srdcache_constructor, sfmmu_srdcache_destructor, 1412 NULL, NULL, NULL, 0); 1413 region_cache = kmem_cache_create("region_cache", 1414 sizeof (sf_region_t), 0, sfmmu_rgncache_constructor, 1415 sfmmu_rgncache_destructor, NULL, NULL, NULL, 0); 1416 scd_cache = kmem_cache_create("scd_cache", sizeof (sf_scd_t), 1417 0, sfmmu_scdcache_constructor, sfmmu_scdcache_destructor, 1418 NULL, NULL, NULL, 0); 1419 } 1420 1421 /* 1422 * Pre-allocate hrm_hashtab before enabling the collection of 1423 * refmod statistics. Allocating on the fly would mean us 1424 * running the risk of suffering recursive mutex enters or 1425 * deadlocks. 1426 */ 1427 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), 1428 KM_SLEEP); 1429 1430 /* Allocate per-cpu pending freelist of hmeblks */ 1431 cpu_hme_pend = kmem_zalloc((NCPU * sizeof (cpu_hme_pend_t)) + 64, 1432 KM_SLEEP); 1433 cpu_hme_pend = (cpu_hme_pend_t *)P2ROUNDUP( 1434 (uintptr_t)cpu_hme_pend, 64); 1435 1436 for (i = 0; i < NCPU; i++) { 1437 mutex_init(&cpu_hme_pend[i].chp_mutex, NULL, MUTEX_DEFAULT, 1438 NULL); 1439 } 1440 1441 if (cpu_hme_pend_thresh == 0) { 1442 cpu_hme_pend_thresh = CPU_HME_PEND_THRESH; 1443 } 1444 } 1445 1446 /* 1447 * Initialize locking for the hat layer, called early during boot. 1448 */ 1449 static void 1450 hat_lock_init() 1451 { 1452 int i; 1453 1454 /* 1455 * initialize the array of mutexes protecting a page's mapping 1456 * list and p_nrm field. 1457 */ 1458 for (i = 0; i < mml_table_sz; i++) 1459 mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL); 1460 1461 if (kpm_enable) { 1462 for (i = 0; i < kpmp_table_sz; i++) { 1463 mutex_init(&kpmp_table[i].khl_mutex, NULL, 1464 MUTEX_DEFAULT, NULL); 1465 } 1466 } 1467 1468 /* 1469 * Initialize array of mutex locks that protects sfmmu fields and 1470 * TSB lists. 1471 */ 1472 for (i = 0; i < SFMMU_NUM_LOCK; i++) 1473 mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT, 1474 NULL); 1475 } 1476 1477 #define SFMMU_KERNEL_MAXVA \ 1478 (kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT)) 1479 1480 /* 1481 * Allocate a hat structure. 1482 * Called when an address space first uses a hat. 1483 */ 1484 struct hat * 1485 hat_alloc(struct as *as) 1486 { 1487 sfmmu_t *sfmmup; 1488 int i; 1489 uint64_t cnum; 1490 extern uint_t get_color_start(struct as *); 1491 1492 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 1493 sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP); 1494 sfmmup->sfmmu_as = as; 1495 sfmmup->sfmmu_flags = 0; 1496 sfmmup->sfmmu_tteflags = 0; 1497 sfmmup->sfmmu_rtteflags = 0; 1498 LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock); 1499 1500 if (as == &kas) { 1501 ksfmmup = sfmmup; 1502 sfmmup->sfmmu_cext = 0; 1503 cnum = KCONTEXT; 1504 1505 sfmmup->sfmmu_clrstart = 0; 1506 sfmmup->sfmmu_tsb = NULL; 1507 /* 1508 * hat_kern_setup() will call sfmmu_init_ktsbinfo() 1509 * to setup tsb_info for ksfmmup. 1510 */ 1511 } else { 1512 1513 /* 1514 * Just set to invalid ctx. When it faults, it will 1515 * get a valid ctx. This would avoid the situation 1516 * where we get a ctx, but it gets stolen and then 1517 * we fault when we try to run and so have to get 1518 * another ctx. 1519 */ 1520 sfmmup->sfmmu_cext = 0; 1521 cnum = INVALID_CONTEXT; 1522 1523 /* initialize original physical page coloring bin */ 1524 sfmmup->sfmmu_clrstart = get_color_start(as); 1525 #ifdef DEBUG 1526 if (tsb_random_size) { 1527 uint32_t randval = (uint32_t)gettick() >> 4; 1528 int size = randval % (tsb_max_growsize + 1); 1529 1530 /* chose a random tsb size for stress testing */ 1531 (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size, 1532 TSB8K|TSB64K|TSB512K, 0, sfmmup); 1533 } else 1534 #endif /* DEBUG */ 1535 (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, 1536 default_tsb_size, 1537 TSB8K|TSB64K|TSB512K, 0, sfmmup); 1538 sfmmup->sfmmu_flags = HAT_SWAPPED | HAT_ALLCTX_INVALID; 1539 ASSERT(sfmmup->sfmmu_tsb != NULL); 1540 } 1541 1542 ASSERT(max_mmu_ctxdoms > 0); 1543 for (i = 0; i < max_mmu_ctxdoms; i++) { 1544 sfmmup->sfmmu_ctxs[i].cnum = cnum; 1545 sfmmup->sfmmu_ctxs[i].gnum = 0; 1546 } 1547 1548 for (i = 0; i < max_mmu_page_sizes; i++) { 1549 sfmmup->sfmmu_ttecnt[i] = 0; 1550 sfmmup->sfmmu_scdrttecnt[i] = 0; 1551 sfmmup->sfmmu_ismttecnt[i] = 0; 1552 sfmmup->sfmmu_scdismttecnt[i] = 0; 1553 sfmmup->sfmmu_pgsz[i] = TTE8K; 1554 } 1555 sfmmup->sfmmu_tsb0_4minflcnt = 0; 1556 sfmmup->sfmmu_iblk = NULL; 1557 sfmmup->sfmmu_ismhat = 0; 1558 sfmmup->sfmmu_scdhat = 0; 1559 sfmmup->sfmmu_ismblkpa = (uint64_t)-1; 1560 if (sfmmup == ksfmmup) { 1561 CPUSET_ALL(sfmmup->sfmmu_cpusran); 1562 } else { 1563 CPUSET_ZERO(sfmmup->sfmmu_cpusran); 1564 } 1565 sfmmup->sfmmu_free = 0; 1566 sfmmup->sfmmu_rmstat = 0; 1567 sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart; 1568 sfmmup->sfmmu_xhat_provider = NULL; 1569 cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL); 1570 sfmmup->sfmmu_srdp = NULL; 1571 SF_RGNMAP_ZERO(sfmmup->sfmmu_region_map); 1572 bzero(sfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE); 1573 sfmmup->sfmmu_scdp = NULL; 1574 sfmmup->sfmmu_scd_link.next = NULL; 1575 sfmmup->sfmmu_scd_link.prev = NULL; 1576 return (sfmmup); 1577 } 1578 1579 /* 1580 * Create per-MMU context domain kstats for a given MMU ctx. 1581 */ 1582 static void 1583 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp) 1584 { 1585 mmu_ctx_stat_t stat; 1586 kstat_t *mmu_kstat; 1587 1588 ASSERT(MUTEX_HELD(&cpu_lock)); 1589 ASSERT(mmu_ctxp->mmu_kstat == NULL); 1590 1591 mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx", 1592 "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL); 1593 1594 if (mmu_kstat == NULL) { 1595 cmn_err(CE_WARN, "kstat_create for MMU %d failed", 1596 mmu_ctxp->mmu_idx); 1597 } else { 1598 mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data; 1599 for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++) 1600 kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat], 1601 mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64); 1602 mmu_ctxp->mmu_kstat = mmu_kstat; 1603 kstat_install(mmu_kstat); 1604 } 1605 } 1606 1607 /* 1608 * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU 1609 * context domain information for a given CPU. If a platform does not 1610 * specify that interface, then the function below is used instead to return 1611 * default information. The defaults are as follows: 1612 * 1613 * - For sun4u systems there's one MMU context domain per CPU. 1614 * This default is used by all sun4u systems except OPL. OPL systems 1615 * provide platform specific interface to map CPU ids to MMU ids 1616 * because on OPL more than 1 CPU shares a single MMU. 1617 * Note that on sun4v, there is one global context domain for 1618 * the entire system. This is to avoid running into potential problem 1619 * with ldom physical cpu substitution feature. 1620 * - The number of MMU context IDs supported on any CPU in the 1621 * system is 8K. 1622 */ 1623 /*ARGSUSED*/ 1624 static void 1625 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop) 1626 { 1627 infop->mmu_nctxs = nctxs; 1628 #ifndef sun4v 1629 infop->mmu_idx = cpu[cpuid]->cpu_seqid; 1630 #else /* sun4v */ 1631 infop->mmu_idx = 0; 1632 #endif /* sun4v */ 1633 } 1634 1635 /* 1636 * Called during CPU initialization to set the MMU context-related information 1637 * for a CPU. 1638 * 1639 * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum. 1640 */ 1641 void 1642 sfmmu_cpu_init(cpu_t *cp) 1643 { 1644 mmu_ctx_info_t info; 1645 mmu_ctx_t *mmu_ctxp; 1646 1647 ASSERT(MUTEX_HELD(&cpu_lock)); 1648 1649 if (&plat_cpuid_to_mmu_ctx_info == NULL) 1650 sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info); 1651 else 1652 plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info); 1653 1654 ASSERT(info.mmu_idx < max_mmu_ctxdoms); 1655 1656 if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) { 1657 /* Each mmu_ctx is cacheline aligned. */ 1658 mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP); 1659 bzero(mmu_ctxp, sizeof (mmu_ctx_t)); 1660 1661 mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN, 1662 (void *)ipltospl(DISP_LEVEL)); 1663 mmu_ctxp->mmu_idx = info.mmu_idx; 1664 mmu_ctxp->mmu_nctxs = info.mmu_nctxs; 1665 /* 1666 * Globally for lifetime of a system, 1667 * gnum must always increase. 1668 * mmu_saved_gnum is protected by the cpu_lock. 1669 */ 1670 mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1; 1671 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS; 1672 1673 sfmmu_mmu_kstat_create(mmu_ctxp); 1674 1675 mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp; 1676 } else { 1677 ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx); 1678 } 1679 1680 /* 1681 * The mmu_lock is acquired here to prevent races with 1682 * the wrap-around code. 1683 */ 1684 mutex_enter(&mmu_ctxp->mmu_lock); 1685 1686 1687 mmu_ctxp->mmu_ncpus++; 1688 CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id); 1689 CPU_MMU_IDX(cp) = info.mmu_idx; 1690 CPU_MMU_CTXP(cp) = mmu_ctxp; 1691 1692 mutex_exit(&mmu_ctxp->mmu_lock); 1693 } 1694 1695 /* 1696 * Called to perform MMU context-related cleanup for a CPU. 1697 */ 1698 void 1699 sfmmu_cpu_cleanup(cpu_t *cp) 1700 { 1701 mmu_ctx_t *mmu_ctxp; 1702 1703 ASSERT(MUTEX_HELD(&cpu_lock)); 1704 1705 mmu_ctxp = CPU_MMU_CTXP(cp); 1706 ASSERT(mmu_ctxp != NULL); 1707 1708 /* 1709 * The mmu_lock is acquired here to prevent races with 1710 * the wrap-around code. 1711 */ 1712 mutex_enter(&mmu_ctxp->mmu_lock); 1713 1714 CPU_MMU_CTXP(cp) = NULL; 1715 1716 CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id); 1717 if (--mmu_ctxp->mmu_ncpus == 0) { 1718 mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL; 1719 mutex_exit(&mmu_ctxp->mmu_lock); 1720 mutex_destroy(&mmu_ctxp->mmu_lock); 1721 1722 if (mmu_ctxp->mmu_kstat) 1723 kstat_delete(mmu_ctxp->mmu_kstat); 1724 1725 /* mmu_saved_gnum is protected by the cpu_lock. */ 1726 if (mmu_saved_gnum < mmu_ctxp->mmu_gnum) 1727 mmu_saved_gnum = mmu_ctxp->mmu_gnum; 1728 1729 kmem_cache_free(mmuctxdom_cache, mmu_ctxp); 1730 1731 return; 1732 } 1733 1734 mutex_exit(&mmu_ctxp->mmu_lock); 1735 } 1736 1737 /* 1738 * Hat_setup, makes an address space context the current active one. 1739 * In sfmmu this translates to setting the secondary context with the 1740 * corresponding context. 1741 */ 1742 void 1743 hat_setup(struct hat *sfmmup, int allocflag) 1744 { 1745 hatlock_t *hatlockp; 1746 1747 /* Init needs some special treatment. */ 1748 if (allocflag == HAT_INIT) { 1749 /* 1750 * Make sure that we have 1751 * 1. a TSB 1752 * 2. a valid ctx that doesn't get stolen after this point. 1753 */ 1754 hatlockp = sfmmu_hat_enter(sfmmup); 1755 1756 /* 1757 * Swap in the TSB. hat_init() allocates tsbinfos without 1758 * TSBs, but we need one for init, since the kernel does some 1759 * special things to set up its stack and needs the TSB to 1760 * resolve page faults. 1761 */ 1762 sfmmu_tsb_swapin(sfmmup, hatlockp); 1763 1764 sfmmu_get_ctx(sfmmup); 1765 1766 sfmmu_hat_exit(hatlockp); 1767 } else { 1768 ASSERT(allocflag == HAT_ALLOC); 1769 1770 hatlockp = sfmmu_hat_enter(sfmmup); 1771 kpreempt_disable(); 1772 1773 CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id); 1774 /* 1775 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter, 1776 * pagesize bits don't matter in this case since we are passing 1777 * INVALID_CONTEXT to it. 1778 * Compatibility Note: hw takes care of MMU_SCONTEXT1 1779 */ 1780 sfmmu_setctx_sec(INVALID_CONTEXT); 1781 sfmmu_clear_utsbinfo(); 1782 1783 kpreempt_enable(); 1784 sfmmu_hat_exit(hatlockp); 1785 } 1786 } 1787 1788 /* 1789 * Free all the translation resources for the specified address space. 1790 * Called from as_free when an address space is being destroyed. 1791 */ 1792 void 1793 hat_free_start(struct hat *sfmmup) 1794 { 1795 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 1796 ASSERT(sfmmup != ksfmmup); 1797 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 1798 1799 sfmmup->sfmmu_free = 1; 1800 if (sfmmup->sfmmu_scdp != NULL) { 1801 sfmmu_leave_scd(sfmmup, 0); 1802 } 1803 1804 ASSERT(sfmmup->sfmmu_scdp == NULL); 1805 } 1806 1807 void 1808 hat_free_end(struct hat *sfmmup) 1809 { 1810 int i; 1811 1812 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 1813 ASSERT(sfmmup->sfmmu_free == 1); 1814 ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0); 1815 ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0); 1816 ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0); 1817 ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0); 1818 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0); 1819 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0); 1820 1821 if (sfmmup->sfmmu_rmstat) { 1822 hat_freestat(sfmmup->sfmmu_as, NULL); 1823 } 1824 1825 while (sfmmup->sfmmu_tsb != NULL) { 1826 struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next; 1827 sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb); 1828 sfmmup->sfmmu_tsb = next; 1829 } 1830 1831 if (sfmmup->sfmmu_srdp != NULL) { 1832 sfmmu_leave_srd(sfmmup); 1833 ASSERT(sfmmup->sfmmu_srdp == NULL); 1834 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) { 1835 if (sfmmup->sfmmu_hmeregion_links[i] != NULL) { 1836 kmem_free(sfmmup->sfmmu_hmeregion_links[i], 1837 SFMMU_L2_HMERLINKS_SIZE); 1838 sfmmup->sfmmu_hmeregion_links[i] = NULL; 1839 } 1840 } 1841 } 1842 sfmmu_free_sfmmu(sfmmup); 1843 1844 #ifdef DEBUG 1845 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) { 1846 ASSERT(sfmmup->sfmmu_hmeregion_links[i] == NULL); 1847 } 1848 #endif 1849 1850 kmem_cache_free(sfmmuid_cache, sfmmup); 1851 } 1852 1853 /* 1854 * Set up any translation structures, for the specified address space, 1855 * that are needed or preferred when the process is being swapped in. 1856 */ 1857 /* ARGSUSED */ 1858 void 1859 hat_swapin(struct hat *hat) 1860 { 1861 ASSERT(hat->sfmmu_xhat_provider == NULL); 1862 } 1863 1864 /* 1865 * Free all of the translation resources, for the specified address space, 1866 * that can be freed while the process is swapped out. Called from as_swapout. 1867 * Also, free up the ctx that this process was using. 1868 */ 1869 void 1870 hat_swapout(struct hat *sfmmup) 1871 { 1872 struct hmehash_bucket *hmebp; 1873 struct hme_blk *hmeblkp; 1874 struct hme_blk *pr_hblk = NULL; 1875 struct hme_blk *nx_hblk; 1876 int i; 1877 struct hme_blk *list = NULL; 1878 hatlock_t *hatlockp; 1879 struct tsb_info *tsbinfop; 1880 struct free_tsb { 1881 struct free_tsb *next; 1882 struct tsb_info *tsbinfop; 1883 }; /* free list of TSBs */ 1884 struct free_tsb *freelist, *last, *next; 1885 1886 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 1887 SFMMU_STAT(sf_swapout); 1888 1889 /* 1890 * There is no way to go from an as to all its translations in sfmmu. 1891 * Here is one of the times when we take the big hit and traverse 1892 * the hash looking for hme_blks to free up. Not only do we free up 1893 * this as hme_blks but all those that are free. We are obviously 1894 * swapping because we need memory so let's free up as much 1895 * as we can. 1896 * 1897 * Note that we don't flush TLB/TSB here -- it's not necessary 1898 * because: 1899 * 1) we free the ctx we're using and throw away the TSB(s); 1900 * 2) processes aren't runnable while being swapped out. 1901 */ 1902 ASSERT(sfmmup != KHATID); 1903 for (i = 0; i <= UHMEHASH_SZ; i++) { 1904 hmebp = &uhme_hash[i]; 1905 SFMMU_HASH_LOCK(hmebp); 1906 hmeblkp = hmebp->hmeblkp; 1907 pr_hblk = NULL; 1908 while (hmeblkp) { 1909 1910 ASSERT(!hmeblkp->hblk_xhat_bit); 1911 1912 if ((hmeblkp->hblk_tag.htag_id == sfmmup) && 1913 !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) { 1914 ASSERT(!hmeblkp->hblk_shared); 1915 (void) sfmmu_hblk_unload(sfmmup, hmeblkp, 1916 (caddr_t)get_hblk_base(hmeblkp), 1917 get_hblk_endaddr(hmeblkp), 1918 NULL, HAT_UNLOAD); 1919 } 1920 nx_hblk = hmeblkp->hblk_next; 1921 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 1922 ASSERT(!hmeblkp->hblk_lckcnt); 1923 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, 1924 &list, 0); 1925 } else { 1926 pr_hblk = hmeblkp; 1927 } 1928 hmeblkp = nx_hblk; 1929 } 1930 SFMMU_HASH_UNLOCK(hmebp); 1931 } 1932 1933 sfmmu_hblks_list_purge(&list, 0); 1934 1935 /* 1936 * Now free up the ctx so that others can reuse it. 1937 */ 1938 hatlockp = sfmmu_hat_enter(sfmmup); 1939 1940 sfmmu_invalidate_ctx(sfmmup); 1941 1942 /* 1943 * Free TSBs, but not tsbinfos, and set SWAPPED flag. 1944 * If TSBs were never swapped in, just return. 1945 * This implies that we don't support partial swapping 1946 * of TSBs -- either all are swapped out, or none are. 1947 * 1948 * We must hold the HAT lock here to prevent racing with another 1949 * thread trying to unmap TTEs from the TSB or running the post- 1950 * relocator after relocating the TSB's memory. Unfortunately, we 1951 * can't free memory while holding the HAT lock or we could 1952 * deadlock, so we build a list of TSBs to be freed after marking 1953 * the tsbinfos as swapped out and free them after dropping the 1954 * lock. 1955 */ 1956 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 1957 sfmmu_hat_exit(hatlockp); 1958 return; 1959 } 1960 1961 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED); 1962 last = freelist = NULL; 1963 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; 1964 tsbinfop = tsbinfop->tsb_next) { 1965 ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0); 1966 1967 /* 1968 * Cast the TSB into a struct free_tsb and put it on the free 1969 * list. 1970 */ 1971 if (freelist == NULL) { 1972 last = freelist = (struct free_tsb *)tsbinfop->tsb_va; 1973 } else { 1974 last->next = (struct free_tsb *)tsbinfop->tsb_va; 1975 last = last->next; 1976 } 1977 last->next = NULL; 1978 last->tsbinfop = tsbinfop; 1979 tsbinfop->tsb_flags |= TSB_SWAPPED; 1980 /* 1981 * Zero out the TTE to clear the valid bit. 1982 * Note we can't use a value like 0xbad because we want to 1983 * ensure diagnostic bits are NEVER set on TTEs that might 1984 * be loaded. The intent is to catch any invalid access 1985 * to the swapped TSB, such as a thread running with a valid 1986 * context without first calling sfmmu_tsb_swapin() to 1987 * allocate TSB memory. 1988 */ 1989 tsbinfop->tsb_tte.ll = 0; 1990 } 1991 1992 /* Now we can drop the lock and free the TSB memory. */ 1993 sfmmu_hat_exit(hatlockp); 1994 for (; freelist != NULL; freelist = next) { 1995 next = freelist->next; 1996 sfmmu_tsb_free(freelist->tsbinfop); 1997 } 1998 } 1999 2000 /* 2001 * Duplicate the translations of an as into another newas 2002 */ 2003 /* ARGSUSED */ 2004 int 2005 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len, 2006 uint_t flag) 2007 { 2008 sf_srd_t *srdp; 2009 sf_scd_t *scdp; 2010 int i; 2011 extern uint_t get_color_start(struct as *); 2012 2013 ASSERT(hat->sfmmu_xhat_provider == NULL); 2014 ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW) || 2015 (flag == HAT_DUP_SRD)); 2016 ASSERT(hat != ksfmmup); 2017 ASSERT(newhat != ksfmmup); 2018 ASSERT(flag != HAT_DUP_ALL || hat->sfmmu_srdp == newhat->sfmmu_srdp); 2019 2020 if (flag == HAT_DUP_COW) { 2021 panic("hat_dup: HAT_DUP_COW not supported"); 2022 } 2023 2024 if (flag == HAT_DUP_SRD && ((srdp = hat->sfmmu_srdp) != NULL)) { 2025 ASSERT(srdp->srd_evp != NULL); 2026 VN_HOLD(srdp->srd_evp); 2027 ASSERT(srdp->srd_refcnt > 0); 2028 newhat->sfmmu_srdp = srdp; 2029 atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1); 2030 } 2031 2032 /* 2033 * HAT_DUP_ALL flag is used after as duplication is done. 2034 */ 2035 if (flag == HAT_DUP_ALL && ((srdp = newhat->sfmmu_srdp) != NULL)) { 2036 ASSERT(newhat->sfmmu_srdp->srd_refcnt >= 2); 2037 newhat->sfmmu_rtteflags = hat->sfmmu_rtteflags; 2038 if (hat->sfmmu_flags & HAT_4MTEXT_FLAG) { 2039 newhat->sfmmu_flags |= HAT_4MTEXT_FLAG; 2040 } 2041 2042 /* check if need to join scd */ 2043 if ((scdp = hat->sfmmu_scdp) != NULL && 2044 newhat->sfmmu_scdp != scdp) { 2045 int ret; 2046 SF_RGNMAP_IS_SUBSET(&newhat->sfmmu_region_map, 2047 &scdp->scd_region_map, ret); 2048 ASSERT(ret); 2049 sfmmu_join_scd(scdp, newhat); 2050 ASSERT(newhat->sfmmu_scdp == scdp && 2051 scdp->scd_refcnt >= 2); 2052 for (i = 0; i < max_mmu_page_sizes; i++) { 2053 newhat->sfmmu_ismttecnt[i] = 2054 hat->sfmmu_ismttecnt[i]; 2055 newhat->sfmmu_scdismttecnt[i] = 2056 hat->sfmmu_scdismttecnt[i]; 2057 } 2058 } 2059 2060 sfmmu_check_page_sizes(newhat, 1); 2061 } 2062 2063 if (flag == HAT_DUP_ALL && consistent_coloring == 0 && 2064 update_proc_pgcolorbase_after_fork != 0) { 2065 hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as); 2066 } 2067 return (0); 2068 } 2069 2070 void 2071 hat_memload(struct hat *hat, caddr_t addr, struct page *pp, 2072 uint_t attr, uint_t flags) 2073 { 2074 hat_do_memload(hat, addr, pp, attr, flags, 2075 SFMMU_INVALID_SHMERID); 2076 } 2077 2078 void 2079 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp, 2080 uint_t attr, uint_t flags, hat_region_cookie_t rcookie) 2081 { 2082 uint_t rid; 2083 if (rcookie == HAT_INVALID_REGION_COOKIE || 2084 hat->sfmmu_xhat_provider != NULL) { 2085 hat_do_memload(hat, addr, pp, attr, flags, 2086 SFMMU_INVALID_SHMERID); 2087 return; 2088 } 2089 rid = (uint_t)((uint64_t)rcookie); 2090 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 2091 hat_do_memload(hat, addr, pp, attr, flags, rid); 2092 } 2093 2094 /* 2095 * Set up addr to map to page pp with protection prot. 2096 * As an optimization we also load the TSB with the 2097 * corresponding tte but it is no big deal if the tte gets kicked out. 2098 */ 2099 static void 2100 hat_do_memload(struct hat *hat, caddr_t addr, struct page *pp, 2101 uint_t attr, uint_t flags, uint_t rid) 2102 { 2103 tte_t tte; 2104 2105 2106 ASSERT(hat != NULL); 2107 ASSERT(PAGE_LOCKED(pp)); 2108 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET)); 2109 ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG)); 2110 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 2111 SFMMU_VALIDATE_HMERID(hat, rid, addr, MMU_PAGESIZE); 2112 2113 if (PP_ISFREE(pp)) { 2114 panic("hat_memload: loading a mapping to free page %p", 2115 (void *)pp); 2116 } 2117 2118 if (hat->sfmmu_xhat_provider) { 2119 /* no regions for xhats */ 2120 ASSERT(!SFMMU_IS_SHMERID_VALID(rid)); 2121 XHAT_MEMLOAD(hat, addr, pp, attr, flags); 2122 return; 2123 } 2124 2125 ASSERT((hat == ksfmmup) || 2126 AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock)); 2127 2128 if (flags & ~SFMMU_LOAD_ALLFLAG) 2129 cmn_err(CE_NOTE, "hat_memload: unsupported flags %d", 2130 flags & ~SFMMU_LOAD_ALLFLAG); 2131 2132 if (hat->sfmmu_rmstat) 2133 hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr); 2134 2135 #if defined(SF_ERRATA_57) 2136 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) && 2137 (addr < errata57_limit) && (attr & PROT_EXEC) && 2138 !(flags & HAT_LOAD_SHARE)) { 2139 cmn_err(CE_WARN, "hat_memload: illegal attempt to make user " 2140 " page executable"); 2141 attr &= ~PROT_EXEC; 2142 } 2143 #endif 2144 2145 sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K); 2146 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags, rid); 2147 2148 /* 2149 * Check TSB and TLB page sizes. 2150 */ 2151 if ((flags & HAT_LOAD_SHARE) == 0) { 2152 sfmmu_check_page_sizes(hat, 1); 2153 } 2154 } 2155 2156 /* 2157 * hat_devload can be called to map real memory (e.g. 2158 * /dev/kmem) and even though hat_devload will determine pf is 2159 * for memory, it will be unable to get a shared lock on the 2160 * page (because someone else has it exclusively) and will 2161 * pass dp = NULL. If tteload doesn't get a non-NULL 2162 * page pointer it can't cache memory. 2163 */ 2164 void 2165 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn, 2166 uint_t attr, int flags) 2167 { 2168 tte_t tte; 2169 struct page *pp = NULL; 2170 int use_lgpg = 0; 2171 2172 ASSERT(hat != NULL); 2173 2174 if (hat->sfmmu_xhat_provider) { 2175 XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags); 2176 return; 2177 } 2178 2179 ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG)); 2180 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 2181 ASSERT((hat == ksfmmup) || 2182 AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock)); 2183 if (len == 0) 2184 panic("hat_devload: zero len"); 2185 if (flags & ~SFMMU_LOAD_ALLFLAG) 2186 cmn_err(CE_NOTE, "hat_devload: unsupported flags %d", 2187 flags & ~SFMMU_LOAD_ALLFLAG); 2188 2189 #if defined(SF_ERRATA_57) 2190 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) && 2191 (addr < errata57_limit) && (attr & PROT_EXEC) && 2192 !(flags & HAT_LOAD_SHARE)) { 2193 cmn_err(CE_WARN, "hat_devload: illegal attempt to make user " 2194 " page executable"); 2195 attr &= ~PROT_EXEC; 2196 } 2197 #endif 2198 2199 /* 2200 * If it's a memory page find its pp 2201 */ 2202 if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) { 2203 pp = page_numtopp_nolock(pfn); 2204 if (pp == NULL) { 2205 flags |= HAT_LOAD_NOCONSIST; 2206 } else { 2207 if (PP_ISFREE(pp)) { 2208 panic("hat_memload: loading " 2209 "a mapping to free page %p", 2210 (void *)pp); 2211 } 2212 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) { 2213 panic("hat_memload: loading a mapping " 2214 "to unlocked relocatable page %p", 2215 (void *)pp); 2216 } 2217 ASSERT(len == MMU_PAGESIZE); 2218 } 2219 } 2220 2221 if (hat->sfmmu_rmstat) 2222 hat_resvstat(len, hat->sfmmu_as, addr); 2223 2224 if (flags & HAT_LOAD_NOCONSIST) { 2225 attr |= SFMMU_UNCACHEVTTE; 2226 use_lgpg = 1; 2227 } 2228 if (!pf_is_memory(pfn)) { 2229 attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC; 2230 use_lgpg = 1; 2231 switch (attr & HAT_ORDER_MASK) { 2232 case HAT_STRICTORDER: 2233 case HAT_UNORDERED_OK: 2234 /* 2235 * we set the side effect bit for all non 2236 * memory mappings unless merging is ok 2237 */ 2238 attr |= SFMMU_SIDEFFECT; 2239 break; 2240 case HAT_MERGING_OK: 2241 case HAT_LOADCACHING_OK: 2242 case HAT_STORECACHING_OK: 2243 break; 2244 default: 2245 panic("hat_devload: bad attr"); 2246 break; 2247 } 2248 } 2249 while (len) { 2250 if (!use_lgpg) { 2251 sfmmu_memtte(&tte, pfn, attr, TTE8K); 2252 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 2253 flags, SFMMU_INVALID_SHMERID); 2254 len -= MMU_PAGESIZE; 2255 addr += MMU_PAGESIZE; 2256 pfn++; 2257 continue; 2258 } 2259 /* 2260 * try to use large pages, check va/pa alignments 2261 * Note that 32M/256M page sizes are not (yet) supported. 2262 */ 2263 if ((len >= MMU_PAGESIZE4M) && 2264 !((uintptr_t)addr & MMU_PAGEOFFSET4M) && 2265 !(disable_large_pages & (1 << TTE4M)) && 2266 !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) { 2267 sfmmu_memtte(&tte, pfn, attr, TTE4M); 2268 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 2269 flags, SFMMU_INVALID_SHMERID); 2270 len -= MMU_PAGESIZE4M; 2271 addr += MMU_PAGESIZE4M; 2272 pfn += MMU_PAGESIZE4M / MMU_PAGESIZE; 2273 } else if ((len >= MMU_PAGESIZE512K) && 2274 !((uintptr_t)addr & MMU_PAGEOFFSET512K) && 2275 !(disable_large_pages & (1 << TTE512K)) && 2276 !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) { 2277 sfmmu_memtte(&tte, pfn, attr, TTE512K); 2278 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 2279 flags, SFMMU_INVALID_SHMERID); 2280 len -= MMU_PAGESIZE512K; 2281 addr += MMU_PAGESIZE512K; 2282 pfn += MMU_PAGESIZE512K / MMU_PAGESIZE; 2283 } else if ((len >= MMU_PAGESIZE64K) && 2284 !((uintptr_t)addr & MMU_PAGEOFFSET64K) && 2285 !(disable_large_pages & (1 << TTE64K)) && 2286 !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) { 2287 sfmmu_memtte(&tte, pfn, attr, TTE64K); 2288 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 2289 flags, SFMMU_INVALID_SHMERID); 2290 len -= MMU_PAGESIZE64K; 2291 addr += MMU_PAGESIZE64K; 2292 pfn += MMU_PAGESIZE64K / MMU_PAGESIZE; 2293 } else { 2294 sfmmu_memtte(&tte, pfn, attr, TTE8K); 2295 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, 2296 flags, SFMMU_INVALID_SHMERID); 2297 len -= MMU_PAGESIZE; 2298 addr += MMU_PAGESIZE; 2299 pfn++; 2300 } 2301 } 2302 2303 /* 2304 * Check TSB and TLB page sizes. 2305 */ 2306 if ((flags & HAT_LOAD_SHARE) == 0) { 2307 sfmmu_check_page_sizes(hat, 1); 2308 } 2309 } 2310 2311 void 2312 hat_memload_array(struct hat *hat, caddr_t addr, size_t len, 2313 struct page **pps, uint_t attr, uint_t flags) 2314 { 2315 hat_do_memload_array(hat, addr, len, pps, attr, flags, 2316 SFMMU_INVALID_SHMERID); 2317 } 2318 2319 void 2320 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len, 2321 struct page **pps, uint_t attr, uint_t flags, 2322 hat_region_cookie_t rcookie) 2323 { 2324 uint_t rid; 2325 if (rcookie == HAT_INVALID_REGION_COOKIE || 2326 hat->sfmmu_xhat_provider != NULL) { 2327 hat_do_memload_array(hat, addr, len, pps, attr, flags, 2328 SFMMU_INVALID_SHMERID); 2329 return; 2330 } 2331 rid = (uint_t)((uint64_t)rcookie); 2332 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 2333 hat_do_memload_array(hat, addr, len, pps, attr, flags, rid); 2334 } 2335 2336 /* 2337 * Map the largest extend possible out of the page array. The array may NOT 2338 * be in order. The largest possible mapping a page can have 2339 * is specified in the p_szc field. The p_szc field 2340 * cannot change as long as there any mappings (large or small) 2341 * to any of the pages that make up the large page. (ie. any 2342 * promotion/demotion of page size is not up to the hat but up to 2343 * the page free list manager). The array 2344 * should consist of properly aligned contigous pages that are 2345 * part of a big page for a large mapping to be created. 2346 */ 2347 static void 2348 hat_do_memload_array(struct hat *hat, caddr_t addr, size_t len, 2349 struct page **pps, uint_t attr, uint_t flags, uint_t rid) 2350 { 2351 int ttesz; 2352 size_t mapsz; 2353 pgcnt_t numpg, npgs; 2354 tte_t tte; 2355 page_t *pp; 2356 uint_t large_pages_disable; 2357 2358 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET)); 2359 SFMMU_VALIDATE_HMERID(hat, rid, addr, len); 2360 2361 if (hat->sfmmu_xhat_provider) { 2362 ASSERT(!SFMMU_IS_SHMERID_VALID(rid)); 2363 XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags); 2364 return; 2365 } 2366 2367 if (hat->sfmmu_rmstat) 2368 hat_resvstat(len, hat->sfmmu_as, addr); 2369 2370 #if defined(SF_ERRATA_57) 2371 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) && 2372 (addr < errata57_limit) && (attr & PROT_EXEC) && 2373 !(flags & HAT_LOAD_SHARE)) { 2374 cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make " 2375 "user page executable"); 2376 attr &= ~PROT_EXEC; 2377 } 2378 #endif 2379 2380 /* Get number of pages */ 2381 npgs = len >> MMU_PAGESHIFT; 2382 2383 if (flags & HAT_LOAD_SHARE) { 2384 large_pages_disable = disable_ism_large_pages; 2385 } else { 2386 large_pages_disable = disable_large_pages; 2387 } 2388 2389 if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) { 2390 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs, 2391 rid); 2392 return; 2393 } 2394 2395 while (npgs >= NHMENTS) { 2396 pp = *pps; 2397 for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) { 2398 /* 2399 * Check if this page size is disabled. 2400 */ 2401 if (large_pages_disable & (1 << ttesz)) 2402 continue; 2403 2404 numpg = TTEPAGES(ttesz); 2405 mapsz = numpg << MMU_PAGESHIFT; 2406 if ((npgs >= numpg) && 2407 IS_P2ALIGNED(addr, mapsz) && 2408 IS_P2ALIGNED(pp->p_pagenum, numpg)) { 2409 /* 2410 * At this point we have enough pages and 2411 * we know the virtual address and the pfn 2412 * are properly aligned. We still need 2413 * to check for physical contiguity but since 2414 * it is very likely that this is the case 2415 * we will assume they are so and undo 2416 * the request if necessary. It would 2417 * be great if we could get a hint flag 2418 * like HAT_CONTIG which would tell us 2419 * the pages are contigous for sure. 2420 */ 2421 sfmmu_memtte(&tte, (*pps)->p_pagenum, 2422 attr, ttesz); 2423 if (!sfmmu_tteload_array(hat, &tte, addr, 2424 pps, flags, rid)) { 2425 break; 2426 } 2427 } 2428 } 2429 if (ttesz == TTE8K) { 2430 /* 2431 * We were not able to map array using a large page 2432 * batch a hmeblk or fraction at a time. 2433 */ 2434 numpg = ((uintptr_t)addr >> MMU_PAGESHIFT) 2435 & (NHMENTS-1); 2436 numpg = NHMENTS - numpg; 2437 ASSERT(numpg <= npgs); 2438 mapsz = numpg * MMU_PAGESIZE; 2439 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, 2440 numpg, rid); 2441 } 2442 addr += mapsz; 2443 npgs -= numpg; 2444 pps += numpg; 2445 } 2446 2447 if (npgs) { 2448 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs, 2449 rid); 2450 } 2451 2452 /* 2453 * Check TSB and TLB page sizes. 2454 */ 2455 if ((flags & HAT_LOAD_SHARE) == 0) { 2456 sfmmu_check_page_sizes(hat, 1); 2457 } 2458 } 2459 2460 /* 2461 * Function tries to batch 8K pages into the same hme blk. 2462 */ 2463 static void 2464 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps, 2465 uint_t attr, uint_t flags, pgcnt_t npgs, uint_t rid) 2466 { 2467 tte_t tte; 2468 page_t *pp; 2469 struct hmehash_bucket *hmebp; 2470 struct hme_blk *hmeblkp; 2471 int index; 2472 2473 while (npgs) { 2474 /* 2475 * Acquire the hash bucket. 2476 */ 2477 hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K, 2478 rid); 2479 ASSERT(hmebp); 2480 2481 /* 2482 * Find the hment block. 2483 */ 2484 hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr, 2485 TTE8K, flags, rid); 2486 ASSERT(hmeblkp); 2487 2488 do { 2489 /* 2490 * Make the tte. 2491 */ 2492 pp = *pps; 2493 sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K); 2494 2495 /* 2496 * Add the translation. 2497 */ 2498 (void) sfmmu_tteload_addentry(hat, hmeblkp, &tte, 2499 vaddr, pps, flags, rid); 2500 2501 /* 2502 * Goto next page. 2503 */ 2504 pps++; 2505 npgs--; 2506 2507 /* 2508 * Goto next address. 2509 */ 2510 vaddr += MMU_PAGESIZE; 2511 2512 /* 2513 * Don't crossover into a different hmentblk. 2514 */ 2515 index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) & 2516 (NHMENTS-1)); 2517 2518 } while (index != 0 && npgs != 0); 2519 2520 /* 2521 * Release the hash bucket. 2522 */ 2523 2524 sfmmu_tteload_release_hashbucket(hmebp); 2525 } 2526 } 2527 2528 /* 2529 * Construct a tte for a page: 2530 * 2531 * tte_valid = 1 2532 * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only) 2533 * tte_size = size 2534 * tte_nfo = attr & HAT_NOFAULT 2535 * tte_ie = attr & HAT_STRUCTURE_LE 2536 * tte_hmenum = hmenum 2537 * tte_pahi = pp->p_pagenum >> TTE_PASHIFT; 2538 * tte_palo = pp->p_pagenum & TTE_PALOMASK; 2539 * tte_ref = 1 (optimization) 2540 * tte_wr_perm = attr & PROT_WRITE; 2541 * tte_no_sync = attr & HAT_NOSYNC 2542 * tte_lock = attr & SFMMU_LOCKTTE 2543 * tte_cp = !(attr & SFMMU_UNCACHEPTTE) 2544 * tte_cv = !(attr & SFMMU_UNCACHEVTTE) 2545 * tte_e = attr & SFMMU_SIDEFFECT 2546 * tte_priv = !(attr & PROT_USER) 2547 * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt) 2548 * tte_glb = 0 2549 */ 2550 void 2551 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz) 2552 { 2553 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 2554 2555 ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */); 2556 ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */); 2557 2558 if (TTE_IS_NOSYNC(ttep)) { 2559 TTE_SET_REF(ttep); 2560 if (TTE_IS_WRITABLE(ttep)) { 2561 TTE_SET_MOD(ttep); 2562 } 2563 } 2564 if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) { 2565 panic("sfmmu_memtte: can't set both NFO and EXEC bits"); 2566 } 2567 } 2568 2569 /* 2570 * This function will add a translation to the hme_blk and allocate the 2571 * hme_blk if one does not exist. 2572 * If a page structure is specified then it will add the 2573 * corresponding hment to the mapping list. 2574 * It will also update the hmenum field for the tte. 2575 * 2576 * Currently this function is only used for kernel mappings. 2577 * So pass invalid region to sfmmu_tteload_array(). 2578 */ 2579 void 2580 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp, 2581 uint_t flags) 2582 { 2583 ASSERT(sfmmup == ksfmmup); 2584 (void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags, 2585 SFMMU_INVALID_SHMERID); 2586 } 2587 2588 /* 2589 * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB. 2590 * Assumes that a particular page size may only be resident in one TSB. 2591 */ 2592 static void 2593 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz) 2594 { 2595 struct tsb_info *tsbinfop = NULL; 2596 uint64_t tag; 2597 struct tsbe *tsbe_addr; 2598 uint64_t tsb_base; 2599 uint_t tsb_size; 2600 int vpshift = MMU_PAGESHIFT; 2601 int phys = 0; 2602 2603 if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */ 2604 phys = ktsb_phys; 2605 if (ttesz >= TTE4M) { 2606 #ifndef sun4v 2607 ASSERT((ttesz != TTE32M) && (ttesz != TTE256M)); 2608 #endif 2609 tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base; 2610 tsb_size = ktsb4m_szcode; 2611 } else { 2612 tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base; 2613 tsb_size = ktsb_szcode; 2614 } 2615 } else { 2616 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz); 2617 2618 /* 2619 * If there isn't a TSB for this page size, or the TSB is 2620 * swapped out, there is nothing to do. Note that the latter 2621 * case seems impossible but can occur if hat_pageunload() 2622 * is called on an ISM mapping while the process is swapped 2623 * out. 2624 */ 2625 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED)) 2626 return; 2627 2628 /* 2629 * If another thread is in the middle of relocating a TSB 2630 * we can't unload the entry so set a flag so that the 2631 * TSB will be flushed before it can be accessed by the 2632 * process. 2633 */ 2634 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) { 2635 if (ttep == NULL) 2636 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED; 2637 return; 2638 } 2639 #if defined(UTSB_PHYS) 2640 phys = 1; 2641 tsb_base = (uint64_t)tsbinfop->tsb_pa; 2642 #else 2643 tsb_base = (uint64_t)tsbinfop->tsb_va; 2644 #endif 2645 tsb_size = tsbinfop->tsb_szc; 2646 } 2647 if (ttesz >= TTE4M) 2648 vpshift = MMU_PAGESHIFT4M; 2649 2650 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size); 2651 tag = sfmmu_make_tsbtag(vaddr); 2652 2653 if (ttep == NULL) { 2654 sfmmu_unload_tsbe(tsbe_addr, tag, phys); 2655 } else { 2656 if (ttesz >= TTE4M) { 2657 SFMMU_STAT(sf_tsb_load4m); 2658 } else { 2659 SFMMU_STAT(sf_tsb_load8k); 2660 } 2661 2662 sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys); 2663 } 2664 } 2665 2666 /* 2667 * Unmap all entries from [start, end) matching the given page size. 2668 * 2669 * This function is used primarily to unmap replicated 64K or 512K entries 2670 * from the TSB that are inserted using the base page size TSB pointer, but 2671 * it may also be called to unmap a range of addresses from the TSB. 2672 */ 2673 void 2674 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz) 2675 { 2676 struct tsb_info *tsbinfop; 2677 uint64_t tag; 2678 struct tsbe *tsbe_addr; 2679 caddr_t vaddr; 2680 uint64_t tsb_base; 2681 int vpshift, vpgsz; 2682 uint_t tsb_size; 2683 int phys = 0; 2684 2685 /* 2686 * Assumptions: 2687 * If ttesz == 8K, 64K or 512K, we walk through the range 8K 2688 * at a time shooting down any valid entries we encounter. 2689 * 2690 * If ttesz >= 4M we walk the range 4M at a time shooting 2691 * down any valid mappings we find. 2692 */ 2693 if (sfmmup == ksfmmup) { 2694 phys = ktsb_phys; 2695 if (ttesz >= TTE4M) { 2696 #ifndef sun4v 2697 ASSERT((ttesz != TTE32M) && (ttesz != TTE256M)); 2698 #endif 2699 tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base; 2700 tsb_size = ktsb4m_szcode; 2701 } else { 2702 tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base; 2703 tsb_size = ktsb_szcode; 2704 } 2705 } else { 2706 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz); 2707 2708 /* 2709 * If there isn't a TSB for this page size, or the TSB is 2710 * swapped out, there is nothing to do. Note that the latter 2711 * case seems impossible but can occur if hat_pageunload() 2712 * is called on an ISM mapping while the process is swapped 2713 * out. 2714 */ 2715 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED)) 2716 return; 2717 2718 /* 2719 * If another thread is in the middle of relocating a TSB 2720 * we can't unload the entry so set a flag so that the 2721 * TSB will be flushed before it can be accessed by the 2722 * process. 2723 */ 2724 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) { 2725 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED; 2726 return; 2727 } 2728 #if defined(UTSB_PHYS) 2729 phys = 1; 2730 tsb_base = (uint64_t)tsbinfop->tsb_pa; 2731 #else 2732 tsb_base = (uint64_t)tsbinfop->tsb_va; 2733 #endif 2734 tsb_size = tsbinfop->tsb_szc; 2735 } 2736 if (ttesz >= TTE4M) { 2737 vpshift = MMU_PAGESHIFT4M; 2738 vpgsz = MMU_PAGESIZE4M; 2739 } else { 2740 vpshift = MMU_PAGESHIFT; 2741 vpgsz = MMU_PAGESIZE; 2742 } 2743 2744 for (vaddr = start; vaddr < end; vaddr += vpgsz) { 2745 tag = sfmmu_make_tsbtag(vaddr); 2746 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size); 2747 sfmmu_unload_tsbe(tsbe_addr, tag, phys); 2748 } 2749 } 2750 2751 /* 2752 * Select the optimum TSB size given the number of mappings 2753 * that need to be cached. 2754 */ 2755 static int 2756 sfmmu_select_tsb_szc(pgcnt_t pgcnt) 2757 { 2758 int szc = 0; 2759 2760 #ifdef DEBUG 2761 if (tsb_grow_stress) { 2762 uint32_t randval = (uint32_t)gettick() >> 4; 2763 return (randval % (tsb_max_growsize + 1)); 2764 } 2765 #endif /* DEBUG */ 2766 2767 while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc))) 2768 szc++; 2769 return (szc); 2770 } 2771 2772 /* 2773 * This function will add a translation to the hme_blk and allocate the 2774 * hme_blk if one does not exist. 2775 * If a page structure is specified then it will add the 2776 * corresponding hment to the mapping list. 2777 * It will also update the hmenum field for the tte. 2778 * Furthermore, it attempts to create a large page translation 2779 * for <addr,hat> at page array pps. It assumes addr and first 2780 * pp is correctly aligned. It returns 0 if successful and 1 otherwise. 2781 */ 2782 static int 2783 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr, 2784 page_t **pps, uint_t flags, uint_t rid) 2785 { 2786 struct hmehash_bucket *hmebp; 2787 struct hme_blk *hmeblkp; 2788 int ret; 2789 uint_t size; 2790 2791 /* 2792 * Get mapping size. 2793 */ 2794 size = TTE_CSZ(ttep); 2795 ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size))); 2796 2797 /* 2798 * Acquire the hash bucket. 2799 */ 2800 hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size, rid); 2801 ASSERT(hmebp); 2802 2803 /* 2804 * Find the hment block. 2805 */ 2806 hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags, 2807 rid); 2808 ASSERT(hmeblkp); 2809 2810 /* 2811 * Add the translation. 2812 */ 2813 ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags, 2814 rid); 2815 2816 /* 2817 * Release the hash bucket. 2818 */ 2819 sfmmu_tteload_release_hashbucket(hmebp); 2820 2821 return (ret); 2822 } 2823 2824 /* 2825 * Function locks and returns a pointer to the hash bucket for vaddr and size. 2826 */ 2827 static struct hmehash_bucket * 2828 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size, 2829 uint_t rid) 2830 { 2831 struct hmehash_bucket *hmebp; 2832 int hmeshift; 2833 void *htagid = sfmmutohtagid(sfmmup, rid); 2834 2835 ASSERT(htagid != NULL); 2836 2837 hmeshift = HME_HASH_SHIFT(size); 2838 2839 hmebp = HME_HASH_FUNCTION(htagid, vaddr, hmeshift); 2840 2841 SFMMU_HASH_LOCK(hmebp); 2842 2843 return (hmebp); 2844 } 2845 2846 /* 2847 * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the 2848 * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is 2849 * allocated. 2850 */ 2851 static struct hme_blk * 2852 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp, 2853 caddr_t vaddr, uint_t size, uint_t flags, uint_t rid) 2854 { 2855 hmeblk_tag hblktag; 2856 int hmeshift; 2857 struct hme_blk *hmeblkp, *pr_hblk, *list = NULL; 2858 2859 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size)); 2860 2861 hblktag.htag_id = sfmmutohtagid(sfmmup, rid); 2862 ASSERT(hblktag.htag_id != NULL); 2863 hmeshift = HME_HASH_SHIFT(size); 2864 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift); 2865 hblktag.htag_rehash = HME_HASH_REHASH(size); 2866 hblktag.htag_rid = rid; 2867 2868 ttearray_realloc: 2869 2870 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list); 2871 2872 /* 2873 * We block until hblk_reserve_lock is released; it's held by 2874 * the thread, temporarily using hblk_reserve, until hblk_reserve is 2875 * replaced by a hblk from sfmmu8_cache. 2876 */ 2877 if (hmeblkp == (struct hme_blk *)hblk_reserve && 2878 hblk_reserve_thread != curthread) { 2879 SFMMU_HASH_UNLOCK(hmebp); 2880 mutex_enter(&hblk_reserve_lock); 2881 mutex_exit(&hblk_reserve_lock); 2882 SFMMU_STAT(sf_hblk_reserve_hit); 2883 SFMMU_HASH_LOCK(hmebp); 2884 goto ttearray_realloc; 2885 } 2886 2887 if (hmeblkp == NULL) { 2888 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size, 2889 hblktag, flags, rid); 2890 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared); 2891 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared); 2892 } else { 2893 /* 2894 * It is possible for 8k and 64k hblks to collide since they 2895 * have the same rehash value. This is because we 2896 * lazily free hblks and 8K/64K blks could be lingering. 2897 * If we find size mismatch we free the block and & try again. 2898 */ 2899 if (get_hblk_ttesz(hmeblkp) != size) { 2900 ASSERT(!hmeblkp->hblk_vcnt); 2901 ASSERT(!hmeblkp->hblk_hmecnt); 2902 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, 2903 &list, 0); 2904 goto ttearray_realloc; 2905 } 2906 if (hmeblkp->hblk_shw_bit) { 2907 /* 2908 * if the hblk was previously used as a shadow hblk then 2909 * we will change it to a normal hblk 2910 */ 2911 ASSERT(!hmeblkp->hblk_shared); 2912 if (hmeblkp->hblk_shw_mask) { 2913 sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp); 2914 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 2915 goto ttearray_realloc; 2916 } else { 2917 hmeblkp->hblk_shw_bit = 0; 2918 } 2919 } 2920 SFMMU_STAT(sf_hblk_hit); 2921 } 2922 2923 /* 2924 * hat_memload() should never call kmem_cache_free() for kernel hmeblks; 2925 * see block comment showing the stacktrace in sfmmu_hblk_alloc(); 2926 * set the flag parameter to 1 so that sfmmu_hblks_list_purge() will 2927 * just add these hmeblks to the per-cpu pending queue. 2928 */ 2929 sfmmu_hblks_list_purge(&list, 1); 2930 2931 ASSERT(get_hblk_ttesz(hmeblkp) == size); 2932 ASSERT(!hmeblkp->hblk_shw_bit); 2933 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared); 2934 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared); 2935 ASSERT(hmeblkp->hblk_tag.htag_rid == rid); 2936 2937 return (hmeblkp); 2938 } 2939 2940 /* 2941 * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1 2942 * otherwise. 2943 */ 2944 static int 2945 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep, 2946 caddr_t vaddr, page_t **pps, uint_t flags, uint_t rid) 2947 { 2948 page_t *pp = *pps; 2949 int hmenum, size, remap; 2950 tte_t tteold, flush_tte; 2951 #ifdef DEBUG 2952 tte_t orig_old; 2953 #endif /* DEBUG */ 2954 struct sf_hment *sfhme; 2955 kmutex_t *pml, *pmtx; 2956 hatlock_t *hatlockp; 2957 int myflt; 2958 2959 /* 2960 * remove this panic when we decide to let user virtual address 2961 * space be >= USERLIMIT. 2962 */ 2963 if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT) 2964 panic("user addr %p in kernel space", (void *)vaddr); 2965 #if defined(TTE_IS_GLOBAL) 2966 if (TTE_IS_GLOBAL(ttep)) 2967 panic("sfmmu_tteload: creating global tte"); 2968 #endif 2969 2970 #ifdef DEBUG 2971 if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) && 2972 !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans) 2973 panic("sfmmu_tteload: non cacheable memory tte"); 2974 #endif /* DEBUG */ 2975 2976 /* don't simulate dirty bit for writeable ISM/DISM mappings */ 2977 if ((flags & HAT_LOAD_SHARE) && TTE_IS_WRITABLE(ttep)) { 2978 TTE_SET_REF(ttep); 2979 TTE_SET_MOD(ttep); 2980 } 2981 2982 if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) || 2983 !TTE_IS_MOD(ttep)) { 2984 /* 2985 * Don't load TSB for dummy as in ISM. Also don't preload 2986 * the TSB if the TTE isn't writable since we're likely to 2987 * fault on it again -- preloading can be fairly expensive. 2988 */ 2989 flags |= SFMMU_NO_TSBLOAD; 2990 } 2991 2992 size = TTE_CSZ(ttep); 2993 switch (size) { 2994 case TTE8K: 2995 SFMMU_STAT(sf_tteload8k); 2996 break; 2997 case TTE64K: 2998 SFMMU_STAT(sf_tteload64k); 2999 break; 3000 case TTE512K: 3001 SFMMU_STAT(sf_tteload512k); 3002 break; 3003 case TTE4M: 3004 SFMMU_STAT(sf_tteload4m); 3005 break; 3006 case (TTE32M): 3007 SFMMU_STAT(sf_tteload32m); 3008 ASSERT(mmu_page_sizes == max_mmu_page_sizes); 3009 break; 3010 case (TTE256M): 3011 SFMMU_STAT(sf_tteload256m); 3012 ASSERT(mmu_page_sizes == max_mmu_page_sizes); 3013 break; 3014 } 3015 3016 ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size))); 3017 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size)); 3018 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared); 3019 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared); 3020 3021 HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum); 3022 3023 /* 3024 * Need to grab mlist lock here so that pageunload 3025 * will not change tte behind us. 3026 */ 3027 if (pp) { 3028 pml = sfmmu_mlist_enter(pp); 3029 } 3030 3031 sfmmu_copytte(&sfhme->hme_tte, &tteold); 3032 /* 3033 * Look for corresponding hment and if valid verify 3034 * pfns are equal. 3035 */ 3036 remap = TTE_IS_VALID(&tteold); 3037 if (remap) { 3038 pfn_t new_pfn, old_pfn; 3039 3040 old_pfn = TTE_TO_PFN(vaddr, &tteold); 3041 new_pfn = TTE_TO_PFN(vaddr, ttep); 3042 3043 if (flags & HAT_LOAD_REMAP) { 3044 /* make sure we are remapping same type of pages */ 3045 if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) { 3046 panic("sfmmu_tteload - tte remap io<->memory"); 3047 } 3048 if (old_pfn != new_pfn && 3049 (pp != NULL || sfhme->hme_page != NULL)) { 3050 panic("sfmmu_tteload - tte remap pp != NULL"); 3051 } 3052 } else if (old_pfn != new_pfn) { 3053 panic("sfmmu_tteload - tte remap, hmeblkp 0x%p", 3054 (void *)hmeblkp); 3055 } 3056 ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep)); 3057 } 3058 3059 if (pp) { 3060 if (size == TTE8K) { 3061 #ifdef VAC 3062 /* 3063 * Handle VAC consistency 3064 */ 3065 if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) { 3066 sfmmu_vac_conflict(sfmmup, vaddr, pp); 3067 } 3068 #endif 3069 3070 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) { 3071 pmtx = sfmmu_page_enter(pp); 3072 PP_CLRRO(pp); 3073 sfmmu_page_exit(pmtx); 3074 } else if (!PP_ISMAPPED(pp) && 3075 (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) { 3076 pmtx = sfmmu_page_enter(pp); 3077 if (!(PP_ISMOD(pp))) { 3078 PP_SETRO(pp); 3079 } 3080 sfmmu_page_exit(pmtx); 3081 } 3082 3083 } else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) { 3084 /* 3085 * sfmmu_pagearray_setup failed so return 3086 */ 3087 sfmmu_mlist_exit(pml); 3088 return (1); 3089 } 3090 } 3091 3092 /* 3093 * Make sure hment is not on a mapping list. 3094 */ 3095 ASSERT(remap || (sfhme->hme_page == NULL)); 3096 3097 /* if it is not a remap then hme->next better be NULL */ 3098 ASSERT((!remap) ? sfhme->hme_next == NULL : 1); 3099 3100 if (flags & HAT_LOAD_LOCK) { 3101 if ((hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) { 3102 panic("too high lckcnt-hmeblk %p", 3103 (void *)hmeblkp); 3104 } 3105 atomic_add_32(&hmeblkp->hblk_lckcnt, 1); 3106 3107 HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK); 3108 } 3109 3110 #ifdef VAC 3111 if (pp && PP_ISNC(pp)) { 3112 /* 3113 * If the physical page is marked to be uncacheable, like 3114 * by a vac conflict, make sure the new mapping is also 3115 * uncacheable. 3116 */ 3117 TTE_CLR_VCACHEABLE(ttep); 3118 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR); 3119 } 3120 #endif 3121 ttep->tte_hmenum = hmenum; 3122 3123 #ifdef DEBUG 3124 orig_old = tteold; 3125 #endif /* DEBUG */ 3126 3127 while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) { 3128 if ((sfmmup == KHATID) && 3129 (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) { 3130 sfmmu_copytte(&sfhme->hme_tte, &tteold); 3131 } 3132 #ifdef DEBUG 3133 chk_tte(&orig_old, &tteold, ttep, hmeblkp); 3134 #endif /* DEBUG */ 3135 } 3136 ASSERT(TTE_IS_VALID(&sfhme->hme_tte)); 3137 3138 if (!TTE_IS_VALID(&tteold)) { 3139 3140 atomic_add_16(&hmeblkp->hblk_vcnt, 1); 3141 if (rid == SFMMU_INVALID_SHMERID) { 3142 atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1); 3143 } else { 3144 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 3145 sf_region_t *rgnp = srdp->srd_hmergnp[rid]; 3146 /* 3147 * We already accounted for region ttecnt's in sfmmu 3148 * during hat_join_region() processing. Here we 3149 * only update ttecnt's in region struture. 3150 */ 3151 atomic_add_long(&rgnp->rgn_ttecnt[size], 1); 3152 } 3153 } 3154 3155 myflt = (astosfmmu(curthread->t_procp->p_as) == sfmmup); 3156 if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 && 3157 sfmmup != ksfmmup) { 3158 uchar_t tteflag = 1 << size; 3159 if (rid == SFMMU_INVALID_SHMERID) { 3160 if (!(sfmmup->sfmmu_tteflags & tteflag)) { 3161 hatlockp = sfmmu_hat_enter(sfmmup); 3162 sfmmup->sfmmu_tteflags |= tteflag; 3163 sfmmu_hat_exit(hatlockp); 3164 } 3165 } else if (!(sfmmup->sfmmu_rtteflags & tteflag)) { 3166 hatlockp = sfmmu_hat_enter(sfmmup); 3167 sfmmup->sfmmu_rtteflags |= tteflag; 3168 sfmmu_hat_exit(hatlockp); 3169 } 3170 /* 3171 * Update the current CPU tsbmiss area, so the current thread 3172 * won't need to take the tsbmiss for the new pagesize. 3173 * The other threads in the process will update their tsb 3174 * miss area lazily in sfmmu_tsbmiss_exception() when they 3175 * fail to find the translation for a newly added pagesize. 3176 */ 3177 if (size > TTE64K && myflt) { 3178 struct tsbmiss *tsbmp; 3179 kpreempt_disable(); 3180 tsbmp = &tsbmiss_area[CPU->cpu_id]; 3181 if (rid == SFMMU_INVALID_SHMERID) { 3182 if (!(tsbmp->uhat_tteflags & tteflag)) { 3183 tsbmp->uhat_tteflags |= tteflag; 3184 } 3185 } else { 3186 if (!(tsbmp->uhat_rtteflags & tteflag)) { 3187 tsbmp->uhat_rtteflags |= tteflag; 3188 } 3189 } 3190 kpreempt_enable(); 3191 } 3192 } 3193 3194 if (size >= TTE4M && (flags & HAT_LOAD_TEXT) && 3195 !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) { 3196 hatlockp = sfmmu_hat_enter(sfmmup); 3197 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG); 3198 sfmmu_hat_exit(hatlockp); 3199 } 3200 3201 flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) & 3202 hw_tte.tte_intlo; 3203 flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) & 3204 hw_tte.tte_inthi; 3205 3206 if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) { 3207 /* 3208 * If remap and new tte differs from old tte we need 3209 * to sync the mod bit and flush TLB/TSB. We don't 3210 * need to sync ref bit because we currently always set 3211 * ref bit in tteload. 3212 */ 3213 ASSERT(TTE_IS_REF(ttep)); 3214 if (TTE_IS_MOD(&tteold)) { 3215 sfmmu_ttesync(sfmmup, vaddr, &tteold, pp); 3216 } 3217 /* 3218 * hwtte bits shouldn't change for SRD hmeblks as long as SRD 3219 * hmes are only used for read only text. Adding this code for 3220 * completeness and future use of shared hmeblks with writable 3221 * mappings of VMODSORT vnodes. 3222 */ 3223 if (hmeblkp->hblk_shared) { 3224 cpuset_t cpuset = sfmmu_rgntlb_demap(vaddr, 3225 sfmmup->sfmmu_srdp->srd_hmergnp[rid], hmeblkp, 1); 3226 xt_sync(cpuset); 3227 SFMMU_STAT_ADD(sf_region_remap_demap, 1); 3228 } else { 3229 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0); 3230 xt_sync(sfmmup->sfmmu_cpusran); 3231 } 3232 } 3233 3234 if ((flags & SFMMU_NO_TSBLOAD) == 0) { 3235 /* 3236 * We only preload 8K and 4M mappings into the TSB, since 3237 * 64K and 512K mappings are replicated and hence don't 3238 * have a single, unique TSB entry. Ditto for 32M/256M. 3239 */ 3240 if (size == TTE8K || size == TTE4M) { 3241 sf_scd_t *scdp; 3242 hatlockp = sfmmu_hat_enter(sfmmup); 3243 /* 3244 * Don't preload private TSB if the mapping is used 3245 * by the shctx in the SCD. 3246 */ 3247 scdp = sfmmup->sfmmu_scdp; 3248 if (rid == SFMMU_INVALID_SHMERID || scdp == NULL || 3249 !SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) { 3250 sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, 3251 size); 3252 } 3253 sfmmu_hat_exit(hatlockp); 3254 } 3255 } 3256 if (pp) { 3257 if (!remap) { 3258 HME_ADD(sfhme, pp); 3259 atomic_add_16(&hmeblkp->hblk_hmecnt, 1); 3260 ASSERT(hmeblkp->hblk_hmecnt > 0); 3261 3262 /* 3263 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS) 3264 * see pageunload() for comment. 3265 */ 3266 } 3267 sfmmu_mlist_exit(pml); 3268 } 3269 3270 return (0); 3271 } 3272 /* 3273 * Function unlocks hash bucket. 3274 */ 3275 static void 3276 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp) 3277 { 3278 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 3279 SFMMU_HASH_UNLOCK(hmebp); 3280 } 3281 3282 /* 3283 * function which checks and sets up page array for a large 3284 * translation. Will set p_vcolor, p_index, p_ro fields. 3285 * Assumes addr and pfnum of first page are properly aligned. 3286 * Will check for physical contiguity. If check fails it return 3287 * non null. 3288 */ 3289 static int 3290 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap) 3291 { 3292 int i, index, ttesz; 3293 pfn_t pfnum; 3294 pgcnt_t npgs; 3295 page_t *pp, *pp1; 3296 kmutex_t *pmtx; 3297 #ifdef VAC 3298 int osz; 3299 int cflags = 0; 3300 int vac_err = 0; 3301 #endif 3302 int newidx = 0; 3303 3304 ttesz = TTE_CSZ(ttep); 3305 3306 ASSERT(ttesz > TTE8K); 3307 3308 npgs = TTEPAGES(ttesz); 3309 index = PAGESZ_TO_INDEX(ttesz); 3310 3311 pfnum = (*pps)->p_pagenum; 3312 ASSERT(IS_P2ALIGNED(pfnum, npgs)); 3313 3314 /* 3315 * Save the first pp so we can do HAT_TMPNC at the end. 3316 */ 3317 pp1 = *pps; 3318 #ifdef VAC 3319 osz = fnd_mapping_sz(pp1); 3320 #endif 3321 3322 for (i = 0; i < npgs; i++, pps++) { 3323 pp = *pps; 3324 ASSERT(PAGE_LOCKED(pp)); 3325 ASSERT(pp->p_szc >= ttesz); 3326 ASSERT(pp->p_szc == pp1->p_szc); 3327 ASSERT(sfmmu_mlist_held(pp)); 3328 3329 /* 3330 * XXX is it possible to maintain P_RO on the root only? 3331 */ 3332 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) { 3333 pmtx = sfmmu_page_enter(pp); 3334 PP_CLRRO(pp); 3335 sfmmu_page_exit(pmtx); 3336 } else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) && 3337 !PP_ISMOD(pp)) { 3338 pmtx = sfmmu_page_enter(pp); 3339 if (!(PP_ISMOD(pp))) { 3340 PP_SETRO(pp); 3341 } 3342 sfmmu_page_exit(pmtx); 3343 } 3344 3345 /* 3346 * If this is a remap we skip vac & contiguity checks. 3347 */ 3348 if (remap) 3349 continue; 3350 3351 /* 3352 * set p_vcolor and detect any vac conflicts. 3353 */ 3354 #ifdef VAC 3355 if (vac_err == 0) { 3356 vac_err = sfmmu_vacconflict_array(addr, pp, &cflags); 3357 3358 } 3359 #endif 3360 3361 /* 3362 * Save current index in case we need to undo it. 3363 * Note: "PAGESZ_TO_INDEX(sz) (1 << (sz))" 3364 * "SFMMU_INDEX_SHIFT 6" 3365 * "SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1)" 3366 * "PP_MAPINDEX(p_index) (p_index & SFMMU_INDEX_MASK)" 3367 * 3368 * So: index = PAGESZ_TO_INDEX(ttesz); 3369 * if ttesz == 1 then index = 0x2 3370 * 2 then index = 0x4 3371 * 3 then index = 0x8 3372 * 4 then index = 0x10 3373 * 5 then index = 0x20 3374 * The code below checks if it's a new pagesize (ie, newidx) 3375 * in case we need to take it back out of p_index, 3376 * and then or's the new index into the existing index. 3377 */ 3378 if ((PP_MAPINDEX(pp) & index) == 0) 3379 newidx = 1; 3380 pp->p_index = (PP_MAPINDEX(pp) | index); 3381 3382 /* 3383 * contiguity check 3384 */ 3385 if (pp->p_pagenum != pfnum) { 3386 /* 3387 * If we fail the contiguity test then 3388 * the only thing we need to fix is the p_index field. 3389 * We might get a few extra flushes but since this 3390 * path is rare that is ok. The p_ro field will 3391 * get automatically fixed on the next tteload to 3392 * the page. NO TNC bit is set yet. 3393 */ 3394 while (i >= 0) { 3395 pp = *pps; 3396 if (newidx) 3397 pp->p_index = (PP_MAPINDEX(pp) & 3398 ~index); 3399 pps--; 3400 i--; 3401 } 3402 return (1); 3403 } 3404 pfnum++; 3405 addr += MMU_PAGESIZE; 3406 } 3407 3408 #ifdef VAC 3409 if (vac_err) { 3410 if (ttesz > osz) { 3411 /* 3412 * There are some smaller mappings that causes vac 3413 * conflicts. Convert all existing small mappings to 3414 * TNC. 3415 */ 3416 SFMMU_STAT_ADD(sf_uncache_conflict, npgs); 3417 sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH, 3418 npgs); 3419 } else { 3420 /* EMPTY */ 3421 /* 3422 * If there exists an big page mapping, 3423 * that means the whole existing big page 3424 * has TNC setting already. No need to covert to 3425 * TNC again. 3426 */ 3427 ASSERT(PP_ISTNC(pp1)); 3428 } 3429 } 3430 #endif /* VAC */ 3431 3432 return (0); 3433 } 3434 3435 #ifdef VAC 3436 /* 3437 * Routine that detects vac consistency for a large page. It also 3438 * sets virtual color for all pp's for this big mapping. 3439 */ 3440 static int 3441 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags) 3442 { 3443 int vcolor, ocolor; 3444 3445 ASSERT(sfmmu_mlist_held(pp)); 3446 3447 if (PP_ISNC(pp)) { 3448 return (HAT_TMPNC); 3449 } 3450 3451 vcolor = addr_to_vcolor(addr); 3452 if (PP_NEWPAGE(pp)) { 3453 PP_SET_VCOLOR(pp, vcolor); 3454 return (0); 3455 } 3456 3457 ocolor = PP_GET_VCOLOR(pp); 3458 if (ocolor == vcolor) { 3459 return (0); 3460 } 3461 3462 if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) { 3463 /* 3464 * Previous user of page had a differnet color 3465 * but since there are no current users 3466 * we just flush the cache and change the color. 3467 * As an optimization for large pages we flush the 3468 * entire cache of that color and set a flag. 3469 */ 3470 SFMMU_STAT(sf_pgcolor_conflict); 3471 if (!CacheColor_IsFlushed(*cflags, ocolor)) { 3472 CacheColor_SetFlushed(*cflags, ocolor); 3473 sfmmu_cache_flushcolor(ocolor, pp->p_pagenum); 3474 } 3475 PP_SET_VCOLOR(pp, vcolor); 3476 return (0); 3477 } 3478 3479 /* 3480 * We got a real conflict with a current mapping. 3481 * set flags to start unencaching all mappings 3482 * and return failure so we restart looping 3483 * the pp array from the beginning. 3484 */ 3485 return (HAT_TMPNC); 3486 } 3487 #endif /* VAC */ 3488 3489 /* 3490 * creates a large page shadow hmeblk for a tte. 3491 * The purpose of this routine is to allow us to do quick unloads because 3492 * the vm layer can easily pass a very large but sparsely populated range. 3493 */ 3494 static struct hme_blk * 3495 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags) 3496 { 3497 struct hmehash_bucket *hmebp; 3498 hmeblk_tag hblktag; 3499 int hmeshift, size, vshift; 3500 uint_t shw_mask, newshw_mask; 3501 struct hme_blk *hmeblkp; 3502 3503 ASSERT(sfmmup != KHATID); 3504 if (mmu_page_sizes == max_mmu_page_sizes) { 3505 ASSERT(ttesz < TTE256M); 3506 } else { 3507 ASSERT(ttesz < TTE4M); 3508 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0); 3509 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0); 3510 } 3511 3512 if (ttesz == TTE8K) { 3513 size = TTE512K; 3514 } else { 3515 size = ++ttesz; 3516 } 3517 3518 hblktag.htag_id = sfmmup; 3519 hmeshift = HME_HASH_SHIFT(size); 3520 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift); 3521 hblktag.htag_rehash = HME_HASH_REHASH(size); 3522 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 3523 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift); 3524 3525 SFMMU_HASH_LOCK(hmebp); 3526 3527 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 3528 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve); 3529 if (hmeblkp == NULL) { 3530 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size, 3531 hblktag, flags, SFMMU_INVALID_SHMERID); 3532 } 3533 ASSERT(hmeblkp); 3534 if (!hmeblkp->hblk_shw_mask) { 3535 /* 3536 * if this is a unused hblk it was just allocated or could 3537 * potentially be a previous large page hblk so we need to 3538 * set the shadow bit. 3539 */ 3540 ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt); 3541 hmeblkp->hblk_shw_bit = 1; 3542 } else if (hmeblkp->hblk_shw_bit == 0) { 3543 panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p", 3544 (void *)hmeblkp); 3545 } 3546 ASSERT(hmeblkp->hblk_shw_bit == 1); 3547 ASSERT(!hmeblkp->hblk_shared); 3548 vshift = vaddr_to_vshift(hblktag, vaddr, size); 3549 ASSERT(vshift < 8); 3550 /* 3551 * Atomically set shw mask bit 3552 */ 3553 do { 3554 shw_mask = hmeblkp->hblk_shw_mask; 3555 newshw_mask = shw_mask | (1 << vshift); 3556 newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask, 3557 newshw_mask); 3558 } while (newshw_mask != shw_mask); 3559 3560 SFMMU_HASH_UNLOCK(hmebp); 3561 3562 return (hmeblkp); 3563 } 3564 3565 /* 3566 * This routine cleanup a previous shadow hmeblk and changes it to 3567 * a regular hblk. This happens rarely but it is possible 3568 * when a process wants to use large pages and there are hblks still 3569 * lying around from the previous as that used these hmeblks. 3570 * The alternative was to cleanup the shadow hblks at unload time 3571 * but since so few user processes actually use large pages, it is 3572 * better to be lazy and cleanup at this time. 3573 */ 3574 static void 3575 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, 3576 struct hmehash_bucket *hmebp) 3577 { 3578 caddr_t addr, endaddr; 3579 int hashno, size; 3580 3581 ASSERT(hmeblkp->hblk_shw_bit); 3582 ASSERT(!hmeblkp->hblk_shared); 3583 3584 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 3585 3586 if (!hmeblkp->hblk_shw_mask) { 3587 hmeblkp->hblk_shw_bit = 0; 3588 return; 3589 } 3590 addr = (caddr_t)get_hblk_base(hmeblkp); 3591 endaddr = get_hblk_endaddr(hmeblkp); 3592 size = get_hblk_ttesz(hmeblkp); 3593 hashno = size - 1; 3594 ASSERT(hashno > 0); 3595 SFMMU_HASH_UNLOCK(hmebp); 3596 3597 sfmmu_free_hblks(sfmmup, addr, endaddr, hashno); 3598 3599 SFMMU_HASH_LOCK(hmebp); 3600 } 3601 3602 static void 3603 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr, 3604 int hashno) 3605 { 3606 int hmeshift, shadow = 0; 3607 hmeblk_tag hblktag; 3608 struct hmehash_bucket *hmebp; 3609 struct hme_blk *hmeblkp; 3610 struct hme_blk *nx_hblk, *pr_hblk, *list = NULL; 3611 3612 ASSERT(hashno > 0); 3613 hblktag.htag_id = sfmmup; 3614 hblktag.htag_rehash = hashno; 3615 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 3616 3617 hmeshift = HME_HASH_SHIFT(hashno); 3618 3619 while (addr < endaddr) { 3620 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 3621 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 3622 SFMMU_HASH_LOCK(hmebp); 3623 /* inline HME_HASH_SEARCH */ 3624 hmeblkp = hmebp->hmeblkp; 3625 pr_hblk = NULL; 3626 while (hmeblkp) { 3627 if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) { 3628 /* found hme_blk */ 3629 ASSERT(!hmeblkp->hblk_shared); 3630 if (hmeblkp->hblk_shw_bit) { 3631 if (hmeblkp->hblk_shw_mask) { 3632 shadow = 1; 3633 sfmmu_shadow_hcleanup(sfmmup, 3634 hmeblkp, hmebp); 3635 break; 3636 } else { 3637 hmeblkp->hblk_shw_bit = 0; 3638 } 3639 } 3640 3641 /* 3642 * Hblk_hmecnt and hblk_vcnt could be non zero 3643 * since hblk_unload() does not gurantee that. 3644 * 3645 * XXX - this could cause tteload() to spin 3646 * where sfmmu_shadow_hcleanup() is called. 3647 */ 3648 } 3649 3650 nx_hblk = hmeblkp->hblk_next; 3651 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 3652 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, 3653 &list, 0); 3654 } else { 3655 pr_hblk = hmeblkp; 3656 } 3657 hmeblkp = nx_hblk; 3658 } 3659 3660 SFMMU_HASH_UNLOCK(hmebp); 3661 3662 if (shadow) { 3663 /* 3664 * We found another shadow hblk so cleaned its 3665 * children. We need to go back and cleanup 3666 * the original hblk so we don't change the 3667 * addr. 3668 */ 3669 shadow = 0; 3670 } else { 3671 addr = (caddr_t)roundup((uintptr_t)addr + 1, 3672 (1 << hmeshift)); 3673 } 3674 } 3675 sfmmu_hblks_list_purge(&list, 0); 3676 } 3677 3678 /* 3679 * This routine's job is to delete stale invalid shared hmeregions hmeblks that 3680 * may still linger on after pageunload. 3681 */ 3682 static void 3683 sfmmu_cleanup_rhblk(sf_srd_t *srdp, caddr_t addr, uint_t rid, int ttesz) 3684 { 3685 int hmeshift; 3686 hmeblk_tag hblktag; 3687 struct hmehash_bucket *hmebp; 3688 struct hme_blk *hmeblkp; 3689 struct hme_blk *pr_hblk; 3690 struct hme_blk *list = NULL; 3691 3692 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 3693 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 3694 3695 hmeshift = HME_HASH_SHIFT(ttesz); 3696 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 3697 hblktag.htag_rehash = ttesz; 3698 hblktag.htag_rid = rid; 3699 hblktag.htag_id = srdp; 3700 hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift); 3701 3702 SFMMU_HASH_LOCK(hmebp); 3703 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list); 3704 if (hmeblkp != NULL) { 3705 ASSERT(hmeblkp->hblk_shared); 3706 ASSERT(!hmeblkp->hblk_shw_bit); 3707 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) { 3708 panic("sfmmu_cleanup_rhblk: valid hmeblk"); 3709 } 3710 ASSERT(!hmeblkp->hblk_lckcnt); 3711 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, 3712 &list, 0); 3713 } 3714 SFMMU_HASH_UNLOCK(hmebp); 3715 sfmmu_hblks_list_purge(&list, 0); 3716 } 3717 3718 /* ARGSUSED */ 3719 static void 3720 sfmmu_rgn_cb_noop(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr, 3721 size_t r_size, void *r_obj, u_offset_t r_objoff) 3722 { 3723 } 3724 3725 /* 3726 * Searches for an hmeblk which maps addr, then unloads this mapping 3727 * and updates *eaddrp, if the hmeblk is found. 3728 */ 3729 static void 3730 sfmmu_unload_hmeregion_va(sf_srd_t *srdp, uint_t rid, caddr_t addr, 3731 caddr_t eaddr, int ttesz, caddr_t *eaddrp) 3732 { 3733 int hmeshift; 3734 hmeblk_tag hblktag; 3735 struct hmehash_bucket *hmebp; 3736 struct hme_blk *hmeblkp; 3737 struct hme_blk *pr_hblk; 3738 struct hme_blk *list = NULL; 3739 3740 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 3741 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 3742 ASSERT(ttesz >= HBLK_MIN_TTESZ); 3743 3744 hmeshift = HME_HASH_SHIFT(ttesz); 3745 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 3746 hblktag.htag_rehash = ttesz; 3747 hblktag.htag_rid = rid; 3748 hblktag.htag_id = srdp; 3749 hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift); 3750 3751 SFMMU_HASH_LOCK(hmebp); 3752 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list); 3753 if (hmeblkp != NULL) { 3754 ASSERT(hmeblkp->hblk_shared); 3755 ASSERT(!hmeblkp->hblk_lckcnt); 3756 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) { 3757 *eaddrp = sfmmu_hblk_unload(NULL, hmeblkp, addr, 3758 eaddr, NULL, HAT_UNLOAD); 3759 ASSERT(*eaddrp > addr); 3760 } 3761 ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt); 3762 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, 3763 &list, 0); 3764 } 3765 SFMMU_HASH_UNLOCK(hmebp); 3766 sfmmu_hblks_list_purge(&list, 0); 3767 } 3768 3769 static void 3770 sfmmu_unload_hmeregion(sf_srd_t *srdp, sf_region_t *rgnp) 3771 { 3772 int ttesz = rgnp->rgn_pgszc; 3773 size_t rsz = rgnp->rgn_size; 3774 caddr_t rsaddr = rgnp->rgn_saddr; 3775 caddr_t readdr = rsaddr + rsz; 3776 caddr_t rhsaddr; 3777 caddr_t va; 3778 uint_t rid = rgnp->rgn_id; 3779 caddr_t cbsaddr; 3780 caddr_t cbeaddr; 3781 hat_rgn_cb_func_t rcbfunc; 3782 ulong_t cnt; 3783 3784 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 3785 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 3786 3787 ASSERT(IS_P2ALIGNED(rsaddr, TTEBYTES(ttesz))); 3788 ASSERT(IS_P2ALIGNED(rsz, TTEBYTES(ttesz))); 3789 if (ttesz < HBLK_MIN_TTESZ) { 3790 ttesz = HBLK_MIN_TTESZ; 3791 rhsaddr = (caddr_t)P2ALIGN((uintptr_t)rsaddr, HBLK_MIN_BYTES); 3792 } else { 3793 rhsaddr = rsaddr; 3794 } 3795 3796 if ((rcbfunc = rgnp->rgn_cb_function) == NULL) { 3797 rcbfunc = sfmmu_rgn_cb_noop; 3798 } 3799 3800 while (ttesz >= HBLK_MIN_TTESZ) { 3801 cbsaddr = rsaddr; 3802 cbeaddr = rsaddr; 3803 if (!(rgnp->rgn_hmeflags & (1 << ttesz))) { 3804 ttesz--; 3805 continue; 3806 } 3807 cnt = 0; 3808 va = rsaddr; 3809 while (va < readdr) { 3810 ASSERT(va >= rhsaddr); 3811 if (va != cbeaddr) { 3812 if (cbeaddr != cbsaddr) { 3813 ASSERT(cbeaddr > cbsaddr); 3814 (*rcbfunc)(cbsaddr, cbeaddr, 3815 rsaddr, rsz, rgnp->rgn_obj, 3816 rgnp->rgn_objoff); 3817 } 3818 cbsaddr = va; 3819 cbeaddr = va; 3820 } 3821 sfmmu_unload_hmeregion_va(srdp, rid, va, readdr, 3822 ttesz, &cbeaddr); 3823 cnt++; 3824 va = rhsaddr + (cnt << TTE_PAGE_SHIFT(ttesz)); 3825 } 3826 if (cbeaddr != cbsaddr) { 3827 ASSERT(cbeaddr > cbsaddr); 3828 (*rcbfunc)(cbsaddr, cbeaddr, rsaddr, 3829 rsz, rgnp->rgn_obj, 3830 rgnp->rgn_objoff); 3831 } 3832 ttesz--; 3833 } 3834 } 3835 3836 /* 3837 * Release one hardware address translation lock on the given address range. 3838 */ 3839 void 3840 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len) 3841 { 3842 struct hmehash_bucket *hmebp; 3843 hmeblk_tag hblktag; 3844 int hmeshift, hashno = 1; 3845 struct hme_blk *hmeblkp, *list = NULL; 3846 caddr_t endaddr; 3847 3848 ASSERT(sfmmup != NULL); 3849 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 3850 3851 ASSERT((sfmmup == ksfmmup) || 3852 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 3853 ASSERT((len & MMU_PAGEOFFSET) == 0); 3854 endaddr = addr + len; 3855 hblktag.htag_id = sfmmup; 3856 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 3857 3858 /* 3859 * Spitfire supports 4 page sizes. 3860 * Most pages are expected to be of the smallest page size (8K) and 3861 * these will not need to be rehashed. 64K pages also don't need to be 3862 * rehashed because an hmeblk spans 64K of address space. 512K pages 3863 * might need 1 rehash and and 4M pages might need 2 rehashes. 3864 */ 3865 while (addr < endaddr) { 3866 hmeshift = HME_HASH_SHIFT(hashno); 3867 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 3868 hblktag.htag_rehash = hashno; 3869 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 3870 3871 SFMMU_HASH_LOCK(hmebp); 3872 3873 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 3874 if (hmeblkp != NULL) { 3875 ASSERT(!hmeblkp->hblk_shared); 3876 /* 3877 * If we encounter a shadow hmeblk then 3878 * we know there are no valid hmeblks mapping 3879 * this address at this size or larger. 3880 * Just increment address by the smallest 3881 * page size. 3882 */ 3883 if (hmeblkp->hblk_shw_bit) { 3884 addr += MMU_PAGESIZE; 3885 } else { 3886 addr = sfmmu_hblk_unlock(hmeblkp, addr, 3887 endaddr); 3888 } 3889 SFMMU_HASH_UNLOCK(hmebp); 3890 hashno = 1; 3891 continue; 3892 } 3893 SFMMU_HASH_UNLOCK(hmebp); 3894 3895 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 3896 /* 3897 * We have traversed the whole list and rehashed 3898 * if necessary without finding the address to unlock 3899 * which should never happen. 3900 */ 3901 panic("sfmmu_unlock: addr not found. " 3902 "addr %p hat %p", (void *)addr, (void *)sfmmup); 3903 } else { 3904 hashno++; 3905 } 3906 } 3907 3908 sfmmu_hblks_list_purge(&list, 0); 3909 } 3910 3911 void 3912 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len, 3913 hat_region_cookie_t rcookie) 3914 { 3915 sf_srd_t *srdp; 3916 sf_region_t *rgnp; 3917 int ttesz; 3918 uint_t rid; 3919 caddr_t eaddr; 3920 caddr_t va; 3921 int hmeshift; 3922 hmeblk_tag hblktag; 3923 struct hmehash_bucket *hmebp; 3924 struct hme_blk *hmeblkp; 3925 struct hme_blk *pr_hblk; 3926 struct hme_blk *list; 3927 3928 if (rcookie == HAT_INVALID_REGION_COOKIE) { 3929 hat_unlock(sfmmup, addr, len); 3930 return; 3931 } 3932 3933 ASSERT(sfmmup != NULL); 3934 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 3935 ASSERT(sfmmup != ksfmmup); 3936 3937 srdp = sfmmup->sfmmu_srdp; 3938 rid = (uint_t)((uint64_t)rcookie); 3939 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 3940 eaddr = addr + len; 3941 va = addr; 3942 list = NULL; 3943 rgnp = srdp->srd_hmergnp[rid]; 3944 SFMMU_VALIDATE_HMERID(sfmmup, rid, addr, len); 3945 3946 ASSERT(IS_P2ALIGNED(addr, TTEBYTES(rgnp->rgn_pgszc))); 3947 ASSERT(IS_P2ALIGNED(len, TTEBYTES(rgnp->rgn_pgszc))); 3948 if (rgnp->rgn_pgszc < HBLK_MIN_TTESZ) { 3949 ttesz = HBLK_MIN_TTESZ; 3950 } else { 3951 ttesz = rgnp->rgn_pgszc; 3952 } 3953 while (va < eaddr) { 3954 while (ttesz < rgnp->rgn_pgszc && 3955 IS_P2ALIGNED(va, TTEBYTES(ttesz + 1))) { 3956 ttesz++; 3957 } 3958 while (ttesz >= HBLK_MIN_TTESZ) { 3959 if (!(rgnp->rgn_hmeflags & (1 << ttesz))) { 3960 ttesz--; 3961 continue; 3962 } 3963 hmeshift = HME_HASH_SHIFT(ttesz); 3964 hblktag.htag_bspage = HME_HASH_BSPAGE(va, hmeshift); 3965 hblktag.htag_rehash = ttesz; 3966 hblktag.htag_rid = rid; 3967 hblktag.htag_id = srdp; 3968 hmebp = HME_HASH_FUNCTION(srdp, va, hmeshift); 3969 SFMMU_HASH_LOCK(hmebp); 3970 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, 3971 &list); 3972 if (hmeblkp == NULL) { 3973 SFMMU_HASH_UNLOCK(hmebp); 3974 ttesz--; 3975 continue; 3976 } 3977 ASSERT(hmeblkp->hblk_shared); 3978 va = sfmmu_hblk_unlock(hmeblkp, va, eaddr); 3979 ASSERT(va >= eaddr || 3980 IS_P2ALIGNED((uintptr_t)va, TTEBYTES(ttesz))); 3981 SFMMU_HASH_UNLOCK(hmebp); 3982 break; 3983 } 3984 if (ttesz < HBLK_MIN_TTESZ) { 3985 panic("hat_unlock_region: addr not found " 3986 "addr %p hat %p", (void *)va, (void *)sfmmup); 3987 } 3988 } 3989 sfmmu_hblks_list_purge(&list, 0); 3990 } 3991 3992 /* 3993 * Function to unlock a range of addresses in an hmeblk. It returns the 3994 * next address that needs to be unlocked. 3995 * Should be called with the hash lock held. 3996 */ 3997 static caddr_t 3998 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr) 3999 { 4000 struct sf_hment *sfhme; 4001 tte_t tteold, ttemod; 4002 int ttesz, ret; 4003 4004 ASSERT(in_hblk_range(hmeblkp, addr)); 4005 ASSERT(hmeblkp->hblk_shw_bit == 0); 4006 4007 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 4008 ttesz = get_hblk_ttesz(hmeblkp); 4009 4010 HBLKTOHME(sfhme, hmeblkp, addr); 4011 while (addr < endaddr) { 4012 readtte: 4013 sfmmu_copytte(&sfhme->hme_tte, &tteold); 4014 if (TTE_IS_VALID(&tteold)) { 4015 4016 ttemod = tteold; 4017 4018 ret = sfmmu_modifytte_try(&tteold, &ttemod, 4019 &sfhme->hme_tte); 4020 4021 if (ret < 0) 4022 goto readtte; 4023 4024 if (hmeblkp->hblk_lckcnt == 0) 4025 panic("zero hblk lckcnt"); 4026 4027 if (((uintptr_t)addr + TTEBYTES(ttesz)) > 4028 (uintptr_t)endaddr) 4029 panic("can't unlock large tte"); 4030 4031 ASSERT(hmeblkp->hblk_lckcnt > 0); 4032 atomic_add_32(&hmeblkp->hblk_lckcnt, -1); 4033 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK); 4034 } else { 4035 panic("sfmmu_hblk_unlock: invalid tte"); 4036 } 4037 addr += TTEBYTES(ttesz); 4038 sfhme++; 4039 } 4040 return (addr); 4041 } 4042 4043 /* 4044 * Physical Address Mapping Framework 4045 * 4046 * General rules: 4047 * 4048 * (1) Applies only to seg_kmem memory pages. To make things easier, 4049 * seg_kpm addresses are also accepted by the routines, but nothing 4050 * is done with them since by definition their PA mappings are static. 4051 * (2) hat_add_callback() may only be called while holding the page lock 4052 * SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()), 4053 * or passing HAC_PAGELOCK flag. 4054 * (3) prehandler() and posthandler() may not call hat_add_callback() or 4055 * hat_delete_callback(), nor should they allocate memory. Post quiesce 4056 * callbacks may not sleep or acquire adaptive mutex locks. 4057 * (4) Either prehandler() or posthandler() (but not both) may be specified 4058 * as being NULL. Specifying an errhandler() is optional. 4059 * 4060 * Details of using the framework: 4061 * 4062 * registering a callback (hat_register_callback()) 4063 * 4064 * Pass prehandler, posthandler, errhandler addresses 4065 * as described below. If capture_cpus argument is nonzero, 4066 * suspend callback to the prehandler will occur with CPUs 4067 * captured and executing xc_loop() and CPUs will remain 4068 * captured until after the posthandler suspend callback 4069 * occurs. 4070 * 4071 * adding a callback (hat_add_callback()) 4072 * 4073 * as_pagelock(); 4074 * hat_add_callback(); 4075 * save returned pfn in private data structures or program registers; 4076 * as_pageunlock(); 4077 * 4078 * prehandler() 4079 * 4080 * Stop all accesses by physical address to this memory page. 4081 * Called twice: the first, PRESUSPEND, is a context safe to acquire 4082 * adaptive locks. The second, SUSPEND, is called at high PIL with 4083 * CPUs captured so adaptive locks may NOT be acquired (and all spin 4084 * locks must be XCALL_PIL or higher locks). 4085 * 4086 * May return the following errors: 4087 * EIO: A fatal error has occurred. This will result in panic. 4088 * EAGAIN: The page cannot be suspended. This will fail the 4089 * relocation. 4090 * 0: Success. 4091 * 4092 * posthandler() 4093 * 4094 * Save new pfn in private data structures or program registers; 4095 * not allowed to fail (non-zero return values will result in panic). 4096 * 4097 * errhandler() 4098 * 4099 * called when an error occurs related to the callback. Currently 4100 * the only such error is HAT_CB_ERR_LEAKED which indicates that 4101 * a page is being freed, but there are still outstanding callback(s) 4102 * registered on the page. 4103 * 4104 * removing a callback (hat_delete_callback(); e.g., prior to freeing memory) 4105 * 4106 * stop using physical address 4107 * hat_delete_callback(); 4108 * 4109 */ 4110 4111 /* 4112 * Register a callback class. Each subsystem should do this once and 4113 * cache the id_t returned for use in setting up and tearing down callbacks. 4114 * 4115 * There is no facility for removing callback IDs once they are created; 4116 * the "key" should be unique for each module, so in case a module is unloaded 4117 * and subsequently re-loaded, we can recycle the module's previous entry. 4118 */ 4119 id_t 4120 hat_register_callback(int key, 4121 int (*prehandler)(caddr_t, uint_t, uint_t, void *), 4122 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t), 4123 int (*errhandler)(caddr_t, uint_t, uint_t, void *), 4124 int capture_cpus) 4125 { 4126 id_t id; 4127 4128 /* 4129 * Search the table for a pre-existing callback associated with 4130 * the identifier "key". If one exists, we re-use that entry in 4131 * the table for this instance, otherwise we assign the next 4132 * available table slot. 4133 */ 4134 for (id = 0; id < sfmmu_max_cb_id; id++) { 4135 if (sfmmu_cb_table[id].key == key) 4136 break; 4137 } 4138 4139 if (id == sfmmu_max_cb_id) { 4140 id = sfmmu_cb_nextid++; 4141 if (id >= sfmmu_max_cb_id) 4142 panic("hat_register_callback: out of callback IDs"); 4143 } 4144 4145 ASSERT(prehandler != NULL || posthandler != NULL); 4146 4147 sfmmu_cb_table[id].key = key; 4148 sfmmu_cb_table[id].prehandler = prehandler; 4149 sfmmu_cb_table[id].posthandler = posthandler; 4150 sfmmu_cb_table[id].errhandler = errhandler; 4151 sfmmu_cb_table[id].capture_cpus = capture_cpus; 4152 4153 return (id); 4154 } 4155 4156 #define HAC_COOKIE_NONE (void *)-1 4157 4158 /* 4159 * Add relocation callbacks to the specified addr/len which will be called 4160 * when relocating the associated page. See the description of pre and 4161 * posthandler above for more details. 4162 * 4163 * If HAC_PAGELOCK is included in flags, the underlying memory page is 4164 * locked internally so the caller must be able to deal with the callback 4165 * running even before this function has returned. If HAC_PAGELOCK is not 4166 * set, it is assumed that the underlying memory pages are locked. 4167 * 4168 * Since the caller must track the individual page boundaries anyway, 4169 * we only allow a callback to be added to a single page (large 4170 * or small). Thus [addr, addr + len) MUST be contained within a single 4171 * page. 4172 * 4173 * Registering multiple callbacks on the same [addr, addr+len) is supported, 4174 * _provided_that_ a unique parameter is specified for each callback. 4175 * If multiple callbacks are registered on the same range the callback will 4176 * be invoked with each unique parameter. Registering the same callback with 4177 * the same argument more than once will result in corrupted kernel state. 4178 * 4179 * Returns the pfn of the underlying kernel page in *rpfn 4180 * on success, or PFN_INVALID on failure. 4181 * 4182 * cookiep (if passed) provides storage space for an opaque cookie 4183 * to return later to hat_delete_callback(). This cookie makes the callback 4184 * deletion significantly quicker by avoiding a potentially lengthy hash 4185 * search. 4186 * 4187 * Returns values: 4188 * 0: success 4189 * ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP) 4190 * EINVAL: callback ID is not valid 4191 * ENXIO: ["vaddr", "vaddr" + len) is not mapped in the kernel's address 4192 * space 4193 * ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary 4194 */ 4195 int 4196 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags, 4197 void *pvt, pfn_t *rpfn, void **cookiep) 4198 { 4199 struct hmehash_bucket *hmebp; 4200 hmeblk_tag hblktag; 4201 struct hme_blk *hmeblkp; 4202 int hmeshift, hashno; 4203 caddr_t saddr, eaddr, baseaddr; 4204 struct pa_hment *pahmep; 4205 struct sf_hment *sfhmep, *osfhmep; 4206 kmutex_t *pml; 4207 tte_t tte; 4208 page_t *pp; 4209 vnode_t *vp; 4210 u_offset_t off; 4211 pfn_t pfn; 4212 int kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP; 4213 int locked = 0; 4214 4215 /* 4216 * For KPM mappings, just return the physical address since we 4217 * don't need to register any callbacks. 4218 */ 4219 if (IS_KPM_ADDR(vaddr)) { 4220 uint64_t paddr; 4221 SFMMU_KPM_VTOP(vaddr, paddr); 4222 *rpfn = btop(paddr); 4223 if (cookiep != NULL) 4224 *cookiep = HAC_COOKIE_NONE; 4225 return (0); 4226 } 4227 4228 if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) { 4229 *rpfn = PFN_INVALID; 4230 return (EINVAL); 4231 } 4232 4233 if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) { 4234 *rpfn = PFN_INVALID; 4235 return (ENOMEM); 4236 } 4237 4238 sfhmep = &pahmep->sfment; 4239 4240 saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK); 4241 eaddr = saddr + len; 4242 4243 rehash: 4244 /* Find the mapping(s) for this page */ 4245 for (hashno = TTE64K, hmeblkp = NULL; 4246 hmeblkp == NULL && hashno <= mmu_hashcnt; 4247 hashno++) { 4248 hmeshift = HME_HASH_SHIFT(hashno); 4249 hblktag.htag_id = ksfmmup; 4250 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 4251 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift); 4252 hblktag.htag_rehash = hashno; 4253 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift); 4254 4255 SFMMU_HASH_LOCK(hmebp); 4256 4257 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 4258 4259 if (hmeblkp == NULL) 4260 SFMMU_HASH_UNLOCK(hmebp); 4261 } 4262 4263 if (hmeblkp == NULL) { 4264 kmem_cache_free(pa_hment_cache, pahmep); 4265 *rpfn = PFN_INVALID; 4266 return (ENXIO); 4267 } 4268 4269 ASSERT(!hmeblkp->hblk_shared); 4270 4271 HBLKTOHME(osfhmep, hmeblkp, saddr); 4272 sfmmu_copytte(&osfhmep->hme_tte, &tte); 4273 4274 if (!TTE_IS_VALID(&tte)) { 4275 SFMMU_HASH_UNLOCK(hmebp); 4276 kmem_cache_free(pa_hment_cache, pahmep); 4277 *rpfn = PFN_INVALID; 4278 return (ENXIO); 4279 } 4280 4281 /* 4282 * Make sure the boundaries for the callback fall within this 4283 * single mapping. 4284 */ 4285 baseaddr = (caddr_t)get_hblk_base(hmeblkp); 4286 ASSERT(saddr >= baseaddr); 4287 if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) { 4288 SFMMU_HASH_UNLOCK(hmebp); 4289 kmem_cache_free(pa_hment_cache, pahmep); 4290 *rpfn = PFN_INVALID; 4291 return (ERANGE); 4292 } 4293 4294 pfn = sfmmu_ttetopfn(&tte, vaddr); 4295 4296 /* 4297 * The pfn may not have a page_t underneath in which case we 4298 * just return it. This can happen if we are doing I/O to a 4299 * static portion of the kernel's address space, for instance. 4300 */ 4301 pp = osfhmep->hme_page; 4302 if (pp == NULL) { 4303 SFMMU_HASH_UNLOCK(hmebp); 4304 kmem_cache_free(pa_hment_cache, pahmep); 4305 *rpfn = pfn; 4306 if (cookiep) 4307 *cookiep = HAC_COOKIE_NONE; 4308 return (0); 4309 } 4310 ASSERT(pp == PP_PAGEROOT(pp)); 4311 4312 vp = pp->p_vnode; 4313 off = pp->p_offset; 4314 4315 pml = sfmmu_mlist_enter(pp); 4316 4317 if (flags & HAC_PAGELOCK) { 4318 if (!page_trylock(pp, SE_SHARED)) { 4319 /* 4320 * Somebody is holding SE_EXCL lock. Might 4321 * even be hat_page_relocate(). Drop all 4322 * our locks, lookup the page in &kvp, and 4323 * retry. If it doesn't exist in &kvp and &zvp, 4324 * then we must be dealing with a kernel mapped 4325 * page which doesn't actually belong to 4326 * segkmem so we punt. 4327 */ 4328 sfmmu_mlist_exit(pml); 4329 SFMMU_HASH_UNLOCK(hmebp); 4330 pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED); 4331 4332 /* check zvp before giving up */ 4333 if (pp == NULL) 4334 pp = page_lookup(&zvp, (u_offset_t)saddr, 4335 SE_SHARED); 4336 4337 /* Okay, we didn't find it, give up */ 4338 if (pp == NULL) { 4339 kmem_cache_free(pa_hment_cache, pahmep); 4340 *rpfn = pfn; 4341 if (cookiep) 4342 *cookiep = HAC_COOKIE_NONE; 4343 return (0); 4344 } 4345 page_unlock(pp); 4346 goto rehash; 4347 } 4348 locked = 1; 4349 } 4350 4351 if (!PAGE_LOCKED(pp) && !panicstr) 4352 panic("hat_add_callback: page 0x%p not locked", (void *)pp); 4353 4354 if (osfhmep->hme_page != pp || pp->p_vnode != vp || 4355 pp->p_offset != off) { 4356 /* 4357 * The page moved before we got our hands on it. Drop 4358 * all the locks and try again. 4359 */ 4360 ASSERT((flags & HAC_PAGELOCK) != 0); 4361 sfmmu_mlist_exit(pml); 4362 SFMMU_HASH_UNLOCK(hmebp); 4363 page_unlock(pp); 4364 locked = 0; 4365 goto rehash; 4366 } 4367 4368 if (!VN_ISKAS(vp)) { 4369 /* 4370 * This is not a segkmem page but another page which 4371 * has been kernel mapped. It had better have at least 4372 * a share lock on it. Return the pfn. 4373 */ 4374 sfmmu_mlist_exit(pml); 4375 SFMMU_HASH_UNLOCK(hmebp); 4376 if (locked) 4377 page_unlock(pp); 4378 kmem_cache_free(pa_hment_cache, pahmep); 4379 ASSERT(PAGE_LOCKED(pp)); 4380 *rpfn = pfn; 4381 if (cookiep) 4382 *cookiep = HAC_COOKIE_NONE; 4383 return (0); 4384 } 4385 4386 /* 4387 * Setup this pa_hment and link its embedded dummy sf_hment into 4388 * the mapping list. 4389 */ 4390 pp->p_share++; 4391 pahmep->cb_id = callback_id; 4392 pahmep->addr = vaddr; 4393 pahmep->len = len; 4394 pahmep->refcnt = 1; 4395 pahmep->flags = 0; 4396 pahmep->pvt = pvt; 4397 4398 sfhmep->hme_tte.ll = 0; 4399 sfhmep->hme_data = pahmep; 4400 sfhmep->hme_prev = osfhmep; 4401 sfhmep->hme_next = osfhmep->hme_next; 4402 4403 if (osfhmep->hme_next) 4404 osfhmep->hme_next->hme_prev = sfhmep; 4405 4406 osfhmep->hme_next = sfhmep; 4407 4408 sfmmu_mlist_exit(pml); 4409 SFMMU_HASH_UNLOCK(hmebp); 4410 4411 if (locked) 4412 page_unlock(pp); 4413 4414 *rpfn = pfn; 4415 if (cookiep) 4416 *cookiep = (void *)pahmep; 4417 4418 return (0); 4419 } 4420 4421 /* 4422 * Remove the relocation callbacks from the specified addr/len. 4423 */ 4424 void 4425 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags, 4426 void *cookie) 4427 { 4428 struct hmehash_bucket *hmebp; 4429 hmeblk_tag hblktag; 4430 struct hme_blk *hmeblkp; 4431 int hmeshift, hashno; 4432 caddr_t saddr; 4433 struct pa_hment *pahmep; 4434 struct sf_hment *sfhmep, *osfhmep; 4435 kmutex_t *pml; 4436 tte_t tte; 4437 page_t *pp; 4438 vnode_t *vp; 4439 u_offset_t off; 4440 int locked = 0; 4441 4442 /* 4443 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to 4444 * remove so just return. 4445 */ 4446 if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr)) 4447 return; 4448 4449 saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK); 4450 4451 rehash: 4452 /* Find the mapping(s) for this page */ 4453 for (hashno = TTE64K, hmeblkp = NULL; 4454 hmeblkp == NULL && hashno <= mmu_hashcnt; 4455 hashno++) { 4456 hmeshift = HME_HASH_SHIFT(hashno); 4457 hblktag.htag_id = ksfmmup; 4458 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 4459 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift); 4460 hblktag.htag_rehash = hashno; 4461 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift); 4462 4463 SFMMU_HASH_LOCK(hmebp); 4464 4465 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 4466 4467 if (hmeblkp == NULL) 4468 SFMMU_HASH_UNLOCK(hmebp); 4469 } 4470 4471 if (hmeblkp == NULL) 4472 return; 4473 4474 ASSERT(!hmeblkp->hblk_shared); 4475 4476 HBLKTOHME(osfhmep, hmeblkp, saddr); 4477 4478 sfmmu_copytte(&osfhmep->hme_tte, &tte); 4479 if (!TTE_IS_VALID(&tte)) { 4480 SFMMU_HASH_UNLOCK(hmebp); 4481 return; 4482 } 4483 4484 pp = osfhmep->hme_page; 4485 if (pp == NULL) { 4486 SFMMU_HASH_UNLOCK(hmebp); 4487 ASSERT(cookie == NULL); 4488 return; 4489 } 4490 4491 vp = pp->p_vnode; 4492 off = pp->p_offset; 4493 4494 pml = sfmmu_mlist_enter(pp); 4495 4496 if (flags & HAC_PAGELOCK) { 4497 if (!page_trylock(pp, SE_SHARED)) { 4498 /* 4499 * Somebody is holding SE_EXCL lock. Might 4500 * even be hat_page_relocate(). Drop all 4501 * our locks, lookup the page in &kvp, and 4502 * retry. If it doesn't exist in &kvp and &zvp, 4503 * then we must be dealing with a kernel mapped 4504 * page which doesn't actually belong to 4505 * segkmem so we punt. 4506 */ 4507 sfmmu_mlist_exit(pml); 4508 SFMMU_HASH_UNLOCK(hmebp); 4509 pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED); 4510 /* check zvp before giving up */ 4511 if (pp == NULL) 4512 pp = page_lookup(&zvp, (u_offset_t)saddr, 4513 SE_SHARED); 4514 4515 if (pp == NULL) { 4516 ASSERT(cookie == NULL); 4517 return; 4518 } 4519 page_unlock(pp); 4520 goto rehash; 4521 } 4522 locked = 1; 4523 } 4524 4525 ASSERT(PAGE_LOCKED(pp)); 4526 4527 if (osfhmep->hme_page != pp || pp->p_vnode != vp || 4528 pp->p_offset != off) { 4529 /* 4530 * The page moved before we got our hands on it. Drop 4531 * all the locks and try again. 4532 */ 4533 ASSERT((flags & HAC_PAGELOCK) != 0); 4534 sfmmu_mlist_exit(pml); 4535 SFMMU_HASH_UNLOCK(hmebp); 4536 page_unlock(pp); 4537 locked = 0; 4538 goto rehash; 4539 } 4540 4541 if (!VN_ISKAS(vp)) { 4542 /* 4543 * This is not a segkmem page but another page which 4544 * has been kernel mapped. 4545 */ 4546 sfmmu_mlist_exit(pml); 4547 SFMMU_HASH_UNLOCK(hmebp); 4548 if (locked) 4549 page_unlock(pp); 4550 ASSERT(cookie == NULL); 4551 return; 4552 } 4553 4554 if (cookie != NULL) { 4555 pahmep = (struct pa_hment *)cookie; 4556 sfhmep = &pahmep->sfment; 4557 } else { 4558 for (sfhmep = pp->p_mapping; sfhmep != NULL; 4559 sfhmep = sfhmep->hme_next) { 4560 4561 /* 4562 * skip va<->pa mappings 4563 */ 4564 if (!IS_PAHME(sfhmep)) 4565 continue; 4566 4567 pahmep = sfhmep->hme_data; 4568 ASSERT(pahmep != NULL); 4569 4570 /* 4571 * if pa_hment matches, remove it 4572 */ 4573 if ((pahmep->pvt == pvt) && 4574 (pahmep->addr == vaddr) && 4575 (pahmep->len == len)) { 4576 break; 4577 } 4578 } 4579 } 4580 4581 if (sfhmep == NULL) { 4582 if (!panicstr) { 4583 panic("hat_delete_callback: pa_hment not found, pp %p", 4584 (void *)pp); 4585 } 4586 return; 4587 } 4588 4589 /* 4590 * Note: at this point a valid kernel mapping must still be 4591 * present on this page. 4592 */ 4593 pp->p_share--; 4594 if (pp->p_share <= 0) 4595 panic("hat_delete_callback: zero p_share"); 4596 4597 if (--pahmep->refcnt == 0) { 4598 if (pahmep->flags != 0) 4599 panic("hat_delete_callback: pa_hment is busy"); 4600 4601 /* 4602 * Remove sfhmep from the mapping list for the page. 4603 */ 4604 if (sfhmep->hme_prev) { 4605 sfhmep->hme_prev->hme_next = sfhmep->hme_next; 4606 } else { 4607 pp->p_mapping = sfhmep->hme_next; 4608 } 4609 4610 if (sfhmep->hme_next) 4611 sfhmep->hme_next->hme_prev = sfhmep->hme_prev; 4612 4613 sfmmu_mlist_exit(pml); 4614 SFMMU_HASH_UNLOCK(hmebp); 4615 4616 if (locked) 4617 page_unlock(pp); 4618 4619 kmem_cache_free(pa_hment_cache, pahmep); 4620 return; 4621 } 4622 4623 sfmmu_mlist_exit(pml); 4624 SFMMU_HASH_UNLOCK(hmebp); 4625 if (locked) 4626 page_unlock(pp); 4627 } 4628 4629 /* 4630 * hat_probe returns 1 if the translation for the address 'addr' is 4631 * loaded, zero otherwise. 4632 * 4633 * hat_probe should be used only for advisorary purposes because it may 4634 * occasionally return the wrong value. The implementation must guarantee that 4635 * returning the wrong value is a very rare event. hat_probe is used 4636 * to implement optimizations in the segment drivers. 4637 * 4638 */ 4639 int 4640 hat_probe(struct hat *sfmmup, caddr_t addr) 4641 { 4642 pfn_t pfn; 4643 tte_t tte; 4644 4645 ASSERT(sfmmup != NULL); 4646 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 4647 4648 ASSERT((sfmmup == ksfmmup) || 4649 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 4650 4651 if (sfmmup == ksfmmup) { 4652 while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte)) 4653 == PFN_SUSPENDED) { 4654 sfmmu_vatopfn_suspended(addr, sfmmup, &tte); 4655 } 4656 } else { 4657 pfn = sfmmu_uvatopfn(addr, sfmmup, NULL); 4658 } 4659 4660 if (pfn != PFN_INVALID) 4661 return (1); 4662 else 4663 return (0); 4664 } 4665 4666 ssize_t 4667 hat_getpagesize(struct hat *sfmmup, caddr_t addr) 4668 { 4669 tte_t tte; 4670 4671 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 4672 4673 if (sfmmup == ksfmmup) { 4674 if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) { 4675 return (-1); 4676 } 4677 } else { 4678 if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) { 4679 return (-1); 4680 } 4681 } 4682 4683 ASSERT(TTE_IS_VALID(&tte)); 4684 return (TTEBYTES(TTE_CSZ(&tte))); 4685 } 4686 4687 uint_t 4688 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr) 4689 { 4690 tte_t tte; 4691 4692 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 4693 4694 if (sfmmup == ksfmmup) { 4695 if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) { 4696 tte.ll = 0; 4697 } 4698 } else { 4699 if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) { 4700 tte.ll = 0; 4701 } 4702 } 4703 if (TTE_IS_VALID(&tte)) { 4704 *attr = sfmmu_ptov_attr(&tte); 4705 return (0); 4706 } 4707 *attr = 0; 4708 return ((uint_t)0xffffffff); 4709 } 4710 4711 /* 4712 * Enables more attributes on specified address range (ie. logical OR) 4713 */ 4714 void 4715 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr) 4716 { 4717 if (hat->sfmmu_xhat_provider) { 4718 XHAT_SETATTR(hat, addr, len, attr); 4719 return; 4720 } else { 4721 /* 4722 * This must be a CPU HAT. If the address space has 4723 * XHATs attached, change attributes for all of them, 4724 * just in case 4725 */ 4726 ASSERT(hat->sfmmu_as != NULL); 4727 if (hat->sfmmu_as->a_xhat != NULL) 4728 xhat_setattr_all(hat->sfmmu_as, addr, len, attr); 4729 } 4730 4731 sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR); 4732 } 4733 4734 /* 4735 * Assigns attributes to the specified address range. All the attributes 4736 * are specified. 4737 */ 4738 void 4739 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr) 4740 { 4741 if (hat->sfmmu_xhat_provider) { 4742 XHAT_CHGATTR(hat, addr, len, attr); 4743 return; 4744 } else { 4745 /* 4746 * This must be a CPU HAT. If the address space has 4747 * XHATs attached, change attributes for all of them, 4748 * just in case 4749 */ 4750 ASSERT(hat->sfmmu_as != NULL); 4751 if (hat->sfmmu_as->a_xhat != NULL) 4752 xhat_chgattr_all(hat->sfmmu_as, addr, len, attr); 4753 } 4754 4755 sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR); 4756 } 4757 4758 /* 4759 * Remove attributes on the specified address range (ie. loginal NAND) 4760 */ 4761 void 4762 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr) 4763 { 4764 if (hat->sfmmu_xhat_provider) { 4765 XHAT_CLRATTR(hat, addr, len, attr); 4766 return; 4767 } else { 4768 /* 4769 * This must be a CPU HAT. If the address space has 4770 * XHATs attached, change attributes for all of them, 4771 * just in case 4772 */ 4773 ASSERT(hat->sfmmu_as != NULL); 4774 if (hat->sfmmu_as->a_xhat != NULL) 4775 xhat_clrattr_all(hat->sfmmu_as, addr, len, attr); 4776 } 4777 4778 sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR); 4779 } 4780 4781 /* 4782 * Change attributes on an address range to that specified by attr and mode. 4783 */ 4784 static void 4785 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr, 4786 int mode) 4787 { 4788 struct hmehash_bucket *hmebp; 4789 hmeblk_tag hblktag; 4790 int hmeshift, hashno = 1; 4791 struct hme_blk *hmeblkp, *list = NULL; 4792 caddr_t endaddr; 4793 cpuset_t cpuset; 4794 demap_range_t dmr; 4795 4796 CPUSET_ZERO(cpuset); 4797 4798 ASSERT((sfmmup == ksfmmup) || 4799 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 4800 ASSERT((len & MMU_PAGEOFFSET) == 0); 4801 ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0); 4802 4803 if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) && 4804 ((addr + len) > (caddr_t)USERLIMIT)) { 4805 panic("user addr %p in kernel space", 4806 (void *)addr); 4807 } 4808 4809 endaddr = addr + len; 4810 hblktag.htag_id = sfmmup; 4811 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 4812 DEMAP_RANGE_INIT(sfmmup, &dmr); 4813 4814 while (addr < endaddr) { 4815 hmeshift = HME_HASH_SHIFT(hashno); 4816 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 4817 hblktag.htag_rehash = hashno; 4818 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 4819 4820 SFMMU_HASH_LOCK(hmebp); 4821 4822 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 4823 if (hmeblkp != NULL) { 4824 ASSERT(!hmeblkp->hblk_shared); 4825 /* 4826 * We've encountered a shadow hmeblk so skip the range 4827 * of the next smaller mapping size. 4828 */ 4829 if (hmeblkp->hblk_shw_bit) { 4830 ASSERT(sfmmup != ksfmmup); 4831 ASSERT(hashno > 1); 4832 addr = (caddr_t)P2END((uintptr_t)addr, 4833 TTEBYTES(hashno - 1)); 4834 } else { 4835 addr = sfmmu_hblk_chgattr(sfmmup, 4836 hmeblkp, addr, endaddr, &dmr, attr, mode); 4837 } 4838 SFMMU_HASH_UNLOCK(hmebp); 4839 hashno = 1; 4840 continue; 4841 } 4842 SFMMU_HASH_UNLOCK(hmebp); 4843 4844 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 4845 /* 4846 * We have traversed the whole list and rehashed 4847 * if necessary without finding the address to chgattr. 4848 * This is ok, so we increment the address by the 4849 * smallest hmeblk range for kernel mappings or for 4850 * user mappings with no large pages, and the largest 4851 * hmeblk range, to account for shadow hmeblks, for 4852 * user mappings with large pages and continue. 4853 */ 4854 if (sfmmup == ksfmmup) 4855 addr = (caddr_t)P2END((uintptr_t)addr, 4856 TTEBYTES(1)); 4857 else 4858 addr = (caddr_t)P2END((uintptr_t)addr, 4859 TTEBYTES(hashno)); 4860 hashno = 1; 4861 } else { 4862 hashno++; 4863 } 4864 } 4865 4866 sfmmu_hblks_list_purge(&list, 0); 4867 DEMAP_RANGE_FLUSH(&dmr); 4868 cpuset = sfmmup->sfmmu_cpusran; 4869 xt_sync(cpuset); 4870 } 4871 4872 /* 4873 * This function chgattr on a range of addresses in an hmeblk. It returns the 4874 * next addres that needs to be chgattr. 4875 * It should be called with the hash lock held. 4876 * XXX It should be possible to optimize chgattr by not flushing every time but 4877 * on the other hand: 4878 * 1. do one flush crosscall. 4879 * 2. only flush if we are increasing permissions (make sure this will work) 4880 */ 4881 static caddr_t 4882 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 4883 caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode) 4884 { 4885 tte_t tte, tteattr, tteflags, ttemod; 4886 struct sf_hment *sfhmep; 4887 int ttesz; 4888 struct page *pp = NULL; 4889 kmutex_t *pml, *pmtx; 4890 int ret; 4891 int use_demap_range; 4892 #if defined(SF_ERRATA_57) 4893 int check_exec; 4894 #endif 4895 4896 ASSERT(in_hblk_range(hmeblkp, addr)); 4897 ASSERT(hmeblkp->hblk_shw_bit == 0); 4898 ASSERT(!hmeblkp->hblk_shared); 4899 4900 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 4901 ttesz = get_hblk_ttesz(hmeblkp); 4902 4903 /* 4904 * Flush the current demap region if addresses have been 4905 * skipped or the page size doesn't match. 4906 */ 4907 use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)); 4908 if (use_demap_range) { 4909 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr); 4910 } else { 4911 DEMAP_RANGE_FLUSH(dmrp); 4912 } 4913 4914 tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags); 4915 #if defined(SF_ERRATA_57) 4916 check_exec = (sfmmup != ksfmmup) && 4917 AS_TYPE_64BIT(sfmmup->sfmmu_as) && 4918 TTE_IS_EXECUTABLE(&tteattr); 4919 #endif 4920 HBLKTOHME(sfhmep, hmeblkp, addr); 4921 while (addr < endaddr) { 4922 sfmmu_copytte(&sfhmep->hme_tte, &tte); 4923 if (TTE_IS_VALID(&tte)) { 4924 if ((tte.ll & tteflags.ll) == tteattr.ll) { 4925 /* 4926 * if the new attr is the same as old 4927 * continue 4928 */ 4929 goto next_addr; 4930 } 4931 if (!TTE_IS_WRITABLE(&tteattr)) { 4932 /* 4933 * make sure we clear hw modify bit if we 4934 * removing write protections 4935 */ 4936 tteflags.tte_intlo |= TTE_HWWR_INT; 4937 } 4938 4939 pml = NULL; 4940 pp = sfhmep->hme_page; 4941 if (pp) { 4942 pml = sfmmu_mlist_enter(pp); 4943 } 4944 4945 if (pp != sfhmep->hme_page) { 4946 /* 4947 * tte must have been unloaded. 4948 */ 4949 ASSERT(pml); 4950 sfmmu_mlist_exit(pml); 4951 continue; 4952 } 4953 4954 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 4955 4956 ttemod = tte; 4957 ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll; 4958 ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte)); 4959 4960 #if defined(SF_ERRATA_57) 4961 if (check_exec && addr < errata57_limit) 4962 ttemod.tte_exec_perm = 0; 4963 #endif 4964 ret = sfmmu_modifytte_try(&tte, &ttemod, 4965 &sfhmep->hme_tte); 4966 4967 if (ret < 0) { 4968 /* tte changed underneath us */ 4969 if (pml) { 4970 sfmmu_mlist_exit(pml); 4971 } 4972 continue; 4973 } 4974 4975 if (tteflags.tte_intlo & TTE_HWWR_INT) { 4976 /* 4977 * need to sync if we are clearing modify bit. 4978 */ 4979 sfmmu_ttesync(sfmmup, addr, &tte, pp); 4980 } 4981 4982 if (pp && PP_ISRO(pp)) { 4983 if (tteattr.tte_intlo & TTE_WRPRM_INT) { 4984 pmtx = sfmmu_page_enter(pp); 4985 PP_CLRRO(pp); 4986 sfmmu_page_exit(pmtx); 4987 } 4988 } 4989 4990 if (ret > 0 && use_demap_range) { 4991 DEMAP_RANGE_MARKPG(dmrp, addr); 4992 } else if (ret > 0) { 4993 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 4994 } 4995 4996 if (pml) { 4997 sfmmu_mlist_exit(pml); 4998 } 4999 } 5000 next_addr: 5001 addr += TTEBYTES(ttesz); 5002 sfhmep++; 5003 DEMAP_RANGE_NEXTPG(dmrp); 5004 } 5005 return (addr); 5006 } 5007 5008 /* 5009 * This routine converts virtual attributes to physical ones. It will 5010 * update the tteflags field with the tte mask corresponding to the attributes 5011 * affected and it returns the new attributes. It will also clear the modify 5012 * bit if we are taking away write permission. This is necessary since the 5013 * modify bit is the hardware permission bit and we need to clear it in order 5014 * to detect write faults. 5015 */ 5016 static uint64_t 5017 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp) 5018 { 5019 tte_t ttevalue; 5020 5021 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR)); 5022 5023 switch (mode) { 5024 case SFMMU_CHGATTR: 5025 /* all attributes specified */ 5026 ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr); 5027 ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr); 5028 ttemaskp->tte_inthi = TTEINTHI_ATTR; 5029 ttemaskp->tte_intlo = TTEINTLO_ATTR; 5030 break; 5031 case SFMMU_SETATTR: 5032 ASSERT(!(attr & ~HAT_PROT_MASK)); 5033 ttemaskp->ll = 0; 5034 ttevalue.ll = 0; 5035 /* 5036 * a valid tte implies exec and read for sfmmu 5037 * so no need to do anything about them. 5038 * since priviledged access implies user access 5039 * PROT_USER doesn't make sense either. 5040 */ 5041 if (attr & PROT_WRITE) { 5042 ttemaskp->tte_intlo |= TTE_WRPRM_INT; 5043 ttevalue.tte_intlo |= TTE_WRPRM_INT; 5044 } 5045 break; 5046 case SFMMU_CLRATTR: 5047 /* attributes will be nand with current ones */ 5048 if (attr & ~(PROT_WRITE | PROT_USER)) { 5049 panic("sfmmu: attr %x not supported", attr); 5050 } 5051 ttemaskp->ll = 0; 5052 ttevalue.ll = 0; 5053 if (attr & PROT_WRITE) { 5054 /* clear both writable and modify bit */ 5055 ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT; 5056 } 5057 if (attr & PROT_USER) { 5058 ttemaskp->tte_intlo |= TTE_PRIV_INT; 5059 ttevalue.tte_intlo |= TTE_PRIV_INT; 5060 } 5061 break; 5062 default: 5063 panic("sfmmu_vtop_attr: bad mode %x", mode); 5064 } 5065 ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0); 5066 return (ttevalue.ll); 5067 } 5068 5069 static uint_t 5070 sfmmu_ptov_attr(tte_t *ttep) 5071 { 5072 uint_t attr; 5073 5074 ASSERT(TTE_IS_VALID(ttep)); 5075 5076 attr = PROT_READ; 5077 5078 if (TTE_IS_WRITABLE(ttep)) { 5079 attr |= PROT_WRITE; 5080 } 5081 if (TTE_IS_EXECUTABLE(ttep)) { 5082 attr |= PROT_EXEC; 5083 } 5084 if (!TTE_IS_PRIVILEGED(ttep)) { 5085 attr |= PROT_USER; 5086 } 5087 if (TTE_IS_NFO(ttep)) { 5088 attr |= HAT_NOFAULT; 5089 } 5090 if (TTE_IS_NOSYNC(ttep)) { 5091 attr |= HAT_NOSYNC; 5092 } 5093 if (TTE_IS_SIDEFFECT(ttep)) { 5094 attr |= SFMMU_SIDEFFECT; 5095 } 5096 if (!TTE_IS_VCACHEABLE(ttep)) { 5097 attr |= SFMMU_UNCACHEVTTE; 5098 } 5099 if (!TTE_IS_PCACHEABLE(ttep)) { 5100 attr |= SFMMU_UNCACHEPTTE; 5101 } 5102 return (attr); 5103 } 5104 5105 /* 5106 * hat_chgprot is a deprecated hat call. New segment drivers 5107 * should store all attributes and use hat_*attr calls. 5108 * 5109 * Change the protections in the virtual address range 5110 * given to the specified virtual protection. If vprot is ~PROT_WRITE, 5111 * then remove write permission, leaving the other 5112 * permissions unchanged. If vprot is ~PROT_USER, remove user permissions. 5113 * 5114 */ 5115 void 5116 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot) 5117 { 5118 struct hmehash_bucket *hmebp; 5119 hmeblk_tag hblktag; 5120 int hmeshift, hashno = 1; 5121 struct hme_blk *hmeblkp, *list = NULL; 5122 caddr_t endaddr; 5123 cpuset_t cpuset; 5124 demap_range_t dmr; 5125 5126 ASSERT((len & MMU_PAGEOFFSET) == 0); 5127 ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0); 5128 5129 if (sfmmup->sfmmu_xhat_provider) { 5130 XHAT_CHGPROT(sfmmup, addr, len, vprot); 5131 return; 5132 } else { 5133 /* 5134 * This must be a CPU HAT. If the address space has 5135 * XHATs attached, change attributes for all of them, 5136 * just in case 5137 */ 5138 ASSERT(sfmmup->sfmmu_as != NULL); 5139 if (sfmmup->sfmmu_as->a_xhat != NULL) 5140 xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot); 5141 } 5142 5143 CPUSET_ZERO(cpuset); 5144 5145 if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) && 5146 ((addr + len) > (caddr_t)USERLIMIT)) { 5147 panic("user addr %p vprot %x in kernel space", 5148 (void *)addr, vprot); 5149 } 5150 endaddr = addr + len; 5151 hblktag.htag_id = sfmmup; 5152 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 5153 DEMAP_RANGE_INIT(sfmmup, &dmr); 5154 5155 while (addr < endaddr) { 5156 hmeshift = HME_HASH_SHIFT(hashno); 5157 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 5158 hblktag.htag_rehash = hashno; 5159 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 5160 5161 SFMMU_HASH_LOCK(hmebp); 5162 5163 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 5164 if (hmeblkp != NULL) { 5165 ASSERT(!hmeblkp->hblk_shared); 5166 /* 5167 * We've encountered a shadow hmeblk so skip the range 5168 * of the next smaller mapping size. 5169 */ 5170 if (hmeblkp->hblk_shw_bit) { 5171 ASSERT(sfmmup != ksfmmup); 5172 ASSERT(hashno > 1); 5173 addr = (caddr_t)P2END((uintptr_t)addr, 5174 TTEBYTES(hashno - 1)); 5175 } else { 5176 addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp, 5177 addr, endaddr, &dmr, vprot); 5178 } 5179 SFMMU_HASH_UNLOCK(hmebp); 5180 hashno = 1; 5181 continue; 5182 } 5183 SFMMU_HASH_UNLOCK(hmebp); 5184 5185 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 5186 /* 5187 * We have traversed the whole list and rehashed 5188 * if necessary without finding the address to chgprot. 5189 * This is ok so we increment the address by the 5190 * smallest hmeblk range for kernel mappings and the 5191 * largest hmeblk range, to account for shadow hmeblks, 5192 * for user mappings and continue. 5193 */ 5194 if (sfmmup == ksfmmup) 5195 addr = (caddr_t)P2END((uintptr_t)addr, 5196 TTEBYTES(1)); 5197 else 5198 addr = (caddr_t)P2END((uintptr_t)addr, 5199 TTEBYTES(hashno)); 5200 hashno = 1; 5201 } else { 5202 hashno++; 5203 } 5204 } 5205 5206 sfmmu_hblks_list_purge(&list, 0); 5207 DEMAP_RANGE_FLUSH(&dmr); 5208 cpuset = sfmmup->sfmmu_cpusran; 5209 xt_sync(cpuset); 5210 } 5211 5212 /* 5213 * This function chgprots a range of addresses in an hmeblk. It returns the 5214 * next addres that needs to be chgprot. 5215 * It should be called with the hash lock held. 5216 * XXX It shold be possible to optimize chgprot by not flushing every time but 5217 * on the other hand: 5218 * 1. do one flush crosscall. 5219 * 2. only flush if we are increasing permissions (make sure this will work) 5220 */ 5221 static caddr_t 5222 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 5223 caddr_t endaddr, demap_range_t *dmrp, uint_t vprot) 5224 { 5225 uint_t pprot; 5226 tte_t tte, ttemod; 5227 struct sf_hment *sfhmep; 5228 uint_t tteflags; 5229 int ttesz; 5230 struct page *pp = NULL; 5231 kmutex_t *pml, *pmtx; 5232 int ret; 5233 int use_demap_range; 5234 #if defined(SF_ERRATA_57) 5235 int check_exec; 5236 #endif 5237 5238 ASSERT(in_hblk_range(hmeblkp, addr)); 5239 ASSERT(hmeblkp->hblk_shw_bit == 0); 5240 ASSERT(!hmeblkp->hblk_shared); 5241 5242 #ifdef DEBUG 5243 if (get_hblk_ttesz(hmeblkp) != TTE8K && 5244 (endaddr < get_hblk_endaddr(hmeblkp))) { 5245 panic("sfmmu_hblk_chgprot: partial chgprot of large page"); 5246 } 5247 #endif /* DEBUG */ 5248 5249 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 5250 ttesz = get_hblk_ttesz(hmeblkp); 5251 5252 pprot = sfmmu_vtop_prot(vprot, &tteflags); 5253 #if defined(SF_ERRATA_57) 5254 check_exec = (sfmmup != ksfmmup) && 5255 AS_TYPE_64BIT(sfmmup->sfmmu_as) && 5256 ((vprot & PROT_EXEC) == PROT_EXEC); 5257 #endif 5258 HBLKTOHME(sfhmep, hmeblkp, addr); 5259 5260 /* 5261 * Flush the current demap region if addresses have been 5262 * skipped or the page size doesn't match. 5263 */ 5264 use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE); 5265 if (use_demap_range) { 5266 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr); 5267 } else { 5268 DEMAP_RANGE_FLUSH(dmrp); 5269 } 5270 5271 while (addr < endaddr) { 5272 sfmmu_copytte(&sfhmep->hme_tte, &tte); 5273 if (TTE_IS_VALID(&tte)) { 5274 if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) { 5275 /* 5276 * if the new protection is the same as old 5277 * continue 5278 */ 5279 goto next_addr; 5280 } 5281 pml = NULL; 5282 pp = sfhmep->hme_page; 5283 if (pp) { 5284 pml = sfmmu_mlist_enter(pp); 5285 } 5286 if (pp != sfhmep->hme_page) { 5287 /* 5288 * tte most have been unloaded 5289 * underneath us. Recheck 5290 */ 5291 ASSERT(pml); 5292 sfmmu_mlist_exit(pml); 5293 continue; 5294 } 5295 5296 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 5297 5298 ttemod = tte; 5299 TTE_SET_LOFLAGS(&ttemod, tteflags, pprot); 5300 #if defined(SF_ERRATA_57) 5301 if (check_exec && addr < errata57_limit) 5302 ttemod.tte_exec_perm = 0; 5303 #endif 5304 ret = sfmmu_modifytte_try(&tte, &ttemod, 5305 &sfhmep->hme_tte); 5306 5307 if (ret < 0) { 5308 /* tte changed underneath us */ 5309 if (pml) { 5310 sfmmu_mlist_exit(pml); 5311 } 5312 continue; 5313 } 5314 5315 if (tteflags & TTE_HWWR_INT) { 5316 /* 5317 * need to sync if we are clearing modify bit. 5318 */ 5319 sfmmu_ttesync(sfmmup, addr, &tte, pp); 5320 } 5321 5322 if (pp && PP_ISRO(pp)) { 5323 if (pprot & TTE_WRPRM_INT) { 5324 pmtx = sfmmu_page_enter(pp); 5325 PP_CLRRO(pp); 5326 sfmmu_page_exit(pmtx); 5327 } 5328 } 5329 5330 if (ret > 0 && use_demap_range) { 5331 DEMAP_RANGE_MARKPG(dmrp, addr); 5332 } else if (ret > 0) { 5333 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 5334 } 5335 5336 if (pml) { 5337 sfmmu_mlist_exit(pml); 5338 } 5339 } 5340 next_addr: 5341 addr += TTEBYTES(ttesz); 5342 sfhmep++; 5343 DEMAP_RANGE_NEXTPG(dmrp); 5344 } 5345 return (addr); 5346 } 5347 5348 /* 5349 * This routine is deprecated and should only be used by hat_chgprot. 5350 * The correct routine is sfmmu_vtop_attr. 5351 * This routine converts virtual page protections to physical ones. It will 5352 * update the tteflags field with the tte mask corresponding to the protections 5353 * affected and it returns the new protections. It will also clear the modify 5354 * bit if we are taking away write permission. This is necessary since the 5355 * modify bit is the hardware permission bit and we need to clear it in order 5356 * to detect write faults. 5357 * It accepts the following special protections: 5358 * ~PROT_WRITE = remove write permissions. 5359 * ~PROT_USER = remove user permissions. 5360 */ 5361 static uint_t 5362 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp) 5363 { 5364 if (vprot == (uint_t)~PROT_WRITE) { 5365 *tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT; 5366 return (0); /* will cause wrprm to be cleared */ 5367 } 5368 if (vprot == (uint_t)~PROT_USER) { 5369 *tteflagsp = TTE_PRIV_INT; 5370 return (0); /* will cause privprm to be cleared */ 5371 } 5372 if ((vprot == 0) || (vprot == PROT_USER) || 5373 ((vprot & PROT_ALL) != vprot)) { 5374 panic("sfmmu_vtop_prot -- bad prot %x", vprot); 5375 } 5376 5377 switch (vprot) { 5378 case (PROT_READ): 5379 case (PROT_EXEC): 5380 case (PROT_EXEC | PROT_READ): 5381 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT; 5382 return (TTE_PRIV_INT); /* set prv and clr wrt */ 5383 case (PROT_WRITE): 5384 case (PROT_WRITE | PROT_READ): 5385 case (PROT_EXEC | PROT_WRITE): 5386 case (PROT_EXEC | PROT_WRITE | PROT_READ): 5387 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT; 5388 return (TTE_PRIV_INT | TTE_WRPRM_INT); /* set prv and wrt */ 5389 case (PROT_USER | PROT_READ): 5390 case (PROT_USER | PROT_EXEC): 5391 case (PROT_USER | PROT_EXEC | PROT_READ): 5392 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT; 5393 return (0); /* clr prv and wrt */ 5394 case (PROT_USER | PROT_WRITE): 5395 case (PROT_USER | PROT_WRITE | PROT_READ): 5396 case (PROT_USER | PROT_EXEC | PROT_WRITE): 5397 case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ): 5398 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT; 5399 return (TTE_WRPRM_INT); /* clr prv and set wrt */ 5400 default: 5401 panic("sfmmu_vtop_prot -- bad prot %x", vprot); 5402 } 5403 return (0); 5404 } 5405 5406 /* 5407 * Alternate unload for very large virtual ranges. With a true 64 bit VA, 5408 * the normal algorithm would take too long for a very large VA range with 5409 * few real mappings. This routine just walks thru all HMEs in the global 5410 * hash table to find and remove mappings. 5411 */ 5412 static void 5413 hat_unload_large_virtual( 5414 struct hat *sfmmup, 5415 caddr_t startaddr, 5416 size_t len, 5417 uint_t flags, 5418 hat_callback_t *callback) 5419 { 5420 struct hmehash_bucket *hmebp; 5421 struct hme_blk *hmeblkp; 5422 struct hme_blk *pr_hblk = NULL; 5423 struct hme_blk *nx_hblk; 5424 struct hme_blk *list = NULL; 5425 int i; 5426 demap_range_t dmr, *dmrp; 5427 cpuset_t cpuset; 5428 caddr_t endaddr = startaddr + len; 5429 caddr_t sa; 5430 caddr_t ea; 5431 caddr_t cb_sa[MAX_CB_ADDR]; 5432 caddr_t cb_ea[MAX_CB_ADDR]; 5433 int addr_cnt = 0; 5434 int a = 0; 5435 5436 if (sfmmup->sfmmu_free) { 5437 dmrp = NULL; 5438 } else { 5439 dmrp = &dmr; 5440 DEMAP_RANGE_INIT(sfmmup, dmrp); 5441 } 5442 5443 /* 5444 * Loop through all the hash buckets of HME blocks looking for matches. 5445 */ 5446 for (i = 0; i <= UHMEHASH_SZ; i++) { 5447 hmebp = &uhme_hash[i]; 5448 SFMMU_HASH_LOCK(hmebp); 5449 hmeblkp = hmebp->hmeblkp; 5450 pr_hblk = NULL; 5451 while (hmeblkp) { 5452 nx_hblk = hmeblkp->hblk_next; 5453 5454 /* 5455 * skip if not this context, if a shadow block or 5456 * if the mapping is not in the requested range 5457 */ 5458 if (hmeblkp->hblk_tag.htag_id != sfmmup || 5459 hmeblkp->hblk_shw_bit || 5460 (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr || 5461 (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) { 5462 pr_hblk = hmeblkp; 5463 goto next_block; 5464 } 5465 5466 ASSERT(!hmeblkp->hblk_shared); 5467 /* 5468 * unload if there are any current valid mappings 5469 */ 5470 if (hmeblkp->hblk_vcnt != 0 || 5471 hmeblkp->hblk_hmecnt != 0) 5472 (void) sfmmu_hblk_unload(sfmmup, hmeblkp, 5473 sa, ea, dmrp, flags); 5474 5475 /* 5476 * on unmap we also release the HME block itself, once 5477 * all mappings are gone. 5478 */ 5479 if ((flags & HAT_UNLOAD_UNMAP) != 0 && 5480 !hmeblkp->hblk_vcnt && 5481 !hmeblkp->hblk_hmecnt) { 5482 ASSERT(!hmeblkp->hblk_lckcnt); 5483 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, 5484 &list, 0); 5485 } else { 5486 pr_hblk = hmeblkp; 5487 } 5488 5489 if (callback == NULL) 5490 goto next_block; 5491 5492 /* 5493 * HME blocks may span more than one page, but we may be 5494 * unmapping only one page, so check for a smaller range 5495 * for the callback 5496 */ 5497 if (sa < startaddr) 5498 sa = startaddr; 5499 if (--ea > endaddr) 5500 ea = endaddr - 1; 5501 5502 cb_sa[addr_cnt] = sa; 5503 cb_ea[addr_cnt] = ea; 5504 if (++addr_cnt == MAX_CB_ADDR) { 5505 if (dmrp != NULL) { 5506 DEMAP_RANGE_FLUSH(dmrp); 5507 cpuset = sfmmup->sfmmu_cpusran; 5508 xt_sync(cpuset); 5509 } 5510 5511 for (a = 0; a < MAX_CB_ADDR; ++a) { 5512 callback->hcb_start_addr = cb_sa[a]; 5513 callback->hcb_end_addr = cb_ea[a]; 5514 callback->hcb_function(callback); 5515 } 5516 addr_cnt = 0; 5517 } 5518 5519 next_block: 5520 hmeblkp = nx_hblk; 5521 } 5522 SFMMU_HASH_UNLOCK(hmebp); 5523 } 5524 5525 sfmmu_hblks_list_purge(&list, 0); 5526 if (dmrp != NULL) { 5527 DEMAP_RANGE_FLUSH(dmrp); 5528 cpuset = sfmmup->sfmmu_cpusran; 5529 xt_sync(cpuset); 5530 } 5531 5532 for (a = 0; a < addr_cnt; ++a) { 5533 callback->hcb_start_addr = cb_sa[a]; 5534 callback->hcb_end_addr = cb_ea[a]; 5535 callback->hcb_function(callback); 5536 } 5537 5538 /* 5539 * Check TSB and TLB page sizes if the process isn't exiting. 5540 */ 5541 if (!sfmmup->sfmmu_free) 5542 sfmmu_check_page_sizes(sfmmup, 0); 5543 } 5544 5545 /* 5546 * Unload all the mappings in the range [addr..addr+len). addr and len must 5547 * be MMU_PAGESIZE aligned. 5548 */ 5549 5550 extern struct seg *segkmap; 5551 #define ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \ 5552 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size)) 5553 5554 5555 void 5556 hat_unload_callback( 5557 struct hat *sfmmup, 5558 caddr_t addr, 5559 size_t len, 5560 uint_t flags, 5561 hat_callback_t *callback) 5562 { 5563 struct hmehash_bucket *hmebp; 5564 hmeblk_tag hblktag; 5565 int hmeshift, hashno, iskernel; 5566 struct hme_blk *hmeblkp, *pr_hblk, *list = NULL; 5567 caddr_t endaddr; 5568 cpuset_t cpuset; 5569 int addr_count = 0; 5570 int a; 5571 caddr_t cb_start_addr[MAX_CB_ADDR]; 5572 caddr_t cb_end_addr[MAX_CB_ADDR]; 5573 int issegkmap = ISSEGKMAP(sfmmup, addr); 5574 demap_range_t dmr, *dmrp; 5575 5576 if (sfmmup->sfmmu_xhat_provider) { 5577 XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback); 5578 return; 5579 } else { 5580 /* 5581 * This must be a CPU HAT. If the address space has 5582 * XHATs attached, unload the mappings for all of them, 5583 * just in case 5584 */ 5585 ASSERT(sfmmup->sfmmu_as != NULL); 5586 if (sfmmup->sfmmu_as->a_xhat != NULL) 5587 xhat_unload_callback_all(sfmmup->sfmmu_as, addr, 5588 len, flags, callback); 5589 } 5590 5591 ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \ 5592 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 5593 5594 ASSERT(sfmmup != NULL); 5595 ASSERT((len & MMU_PAGEOFFSET) == 0); 5596 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET)); 5597 5598 /* 5599 * Probing through a large VA range (say 63 bits) will be slow, even 5600 * at 4 Meg steps between the probes. So, when the virtual address range 5601 * is very large, search the HME entries for what to unload. 5602 * 5603 * len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need 5604 * 5605 * UHMEHASH_SZ is number of hash buckets to examine 5606 * 5607 */ 5608 if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) { 5609 hat_unload_large_virtual(sfmmup, addr, len, flags, callback); 5610 return; 5611 } 5612 5613 CPUSET_ZERO(cpuset); 5614 5615 /* 5616 * If the process is exiting, we can save a lot of fuss since 5617 * we'll flush the TLB when we free the ctx anyway. 5618 */ 5619 if (sfmmup->sfmmu_free) 5620 dmrp = NULL; 5621 else 5622 dmrp = &dmr; 5623 5624 DEMAP_RANGE_INIT(sfmmup, dmrp); 5625 endaddr = addr + len; 5626 hblktag.htag_id = sfmmup; 5627 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 5628 5629 /* 5630 * It is likely for the vm to call unload over a wide range of 5631 * addresses that are actually very sparsely populated by 5632 * translations. In order to speed this up the sfmmu hat supports 5633 * the concept of shadow hmeblks. Dummy large page hmeblks that 5634 * correspond to actual small translations are allocated at tteload 5635 * time and are referred to as shadow hmeblks. Now, during unload 5636 * time, we first check if we have a shadow hmeblk for that 5637 * translation. The absence of one means the corresponding address 5638 * range is empty and can be skipped. 5639 * 5640 * The kernel is an exception to above statement and that is why 5641 * we don't use shadow hmeblks and hash starting from the smallest 5642 * page size. 5643 */ 5644 if (sfmmup == KHATID) { 5645 iskernel = 1; 5646 hashno = TTE64K; 5647 } else { 5648 iskernel = 0; 5649 if (mmu_page_sizes == max_mmu_page_sizes) { 5650 hashno = TTE256M; 5651 } else { 5652 hashno = TTE4M; 5653 } 5654 } 5655 while (addr < endaddr) { 5656 hmeshift = HME_HASH_SHIFT(hashno); 5657 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 5658 hblktag.htag_rehash = hashno; 5659 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 5660 5661 SFMMU_HASH_LOCK(hmebp); 5662 5663 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list); 5664 if (hmeblkp == NULL) { 5665 /* 5666 * didn't find an hmeblk. skip the appropiate 5667 * address range. 5668 */ 5669 SFMMU_HASH_UNLOCK(hmebp); 5670 if (iskernel) { 5671 if (hashno < mmu_hashcnt) { 5672 hashno++; 5673 continue; 5674 } else { 5675 hashno = TTE64K; 5676 addr = (caddr_t)roundup((uintptr_t)addr 5677 + 1, MMU_PAGESIZE64K); 5678 continue; 5679 } 5680 } 5681 addr = (caddr_t)roundup((uintptr_t)addr + 1, 5682 (1 << hmeshift)); 5683 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) { 5684 ASSERT(hashno == TTE64K); 5685 continue; 5686 } 5687 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) { 5688 hashno = TTE512K; 5689 continue; 5690 } 5691 if (mmu_page_sizes == max_mmu_page_sizes) { 5692 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) { 5693 hashno = TTE4M; 5694 continue; 5695 } 5696 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) { 5697 hashno = TTE32M; 5698 continue; 5699 } 5700 hashno = TTE256M; 5701 continue; 5702 } else { 5703 hashno = TTE4M; 5704 continue; 5705 } 5706 } 5707 ASSERT(hmeblkp); 5708 ASSERT(!hmeblkp->hblk_shared); 5709 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 5710 /* 5711 * If the valid count is zero we can skip the range 5712 * mapped by this hmeblk. 5713 * We free hblks in the case of HAT_UNMAP. HAT_UNMAP 5714 * is used by segment drivers as a hint 5715 * that the mapping resource won't be used any longer. 5716 * The best example of this is during exit(). 5717 */ 5718 addr = (caddr_t)roundup((uintptr_t)addr + 1, 5719 get_hblk_span(hmeblkp)); 5720 if ((flags & HAT_UNLOAD_UNMAP) || 5721 (iskernel && !issegkmap)) { 5722 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, 5723 &list, 0); 5724 } 5725 SFMMU_HASH_UNLOCK(hmebp); 5726 5727 if (iskernel) { 5728 hashno = TTE64K; 5729 continue; 5730 } 5731 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) { 5732 ASSERT(hashno == TTE64K); 5733 continue; 5734 } 5735 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) { 5736 hashno = TTE512K; 5737 continue; 5738 } 5739 if (mmu_page_sizes == max_mmu_page_sizes) { 5740 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) { 5741 hashno = TTE4M; 5742 continue; 5743 } 5744 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) { 5745 hashno = TTE32M; 5746 continue; 5747 } 5748 hashno = TTE256M; 5749 continue; 5750 } else { 5751 hashno = TTE4M; 5752 continue; 5753 } 5754 } 5755 if (hmeblkp->hblk_shw_bit) { 5756 /* 5757 * If we encounter a shadow hmeblk we know there is 5758 * smaller sized hmeblks mapping the same address space. 5759 * Decrement the hash size and rehash. 5760 */ 5761 ASSERT(sfmmup != KHATID); 5762 hashno--; 5763 SFMMU_HASH_UNLOCK(hmebp); 5764 continue; 5765 } 5766 5767 /* 5768 * track callback address ranges. 5769 * only start a new range when it's not contiguous 5770 */ 5771 if (callback != NULL) { 5772 if (addr_count > 0 && 5773 addr == cb_end_addr[addr_count - 1]) 5774 --addr_count; 5775 else 5776 cb_start_addr[addr_count] = addr; 5777 } 5778 5779 addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr, 5780 dmrp, flags); 5781 5782 if (callback != NULL) 5783 cb_end_addr[addr_count++] = addr; 5784 5785 if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) && 5786 !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) { 5787 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 0); 5788 } 5789 SFMMU_HASH_UNLOCK(hmebp); 5790 5791 /* 5792 * Notify our caller as to exactly which pages 5793 * have been unloaded. We do these in clumps, 5794 * to minimize the number of xt_sync()s that need to occur. 5795 */ 5796 if (callback != NULL && addr_count == MAX_CB_ADDR) { 5797 DEMAP_RANGE_FLUSH(dmrp); 5798 if (dmrp != NULL) { 5799 cpuset = sfmmup->sfmmu_cpusran; 5800 xt_sync(cpuset); 5801 } 5802 5803 for (a = 0; a < MAX_CB_ADDR; ++a) { 5804 callback->hcb_start_addr = cb_start_addr[a]; 5805 callback->hcb_end_addr = cb_end_addr[a]; 5806 callback->hcb_function(callback); 5807 } 5808 addr_count = 0; 5809 } 5810 if (iskernel) { 5811 hashno = TTE64K; 5812 continue; 5813 } 5814 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) { 5815 ASSERT(hashno == TTE64K); 5816 continue; 5817 } 5818 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) { 5819 hashno = TTE512K; 5820 continue; 5821 } 5822 if (mmu_page_sizes == max_mmu_page_sizes) { 5823 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) { 5824 hashno = TTE4M; 5825 continue; 5826 } 5827 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) { 5828 hashno = TTE32M; 5829 continue; 5830 } 5831 hashno = TTE256M; 5832 } else { 5833 hashno = TTE4M; 5834 } 5835 } 5836 5837 sfmmu_hblks_list_purge(&list, 0); 5838 DEMAP_RANGE_FLUSH(dmrp); 5839 if (dmrp != NULL) { 5840 cpuset = sfmmup->sfmmu_cpusran; 5841 xt_sync(cpuset); 5842 } 5843 if (callback && addr_count != 0) { 5844 for (a = 0; a < addr_count; ++a) { 5845 callback->hcb_start_addr = cb_start_addr[a]; 5846 callback->hcb_end_addr = cb_end_addr[a]; 5847 callback->hcb_function(callback); 5848 } 5849 } 5850 5851 /* 5852 * Check TSB and TLB page sizes if the process isn't exiting. 5853 */ 5854 if (!sfmmup->sfmmu_free) 5855 sfmmu_check_page_sizes(sfmmup, 0); 5856 } 5857 5858 /* 5859 * Unload all the mappings in the range [addr..addr+len). addr and len must 5860 * be MMU_PAGESIZE aligned. 5861 */ 5862 void 5863 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags) 5864 { 5865 if (sfmmup->sfmmu_xhat_provider) { 5866 XHAT_UNLOAD(sfmmup, addr, len, flags); 5867 return; 5868 } 5869 hat_unload_callback(sfmmup, addr, len, flags, NULL); 5870 } 5871 5872 5873 /* 5874 * Find the largest mapping size for this page. 5875 */ 5876 int 5877 fnd_mapping_sz(page_t *pp) 5878 { 5879 int sz; 5880 int p_index; 5881 5882 p_index = PP_MAPINDEX(pp); 5883 5884 sz = 0; 5885 p_index >>= 1; /* don't care about 8K bit */ 5886 for (; p_index; p_index >>= 1) { 5887 sz++; 5888 } 5889 5890 return (sz); 5891 } 5892 5893 /* 5894 * This function unloads a range of addresses for an hmeblk. 5895 * It returns the next address to be unloaded. 5896 * It should be called with the hash lock held. 5897 */ 5898 static caddr_t 5899 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 5900 caddr_t endaddr, demap_range_t *dmrp, uint_t flags) 5901 { 5902 tte_t tte, ttemod; 5903 struct sf_hment *sfhmep; 5904 int ttesz; 5905 long ttecnt; 5906 page_t *pp; 5907 kmutex_t *pml; 5908 int ret; 5909 int use_demap_range; 5910 5911 ASSERT(in_hblk_range(hmeblkp, addr)); 5912 ASSERT(!hmeblkp->hblk_shw_bit); 5913 ASSERT(sfmmup != NULL || hmeblkp->hblk_shared); 5914 ASSERT(sfmmup == NULL || !hmeblkp->hblk_shared); 5915 ASSERT(dmrp == NULL || !hmeblkp->hblk_shared); 5916 5917 #ifdef DEBUG 5918 if (get_hblk_ttesz(hmeblkp) != TTE8K && 5919 (endaddr < get_hblk_endaddr(hmeblkp))) { 5920 panic("sfmmu_hblk_unload: partial unload of large page"); 5921 } 5922 #endif /* DEBUG */ 5923 5924 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 5925 ttesz = get_hblk_ttesz(hmeblkp); 5926 5927 use_demap_range = ((dmrp == NULL) || 5928 (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp))); 5929 5930 if (use_demap_range) { 5931 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr); 5932 } else { 5933 DEMAP_RANGE_FLUSH(dmrp); 5934 } 5935 ttecnt = 0; 5936 HBLKTOHME(sfhmep, hmeblkp, addr); 5937 5938 while (addr < endaddr) { 5939 pml = NULL; 5940 sfmmu_copytte(&sfhmep->hme_tte, &tte); 5941 if (TTE_IS_VALID(&tte)) { 5942 pp = sfhmep->hme_page; 5943 if (pp != NULL) { 5944 pml = sfmmu_mlist_enter(pp); 5945 } 5946 5947 /* 5948 * Verify if hme still points to 'pp' now that 5949 * we have p_mapping lock. 5950 */ 5951 if (sfhmep->hme_page != pp) { 5952 if (pp != NULL && sfhmep->hme_page != NULL) { 5953 ASSERT(pml != NULL); 5954 sfmmu_mlist_exit(pml); 5955 /* Re-start this iteration. */ 5956 continue; 5957 } 5958 ASSERT((pp != NULL) && 5959 (sfhmep->hme_page == NULL)); 5960 goto tte_unloaded; 5961 } 5962 5963 /* 5964 * This point on we have both HASH and p_mapping 5965 * lock. 5966 */ 5967 ASSERT(pp == sfhmep->hme_page); 5968 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 5969 5970 /* 5971 * We need to loop on modify tte because it is 5972 * possible for pagesync to come along and 5973 * change the software bits beneath us. 5974 * 5975 * Page_unload can also invalidate the tte after 5976 * we read tte outside of p_mapping lock. 5977 */ 5978 again: 5979 ttemod = tte; 5980 5981 TTE_SET_INVALID(&ttemod); 5982 ret = sfmmu_modifytte_try(&tte, &ttemod, 5983 &sfhmep->hme_tte); 5984 5985 if (ret <= 0) { 5986 if (TTE_IS_VALID(&tte)) { 5987 ASSERT(ret < 0); 5988 goto again; 5989 } 5990 if (pp != NULL) { 5991 panic("sfmmu_hblk_unload: pp = 0x%p " 5992 "tte became invalid under mlist" 5993 " lock = 0x%p", (void *)pp, 5994 (void *)pml); 5995 } 5996 continue; 5997 } 5998 5999 if (!(flags & HAT_UNLOAD_NOSYNC)) { 6000 sfmmu_ttesync(sfmmup, addr, &tte, pp); 6001 } 6002 6003 /* 6004 * Ok- we invalidated the tte. Do the rest of the job. 6005 */ 6006 ttecnt++; 6007 6008 if (flags & HAT_UNLOAD_UNLOCK) { 6009 ASSERT(hmeblkp->hblk_lckcnt > 0); 6010 atomic_add_32(&hmeblkp->hblk_lckcnt, -1); 6011 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK); 6012 } 6013 6014 /* 6015 * Normally we would need to flush the page 6016 * from the virtual cache at this point in 6017 * order to prevent a potential cache alias 6018 * inconsistency. 6019 * The particular scenario we need to worry 6020 * about is: 6021 * Given: va1 and va2 are two virtual address 6022 * that alias and map the same physical 6023 * address. 6024 * 1. mapping exists from va1 to pa and data 6025 * has been read into the cache. 6026 * 2. unload va1. 6027 * 3. load va2 and modify data using va2. 6028 * 4 unload va2. 6029 * 5. load va1 and reference data. Unless we 6030 * flush the data cache when we unload we will 6031 * get stale data. 6032 * Fortunately, page coloring eliminates the 6033 * above scenario by remembering the color a 6034 * physical page was last or is currently 6035 * mapped to. Now, we delay the flush until 6036 * the loading of translations. Only when the 6037 * new translation is of a different color 6038 * are we forced to flush. 6039 */ 6040 if (use_demap_range) { 6041 /* 6042 * Mark this page as needing a demap. 6043 */ 6044 DEMAP_RANGE_MARKPG(dmrp, addr); 6045 } else { 6046 ASSERT(sfmmup != NULL); 6047 ASSERT(!hmeblkp->hblk_shared); 6048 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 6049 sfmmup->sfmmu_free, 0); 6050 } 6051 6052 if (pp) { 6053 /* 6054 * Remove the hment from the mapping list 6055 */ 6056 ASSERT(hmeblkp->hblk_hmecnt > 0); 6057 6058 /* 6059 * Again, we cannot 6060 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS); 6061 */ 6062 HME_SUB(sfhmep, pp); 6063 membar_stst(); 6064 atomic_add_16(&hmeblkp->hblk_hmecnt, -1); 6065 } 6066 6067 ASSERT(hmeblkp->hblk_vcnt > 0); 6068 atomic_add_16(&hmeblkp->hblk_vcnt, -1); 6069 6070 ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt || 6071 !hmeblkp->hblk_lckcnt); 6072 6073 #ifdef VAC 6074 if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) { 6075 if (PP_ISTNC(pp)) { 6076 /* 6077 * If page was temporary 6078 * uncached, try to recache 6079 * it. Note that HME_SUB() was 6080 * called above so p_index and 6081 * mlist had been updated. 6082 */ 6083 conv_tnc(pp, ttesz); 6084 } else if (pp->p_mapping == NULL) { 6085 ASSERT(kpm_enable); 6086 /* 6087 * Page is marked to be in VAC conflict 6088 * to an existing kpm mapping and/or is 6089 * kpm mapped using only the regular 6090 * pagesize. 6091 */ 6092 sfmmu_kpm_hme_unload(pp); 6093 } 6094 } 6095 #endif /* VAC */ 6096 } else if ((pp = sfhmep->hme_page) != NULL) { 6097 /* 6098 * TTE is invalid but the hme 6099 * still exists. let pageunload 6100 * complete its job. 6101 */ 6102 ASSERT(pml == NULL); 6103 pml = sfmmu_mlist_enter(pp); 6104 if (sfhmep->hme_page != NULL) { 6105 sfmmu_mlist_exit(pml); 6106 continue; 6107 } 6108 ASSERT(sfhmep->hme_page == NULL); 6109 } else if (hmeblkp->hblk_hmecnt != 0) { 6110 /* 6111 * pageunload may have not finished decrementing 6112 * hblk_vcnt and hblk_hmecnt. Find page_t if any and 6113 * wait for pageunload to finish. Rely on pageunload 6114 * to decrement hblk_hmecnt after hblk_vcnt. 6115 */ 6116 pfn_t pfn = TTE_TO_TTEPFN(&tte); 6117 ASSERT(pml == NULL); 6118 if (pf_is_memory(pfn)) { 6119 pp = page_numtopp_nolock(pfn); 6120 if (pp != NULL) { 6121 pml = sfmmu_mlist_enter(pp); 6122 sfmmu_mlist_exit(pml); 6123 pml = NULL; 6124 } 6125 } 6126 } 6127 6128 tte_unloaded: 6129 /* 6130 * At this point, the tte we are looking at 6131 * should be unloaded, and hme has been unlinked 6132 * from page too. This is important because in 6133 * pageunload, it does ttesync() then HME_SUB. 6134 * We need to make sure HME_SUB has been completed 6135 * so we know ttesync() has been completed. Otherwise, 6136 * at exit time, after return from hat layer, VM will 6137 * release as structure which hat_setstat() (called 6138 * by ttesync()) needs. 6139 */ 6140 #ifdef DEBUG 6141 { 6142 tte_t dtte; 6143 6144 ASSERT(sfhmep->hme_page == NULL); 6145 6146 sfmmu_copytte(&sfhmep->hme_tte, &dtte); 6147 ASSERT(!TTE_IS_VALID(&dtte)); 6148 } 6149 #endif 6150 6151 if (pml) { 6152 sfmmu_mlist_exit(pml); 6153 } 6154 6155 addr += TTEBYTES(ttesz); 6156 sfhmep++; 6157 DEMAP_RANGE_NEXTPG(dmrp); 6158 } 6159 /* 6160 * For shared hmeblks this routine is only called when region is freed 6161 * and no longer referenced. So no need to decrement ttecnt 6162 * in the region structure here. 6163 */ 6164 if (ttecnt > 0 && sfmmup != NULL) { 6165 atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt); 6166 } 6167 return (addr); 6168 } 6169 6170 /* 6171 * Synchronize all the mappings in the range [addr..addr+len). 6172 * Can be called with clearflag having two states: 6173 * HAT_SYNC_DONTZERO means just return the rm stats 6174 * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats 6175 */ 6176 void 6177 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag) 6178 { 6179 struct hmehash_bucket *hmebp; 6180 hmeblk_tag hblktag; 6181 int hmeshift, hashno = 1; 6182 struct hme_blk *hmeblkp, *list = NULL; 6183 caddr_t endaddr; 6184 cpuset_t cpuset; 6185 6186 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 6187 ASSERT((sfmmup == ksfmmup) || 6188 AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 6189 ASSERT((len & MMU_PAGEOFFSET) == 0); 6190 ASSERT((clearflag == HAT_SYNC_DONTZERO) || 6191 (clearflag == HAT_SYNC_ZERORM)); 6192 6193 CPUSET_ZERO(cpuset); 6194 6195 endaddr = addr + len; 6196 hblktag.htag_id = sfmmup; 6197 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 6198 6199 /* 6200 * Spitfire supports 4 page sizes. 6201 * Most pages are expected to be of the smallest page 6202 * size (8K) and these will not need to be rehashed. 64K 6203 * pages also don't need to be rehashed because the an hmeblk 6204 * spans 64K of address space. 512K pages might need 1 rehash and 6205 * and 4M pages 2 rehashes. 6206 */ 6207 while (addr < endaddr) { 6208 hmeshift = HME_HASH_SHIFT(hashno); 6209 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift); 6210 hblktag.htag_rehash = hashno; 6211 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift); 6212 6213 SFMMU_HASH_LOCK(hmebp); 6214 6215 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list); 6216 if (hmeblkp != NULL) { 6217 ASSERT(!hmeblkp->hblk_shared); 6218 /* 6219 * We've encountered a shadow hmeblk so skip the range 6220 * of the next smaller mapping size. 6221 */ 6222 if (hmeblkp->hblk_shw_bit) { 6223 ASSERT(sfmmup != ksfmmup); 6224 ASSERT(hashno > 1); 6225 addr = (caddr_t)P2END((uintptr_t)addr, 6226 TTEBYTES(hashno - 1)); 6227 } else { 6228 addr = sfmmu_hblk_sync(sfmmup, hmeblkp, 6229 addr, endaddr, clearflag); 6230 } 6231 SFMMU_HASH_UNLOCK(hmebp); 6232 hashno = 1; 6233 continue; 6234 } 6235 SFMMU_HASH_UNLOCK(hmebp); 6236 6237 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) { 6238 /* 6239 * We have traversed the whole list and rehashed 6240 * if necessary without finding the address to sync. 6241 * This is ok so we increment the address by the 6242 * smallest hmeblk range for kernel mappings and the 6243 * largest hmeblk range, to account for shadow hmeblks, 6244 * for user mappings and continue. 6245 */ 6246 if (sfmmup == ksfmmup) 6247 addr = (caddr_t)P2END((uintptr_t)addr, 6248 TTEBYTES(1)); 6249 else 6250 addr = (caddr_t)P2END((uintptr_t)addr, 6251 TTEBYTES(hashno)); 6252 hashno = 1; 6253 } else { 6254 hashno++; 6255 } 6256 } 6257 sfmmu_hblks_list_purge(&list, 0); 6258 cpuset = sfmmup->sfmmu_cpusran; 6259 xt_sync(cpuset); 6260 } 6261 6262 static caddr_t 6263 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr, 6264 caddr_t endaddr, int clearflag) 6265 { 6266 tte_t tte, ttemod; 6267 struct sf_hment *sfhmep; 6268 int ttesz; 6269 struct page *pp; 6270 kmutex_t *pml; 6271 int ret; 6272 6273 ASSERT(hmeblkp->hblk_shw_bit == 0); 6274 ASSERT(!hmeblkp->hblk_shared); 6275 6276 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp)); 6277 6278 ttesz = get_hblk_ttesz(hmeblkp); 6279 HBLKTOHME(sfhmep, hmeblkp, addr); 6280 6281 while (addr < endaddr) { 6282 sfmmu_copytte(&sfhmep->hme_tte, &tte); 6283 if (TTE_IS_VALID(&tte)) { 6284 pml = NULL; 6285 pp = sfhmep->hme_page; 6286 if (pp) { 6287 pml = sfmmu_mlist_enter(pp); 6288 } 6289 if (pp != sfhmep->hme_page) { 6290 /* 6291 * tte most have been unloaded 6292 * underneath us. Recheck 6293 */ 6294 ASSERT(pml); 6295 sfmmu_mlist_exit(pml); 6296 continue; 6297 } 6298 6299 ASSERT(pp == NULL || sfmmu_mlist_held(pp)); 6300 6301 if (clearflag == HAT_SYNC_ZERORM) { 6302 ttemod = tte; 6303 TTE_CLR_RM(&ttemod); 6304 ret = sfmmu_modifytte_try(&tte, &ttemod, 6305 &sfhmep->hme_tte); 6306 if (ret < 0) { 6307 if (pml) { 6308 sfmmu_mlist_exit(pml); 6309 } 6310 continue; 6311 } 6312 6313 if (ret > 0) { 6314 sfmmu_tlb_demap(addr, sfmmup, 6315 hmeblkp, 0, 0); 6316 } 6317 } 6318 sfmmu_ttesync(sfmmup, addr, &tte, pp); 6319 if (pml) { 6320 sfmmu_mlist_exit(pml); 6321 } 6322 } 6323 addr += TTEBYTES(ttesz); 6324 sfhmep++; 6325 } 6326 return (addr); 6327 } 6328 6329 /* 6330 * This function will sync a tte to the page struct and it will 6331 * update the hat stats. Currently it allows us to pass a NULL pp 6332 * and we will simply update the stats. We may want to change this 6333 * so we only keep stats for pages backed by pp's. 6334 */ 6335 static void 6336 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp) 6337 { 6338 uint_t rm = 0; 6339 int sz; 6340 pgcnt_t npgs; 6341 6342 ASSERT(TTE_IS_VALID(ttep)); 6343 6344 if (TTE_IS_NOSYNC(ttep)) { 6345 return; 6346 } 6347 6348 if (TTE_IS_REF(ttep)) { 6349 rm = P_REF; 6350 } 6351 if (TTE_IS_MOD(ttep)) { 6352 rm |= P_MOD; 6353 } 6354 6355 if (rm == 0) { 6356 return; 6357 } 6358 6359 sz = TTE_CSZ(ttep); 6360 if (sfmmup != NULL && sfmmup->sfmmu_rmstat) { 6361 int i; 6362 caddr_t vaddr = addr; 6363 6364 for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) { 6365 hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm); 6366 } 6367 6368 } 6369 6370 /* 6371 * XXX I want to use cas to update nrm bits but they 6372 * currently belong in common/vm and not in hat where 6373 * they should be. 6374 * The nrm bits are protected by the same mutex as 6375 * the one that protects the page's mapping list. 6376 */ 6377 if (!pp) 6378 return; 6379 ASSERT(sfmmu_mlist_held(pp)); 6380 /* 6381 * If the tte is for a large page, we need to sync all the 6382 * pages covered by the tte. 6383 */ 6384 if (sz != TTE8K) { 6385 ASSERT(pp->p_szc != 0); 6386 pp = PP_GROUPLEADER(pp, sz); 6387 ASSERT(sfmmu_mlist_held(pp)); 6388 } 6389 6390 /* Get number of pages from tte size. */ 6391 npgs = TTEPAGES(sz); 6392 6393 do { 6394 ASSERT(pp); 6395 ASSERT(sfmmu_mlist_held(pp)); 6396 if (((rm & P_REF) != 0 && !PP_ISREF(pp)) || 6397 ((rm & P_MOD) != 0 && !PP_ISMOD(pp))) 6398 hat_page_setattr(pp, rm); 6399 6400 /* 6401 * Are we done? If not, we must have a large mapping. 6402 * For large mappings we need to sync the rest of the pages 6403 * covered by this tte; goto the next page. 6404 */ 6405 } while (--npgs > 0 && (pp = PP_PAGENEXT(pp))); 6406 } 6407 6408 /* 6409 * Execute pre-callback handler of each pa_hment linked to pp 6410 * 6411 * Inputs: 6412 * flag: either HAT_PRESUSPEND or HAT_SUSPEND. 6413 * capture_cpus: pointer to return value (below) 6414 * 6415 * Returns: 6416 * Propagates the subsystem callback return values back to the caller; 6417 * returns 0 on success. If capture_cpus is non-NULL, the value returned 6418 * is zero if all of the pa_hments are of a type that do not require 6419 * capturing CPUs prior to suspending the mapping, else it is 1. 6420 */ 6421 static int 6422 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus) 6423 { 6424 struct sf_hment *sfhmep; 6425 struct pa_hment *pahmep; 6426 int (*f)(caddr_t, uint_t, uint_t, void *); 6427 int ret; 6428 id_t id; 6429 int locked = 0; 6430 kmutex_t *pml; 6431 6432 ASSERT(PAGE_EXCL(pp)); 6433 if (!sfmmu_mlist_held(pp)) { 6434 pml = sfmmu_mlist_enter(pp); 6435 locked = 1; 6436 } 6437 6438 if (capture_cpus) 6439 *capture_cpus = 0; 6440 6441 top: 6442 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 6443 /* 6444 * skip sf_hments corresponding to VA<->PA mappings; 6445 * for pa_hment's, hme_tte.ll is zero 6446 */ 6447 if (!IS_PAHME(sfhmep)) 6448 continue; 6449 6450 pahmep = sfhmep->hme_data; 6451 ASSERT(pahmep != NULL); 6452 6453 /* 6454 * skip if pre-handler has been called earlier in this loop 6455 */ 6456 if (pahmep->flags & flag) 6457 continue; 6458 6459 id = pahmep->cb_id; 6460 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid); 6461 if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0) 6462 *capture_cpus = 1; 6463 if ((f = sfmmu_cb_table[id].prehandler) == NULL) { 6464 pahmep->flags |= flag; 6465 continue; 6466 } 6467 6468 /* 6469 * Drop the mapping list lock to avoid locking order issues. 6470 */ 6471 if (locked) 6472 sfmmu_mlist_exit(pml); 6473 6474 ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt); 6475 if (ret != 0) 6476 return (ret); /* caller must do the cleanup */ 6477 6478 if (locked) { 6479 pml = sfmmu_mlist_enter(pp); 6480 pahmep->flags |= flag; 6481 goto top; 6482 } 6483 6484 pahmep->flags |= flag; 6485 } 6486 6487 if (locked) 6488 sfmmu_mlist_exit(pml); 6489 6490 return (0); 6491 } 6492 6493 /* 6494 * Execute post-callback handler of each pa_hment linked to pp 6495 * 6496 * Same overall assumptions and restrictions apply as for 6497 * hat_pageprocess_precallbacks(). 6498 */ 6499 static void 6500 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag) 6501 { 6502 pfn_t pgpfn = pp->p_pagenum; 6503 pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1; 6504 pfn_t newpfn; 6505 struct sf_hment *sfhmep; 6506 struct pa_hment *pahmep; 6507 int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t); 6508 id_t id; 6509 int locked = 0; 6510 kmutex_t *pml; 6511 6512 ASSERT(PAGE_EXCL(pp)); 6513 if (!sfmmu_mlist_held(pp)) { 6514 pml = sfmmu_mlist_enter(pp); 6515 locked = 1; 6516 } 6517 6518 top: 6519 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 6520 /* 6521 * skip sf_hments corresponding to VA<->PA mappings; 6522 * for pa_hment's, hme_tte.ll is zero 6523 */ 6524 if (!IS_PAHME(sfhmep)) 6525 continue; 6526 6527 pahmep = sfhmep->hme_data; 6528 ASSERT(pahmep != NULL); 6529 6530 if ((pahmep->flags & flag) == 0) 6531 continue; 6532 6533 pahmep->flags &= ~flag; 6534 6535 id = pahmep->cb_id; 6536 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid); 6537 if ((f = sfmmu_cb_table[id].posthandler) == NULL) 6538 continue; 6539 6540 /* 6541 * Convert the base page PFN into the constituent PFN 6542 * which is needed by the callback handler. 6543 */ 6544 newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask); 6545 6546 /* 6547 * Drop the mapping list lock to avoid locking order issues. 6548 */ 6549 if (locked) 6550 sfmmu_mlist_exit(pml); 6551 6552 if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn) 6553 != 0) 6554 panic("sfmmu: posthandler failed"); 6555 6556 if (locked) { 6557 pml = sfmmu_mlist_enter(pp); 6558 goto top; 6559 } 6560 } 6561 6562 if (locked) 6563 sfmmu_mlist_exit(pml); 6564 } 6565 6566 /* 6567 * Suspend locked kernel mapping 6568 */ 6569 void 6570 hat_pagesuspend(struct page *pp) 6571 { 6572 struct sf_hment *sfhmep; 6573 sfmmu_t *sfmmup; 6574 tte_t tte, ttemod; 6575 struct hme_blk *hmeblkp; 6576 caddr_t addr; 6577 int index, cons; 6578 cpuset_t cpuset; 6579 6580 ASSERT(PAGE_EXCL(pp)); 6581 ASSERT(sfmmu_mlist_held(pp)); 6582 6583 mutex_enter(&kpr_suspendlock); 6584 6585 /* 6586 * We're about to suspend a kernel mapping so mark this thread as 6587 * non-traceable by DTrace. This prevents us from running into issues 6588 * with probe context trying to touch a suspended page 6589 * in the relocation codepath itself. 6590 */ 6591 curthread->t_flag |= T_DONTDTRACE; 6592 6593 index = PP_MAPINDEX(pp); 6594 cons = TTE8K; 6595 6596 retry: 6597 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 6598 6599 if (IS_PAHME(sfhmep)) 6600 continue; 6601 6602 if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons) 6603 continue; 6604 6605 /* 6606 * Loop until we successfully set the suspend bit in 6607 * the TTE. 6608 */ 6609 again: 6610 sfmmu_copytte(&sfhmep->hme_tte, &tte); 6611 ASSERT(TTE_IS_VALID(&tte)); 6612 6613 ttemod = tte; 6614 TTE_SET_SUSPEND(&ttemod); 6615 if (sfmmu_modifytte_try(&tte, &ttemod, 6616 &sfhmep->hme_tte) < 0) 6617 goto again; 6618 6619 /* 6620 * Invalidate TSB entry 6621 */ 6622 hmeblkp = sfmmu_hmetohblk(sfhmep); 6623 6624 sfmmup = hblktosfmmu(hmeblkp); 6625 ASSERT(sfmmup == ksfmmup); 6626 ASSERT(!hmeblkp->hblk_shared); 6627 6628 addr = tte_to_vaddr(hmeblkp, tte); 6629 6630 /* 6631 * No need to make sure that the TSB for this sfmmu is 6632 * not being relocated since it is ksfmmup and thus it 6633 * will never be relocated. 6634 */ 6635 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0); 6636 6637 /* 6638 * Update xcall stats 6639 */ 6640 cpuset = cpu_ready_set; 6641 CPUSET_DEL(cpuset, CPU->cpu_id); 6642 6643 /* LINTED: constant in conditional context */ 6644 SFMMU_XCALL_STATS(ksfmmup); 6645 6646 /* 6647 * Flush TLB entry on remote CPU's 6648 */ 6649 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, 6650 (uint64_t)ksfmmup); 6651 xt_sync(cpuset); 6652 6653 /* 6654 * Flush TLB entry on local CPU 6655 */ 6656 vtag_flushpage(addr, (uint64_t)ksfmmup); 6657 } 6658 6659 while (index != 0) { 6660 index = index >> 1; 6661 if (index != 0) 6662 cons++; 6663 if (index & 0x1) { 6664 pp = PP_GROUPLEADER(pp, cons); 6665 goto retry; 6666 } 6667 } 6668 } 6669 6670 #ifdef DEBUG 6671 6672 #define N_PRLE 1024 6673 struct prle { 6674 page_t *targ; 6675 page_t *repl; 6676 int status; 6677 int pausecpus; 6678 hrtime_t whence; 6679 }; 6680 6681 static struct prle page_relocate_log[N_PRLE]; 6682 static int prl_entry; 6683 static kmutex_t prl_mutex; 6684 6685 #define PAGE_RELOCATE_LOG(t, r, s, p) \ 6686 mutex_enter(&prl_mutex); \ 6687 page_relocate_log[prl_entry].targ = *(t); \ 6688 page_relocate_log[prl_entry].repl = *(r); \ 6689 page_relocate_log[prl_entry].status = (s); \ 6690 page_relocate_log[prl_entry].pausecpus = (p); \ 6691 page_relocate_log[prl_entry].whence = gethrtime(); \ 6692 prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1; \ 6693 mutex_exit(&prl_mutex); 6694 6695 #else /* !DEBUG */ 6696 #define PAGE_RELOCATE_LOG(t, r, s, p) 6697 #endif 6698 6699 /* 6700 * Core Kernel Page Relocation Algorithm 6701 * 6702 * Input: 6703 * 6704 * target : constituent pages are SE_EXCL locked. 6705 * replacement: constituent pages are SE_EXCL locked. 6706 * 6707 * Output: 6708 * 6709 * nrelocp: number of pages relocated 6710 */ 6711 int 6712 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp) 6713 { 6714 page_t *targ, *repl; 6715 page_t *tpp, *rpp; 6716 kmutex_t *low, *high; 6717 spgcnt_t npages, i; 6718 page_t *pl = NULL; 6719 int old_pil; 6720 cpuset_t cpuset; 6721 int cap_cpus; 6722 int ret; 6723 #ifdef VAC 6724 int cflags = 0; 6725 #endif 6726 6727 if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) { 6728 PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1); 6729 return (EAGAIN); 6730 } 6731 6732 mutex_enter(&kpr_mutex); 6733 kreloc_thread = curthread; 6734 6735 targ = *target; 6736 repl = *replacement; 6737 ASSERT(repl != NULL); 6738 ASSERT(targ->p_szc == repl->p_szc); 6739 6740 npages = page_get_pagecnt(targ->p_szc); 6741 6742 /* 6743 * unload VA<->PA mappings that are not locked 6744 */ 6745 tpp = targ; 6746 for (i = 0; i < npages; i++) { 6747 (void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC); 6748 tpp++; 6749 } 6750 6751 /* 6752 * Do "presuspend" callbacks, in a context from which we can still 6753 * block as needed. Note that we don't hold the mapping list lock 6754 * of "targ" at this point due to potential locking order issues; 6755 * we assume that between the hat_pageunload() above and holding 6756 * the SE_EXCL lock that the mapping list *cannot* change at this 6757 * point. 6758 */ 6759 ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus); 6760 if (ret != 0) { 6761 /* 6762 * EIO translates to fatal error, for all others cleanup 6763 * and return EAGAIN. 6764 */ 6765 ASSERT(ret != EIO); 6766 hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND); 6767 PAGE_RELOCATE_LOG(target, replacement, ret, -1); 6768 kreloc_thread = NULL; 6769 mutex_exit(&kpr_mutex); 6770 return (EAGAIN); 6771 } 6772 6773 /* 6774 * acquire p_mapping list lock for both the target and replacement 6775 * root pages. 6776 * 6777 * low and high refer to the need to grab the mlist locks in a 6778 * specific order in order to prevent race conditions. Thus the 6779 * lower lock must be grabbed before the higher lock. 6780 * 6781 * This will block hat_unload's accessing p_mapping list. Since 6782 * we have SE_EXCL lock, hat_memload and hat_pageunload will be 6783 * blocked. Thus, no one else will be accessing the p_mapping list 6784 * while we suspend and reload the locked mapping below. 6785 */ 6786 tpp = targ; 6787 rpp = repl; 6788 sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high); 6789 6790 kpreempt_disable(); 6791 6792 /* 6793 * We raise our PIL to 13 so that we don't get captured by 6794 * another CPU or pinned by an interrupt thread. We can't go to 6795 * PIL 14 since the nexus driver(s) may need to interrupt at 6796 * that level in the case of IOMMU pseudo mappings. 6797 */ 6798 cpuset = cpu_ready_set; 6799 CPUSET_DEL(cpuset, CPU->cpu_id); 6800 if (!cap_cpus || CPUSET_ISNULL(cpuset)) { 6801 old_pil = splr(XCALL_PIL); 6802 } else { 6803 old_pil = -1; 6804 xc_attention(cpuset); 6805 } 6806 ASSERT(getpil() == XCALL_PIL); 6807 6808 /* 6809 * Now do suspend callbacks. In the case of an IOMMU mapping 6810 * this will suspend all DMA activity to the page while it is 6811 * being relocated. Since we are well above LOCK_LEVEL and CPUs 6812 * may be captured at this point we should have acquired any needed 6813 * locks in the presuspend callback. 6814 */ 6815 ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL); 6816 if (ret != 0) { 6817 repl = targ; 6818 goto suspend_fail; 6819 } 6820 6821 /* 6822 * Raise the PIL yet again, this time to block all high-level 6823 * interrupts on this CPU. This is necessary to prevent an 6824 * interrupt routine from pinning the thread which holds the 6825 * mapping suspended and then touching the suspended page. 6826 * 6827 * Once the page is suspended we also need to be careful to 6828 * avoid calling any functions which touch any seg_kmem memory 6829 * since that memory may be backed by the very page we are 6830 * relocating in here! 6831 */ 6832 hat_pagesuspend(targ); 6833 6834 /* 6835 * Now that we are confident everybody has stopped using this page, 6836 * copy the page contents. Note we use a physical copy to prevent 6837 * locking issues and to avoid fpRAS because we can't handle it in 6838 * this context. 6839 */ 6840 for (i = 0; i < npages; i++, tpp++, rpp++) { 6841 #ifdef VAC 6842 /* 6843 * If the replacement has a different vcolor than 6844 * the one being replacd, we need to handle VAC 6845 * consistency for it just as we were setting up 6846 * a new mapping to it. 6847 */ 6848 if ((PP_GET_VCOLOR(rpp) != NO_VCOLOR) && 6849 (tpp->p_vcolor != rpp->p_vcolor) && 6850 !CacheColor_IsFlushed(cflags, PP_GET_VCOLOR(rpp))) { 6851 CacheColor_SetFlushed(cflags, PP_GET_VCOLOR(rpp)); 6852 sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp), 6853 rpp->p_pagenum); 6854 } 6855 #endif 6856 /* 6857 * Copy the contents of the page. 6858 */ 6859 ppcopy_kernel(tpp, rpp); 6860 } 6861 6862 tpp = targ; 6863 rpp = repl; 6864 for (i = 0; i < npages; i++, tpp++, rpp++) { 6865 /* 6866 * Copy attributes. VAC consistency was handled above, 6867 * if required. 6868 */ 6869 rpp->p_nrm = tpp->p_nrm; 6870 tpp->p_nrm = 0; 6871 rpp->p_index = tpp->p_index; 6872 tpp->p_index = 0; 6873 #ifdef VAC 6874 rpp->p_vcolor = tpp->p_vcolor; 6875 #endif 6876 } 6877 6878 /* 6879 * First, unsuspend the page, if we set the suspend bit, and transfer 6880 * the mapping list from the target page to the replacement page. 6881 * Next process postcallbacks; since pa_hment's are linked only to the 6882 * p_mapping list of root page, we don't iterate over the constituent 6883 * pages. 6884 */ 6885 hat_pagereload(targ, repl); 6886 6887 suspend_fail: 6888 hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND); 6889 6890 /* 6891 * Now lower our PIL and release any captured CPUs since we 6892 * are out of the "danger zone". After this it will again be 6893 * safe to acquire adaptive mutex locks, or to drop them... 6894 */ 6895 if (old_pil != -1) { 6896 splx(old_pil); 6897 } else { 6898 xc_dismissed(cpuset); 6899 } 6900 6901 kpreempt_enable(); 6902 6903 sfmmu_mlist_reloc_exit(low, high); 6904 6905 /* 6906 * Postsuspend callbacks should drop any locks held across 6907 * the suspend callbacks. As before, we don't hold the mapping 6908 * list lock at this point.. our assumption is that the mapping 6909 * list still can't change due to our holding SE_EXCL lock and 6910 * there being no unlocked mappings left. Hence the restriction 6911 * on calling context to hat_delete_callback() 6912 */ 6913 hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND); 6914 if (ret != 0) { 6915 /* 6916 * The second presuspend call failed: we got here through 6917 * the suspend_fail label above. 6918 */ 6919 ASSERT(ret != EIO); 6920 PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus); 6921 kreloc_thread = NULL; 6922 mutex_exit(&kpr_mutex); 6923 return (EAGAIN); 6924 } 6925 6926 /* 6927 * Now that we're out of the performance critical section we can 6928 * take care of updating the hash table, since we still 6929 * hold all the pages locked SE_EXCL at this point we 6930 * needn't worry about things changing out from under us. 6931 */ 6932 tpp = targ; 6933 rpp = repl; 6934 for (i = 0; i < npages; i++, tpp++, rpp++) { 6935 6936 /* 6937 * replace targ with replacement in page_hash table 6938 */ 6939 targ = tpp; 6940 page_relocate_hash(rpp, targ); 6941 6942 /* 6943 * concatenate target; caller of platform_page_relocate() 6944 * expects target to be concatenated after returning. 6945 */ 6946 ASSERT(targ->p_next == targ); 6947 ASSERT(targ->p_prev == targ); 6948 page_list_concat(&pl, &targ); 6949 } 6950 6951 ASSERT(*target == pl); 6952 *nrelocp = npages; 6953 PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus); 6954 kreloc_thread = NULL; 6955 mutex_exit(&kpr_mutex); 6956 return (0); 6957 } 6958 6959 /* 6960 * Called when stray pa_hments are found attached to a page which is 6961 * being freed. Notify the subsystem which attached the pa_hment of 6962 * the error if it registered a suitable handler, else panic. 6963 */ 6964 static void 6965 sfmmu_pahment_leaked(struct pa_hment *pahmep) 6966 { 6967 id_t cb_id = pahmep->cb_id; 6968 6969 ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid); 6970 if (sfmmu_cb_table[cb_id].errhandler != NULL) { 6971 if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len, 6972 HAT_CB_ERR_LEAKED, pahmep->pvt) == 0) 6973 return; /* non-fatal */ 6974 } 6975 panic("pa_hment leaked: 0x%p", (void *)pahmep); 6976 } 6977 6978 /* 6979 * Remove all mappings to page 'pp'. 6980 */ 6981 int 6982 hat_pageunload(struct page *pp, uint_t forceflag) 6983 { 6984 struct page *origpp = pp; 6985 struct sf_hment *sfhme, *tmphme; 6986 struct hme_blk *hmeblkp; 6987 kmutex_t *pml; 6988 #ifdef VAC 6989 kmutex_t *pmtx; 6990 #endif 6991 cpuset_t cpuset, tset; 6992 int index, cons; 6993 int xhme_blks; 6994 int pa_hments; 6995 6996 ASSERT(PAGE_EXCL(pp)); 6997 6998 retry_xhat: 6999 tmphme = NULL; 7000 xhme_blks = 0; 7001 pa_hments = 0; 7002 CPUSET_ZERO(cpuset); 7003 7004 pml = sfmmu_mlist_enter(pp); 7005 7006 #ifdef VAC 7007 if (pp->p_kpmref) 7008 sfmmu_kpm_pageunload(pp); 7009 ASSERT(!PP_ISMAPPED_KPM(pp)); 7010 #endif 7011 /* 7012 * Clear vpm reference. Since the page is exclusively locked 7013 * vpm cannot be referencing it. 7014 */ 7015 if (vpm_enable) { 7016 pp->p_vpmref = 0; 7017 } 7018 7019 index = PP_MAPINDEX(pp); 7020 cons = TTE8K; 7021 retry: 7022 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 7023 tmphme = sfhme->hme_next; 7024 7025 if (IS_PAHME(sfhme)) { 7026 ASSERT(sfhme->hme_data != NULL); 7027 pa_hments++; 7028 continue; 7029 } 7030 7031 hmeblkp = sfmmu_hmetohblk(sfhme); 7032 if (hmeblkp->hblk_xhat_bit) { 7033 struct xhat_hme_blk *xblk = 7034 (struct xhat_hme_blk *)hmeblkp; 7035 7036 (void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat, 7037 pp, forceflag, XBLK2PROVBLK(xblk)); 7038 7039 xhme_blks = 1; 7040 continue; 7041 } 7042 7043 /* 7044 * If there are kernel mappings don't unload them, they will 7045 * be suspended. 7046 */ 7047 if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt && 7048 hmeblkp->hblk_tag.htag_id == ksfmmup) 7049 continue; 7050 7051 tset = sfmmu_pageunload(pp, sfhme, cons); 7052 CPUSET_OR(cpuset, tset); 7053 } 7054 7055 while (index != 0) { 7056 index = index >> 1; 7057 if (index != 0) 7058 cons++; 7059 if (index & 0x1) { 7060 /* Go to leading page */ 7061 pp = PP_GROUPLEADER(pp, cons); 7062 ASSERT(sfmmu_mlist_held(pp)); 7063 goto retry; 7064 } 7065 } 7066 7067 /* 7068 * cpuset may be empty if the page was only mapped by segkpm, 7069 * in which case we won't actually cross-trap. 7070 */ 7071 xt_sync(cpuset); 7072 7073 /* 7074 * The page should have no mappings at this point, unless 7075 * we were called from hat_page_relocate() in which case we 7076 * leave the locked mappings which will be suspended later. 7077 */ 7078 ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments || 7079 (forceflag == SFMMU_KERNEL_RELOC)); 7080 7081 #ifdef VAC 7082 if (PP_ISTNC(pp)) { 7083 if (cons == TTE8K) { 7084 pmtx = sfmmu_page_enter(pp); 7085 PP_CLRTNC(pp); 7086 sfmmu_page_exit(pmtx); 7087 } else { 7088 conv_tnc(pp, cons); 7089 } 7090 } 7091 #endif /* VAC */ 7092 7093 if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) { 7094 /* 7095 * Unlink any pa_hments and free them, calling back 7096 * the responsible subsystem to notify it of the error. 7097 * This can occur in situations such as drivers leaking 7098 * DMA handles: naughty, but common enough that we'd like 7099 * to keep the system running rather than bringing it 7100 * down with an obscure error like "pa_hment leaked" 7101 * which doesn't aid the user in debugging their driver. 7102 */ 7103 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 7104 tmphme = sfhme->hme_next; 7105 if (IS_PAHME(sfhme)) { 7106 struct pa_hment *pahmep = sfhme->hme_data; 7107 sfmmu_pahment_leaked(pahmep); 7108 HME_SUB(sfhme, pp); 7109 kmem_cache_free(pa_hment_cache, pahmep); 7110 } 7111 } 7112 7113 ASSERT(!PP_ISMAPPED(origpp) || xhme_blks); 7114 } 7115 7116 sfmmu_mlist_exit(pml); 7117 7118 /* 7119 * XHAT may not have finished unloading pages 7120 * because some other thread was waiting for 7121 * mlist lock and XHAT_PAGEUNLOAD let it do 7122 * the job. 7123 */ 7124 if (xhme_blks) { 7125 pp = origpp; 7126 goto retry_xhat; 7127 } 7128 7129 return (0); 7130 } 7131 7132 cpuset_t 7133 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons) 7134 { 7135 struct hme_blk *hmeblkp; 7136 sfmmu_t *sfmmup; 7137 tte_t tte, ttemod; 7138 #ifdef DEBUG 7139 tte_t orig_old; 7140 #endif /* DEBUG */ 7141 caddr_t addr; 7142 int ttesz; 7143 int ret; 7144 cpuset_t cpuset; 7145 7146 ASSERT(pp != NULL); 7147 ASSERT(sfmmu_mlist_held(pp)); 7148 ASSERT(!PP_ISKAS(pp)); 7149 7150 CPUSET_ZERO(cpuset); 7151 7152 hmeblkp = sfmmu_hmetohblk(sfhme); 7153 7154 readtte: 7155 sfmmu_copytte(&sfhme->hme_tte, &tte); 7156 if (TTE_IS_VALID(&tte)) { 7157 sfmmup = hblktosfmmu(hmeblkp); 7158 ttesz = get_hblk_ttesz(hmeblkp); 7159 /* 7160 * Only unload mappings of 'cons' size. 7161 */ 7162 if (ttesz != cons) 7163 return (cpuset); 7164 7165 /* 7166 * Note that we have p_mapping lock, but no hash lock here. 7167 * hblk_unload() has to have both hash lock AND p_mapping 7168 * lock before it tries to modify tte. So, the tte could 7169 * not become invalid in the sfmmu_modifytte_try() below. 7170 */ 7171 ttemod = tte; 7172 #ifdef DEBUG 7173 orig_old = tte; 7174 #endif /* DEBUG */ 7175 7176 TTE_SET_INVALID(&ttemod); 7177 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte); 7178 if (ret < 0) { 7179 #ifdef DEBUG 7180 /* only R/M bits can change. */ 7181 chk_tte(&orig_old, &tte, &ttemod, hmeblkp); 7182 #endif /* DEBUG */ 7183 goto readtte; 7184 } 7185 7186 if (ret == 0) { 7187 panic("pageunload: cas failed?"); 7188 } 7189 7190 addr = tte_to_vaddr(hmeblkp, tte); 7191 7192 if (hmeblkp->hblk_shared) { 7193 sf_srd_t *srdp = (sf_srd_t *)sfmmup; 7194 uint_t rid = hmeblkp->hblk_tag.htag_rid; 7195 sf_region_t *rgnp; 7196 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 7197 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 7198 ASSERT(srdp != NULL); 7199 rgnp = srdp->srd_hmergnp[rid]; 7200 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid); 7201 cpuset = sfmmu_rgntlb_demap(addr, rgnp, hmeblkp, 1); 7202 sfmmu_ttesync(NULL, addr, &tte, pp); 7203 ASSERT(rgnp->rgn_ttecnt[ttesz] > 0); 7204 atomic_add_long(&rgnp->rgn_ttecnt[ttesz], -1); 7205 } else { 7206 sfmmu_ttesync(sfmmup, addr, &tte, pp); 7207 atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1); 7208 7209 /* 7210 * We need to flush the page from the virtual cache 7211 * in order to prevent a virtual cache alias 7212 * inconsistency. The particular scenario we need 7213 * to worry about is: 7214 * Given: va1 and va2 are two virtual address that 7215 * alias and will map the same physical address. 7216 * 1. mapping exists from va1 to pa and data has 7217 * been read into the cache. 7218 * 2. unload va1. 7219 * 3. load va2 and modify data using va2. 7220 * 4 unload va2. 7221 * 5. load va1 and reference data. Unless we flush 7222 * the data cache when we unload we will get 7223 * stale data. 7224 * This scenario is taken care of by using virtual 7225 * page coloring. 7226 */ 7227 if (sfmmup->sfmmu_ismhat) { 7228 /* 7229 * Flush TSBs, TLBs and caches 7230 * of every process 7231 * sharing this ism segment. 7232 */ 7233 sfmmu_hat_lock_all(); 7234 mutex_enter(&ism_mlist_lock); 7235 kpreempt_disable(); 7236 sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp, 7237 pp->p_pagenum, CACHE_NO_FLUSH); 7238 kpreempt_enable(); 7239 mutex_exit(&ism_mlist_lock); 7240 sfmmu_hat_unlock_all(); 7241 cpuset = cpu_ready_set; 7242 } else { 7243 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 7244 cpuset = sfmmup->sfmmu_cpusran; 7245 } 7246 } 7247 7248 /* 7249 * Hme_sub has to run after ttesync() and a_rss update. 7250 * See hblk_unload(). 7251 */ 7252 HME_SUB(sfhme, pp); 7253 membar_stst(); 7254 7255 /* 7256 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS) 7257 * since pteload may have done a HME_ADD() right after 7258 * we did the HME_SUB() above. Hmecnt is now maintained 7259 * by cas only. no lock guranteed its value. The only 7260 * gurantee we have is the hmecnt should not be less than 7261 * what it should be so the hblk will not be taken away. 7262 * It's also important that we decremented the hmecnt after 7263 * we are done with hmeblkp so that this hmeblk won't be 7264 * stolen. 7265 */ 7266 ASSERT(hmeblkp->hblk_hmecnt > 0); 7267 ASSERT(hmeblkp->hblk_vcnt > 0); 7268 atomic_add_16(&hmeblkp->hblk_vcnt, -1); 7269 atomic_add_16(&hmeblkp->hblk_hmecnt, -1); 7270 /* 7271 * This is bug 4063182. 7272 * XXX: fixme 7273 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt || 7274 * !hmeblkp->hblk_lckcnt); 7275 */ 7276 } else { 7277 panic("invalid tte? pp %p &tte %p", 7278 (void *)pp, (void *)&tte); 7279 } 7280 7281 return (cpuset); 7282 } 7283 7284 /* 7285 * While relocating a kernel page, this function will move the mappings 7286 * from tpp to dpp and modify any associated data with these mappings. 7287 * It also unsuspends the suspended kernel mapping. 7288 */ 7289 static void 7290 hat_pagereload(struct page *tpp, struct page *dpp) 7291 { 7292 struct sf_hment *sfhme; 7293 tte_t tte, ttemod; 7294 int index, cons; 7295 7296 ASSERT(getpil() == PIL_MAX); 7297 ASSERT(sfmmu_mlist_held(tpp)); 7298 ASSERT(sfmmu_mlist_held(dpp)); 7299 7300 index = PP_MAPINDEX(tpp); 7301 cons = TTE8K; 7302 7303 /* Update real mappings to the page */ 7304 retry: 7305 for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) { 7306 if (IS_PAHME(sfhme)) 7307 continue; 7308 sfmmu_copytte(&sfhme->hme_tte, &tte); 7309 ttemod = tte; 7310 7311 /* 7312 * replace old pfn with new pfn in TTE 7313 */ 7314 PFN_TO_TTE(ttemod, dpp->p_pagenum); 7315 7316 /* 7317 * clear suspend bit 7318 */ 7319 ASSERT(TTE_IS_SUSPEND(&ttemod)); 7320 TTE_CLR_SUSPEND(&ttemod); 7321 7322 if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0) 7323 panic("hat_pagereload(): sfmmu_modifytte_try() failed"); 7324 7325 /* 7326 * set hme_page point to new page 7327 */ 7328 sfhme->hme_page = dpp; 7329 } 7330 7331 /* 7332 * move p_mapping list from old page to new page 7333 */ 7334 dpp->p_mapping = tpp->p_mapping; 7335 tpp->p_mapping = NULL; 7336 dpp->p_share = tpp->p_share; 7337 tpp->p_share = 0; 7338 7339 while (index != 0) { 7340 index = index >> 1; 7341 if (index != 0) 7342 cons++; 7343 if (index & 0x1) { 7344 tpp = PP_GROUPLEADER(tpp, cons); 7345 dpp = PP_GROUPLEADER(dpp, cons); 7346 goto retry; 7347 } 7348 } 7349 7350 curthread->t_flag &= ~T_DONTDTRACE; 7351 mutex_exit(&kpr_suspendlock); 7352 } 7353 7354 uint_t 7355 hat_pagesync(struct page *pp, uint_t clearflag) 7356 { 7357 struct sf_hment *sfhme, *tmphme = NULL; 7358 struct hme_blk *hmeblkp; 7359 kmutex_t *pml; 7360 cpuset_t cpuset, tset; 7361 int index, cons; 7362 extern ulong_t po_share; 7363 page_t *save_pp = pp; 7364 int stop_on_sh = 0; 7365 uint_t shcnt; 7366 7367 CPUSET_ZERO(cpuset); 7368 7369 if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) { 7370 return (PP_GENERIC_ATTR(pp)); 7371 } 7372 7373 if ((clearflag & HAT_SYNC_ZERORM) == 0) { 7374 if ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(pp)) { 7375 return (PP_GENERIC_ATTR(pp)); 7376 } 7377 if ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(pp)) { 7378 return (PP_GENERIC_ATTR(pp)); 7379 } 7380 if (clearflag & HAT_SYNC_STOPON_SHARED) { 7381 if (pp->p_share > po_share) { 7382 hat_page_setattr(pp, P_REF); 7383 return (PP_GENERIC_ATTR(pp)); 7384 } 7385 stop_on_sh = 1; 7386 shcnt = 0; 7387 } 7388 } 7389 7390 clearflag &= ~HAT_SYNC_STOPON_SHARED; 7391 pml = sfmmu_mlist_enter(pp); 7392 index = PP_MAPINDEX(pp); 7393 cons = TTE8K; 7394 retry: 7395 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 7396 /* 7397 * We need to save the next hment on the list since 7398 * it is possible for pagesync to remove an invalid hment 7399 * from the list. 7400 */ 7401 tmphme = sfhme->hme_next; 7402 if (IS_PAHME(sfhme)) 7403 continue; 7404 /* 7405 * If we are looking for large mappings and this hme doesn't 7406 * reach the range we are seeking, just ignore it. 7407 */ 7408 hmeblkp = sfmmu_hmetohblk(sfhme); 7409 if (hmeblkp->hblk_xhat_bit) 7410 continue; 7411 7412 if (hme_size(sfhme) < cons) 7413 continue; 7414 7415 if (stop_on_sh) { 7416 if (hmeblkp->hblk_shared) { 7417 sf_srd_t *srdp = hblktosrd(hmeblkp); 7418 uint_t rid = hmeblkp->hblk_tag.htag_rid; 7419 sf_region_t *rgnp; 7420 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 7421 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 7422 ASSERT(srdp != NULL); 7423 rgnp = srdp->srd_hmergnp[rid]; 7424 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, 7425 rgnp, rid); 7426 shcnt += rgnp->rgn_refcnt; 7427 } else { 7428 shcnt++; 7429 } 7430 if (shcnt > po_share) { 7431 /* 7432 * tell the pager to spare the page this time 7433 * around. 7434 */ 7435 hat_page_setattr(save_pp, P_REF); 7436 index = 0; 7437 break; 7438 } 7439 } 7440 tset = sfmmu_pagesync(pp, sfhme, 7441 clearflag & ~HAT_SYNC_STOPON_RM); 7442 CPUSET_OR(cpuset, tset); 7443 7444 /* 7445 * If clearflag is HAT_SYNC_DONTZERO, break out as soon 7446 * as the "ref" or "mod" is set or share cnt exceeds po_share. 7447 */ 7448 if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO && 7449 (((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) || 7450 ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)))) { 7451 index = 0; 7452 break; 7453 } 7454 } 7455 7456 while (index) { 7457 index = index >> 1; 7458 cons++; 7459 if (index & 0x1) { 7460 /* Go to leading page */ 7461 pp = PP_GROUPLEADER(pp, cons); 7462 goto retry; 7463 } 7464 } 7465 7466 xt_sync(cpuset); 7467 sfmmu_mlist_exit(pml); 7468 return (PP_GENERIC_ATTR(save_pp)); 7469 } 7470 7471 /* 7472 * Get all the hardware dependent attributes for a page struct 7473 */ 7474 static cpuset_t 7475 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme, 7476 uint_t clearflag) 7477 { 7478 caddr_t addr; 7479 tte_t tte, ttemod; 7480 struct hme_blk *hmeblkp; 7481 int ret; 7482 sfmmu_t *sfmmup; 7483 cpuset_t cpuset; 7484 7485 ASSERT(pp != NULL); 7486 ASSERT(sfmmu_mlist_held(pp)); 7487 ASSERT((clearflag == HAT_SYNC_DONTZERO) || 7488 (clearflag == HAT_SYNC_ZERORM)); 7489 7490 SFMMU_STAT(sf_pagesync); 7491 7492 CPUSET_ZERO(cpuset); 7493 7494 sfmmu_pagesync_retry: 7495 7496 sfmmu_copytte(&sfhme->hme_tte, &tte); 7497 if (TTE_IS_VALID(&tte)) { 7498 hmeblkp = sfmmu_hmetohblk(sfhme); 7499 sfmmup = hblktosfmmu(hmeblkp); 7500 addr = tte_to_vaddr(hmeblkp, tte); 7501 if (clearflag == HAT_SYNC_ZERORM) { 7502 ttemod = tte; 7503 TTE_CLR_RM(&ttemod); 7504 ret = sfmmu_modifytte_try(&tte, &ttemod, 7505 &sfhme->hme_tte); 7506 if (ret < 0) { 7507 /* 7508 * cas failed and the new value is not what 7509 * we want. 7510 */ 7511 goto sfmmu_pagesync_retry; 7512 } 7513 7514 if (ret > 0) { 7515 /* we win the cas */ 7516 if (hmeblkp->hblk_shared) { 7517 sf_srd_t *srdp = (sf_srd_t *)sfmmup; 7518 uint_t rid = 7519 hmeblkp->hblk_tag.htag_rid; 7520 sf_region_t *rgnp; 7521 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 7522 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 7523 ASSERT(srdp != NULL); 7524 rgnp = srdp->srd_hmergnp[rid]; 7525 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, 7526 srdp, rgnp, rid); 7527 cpuset = sfmmu_rgntlb_demap(addr, 7528 rgnp, hmeblkp, 1); 7529 } else { 7530 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 7531 0, 0); 7532 cpuset = sfmmup->sfmmu_cpusran; 7533 } 7534 } 7535 } 7536 sfmmu_ttesync(hmeblkp->hblk_shared ? NULL : sfmmup, addr, 7537 &tte, pp); 7538 } 7539 return (cpuset); 7540 } 7541 7542 /* 7543 * Remove write permission from a mappings to a page, so that 7544 * we can detect the next modification of it. This requires modifying 7545 * the TTE then invalidating (demap) any TLB entry using that TTE. 7546 * This code is similar to sfmmu_pagesync(). 7547 */ 7548 static cpuset_t 7549 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme) 7550 { 7551 caddr_t addr; 7552 tte_t tte; 7553 tte_t ttemod; 7554 struct hme_blk *hmeblkp; 7555 int ret; 7556 sfmmu_t *sfmmup; 7557 cpuset_t cpuset; 7558 7559 ASSERT(pp != NULL); 7560 ASSERT(sfmmu_mlist_held(pp)); 7561 7562 CPUSET_ZERO(cpuset); 7563 SFMMU_STAT(sf_clrwrt); 7564 7565 retry: 7566 7567 sfmmu_copytte(&sfhme->hme_tte, &tte); 7568 if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) { 7569 hmeblkp = sfmmu_hmetohblk(sfhme); 7570 7571 /* 7572 * xhat mappings should never be to a VMODSORT page. 7573 */ 7574 ASSERT(hmeblkp->hblk_xhat_bit == 0); 7575 7576 sfmmup = hblktosfmmu(hmeblkp); 7577 addr = tte_to_vaddr(hmeblkp, tte); 7578 7579 ttemod = tte; 7580 TTE_CLR_WRT(&ttemod); 7581 TTE_CLR_MOD(&ttemod); 7582 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte); 7583 7584 /* 7585 * if cas failed and the new value is not what 7586 * we want retry 7587 */ 7588 if (ret < 0) 7589 goto retry; 7590 7591 /* we win the cas */ 7592 if (ret > 0) { 7593 if (hmeblkp->hblk_shared) { 7594 sf_srd_t *srdp = (sf_srd_t *)sfmmup; 7595 uint_t rid = hmeblkp->hblk_tag.htag_rid; 7596 sf_region_t *rgnp; 7597 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 7598 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 7599 ASSERT(srdp != NULL); 7600 rgnp = srdp->srd_hmergnp[rid]; 7601 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, 7602 srdp, rgnp, rid); 7603 cpuset = sfmmu_rgntlb_demap(addr, 7604 rgnp, hmeblkp, 1); 7605 } else { 7606 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0); 7607 cpuset = sfmmup->sfmmu_cpusran; 7608 } 7609 } 7610 } 7611 7612 return (cpuset); 7613 } 7614 7615 /* 7616 * Walk all mappings of a page, removing write permission and clearing the 7617 * ref/mod bits. This code is similar to hat_pagesync() 7618 */ 7619 static void 7620 hat_page_clrwrt(page_t *pp) 7621 { 7622 struct sf_hment *sfhme; 7623 struct sf_hment *tmphme = NULL; 7624 kmutex_t *pml; 7625 cpuset_t cpuset; 7626 cpuset_t tset; 7627 int index; 7628 int cons; 7629 7630 CPUSET_ZERO(cpuset); 7631 7632 pml = sfmmu_mlist_enter(pp); 7633 index = PP_MAPINDEX(pp); 7634 cons = TTE8K; 7635 retry: 7636 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 7637 tmphme = sfhme->hme_next; 7638 7639 /* 7640 * If we are looking for large mappings and this hme doesn't 7641 * reach the range we are seeking, just ignore its. 7642 */ 7643 7644 if (hme_size(sfhme) < cons) 7645 continue; 7646 7647 tset = sfmmu_pageclrwrt(pp, sfhme); 7648 CPUSET_OR(cpuset, tset); 7649 } 7650 7651 while (index) { 7652 index = index >> 1; 7653 cons++; 7654 if (index & 0x1) { 7655 /* Go to leading page */ 7656 pp = PP_GROUPLEADER(pp, cons); 7657 goto retry; 7658 } 7659 } 7660 7661 xt_sync(cpuset); 7662 sfmmu_mlist_exit(pml); 7663 } 7664 7665 /* 7666 * Set the given REF/MOD/RO bits for the given page. 7667 * For a vnode with a sorted v_pages list, we need to change 7668 * the attributes and the v_pages list together under page_vnode_mutex. 7669 */ 7670 void 7671 hat_page_setattr(page_t *pp, uint_t flag) 7672 { 7673 vnode_t *vp = pp->p_vnode; 7674 page_t **listp; 7675 kmutex_t *pmtx; 7676 kmutex_t *vphm = NULL; 7677 int noshuffle; 7678 7679 noshuffle = flag & P_NSH; 7680 flag &= ~P_NSH; 7681 7682 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 7683 7684 /* 7685 * nothing to do if attribute already set 7686 */ 7687 if ((pp->p_nrm & flag) == flag) 7688 return; 7689 7690 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) && 7691 !noshuffle) { 7692 vphm = page_vnode_mutex(vp); 7693 mutex_enter(vphm); 7694 } 7695 7696 pmtx = sfmmu_page_enter(pp); 7697 pp->p_nrm |= flag; 7698 sfmmu_page_exit(pmtx); 7699 7700 if (vphm != NULL) { 7701 /* 7702 * Some File Systems examine v_pages for NULL w/o 7703 * grabbing the vphm mutex. Must not let it become NULL when 7704 * pp is the only page on the list. 7705 */ 7706 if (pp->p_vpnext != pp) { 7707 page_vpsub(&vp->v_pages, pp); 7708 if (vp->v_pages != NULL) 7709 listp = &vp->v_pages->p_vpprev->p_vpnext; 7710 else 7711 listp = &vp->v_pages; 7712 page_vpadd(listp, pp); 7713 } 7714 mutex_exit(vphm); 7715 } 7716 } 7717 7718 void 7719 hat_page_clrattr(page_t *pp, uint_t flag) 7720 { 7721 vnode_t *vp = pp->p_vnode; 7722 kmutex_t *pmtx; 7723 7724 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 7725 7726 pmtx = sfmmu_page_enter(pp); 7727 7728 /* 7729 * Caller is expected to hold page's io lock for VMODSORT to work 7730 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 7731 * bit is cleared. 7732 * We don't have assert to avoid tripping some existing third party 7733 * code. The dirty page is moved back to top of the v_page list 7734 * after IO is done in pvn_write_done(). 7735 */ 7736 pp->p_nrm &= ~flag; 7737 sfmmu_page_exit(pmtx); 7738 7739 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 7740 7741 /* 7742 * VMODSORT works by removing write permissions and getting 7743 * a fault when a page is made dirty. At this point 7744 * we need to remove write permission from all mappings 7745 * to this page. 7746 */ 7747 hat_page_clrwrt(pp); 7748 } 7749 } 7750 7751 uint_t 7752 hat_page_getattr(page_t *pp, uint_t flag) 7753 { 7754 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 7755 return ((uint_t)(pp->p_nrm & flag)); 7756 } 7757 7758 /* 7759 * DEBUG kernels: verify that a kernel va<->pa translation 7760 * is safe by checking the underlying page_t is in a page 7761 * relocation-safe state. 7762 */ 7763 #ifdef DEBUG 7764 void 7765 sfmmu_check_kpfn(pfn_t pfn) 7766 { 7767 page_t *pp; 7768 int index, cons; 7769 7770 if (hat_check_vtop == 0) 7771 return; 7772 7773 if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr) 7774 return; 7775 7776 pp = page_numtopp_nolock(pfn); 7777 if (!pp) 7778 return; 7779 7780 if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp)) 7781 return; 7782 7783 /* 7784 * Handed a large kernel page, we dig up the root page since we 7785 * know the root page might have the lock also. 7786 */ 7787 if (pp->p_szc != 0) { 7788 index = PP_MAPINDEX(pp); 7789 cons = TTE8K; 7790 again: 7791 while (index != 0) { 7792 index >>= 1; 7793 if (index != 0) 7794 cons++; 7795 if (index & 0x1) { 7796 pp = PP_GROUPLEADER(pp, cons); 7797 goto again; 7798 } 7799 } 7800 } 7801 7802 if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp)) 7803 return; 7804 7805 /* 7806 * Pages need to be locked or allocated "permanent" (either from 7807 * static_arena arena or explicitly setting PG_NORELOC when calling 7808 * page_create_va()) for VA->PA translations to be valid. 7809 */ 7810 if (!PP_ISNORELOC(pp)) 7811 panic("Illegal VA->PA translation, pp 0x%p not permanent", 7812 (void *)pp); 7813 else 7814 panic("Illegal VA->PA translation, pp 0x%p not locked", 7815 (void *)pp); 7816 } 7817 #endif /* DEBUG */ 7818 7819 /* 7820 * Returns a page frame number for a given virtual address. 7821 * Returns PFN_INVALID to indicate an invalid mapping 7822 */ 7823 pfn_t 7824 hat_getpfnum(struct hat *hat, caddr_t addr) 7825 { 7826 pfn_t pfn; 7827 tte_t tte; 7828 7829 /* 7830 * We would like to 7831 * ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 7832 * but we can't because the iommu driver will call this 7833 * routine at interrupt time and it can't grab the as lock 7834 * or it will deadlock: A thread could have the as lock 7835 * and be waiting for io. The io can't complete 7836 * because the interrupt thread is blocked trying to grab 7837 * the as lock. 7838 */ 7839 7840 ASSERT(hat->sfmmu_xhat_provider == NULL); 7841 7842 if (hat == ksfmmup) { 7843 if (IS_KMEM_VA_LARGEPAGE(addr)) { 7844 ASSERT(segkmem_lpszc > 0); 7845 pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc); 7846 if (pfn != PFN_INVALID) { 7847 sfmmu_check_kpfn(pfn); 7848 return (pfn); 7849 } 7850 } else if (segkpm && IS_KPM_ADDR(addr)) { 7851 return (sfmmu_kpm_vatopfn(addr)); 7852 } 7853 while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte)) 7854 == PFN_SUSPENDED) { 7855 sfmmu_vatopfn_suspended(addr, ksfmmup, &tte); 7856 } 7857 sfmmu_check_kpfn(pfn); 7858 return (pfn); 7859 } else { 7860 return (sfmmu_uvatopfn(addr, hat, NULL)); 7861 } 7862 } 7863 7864 /* 7865 * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged. 7866 * Use hat_getpfnum(kas.a_hat, ...) instead. 7867 * 7868 * We'd like to return PFN_INVALID if the mappings have underlying page_t's 7869 * but can't right now due to the fact that some software has grown to use 7870 * this interface incorrectly. So for now when the interface is misused, 7871 * return a warning to the user that in the future it won't work in the 7872 * way they're abusing it, and carry on (after disabling page relocation). 7873 */ 7874 pfn_t 7875 hat_getkpfnum(caddr_t addr) 7876 { 7877 pfn_t pfn; 7878 tte_t tte; 7879 int badcaller = 0; 7880 extern int segkmem_reloc; 7881 7882 if (segkpm && IS_KPM_ADDR(addr)) { 7883 badcaller = 1; 7884 pfn = sfmmu_kpm_vatopfn(addr); 7885 } else { 7886 while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte)) 7887 == PFN_SUSPENDED) { 7888 sfmmu_vatopfn_suspended(addr, ksfmmup, &tte); 7889 } 7890 badcaller = pf_is_memory(pfn); 7891 } 7892 7893 if (badcaller) { 7894 /* 7895 * We can't return PFN_INVALID or the caller may panic 7896 * or corrupt the system. The only alternative is to 7897 * disable page relocation at this point for all kernel 7898 * memory. This will impact any callers of page_relocate() 7899 * such as FMA or DR. 7900 * 7901 * RFE: Add junk here to spit out an ereport so the sysadmin 7902 * can be advised that he should upgrade his device driver 7903 * so that this doesn't happen. 7904 */ 7905 hat_getkpfnum_badcall(caller()); 7906 if (hat_kpr_enabled && segkmem_reloc) { 7907 hat_kpr_enabled = 0; 7908 segkmem_reloc = 0; 7909 cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED"); 7910 } 7911 } 7912 return (pfn); 7913 } 7914 7915 /* 7916 * This routine will return both pfn and tte for the vaddr. 7917 */ 7918 static pfn_t 7919 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup, tte_t *ttep) 7920 { 7921 struct hmehash_bucket *hmebp; 7922 hmeblk_tag hblktag; 7923 int hmeshift, hashno = 1; 7924 struct hme_blk *hmeblkp = NULL; 7925 tte_t tte; 7926 7927 struct sf_hment *sfhmep; 7928 pfn_t pfn; 7929 7930 /* support for ISM */ 7931 ism_map_t *ism_map; 7932 ism_blk_t *ism_blkp; 7933 int i; 7934 sfmmu_t *ism_hatid = NULL; 7935 sfmmu_t *locked_hatid = NULL; 7936 sfmmu_t *sv_sfmmup = sfmmup; 7937 caddr_t sv_vaddr = vaddr; 7938 sf_srd_t *srdp; 7939 7940 if (ttep == NULL) { 7941 ttep = &tte; 7942 } else { 7943 ttep->ll = 0; 7944 } 7945 7946 ASSERT(sfmmup != ksfmmup); 7947 SFMMU_STAT(sf_user_vtop); 7948 /* 7949 * Set ism_hatid if vaddr falls in a ISM segment. 7950 */ 7951 ism_blkp = sfmmup->sfmmu_iblk; 7952 if (ism_blkp != NULL) { 7953 sfmmu_ismhat_enter(sfmmup, 0); 7954 locked_hatid = sfmmup; 7955 } 7956 while (ism_blkp != NULL && ism_hatid == NULL) { 7957 ism_map = ism_blkp->iblk_maps; 7958 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) { 7959 if (vaddr >= ism_start(ism_map[i]) && 7960 vaddr < ism_end(ism_map[i])) { 7961 sfmmup = ism_hatid = ism_map[i].imap_ismhat; 7962 vaddr = (caddr_t)(vaddr - 7963 ism_start(ism_map[i])); 7964 break; 7965 } 7966 } 7967 ism_blkp = ism_blkp->iblk_next; 7968 } 7969 if (locked_hatid) { 7970 sfmmu_ismhat_exit(locked_hatid, 0); 7971 } 7972 7973 hblktag.htag_id = sfmmup; 7974 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 7975 do { 7976 hmeshift = HME_HASH_SHIFT(hashno); 7977 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift); 7978 hblktag.htag_rehash = hashno; 7979 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift); 7980 7981 SFMMU_HASH_LOCK(hmebp); 7982 7983 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp); 7984 if (hmeblkp != NULL) { 7985 ASSERT(!hmeblkp->hblk_shared); 7986 HBLKTOHME(sfhmep, hmeblkp, vaddr); 7987 sfmmu_copytte(&sfhmep->hme_tte, ttep); 7988 SFMMU_HASH_UNLOCK(hmebp); 7989 if (TTE_IS_VALID(ttep)) { 7990 pfn = TTE_TO_PFN(vaddr, ttep); 7991 return (pfn); 7992 } 7993 break; 7994 } 7995 SFMMU_HASH_UNLOCK(hmebp); 7996 hashno++; 7997 } while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt)); 7998 7999 if (SF_HMERGNMAP_ISNULL(sv_sfmmup)) { 8000 return (PFN_INVALID); 8001 } 8002 srdp = sv_sfmmup->sfmmu_srdp; 8003 ASSERT(srdp != NULL); 8004 ASSERT(srdp->srd_refcnt != 0); 8005 hblktag.htag_id = srdp; 8006 hashno = 1; 8007 do { 8008 hmeshift = HME_HASH_SHIFT(hashno); 8009 hblktag.htag_bspage = HME_HASH_BSPAGE(sv_vaddr, hmeshift); 8010 hblktag.htag_rehash = hashno; 8011 hmebp = HME_HASH_FUNCTION(srdp, sv_vaddr, hmeshift); 8012 8013 SFMMU_HASH_LOCK(hmebp); 8014 for (hmeblkp = hmebp->hmeblkp; hmeblkp != NULL; 8015 hmeblkp = hmeblkp->hblk_next) { 8016 uint_t rid; 8017 sf_region_t *rgnp; 8018 caddr_t rsaddr; 8019 caddr_t readdr; 8020 8021 if (!HTAGS_EQ_SHME(hmeblkp->hblk_tag, hblktag, 8022 sv_sfmmup->sfmmu_hmeregion_map)) { 8023 continue; 8024 } 8025 ASSERT(hmeblkp->hblk_shared); 8026 rid = hmeblkp->hblk_tag.htag_rid; 8027 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 8028 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 8029 rgnp = srdp->srd_hmergnp[rid]; 8030 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid); 8031 HBLKTOHME(sfhmep, hmeblkp, sv_vaddr); 8032 sfmmu_copytte(&sfhmep->hme_tte, ttep); 8033 rsaddr = rgnp->rgn_saddr; 8034 readdr = rsaddr + rgnp->rgn_size; 8035 #ifdef DEBUG 8036 if (TTE_IS_VALID(ttep) || 8037 get_hblk_ttesz(hmeblkp) > TTE8K) { 8038 caddr_t eva = tte_to_evaddr(hmeblkp, ttep); 8039 ASSERT(eva > sv_vaddr); 8040 ASSERT(sv_vaddr >= rsaddr); 8041 ASSERT(sv_vaddr < readdr); 8042 ASSERT(eva <= readdr); 8043 } 8044 #endif /* DEBUG */ 8045 /* 8046 * Continue the search if we 8047 * found an invalid 8K tte outside of the area 8048 * covered by this hmeblk's region. 8049 */ 8050 if (TTE_IS_VALID(ttep)) { 8051 SFMMU_HASH_UNLOCK(hmebp); 8052 pfn = TTE_TO_PFN(sv_vaddr, ttep); 8053 return (pfn); 8054 } else if (get_hblk_ttesz(hmeblkp) > TTE8K || 8055 (sv_vaddr >= rsaddr && sv_vaddr < readdr)) { 8056 SFMMU_HASH_UNLOCK(hmebp); 8057 pfn = PFN_INVALID; 8058 return (pfn); 8059 } 8060 } 8061 SFMMU_HASH_UNLOCK(hmebp); 8062 hashno++; 8063 } while (hashno <= mmu_hashcnt); 8064 return (PFN_INVALID); 8065 } 8066 8067 8068 /* 8069 * For compatability with AT&T and later optimizations 8070 */ 8071 /* ARGSUSED */ 8072 void 8073 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags) 8074 { 8075 ASSERT(hat != NULL); 8076 ASSERT(hat->sfmmu_xhat_provider == NULL); 8077 } 8078 8079 /* 8080 * Return the number of mappings to a particular page. This number is an 8081 * approximation of the number of people sharing the page. 8082 * 8083 * shared hmeblks or ism hmeblks are counted as 1 mapping here. 8084 * hat_page_checkshare() can be used to compare threshold to share 8085 * count that reflects the number of region sharers albeit at higher cost. 8086 */ 8087 ulong_t 8088 hat_page_getshare(page_t *pp) 8089 { 8090 page_t *spp = pp; /* start page */ 8091 kmutex_t *pml; 8092 ulong_t cnt; 8093 int index, sz = TTE64K; 8094 8095 /* 8096 * We need to grab the mlist lock to make sure any outstanding 8097 * load/unloads complete. Otherwise we could return zero 8098 * even though the unload(s) hasn't finished yet. 8099 */ 8100 pml = sfmmu_mlist_enter(spp); 8101 cnt = spp->p_share; 8102 8103 #ifdef VAC 8104 if (kpm_enable) 8105 cnt += spp->p_kpmref; 8106 #endif 8107 if (vpm_enable && pp->p_vpmref) { 8108 cnt += 1; 8109 } 8110 8111 /* 8112 * If we have any large mappings, we count the number of 8113 * mappings that this large page is part of. 8114 */ 8115 index = PP_MAPINDEX(spp); 8116 index >>= 1; 8117 while (index) { 8118 pp = PP_GROUPLEADER(spp, sz); 8119 if ((index & 0x1) && pp != spp) { 8120 cnt += pp->p_share; 8121 spp = pp; 8122 } 8123 index >>= 1; 8124 sz++; 8125 } 8126 sfmmu_mlist_exit(pml); 8127 return (cnt); 8128 } 8129 8130 /* 8131 * Return 1 if the number of mappings exceeds sh_thresh. Return 0 8132 * otherwise. Count shared hmeblks by region's refcnt. 8133 */ 8134 int 8135 hat_page_checkshare(page_t *pp, ulong_t sh_thresh) 8136 { 8137 kmutex_t *pml; 8138 ulong_t cnt = 0; 8139 int index, sz = TTE8K; 8140 struct sf_hment *sfhme, *tmphme = NULL; 8141 struct hme_blk *hmeblkp; 8142 8143 pml = sfmmu_mlist_enter(pp); 8144 8145 #ifdef VAC 8146 if (kpm_enable) 8147 cnt = pp->p_kpmref; 8148 #endif 8149 8150 if (vpm_enable && pp->p_vpmref) { 8151 cnt += 1; 8152 } 8153 8154 if (pp->p_share + cnt > sh_thresh) { 8155 sfmmu_mlist_exit(pml); 8156 return (1); 8157 } 8158 8159 index = PP_MAPINDEX(pp); 8160 8161 again: 8162 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) { 8163 tmphme = sfhme->hme_next; 8164 if (IS_PAHME(sfhme)) { 8165 continue; 8166 } 8167 8168 hmeblkp = sfmmu_hmetohblk(sfhme); 8169 if (hmeblkp->hblk_xhat_bit) { 8170 cnt++; 8171 if (cnt > sh_thresh) { 8172 sfmmu_mlist_exit(pml); 8173 return (1); 8174 } 8175 continue; 8176 } 8177 if (hme_size(sfhme) != sz) { 8178 continue; 8179 } 8180 8181 if (hmeblkp->hblk_shared) { 8182 sf_srd_t *srdp = hblktosrd(hmeblkp); 8183 uint_t rid = hmeblkp->hblk_tag.htag_rid; 8184 sf_region_t *rgnp; 8185 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 8186 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 8187 ASSERT(srdp != NULL); 8188 rgnp = srdp->srd_hmergnp[rid]; 8189 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, 8190 rgnp, rid); 8191 cnt += rgnp->rgn_refcnt; 8192 } else { 8193 cnt++; 8194 } 8195 if (cnt > sh_thresh) { 8196 sfmmu_mlist_exit(pml); 8197 return (1); 8198 } 8199 } 8200 8201 index >>= 1; 8202 sz++; 8203 while (index) { 8204 pp = PP_GROUPLEADER(pp, sz); 8205 ASSERT(sfmmu_mlist_held(pp)); 8206 if (index & 0x1) { 8207 goto again; 8208 } 8209 index >>= 1; 8210 sz++; 8211 } 8212 sfmmu_mlist_exit(pml); 8213 return (0); 8214 } 8215 8216 /* 8217 * Unload all large mappings to the pp and reset the p_szc field of every 8218 * constituent page according to the remaining mappings. 8219 * 8220 * pp must be locked SE_EXCL. Even though no other constituent pages are 8221 * locked it's legal to unload the large mappings to the pp because all 8222 * constituent pages of large locked mappings have to be locked SE_SHARED. 8223 * This means if we have SE_EXCL lock on one of constituent pages none of the 8224 * large mappings to pp are locked. 8225 * 8226 * Decrease p_szc field starting from the last constituent page and ending 8227 * with the root page. This method is used because other threads rely on the 8228 * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc 8229 * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This 8230 * ensures that p_szc changes of the constituent pages appears atomic for all 8231 * threads that use sfmmu_mlspl_enter() to examine p_szc field. 8232 * 8233 * This mechanism is only used for file system pages where it's not always 8234 * possible to get SE_EXCL locks on all constituent pages to demote the size 8235 * code (as is done for anonymous or kernel large pages). 8236 * 8237 * See more comments in front of sfmmu_mlspl_enter(). 8238 */ 8239 void 8240 hat_page_demote(page_t *pp) 8241 { 8242 int index; 8243 int sz; 8244 cpuset_t cpuset; 8245 int sync = 0; 8246 page_t *rootpp; 8247 struct sf_hment *sfhme; 8248 struct sf_hment *tmphme = NULL; 8249 struct hme_blk *hmeblkp; 8250 uint_t pszc; 8251 page_t *lastpp; 8252 cpuset_t tset; 8253 pgcnt_t npgs; 8254 kmutex_t *pml; 8255 kmutex_t *pmtx = NULL; 8256 8257 ASSERT(PAGE_EXCL(pp)); 8258 ASSERT(!PP_ISFREE(pp)); 8259 ASSERT(!PP_ISKAS(pp)); 8260 ASSERT(page_szc_lock_assert(pp)); 8261 pml = sfmmu_mlist_enter(pp); 8262 8263 pszc = pp->p_szc; 8264 if (pszc == 0) { 8265 goto out; 8266 } 8267 8268 index = PP_MAPINDEX(pp) >> 1; 8269 8270 if (index) { 8271 CPUSET_ZERO(cpuset); 8272 sz = TTE64K; 8273 sync = 1; 8274 } 8275 8276 while (index) { 8277 if (!(index & 0x1)) { 8278 index >>= 1; 8279 sz++; 8280 continue; 8281 } 8282 ASSERT(sz <= pszc); 8283 rootpp = PP_GROUPLEADER(pp, sz); 8284 for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) { 8285 tmphme = sfhme->hme_next; 8286 ASSERT(!IS_PAHME(sfhme)); 8287 hmeblkp = sfmmu_hmetohblk(sfhme); 8288 if (hme_size(sfhme) != sz) { 8289 continue; 8290 } 8291 if (hmeblkp->hblk_xhat_bit) { 8292 cmn_err(CE_PANIC, 8293 "hat_page_demote: xhat hmeblk"); 8294 } 8295 tset = sfmmu_pageunload(rootpp, sfhme, sz); 8296 CPUSET_OR(cpuset, tset); 8297 } 8298 if (index >>= 1) { 8299 sz++; 8300 } 8301 } 8302 8303 ASSERT(!PP_ISMAPPED_LARGE(pp)); 8304 8305 if (sync) { 8306 xt_sync(cpuset); 8307 #ifdef VAC 8308 if (PP_ISTNC(pp)) { 8309 conv_tnc(rootpp, sz); 8310 } 8311 #endif /* VAC */ 8312 } 8313 8314 pmtx = sfmmu_page_enter(pp); 8315 8316 ASSERT(pp->p_szc == pszc); 8317 rootpp = PP_PAGEROOT(pp); 8318 ASSERT(rootpp->p_szc == pszc); 8319 lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1); 8320 8321 while (lastpp != rootpp) { 8322 sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0; 8323 ASSERT(sz < pszc); 8324 npgs = (sz == 0) ? 1 : TTEPAGES(sz); 8325 ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1); 8326 while (--npgs > 0) { 8327 lastpp->p_szc = (uchar_t)sz; 8328 lastpp = PP_PAGEPREV(lastpp); 8329 } 8330 if (sz) { 8331 /* 8332 * make sure before current root's pszc 8333 * is updated all updates to constituent pages pszc 8334 * fields are globally visible. 8335 */ 8336 membar_producer(); 8337 } 8338 lastpp->p_szc = sz; 8339 ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz))); 8340 if (lastpp != rootpp) { 8341 lastpp = PP_PAGEPREV(lastpp); 8342 } 8343 } 8344 if (sz == 0) { 8345 /* the loop above doesn't cover this case */ 8346 rootpp->p_szc = 0; 8347 } 8348 out: 8349 ASSERT(pp->p_szc == 0); 8350 if (pmtx != NULL) { 8351 sfmmu_page_exit(pmtx); 8352 } 8353 sfmmu_mlist_exit(pml); 8354 } 8355 8356 /* 8357 * Refresh the HAT ismttecnt[] element for size szc. 8358 * Caller must have set ISM busy flag to prevent mapping 8359 * lists from changing while we're traversing them. 8360 */ 8361 pgcnt_t 8362 ism_tsb_entries(sfmmu_t *sfmmup, int szc) 8363 { 8364 ism_blk_t *ism_blkp = sfmmup->sfmmu_iblk; 8365 ism_map_t *ism_map; 8366 pgcnt_t npgs = 0; 8367 pgcnt_t npgs_scd = 0; 8368 int j; 8369 sf_scd_t *scdp; 8370 uchar_t rid; 8371 8372 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)); 8373 scdp = sfmmup->sfmmu_scdp; 8374 8375 for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) { 8376 ism_map = ism_blkp->iblk_maps; 8377 for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) { 8378 rid = ism_map[j].imap_rid; 8379 ASSERT(rid == SFMMU_INVALID_ISMRID || 8380 rid < sfmmup->sfmmu_srdp->srd_next_ismrid); 8381 8382 if (scdp != NULL && rid != SFMMU_INVALID_ISMRID && 8383 SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) { 8384 /* ISM is in sfmmup's SCD */ 8385 npgs_scd += 8386 ism_map[j].imap_ismhat->sfmmu_ttecnt[szc]; 8387 } else { 8388 /* ISMs is not in SCD */ 8389 npgs += 8390 ism_map[j].imap_ismhat->sfmmu_ttecnt[szc]; 8391 } 8392 } 8393 } 8394 sfmmup->sfmmu_ismttecnt[szc] = npgs; 8395 sfmmup->sfmmu_scdismttecnt[szc] = npgs_scd; 8396 return (npgs); 8397 } 8398 8399 /* 8400 * Yield the memory claim requirement for an address space. 8401 * 8402 * This is currently implemented as the number of bytes that have active 8403 * hardware translations that have page structures. Therefore, it can 8404 * underestimate the traditional resident set size, eg, if the 8405 * physical page is present and the hardware translation is missing; 8406 * and it can overestimate the rss, eg, if there are active 8407 * translations to a frame buffer with page structs. 8408 * Also, it does not take sharing into account. 8409 * 8410 * Note that we don't acquire locks here since this function is most often 8411 * called from the clock thread. 8412 */ 8413 size_t 8414 hat_get_mapped_size(struct hat *hat) 8415 { 8416 size_t assize = 0; 8417 int i; 8418 8419 if (hat == NULL) 8420 return (0); 8421 8422 ASSERT(hat->sfmmu_xhat_provider == NULL); 8423 8424 for (i = 0; i < mmu_page_sizes; i++) 8425 assize += ((pgcnt_t)hat->sfmmu_ttecnt[i] + 8426 (pgcnt_t)hat->sfmmu_scdrttecnt[i]) * TTEBYTES(i); 8427 8428 if (hat->sfmmu_iblk == NULL) 8429 return (assize); 8430 8431 for (i = 0; i < mmu_page_sizes; i++) 8432 assize += ((pgcnt_t)hat->sfmmu_ismttecnt[i] + 8433 (pgcnt_t)hat->sfmmu_scdismttecnt[i]) * TTEBYTES(i); 8434 8435 return (assize); 8436 } 8437 8438 int 8439 hat_stats_enable(struct hat *hat) 8440 { 8441 hatlock_t *hatlockp; 8442 8443 ASSERT(hat->sfmmu_xhat_provider == NULL); 8444 8445 hatlockp = sfmmu_hat_enter(hat); 8446 hat->sfmmu_rmstat++; 8447 sfmmu_hat_exit(hatlockp); 8448 return (1); 8449 } 8450 8451 void 8452 hat_stats_disable(struct hat *hat) 8453 { 8454 hatlock_t *hatlockp; 8455 8456 ASSERT(hat->sfmmu_xhat_provider == NULL); 8457 8458 hatlockp = sfmmu_hat_enter(hat); 8459 hat->sfmmu_rmstat--; 8460 sfmmu_hat_exit(hatlockp); 8461 } 8462 8463 /* 8464 * Routines for entering or removing ourselves from the 8465 * ism_hat's mapping list. This is used for both private and 8466 * SCD hats. 8467 */ 8468 static void 8469 iment_add(struct ism_ment *iment, struct hat *ism_hat) 8470 { 8471 ASSERT(MUTEX_HELD(&ism_mlist_lock)); 8472 8473 iment->iment_prev = NULL; 8474 iment->iment_next = ism_hat->sfmmu_iment; 8475 if (ism_hat->sfmmu_iment) { 8476 ism_hat->sfmmu_iment->iment_prev = iment; 8477 } 8478 ism_hat->sfmmu_iment = iment; 8479 } 8480 8481 static void 8482 iment_sub(struct ism_ment *iment, struct hat *ism_hat) 8483 { 8484 ASSERT(MUTEX_HELD(&ism_mlist_lock)); 8485 8486 if (ism_hat->sfmmu_iment == NULL) { 8487 panic("ism map entry remove - no entries"); 8488 } 8489 8490 if (iment->iment_prev) { 8491 ASSERT(ism_hat->sfmmu_iment != iment); 8492 iment->iment_prev->iment_next = iment->iment_next; 8493 } else { 8494 ASSERT(ism_hat->sfmmu_iment == iment); 8495 ism_hat->sfmmu_iment = iment->iment_next; 8496 } 8497 8498 if (iment->iment_next) { 8499 iment->iment_next->iment_prev = iment->iment_prev; 8500 } 8501 8502 /* 8503 * zero out the entry 8504 */ 8505 iment->iment_next = NULL; 8506 iment->iment_prev = NULL; 8507 iment->iment_hat = NULL; 8508 } 8509 8510 /* 8511 * Hat_share()/unshare() return an (non-zero) error 8512 * when saddr and daddr are not properly aligned. 8513 * 8514 * The top level mapping element determines the alignment 8515 * requirement for saddr and daddr, depending on different 8516 * architectures. 8517 * 8518 * When hat_share()/unshare() are not supported, 8519 * HATOP_SHARE()/UNSHARE() return 0 8520 */ 8521 int 8522 hat_share(struct hat *sfmmup, caddr_t addr, 8523 struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc) 8524 { 8525 ism_blk_t *ism_blkp; 8526 ism_blk_t *new_iblk; 8527 ism_map_t *ism_map; 8528 ism_ment_t *ism_ment; 8529 int i, added; 8530 hatlock_t *hatlockp; 8531 int reload_mmu = 0; 8532 uint_t ismshift = page_get_shift(ismszc); 8533 size_t ismpgsz = page_get_pagesize(ismszc); 8534 uint_t ismmask = (uint_t)ismpgsz - 1; 8535 size_t sh_size = ISM_SHIFT(ismshift, len); 8536 ushort_t ismhatflag; 8537 hat_region_cookie_t rcookie; 8538 sf_scd_t *old_scdp; 8539 8540 #ifdef DEBUG 8541 caddr_t eaddr = addr + len; 8542 #endif /* DEBUG */ 8543 8544 ASSERT(ism_hatid != NULL && sfmmup != NULL); 8545 ASSERT(sptaddr == ISMID_STARTADDR); 8546 /* 8547 * Check the alignment. 8548 */ 8549 if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr)) 8550 return (EINVAL); 8551 8552 /* 8553 * Check size alignment. 8554 */ 8555 if (!ISM_ALIGNED(ismshift, len)) 8556 return (EINVAL); 8557 8558 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 8559 8560 /* 8561 * Allocate ism_ment for the ism_hat's mapping list, and an 8562 * ism map blk in case we need one. We must do our 8563 * allocations before acquiring locks to prevent a deadlock 8564 * in the kmem allocator on the mapping list lock. 8565 */ 8566 new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP); 8567 ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP); 8568 8569 /* 8570 * Serialize ISM mappings with the ISM busy flag, and also the 8571 * trap handlers. 8572 */ 8573 sfmmu_ismhat_enter(sfmmup, 0); 8574 8575 /* 8576 * Allocate an ism map blk if necessary. 8577 */ 8578 if (sfmmup->sfmmu_iblk == NULL) { 8579 sfmmup->sfmmu_iblk = new_iblk; 8580 bzero(new_iblk, sizeof (*new_iblk)); 8581 new_iblk->iblk_nextpa = (uint64_t)-1; 8582 membar_stst(); /* make sure next ptr visible to all CPUs */ 8583 sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk); 8584 reload_mmu = 1; 8585 new_iblk = NULL; 8586 } 8587 8588 #ifdef DEBUG 8589 /* 8590 * Make sure mapping does not already exist. 8591 */ 8592 ism_blkp = sfmmup->sfmmu_iblk; 8593 while (ism_blkp != NULL) { 8594 ism_map = ism_blkp->iblk_maps; 8595 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) { 8596 if ((addr >= ism_start(ism_map[i]) && 8597 addr < ism_end(ism_map[i])) || 8598 eaddr > ism_start(ism_map[i]) && 8599 eaddr <= ism_end(ism_map[i])) { 8600 panic("sfmmu_share: Already mapped!"); 8601 } 8602 } 8603 ism_blkp = ism_blkp->iblk_next; 8604 } 8605 #endif /* DEBUG */ 8606 8607 ASSERT(ismszc >= TTE4M); 8608 if (ismszc == TTE4M) { 8609 ismhatflag = HAT_4M_FLAG; 8610 } else if (ismszc == TTE32M) { 8611 ismhatflag = HAT_32M_FLAG; 8612 } else if (ismszc == TTE256M) { 8613 ismhatflag = HAT_256M_FLAG; 8614 } 8615 /* 8616 * Add mapping to first available mapping slot. 8617 */ 8618 ism_blkp = sfmmup->sfmmu_iblk; 8619 added = 0; 8620 while (!added) { 8621 ism_map = ism_blkp->iblk_maps; 8622 for (i = 0; i < ISM_MAP_SLOTS; i++) { 8623 if (ism_map[i].imap_ismhat == NULL) { 8624 8625 ism_map[i].imap_ismhat = ism_hatid; 8626 ism_map[i].imap_vb_shift = (uchar_t)ismshift; 8627 ism_map[i].imap_rid = SFMMU_INVALID_ISMRID; 8628 ism_map[i].imap_hatflags = ismhatflag; 8629 ism_map[i].imap_sz_mask = ismmask; 8630 /* 8631 * imap_seg is checked in ISM_CHECK to see if 8632 * non-NULL, then other info assumed valid. 8633 */ 8634 membar_stst(); 8635 ism_map[i].imap_seg = (uintptr_t)addr | sh_size; 8636 ism_map[i].imap_ment = ism_ment; 8637 8638 /* 8639 * Now add ourselves to the ism_hat's 8640 * mapping list. 8641 */ 8642 ism_ment->iment_hat = sfmmup; 8643 ism_ment->iment_base_va = addr; 8644 ism_hatid->sfmmu_ismhat = 1; 8645 mutex_enter(&ism_mlist_lock); 8646 iment_add(ism_ment, ism_hatid); 8647 mutex_exit(&ism_mlist_lock); 8648 added = 1; 8649 break; 8650 } 8651 } 8652 if (!added && ism_blkp->iblk_next == NULL) { 8653 ism_blkp->iblk_next = new_iblk; 8654 new_iblk = NULL; 8655 bzero(ism_blkp->iblk_next, 8656 sizeof (*ism_blkp->iblk_next)); 8657 ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1; 8658 membar_stst(); 8659 ism_blkp->iblk_nextpa = 8660 va_to_pa((caddr_t)ism_blkp->iblk_next); 8661 } 8662 ism_blkp = ism_blkp->iblk_next; 8663 } 8664 8665 /* 8666 * After calling hat_join_region, sfmmup may join a new SCD or 8667 * move from the old scd to a new scd, in which case, we want to 8668 * shrink the sfmmup's private tsb size, i.e., pass shrink to 8669 * sfmmu_check_page_sizes at the end of this routine. 8670 */ 8671 old_scdp = sfmmup->sfmmu_scdp; 8672 8673 rcookie = hat_join_region(sfmmup, addr, len, (void *)ism_hatid, 0, 8674 PROT_ALL, ismszc, NULL, HAT_REGION_ISM); 8675 if (rcookie != HAT_INVALID_REGION_COOKIE) { 8676 ism_map[i].imap_rid = (uchar_t)((uint64_t)rcookie); 8677 } 8678 /* 8679 * Update our counters for this sfmmup's ism mappings. 8680 */ 8681 for (i = 0; i <= ismszc; i++) { 8682 if (!(disable_ism_large_pages & (1 << i))) 8683 (void) ism_tsb_entries(sfmmup, i); 8684 } 8685 8686 /* 8687 * For ISM and DISM we do not support 512K pages, so we only only 8688 * search the 4M and 8K/64K hashes for 4 pagesize cpus, and search the 8689 * 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus. 8690 * 8691 * Need to set 32M/256M ISM flags to make sure 8692 * sfmmu_check_page_sizes() enables them on Panther. 8693 */ 8694 ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0); 8695 8696 switch (ismszc) { 8697 case TTE256M: 8698 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_ISM)) { 8699 hatlockp = sfmmu_hat_enter(sfmmup); 8700 SFMMU_FLAGS_SET(sfmmup, HAT_256M_ISM); 8701 sfmmu_hat_exit(hatlockp); 8702 } 8703 break; 8704 case TTE32M: 8705 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_ISM)) { 8706 hatlockp = sfmmu_hat_enter(sfmmup); 8707 SFMMU_FLAGS_SET(sfmmup, HAT_32M_ISM); 8708 sfmmu_hat_exit(hatlockp); 8709 } 8710 break; 8711 default: 8712 break; 8713 } 8714 8715 /* 8716 * If we updated the ismblkpa for this HAT we must make 8717 * sure all CPUs running this process reload their tsbmiss area. 8718 * Otherwise they will fail to load the mappings in the tsbmiss 8719 * handler and will loop calling pagefault(). 8720 */ 8721 if (reload_mmu) { 8722 hatlockp = sfmmu_hat_enter(sfmmup); 8723 sfmmu_sync_mmustate(sfmmup); 8724 sfmmu_hat_exit(hatlockp); 8725 } 8726 8727 sfmmu_ismhat_exit(sfmmup, 0); 8728 8729 /* 8730 * Free up ismblk if we didn't use it. 8731 */ 8732 if (new_iblk != NULL) 8733 kmem_cache_free(ism_blk_cache, new_iblk); 8734 8735 /* 8736 * Check TSB and TLB page sizes. 8737 */ 8738 if (sfmmup->sfmmu_scdp != NULL && old_scdp != sfmmup->sfmmu_scdp) { 8739 sfmmu_check_page_sizes(sfmmup, 0); 8740 } else { 8741 sfmmu_check_page_sizes(sfmmup, 1); 8742 } 8743 return (0); 8744 } 8745 8746 /* 8747 * hat_unshare removes exactly one ism_map from 8748 * this process's as. It expects multiple calls 8749 * to hat_unshare for multiple shm segments. 8750 */ 8751 void 8752 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc) 8753 { 8754 ism_map_t *ism_map; 8755 ism_ment_t *free_ment = NULL; 8756 ism_blk_t *ism_blkp; 8757 struct hat *ism_hatid; 8758 int found, i; 8759 hatlock_t *hatlockp; 8760 struct tsb_info *tsbinfo; 8761 uint_t ismshift = page_get_shift(ismszc); 8762 size_t sh_size = ISM_SHIFT(ismshift, len); 8763 uchar_t ism_rid; 8764 sf_scd_t *old_scdp; 8765 8766 ASSERT(ISM_ALIGNED(ismshift, addr)); 8767 ASSERT(ISM_ALIGNED(ismshift, len)); 8768 ASSERT(sfmmup != NULL); 8769 ASSERT(sfmmup != ksfmmup); 8770 8771 if (sfmmup->sfmmu_xhat_provider) { 8772 XHAT_UNSHARE(sfmmup, addr, len); 8773 return; 8774 } else { 8775 /* 8776 * This must be a CPU HAT. If the address space has 8777 * XHATs attached, inform all XHATs that ISM segment 8778 * is going away 8779 */ 8780 ASSERT(sfmmup->sfmmu_as != NULL); 8781 if (sfmmup->sfmmu_as->a_xhat != NULL) 8782 xhat_unshare_all(sfmmup->sfmmu_as, addr, len); 8783 } 8784 8785 /* 8786 * Make sure that during the entire time ISM mappings are removed, 8787 * the trap handlers serialize behind us, and that no one else 8788 * can be mucking with ISM mappings. This also lets us get away 8789 * with not doing expensive cross calls to flush the TLB -- we 8790 * just discard the context, flush the entire TSB, and call it 8791 * a day. 8792 */ 8793 sfmmu_ismhat_enter(sfmmup, 0); 8794 8795 /* 8796 * Remove the mapping. 8797 * 8798 * We can't have any holes in the ism map. 8799 * The tsb miss code while searching the ism map will 8800 * stop on an empty map slot. So we must move 8801 * everyone past the hole up 1 if any. 8802 * 8803 * Also empty ism map blks are not freed until the 8804 * process exits. This is to prevent a MT race condition 8805 * between sfmmu_unshare() and sfmmu_tsbmiss_exception(). 8806 */ 8807 found = 0; 8808 ism_blkp = sfmmup->sfmmu_iblk; 8809 while (!found && ism_blkp != NULL) { 8810 ism_map = ism_blkp->iblk_maps; 8811 for (i = 0; i < ISM_MAP_SLOTS; i++) { 8812 if (addr == ism_start(ism_map[i]) && 8813 sh_size == (size_t)(ism_size(ism_map[i]))) { 8814 found = 1; 8815 break; 8816 } 8817 } 8818 if (!found) 8819 ism_blkp = ism_blkp->iblk_next; 8820 } 8821 8822 if (found) { 8823 ism_hatid = ism_map[i].imap_ismhat; 8824 ism_rid = ism_map[i].imap_rid; 8825 ASSERT(ism_hatid != NULL); 8826 ASSERT(ism_hatid->sfmmu_ismhat == 1); 8827 8828 /* 8829 * After hat_leave_region, the sfmmup may leave SCD, 8830 * in which case, we want to grow the private tsb size when 8831 * calling sfmmu_check_page_sizes at the end of the routine. 8832 */ 8833 old_scdp = sfmmup->sfmmu_scdp; 8834 /* 8835 * Then remove ourselves from the region. 8836 */ 8837 if (ism_rid != SFMMU_INVALID_ISMRID) { 8838 hat_leave_region(sfmmup, (void *)((uint64_t)ism_rid), 8839 HAT_REGION_ISM); 8840 } 8841 8842 /* 8843 * And now guarantee that any other cpu 8844 * that tries to process an ISM miss 8845 * will go to tl=0. 8846 */ 8847 hatlockp = sfmmu_hat_enter(sfmmup); 8848 sfmmu_invalidate_ctx(sfmmup); 8849 sfmmu_hat_exit(hatlockp); 8850 8851 /* 8852 * Remove ourselves from the ism mapping list. 8853 */ 8854 mutex_enter(&ism_mlist_lock); 8855 iment_sub(ism_map[i].imap_ment, ism_hatid); 8856 mutex_exit(&ism_mlist_lock); 8857 free_ment = ism_map[i].imap_ment; 8858 8859 /* 8860 * We delete the ism map by copying 8861 * the next map over the current one. 8862 * We will take the next one in the maps 8863 * array or from the next ism_blk. 8864 */ 8865 while (ism_blkp != NULL) { 8866 ism_map = ism_blkp->iblk_maps; 8867 while (i < (ISM_MAP_SLOTS - 1)) { 8868 ism_map[i] = ism_map[i + 1]; 8869 i++; 8870 } 8871 /* i == (ISM_MAP_SLOTS - 1) */ 8872 ism_blkp = ism_blkp->iblk_next; 8873 if (ism_blkp != NULL) { 8874 ism_map[i] = ism_blkp->iblk_maps[0]; 8875 i = 0; 8876 } else { 8877 ism_map[i].imap_seg = 0; 8878 ism_map[i].imap_vb_shift = 0; 8879 ism_map[i].imap_rid = SFMMU_INVALID_ISMRID; 8880 ism_map[i].imap_hatflags = 0; 8881 ism_map[i].imap_sz_mask = 0; 8882 ism_map[i].imap_ismhat = NULL; 8883 ism_map[i].imap_ment = NULL; 8884 } 8885 } 8886 8887 /* 8888 * Now flush entire TSB for the process, since 8889 * demapping page by page can be too expensive. 8890 * We don't have to flush the TLB here anymore 8891 * since we switch to a new TLB ctx instead. 8892 * Also, there is no need to flush if the process 8893 * is exiting since the TSB will be freed later. 8894 */ 8895 if (!sfmmup->sfmmu_free) { 8896 hatlockp = sfmmu_hat_enter(sfmmup); 8897 for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL; 8898 tsbinfo = tsbinfo->tsb_next) { 8899 if (tsbinfo->tsb_flags & TSB_SWAPPED) 8900 continue; 8901 if (tsbinfo->tsb_flags & TSB_RELOC_FLAG) { 8902 tsbinfo->tsb_flags |= 8903 TSB_FLUSH_NEEDED; 8904 continue; 8905 } 8906 8907 sfmmu_inv_tsb(tsbinfo->tsb_va, 8908 TSB_BYTES(tsbinfo->tsb_szc)); 8909 } 8910 sfmmu_hat_exit(hatlockp); 8911 } 8912 } 8913 8914 /* 8915 * Update our counters for this sfmmup's ism mappings. 8916 */ 8917 for (i = 0; i <= ismszc; i++) { 8918 if (!(disable_ism_large_pages & (1 << i))) 8919 (void) ism_tsb_entries(sfmmup, i); 8920 } 8921 8922 sfmmu_ismhat_exit(sfmmup, 0); 8923 8924 /* 8925 * We must do our freeing here after dropping locks 8926 * to prevent a deadlock in the kmem allocator on the 8927 * mapping list lock. 8928 */ 8929 if (free_ment != NULL) 8930 kmem_cache_free(ism_ment_cache, free_ment); 8931 8932 /* 8933 * Check TSB and TLB page sizes if the process isn't exiting. 8934 */ 8935 if (!sfmmup->sfmmu_free) { 8936 if (found && old_scdp != NULL && sfmmup->sfmmu_scdp == NULL) { 8937 sfmmu_check_page_sizes(sfmmup, 1); 8938 } else { 8939 sfmmu_check_page_sizes(sfmmup, 0); 8940 } 8941 } 8942 } 8943 8944 /* ARGSUSED */ 8945 static int 8946 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags) 8947 { 8948 /* void *buf is sfmmu_t pointer */ 8949 bzero(buf, sizeof (sfmmu_t)); 8950 8951 return (0); 8952 } 8953 8954 /* ARGSUSED */ 8955 static void 8956 sfmmu_idcache_destructor(void *buf, void *cdrarg) 8957 { 8958 /* void *buf is sfmmu_t pointer */ 8959 } 8960 8961 /* 8962 * setup kmem hmeblks by bzeroing all members and initializing the nextpa 8963 * field to be the pa of this hmeblk 8964 */ 8965 /* ARGSUSED */ 8966 static int 8967 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags) 8968 { 8969 struct hme_blk *hmeblkp; 8970 8971 bzero(buf, (size_t)cdrarg); 8972 hmeblkp = (struct hme_blk *)buf; 8973 hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp); 8974 8975 #ifdef HBLK_TRACE 8976 mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL); 8977 #endif /* HBLK_TRACE */ 8978 8979 return (0); 8980 } 8981 8982 /* ARGSUSED */ 8983 static void 8984 sfmmu_hblkcache_destructor(void *buf, void *cdrarg) 8985 { 8986 8987 #ifdef HBLK_TRACE 8988 8989 struct hme_blk *hmeblkp; 8990 8991 hmeblkp = (struct hme_blk *)buf; 8992 mutex_destroy(&hmeblkp->hblk_audit_lock); 8993 8994 #endif /* HBLK_TRACE */ 8995 } 8996 8997 #define SFMMU_CACHE_RECLAIM_SCAN_RATIO 8 8998 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO; 8999 /* 9000 * The kmem allocator will callback into our reclaim routine when the system 9001 * is running low in memory. We traverse the hash and free up all unused but 9002 * still cached hme_blks. We also traverse the free list and free them up 9003 * as well. 9004 */ 9005 /*ARGSUSED*/ 9006 static void 9007 sfmmu_hblkcache_reclaim(void *cdrarg) 9008 { 9009 int i; 9010 struct hmehash_bucket *hmebp; 9011 struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL; 9012 static struct hmehash_bucket *uhmehash_reclaim_hand; 9013 static struct hmehash_bucket *khmehash_reclaim_hand; 9014 struct hme_blk *list = NULL, *last_hmeblkp; 9015 cpuset_t cpuset = cpu_ready_set; 9016 cpu_hme_pend_t *cpuhp; 9017 9018 /* Free up hmeblks on the cpu pending lists */ 9019 for (i = 0; i < NCPU; i++) { 9020 cpuhp = &cpu_hme_pend[i]; 9021 if (cpuhp->chp_listp != NULL) { 9022 mutex_enter(&cpuhp->chp_mutex); 9023 if (cpuhp->chp_listp == NULL) { 9024 mutex_exit(&cpuhp->chp_mutex); 9025 continue; 9026 } 9027 for (last_hmeblkp = cpuhp->chp_listp; 9028 last_hmeblkp->hblk_next != NULL; 9029 last_hmeblkp = last_hmeblkp->hblk_next) 9030 ; 9031 last_hmeblkp->hblk_next = list; 9032 list = cpuhp->chp_listp; 9033 cpuhp->chp_listp = NULL; 9034 cpuhp->chp_count = 0; 9035 mutex_exit(&cpuhp->chp_mutex); 9036 } 9037 9038 } 9039 9040 if (list != NULL) { 9041 kpreempt_disable(); 9042 CPUSET_DEL(cpuset, CPU->cpu_id); 9043 xt_sync(cpuset); 9044 xt_sync(cpuset); 9045 kpreempt_enable(); 9046 sfmmu_hblk_free(&list); 9047 list = NULL; 9048 } 9049 9050 hmebp = uhmehash_reclaim_hand; 9051 if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ]) 9052 uhmehash_reclaim_hand = hmebp = uhme_hash; 9053 uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; 9054 9055 for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) { 9056 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) { 9057 hmeblkp = hmebp->hmeblkp; 9058 pr_hblk = NULL; 9059 while (hmeblkp) { 9060 nx_hblk = hmeblkp->hblk_next; 9061 if (!hmeblkp->hblk_vcnt && 9062 !hmeblkp->hblk_hmecnt) { 9063 sfmmu_hblk_hash_rm(hmebp, hmeblkp, 9064 pr_hblk, &list, 0); 9065 } else { 9066 pr_hblk = hmeblkp; 9067 } 9068 hmeblkp = nx_hblk; 9069 } 9070 SFMMU_HASH_UNLOCK(hmebp); 9071 } 9072 if (hmebp++ == &uhme_hash[UHMEHASH_SZ]) 9073 hmebp = uhme_hash; 9074 } 9075 9076 hmebp = khmehash_reclaim_hand; 9077 if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ]) 9078 khmehash_reclaim_hand = hmebp = khme_hash; 9079 khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; 9080 9081 for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) { 9082 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) { 9083 hmeblkp = hmebp->hmeblkp; 9084 pr_hblk = NULL; 9085 while (hmeblkp) { 9086 nx_hblk = hmeblkp->hblk_next; 9087 if (!hmeblkp->hblk_vcnt && 9088 !hmeblkp->hblk_hmecnt) { 9089 sfmmu_hblk_hash_rm(hmebp, hmeblkp, 9090 pr_hblk, &list, 0); 9091 } else { 9092 pr_hblk = hmeblkp; 9093 } 9094 hmeblkp = nx_hblk; 9095 } 9096 SFMMU_HASH_UNLOCK(hmebp); 9097 } 9098 if (hmebp++ == &khme_hash[KHMEHASH_SZ]) 9099 hmebp = khme_hash; 9100 } 9101 sfmmu_hblks_list_purge(&list, 0); 9102 } 9103 9104 /* 9105 * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface. 9106 * same goes for sfmmu_get_addrvcolor(). 9107 * 9108 * This function will return the virtual color for the specified page. The 9109 * virtual color corresponds to this page current mapping or its last mapping. 9110 * It is used by memory allocators to choose addresses with the correct 9111 * alignment so vac consistency is automatically maintained. If the page 9112 * has no color it returns -1. 9113 */ 9114 /*ARGSUSED*/ 9115 int 9116 sfmmu_get_ppvcolor(struct page *pp) 9117 { 9118 #ifdef VAC 9119 int color; 9120 9121 if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) { 9122 return (-1); 9123 } 9124 color = PP_GET_VCOLOR(pp); 9125 ASSERT(color < mmu_btop(shm_alignment)); 9126 return (color); 9127 #else 9128 return (-1); 9129 #endif /* VAC */ 9130 } 9131 9132 /* 9133 * This function will return the desired alignment for vac consistency 9134 * (vac color) given a virtual address. If no vac is present it returns -1. 9135 */ 9136 /*ARGSUSED*/ 9137 int 9138 sfmmu_get_addrvcolor(caddr_t vaddr) 9139 { 9140 #ifdef VAC 9141 if (cache & CACHE_VAC) { 9142 return (addr_to_vcolor(vaddr)); 9143 } else { 9144 return (-1); 9145 } 9146 #else 9147 return (-1); 9148 #endif /* VAC */ 9149 } 9150 9151 #ifdef VAC 9152 /* 9153 * Check for conflicts. 9154 * A conflict exists if the new and existent mappings do not match in 9155 * their "shm_alignment fields. If conflicts exist, the existant mappings 9156 * are flushed unless one of them is locked. If one of them is locked, then 9157 * the mappings are flushed and converted to non-cacheable mappings. 9158 */ 9159 static void 9160 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp) 9161 { 9162 struct hat *tmphat; 9163 struct sf_hment *sfhmep, *tmphme = NULL; 9164 struct hme_blk *hmeblkp; 9165 int vcolor; 9166 tte_t tte; 9167 9168 ASSERT(sfmmu_mlist_held(pp)); 9169 ASSERT(!PP_ISNC(pp)); /* page better be cacheable */ 9170 9171 vcolor = addr_to_vcolor(addr); 9172 if (PP_NEWPAGE(pp)) { 9173 PP_SET_VCOLOR(pp, vcolor); 9174 return; 9175 } 9176 9177 if (PP_GET_VCOLOR(pp) == vcolor) { 9178 return; 9179 } 9180 9181 if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) { 9182 /* 9183 * Previous user of page had a different color 9184 * but since there are no current users 9185 * we just flush the cache and change the color. 9186 */ 9187 SFMMU_STAT(sf_pgcolor_conflict); 9188 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp)); 9189 PP_SET_VCOLOR(pp, vcolor); 9190 return; 9191 } 9192 9193 /* 9194 * If we get here we have a vac conflict with a current 9195 * mapping. VAC conflict policy is as follows. 9196 * - The default is to unload the other mappings unless: 9197 * - If we have a large mapping we uncache the page. 9198 * We need to uncache the rest of the large page too. 9199 * - If any of the mappings are locked we uncache the page. 9200 * - If the requested mapping is inconsistent 9201 * with another mapping and that mapping 9202 * is in the same address space we have to 9203 * make it non-cached. The default thing 9204 * to do is unload the inconsistent mapping 9205 * but if they are in the same address space 9206 * we run the risk of unmapping the pc or the 9207 * stack which we will use as we return to the user, 9208 * in which case we can then fault on the thing 9209 * we just unloaded and get into an infinite loop. 9210 */ 9211 if (PP_ISMAPPED_LARGE(pp)) { 9212 int sz; 9213 9214 /* 9215 * Existing mapping is for big pages. We don't unload 9216 * existing big mappings to satisfy new mappings. 9217 * Always convert all mappings to TNC. 9218 */ 9219 sz = fnd_mapping_sz(pp); 9220 pp = PP_GROUPLEADER(pp, sz); 9221 SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz)); 9222 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 9223 TTEPAGES(sz)); 9224 9225 return; 9226 } 9227 9228 /* 9229 * check if any mapping is in same as or if it is locked 9230 * since in that case we need to uncache. 9231 */ 9232 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) { 9233 tmphme = sfhmep->hme_next; 9234 if (IS_PAHME(sfhmep)) 9235 continue; 9236 hmeblkp = sfmmu_hmetohblk(sfhmep); 9237 if (hmeblkp->hblk_xhat_bit) 9238 continue; 9239 tmphat = hblktosfmmu(hmeblkp); 9240 sfmmu_copytte(&sfhmep->hme_tte, &tte); 9241 ASSERT(TTE_IS_VALID(&tte)); 9242 if (hmeblkp->hblk_shared || tmphat == hat || 9243 hmeblkp->hblk_lckcnt) { 9244 /* 9245 * We have an uncache conflict 9246 */ 9247 SFMMU_STAT(sf_uncache_conflict); 9248 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1); 9249 return; 9250 } 9251 } 9252 9253 /* 9254 * We have an unload conflict 9255 * We have already checked for LARGE mappings, therefore 9256 * the remaining mapping(s) must be TTE8K. 9257 */ 9258 SFMMU_STAT(sf_unload_conflict); 9259 9260 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) { 9261 tmphme = sfhmep->hme_next; 9262 if (IS_PAHME(sfhmep)) 9263 continue; 9264 hmeblkp = sfmmu_hmetohblk(sfhmep); 9265 if (hmeblkp->hblk_xhat_bit) 9266 continue; 9267 ASSERT(!hmeblkp->hblk_shared); 9268 (void) sfmmu_pageunload(pp, sfhmep, TTE8K); 9269 } 9270 9271 if (PP_ISMAPPED_KPM(pp)) 9272 sfmmu_kpm_vac_unload(pp, addr); 9273 9274 /* 9275 * Unloads only do TLB flushes so we need to flush the 9276 * cache here. 9277 */ 9278 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp)); 9279 PP_SET_VCOLOR(pp, vcolor); 9280 } 9281 9282 /* 9283 * Whenever a mapping is unloaded and the page is in TNC state, 9284 * we see if the page can be made cacheable again. 'pp' is 9285 * the page that we just unloaded a mapping from, the size 9286 * of mapping that was unloaded is 'ottesz'. 9287 * Remark: 9288 * The recache policy for mpss pages can leave a performance problem 9289 * under the following circumstances: 9290 * . A large page in uncached mode has just been unmapped. 9291 * . All constituent pages are TNC due to a conflicting small mapping. 9292 * . There are many other, non conflicting, small mappings around for 9293 * a lot of the constituent pages. 9294 * . We're called w/ the "old" groupleader page and the old ottesz, 9295 * but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so 9296 * we end up w/ TTE8K or npages == 1. 9297 * . We call tst_tnc w/ the old groupleader only, and if there is no 9298 * conflict, we re-cache only this page. 9299 * . All other small mappings are not checked and will be left in TNC mode. 9300 * The problem is not very serious because: 9301 * . mpss is actually only defined for heap and stack, so the probability 9302 * is not very high that a large page mapping exists in parallel to a small 9303 * one (this is possible, but seems to be bad programming style in the 9304 * appl). 9305 * . The problem gets a little bit more serious, when those TNC pages 9306 * have to be mapped into kernel space, e.g. for networking. 9307 * . When VAC alias conflicts occur in applications, this is regarded 9308 * as an application bug. So if kstat's show them, the appl should 9309 * be changed anyway. 9310 */ 9311 void 9312 conv_tnc(page_t *pp, int ottesz) 9313 { 9314 int cursz, dosz; 9315 pgcnt_t curnpgs, dopgs; 9316 pgcnt_t pg64k; 9317 page_t *pp2; 9318 9319 /* 9320 * Determine how big a range we check for TNC and find 9321 * leader page. cursz is the size of the biggest 9322 * mapping that still exist on 'pp'. 9323 */ 9324 if (PP_ISMAPPED_LARGE(pp)) { 9325 cursz = fnd_mapping_sz(pp); 9326 } else { 9327 cursz = TTE8K; 9328 } 9329 9330 if (ottesz >= cursz) { 9331 dosz = ottesz; 9332 pp2 = pp; 9333 } else { 9334 dosz = cursz; 9335 pp2 = PP_GROUPLEADER(pp, dosz); 9336 } 9337 9338 pg64k = TTEPAGES(TTE64K); 9339 dopgs = TTEPAGES(dosz); 9340 9341 ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0)); 9342 9343 while (dopgs != 0) { 9344 curnpgs = TTEPAGES(cursz); 9345 if (tst_tnc(pp2, curnpgs)) { 9346 SFMMU_STAT_ADD(sf_recache, curnpgs); 9347 sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH, 9348 curnpgs); 9349 } 9350 9351 ASSERT(dopgs >= curnpgs); 9352 dopgs -= curnpgs; 9353 9354 if (dopgs == 0) { 9355 break; 9356 } 9357 9358 pp2 = PP_PAGENEXT_N(pp2, curnpgs); 9359 if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) { 9360 cursz = fnd_mapping_sz(pp2); 9361 } else { 9362 cursz = TTE8K; 9363 } 9364 } 9365 } 9366 9367 /* 9368 * Returns 1 if page(s) can be converted from TNC to cacheable setting, 9369 * returns 0 otherwise. Note that oaddr argument is valid for only 9370 * 8k pages. 9371 */ 9372 int 9373 tst_tnc(page_t *pp, pgcnt_t npages) 9374 { 9375 struct sf_hment *sfhme; 9376 struct hme_blk *hmeblkp; 9377 tte_t tte; 9378 caddr_t vaddr; 9379 int clr_valid = 0; 9380 int color, color1, bcolor; 9381 int i, ncolors; 9382 9383 ASSERT(pp != NULL); 9384 ASSERT(!(cache & CACHE_WRITEBACK)); 9385 9386 if (npages > 1) { 9387 ncolors = CACHE_NUM_COLOR; 9388 } 9389 9390 for (i = 0; i < npages; i++) { 9391 ASSERT(sfmmu_mlist_held(pp)); 9392 ASSERT(PP_ISTNC(pp)); 9393 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR); 9394 9395 if (PP_ISPNC(pp)) { 9396 return (0); 9397 } 9398 9399 clr_valid = 0; 9400 if (PP_ISMAPPED_KPM(pp)) { 9401 caddr_t kpmvaddr; 9402 9403 ASSERT(kpm_enable); 9404 kpmvaddr = hat_kpm_page2va(pp, 1); 9405 ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr))); 9406 color1 = addr_to_vcolor(kpmvaddr); 9407 clr_valid = 1; 9408 } 9409 9410 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) { 9411 if (IS_PAHME(sfhme)) 9412 continue; 9413 hmeblkp = sfmmu_hmetohblk(sfhme); 9414 if (hmeblkp->hblk_xhat_bit) 9415 continue; 9416 9417 sfmmu_copytte(&sfhme->hme_tte, &tte); 9418 ASSERT(TTE_IS_VALID(&tte)); 9419 9420 vaddr = tte_to_vaddr(hmeblkp, tte); 9421 color = addr_to_vcolor(vaddr); 9422 9423 if (npages > 1) { 9424 /* 9425 * If there is a big mapping, make sure 9426 * 8K mapping is consistent with the big 9427 * mapping. 9428 */ 9429 bcolor = i % ncolors; 9430 if (color != bcolor) { 9431 return (0); 9432 } 9433 } 9434 if (!clr_valid) { 9435 clr_valid = 1; 9436 color1 = color; 9437 } 9438 9439 if (color1 != color) { 9440 return (0); 9441 } 9442 } 9443 9444 pp = PP_PAGENEXT(pp); 9445 } 9446 9447 return (1); 9448 } 9449 9450 void 9451 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag, 9452 pgcnt_t npages) 9453 { 9454 kmutex_t *pmtx; 9455 int i, ncolors, bcolor; 9456 kpm_hlk_t *kpmp; 9457 cpuset_t cpuset; 9458 9459 ASSERT(pp != NULL); 9460 ASSERT(!(cache & CACHE_WRITEBACK)); 9461 9462 kpmp = sfmmu_kpm_kpmp_enter(pp, npages); 9463 pmtx = sfmmu_page_enter(pp); 9464 9465 /* 9466 * Fast path caching single unmapped page 9467 */ 9468 if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) && 9469 flags == HAT_CACHE) { 9470 PP_CLRTNC(pp); 9471 PP_CLRPNC(pp); 9472 sfmmu_page_exit(pmtx); 9473 sfmmu_kpm_kpmp_exit(kpmp); 9474 return; 9475 } 9476 9477 /* 9478 * We need to capture all cpus in order to change cacheability 9479 * because we can't allow one cpu to access the same physical 9480 * page using a cacheable and a non-cachebale mapping at the same 9481 * time. Since we may end up walking the ism mapping list 9482 * have to grab it's lock now since we can't after all the 9483 * cpus have been captured. 9484 */ 9485 sfmmu_hat_lock_all(); 9486 mutex_enter(&ism_mlist_lock); 9487 kpreempt_disable(); 9488 cpuset = cpu_ready_set; 9489 xc_attention(cpuset); 9490 9491 if (npages > 1) { 9492 /* 9493 * Make sure all colors are flushed since the 9494 * sfmmu_page_cache() only flushes one color- 9495 * it does not know big pages. 9496 */ 9497 ncolors = CACHE_NUM_COLOR; 9498 if (flags & HAT_TMPNC) { 9499 for (i = 0; i < ncolors; i++) { 9500 sfmmu_cache_flushcolor(i, pp->p_pagenum); 9501 } 9502 cache_flush_flag = CACHE_NO_FLUSH; 9503 } 9504 } 9505 9506 for (i = 0; i < npages; i++) { 9507 9508 ASSERT(sfmmu_mlist_held(pp)); 9509 9510 if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) { 9511 9512 if (npages > 1) { 9513 bcolor = i % ncolors; 9514 } else { 9515 bcolor = NO_VCOLOR; 9516 } 9517 9518 sfmmu_page_cache(pp, flags, cache_flush_flag, 9519 bcolor); 9520 } 9521 9522 pp = PP_PAGENEXT(pp); 9523 } 9524 9525 xt_sync(cpuset); 9526 xc_dismissed(cpuset); 9527 mutex_exit(&ism_mlist_lock); 9528 sfmmu_hat_unlock_all(); 9529 sfmmu_page_exit(pmtx); 9530 sfmmu_kpm_kpmp_exit(kpmp); 9531 kpreempt_enable(); 9532 } 9533 9534 /* 9535 * This function changes the virtual cacheability of all mappings to a 9536 * particular page. When changing from uncache to cacheable the mappings will 9537 * only be changed if all of them have the same virtual color. 9538 * We need to flush the cache in all cpus. It is possible that 9539 * a process referenced a page as cacheable but has sinced exited 9540 * and cleared the mapping list. We still to flush it but have no 9541 * state so all cpus is the only alternative. 9542 */ 9543 static void 9544 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor) 9545 { 9546 struct sf_hment *sfhme; 9547 struct hme_blk *hmeblkp; 9548 sfmmu_t *sfmmup; 9549 tte_t tte, ttemod; 9550 caddr_t vaddr; 9551 int ret, color; 9552 pfn_t pfn; 9553 9554 color = bcolor; 9555 pfn = pp->p_pagenum; 9556 9557 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) { 9558 9559 if (IS_PAHME(sfhme)) 9560 continue; 9561 hmeblkp = sfmmu_hmetohblk(sfhme); 9562 9563 if (hmeblkp->hblk_xhat_bit) 9564 continue; 9565 9566 sfmmu_copytte(&sfhme->hme_tte, &tte); 9567 ASSERT(TTE_IS_VALID(&tte)); 9568 vaddr = tte_to_vaddr(hmeblkp, tte); 9569 color = addr_to_vcolor(vaddr); 9570 9571 #ifdef DEBUG 9572 if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) { 9573 ASSERT(color == bcolor); 9574 } 9575 #endif 9576 9577 ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp)); 9578 9579 ttemod = tte; 9580 if (flags & (HAT_UNCACHE | HAT_TMPNC)) { 9581 TTE_CLR_VCACHEABLE(&ttemod); 9582 } else { /* flags & HAT_CACHE */ 9583 TTE_SET_VCACHEABLE(&ttemod); 9584 } 9585 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte); 9586 if (ret < 0) { 9587 /* 9588 * Since all cpus are captured modifytte should not 9589 * fail. 9590 */ 9591 panic("sfmmu_page_cache: write to tte failed"); 9592 } 9593 9594 sfmmup = hblktosfmmu(hmeblkp); 9595 if (cache_flush_flag == CACHE_FLUSH) { 9596 /* 9597 * Flush TSBs, TLBs and caches 9598 */ 9599 if (hmeblkp->hblk_shared) { 9600 sf_srd_t *srdp = (sf_srd_t *)sfmmup; 9601 uint_t rid = hmeblkp->hblk_tag.htag_rid; 9602 sf_region_t *rgnp; 9603 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 9604 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 9605 ASSERT(srdp != NULL); 9606 rgnp = srdp->srd_hmergnp[rid]; 9607 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, 9608 srdp, rgnp, rid); 9609 (void) sfmmu_rgntlb_demap(vaddr, rgnp, 9610 hmeblkp, 0); 9611 sfmmu_cache_flush(pfn, addr_to_vcolor(vaddr)); 9612 } else if (sfmmup->sfmmu_ismhat) { 9613 if (flags & HAT_CACHE) { 9614 SFMMU_STAT(sf_ism_recache); 9615 } else { 9616 SFMMU_STAT(sf_ism_uncache); 9617 } 9618 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp, 9619 pfn, CACHE_FLUSH); 9620 } else { 9621 sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp, 9622 pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1); 9623 } 9624 9625 /* 9626 * all cache entries belonging to this pfn are 9627 * now flushed. 9628 */ 9629 cache_flush_flag = CACHE_NO_FLUSH; 9630 } else { 9631 /* 9632 * Flush only TSBs and TLBs. 9633 */ 9634 if (hmeblkp->hblk_shared) { 9635 sf_srd_t *srdp = (sf_srd_t *)sfmmup; 9636 uint_t rid = hmeblkp->hblk_tag.htag_rid; 9637 sf_region_t *rgnp; 9638 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 9639 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 9640 ASSERT(srdp != NULL); 9641 rgnp = srdp->srd_hmergnp[rid]; 9642 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, 9643 srdp, rgnp, rid); 9644 (void) sfmmu_rgntlb_demap(vaddr, rgnp, 9645 hmeblkp, 0); 9646 } else if (sfmmup->sfmmu_ismhat) { 9647 if (flags & HAT_CACHE) { 9648 SFMMU_STAT(sf_ism_recache); 9649 } else { 9650 SFMMU_STAT(sf_ism_uncache); 9651 } 9652 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp, 9653 pfn, CACHE_NO_FLUSH); 9654 } else { 9655 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1); 9656 } 9657 } 9658 } 9659 9660 if (PP_ISMAPPED_KPM(pp)) 9661 sfmmu_kpm_page_cache(pp, flags, cache_flush_flag); 9662 9663 switch (flags) { 9664 9665 default: 9666 panic("sfmmu_pagecache: unknown flags"); 9667 break; 9668 9669 case HAT_CACHE: 9670 PP_CLRTNC(pp); 9671 PP_CLRPNC(pp); 9672 PP_SET_VCOLOR(pp, color); 9673 break; 9674 9675 case HAT_TMPNC: 9676 PP_SETTNC(pp); 9677 PP_SET_VCOLOR(pp, NO_VCOLOR); 9678 break; 9679 9680 case HAT_UNCACHE: 9681 PP_SETPNC(pp); 9682 PP_CLRTNC(pp); 9683 PP_SET_VCOLOR(pp, NO_VCOLOR); 9684 break; 9685 } 9686 } 9687 #endif /* VAC */ 9688 9689 9690 /* 9691 * Wrapper routine used to return a context. 9692 * 9693 * It's the responsibility of the caller to guarantee that the 9694 * process serializes on calls here by taking the HAT lock for 9695 * the hat. 9696 * 9697 */ 9698 static void 9699 sfmmu_get_ctx(sfmmu_t *sfmmup) 9700 { 9701 mmu_ctx_t *mmu_ctxp; 9702 uint_t pstate_save; 9703 int ret; 9704 9705 ASSERT(sfmmu_hat_lock_held(sfmmup)); 9706 ASSERT(sfmmup != ksfmmup); 9707 9708 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)) { 9709 sfmmu_setup_tsbinfo(sfmmup); 9710 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ALLCTX_INVALID); 9711 } 9712 9713 kpreempt_disable(); 9714 9715 mmu_ctxp = CPU_MMU_CTXP(CPU); 9716 ASSERT(mmu_ctxp); 9717 ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms); 9718 ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]); 9719 9720 /* 9721 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU. 9722 */ 9723 if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs) 9724 sfmmu_ctx_wrap_around(mmu_ctxp); 9725 9726 /* 9727 * Let the MMU set up the page sizes to use for 9728 * this context in the TLB. Don't program 2nd dtlb for ism hat. 9729 */ 9730 if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) { 9731 mmu_set_ctx_page_sizes(sfmmup); 9732 } 9733 9734 /* 9735 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with 9736 * interrupts disabled to prevent race condition with wrap-around 9737 * ctx invalidatation. In sun4v, ctx invalidation also involves 9738 * a HV call to set the number of TSBs to 0. If interrupts are not 9739 * disabled until after sfmmu_load_mmustate is complete TSBs may 9740 * become assigned to INVALID_CONTEXT. This is not allowed. 9741 */ 9742 pstate_save = sfmmu_disable_intrs(); 9743 9744 if (sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE) && 9745 sfmmup->sfmmu_scdp != NULL) { 9746 sf_scd_t *scdp = sfmmup->sfmmu_scdp; 9747 sfmmu_t *scsfmmup = scdp->scd_sfmmup; 9748 ret = sfmmu_alloc_ctx(scsfmmup, 1, CPU, SFMMU_SHARED); 9749 /* debug purpose only */ 9750 ASSERT(!ret || scsfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum 9751 != INVALID_CONTEXT); 9752 } 9753 sfmmu_load_mmustate(sfmmup); 9754 9755 sfmmu_enable_intrs(pstate_save); 9756 9757 kpreempt_enable(); 9758 } 9759 9760 /* 9761 * When all cnums are used up in a MMU, cnum will wrap around to the 9762 * next generation and start from 2. 9763 */ 9764 static void 9765 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp) 9766 { 9767 9768 /* caller must have disabled the preemption */ 9769 ASSERT(curthread->t_preempt >= 1); 9770 ASSERT(mmu_ctxp != NULL); 9771 9772 /* acquire Per-MMU (PM) spin lock */ 9773 mutex_enter(&mmu_ctxp->mmu_lock); 9774 9775 /* re-check to see if wrap-around is needed */ 9776 if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs) 9777 goto done; 9778 9779 SFMMU_MMU_STAT(mmu_wrap_around); 9780 9781 /* update gnum */ 9782 ASSERT(mmu_ctxp->mmu_gnum != 0); 9783 mmu_ctxp->mmu_gnum++; 9784 if (mmu_ctxp->mmu_gnum == 0 || 9785 mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) { 9786 cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.", 9787 (void *)mmu_ctxp); 9788 } 9789 9790 if (mmu_ctxp->mmu_ncpus > 1) { 9791 cpuset_t cpuset; 9792 9793 membar_enter(); /* make sure updated gnum visible */ 9794 9795 SFMMU_XCALL_STATS(NULL); 9796 9797 /* xcall to others on the same MMU to invalidate ctx */ 9798 cpuset = mmu_ctxp->mmu_cpuset; 9799 ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id)); 9800 CPUSET_DEL(cpuset, CPU->cpu_id); 9801 CPUSET_AND(cpuset, cpu_ready_set); 9802 9803 /* 9804 * Pass in INVALID_CONTEXT as the first parameter to 9805 * sfmmu_raise_tsb_exception, which invalidates the context 9806 * of any process running on the CPUs in the MMU. 9807 */ 9808 xt_some(cpuset, sfmmu_raise_tsb_exception, 9809 INVALID_CONTEXT, INVALID_CONTEXT); 9810 xt_sync(cpuset); 9811 9812 SFMMU_MMU_STAT(mmu_tsb_raise_exception); 9813 } 9814 9815 if (sfmmu_getctx_sec() != INVALID_CONTEXT) { 9816 sfmmu_setctx_sec(INVALID_CONTEXT); 9817 sfmmu_clear_utsbinfo(); 9818 } 9819 9820 /* 9821 * No xcall is needed here. For sun4u systems all CPUs in context 9822 * domain share a single physical MMU therefore it's enough to flush 9823 * TLB on local CPU. On sun4v systems we use 1 global context 9824 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception 9825 * handler. Note that vtag_flushall_uctxs() is called 9826 * for Ultra II machine, where the equivalent flushall functionality 9827 * is implemented in SW, and only user ctx TLB entries are flushed. 9828 */ 9829 if (&vtag_flushall_uctxs != NULL) { 9830 vtag_flushall_uctxs(); 9831 } else { 9832 vtag_flushall(); 9833 } 9834 9835 /* reset mmu cnum, skips cnum 0 and 1 */ 9836 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS; 9837 9838 done: 9839 mutex_exit(&mmu_ctxp->mmu_lock); 9840 } 9841 9842 9843 /* 9844 * For multi-threaded process, set the process context to INVALID_CONTEXT 9845 * so that it faults and reloads the MMU state from TL=0. For single-threaded 9846 * process, we can just load the MMU state directly without having to 9847 * set context invalid. Caller must hold the hat lock since we don't 9848 * acquire it here. 9849 */ 9850 static void 9851 sfmmu_sync_mmustate(sfmmu_t *sfmmup) 9852 { 9853 uint_t cnum; 9854 uint_t pstate_save; 9855 9856 ASSERT(sfmmup != ksfmmup); 9857 ASSERT(sfmmu_hat_lock_held(sfmmup)); 9858 9859 kpreempt_disable(); 9860 9861 /* 9862 * We check whether the pass'ed-in sfmmup is the same as the 9863 * current running proc. This is to makes sure the current proc 9864 * stays single-threaded if it already is. 9865 */ 9866 if ((sfmmup == curthread->t_procp->p_as->a_hat) && 9867 (curthread->t_procp->p_lwpcnt == 1)) { 9868 /* single-thread */ 9869 cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum; 9870 if (cnum != INVALID_CONTEXT) { 9871 uint_t curcnum; 9872 /* 9873 * Disable interrupts to prevent race condition 9874 * with sfmmu_ctx_wrap_around ctx invalidation. 9875 * In sun4v, ctx invalidation involves setting 9876 * TSB to NULL, hence, interrupts should be disabled 9877 * untill after sfmmu_load_mmustate is completed. 9878 */ 9879 pstate_save = sfmmu_disable_intrs(); 9880 curcnum = sfmmu_getctx_sec(); 9881 if (curcnum == cnum) 9882 sfmmu_load_mmustate(sfmmup); 9883 sfmmu_enable_intrs(pstate_save); 9884 ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT); 9885 } 9886 } else { 9887 /* 9888 * multi-thread 9889 * or when sfmmup is not the same as the curproc. 9890 */ 9891 sfmmu_invalidate_ctx(sfmmup); 9892 } 9893 9894 kpreempt_enable(); 9895 } 9896 9897 9898 /* 9899 * Replace the specified TSB with a new TSB. This function gets called when 9900 * we grow, shrink or swapin a TSB. When swapping in a TSB (TSB_SWAPIN), the 9901 * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB 9902 * (8K). 9903 * 9904 * Caller must hold the HAT lock, but should assume any tsb_info 9905 * pointers it has are no longer valid after calling this function. 9906 * 9907 * Return values: 9908 * TSB_ALLOCFAIL Failed to allocate a TSB, due to memory constraints 9909 * TSB_LOSTRACE HAT is busy, i.e. another thread is already doing 9910 * something to this tsbinfo/TSB 9911 * TSB_SUCCESS Operation succeeded 9912 */ 9913 static tsb_replace_rc_t 9914 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc, 9915 hatlock_t *hatlockp, uint_t flags) 9916 { 9917 struct tsb_info *new_tsbinfo = NULL; 9918 struct tsb_info *curtsb, *prevtsb; 9919 uint_t tte_sz_mask; 9920 int i; 9921 9922 ASSERT(sfmmup != ksfmmup); 9923 ASSERT(sfmmup->sfmmu_ismhat == 0); 9924 ASSERT(sfmmu_hat_lock_held(sfmmup)); 9925 ASSERT(szc <= tsb_max_growsize); 9926 9927 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY)) 9928 return (TSB_LOSTRACE); 9929 9930 /* 9931 * Find the tsb_info ahead of this one in the list, and 9932 * also make sure that the tsb_info passed in really 9933 * exists! 9934 */ 9935 for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb; 9936 curtsb != old_tsbinfo && curtsb != NULL; 9937 prevtsb = curtsb, curtsb = curtsb->tsb_next) 9938 ; 9939 ASSERT(curtsb != NULL); 9940 9941 if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 9942 /* 9943 * The process is swapped out, so just set the new size 9944 * code. When it swaps back in, we'll allocate a new one 9945 * of the new chosen size. 9946 */ 9947 curtsb->tsb_szc = szc; 9948 return (TSB_SUCCESS); 9949 } 9950 SFMMU_FLAGS_SET(sfmmup, HAT_BUSY); 9951 9952 tte_sz_mask = old_tsbinfo->tsb_ttesz_mask; 9953 9954 /* 9955 * All initialization is done inside of sfmmu_tsbinfo_alloc(). 9956 * If we fail to allocate a TSB, exit. 9957 * 9958 * If tsb grows with new tsb size > 4M and old tsb size < 4M, 9959 * then try 4M slab after the initial alloc fails. 9960 * 9961 * If tsb swapin with tsb size > 4M, then try 4M after the 9962 * initial alloc fails. 9963 */ 9964 sfmmu_hat_exit(hatlockp); 9965 if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, 9966 tte_sz_mask, flags, sfmmup) && 9967 (!(flags & (TSB_GROW | TSB_SWAPIN)) || (szc <= TSB_4M_SZCODE) || 9968 (!(flags & TSB_SWAPIN) && 9969 (old_tsbinfo->tsb_szc >= TSB_4M_SZCODE)) || 9970 sfmmu_tsbinfo_alloc(&new_tsbinfo, TSB_4M_SZCODE, 9971 tte_sz_mask, flags, sfmmup))) { 9972 (void) sfmmu_hat_enter(sfmmup); 9973 if (!(flags & TSB_SWAPIN)) 9974 SFMMU_STAT(sf_tsb_resize_failures); 9975 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY); 9976 return (TSB_ALLOCFAIL); 9977 } 9978 (void) sfmmu_hat_enter(sfmmup); 9979 9980 /* 9981 * Re-check to make sure somebody else didn't muck with us while we 9982 * didn't hold the HAT lock. If the process swapped out, fine, just 9983 * exit; this can happen if we try to shrink the TSB from the context 9984 * of another process (such as on an ISM unmap), though it is rare. 9985 */ 9986 if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 9987 SFMMU_STAT(sf_tsb_resize_failures); 9988 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY); 9989 sfmmu_hat_exit(hatlockp); 9990 sfmmu_tsbinfo_free(new_tsbinfo); 9991 (void) sfmmu_hat_enter(sfmmup); 9992 return (TSB_LOSTRACE); 9993 } 9994 9995 #ifdef DEBUG 9996 /* Reverify that the tsb_info still exists.. for debugging only */ 9997 for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb; 9998 curtsb != old_tsbinfo && curtsb != NULL; 9999 prevtsb = curtsb, curtsb = curtsb->tsb_next) 10000 ; 10001 ASSERT(curtsb != NULL); 10002 #endif /* DEBUG */ 10003 10004 /* 10005 * Quiesce any CPUs running this process on their next TLB miss 10006 * so they atomically see the new tsb_info. We temporarily set the 10007 * context to invalid context so new threads that come on processor 10008 * after we do the xcall to cpusran will also serialize behind the 10009 * HAT lock on TLB miss and will see the new TSB. Since this short 10010 * race with a new thread coming on processor is relatively rare, 10011 * this synchronization mechanism should be cheaper than always 10012 * pausing all CPUs for the duration of the setup, which is what 10013 * the old implementation did. This is particuarly true if we are 10014 * copying a huge chunk of memory around during that window. 10015 * 10016 * The memory barriers are to make sure things stay consistent 10017 * with resume() since it does not hold the HAT lock while 10018 * walking the list of tsb_info structures. 10019 */ 10020 if ((flags & TSB_SWAPIN) != TSB_SWAPIN) { 10021 /* The TSB is either growing or shrinking. */ 10022 sfmmu_invalidate_ctx(sfmmup); 10023 } else { 10024 /* 10025 * It is illegal to swap in TSBs from a process other 10026 * than a process being swapped in. This in turn 10027 * implies we do not have a valid MMU context here 10028 * since a process needs one to resolve translation 10029 * misses. 10030 */ 10031 ASSERT(curthread->t_procp->p_as->a_hat == sfmmup); 10032 } 10033 10034 #ifdef DEBUG 10035 ASSERT(max_mmu_ctxdoms > 0); 10036 10037 /* 10038 * Process should have INVALID_CONTEXT on all MMUs 10039 */ 10040 for (i = 0; i < max_mmu_ctxdoms; i++) { 10041 10042 ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT); 10043 } 10044 #endif 10045 10046 new_tsbinfo->tsb_next = old_tsbinfo->tsb_next; 10047 membar_stst(); /* strict ordering required */ 10048 if (prevtsb) 10049 prevtsb->tsb_next = new_tsbinfo; 10050 else 10051 sfmmup->sfmmu_tsb = new_tsbinfo; 10052 membar_enter(); /* make sure new TSB globally visible */ 10053 10054 /* 10055 * We need to migrate TSB entries from the old TSB to the new TSB 10056 * if tsb_remap_ttes is set and the TSB is growing. 10057 */ 10058 if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW)) 10059 sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo); 10060 10061 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY); 10062 10063 /* 10064 * Drop the HAT lock to free our old tsb_info. 10065 */ 10066 sfmmu_hat_exit(hatlockp); 10067 10068 if ((flags & TSB_GROW) == TSB_GROW) { 10069 SFMMU_STAT(sf_tsb_grow); 10070 } else if ((flags & TSB_SHRINK) == TSB_SHRINK) { 10071 SFMMU_STAT(sf_tsb_shrink); 10072 } 10073 10074 sfmmu_tsbinfo_free(old_tsbinfo); 10075 10076 (void) sfmmu_hat_enter(sfmmup); 10077 return (TSB_SUCCESS); 10078 } 10079 10080 /* 10081 * This function will re-program hat pgsz array, and invalidate the 10082 * process' context, forcing the process to switch to another 10083 * context on the next TLB miss, and therefore start using the 10084 * TLB that is reprogrammed for the new page sizes. 10085 */ 10086 void 10087 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz) 10088 { 10089 int i; 10090 hatlock_t *hatlockp = NULL; 10091 10092 hatlockp = sfmmu_hat_enter(sfmmup); 10093 /* USIII+-IV+ optimization, requires hat lock */ 10094 if (tmp_pgsz) { 10095 for (i = 0; i < mmu_page_sizes; i++) 10096 sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i]; 10097 } 10098 SFMMU_STAT(sf_tlb_reprog_pgsz); 10099 10100 sfmmu_invalidate_ctx(sfmmup); 10101 10102 sfmmu_hat_exit(hatlockp); 10103 } 10104 10105 /* 10106 * The scd_rttecnt field in the SCD must be updated to take account of the 10107 * regions which it contains. 10108 */ 10109 static void 10110 sfmmu_set_scd_rttecnt(sf_srd_t *srdp, sf_scd_t *scdp) 10111 { 10112 uint_t rid; 10113 uint_t i, j; 10114 ulong_t w; 10115 sf_region_t *rgnp; 10116 10117 ASSERT(srdp != NULL); 10118 10119 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) { 10120 if ((w = scdp->scd_region_map.bitmap[i]) == 0) { 10121 continue; 10122 } 10123 10124 j = 0; 10125 while (w) { 10126 if (!(w & 0x1)) { 10127 j++; 10128 w >>= 1; 10129 continue; 10130 } 10131 rid = (i << BT_ULSHIFT) | j; 10132 j++; 10133 w >>= 1; 10134 10135 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 10136 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 10137 rgnp = srdp->srd_hmergnp[rid]; 10138 ASSERT(rgnp->rgn_refcnt > 0); 10139 ASSERT(rgnp->rgn_id == rid); 10140 10141 scdp->scd_rttecnt[rgnp->rgn_pgszc] += 10142 rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc); 10143 10144 /* 10145 * Maintain the tsb0 inflation cnt for the regions 10146 * in the SCD. 10147 */ 10148 if (rgnp->rgn_pgszc >= TTE4M) { 10149 scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt += 10150 rgnp->rgn_size >> 10151 (TTE_PAGE_SHIFT(TTE8K) + 2); 10152 } 10153 } 10154 } 10155 } 10156 10157 /* 10158 * This function assumes that there are either four or six supported page 10159 * sizes and at most two programmable TLBs, so we need to decide which 10160 * page sizes are most important and then tell the MMU layer so it 10161 * can adjust the TLB page sizes accordingly (if supported). 10162 * 10163 * If these assumptions change, this function will need to be 10164 * updated to support whatever the new limits are. 10165 * 10166 * The growing flag is nonzero if we are growing the address space, 10167 * and zero if it is shrinking. This allows us to decide whether 10168 * to grow or shrink our TSB, depending upon available memory 10169 * conditions. 10170 */ 10171 static void 10172 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing) 10173 { 10174 uint64_t ttecnt[MMU_PAGE_SIZES]; 10175 uint64_t tte8k_cnt, tte4m_cnt; 10176 uint8_t i; 10177 int sectsb_thresh; 10178 10179 /* 10180 * Kernel threads, processes with small address spaces not using 10181 * large pages, and dummy ISM HATs need not apply. 10182 */ 10183 if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL) 10184 return; 10185 10186 if (!SFMMU_LGPGS_INUSE(sfmmup) && 10187 sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor) 10188 return; 10189 10190 for (i = 0; i < mmu_page_sizes; i++) { 10191 ttecnt[i] = sfmmup->sfmmu_ttecnt[i] + 10192 sfmmup->sfmmu_ismttecnt[i]; 10193 } 10194 10195 /* Check pagesizes in use, and possibly reprogram DTLB. */ 10196 if (&mmu_check_page_sizes) 10197 mmu_check_page_sizes(sfmmup, ttecnt); 10198 10199 /* 10200 * Calculate the number of 8k ttes to represent the span of these 10201 * pages. 10202 */ 10203 tte8k_cnt = ttecnt[TTE8K] + 10204 (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) + 10205 (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT)); 10206 if (mmu_page_sizes == max_mmu_page_sizes) { 10207 tte4m_cnt = ttecnt[TTE4M] + 10208 (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) + 10209 (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M)); 10210 } else { 10211 tte4m_cnt = ttecnt[TTE4M]; 10212 } 10213 10214 /* 10215 * Inflate tte8k_cnt to allow for region large page allocation failure. 10216 */ 10217 tte8k_cnt += sfmmup->sfmmu_tsb0_4minflcnt; 10218 10219 /* 10220 * Inflate TSB sizes by a factor of 2 if this process 10221 * uses 4M text pages to minimize extra conflict misses 10222 * in the first TSB since without counting text pages 10223 * 8K TSB may become too small. 10224 * 10225 * Also double the size of the second TSB to minimize 10226 * extra conflict misses due to competition between 4M text pages 10227 * and data pages. 10228 * 10229 * We need to adjust the second TSB allocation threshold by the 10230 * inflation factor, since there is no point in creating a second 10231 * TSB when we know all the mappings can fit in the I/D TLBs. 10232 */ 10233 sectsb_thresh = tsb_sectsb_threshold; 10234 if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) { 10235 tte8k_cnt <<= 1; 10236 tte4m_cnt <<= 1; 10237 sectsb_thresh <<= 1; 10238 } 10239 10240 /* 10241 * Check to see if our TSB is the right size; we may need to 10242 * grow or shrink it. If the process is small, our work is 10243 * finished at this point. 10244 */ 10245 if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) { 10246 return; 10247 } 10248 sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh); 10249 } 10250 10251 static void 10252 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt, 10253 uint64_t tte4m_cnt, int sectsb_thresh) 10254 { 10255 int tsb_bits; 10256 uint_t tsb_szc; 10257 struct tsb_info *tsbinfop; 10258 hatlock_t *hatlockp = NULL; 10259 10260 hatlockp = sfmmu_hat_enter(sfmmup); 10261 ASSERT(hatlockp != NULL); 10262 tsbinfop = sfmmup->sfmmu_tsb; 10263 ASSERT(tsbinfop != NULL); 10264 10265 /* 10266 * If we're growing, select the size based on RSS. If we're 10267 * shrinking, leave some room so we don't have to turn around and 10268 * grow again immediately. 10269 */ 10270 if (growing) 10271 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt); 10272 else 10273 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1); 10274 10275 if (!growing && (tsb_szc < tsbinfop->tsb_szc) && 10276 (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) { 10277 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc, 10278 hatlockp, TSB_SHRINK); 10279 } else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) { 10280 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc, 10281 hatlockp, TSB_GROW); 10282 } 10283 tsbinfop = sfmmup->sfmmu_tsb; 10284 10285 /* 10286 * With the TLB and first TSB out of the way, we need to see if 10287 * we need a second TSB for 4M pages. If we managed to reprogram 10288 * the TLB page sizes above, the process will start using this new 10289 * TSB right away; otherwise, it will start using it on the next 10290 * context switch. Either way, it's no big deal so there's no 10291 * synchronization with the trap handlers here unless we grow the 10292 * TSB (in which case it's required to prevent using the old one 10293 * after it's freed). Note: second tsb is required for 32M/256M 10294 * page sizes. 10295 */ 10296 if (tte4m_cnt > sectsb_thresh) { 10297 /* 10298 * If we're growing, select the size based on RSS. If we're 10299 * shrinking, leave some room so we don't have to turn 10300 * around and grow again immediately. 10301 */ 10302 if (growing) 10303 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt); 10304 else 10305 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1); 10306 if (tsbinfop->tsb_next == NULL) { 10307 struct tsb_info *newtsb; 10308 int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)? 10309 0 : TSB_ALLOC; 10310 10311 sfmmu_hat_exit(hatlockp); 10312 10313 /* 10314 * Try to allocate a TSB for 4[32|256]M pages. If we 10315 * can't get the size we want, retry w/a minimum sized 10316 * TSB. If that still didn't work, give up; we can 10317 * still run without one. 10318 */ 10319 tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)? 10320 TSB4M|TSB32M|TSB256M:TSB4M; 10321 if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits, 10322 allocflags, sfmmup)) && 10323 (tsb_szc <= TSB_4M_SZCODE || 10324 sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE, 10325 tsb_bits, allocflags, sfmmup)) && 10326 sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE, 10327 tsb_bits, allocflags, sfmmup)) { 10328 return; 10329 } 10330 10331 hatlockp = sfmmu_hat_enter(sfmmup); 10332 10333 sfmmu_invalidate_ctx(sfmmup); 10334 10335 if (sfmmup->sfmmu_tsb->tsb_next == NULL) { 10336 sfmmup->sfmmu_tsb->tsb_next = newtsb; 10337 SFMMU_STAT(sf_tsb_sectsb_create); 10338 sfmmu_hat_exit(hatlockp); 10339 return; 10340 } else { 10341 /* 10342 * It's annoying, but possible for us 10343 * to get here.. we dropped the HAT lock 10344 * because of locking order in the kmem 10345 * allocator, and while we were off getting 10346 * our memory, some other thread decided to 10347 * do us a favor and won the race to get a 10348 * second TSB for this process. Sigh. 10349 */ 10350 sfmmu_hat_exit(hatlockp); 10351 sfmmu_tsbinfo_free(newtsb); 10352 return; 10353 } 10354 } 10355 10356 /* 10357 * We have a second TSB, see if it's big enough. 10358 */ 10359 tsbinfop = tsbinfop->tsb_next; 10360 10361 /* 10362 * Check to see if our second TSB is the right size; 10363 * we may need to grow or shrink it. 10364 * To prevent thrashing (e.g. growing the TSB on a 10365 * subsequent map operation), only try to shrink if 10366 * the TSB reach exceeds twice the virtual address 10367 * space size. 10368 */ 10369 if (!growing && (tsb_szc < tsbinfop->tsb_szc) && 10370 (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) { 10371 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, 10372 tsb_szc, hatlockp, TSB_SHRINK); 10373 } else if (growing && tsb_szc > tsbinfop->tsb_szc && 10374 TSB_OK_GROW()) { 10375 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, 10376 tsb_szc, hatlockp, TSB_GROW); 10377 } 10378 } 10379 10380 sfmmu_hat_exit(hatlockp); 10381 } 10382 10383 /* 10384 * Free up a sfmmu 10385 * Since the sfmmu is currently embedded in the hat struct we simply zero 10386 * out our fields and free up the ism map blk list if any. 10387 */ 10388 static void 10389 sfmmu_free_sfmmu(sfmmu_t *sfmmup) 10390 { 10391 ism_blk_t *blkp, *nx_blkp; 10392 #ifdef DEBUG 10393 ism_map_t *map; 10394 int i; 10395 #endif 10396 10397 ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0); 10398 ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0); 10399 ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0); 10400 ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0); 10401 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0); 10402 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0); 10403 ASSERT(SF_RGNMAP_ISNULL(sfmmup)); 10404 10405 sfmmup->sfmmu_free = 0; 10406 sfmmup->sfmmu_ismhat = 0; 10407 10408 blkp = sfmmup->sfmmu_iblk; 10409 sfmmup->sfmmu_iblk = NULL; 10410 10411 while (blkp) { 10412 #ifdef DEBUG 10413 map = blkp->iblk_maps; 10414 for (i = 0; i < ISM_MAP_SLOTS; i++) { 10415 ASSERT(map[i].imap_seg == 0); 10416 ASSERT(map[i].imap_ismhat == NULL); 10417 ASSERT(map[i].imap_ment == NULL); 10418 } 10419 #endif 10420 nx_blkp = blkp->iblk_next; 10421 blkp->iblk_next = NULL; 10422 blkp->iblk_nextpa = (uint64_t)-1; 10423 kmem_cache_free(ism_blk_cache, blkp); 10424 blkp = nx_blkp; 10425 } 10426 } 10427 10428 /* 10429 * Locking primitves accessed by HATLOCK macros 10430 */ 10431 10432 #define SFMMU_SPL_MTX (0x0) 10433 #define SFMMU_ML_MTX (0x1) 10434 10435 #define SFMMU_MLSPL_MTX(type, pg) (((type) == SFMMU_SPL_MTX) ? \ 10436 SPL_HASH(pg) : MLIST_HASH(pg)) 10437 10438 kmutex_t * 10439 sfmmu_page_enter(struct page *pp) 10440 { 10441 return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX)); 10442 } 10443 10444 void 10445 sfmmu_page_exit(kmutex_t *spl) 10446 { 10447 mutex_exit(spl); 10448 } 10449 10450 int 10451 sfmmu_page_spl_held(struct page *pp) 10452 { 10453 return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX)); 10454 } 10455 10456 kmutex_t * 10457 sfmmu_mlist_enter(struct page *pp) 10458 { 10459 return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX)); 10460 } 10461 10462 void 10463 sfmmu_mlist_exit(kmutex_t *mml) 10464 { 10465 mutex_exit(mml); 10466 } 10467 10468 int 10469 sfmmu_mlist_held(struct page *pp) 10470 { 10471 10472 return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX)); 10473 } 10474 10475 /* 10476 * Common code for sfmmu_mlist_enter() and sfmmu_page_enter(). For 10477 * sfmmu_mlist_enter() case mml_table lock array is used and for 10478 * sfmmu_page_enter() sfmmu_page_lock lock array is used. 10479 * 10480 * The lock is taken on a root page so that it protects an operation on all 10481 * constituent pages of a large page pp belongs to. 10482 * 10483 * The routine takes a lock from the appropriate array. The lock is determined 10484 * by hashing the root page. After taking the lock this routine checks if the 10485 * root page has the same size code that was used to determine the root (i.e 10486 * that root hasn't changed). If root page has the expected p_szc field we 10487 * have the right lock and it's returned to the caller. If root's p_szc 10488 * decreased we release the lock and retry from the beginning. This case can 10489 * happen due to hat_page_demote() decreasing p_szc between our load of p_szc 10490 * value and taking the lock. The number of retries due to p_szc decrease is 10491 * limited by the maximum p_szc value. If p_szc is 0 we return the lock 10492 * determined by hashing pp itself. 10493 * 10494 * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also 10495 * possible that p_szc can increase. To increase p_szc a thread has to lock 10496 * all constituent pages EXCL and do hat_pageunload() on all of them. All the 10497 * callers that don't hold a page locked recheck if hmeblk through which pp 10498 * was found still maps this pp. If it doesn't map it anymore returned lock 10499 * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of 10500 * p_szc increase after taking the lock it returns this lock without further 10501 * retries because in this case the caller doesn't care about which lock was 10502 * taken. The caller will drop it right away. 10503 * 10504 * After the routine returns it's guaranteed that hat_page_demote() can't 10505 * change p_szc field of any of constituent pages of a large page pp belongs 10506 * to as long as pp was either locked at least SHARED prior to this call or 10507 * the caller finds that hment that pointed to this pp still references this 10508 * pp (this also assumes that the caller holds hme hash bucket lock so that 10509 * the same pp can't be remapped into the same hmeblk after it was unmapped by 10510 * hat_pageunload()). 10511 */ 10512 static kmutex_t * 10513 sfmmu_mlspl_enter(struct page *pp, int type) 10514 { 10515 kmutex_t *mtx; 10516 uint_t prev_rszc = UINT_MAX; 10517 page_t *rootpp; 10518 uint_t szc; 10519 uint_t rszc; 10520 uint_t pszc = pp->p_szc; 10521 10522 ASSERT(pp != NULL); 10523 10524 again: 10525 if (pszc == 0) { 10526 mtx = SFMMU_MLSPL_MTX(type, pp); 10527 mutex_enter(mtx); 10528 return (mtx); 10529 } 10530 10531 /* The lock lives in the root page */ 10532 rootpp = PP_GROUPLEADER(pp, pszc); 10533 mtx = SFMMU_MLSPL_MTX(type, rootpp); 10534 mutex_enter(mtx); 10535 10536 /* 10537 * Return mml in the following 3 cases: 10538 * 10539 * 1) If pp itself is root since if its p_szc decreased before we took 10540 * the lock pp is still the root of smaller szc page. And if its p_szc 10541 * increased it doesn't matter what lock we return (see comment in 10542 * front of this routine). 10543 * 10544 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size 10545 * large page we have the right lock since any previous potential 10546 * hat_page_demote() is done demoting from greater than current root's 10547 * p_szc because hat_page_demote() changes root's p_szc last. No 10548 * further hat_page_demote() can start or be in progress since it 10549 * would need the same lock we currently hold. 10550 * 10551 * 3) If rootpp's p_szc increased since previous iteration it doesn't 10552 * matter what lock we return (see comment in front of this routine). 10553 */ 10554 if (pp == rootpp || (rszc = rootpp->p_szc) == pszc || 10555 rszc >= prev_rszc) { 10556 return (mtx); 10557 } 10558 10559 /* 10560 * hat_page_demote() could have decreased root's p_szc. 10561 * In this case pp's p_szc must also be smaller than pszc. 10562 * Retry. 10563 */ 10564 if (rszc < pszc) { 10565 szc = pp->p_szc; 10566 if (szc < pszc) { 10567 mutex_exit(mtx); 10568 pszc = szc; 10569 goto again; 10570 } 10571 /* 10572 * pp's p_szc increased after it was decreased. 10573 * page cannot be mapped. Return current lock. The caller 10574 * will drop it right away. 10575 */ 10576 return (mtx); 10577 } 10578 10579 /* 10580 * root's p_szc is greater than pp's p_szc. 10581 * hat_page_demote() is not done with all pages 10582 * yet. Wait for it to complete. 10583 */ 10584 mutex_exit(mtx); 10585 rootpp = PP_GROUPLEADER(rootpp, rszc); 10586 mtx = SFMMU_MLSPL_MTX(type, rootpp); 10587 mutex_enter(mtx); 10588 mutex_exit(mtx); 10589 prev_rszc = rszc; 10590 goto again; 10591 } 10592 10593 static int 10594 sfmmu_mlspl_held(struct page *pp, int type) 10595 { 10596 kmutex_t *mtx; 10597 10598 ASSERT(pp != NULL); 10599 /* The lock lives in the root page */ 10600 pp = PP_PAGEROOT(pp); 10601 ASSERT(pp != NULL); 10602 10603 mtx = SFMMU_MLSPL_MTX(type, pp); 10604 return (MUTEX_HELD(mtx)); 10605 } 10606 10607 static uint_t 10608 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical) 10609 { 10610 struct hme_blk *hblkp; 10611 10612 10613 if (freehblkp != NULL) { 10614 mutex_enter(&freehblkp_lock); 10615 if (freehblkp != NULL) { 10616 /* 10617 * If the current thread is owning hblk_reserve OR 10618 * critical request from sfmmu_hblk_steal() 10619 * let it succeed even if freehblkcnt is really low. 10620 */ 10621 if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) { 10622 SFMMU_STAT(sf_get_free_throttle); 10623 mutex_exit(&freehblkp_lock); 10624 return (0); 10625 } 10626 freehblkcnt--; 10627 *hmeblkpp = freehblkp; 10628 hblkp = *hmeblkpp; 10629 freehblkp = hblkp->hblk_next; 10630 mutex_exit(&freehblkp_lock); 10631 hblkp->hblk_next = NULL; 10632 SFMMU_STAT(sf_get_free_success); 10633 10634 ASSERT(hblkp->hblk_hmecnt == 0); 10635 ASSERT(hblkp->hblk_vcnt == 0); 10636 ASSERT(hblkp->hblk_nextpa == va_to_pa((caddr_t)hblkp)); 10637 10638 return (1); 10639 } 10640 mutex_exit(&freehblkp_lock); 10641 } 10642 10643 /* Check cpu hblk pending queues */ 10644 if ((*hmeblkpp = sfmmu_check_pending_hblks(TTE8K)) != NULL) { 10645 hblkp = *hmeblkpp; 10646 hblkp->hblk_next = NULL; 10647 hblkp->hblk_nextpa = va_to_pa((caddr_t)hblkp); 10648 10649 ASSERT(hblkp->hblk_hmecnt == 0); 10650 ASSERT(hblkp->hblk_vcnt == 0); 10651 10652 return (1); 10653 } 10654 10655 SFMMU_STAT(sf_get_free_fail); 10656 return (0); 10657 } 10658 10659 static uint_t 10660 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical) 10661 { 10662 struct hme_blk *hblkp; 10663 10664 ASSERT(hmeblkp->hblk_hmecnt == 0); 10665 ASSERT(hmeblkp->hblk_vcnt == 0); 10666 ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp)); 10667 10668 /* 10669 * If the current thread is mapping into kernel space, 10670 * let it succede even if freehblkcnt is max 10671 * so that it will avoid freeing it to kmem. 10672 * This will prevent stack overflow due to 10673 * possible recursion since kmem_cache_free() 10674 * might require creation of a slab which 10675 * in turn needs an hmeblk to map that slab; 10676 * let's break this vicious chain at the first 10677 * opportunity. 10678 */ 10679 if (freehblkcnt < HBLK_RESERVE_CNT || critical) { 10680 mutex_enter(&freehblkp_lock); 10681 if (freehblkcnt < HBLK_RESERVE_CNT || critical) { 10682 SFMMU_STAT(sf_put_free_success); 10683 freehblkcnt++; 10684 hmeblkp->hblk_next = freehblkp; 10685 freehblkp = hmeblkp; 10686 mutex_exit(&freehblkp_lock); 10687 return (1); 10688 } 10689 mutex_exit(&freehblkp_lock); 10690 } 10691 10692 /* 10693 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here 10694 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and* 10695 * we are not in the process of mapping into kernel space. 10696 */ 10697 ASSERT(!critical); 10698 while (freehblkcnt > HBLK_RESERVE_CNT) { 10699 mutex_enter(&freehblkp_lock); 10700 if (freehblkcnt > HBLK_RESERVE_CNT) { 10701 freehblkcnt--; 10702 hblkp = freehblkp; 10703 freehblkp = hblkp->hblk_next; 10704 mutex_exit(&freehblkp_lock); 10705 ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache); 10706 kmem_cache_free(sfmmu8_cache, hblkp); 10707 continue; 10708 } 10709 mutex_exit(&freehblkp_lock); 10710 } 10711 SFMMU_STAT(sf_put_free_fail); 10712 return (0); 10713 } 10714 10715 static void 10716 sfmmu_hblk_swap(struct hme_blk *new) 10717 { 10718 struct hme_blk *old, *hblkp, *prev; 10719 uint64_t newpa; 10720 caddr_t base, vaddr, endaddr; 10721 struct hmehash_bucket *hmebp; 10722 struct sf_hment *osfhme, *nsfhme; 10723 page_t *pp; 10724 kmutex_t *pml; 10725 tte_t tte; 10726 struct hme_blk *list = NULL; 10727 10728 #ifdef DEBUG 10729 hmeblk_tag hblktag; 10730 struct hme_blk *found; 10731 #endif 10732 old = HBLK_RESERVE; 10733 ASSERT(!old->hblk_shared); 10734 10735 /* 10736 * save pa before bcopy clobbers it 10737 */ 10738 newpa = new->hblk_nextpa; 10739 10740 base = (caddr_t)get_hblk_base(old); 10741 endaddr = base + get_hblk_span(old); 10742 10743 /* 10744 * acquire hash bucket lock. 10745 */ 10746 hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K, 10747 SFMMU_INVALID_SHMERID); 10748 10749 /* 10750 * copy contents from old to new 10751 */ 10752 bcopy((void *)old, (void *)new, HME8BLK_SZ); 10753 10754 /* 10755 * add new to hash chain 10756 */ 10757 sfmmu_hblk_hash_add(hmebp, new, newpa); 10758 10759 /* 10760 * search hash chain for hblk_reserve; this needs to be performed 10761 * after adding new, otherwise prev won't correspond to the hblk which 10762 * is prior to old in hash chain when we call sfmmu_hblk_hash_rm to 10763 * remove old later. 10764 */ 10765 for (prev = NULL, 10766 hblkp = hmebp->hmeblkp; hblkp != NULL && hblkp != old; 10767 prev = hblkp, hblkp = hblkp->hblk_next) 10768 ; 10769 10770 if (hblkp != old) 10771 panic("sfmmu_hblk_swap: hblk_reserve not found"); 10772 10773 /* 10774 * p_mapping list is still pointing to hments in hblk_reserve; 10775 * fix up p_mapping list so that they point to hments in new. 10776 * 10777 * Since all these mappings are created by hblk_reserve_thread 10778 * on the way and it's using at least one of the buffers from each of 10779 * the newly minted slabs, there is no danger of any of these 10780 * mappings getting unloaded by another thread. 10781 * 10782 * tsbmiss could only modify ref/mod bits of hments in old/new. 10783 * Since all of these hments hold mappings established by segkmem 10784 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits 10785 * have no meaning for the mappings in hblk_reserve. hments in 10786 * old and new are identical except for ref/mod bits. 10787 */ 10788 for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) { 10789 10790 HBLKTOHME(osfhme, old, vaddr); 10791 sfmmu_copytte(&osfhme->hme_tte, &tte); 10792 10793 if (TTE_IS_VALID(&tte)) { 10794 if ((pp = osfhme->hme_page) == NULL) 10795 panic("sfmmu_hblk_swap: page not mapped"); 10796 10797 pml = sfmmu_mlist_enter(pp); 10798 10799 if (pp != osfhme->hme_page) 10800 panic("sfmmu_hblk_swap: mapping changed"); 10801 10802 HBLKTOHME(nsfhme, new, vaddr); 10803 10804 HME_ADD(nsfhme, pp); 10805 HME_SUB(osfhme, pp); 10806 10807 sfmmu_mlist_exit(pml); 10808 } 10809 } 10810 10811 /* 10812 * remove old from hash chain 10813 */ 10814 sfmmu_hblk_hash_rm(hmebp, old, prev, &list, 1); 10815 10816 #ifdef DEBUG 10817 10818 hblktag.htag_id = ksfmmup; 10819 hblktag.htag_rid = SFMMU_INVALID_SHMERID; 10820 hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K)); 10821 hblktag.htag_rehash = HME_HASH_REHASH(TTE8K); 10822 HME_HASH_FAST_SEARCH(hmebp, hblktag, found); 10823 10824 if (found != new) 10825 panic("sfmmu_hblk_swap: new hblk not found"); 10826 #endif 10827 10828 SFMMU_HASH_UNLOCK(hmebp); 10829 10830 /* 10831 * Reset hblk_reserve 10832 */ 10833 bzero((void *)old, HME8BLK_SZ); 10834 old->hblk_nextpa = va_to_pa((caddr_t)old); 10835 } 10836 10837 /* 10838 * Grab the mlist mutex for both pages passed in. 10839 * 10840 * low and high will be returned as pointers to the mutexes for these pages. 10841 * low refers to the mutex residing in the lower bin of the mlist hash, while 10842 * high refers to the mutex residing in the higher bin of the mlist hash. This 10843 * is due to the locking order restrictions on the same thread grabbing 10844 * multiple mlist mutexes. The low lock must be acquired before the high lock. 10845 * 10846 * If both pages hash to the same mutex, only grab that single mutex, and 10847 * high will be returned as NULL 10848 * If the pages hash to different bins in the hash, grab the lower addressed 10849 * lock first and then the higher addressed lock in order to follow the locking 10850 * rules involved with the same thread grabbing multiple mlist mutexes. 10851 * low and high will both have non-NULL values. 10852 */ 10853 static void 10854 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl, 10855 kmutex_t **low, kmutex_t **high) 10856 { 10857 kmutex_t *mml_targ, *mml_repl; 10858 10859 /* 10860 * no need to do the dance around szc as in sfmmu_mlist_enter() 10861 * because this routine is only called by hat_page_relocate() and all 10862 * targ and repl pages are already locked EXCL so szc can't change. 10863 */ 10864 10865 mml_targ = MLIST_HASH(PP_PAGEROOT(targ)); 10866 mml_repl = MLIST_HASH(PP_PAGEROOT(repl)); 10867 10868 if (mml_targ == mml_repl) { 10869 *low = mml_targ; 10870 *high = NULL; 10871 } else { 10872 if (mml_targ < mml_repl) { 10873 *low = mml_targ; 10874 *high = mml_repl; 10875 } else { 10876 *low = mml_repl; 10877 *high = mml_targ; 10878 } 10879 } 10880 10881 mutex_enter(*low); 10882 if (*high) 10883 mutex_enter(*high); 10884 } 10885 10886 static void 10887 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high) 10888 { 10889 if (high) 10890 mutex_exit(high); 10891 mutex_exit(low); 10892 } 10893 10894 static hatlock_t * 10895 sfmmu_hat_enter(sfmmu_t *sfmmup) 10896 { 10897 hatlock_t *hatlockp; 10898 10899 if (sfmmup != ksfmmup) { 10900 hatlockp = TSB_HASH(sfmmup); 10901 mutex_enter(HATLOCK_MUTEXP(hatlockp)); 10902 return (hatlockp); 10903 } 10904 return (NULL); 10905 } 10906 10907 static hatlock_t * 10908 sfmmu_hat_tryenter(sfmmu_t *sfmmup) 10909 { 10910 hatlock_t *hatlockp; 10911 10912 if (sfmmup != ksfmmup) { 10913 hatlockp = TSB_HASH(sfmmup); 10914 if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0) 10915 return (NULL); 10916 return (hatlockp); 10917 } 10918 return (NULL); 10919 } 10920 10921 static void 10922 sfmmu_hat_exit(hatlock_t *hatlockp) 10923 { 10924 if (hatlockp != NULL) 10925 mutex_exit(HATLOCK_MUTEXP(hatlockp)); 10926 } 10927 10928 static void 10929 sfmmu_hat_lock_all(void) 10930 { 10931 int i; 10932 for (i = 0; i < SFMMU_NUM_LOCK; i++) 10933 mutex_enter(HATLOCK_MUTEXP(&hat_lock[i])); 10934 } 10935 10936 static void 10937 sfmmu_hat_unlock_all(void) 10938 { 10939 int i; 10940 for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--) 10941 mutex_exit(HATLOCK_MUTEXP(&hat_lock[i])); 10942 } 10943 10944 int 10945 sfmmu_hat_lock_held(sfmmu_t *sfmmup) 10946 { 10947 ASSERT(sfmmup != ksfmmup); 10948 return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup)))); 10949 } 10950 10951 /* 10952 * Locking primitives to provide consistency between ISM unmap 10953 * and other operations. Since ISM unmap can take a long time, we 10954 * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating 10955 * contention on the hatlock buckets while ISM segments are being 10956 * unmapped. The tradeoff is that the flags don't prevent priority 10957 * inversion from occurring, so we must request kernel priority in 10958 * case we have to sleep to keep from getting buried while holding 10959 * the HAT_ISMBUSY flag set, which in turn could block other kernel 10960 * threads from running (for example, in sfmmu_uvatopfn()). 10961 */ 10962 static void 10963 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held) 10964 { 10965 hatlock_t *hatlockp; 10966 10967 THREAD_KPRI_REQUEST(); 10968 if (!hatlock_held) 10969 hatlockp = sfmmu_hat_enter(sfmmup); 10970 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) 10971 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp)); 10972 SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY); 10973 if (!hatlock_held) 10974 sfmmu_hat_exit(hatlockp); 10975 } 10976 10977 static void 10978 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held) 10979 { 10980 hatlock_t *hatlockp; 10981 10982 if (!hatlock_held) 10983 hatlockp = sfmmu_hat_enter(sfmmup); 10984 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)); 10985 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY); 10986 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 10987 if (!hatlock_held) 10988 sfmmu_hat_exit(hatlockp); 10989 THREAD_KPRI_RELEASE(); 10990 } 10991 10992 /* 10993 * 10994 * Algorithm: 10995 * 10996 * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed 10997 * hblks. 10998 * 10999 * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache, 11000 * 11001 * (a) try to return an hblk from reserve pool of free hblks; 11002 * (b) if the reserve pool is empty, acquire hblk_reserve_lock 11003 * and return hblk_reserve. 11004 * 11005 * (3) call kmem_cache_alloc() to allocate hblk; 11006 * 11007 * (a) if hblk_reserve_lock is held by the current thread, 11008 * atomically replace hblk_reserve by the hblk that is 11009 * returned by kmem_cache_alloc; release hblk_reserve_lock 11010 * and call kmem_cache_alloc() again. 11011 * (b) if reserve pool is not full, add the hblk that is 11012 * returned by kmem_cache_alloc to reserve pool and 11013 * call kmem_cache_alloc again. 11014 * 11015 */ 11016 static struct hme_blk * 11017 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr, 11018 struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag, 11019 uint_t flags, uint_t rid) 11020 { 11021 struct hme_blk *hmeblkp = NULL; 11022 struct hme_blk *newhblkp; 11023 struct hme_blk *shw_hblkp = NULL; 11024 struct kmem_cache *sfmmu_cache = NULL; 11025 uint64_t hblkpa; 11026 ulong_t index; 11027 uint_t owner; /* set to 1 if using hblk_reserve */ 11028 uint_t forcefree; 11029 int sleep; 11030 sf_srd_t *srdp; 11031 sf_region_t *rgnp; 11032 11033 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 11034 ASSERT(hblktag.htag_rid == rid); 11035 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size)); 11036 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || 11037 IS_P2ALIGNED(vaddr, TTEBYTES(size))); 11038 11039 /* 11040 * If segkmem is not created yet, allocate from static hmeblks 11041 * created at the end of startup_modules(). See the block comment 11042 * in startup_modules() describing how we estimate the number of 11043 * static hmeblks that will be needed during re-map. 11044 */ 11045 if (!hblk_alloc_dynamic) { 11046 11047 ASSERT(!SFMMU_IS_SHMERID_VALID(rid)); 11048 11049 if (size == TTE8K) { 11050 index = nucleus_hblk8.index; 11051 if (index >= nucleus_hblk8.len) { 11052 /* 11053 * If we panic here, see startup_modules() to 11054 * make sure that we are calculating the 11055 * number of hblk8's that we need correctly. 11056 */ 11057 prom_panic("no nucleus hblk8 to allocate"); 11058 } 11059 hmeblkp = 11060 (struct hme_blk *)&nucleus_hblk8.list[index]; 11061 nucleus_hblk8.index++; 11062 SFMMU_STAT(sf_hblk8_nalloc); 11063 } else { 11064 index = nucleus_hblk1.index; 11065 if (nucleus_hblk1.index >= nucleus_hblk1.len) { 11066 /* 11067 * If we panic here, see startup_modules(). 11068 * Most likely you need to update the 11069 * calculation of the number of hblk1 elements 11070 * that the kernel needs to boot. 11071 */ 11072 prom_panic("no nucleus hblk1 to allocate"); 11073 } 11074 hmeblkp = 11075 (struct hme_blk *)&nucleus_hblk1.list[index]; 11076 nucleus_hblk1.index++; 11077 SFMMU_STAT(sf_hblk1_nalloc); 11078 } 11079 11080 goto hblk_init; 11081 } 11082 11083 SFMMU_HASH_UNLOCK(hmebp); 11084 11085 if (sfmmup != KHATID && !SFMMU_IS_SHMERID_VALID(rid)) { 11086 if (mmu_page_sizes == max_mmu_page_sizes) { 11087 if (size < TTE256M) 11088 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr, 11089 size, flags); 11090 } else { 11091 if (size < TTE4M) 11092 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr, 11093 size, flags); 11094 } 11095 } else if (SFMMU_IS_SHMERID_VALID(rid)) { 11096 /* 11097 * Shared hmes use per region bitmaps in rgn_hmeflag 11098 * rather than shadow hmeblks to keep track of the 11099 * mapping sizes which have been allocated for the region. 11100 * Here we cleanup old invalid hmeblks with this rid, 11101 * which may be left around by pageunload(). 11102 */ 11103 int ttesz; 11104 caddr_t va; 11105 caddr_t eva = vaddr + TTEBYTES(size); 11106 11107 ASSERT(sfmmup != KHATID); 11108 11109 srdp = sfmmup->sfmmu_srdp; 11110 ASSERT(srdp != NULL && srdp->srd_refcnt != 0); 11111 rgnp = srdp->srd_hmergnp[rid]; 11112 ASSERT(rgnp != NULL && rgnp->rgn_id == rid); 11113 ASSERT(rgnp->rgn_refcnt != 0); 11114 ASSERT(size <= rgnp->rgn_pgszc); 11115 11116 ttesz = HBLK_MIN_TTESZ; 11117 do { 11118 if (!(rgnp->rgn_hmeflags & (0x1 << ttesz))) { 11119 continue; 11120 } 11121 11122 if (ttesz > size && ttesz != HBLK_MIN_TTESZ) { 11123 sfmmu_cleanup_rhblk(srdp, vaddr, rid, ttesz); 11124 } else if (ttesz < size) { 11125 for (va = vaddr; va < eva; 11126 va += TTEBYTES(ttesz)) { 11127 sfmmu_cleanup_rhblk(srdp, va, rid, 11128 ttesz); 11129 } 11130 } 11131 } while (++ttesz <= rgnp->rgn_pgszc); 11132 } 11133 11134 fill_hblk: 11135 owner = (hblk_reserve_thread == curthread) ? 1 : 0; 11136 11137 if (owner && size == TTE8K) { 11138 11139 ASSERT(!SFMMU_IS_SHMERID_VALID(rid)); 11140 /* 11141 * We are really in a tight spot. We already own 11142 * hblk_reserve and we need another hblk. In anticipation 11143 * of this kind of scenario, we specifically set aside 11144 * HBLK_RESERVE_MIN number of hblks to be used exclusively 11145 * by owner of hblk_reserve. 11146 */ 11147 SFMMU_STAT(sf_hblk_recurse_cnt); 11148 11149 if (!sfmmu_get_free_hblk(&hmeblkp, 1)) 11150 panic("sfmmu_hblk_alloc: reserve list is empty"); 11151 11152 goto hblk_verify; 11153 } 11154 11155 ASSERT(!owner); 11156 11157 if ((flags & HAT_NO_KALLOC) == 0) { 11158 11159 sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache); 11160 sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP); 11161 11162 if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) { 11163 hmeblkp = sfmmu_hblk_steal(size); 11164 } else { 11165 /* 11166 * if we are the owner of hblk_reserve, 11167 * swap hblk_reserve with hmeblkp and 11168 * start a fresh life. Hope things go 11169 * better this time. 11170 */ 11171 if (hblk_reserve_thread == curthread) { 11172 ASSERT(sfmmu_cache == sfmmu8_cache); 11173 sfmmu_hblk_swap(hmeblkp); 11174 hblk_reserve_thread = NULL; 11175 mutex_exit(&hblk_reserve_lock); 11176 goto fill_hblk; 11177 } 11178 /* 11179 * let's donate this hblk to our reserve list if 11180 * we are not mapping kernel range 11181 */ 11182 if (size == TTE8K && sfmmup != KHATID) { 11183 if (sfmmu_put_free_hblk(hmeblkp, 0)) 11184 goto fill_hblk; 11185 } 11186 } 11187 } else { 11188 /* 11189 * We are here to map the slab in sfmmu8_cache; let's 11190 * check if we could tap our reserve list; if successful, 11191 * this will avoid the pain of going thru sfmmu_hblk_swap 11192 */ 11193 SFMMU_STAT(sf_hblk_slab_cnt); 11194 if (!sfmmu_get_free_hblk(&hmeblkp, 0)) { 11195 /* 11196 * let's start hblk_reserve dance 11197 */ 11198 SFMMU_STAT(sf_hblk_reserve_cnt); 11199 owner = 1; 11200 mutex_enter(&hblk_reserve_lock); 11201 hmeblkp = HBLK_RESERVE; 11202 hblk_reserve_thread = curthread; 11203 } 11204 } 11205 11206 hblk_verify: 11207 ASSERT(hmeblkp != NULL); 11208 set_hblk_sz(hmeblkp, size); 11209 ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp)); 11210 SFMMU_HASH_LOCK(hmebp); 11211 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp); 11212 if (newhblkp != NULL) { 11213 SFMMU_HASH_UNLOCK(hmebp); 11214 if (hmeblkp != HBLK_RESERVE) { 11215 /* 11216 * This is really tricky! 11217 * 11218 * vmem_alloc(vmem_seg_arena) 11219 * vmem_alloc(vmem_internal_arena) 11220 * segkmem_alloc(heap_arena) 11221 * vmem_alloc(heap_arena) 11222 * page_create() 11223 * hat_memload() 11224 * kmem_cache_free() 11225 * kmem_cache_alloc() 11226 * kmem_slab_create() 11227 * vmem_alloc(kmem_internal_arena) 11228 * segkmem_alloc(heap_arena) 11229 * vmem_alloc(heap_arena) 11230 * page_create() 11231 * hat_memload() 11232 * kmem_cache_free() 11233 * ... 11234 * 11235 * Thus, hat_memload() could call kmem_cache_free 11236 * for enough number of times that we could easily 11237 * hit the bottom of the stack or run out of reserve 11238 * list of vmem_seg structs. So, we must donate 11239 * this hblk to reserve list if it's allocated 11240 * from sfmmu8_cache *and* mapping kernel range. 11241 * We don't need to worry about freeing hmeblk1's 11242 * to kmem since they don't map any kmem slabs. 11243 * 11244 * Note: When segkmem supports largepages, we must 11245 * free hmeblk1's to reserve list as well. 11246 */ 11247 forcefree = (sfmmup == KHATID) ? 1 : 0; 11248 if (size == TTE8K && 11249 sfmmu_put_free_hblk(hmeblkp, forcefree)) { 11250 goto re_verify; 11251 } 11252 ASSERT(sfmmup != KHATID); 11253 kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp); 11254 } else { 11255 /* 11256 * Hey! we don't need hblk_reserve any more. 11257 */ 11258 ASSERT(owner); 11259 hblk_reserve_thread = NULL; 11260 mutex_exit(&hblk_reserve_lock); 11261 owner = 0; 11262 } 11263 re_verify: 11264 /* 11265 * let's check if the goodies are still present 11266 */ 11267 SFMMU_HASH_LOCK(hmebp); 11268 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp); 11269 if (newhblkp != NULL) { 11270 /* 11271 * return newhblkp if it's not hblk_reserve; 11272 * if newhblkp is hblk_reserve, return it 11273 * _only if_ we are the owner of hblk_reserve. 11274 */ 11275 if (newhblkp != HBLK_RESERVE || owner) { 11276 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || 11277 newhblkp->hblk_shared); 11278 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || 11279 !newhblkp->hblk_shared); 11280 return (newhblkp); 11281 } else { 11282 /* 11283 * we just hit hblk_reserve in the hash and 11284 * we are not the owner of that; 11285 * 11286 * block until hblk_reserve_thread completes 11287 * swapping hblk_reserve and try the dance 11288 * once again. 11289 */ 11290 SFMMU_HASH_UNLOCK(hmebp); 11291 mutex_enter(&hblk_reserve_lock); 11292 mutex_exit(&hblk_reserve_lock); 11293 SFMMU_STAT(sf_hblk_reserve_hit); 11294 goto fill_hblk; 11295 } 11296 } else { 11297 /* 11298 * it's no more! try the dance once again. 11299 */ 11300 SFMMU_HASH_UNLOCK(hmebp); 11301 goto fill_hblk; 11302 } 11303 } 11304 11305 hblk_init: 11306 if (SFMMU_IS_SHMERID_VALID(rid)) { 11307 uint16_t tteflag = 0x1 << 11308 ((size < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : size); 11309 11310 if (!(rgnp->rgn_hmeflags & tteflag)) { 11311 atomic_or_16(&rgnp->rgn_hmeflags, tteflag); 11312 } 11313 hmeblkp->hblk_shared = 1; 11314 } else { 11315 hmeblkp->hblk_shared = 0; 11316 } 11317 set_hblk_sz(hmeblkp, size); 11318 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 11319 hmeblkp->hblk_next = (struct hme_blk *)NULL; 11320 hmeblkp->hblk_tag = hblktag; 11321 hmeblkp->hblk_shadow = shw_hblkp; 11322 hblkpa = hmeblkp->hblk_nextpa; 11323 hmeblkp->hblk_nextpa = HMEBLK_ENDPA; 11324 11325 ASSERT(get_hblk_ttesz(hmeblkp) == size); 11326 ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size)); 11327 ASSERT(hmeblkp->hblk_hmecnt == 0); 11328 ASSERT(hmeblkp->hblk_vcnt == 0); 11329 ASSERT(hmeblkp->hblk_lckcnt == 0); 11330 ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp)); 11331 sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa); 11332 return (hmeblkp); 11333 } 11334 11335 /* 11336 * This function cleans up the hme_blk and returns it to the free list. 11337 */ 11338 /* ARGSUSED */ 11339 static void 11340 sfmmu_hblk_free(struct hme_blk **listp) 11341 { 11342 struct hme_blk *hmeblkp, *next_hmeblkp; 11343 int size; 11344 uint_t critical; 11345 uint64_t hblkpa; 11346 11347 ASSERT(*listp != NULL); 11348 11349 hmeblkp = *listp; 11350 while (hmeblkp != NULL) { 11351 next_hmeblkp = hmeblkp->hblk_next; 11352 ASSERT(!hmeblkp->hblk_hmecnt); 11353 ASSERT(!hmeblkp->hblk_vcnt); 11354 ASSERT(!hmeblkp->hblk_lckcnt); 11355 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve); 11356 ASSERT(hmeblkp->hblk_shared == 0); 11357 ASSERT(hmeblkp->hblk_shw_bit == 0); 11358 ASSERT(hmeblkp->hblk_shadow == NULL); 11359 11360 hblkpa = va_to_pa((caddr_t)hmeblkp); 11361 ASSERT(hblkpa != (uint64_t)-1); 11362 critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0; 11363 11364 size = get_hblk_ttesz(hmeblkp); 11365 hmeblkp->hblk_next = NULL; 11366 hmeblkp->hblk_nextpa = hblkpa; 11367 11368 if (hmeblkp->hblk_nuc_bit == 0) { 11369 11370 if (size != TTE8K || 11371 !sfmmu_put_free_hblk(hmeblkp, critical)) 11372 kmem_cache_free(get_hblk_cache(hmeblkp), 11373 hmeblkp); 11374 } 11375 hmeblkp = next_hmeblkp; 11376 } 11377 } 11378 11379 #define BUCKETS_TO_SEARCH_BEFORE_UNLOAD 30 11380 #define SFMMU_HBLK_STEAL_THRESHOLD 5 11381 11382 static uint_t sfmmu_hblk_steal_twice; 11383 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count; 11384 11385 /* 11386 * Steal a hmeblk from user or kernel hme hash lists. 11387 * For 8K tte grab one from reserve pool (freehblkp) before proceeding to 11388 * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts 11389 * tap into critical reserve of freehblkp. 11390 * Note: We remain looping in this routine until we find one. 11391 */ 11392 static struct hme_blk * 11393 sfmmu_hblk_steal(int size) 11394 { 11395 static struct hmehash_bucket *uhmehash_steal_hand = NULL; 11396 struct hmehash_bucket *hmebp; 11397 struct hme_blk *hmeblkp = NULL, *pr_hblk; 11398 uint64_t hblkpa; 11399 int i; 11400 uint_t loop_cnt = 0, critical; 11401 11402 for (;;) { 11403 /* Check cpu hblk pending queues */ 11404 if ((hmeblkp = sfmmu_check_pending_hblks(size)) != NULL) { 11405 hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp); 11406 ASSERT(hmeblkp->hblk_hmecnt == 0); 11407 ASSERT(hmeblkp->hblk_vcnt == 0); 11408 return (hmeblkp); 11409 } 11410 11411 if (size == TTE8K) { 11412 critical = 11413 (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0; 11414 if (sfmmu_get_free_hblk(&hmeblkp, critical)) 11415 return (hmeblkp); 11416 } 11417 11418 hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash : 11419 uhmehash_steal_hand; 11420 ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]); 11421 11422 for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ + 11423 BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) { 11424 SFMMU_HASH_LOCK(hmebp); 11425 hmeblkp = hmebp->hmeblkp; 11426 hblkpa = hmebp->hmeh_nextpa; 11427 pr_hblk = NULL; 11428 while (hmeblkp) { 11429 /* 11430 * check if it is a hmeblk that is not locked 11431 * and not shared. skip shadow hmeblks with 11432 * shadow_mask set i.e valid count non zero. 11433 */ 11434 if ((get_hblk_ttesz(hmeblkp) == size) && 11435 (hmeblkp->hblk_shw_bit == 0 || 11436 hmeblkp->hblk_vcnt == 0) && 11437 (hmeblkp->hblk_lckcnt == 0)) { 11438 /* 11439 * there is a high probability that we 11440 * will find a free one. search some 11441 * buckets for a free hmeblk initially 11442 * before unloading a valid hmeblk. 11443 */ 11444 if ((hmeblkp->hblk_vcnt == 0 && 11445 hmeblkp->hblk_hmecnt == 0) || (i >= 11446 BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) { 11447 if (sfmmu_steal_this_hblk(hmebp, 11448 hmeblkp, hblkpa, pr_hblk)) { 11449 /* 11450 * Hblk is unloaded 11451 * successfully 11452 */ 11453 break; 11454 } 11455 } 11456 } 11457 pr_hblk = hmeblkp; 11458 hblkpa = hmeblkp->hblk_nextpa; 11459 hmeblkp = hmeblkp->hblk_next; 11460 } 11461 11462 SFMMU_HASH_UNLOCK(hmebp); 11463 if (hmebp++ == &uhme_hash[UHMEHASH_SZ]) 11464 hmebp = uhme_hash; 11465 } 11466 uhmehash_steal_hand = hmebp; 11467 11468 if (hmeblkp != NULL) 11469 break; 11470 11471 /* 11472 * in the worst case, look for a free one in the kernel 11473 * hash table. 11474 */ 11475 for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) { 11476 SFMMU_HASH_LOCK(hmebp); 11477 hmeblkp = hmebp->hmeblkp; 11478 hblkpa = hmebp->hmeh_nextpa; 11479 pr_hblk = NULL; 11480 while (hmeblkp) { 11481 /* 11482 * check if it is free hmeblk 11483 */ 11484 if ((get_hblk_ttesz(hmeblkp) == size) && 11485 (hmeblkp->hblk_lckcnt == 0) && 11486 (hmeblkp->hblk_vcnt == 0) && 11487 (hmeblkp->hblk_hmecnt == 0)) { 11488 if (sfmmu_steal_this_hblk(hmebp, 11489 hmeblkp, hblkpa, pr_hblk)) { 11490 break; 11491 } else { 11492 /* 11493 * Cannot fail since we have 11494 * hash lock. 11495 */ 11496 panic("fail to steal?"); 11497 } 11498 } 11499 11500 pr_hblk = hmeblkp; 11501 hblkpa = hmeblkp->hblk_nextpa; 11502 hmeblkp = hmeblkp->hblk_next; 11503 } 11504 11505 SFMMU_HASH_UNLOCK(hmebp); 11506 if (hmebp++ == &khme_hash[KHMEHASH_SZ]) 11507 hmebp = khme_hash; 11508 } 11509 11510 if (hmeblkp != NULL) 11511 break; 11512 sfmmu_hblk_steal_twice++; 11513 } 11514 return (hmeblkp); 11515 } 11516 11517 /* 11518 * This routine does real work to prepare a hblk to be "stolen" by 11519 * unloading the mappings, updating shadow counts .... 11520 * It returns 1 if the block is ready to be reused (stolen), or 0 11521 * means the block cannot be stolen yet- pageunload is still working 11522 * on this hblk. 11523 */ 11524 static int 11525 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp, 11526 uint64_t hblkpa, struct hme_blk *pr_hblk) 11527 { 11528 int shw_size, vshift; 11529 struct hme_blk *shw_hblkp; 11530 caddr_t vaddr; 11531 uint_t shw_mask, newshw_mask; 11532 struct hme_blk *list = NULL; 11533 11534 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 11535 11536 /* 11537 * check if the hmeblk is free, unload if necessary 11538 */ 11539 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) { 11540 sfmmu_t *sfmmup; 11541 demap_range_t dmr; 11542 11543 sfmmup = hblktosfmmu(hmeblkp); 11544 if (hmeblkp->hblk_shared || sfmmup->sfmmu_ismhat) { 11545 return (0); 11546 } 11547 DEMAP_RANGE_INIT(sfmmup, &dmr); 11548 (void) sfmmu_hblk_unload(sfmmup, hmeblkp, 11549 (caddr_t)get_hblk_base(hmeblkp), 11550 get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD); 11551 DEMAP_RANGE_FLUSH(&dmr); 11552 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) { 11553 /* 11554 * Pageunload is working on the same hblk. 11555 */ 11556 return (0); 11557 } 11558 11559 sfmmu_hblk_steal_unload_count++; 11560 } 11561 11562 ASSERT(hmeblkp->hblk_lckcnt == 0); 11563 ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0); 11564 11565 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 1); 11566 hmeblkp->hblk_nextpa = hblkpa; 11567 11568 shw_hblkp = hmeblkp->hblk_shadow; 11569 if (shw_hblkp) { 11570 ASSERT(!hmeblkp->hblk_shared); 11571 shw_size = get_hblk_ttesz(shw_hblkp); 11572 vaddr = (caddr_t)get_hblk_base(hmeblkp); 11573 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size); 11574 ASSERT(vshift < 8); 11575 /* 11576 * Atomically clear shadow mask bit 11577 */ 11578 do { 11579 shw_mask = shw_hblkp->hblk_shw_mask; 11580 ASSERT(shw_mask & (1 << vshift)); 11581 newshw_mask = shw_mask & ~(1 << vshift); 11582 newshw_mask = cas32(&shw_hblkp->hblk_shw_mask, 11583 shw_mask, newshw_mask); 11584 } while (newshw_mask != shw_mask); 11585 hmeblkp->hblk_shadow = NULL; 11586 } 11587 11588 /* 11589 * remove shadow bit if we are stealing an unused shadow hmeblk. 11590 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if 11591 * we are indeed allocating a shadow hmeblk. 11592 */ 11593 hmeblkp->hblk_shw_bit = 0; 11594 11595 if (hmeblkp->hblk_shared) { 11596 sf_srd_t *srdp; 11597 sf_region_t *rgnp; 11598 uint_t rid; 11599 11600 srdp = hblktosrd(hmeblkp); 11601 ASSERT(srdp != NULL && srdp->srd_refcnt != 0); 11602 rid = hmeblkp->hblk_tag.htag_rid; 11603 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 11604 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 11605 rgnp = srdp->srd_hmergnp[rid]; 11606 ASSERT(rgnp != NULL); 11607 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid); 11608 hmeblkp->hblk_shared = 0; 11609 } 11610 11611 sfmmu_hblk_steal_count++; 11612 SFMMU_STAT(sf_steal_count); 11613 11614 return (1); 11615 } 11616 11617 struct hme_blk * 11618 sfmmu_hmetohblk(struct sf_hment *sfhme) 11619 { 11620 struct hme_blk *hmeblkp; 11621 struct sf_hment *sfhme0; 11622 struct hme_blk *hblk_dummy = 0; 11623 11624 /* 11625 * No dummy sf_hments, please. 11626 */ 11627 ASSERT(sfhme->hme_tte.ll != 0); 11628 11629 sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum; 11630 hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 - 11631 (uintptr_t)&hblk_dummy->hblk_hme[0]); 11632 11633 return (hmeblkp); 11634 } 11635 11636 /* 11637 * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag. 11638 * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using 11639 * KM_SLEEP allocation. 11640 * 11641 * Return 0 on success, -1 otherwise. 11642 */ 11643 static void 11644 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp) 11645 { 11646 struct tsb_info *tsbinfop, *next; 11647 tsb_replace_rc_t rc; 11648 boolean_t gotfirst = B_FALSE; 11649 11650 ASSERT(sfmmup != ksfmmup); 11651 ASSERT(sfmmu_hat_lock_held(sfmmup)); 11652 11653 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) { 11654 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp)); 11655 } 11656 11657 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 11658 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN); 11659 } else { 11660 return; 11661 } 11662 11663 ASSERT(sfmmup->sfmmu_tsb != NULL); 11664 11665 /* 11666 * Loop over all tsbinfo's replacing them with ones that actually have 11667 * a TSB. If any of the replacements ever fail, bail out of the loop. 11668 */ 11669 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) { 11670 ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED); 11671 next = tsbinfop->tsb_next; 11672 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc, 11673 hatlockp, TSB_SWAPIN); 11674 if (rc != TSB_SUCCESS) { 11675 break; 11676 } 11677 gotfirst = B_TRUE; 11678 } 11679 11680 switch (rc) { 11681 case TSB_SUCCESS: 11682 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN); 11683 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 11684 return; 11685 case TSB_LOSTRACE: 11686 break; 11687 case TSB_ALLOCFAIL: 11688 break; 11689 default: 11690 panic("sfmmu_replace_tsb returned unrecognized failure code " 11691 "%d", rc); 11692 } 11693 11694 /* 11695 * In this case, we failed to get one of our TSBs. If we failed to 11696 * get the first TSB, get one of minimum size (8KB). Walk the list 11697 * and throw away the tsbinfos, starting where the allocation failed; 11698 * we can get by with just one TSB as long as we don't leave the 11699 * SWAPPED tsbinfo structures lying around. 11700 */ 11701 tsbinfop = sfmmup->sfmmu_tsb; 11702 next = tsbinfop->tsb_next; 11703 tsbinfop->tsb_next = NULL; 11704 11705 sfmmu_hat_exit(hatlockp); 11706 for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) { 11707 next = tsbinfop->tsb_next; 11708 sfmmu_tsbinfo_free(tsbinfop); 11709 } 11710 hatlockp = sfmmu_hat_enter(sfmmup); 11711 11712 /* 11713 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K 11714 * pages. 11715 */ 11716 if (!gotfirst) { 11717 tsbinfop = sfmmup->sfmmu_tsb; 11718 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE, 11719 hatlockp, TSB_SWAPIN | TSB_FORCEALLOC); 11720 ASSERT(rc == TSB_SUCCESS); 11721 } 11722 11723 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN); 11724 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 11725 } 11726 11727 static int 11728 sfmmu_is_rgnva(sf_srd_t *srdp, caddr_t addr, ulong_t w, ulong_t bmw) 11729 { 11730 ulong_t bix = 0; 11731 uint_t rid; 11732 sf_region_t *rgnp; 11733 11734 ASSERT(srdp != NULL); 11735 ASSERT(srdp->srd_refcnt != 0); 11736 11737 w <<= BT_ULSHIFT; 11738 while (bmw) { 11739 if (!(bmw & 0x1)) { 11740 bix++; 11741 bmw >>= 1; 11742 continue; 11743 } 11744 rid = w | bix; 11745 rgnp = srdp->srd_hmergnp[rid]; 11746 ASSERT(rgnp->rgn_refcnt > 0); 11747 ASSERT(rgnp->rgn_id == rid); 11748 if (addr < rgnp->rgn_saddr || 11749 addr >= (rgnp->rgn_saddr + rgnp->rgn_size)) { 11750 bix++; 11751 bmw >>= 1; 11752 } else { 11753 return (1); 11754 } 11755 } 11756 return (0); 11757 } 11758 11759 /* 11760 * Handle exceptions for low level tsb_handler. 11761 * 11762 * There are many scenarios that could land us here: 11763 * 11764 * If the context is invalid we land here. The context can be invalid 11765 * for 3 reasons: 1) we couldn't allocate a new context and now need to 11766 * perform a wrap around operation in order to allocate a new context. 11767 * 2) Context was invalidated to change pagesize programming 3) ISMs or 11768 * TSBs configuration is changeing for this process and we are forced into 11769 * here to do a syncronization operation. If the context is valid we can 11770 * be here from window trap hanlder. In this case just call trap to handle 11771 * the fault. 11772 * 11773 * Note that the process will run in INVALID_CONTEXT before 11774 * faulting into here and subsequently loading the MMU registers 11775 * (including the TSB base register) associated with this process. 11776 * For this reason, the trap handlers must all test for 11777 * INVALID_CONTEXT before attempting to access any registers other 11778 * than the context registers. 11779 */ 11780 void 11781 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype) 11782 { 11783 sfmmu_t *sfmmup, *shsfmmup; 11784 uint_t ctxtype; 11785 klwp_id_t lwp; 11786 char lwp_save_state; 11787 hatlock_t *hatlockp, *shatlockp; 11788 struct tsb_info *tsbinfop; 11789 struct tsbmiss *tsbmp; 11790 sf_scd_t *scdp; 11791 11792 SFMMU_STAT(sf_tsb_exceptions); 11793 SFMMU_MMU_STAT(mmu_tsb_exceptions); 11794 sfmmup = astosfmmu(curthread->t_procp->p_as); 11795 /* 11796 * note that in sun4u, tagacces register contains ctxnum 11797 * while sun4v passes ctxtype in the tagaccess register. 11798 */ 11799 ctxtype = tagaccess & TAGACC_CTX_MASK; 11800 11801 ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT); 11802 ASSERT(sfmmup->sfmmu_ismhat == 0); 11803 ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) || 11804 ctxtype == INVALID_CONTEXT); 11805 11806 if (ctxtype != INVALID_CONTEXT && traptype != T_DATA_PROT) { 11807 /* 11808 * We may land here because shme bitmap and pagesize 11809 * flags are updated lazily in tsbmiss area on other cpus. 11810 * If we detect here that tsbmiss area is out of sync with 11811 * sfmmu update it and retry the trapped instruction. 11812 * Otherwise call trap(). 11813 */ 11814 int ret = 0; 11815 uchar_t tteflag_mask = (1 << TTE64K) | (1 << TTE8K); 11816 caddr_t addr = (caddr_t)(tagaccess & TAGACC_VADDR_MASK); 11817 11818 /* 11819 * Must set lwp state to LWP_SYS before 11820 * trying to acquire any adaptive lock 11821 */ 11822 lwp = ttolwp(curthread); 11823 ASSERT(lwp); 11824 lwp_save_state = lwp->lwp_state; 11825 lwp->lwp_state = LWP_SYS; 11826 11827 hatlockp = sfmmu_hat_enter(sfmmup); 11828 kpreempt_disable(); 11829 tsbmp = &tsbmiss_area[CPU->cpu_id]; 11830 ASSERT(sfmmup == tsbmp->usfmmup); 11831 if (((tsbmp->uhat_tteflags ^ sfmmup->sfmmu_tteflags) & 11832 ~tteflag_mask) || 11833 ((tsbmp->uhat_rtteflags ^ sfmmup->sfmmu_rtteflags) & 11834 ~tteflag_mask)) { 11835 tsbmp->uhat_tteflags = sfmmup->sfmmu_tteflags; 11836 tsbmp->uhat_rtteflags = sfmmup->sfmmu_rtteflags; 11837 ret = 1; 11838 } 11839 if (sfmmup->sfmmu_srdp != NULL) { 11840 ulong_t *sm = sfmmup->sfmmu_hmeregion_map.bitmap; 11841 ulong_t *tm = tsbmp->shmermap; 11842 ulong_t i; 11843 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) { 11844 ulong_t d = tm[i] ^ sm[i]; 11845 if (d) { 11846 if (d & sm[i]) { 11847 if (!ret && sfmmu_is_rgnva( 11848 sfmmup->sfmmu_srdp, 11849 addr, i, d & sm[i])) { 11850 ret = 1; 11851 } 11852 } 11853 tm[i] = sm[i]; 11854 } 11855 } 11856 } 11857 kpreempt_enable(); 11858 sfmmu_hat_exit(hatlockp); 11859 lwp->lwp_state = lwp_save_state; 11860 if (ret) { 11861 return; 11862 } 11863 } else if (ctxtype == INVALID_CONTEXT) { 11864 /* 11865 * First, make sure we come out of here with a valid ctx, 11866 * since if we don't get one we'll simply loop on the 11867 * faulting instruction. 11868 * 11869 * If the ISM mappings are changing, the TSB is relocated, 11870 * the process is swapped, the process is joining SCD or 11871 * leaving SCD or shared regions we serialize behind the 11872 * controlling thread with hat lock, sfmmu_flags and 11873 * sfmmu_tsb_cv condition variable. 11874 */ 11875 11876 /* 11877 * Must set lwp state to LWP_SYS before 11878 * trying to acquire any adaptive lock 11879 */ 11880 lwp = ttolwp(curthread); 11881 ASSERT(lwp); 11882 lwp_save_state = lwp->lwp_state; 11883 lwp->lwp_state = LWP_SYS; 11884 11885 hatlockp = sfmmu_hat_enter(sfmmup); 11886 retry: 11887 if ((scdp = sfmmup->sfmmu_scdp) != NULL) { 11888 shsfmmup = scdp->scd_sfmmup; 11889 ASSERT(shsfmmup != NULL); 11890 11891 for (tsbinfop = shsfmmup->sfmmu_tsb; tsbinfop != NULL; 11892 tsbinfop = tsbinfop->tsb_next) { 11893 if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) { 11894 /* drop the private hat lock */ 11895 sfmmu_hat_exit(hatlockp); 11896 /* acquire the shared hat lock */ 11897 shatlockp = sfmmu_hat_enter(shsfmmup); 11898 /* 11899 * recheck to see if anything changed 11900 * after we drop the private hat lock. 11901 */ 11902 if (sfmmup->sfmmu_scdp == scdp && 11903 shsfmmup == scdp->scd_sfmmup) { 11904 sfmmu_tsb_chk_reloc(shsfmmup, 11905 shatlockp); 11906 } 11907 sfmmu_hat_exit(shatlockp); 11908 hatlockp = sfmmu_hat_enter(sfmmup); 11909 goto retry; 11910 } 11911 } 11912 } 11913 11914 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; 11915 tsbinfop = tsbinfop->tsb_next) { 11916 if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) { 11917 cv_wait(&sfmmup->sfmmu_tsb_cv, 11918 HATLOCK_MUTEXP(hatlockp)); 11919 goto retry; 11920 } 11921 } 11922 11923 /* 11924 * Wait for ISM maps to be updated. 11925 */ 11926 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) { 11927 cv_wait(&sfmmup->sfmmu_tsb_cv, 11928 HATLOCK_MUTEXP(hatlockp)); 11929 goto retry; 11930 } 11931 11932 /* Is this process joining an SCD? */ 11933 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) { 11934 /* 11935 * Flush private TSB and setup shared TSB. 11936 * sfmmu_finish_join_scd() does not drop the 11937 * hat lock. 11938 */ 11939 sfmmu_finish_join_scd(sfmmup); 11940 SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD); 11941 } 11942 11943 /* 11944 * If we're swapping in, get TSB(s). Note that we must do 11945 * this before we get a ctx or load the MMU state. Once 11946 * we swap in we have to recheck to make sure the TSB(s) and 11947 * ISM mappings didn't change while we slept. 11948 */ 11949 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) { 11950 sfmmu_tsb_swapin(sfmmup, hatlockp); 11951 goto retry; 11952 } 11953 11954 sfmmu_get_ctx(sfmmup); 11955 11956 sfmmu_hat_exit(hatlockp); 11957 /* 11958 * Must restore lwp_state if not calling 11959 * trap() for further processing. Restore 11960 * it anyway. 11961 */ 11962 lwp->lwp_state = lwp_save_state; 11963 return; 11964 } 11965 trap(rp, (caddr_t)tagaccess, traptype, 0); 11966 } 11967 11968 static void 11969 sfmmu_tsb_chk_reloc(sfmmu_t *sfmmup, hatlock_t *hatlockp) 11970 { 11971 struct tsb_info *tp; 11972 11973 ASSERT(sfmmu_hat_lock_held(sfmmup)); 11974 11975 for (tp = sfmmup->sfmmu_tsb; tp != NULL; tp = tp->tsb_next) { 11976 if (tp->tsb_flags & TSB_RELOC_FLAG) { 11977 cv_wait(&sfmmup->sfmmu_tsb_cv, 11978 HATLOCK_MUTEXP(hatlockp)); 11979 break; 11980 } 11981 } 11982 } 11983 11984 /* 11985 * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and 11986 * TTE_SUSPENDED bit set in tte we block on aquiring a page lock 11987 * rather than spinning to avoid send mondo timeouts with 11988 * interrupts enabled. When the lock is acquired it is immediately 11989 * released and we return back to sfmmu_vatopfn just after 11990 * the GET_TTE call. 11991 */ 11992 void 11993 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep) 11994 { 11995 struct page **pp; 11996 11997 (void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE); 11998 as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE); 11999 } 12000 12001 /* 12002 * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and 12003 * TTE_SUSPENDED bit set in tte. We do this so that we can handle 12004 * cross traps which cannot be handled while spinning in the 12005 * trap handlers. Simply enter and exit the kpr_suspendlock spin 12006 * mutex, which is held by the holder of the suspend bit, and then 12007 * retry the trapped instruction after unwinding. 12008 */ 12009 /*ARGSUSED*/ 12010 void 12011 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype) 12012 { 12013 ASSERT(curthread != kreloc_thread); 12014 mutex_enter(&kpr_suspendlock); 12015 mutex_exit(&kpr_suspendlock); 12016 } 12017 12018 /* 12019 * This routine could be optimized to reduce the number of xcalls by flushing 12020 * the entire TLBs if region reference count is above some threshold but the 12021 * tradeoff will depend on the size of the TLB. So for now flush the specific 12022 * page a context at a time. 12023 * 12024 * If uselocks is 0 then it's called after all cpus were captured and all the 12025 * hat locks were taken. In this case don't take the region lock by relying on 12026 * the order of list region update operations in hat_join_region(), 12027 * hat_leave_region() and hat_dup_region(). The ordering in those routines 12028 * guarantees that list is always forward walkable and reaches active sfmmus 12029 * regardless of where xc_attention() captures a cpu. 12030 */ 12031 cpuset_t 12032 sfmmu_rgntlb_demap(caddr_t addr, sf_region_t *rgnp, 12033 struct hme_blk *hmeblkp, int uselocks) 12034 { 12035 sfmmu_t *sfmmup; 12036 cpuset_t cpuset; 12037 cpuset_t rcpuset; 12038 hatlock_t *hatlockp; 12039 uint_t rid = rgnp->rgn_id; 12040 sf_rgn_link_t *rlink; 12041 sf_scd_t *scdp; 12042 12043 ASSERT(hmeblkp->hblk_shared); 12044 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 12045 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 12046 12047 CPUSET_ZERO(rcpuset); 12048 if (uselocks) { 12049 mutex_enter(&rgnp->rgn_mutex); 12050 } 12051 sfmmup = rgnp->rgn_sfmmu_head; 12052 while (sfmmup != NULL) { 12053 if (uselocks) { 12054 hatlockp = sfmmu_hat_enter(sfmmup); 12055 } 12056 12057 /* 12058 * When an SCD is created the SCD hat is linked on the sfmmu 12059 * region lists for each hme region which is part of the 12060 * SCD. If we find an SCD hat, when walking these lists, 12061 * then we flush the shared TSBs, if we find a private hat, 12062 * which is part of an SCD, but where the region 12063 * is not part of the SCD then we flush the private TSBs. 12064 */ 12065 if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL && 12066 !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) { 12067 scdp = sfmmup->sfmmu_scdp; 12068 if (SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) { 12069 if (uselocks) { 12070 sfmmu_hat_exit(hatlockp); 12071 } 12072 goto next; 12073 } 12074 } 12075 12076 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0); 12077 12078 kpreempt_disable(); 12079 cpuset = sfmmup->sfmmu_cpusran; 12080 CPUSET_AND(cpuset, cpu_ready_set); 12081 CPUSET_DEL(cpuset, CPU->cpu_id); 12082 SFMMU_XCALL_STATS(sfmmup); 12083 xt_some(cpuset, vtag_flushpage_tl1, 12084 (uint64_t)addr, (uint64_t)sfmmup); 12085 vtag_flushpage(addr, (uint64_t)sfmmup); 12086 if (uselocks) { 12087 sfmmu_hat_exit(hatlockp); 12088 } 12089 kpreempt_enable(); 12090 CPUSET_OR(rcpuset, cpuset); 12091 12092 next: 12093 /* LINTED: constant in conditional context */ 12094 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0); 12095 ASSERT(rlink != NULL); 12096 sfmmup = rlink->next; 12097 } 12098 if (uselocks) { 12099 mutex_exit(&rgnp->rgn_mutex); 12100 } 12101 return (rcpuset); 12102 } 12103 12104 /* 12105 * This routine takes an sfmmu pointer and the va for an adddress in an 12106 * ISM region as input and returns the corresponding region id in ism_rid. 12107 * The return value of 1 indicates that a region has been found and ism_rid 12108 * is valid, otherwise 0 is returned. 12109 */ 12110 static int 12111 find_ism_rid(sfmmu_t *sfmmup, sfmmu_t *ism_sfmmup, caddr_t va, uint_t *ism_rid) 12112 { 12113 ism_blk_t *ism_blkp; 12114 int i; 12115 ism_map_t *ism_map; 12116 #ifdef DEBUG 12117 struct hat *ism_hatid; 12118 #endif 12119 ASSERT(sfmmu_hat_lock_held(sfmmup)); 12120 12121 ism_blkp = sfmmup->sfmmu_iblk; 12122 while (ism_blkp != NULL) { 12123 ism_map = ism_blkp->iblk_maps; 12124 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) { 12125 if ((va >= ism_start(ism_map[i])) && 12126 (va < ism_end(ism_map[i]))) { 12127 12128 *ism_rid = ism_map[i].imap_rid; 12129 #ifdef DEBUG 12130 ism_hatid = ism_map[i].imap_ismhat; 12131 ASSERT(ism_hatid == ism_sfmmup); 12132 ASSERT(ism_hatid->sfmmu_ismhat); 12133 #endif 12134 return (1); 12135 } 12136 } 12137 ism_blkp = ism_blkp->iblk_next; 12138 } 12139 return (0); 12140 } 12141 12142 /* 12143 * Special routine to flush out ism mappings- TSBs, TLBs and D-caches. 12144 * This routine may be called with all cpu's captured. Therefore, the 12145 * caller is responsible for holding all locks and disabling kernel 12146 * preemption. 12147 */ 12148 /* ARGSUSED */ 12149 static void 12150 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup, 12151 struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag) 12152 { 12153 cpuset_t cpuset; 12154 caddr_t va; 12155 ism_ment_t *ment; 12156 sfmmu_t *sfmmup; 12157 #ifdef VAC 12158 int vcolor; 12159 #endif 12160 12161 sf_scd_t *scdp; 12162 uint_t ism_rid; 12163 12164 ASSERT(!hmeblkp->hblk_shared); 12165 /* 12166 * Walk the ism_hat's mapping list and flush the page 12167 * from every hat sharing this ism_hat. This routine 12168 * may be called while all cpu's have been captured. 12169 * Therefore we can't attempt to grab any locks. For now 12170 * this means we will protect the ism mapping list under 12171 * a single lock which will be grabbed by the caller. 12172 * If hat_share/unshare scalibility becomes a performance 12173 * problem then we may need to re-think ism mapping list locking. 12174 */ 12175 ASSERT(ism_sfmmup->sfmmu_ismhat); 12176 ASSERT(MUTEX_HELD(&ism_mlist_lock)); 12177 addr = addr - ISMID_STARTADDR; 12178 12179 for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) { 12180 12181 sfmmup = ment->iment_hat; 12182 12183 va = ment->iment_base_va; 12184 va = (caddr_t)((uintptr_t)va + (uintptr_t)addr); 12185 12186 /* 12187 * When an SCD is created the SCD hat is linked on the ism 12188 * mapping lists for each ISM segment which is part of the 12189 * SCD. If we find an SCD hat, when walking these lists, 12190 * then we flush the shared TSBs, if we find a private hat, 12191 * which is part of an SCD, but where the region 12192 * corresponding to this va is not part of the SCD then we 12193 * flush the private TSBs. 12194 */ 12195 if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL && 12196 !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD) && 12197 !SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) { 12198 if (!find_ism_rid(sfmmup, ism_sfmmup, va, 12199 &ism_rid)) { 12200 cmn_err(CE_PANIC, 12201 "can't find matching ISM rid!"); 12202 } 12203 12204 scdp = sfmmup->sfmmu_scdp; 12205 if (SFMMU_IS_ISMRID_VALID(ism_rid) && 12206 SF_RGNMAP_TEST(scdp->scd_ismregion_map, 12207 ism_rid)) { 12208 continue; 12209 } 12210 } 12211 SFMMU_UNLOAD_TSB(va, sfmmup, hmeblkp, 1); 12212 12213 cpuset = sfmmup->sfmmu_cpusran; 12214 CPUSET_AND(cpuset, cpu_ready_set); 12215 CPUSET_DEL(cpuset, CPU->cpu_id); 12216 SFMMU_XCALL_STATS(sfmmup); 12217 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va, 12218 (uint64_t)sfmmup); 12219 vtag_flushpage(va, (uint64_t)sfmmup); 12220 12221 #ifdef VAC 12222 /* 12223 * Flush D$ 12224 * When flushing D$ we must flush all 12225 * cpu's. See sfmmu_cache_flush(). 12226 */ 12227 if (cache_flush_flag == CACHE_FLUSH) { 12228 cpuset = cpu_ready_set; 12229 CPUSET_DEL(cpuset, CPU->cpu_id); 12230 12231 SFMMU_XCALL_STATS(sfmmup); 12232 vcolor = addr_to_vcolor(va); 12233 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor); 12234 vac_flushpage(pfnum, vcolor); 12235 } 12236 #endif /* VAC */ 12237 } 12238 } 12239 12240 /* 12241 * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of 12242 * a particular virtual address and ctx. If noflush is set we do not 12243 * flush the TLB/TSB. This function may or may not be called with the 12244 * HAT lock held. 12245 */ 12246 static void 12247 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp, 12248 pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag, 12249 int hat_lock_held) 12250 { 12251 #ifdef VAC 12252 int vcolor; 12253 #endif 12254 cpuset_t cpuset; 12255 hatlock_t *hatlockp; 12256 12257 ASSERT(!hmeblkp->hblk_shared); 12258 12259 #if defined(lint) && !defined(VAC) 12260 pfnum = pfnum; 12261 cpu_flag = cpu_flag; 12262 cache_flush_flag = cache_flush_flag; 12263 #endif 12264 12265 /* 12266 * There is no longer a need to protect against ctx being 12267 * stolen here since we don't store the ctx in the TSB anymore. 12268 */ 12269 #ifdef VAC 12270 vcolor = addr_to_vcolor(addr); 12271 #endif 12272 12273 /* 12274 * We must hold the hat lock during the flush of TLB, 12275 * to avoid a race with sfmmu_invalidate_ctx(), where 12276 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT, 12277 * causing TLB demap routine to skip flush on that MMU. 12278 * If the context on a MMU has already been set to 12279 * INVALID_CONTEXT, we just get an extra flush on 12280 * that MMU. 12281 */ 12282 if (!hat_lock_held && !tlb_noflush) 12283 hatlockp = sfmmu_hat_enter(sfmmup); 12284 12285 kpreempt_disable(); 12286 if (!tlb_noflush) { 12287 /* 12288 * Flush the TSB and TLB. 12289 */ 12290 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0); 12291 12292 cpuset = sfmmup->sfmmu_cpusran; 12293 CPUSET_AND(cpuset, cpu_ready_set); 12294 CPUSET_DEL(cpuset, CPU->cpu_id); 12295 12296 SFMMU_XCALL_STATS(sfmmup); 12297 12298 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, 12299 (uint64_t)sfmmup); 12300 12301 vtag_flushpage(addr, (uint64_t)sfmmup); 12302 } 12303 12304 if (!hat_lock_held && !tlb_noflush) 12305 sfmmu_hat_exit(hatlockp); 12306 12307 #ifdef VAC 12308 /* 12309 * Flush the D$ 12310 * 12311 * Even if the ctx is stolen, we need to flush the 12312 * cache. Our ctx stealer only flushes the TLBs. 12313 */ 12314 if (cache_flush_flag == CACHE_FLUSH) { 12315 if (cpu_flag & FLUSH_ALL_CPUS) { 12316 cpuset = cpu_ready_set; 12317 } else { 12318 cpuset = sfmmup->sfmmu_cpusran; 12319 CPUSET_AND(cpuset, cpu_ready_set); 12320 } 12321 CPUSET_DEL(cpuset, CPU->cpu_id); 12322 SFMMU_XCALL_STATS(sfmmup); 12323 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor); 12324 vac_flushpage(pfnum, vcolor); 12325 } 12326 #endif /* VAC */ 12327 kpreempt_enable(); 12328 } 12329 12330 /* 12331 * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual 12332 * address and ctx. If noflush is set we do not currently do anything. 12333 * This function may or may not be called with the HAT lock held. 12334 */ 12335 static void 12336 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp, 12337 int tlb_noflush, int hat_lock_held) 12338 { 12339 cpuset_t cpuset; 12340 hatlock_t *hatlockp; 12341 12342 ASSERT(!hmeblkp->hblk_shared); 12343 12344 /* 12345 * If the process is exiting we have nothing to do. 12346 */ 12347 if (tlb_noflush) 12348 return; 12349 12350 /* 12351 * Flush TSB. 12352 */ 12353 if (!hat_lock_held) 12354 hatlockp = sfmmu_hat_enter(sfmmup); 12355 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0); 12356 12357 kpreempt_disable(); 12358 12359 cpuset = sfmmup->sfmmu_cpusran; 12360 CPUSET_AND(cpuset, cpu_ready_set); 12361 CPUSET_DEL(cpuset, CPU->cpu_id); 12362 12363 SFMMU_XCALL_STATS(sfmmup); 12364 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup); 12365 12366 vtag_flushpage(addr, (uint64_t)sfmmup); 12367 12368 if (!hat_lock_held) 12369 sfmmu_hat_exit(hatlockp); 12370 12371 kpreempt_enable(); 12372 12373 } 12374 12375 /* 12376 * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall 12377 * call handler that can flush a range of pages to save on xcalls. 12378 */ 12379 static int sfmmu_xcall_save; 12380 12381 /* 12382 * this routine is never used for demaping addresses backed by SRD hmeblks. 12383 */ 12384 static void 12385 sfmmu_tlb_range_demap(demap_range_t *dmrp) 12386 { 12387 sfmmu_t *sfmmup = dmrp->dmr_sfmmup; 12388 hatlock_t *hatlockp; 12389 cpuset_t cpuset; 12390 uint64_t sfmmu_pgcnt; 12391 pgcnt_t pgcnt = 0; 12392 int pgunload = 0; 12393 int dirtypg = 0; 12394 caddr_t addr = dmrp->dmr_addr; 12395 caddr_t eaddr; 12396 uint64_t bitvec = dmrp->dmr_bitvec; 12397 12398 ASSERT(bitvec & 1); 12399 12400 /* 12401 * Flush TSB and calculate number of pages to flush. 12402 */ 12403 while (bitvec != 0) { 12404 dirtypg = 0; 12405 /* 12406 * Find the first page to flush and then count how many 12407 * pages there are after it that also need to be flushed. 12408 * This way the number of TSB flushes is minimized. 12409 */ 12410 while ((bitvec & 1) == 0) { 12411 pgcnt++; 12412 addr += MMU_PAGESIZE; 12413 bitvec >>= 1; 12414 } 12415 while (bitvec & 1) { 12416 dirtypg++; 12417 bitvec >>= 1; 12418 } 12419 eaddr = addr + ptob(dirtypg); 12420 hatlockp = sfmmu_hat_enter(sfmmup); 12421 sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K); 12422 sfmmu_hat_exit(hatlockp); 12423 pgunload += dirtypg; 12424 addr = eaddr; 12425 pgcnt += dirtypg; 12426 } 12427 12428 ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr); 12429 if (sfmmup->sfmmu_free == 0) { 12430 addr = dmrp->dmr_addr; 12431 bitvec = dmrp->dmr_bitvec; 12432 12433 /* 12434 * make sure it has SFMMU_PGCNT_SHIFT bits only, 12435 * as it will be used to pack argument for xt_some 12436 */ 12437 ASSERT((pgcnt > 0) && 12438 (pgcnt <= (1 << SFMMU_PGCNT_SHIFT))); 12439 12440 /* 12441 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in 12442 * the low 6 bits of sfmmup. This is doable since pgcnt 12443 * always >= 1. 12444 */ 12445 ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK)); 12446 sfmmu_pgcnt = (uint64_t)sfmmup | 12447 ((pgcnt - 1) & SFMMU_PGCNT_MASK); 12448 12449 /* 12450 * We must hold the hat lock during the flush of TLB, 12451 * to avoid a race with sfmmu_invalidate_ctx(), where 12452 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT, 12453 * causing TLB demap routine to skip flush on that MMU. 12454 * If the context on a MMU has already been set to 12455 * INVALID_CONTEXT, we just get an extra flush on 12456 * that MMU. 12457 */ 12458 hatlockp = sfmmu_hat_enter(sfmmup); 12459 kpreempt_disable(); 12460 12461 cpuset = sfmmup->sfmmu_cpusran; 12462 CPUSET_AND(cpuset, cpu_ready_set); 12463 CPUSET_DEL(cpuset, CPU->cpu_id); 12464 12465 SFMMU_XCALL_STATS(sfmmup); 12466 xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr, 12467 sfmmu_pgcnt); 12468 12469 for (; bitvec != 0; bitvec >>= 1) { 12470 if (bitvec & 1) 12471 vtag_flushpage(addr, (uint64_t)sfmmup); 12472 addr += MMU_PAGESIZE; 12473 } 12474 kpreempt_enable(); 12475 sfmmu_hat_exit(hatlockp); 12476 12477 sfmmu_xcall_save += (pgunload-1); 12478 } 12479 dmrp->dmr_bitvec = 0; 12480 } 12481 12482 /* 12483 * In cases where we need to synchronize with TLB/TSB miss trap 12484 * handlers, _and_ need to flush the TLB, it's a lot easier to 12485 * throw away the context from the process than to do a 12486 * special song and dance to keep things consistent for the 12487 * handlers. 12488 * 12489 * Since the process suddenly ends up without a context and our caller 12490 * holds the hat lock, threads that fault after this function is called 12491 * will pile up on the lock. We can then do whatever we need to 12492 * atomically from the context of the caller. The first blocked thread 12493 * to resume executing will get the process a new context, and the 12494 * process will resume executing. 12495 * 12496 * One added advantage of this approach is that on MMUs that 12497 * support a "flush all" operation, we will delay the flush until 12498 * cnum wrap-around, and then flush the TLB one time. This 12499 * is rather rare, so it's a lot less expensive than making 8000 12500 * x-calls to flush the TLB 8000 times. 12501 * 12502 * A per-process (PP) lock is used to synchronize ctx allocations in 12503 * resume() and ctx invalidations here. 12504 */ 12505 static void 12506 sfmmu_invalidate_ctx(sfmmu_t *sfmmup) 12507 { 12508 cpuset_t cpuset; 12509 int cnum, currcnum; 12510 mmu_ctx_t *mmu_ctxp; 12511 int i; 12512 uint_t pstate_save; 12513 12514 SFMMU_STAT(sf_ctx_inv); 12515 12516 ASSERT(sfmmu_hat_lock_held(sfmmup)); 12517 ASSERT(sfmmup != ksfmmup); 12518 12519 kpreempt_disable(); 12520 12521 mmu_ctxp = CPU_MMU_CTXP(CPU); 12522 ASSERT(mmu_ctxp); 12523 ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms); 12524 ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]); 12525 12526 currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum; 12527 12528 pstate_save = sfmmu_disable_intrs(); 12529 12530 lock_set(&sfmmup->sfmmu_ctx_lock); /* acquire PP lock */ 12531 /* set HAT cnum invalid across all context domains. */ 12532 for (i = 0; i < max_mmu_ctxdoms; i++) { 12533 12534 cnum = sfmmup->sfmmu_ctxs[i].cnum; 12535 if (cnum == INVALID_CONTEXT) { 12536 continue; 12537 } 12538 12539 sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT; 12540 } 12541 membar_enter(); /* make sure globally visible to all CPUs */ 12542 lock_clear(&sfmmup->sfmmu_ctx_lock); /* release PP lock */ 12543 12544 sfmmu_enable_intrs(pstate_save); 12545 12546 cpuset = sfmmup->sfmmu_cpusran; 12547 CPUSET_DEL(cpuset, CPU->cpu_id); 12548 CPUSET_AND(cpuset, cpu_ready_set); 12549 if (!CPUSET_ISNULL(cpuset)) { 12550 SFMMU_XCALL_STATS(sfmmup); 12551 xt_some(cpuset, sfmmu_raise_tsb_exception, 12552 (uint64_t)sfmmup, INVALID_CONTEXT); 12553 xt_sync(cpuset); 12554 SFMMU_STAT(sf_tsb_raise_exception); 12555 SFMMU_MMU_STAT(mmu_tsb_raise_exception); 12556 } 12557 12558 /* 12559 * If the hat to-be-invalidated is the same as the current 12560 * process on local CPU we need to invalidate 12561 * this CPU context as well. 12562 */ 12563 if ((sfmmu_getctx_sec() == currcnum) && 12564 (currcnum != INVALID_CONTEXT)) { 12565 /* sets shared context to INVALID too */ 12566 sfmmu_setctx_sec(INVALID_CONTEXT); 12567 sfmmu_clear_utsbinfo(); 12568 } 12569 12570 SFMMU_FLAGS_SET(sfmmup, HAT_ALLCTX_INVALID); 12571 12572 kpreempt_enable(); 12573 12574 /* 12575 * we hold the hat lock, so nobody should allocate a context 12576 * for us yet 12577 */ 12578 ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT); 12579 } 12580 12581 #ifdef VAC 12582 /* 12583 * We need to flush the cache in all cpus. It is possible that 12584 * a process referenced a page as cacheable but has sinced exited 12585 * and cleared the mapping list. We still to flush it but have no 12586 * state so all cpus is the only alternative. 12587 */ 12588 void 12589 sfmmu_cache_flush(pfn_t pfnum, int vcolor) 12590 { 12591 cpuset_t cpuset; 12592 12593 kpreempt_disable(); 12594 cpuset = cpu_ready_set; 12595 CPUSET_DEL(cpuset, CPU->cpu_id); 12596 SFMMU_XCALL_STATS(NULL); /* account to any ctx */ 12597 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor); 12598 xt_sync(cpuset); 12599 vac_flushpage(pfnum, vcolor); 12600 kpreempt_enable(); 12601 } 12602 12603 void 12604 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum) 12605 { 12606 cpuset_t cpuset; 12607 12608 ASSERT(vcolor >= 0); 12609 12610 kpreempt_disable(); 12611 cpuset = cpu_ready_set; 12612 CPUSET_DEL(cpuset, CPU->cpu_id); 12613 SFMMU_XCALL_STATS(NULL); /* account to any ctx */ 12614 xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum); 12615 xt_sync(cpuset); 12616 vac_flushcolor(vcolor, pfnum); 12617 kpreempt_enable(); 12618 } 12619 #endif /* VAC */ 12620 12621 /* 12622 * We need to prevent processes from accessing the TSB using a cached physical 12623 * address. It's alright if they try to access the TSB via virtual address 12624 * since they will just fault on that virtual address once the mapping has 12625 * been suspended. 12626 */ 12627 #pragma weak sendmondo_in_recover 12628 12629 /* ARGSUSED */ 12630 static int 12631 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo) 12632 { 12633 struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo; 12634 sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu; 12635 hatlock_t *hatlockp; 12636 sf_scd_t *scdp; 12637 12638 if (flags != HAT_PRESUSPEND) 12639 return (0); 12640 12641 /* 12642 * If tsb is a shared TSB with TSB_SHAREDCTX set, sfmmup must 12643 * be a shared hat, then set SCD's tsbinfo's flag. 12644 * If tsb is not shared, sfmmup is a private hat, then set 12645 * its private tsbinfo's flag. 12646 */ 12647 hatlockp = sfmmu_hat_enter(sfmmup); 12648 tsbinfop->tsb_flags |= TSB_RELOC_FLAG; 12649 12650 if (!(tsbinfop->tsb_flags & TSB_SHAREDCTX)) { 12651 sfmmu_tsb_inv_ctx(sfmmup); 12652 sfmmu_hat_exit(hatlockp); 12653 } else { 12654 /* release lock on the shared hat */ 12655 sfmmu_hat_exit(hatlockp); 12656 /* sfmmup is a shared hat */ 12657 ASSERT(sfmmup->sfmmu_scdhat); 12658 scdp = sfmmup->sfmmu_scdp; 12659 ASSERT(scdp != NULL); 12660 /* get private hat from the scd list */ 12661 mutex_enter(&scdp->scd_mutex); 12662 sfmmup = scdp->scd_sf_list; 12663 while (sfmmup != NULL) { 12664 hatlockp = sfmmu_hat_enter(sfmmup); 12665 /* 12666 * We do not call sfmmu_tsb_inv_ctx here because 12667 * sendmondo_in_recover check is only needed for 12668 * sun4u. 12669 */ 12670 sfmmu_invalidate_ctx(sfmmup); 12671 sfmmu_hat_exit(hatlockp); 12672 sfmmup = sfmmup->sfmmu_scd_link.next; 12673 12674 } 12675 mutex_exit(&scdp->scd_mutex); 12676 } 12677 return (0); 12678 } 12679 12680 static void 12681 sfmmu_tsb_inv_ctx(sfmmu_t *sfmmup) 12682 { 12683 extern uint32_t sendmondo_in_recover; 12684 12685 ASSERT(sfmmu_hat_lock_held(sfmmup)); 12686 12687 /* 12688 * For Cheetah+ Erratum 25: 12689 * Wait for any active recovery to finish. We can't risk 12690 * relocating the TSB of the thread running mondo_recover_proc() 12691 * since, if we did that, we would deadlock. The scenario we are 12692 * trying to avoid is as follows: 12693 * 12694 * THIS CPU RECOVER CPU 12695 * -------- ----------- 12696 * Begins recovery, walking through TSB 12697 * hat_pagesuspend() TSB TTE 12698 * TLB miss on TSB TTE, spins at TL1 12699 * xt_sync() 12700 * send_mondo_timeout() 12701 * mondo_recover_proc() 12702 * ((deadlocked)) 12703 * 12704 * The second half of the workaround is that mondo_recover_proc() 12705 * checks to see if the tsb_info has the RELOC flag set, and if it 12706 * does, it skips over that TSB without ever touching tsbinfop->tsb_va 12707 * and hence avoiding the TLB miss that could result in a deadlock. 12708 */ 12709 if (&sendmondo_in_recover) { 12710 membar_enter(); /* make sure RELOC flag visible */ 12711 while (sendmondo_in_recover) { 12712 drv_usecwait(1); 12713 membar_consumer(); 12714 } 12715 } 12716 12717 sfmmu_invalidate_ctx(sfmmup); 12718 } 12719 12720 /* ARGSUSED */ 12721 static int 12722 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags, 12723 void *tsbinfo, pfn_t newpfn) 12724 { 12725 hatlock_t *hatlockp; 12726 struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo; 12727 sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu; 12728 12729 if (flags != HAT_POSTUNSUSPEND) 12730 return (0); 12731 12732 hatlockp = sfmmu_hat_enter(sfmmup); 12733 12734 SFMMU_STAT(sf_tsb_reloc); 12735 12736 /* 12737 * The process may have swapped out while we were relocating one 12738 * of its TSBs. If so, don't bother doing the setup since the 12739 * process can't be using the memory anymore. 12740 */ 12741 if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) { 12742 ASSERT(va == tsbinfop->tsb_va); 12743 sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn); 12744 12745 if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) { 12746 sfmmu_inv_tsb(tsbinfop->tsb_va, 12747 TSB_BYTES(tsbinfop->tsb_szc)); 12748 tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED; 12749 } 12750 } 12751 12752 membar_exit(); 12753 tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG; 12754 cv_broadcast(&sfmmup->sfmmu_tsb_cv); 12755 12756 sfmmu_hat_exit(hatlockp); 12757 12758 return (0); 12759 } 12760 12761 /* 12762 * Allocate and initialize a tsb_info structure. Note that we may or may not 12763 * allocate a TSB here, depending on the flags passed in. 12764 */ 12765 static int 12766 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask, 12767 uint_t flags, sfmmu_t *sfmmup) 12768 { 12769 int err; 12770 12771 *tsbinfopp = (struct tsb_info *)kmem_cache_alloc( 12772 sfmmu_tsbinfo_cache, KM_SLEEP); 12773 12774 if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask, 12775 tsb_szc, flags, sfmmup)) != 0) { 12776 kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp); 12777 SFMMU_STAT(sf_tsb_allocfail); 12778 *tsbinfopp = NULL; 12779 return (err); 12780 } 12781 SFMMU_STAT(sf_tsb_alloc); 12782 12783 /* 12784 * Bump the TSB size counters for this TSB size. 12785 */ 12786 (*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++; 12787 return (0); 12788 } 12789 12790 static void 12791 sfmmu_tsb_free(struct tsb_info *tsbinfo) 12792 { 12793 caddr_t tsbva = tsbinfo->tsb_va; 12794 uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc); 12795 struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache; 12796 vmem_t *vmp = tsbinfo->tsb_vmp; 12797 12798 /* 12799 * If we allocated this TSB from relocatable kernel memory, then we 12800 * need to uninstall the callback handler. 12801 */ 12802 if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) { 12803 uintptr_t slab_mask; 12804 caddr_t slab_vaddr; 12805 page_t **ppl; 12806 int ret; 12807 12808 ASSERT(tsb_size <= MMU_PAGESIZE4M || use_bigtsb_arena); 12809 if (tsb_size > MMU_PAGESIZE4M) 12810 slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT; 12811 else 12812 slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT; 12813 slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask); 12814 12815 ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE); 12816 ASSERT(ret == 0); 12817 hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo, 12818 0, NULL); 12819 as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE); 12820 } 12821 12822 if (kmem_cachep != NULL) { 12823 kmem_cache_free(kmem_cachep, tsbva); 12824 } else { 12825 vmem_xfree(vmp, (void *)tsbva, tsb_size); 12826 } 12827 tsbinfo->tsb_va = (caddr_t)0xbad00bad; 12828 atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size); 12829 } 12830 12831 static void 12832 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo) 12833 { 12834 if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) { 12835 sfmmu_tsb_free(tsbinfo); 12836 } 12837 kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo); 12838 12839 } 12840 12841 /* 12842 * Setup all the references to physical memory for this tsbinfo. 12843 * The underlying page(s) must be locked. 12844 */ 12845 static void 12846 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn) 12847 { 12848 ASSERT(pfn != PFN_INVALID); 12849 ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va)); 12850 12851 #ifndef sun4v 12852 if (tsbinfo->tsb_szc == 0) { 12853 sfmmu_memtte(&tsbinfo->tsb_tte, pfn, 12854 PROT_WRITE|PROT_READ, TTE8K); 12855 } else { 12856 /* 12857 * Round down PA and use a large mapping; the handlers will 12858 * compute the TSB pointer at the correct offset into the 12859 * big virtual page. NOTE: this assumes all TSBs larger 12860 * than 8K must come from physically contiguous slabs of 12861 * size tsb_slab_size. 12862 */ 12863 sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask, 12864 PROT_WRITE|PROT_READ, tsb_slab_ttesz); 12865 } 12866 tsbinfo->tsb_pa = ptob(pfn); 12867 12868 TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */ 12869 TTE_SET_MOD(&tsbinfo->tsb_tte); /* enable writes */ 12870 12871 ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte)); 12872 ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte)); 12873 #else /* sun4v */ 12874 tsbinfo->tsb_pa = ptob(pfn); 12875 #endif /* sun4v */ 12876 } 12877 12878 12879 /* 12880 * Returns zero on success, ENOMEM if over the high water mark, 12881 * or EAGAIN if the caller needs to retry with a smaller TSB 12882 * size (or specify TSB_FORCEALLOC if the allocation can't fail). 12883 * 12884 * This call cannot fail to allocate a TSB if TSB_FORCEALLOC 12885 * is specified and the TSB requested is PAGESIZE, though it 12886 * may sleep waiting for memory if sufficient memory is not 12887 * available. 12888 */ 12889 static int 12890 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask, 12891 int tsbcode, uint_t flags, sfmmu_t *sfmmup) 12892 { 12893 caddr_t vaddr = NULL; 12894 caddr_t slab_vaddr; 12895 uintptr_t slab_mask; 12896 int tsbbytes = TSB_BYTES(tsbcode); 12897 int lowmem = 0; 12898 struct kmem_cache *kmem_cachep = NULL; 12899 vmem_t *vmp = NULL; 12900 lgrp_id_t lgrpid = LGRP_NONE; 12901 pfn_t pfn; 12902 uint_t cbflags = HAC_SLEEP; 12903 page_t **pplist; 12904 int ret; 12905 12906 ASSERT(tsbbytes <= MMU_PAGESIZE4M || use_bigtsb_arena); 12907 if (tsbbytes > MMU_PAGESIZE4M) 12908 slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT; 12909 else 12910 slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT; 12911 12912 if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK)) 12913 flags |= TSB_ALLOC; 12914 12915 ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE); 12916 12917 tsbinfo->tsb_sfmmu = sfmmup; 12918 12919 /* 12920 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and 12921 * return. 12922 */ 12923 if ((flags & TSB_ALLOC) == 0) { 12924 tsbinfo->tsb_szc = tsbcode; 12925 tsbinfo->tsb_ttesz_mask = tteszmask; 12926 tsbinfo->tsb_va = (caddr_t)0xbadbadbeef; 12927 tsbinfo->tsb_pa = -1; 12928 tsbinfo->tsb_tte.ll = 0; 12929 tsbinfo->tsb_next = NULL; 12930 tsbinfo->tsb_flags = TSB_SWAPPED; 12931 tsbinfo->tsb_cache = NULL; 12932 tsbinfo->tsb_vmp = NULL; 12933 return (0); 12934 } 12935 12936 #ifdef DEBUG 12937 /* 12938 * For debugging: 12939 * Randomly force allocation failures every tsb_alloc_mtbf 12940 * tries if TSB_FORCEALLOC is not specified. This will 12941 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if 12942 * it is even, to allow testing of both failure paths... 12943 */ 12944 if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) && 12945 (tsb_alloc_count++ == tsb_alloc_mtbf)) { 12946 tsb_alloc_count = 0; 12947 tsb_alloc_fail_mtbf++; 12948 return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN); 12949 } 12950 #endif /* DEBUG */ 12951 12952 /* 12953 * Enforce high water mark if we are not doing a forced allocation 12954 * and are not shrinking a process' TSB. 12955 */ 12956 if ((flags & TSB_SHRINK) == 0 && 12957 (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) { 12958 if ((flags & TSB_FORCEALLOC) == 0) 12959 return (ENOMEM); 12960 lowmem = 1; 12961 } 12962 12963 /* 12964 * Allocate from the correct location based upon the size of the TSB 12965 * compared to the base page size, and what memory conditions dictate. 12966 * Note we always do nonblocking allocations from the TSB arena since 12967 * we don't want memory fragmentation to cause processes to block 12968 * indefinitely waiting for memory; until the kernel algorithms that 12969 * coalesce large pages are improved this is our best option. 12970 * 12971 * Algorithm: 12972 * If allocating a "large" TSB (>8K), allocate from the 12973 * appropriate kmem_tsb_default_arena vmem arena 12974 * else if low on memory or the TSB_FORCEALLOC flag is set or 12975 * tsb_forceheap is set 12976 * Allocate from kernel heap via sfmmu_tsb8k_cache with 12977 * KM_SLEEP (never fails) 12978 * else 12979 * Allocate from appropriate sfmmu_tsb_cache with 12980 * KM_NOSLEEP 12981 * endif 12982 */ 12983 if (tsb_lgrp_affinity) 12984 lgrpid = lgrp_home_id(curthread); 12985 if (lgrpid == LGRP_NONE) 12986 lgrpid = 0; /* use lgrp of boot CPU */ 12987 12988 if (tsbbytes > MMU_PAGESIZE) { 12989 if (tsbbytes > MMU_PAGESIZE4M) { 12990 vmp = kmem_bigtsb_default_arena[lgrpid]; 12991 vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 12992 0, 0, NULL, NULL, VM_NOSLEEP); 12993 } else { 12994 vmp = kmem_tsb_default_arena[lgrpid]; 12995 vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 12996 0, 0, NULL, NULL, VM_NOSLEEP); 12997 } 12998 #ifdef DEBUG 12999 } else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) { 13000 #else /* !DEBUG */ 13001 } else if (lowmem || (flags & TSB_FORCEALLOC)) { 13002 #endif /* DEBUG */ 13003 kmem_cachep = sfmmu_tsb8k_cache; 13004 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP); 13005 ASSERT(vaddr != NULL); 13006 } else { 13007 kmem_cachep = sfmmu_tsb_cache[lgrpid]; 13008 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP); 13009 } 13010 13011 tsbinfo->tsb_cache = kmem_cachep; 13012 tsbinfo->tsb_vmp = vmp; 13013 13014 if (vaddr == NULL) { 13015 return (EAGAIN); 13016 } 13017 13018 atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes); 13019 kmem_cachep = tsbinfo->tsb_cache; 13020 13021 /* 13022 * If we are allocating from outside the cage, then we need to 13023 * register a relocation callback handler. Note that for now 13024 * since pseudo mappings always hang off of the slab's root page, 13025 * we need only lock the first 8K of the TSB slab. This is a bit 13026 * hacky but it is good for performance. 13027 */ 13028 if (kmem_cachep != sfmmu_tsb8k_cache) { 13029 slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask); 13030 ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE); 13031 ASSERT(ret == 0); 13032 ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes, 13033 cbflags, (void *)tsbinfo, &pfn, NULL); 13034 13035 /* 13036 * Need to free up resources if we could not successfully 13037 * add the callback function and return an error condition. 13038 */ 13039 if (ret != 0) { 13040 if (kmem_cachep) { 13041 kmem_cache_free(kmem_cachep, vaddr); 13042 } else { 13043 vmem_xfree(vmp, (void *)vaddr, tsbbytes); 13044 } 13045 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, 13046 S_WRITE); 13047 return (EAGAIN); 13048 } 13049 } else { 13050 /* 13051 * Since allocation of 8K TSBs from heap is rare and occurs 13052 * during memory pressure we allocate them from permanent 13053 * memory rather than using callbacks to get the PFN. 13054 */ 13055 pfn = hat_getpfnum(kas.a_hat, vaddr); 13056 } 13057 13058 tsbinfo->tsb_va = vaddr; 13059 tsbinfo->tsb_szc = tsbcode; 13060 tsbinfo->tsb_ttesz_mask = tteszmask; 13061 tsbinfo->tsb_next = NULL; 13062 tsbinfo->tsb_flags = 0; 13063 13064 sfmmu_tsbinfo_setup_phys(tsbinfo, pfn); 13065 13066 sfmmu_inv_tsb(vaddr, tsbbytes); 13067 13068 if (kmem_cachep != sfmmu_tsb8k_cache) { 13069 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE); 13070 } 13071 13072 return (0); 13073 } 13074 13075 /* 13076 * Initialize per cpu tsb and per cpu tsbmiss_area 13077 */ 13078 void 13079 sfmmu_init_tsbs(void) 13080 { 13081 int i; 13082 struct tsbmiss *tsbmissp; 13083 struct kpmtsbm *kpmtsbmp; 13084 #ifndef sun4v 13085 extern int dcache_line_mask; 13086 #endif /* sun4v */ 13087 extern uint_t vac_colors; 13088 13089 /* 13090 * Init. tsb miss area. 13091 */ 13092 tsbmissp = tsbmiss_area; 13093 13094 for (i = 0; i < NCPU; tsbmissp++, i++) { 13095 /* 13096 * initialize the tsbmiss area. 13097 * Do this for all possible CPUs as some may be added 13098 * while the system is running. There is no cost to this. 13099 */ 13100 tsbmissp->ksfmmup = ksfmmup; 13101 #ifndef sun4v 13102 tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask; 13103 #endif /* sun4v */ 13104 tsbmissp->khashstart = 13105 (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash); 13106 tsbmissp->uhashstart = 13107 (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash); 13108 tsbmissp->khashsz = khmehash_num; 13109 tsbmissp->uhashsz = uhmehash_num; 13110 } 13111 13112 sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B', 13113 sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0); 13114 13115 if (kpm_enable == 0) 13116 return; 13117 13118 /* -- Begin KPM specific init -- */ 13119 13120 if (kpm_smallpages) { 13121 /* 13122 * If we're using base pagesize pages for seg_kpm 13123 * mappings, we use the kernel TSB since we can't afford 13124 * to allocate a second huge TSB for these mappings. 13125 */ 13126 kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base; 13127 kpm_tsbsz = ktsb_szcode; 13128 kpmsm_tsbbase = kpm_tsbbase; 13129 kpmsm_tsbsz = kpm_tsbsz; 13130 } else { 13131 /* 13132 * In VAC conflict case, just put the entries in the 13133 * kernel 8K indexed TSB for now so we can find them. 13134 * This could really be changed in the future if we feel 13135 * the need... 13136 */ 13137 kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base; 13138 kpmsm_tsbsz = ktsb_szcode; 13139 kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base; 13140 kpm_tsbsz = ktsb4m_szcode; 13141 } 13142 13143 kpmtsbmp = kpmtsbm_area; 13144 for (i = 0; i < NCPU; kpmtsbmp++, i++) { 13145 /* 13146 * Initialize the kpmtsbm area. 13147 * Do this for all possible CPUs as some may be added 13148 * while the system is running. There is no cost to this. 13149 */ 13150 kpmtsbmp->vbase = kpm_vbase; 13151 kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors; 13152 kpmtsbmp->sz_shift = kpm_size_shift; 13153 kpmtsbmp->kpmp_shift = kpmp_shift; 13154 kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft; 13155 if (kpm_smallpages == 0) { 13156 kpmtsbmp->kpmp_table_sz = kpmp_table_sz; 13157 kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table); 13158 } else { 13159 kpmtsbmp->kpmp_table_sz = kpmp_stable_sz; 13160 kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable); 13161 } 13162 kpmtsbmp->msegphashpa = va_to_pa(memseg_phash); 13163 kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG; 13164 #ifdef DEBUG 13165 kpmtsbmp->flags |= (kpm_tsbmtl) ? KPMTSBM_TLTSBM_FLAG : 0; 13166 #endif /* DEBUG */ 13167 if (ktsb_phys) 13168 kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG; 13169 } 13170 13171 /* -- End KPM specific init -- */ 13172 } 13173 13174 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */ 13175 struct tsb_info ktsb_info[2]; 13176 13177 /* 13178 * Called from hat_kern_setup() to setup the tsb_info for ksfmmup. 13179 */ 13180 void 13181 sfmmu_init_ktsbinfo() 13182 { 13183 ASSERT(ksfmmup != NULL); 13184 ASSERT(ksfmmup->sfmmu_tsb == NULL); 13185 /* 13186 * Allocate tsbinfos for kernel and copy in data 13187 * to make debug easier and sun4v setup easier. 13188 */ 13189 ktsb_info[0].tsb_sfmmu = ksfmmup; 13190 ktsb_info[0].tsb_szc = ktsb_szcode; 13191 ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K; 13192 ktsb_info[0].tsb_va = ktsb_base; 13193 ktsb_info[0].tsb_pa = ktsb_pbase; 13194 ktsb_info[0].tsb_flags = 0; 13195 ktsb_info[0].tsb_tte.ll = 0; 13196 ktsb_info[0].tsb_cache = NULL; 13197 13198 ktsb_info[1].tsb_sfmmu = ksfmmup; 13199 ktsb_info[1].tsb_szc = ktsb4m_szcode; 13200 ktsb_info[1].tsb_ttesz_mask = TSB4M; 13201 ktsb_info[1].tsb_va = ktsb4m_base; 13202 ktsb_info[1].tsb_pa = ktsb4m_pbase; 13203 ktsb_info[1].tsb_flags = 0; 13204 ktsb_info[1].tsb_tte.ll = 0; 13205 ktsb_info[1].tsb_cache = NULL; 13206 13207 /* Link them into ksfmmup. */ 13208 ktsb_info[0].tsb_next = &ktsb_info[1]; 13209 ktsb_info[1].tsb_next = NULL; 13210 ksfmmup->sfmmu_tsb = &ktsb_info[0]; 13211 13212 sfmmu_setup_tsbinfo(ksfmmup); 13213 } 13214 13215 /* 13216 * Cache the last value returned from va_to_pa(). If the VA specified 13217 * in the current call to cached_va_to_pa() maps to the same Page (as the 13218 * previous call to cached_va_to_pa()), then compute the PA using 13219 * cached info, else call va_to_pa(). 13220 * 13221 * Note: this function is neither MT-safe nor consistent in the presence 13222 * of multiple, interleaved threads. This function was created to enable 13223 * an optimization used during boot (at a point when there's only one thread 13224 * executing on the "boot CPU", and before startup_vm() has been called). 13225 */ 13226 static uint64_t 13227 cached_va_to_pa(void *vaddr) 13228 { 13229 static uint64_t prev_vaddr_base = 0; 13230 static uint64_t prev_pfn = 0; 13231 13232 if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) { 13233 return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET)); 13234 } else { 13235 uint64_t pa = va_to_pa(vaddr); 13236 13237 if (pa != ((uint64_t)-1)) { 13238 /* 13239 * Computed physical address is valid. Cache its 13240 * related info for the next cached_va_to_pa() call. 13241 */ 13242 prev_pfn = pa & MMU_PAGEMASK; 13243 prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK; 13244 } 13245 13246 return (pa); 13247 } 13248 } 13249 13250 /* 13251 * Carve up our nucleus hblk region. We may allocate more hblks than 13252 * asked due to rounding errors but we are guaranteed to have at least 13253 * enough space to allocate the requested number of hblk8's and hblk1's. 13254 */ 13255 void 13256 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1) 13257 { 13258 struct hme_blk *hmeblkp; 13259 size_t hme8blk_sz, hme1blk_sz; 13260 size_t i; 13261 size_t hblk8_bound; 13262 ulong_t j = 0, k = 0; 13263 13264 ASSERT(addr != NULL && size != 0); 13265 13266 /* Need to use proper structure alignment */ 13267 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t)); 13268 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t)); 13269 13270 nucleus_hblk8.list = (void *)addr; 13271 nucleus_hblk8.index = 0; 13272 13273 /* 13274 * Use as much memory as possible for hblk8's since we 13275 * expect all bop_alloc'ed memory to be allocated in 8k chunks. 13276 * We need to hold back enough space for the hblk1's which 13277 * we'll allocate next. 13278 */ 13279 hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz; 13280 for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) { 13281 hmeblkp = (struct hme_blk *)addr; 13282 addr += hme8blk_sz; 13283 hmeblkp->hblk_nuc_bit = 1; 13284 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp); 13285 } 13286 nucleus_hblk8.len = j; 13287 ASSERT(j >= nhblk8); 13288 SFMMU_STAT_ADD(sf_hblk8_ncreate, j); 13289 13290 nucleus_hblk1.list = (void *)addr; 13291 nucleus_hblk1.index = 0; 13292 for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) { 13293 hmeblkp = (struct hme_blk *)addr; 13294 addr += hme1blk_sz; 13295 hmeblkp->hblk_nuc_bit = 1; 13296 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp); 13297 } 13298 ASSERT(k >= nhblk1); 13299 nucleus_hblk1.len = k; 13300 SFMMU_STAT_ADD(sf_hblk1_ncreate, k); 13301 } 13302 13303 /* 13304 * This function is currently not supported on this platform. For what 13305 * it's supposed to do, see hat.c and hat_srmmu.c 13306 */ 13307 /* ARGSUSED */ 13308 faultcode_t 13309 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp, 13310 uint_t flags) 13311 { 13312 ASSERT(hat->sfmmu_xhat_provider == NULL); 13313 return (FC_NOSUPPORT); 13314 } 13315 13316 /* 13317 * Searchs the mapping list of the page for a mapping of the same size. If not 13318 * found the corresponding bit is cleared in the p_index field. When large 13319 * pages are more prevalent in the system, we can maintain the mapping list 13320 * in order and we don't have to traverse the list each time. Just check the 13321 * next and prev entries, and if both are of different size, we clear the bit. 13322 */ 13323 static void 13324 sfmmu_rm_large_mappings(page_t *pp, int ttesz) 13325 { 13326 struct sf_hment *sfhmep; 13327 struct hme_blk *hmeblkp; 13328 int index; 13329 pgcnt_t npgs; 13330 13331 ASSERT(ttesz > TTE8K); 13332 13333 ASSERT(sfmmu_mlist_held(pp)); 13334 13335 ASSERT(PP_ISMAPPED_LARGE(pp)); 13336 13337 /* 13338 * Traverse mapping list looking for another mapping of same size. 13339 * since we only want to clear index field if all mappings of 13340 * that size are gone. 13341 */ 13342 13343 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) { 13344 if (IS_PAHME(sfhmep)) 13345 continue; 13346 hmeblkp = sfmmu_hmetohblk(sfhmep); 13347 if (hmeblkp->hblk_xhat_bit) 13348 continue; 13349 if (hme_size(sfhmep) == ttesz) { 13350 /* 13351 * another mapping of the same size. don't clear index. 13352 */ 13353 return; 13354 } 13355 } 13356 13357 /* 13358 * Clear the p_index bit for large page. 13359 */ 13360 index = PAGESZ_TO_INDEX(ttesz); 13361 npgs = TTEPAGES(ttesz); 13362 while (npgs-- > 0) { 13363 ASSERT(pp->p_index & index); 13364 pp->p_index &= ~index; 13365 pp = PP_PAGENEXT(pp); 13366 } 13367 } 13368 13369 /* 13370 * return supported features 13371 */ 13372 /* ARGSUSED */ 13373 int 13374 hat_supported(enum hat_features feature, void *arg) 13375 { 13376 switch (feature) { 13377 case HAT_SHARED_PT: 13378 case HAT_DYNAMIC_ISM_UNMAP: 13379 case HAT_VMODSORT: 13380 return (1); 13381 case HAT_SHARED_REGIONS: 13382 if (shctx_on) 13383 return (1); 13384 else 13385 return (0); 13386 default: 13387 return (0); 13388 } 13389 } 13390 13391 void 13392 hat_enter(struct hat *hat) 13393 { 13394 hatlock_t *hatlockp; 13395 13396 if (hat != ksfmmup) { 13397 hatlockp = TSB_HASH(hat); 13398 mutex_enter(HATLOCK_MUTEXP(hatlockp)); 13399 } 13400 } 13401 13402 void 13403 hat_exit(struct hat *hat) 13404 { 13405 hatlock_t *hatlockp; 13406 13407 if (hat != ksfmmup) { 13408 hatlockp = TSB_HASH(hat); 13409 mutex_exit(HATLOCK_MUTEXP(hatlockp)); 13410 } 13411 } 13412 13413 /*ARGSUSED*/ 13414 void 13415 hat_reserve(struct as *as, caddr_t addr, size_t len) 13416 { 13417 } 13418 13419 static void 13420 hat_kstat_init(void) 13421 { 13422 kstat_t *ksp; 13423 13424 ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat", 13425 KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat), 13426 KSTAT_FLAG_VIRTUAL); 13427 if (ksp) { 13428 ksp->ks_data = (void *) &sfmmu_global_stat; 13429 kstat_install(ksp); 13430 } 13431 ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat", 13432 KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat), 13433 KSTAT_FLAG_VIRTUAL); 13434 if (ksp) { 13435 ksp->ks_data = (void *) &sfmmu_tsbsize_stat; 13436 kstat_install(ksp); 13437 } 13438 ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat", 13439 KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU, 13440 KSTAT_FLAG_WRITABLE); 13441 if (ksp) { 13442 ksp->ks_update = sfmmu_kstat_percpu_update; 13443 kstat_install(ksp); 13444 } 13445 } 13446 13447 /* ARGSUSED */ 13448 static int 13449 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw) 13450 { 13451 struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data; 13452 struct tsbmiss *tsbm = tsbmiss_area; 13453 struct kpmtsbm *kpmtsbm = kpmtsbm_area; 13454 int i; 13455 13456 ASSERT(cpu_kstat); 13457 if (rw == KSTAT_READ) { 13458 for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) { 13459 cpu_kstat->sf_itlb_misses = 0; 13460 cpu_kstat->sf_dtlb_misses = 0; 13461 cpu_kstat->sf_utsb_misses = tsbm->utsb_misses - 13462 tsbm->uprot_traps; 13463 cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses + 13464 kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps; 13465 cpu_kstat->sf_tsb_hits = 0; 13466 cpu_kstat->sf_umod_faults = tsbm->uprot_traps; 13467 cpu_kstat->sf_kmod_faults = tsbm->kprot_traps; 13468 } 13469 } else { 13470 /* KSTAT_WRITE is used to clear stats */ 13471 for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) { 13472 tsbm->utsb_misses = 0; 13473 tsbm->ktsb_misses = 0; 13474 tsbm->uprot_traps = 0; 13475 tsbm->kprot_traps = 0; 13476 kpmtsbm->kpm_dtlb_misses = 0; 13477 kpmtsbm->kpm_tsb_misses = 0; 13478 } 13479 } 13480 return (0); 13481 } 13482 13483 #ifdef DEBUG 13484 13485 tte_t *gorig[NCPU], *gcur[NCPU], *gnew[NCPU]; 13486 13487 /* 13488 * A tte checker. *orig_old is the value we read before cas. 13489 * *cur is the value returned by cas. 13490 * *new is the desired value when we do the cas. 13491 * 13492 * *hmeblkp is currently unused. 13493 */ 13494 13495 /* ARGSUSED */ 13496 void 13497 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp) 13498 { 13499 pfn_t i, j, k; 13500 int cpuid = CPU->cpu_id; 13501 13502 gorig[cpuid] = orig_old; 13503 gcur[cpuid] = cur; 13504 gnew[cpuid] = new; 13505 13506 #ifdef lint 13507 hmeblkp = hmeblkp; 13508 #endif 13509 13510 if (TTE_IS_VALID(orig_old)) { 13511 if (TTE_IS_VALID(cur)) { 13512 i = TTE_TO_TTEPFN(orig_old); 13513 j = TTE_TO_TTEPFN(cur); 13514 k = TTE_TO_TTEPFN(new); 13515 if (i != j) { 13516 /* remap error? */ 13517 panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j); 13518 } 13519 13520 if (i != k) { 13521 /* remap error? */ 13522 panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k); 13523 } 13524 } else { 13525 if (TTE_IS_VALID(new)) { 13526 panic("chk_tte: invalid cur? "); 13527 } 13528 13529 i = TTE_TO_TTEPFN(orig_old); 13530 k = TTE_TO_TTEPFN(new); 13531 if (i != k) { 13532 panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k); 13533 } 13534 } 13535 } else { 13536 if (TTE_IS_VALID(cur)) { 13537 j = TTE_TO_TTEPFN(cur); 13538 if (TTE_IS_VALID(new)) { 13539 k = TTE_TO_TTEPFN(new); 13540 if (j != k) { 13541 panic("chk_tte: bad pfn4, 0x%lx, 0x%lx", 13542 j, k); 13543 } 13544 } else { 13545 panic("chk_tte: why here?"); 13546 } 13547 } else { 13548 if (!TTE_IS_VALID(new)) { 13549 panic("chk_tte: why here2 ?"); 13550 } 13551 } 13552 } 13553 } 13554 13555 #endif /* DEBUG */ 13556 13557 extern void prefetch_tsbe_read(struct tsbe *); 13558 extern void prefetch_tsbe_write(struct tsbe *); 13559 13560 13561 /* 13562 * We want to prefetch 7 cache lines ahead for our read prefetch. This gives 13563 * us optimal performance on Cheetah+. You can only have 8 outstanding 13564 * prefetches at any one time, so we opted for 7 read prefetches and 1 write 13565 * prefetch to make the most utilization of the prefetch capability. 13566 */ 13567 #define TSBE_PREFETCH_STRIDE (7) 13568 13569 void 13570 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo) 13571 { 13572 int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc); 13573 int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc); 13574 int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc); 13575 int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc); 13576 struct tsbe *old; 13577 struct tsbe *new; 13578 struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va; 13579 uint64_t va; 13580 int new_offset; 13581 int i; 13582 int vpshift; 13583 int last_prefetch; 13584 13585 if (old_bytes == new_bytes) { 13586 bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes); 13587 } else { 13588 13589 /* 13590 * A TSBE is 16 bytes which means there are four TSBE's per 13591 * P$ line (64 bytes), thus every 4 TSBE's we prefetch. 13592 */ 13593 old = (struct tsbe *)old_tsbinfo->tsb_va; 13594 last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1)); 13595 for (i = 0; i < old_entries; i++, old++) { 13596 if (((i & (4-1)) == 0) && (i < last_prefetch)) 13597 prefetch_tsbe_read(old); 13598 if (!old->tte_tag.tag_invalid) { 13599 /* 13600 * We have a valid TTE to remap. Check the 13601 * size. We won't remap 64K or 512K TTEs 13602 * because they span more than one TSB entry 13603 * and are indexed using an 8K virt. page. 13604 * Ditto for 32M and 256M TTEs. 13605 */ 13606 if (TTE_CSZ(&old->tte_data) == TTE64K || 13607 TTE_CSZ(&old->tte_data) == TTE512K) 13608 continue; 13609 if (mmu_page_sizes == max_mmu_page_sizes) { 13610 if (TTE_CSZ(&old->tte_data) == TTE32M || 13611 TTE_CSZ(&old->tte_data) == TTE256M) 13612 continue; 13613 } 13614 13615 /* clear the lower 22 bits of the va */ 13616 va = *(uint64_t *)old << 22; 13617 /* turn va into a virtual pfn */ 13618 va >>= 22 - TSB_START_SIZE; 13619 /* 13620 * or in bits from the offset in the tsb 13621 * to get the real virtual pfn. These 13622 * correspond to bits [21:13] in the va 13623 */ 13624 vpshift = 13625 TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) & 13626 0x1ff; 13627 va |= (i << vpshift); 13628 va >>= vpshift; 13629 new_offset = va & (new_entries - 1); 13630 new = new_base + new_offset; 13631 prefetch_tsbe_write(new); 13632 *new = *old; 13633 } 13634 } 13635 } 13636 } 13637 13638 /* 13639 * unused in sfmmu 13640 */ 13641 void 13642 hat_dump(void) 13643 { 13644 } 13645 13646 /* 13647 * Called when a thread is exiting and we have switched to the kernel address 13648 * space. Perform the same VM initialization resume() uses when switching 13649 * processes. 13650 * 13651 * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but 13652 * we call it anyway in case the semantics change in the future. 13653 */ 13654 /*ARGSUSED*/ 13655 void 13656 hat_thread_exit(kthread_t *thd) 13657 { 13658 uint_t pgsz_cnum; 13659 uint_t pstate_save; 13660 13661 ASSERT(thd->t_procp->p_as == &kas); 13662 13663 pgsz_cnum = KCONTEXT; 13664 #ifdef sun4u 13665 pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT); 13666 #endif 13667 13668 /* 13669 * Note that sfmmu_load_mmustate() is currently a no-op for 13670 * kernel threads. We need to disable interrupts here, 13671 * simply because otherwise sfmmu_load_mmustate() would panic 13672 * if the caller does not disable interrupts. 13673 */ 13674 pstate_save = sfmmu_disable_intrs(); 13675 13676 /* Compatibility Note: hw takes care of MMU_SCONTEXT1 */ 13677 sfmmu_setctx_sec(pgsz_cnum); 13678 sfmmu_load_mmustate(ksfmmup); 13679 sfmmu_enable_intrs(pstate_save); 13680 } 13681 13682 13683 /* 13684 * SRD support 13685 */ 13686 #define SRD_HASH_FUNCTION(vp) (((((uintptr_t)(vp)) >> 4) ^ \ 13687 (((uintptr_t)(vp)) >> 11)) & \ 13688 srd_hashmask) 13689 13690 /* 13691 * Attach the process to the srd struct associated with the exec vnode 13692 * from which the process is started. 13693 */ 13694 void 13695 hat_join_srd(struct hat *sfmmup, vnode_t *evp) 13696 { 13697 uint_t hash = SRD_HASH_FUNCTION(evp); 13698 sf_srd_t *srdp; 13699 sf_srd_t *newsrdp; 13700 13701 ASSERT(sfmmup != ksfmmup); 13702 ASSERT(sfmmup->sfmmu_srdp == NULL); 13703 13704 if (!shctx_on) { 13705 return; 13706 } 13707 13708 VN_HOLD(evp); 13709 13710 if (srd_buckets[hash].srdb_srdp != NULL) { 13711 mutex_enter(&srd_buckets[hash].srdb_lock); 13712 for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL; 13713 srdp = srdp->srd_hash) { 13714 if (srdp->srd_evp == evp) { 13715 ASSERT(srdp->srd_refcnt >= 0); 13716 sfmmup->sfmmu_srdp = srdp; 13717 atomic_add_32( 13718 (volatile uint_t *)&srdp->srd_refcnt, 1); 13719 mutex_exit(&srd_buckets[hash].srdb_lock); 13720 return; 13721 } 13722 } 13723 mutex_exit(&srd_buckets[hash].srdb_lock); 13724 } 13725 newsrdp = kmem_cache_alloc(srd_cache, KM_SLEEP); 13726 ASSERT(newsrdp->srd_next_ismrid == 0 && newsrdp->srd_next_hmerid == 0); 13727 13728 newsrdp->srd_evp = evp; 13729 newsrdp->srd_refcnt = 1; 13730 newsrdp->srd_hmergnfree = NULL; 13731 newsrdp->srd_ismrgnfree = NULL; 13732 13733 mutex_enter(&srd_buckets[hash].srdb_lock); 13734 for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL; 13735 srdp = srdp->srd_hash) { 13736 if (srdp->srd_evp == evp) { 13737 ASSERT(srdp->srd_refcnt >= 0); 13738 sfmmup->sfmmu_srdp = srdp; 13739 atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1); 13740 mutex_exit(&srd_buckets[hash].srdb_lock); 13741 kmem_cache_free(srd_cache, newsrdp); 13742 return; 13743 } 13744 } 13745 newsrdp->srd_hash = srd_buckets[hash].srdb_srdp; 13746 srd_buckets[hash].srdb_srdp = newsrdp; 13747 sfmmup->sfmmu_srdp = newsrdp; 13748 13749 mutex_exit(&srd_buckets[hash].srdb_lock); 13750 13751 } 13752 13753 static void 13754 sfmmu_leave_srd(sfmmu_t *sfmmup) 13755 { 13756 vnode_t *evp; 13757 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 13758 uint_t hash; 13759 sf_srd_t **prev_srdpp; 13760 sf_region_t *rgnp; 13761 sf_region_t *nrgnp; 13762 #ifdef DEBUG 13763 int rgns = 0; 13764 #endif 13765 int i; 13766 13767 ASSERT(sfmmup != ksfmmup); 13768 ASSERT(srdp != NULL); 13769 ASSERT(srdp->srd_refcnt > 0); 13770 ASSERT(sfmmup->sfmmu_scdp == NULL); 13771 ASSERT(sfmmup->sfmmu_free == 1); 13772 13773 sfmmup->sfmmu_srdp = NULL; 13774 evp = srdp->srd_evp; 13775 ASSERT(evp != NULL); 13776 if (atomic_add_32_nv( 13777 (volatile uint_t *)&srdp->srd_refcnt, -1)) { 13778 VN_RELE(evp); 13779 return; 13780 } 13781 13782 hash = SRD_HASH_FUNCTION(evp); 13783 mutex_enter(&srd_buckets[hash].srdb_lock); 13784 for (prev_srdpp = &srd_buckets[hash].srdb_srdp; 13785 (srdp = *prev_srdpp) != NULL; prev_srdpp = &srdp->srd_hash) { 13786 if (srdp->srd_evp == evp) { 13787 break; 13788 } 13789 } 13790 if (srdp == NULL || srdp->srd_refcnt) { 13791 mutex_exit(&srd_buckets[hash].srdb_lock); 13792 VN_RELE(evp); 13793 return; 13794 } 13795 *prev_srdpp = srdp->srd_hash; 13796 mutex_exit(&srd_buckets[hash].srdb_lock); 13797 13798 ASSERT(srdp->srd_refcnt == 0); 13799 VN_RELE(evp); 13800 13801 #ifdef DEBUG 13802 for (i = 0; i < SFMMU_MAX_REGION_BUCKETS; i++) { 13803 ASSERT(srdp->srd_rgnhash[i] == NULL); 13804 } 13805 #endif /* DEBUG */ 13806 13807 /* free each hme regions in the srd */ 13808 for (rgnp = srdp->srd_hmergnfree; rgnp != NULL; rgnp = nrgnp) { 13809 nrgnp = rgnp->rgn_next; 13810 ASSERT(rgnp->rgn_id < srdp->srd_next_hmerid); 13811 ASSERT(rgnp->rgn_refcnt == 0); 13812 ASSERT(rgnp->rgn_sfmmu_head == NULL); 13813 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE); 13814 ASSERT(rgnp->rgn_hmeflags == 0); 13815 ASSERT(srdp->srd_hmergnp[rgnp->rgn_id] == rgnp); 13816 #ifdef DEBUG 13817 for (i = 0; i < MMU_PAGE_SIZES; i++) { 13818 ASSERT(rgnp->rgn_ttecnt[i] == 0); 13819 } 13820 rgns++; 13821 #endif /* DEBUG */ 13822 kmem_cache_free(region_cache, rgnp); 13823 } 13824 ASSERT(rgns == srdp->srd_next_hmerid); 13825 13826 #ifdef DEBUG 13827 rgns = 0; 13828 #endif 13829 /* free each ism rgns in the srd */ 13830 for (rgnp = srdp->srd_ismrgnfree; rgnp != NULL; rgnp = nrgnp) { 13831 nrgnp = rgnp->rgn_next; 13832 ASSERT(rgnp->rgn_id < srdp->srd_next_ismrid); 13833 ASSERT(rgnp->rgn_refcnt == 0); 13834 ASSERT(rgnp->rgn_sfmmu_head == NULL); 13835 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE); 13836 ASSERT(srdp->srd_ismrgnp[rgnp->rgn_id] == rgnp); 13837 #ifdef DEBUG 13838 for (i = 0; i < MMU_PAGE_SIZES; i++) { 13839 ASSERT(rgnp->rgn_ttecnt[i] == 0); 13840 } 13841 rgns++; 13842 #endif /* DEBUG */ 13843 kmem_cache_free(region_cache, rgnp); 13844 } 13845 ASSERT(rgns == srdp->srd_next_ismrid); 13846 ASSERT(srdp->srd_ismbusyrgns == 0); 13847 ASSERT(srdp->srd_hmebusyrgns == 0); 13848 13849 srdp->srd_next_ismrid = 0; 13850 srdp->srd_next_hmerid = 0; 13851 13852 bzero((void *)srdp->srd_ismrgnp, 13853 sizeof (sf_region_t *) * SFMMU_MAX_ISM_REGIONS); 13854 bzero((void *)srdp->srd_hmergnp, 13855 sizeof (sf_region_t *) * SFMMU_MAX_HME_REGIONS); 13856 13857 ASSERT(srdp->srd_scdp == NULL); 13858 kmem_cache_free(srd_cache, srdp); 13859 } 13860 13861 /* ARGSUSED */ 13862 static int 13863 sfmmu_srdcache_constructor(void *buf, void *cdrarg, int kmflags) 13864 { 13865 sf_srd_t *srdp = (sf_srd_t *)buf; 13866 bzero(buf, sizeof (*srdp)); 13867 13868 mutex_init(&srdp->srd_mutex, NULL, MUTEX_DEFAULT, NULL); 13869 mutex_init(&srdp->srd_scd_mutex, NULL, MUTEX_DEFAULT, NULL); 13870 return (0); 13871 } 13872 13873 /* ARGSUSED */ 13874 static void 13875 sfmmu_srdcache_destructor(void *buf, void *cdrarg) 13876 { 13877 sf_srd_t *srdp = (sf_srd_t *)buf; 13878 13879 mutex_destroy(&srdp->srd_mutex); 13880 mutex_destroy(&srdp->srd_scd_mutex); 13881 } 13882 13883 /* 13884 * The caller makes sure hat_join_region()/hat_leave_region() can't be called 13885 * at the same time for the same process and address range. This is ensured by 13886 * the fact that address space is locked as writer when a process joins the 13887 * regions. Therefore there's no need to hold an srd lock during the entire 13888 * execution of hat_join_region()/hat_leave_region(). 13889 */ 13890 13891 #define RGN_HASH_FUNCTION(obj) (((((uintptr_t)(obj)) >> 4) ^ \ 13892 (((uintptr_t)(obj)) >> 11)) & \ 13893 srd_rgn_hashmask) 13894 /* 13895 * This routine implements the shared context functionality required when 13896 * attaching a segment to an address space. It must be called from 13897 * hat_share() for D(ISM) segments and from segvn_create() for segments 13898 * with the MAP_PRIVATE and MAP_TEXT flags set. It returns a region_cookie 13899 * which is saved in the private segment data for hme segments and 13900 * the ism_map structure for ism segments. 13901 */ 13902 hat_region_cookie_t 13903 hat_join_region(struct hat *sfmmup, 13904 caddr_t r_saddr, 13905 size_t r_size, 13906 void *r_obj, 13907 u_offset_t r_objoff, 13908 uchar_t r_perm, 13909 uchar_t r_pgszc, 13910 hat_rgn_cb_func_t r_cb_function, 13911 uint_t flags) 13912 { 13913 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 13914 uint_t rhash; 13915 uint_t rid; 13916 hatlock_t *hatlockp; 13917 sf_region_t *rgnp; 13918 sf_region_t *new_rgnp = NULL; 13919 int i; 13920 uint16_t *nextidp; 13921 sf_region_t **freelistp; 13922 int maxids; 13923 sf_region_t **rarrp; 13924 uint16_t *busyrgnsp; 13925 ulong_t rttecnt; 13926 uchar_t tteflag; 13927 uchar_t r_type = flags & HAT_REGION_TYPE_MASK; 13928 int text = (r_type == HAT_REGION_TEXT); 13929 13930 if (srdp == NULL || r_size == 0) { 13931 return (HAT_INVALID_REGION_COOKIE); 13932 } 13933 13934 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 13935 ASSERT(sfmmup != ksfmmup); 13936 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 13937 ASSERT(srdp->srd_refcnt > 0); 13938 ASSERT(!(flags & ~HAT_REGION_TYPE_MASK)); 13939 ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM); 13940 ASSERT(r_pgszc < mmu_page_sizes); 13941 if (!IS_P2ALIGNED(r_saddr, TTEBYTES(r_pgszc)) || 13942 !IS_P2ALIGNED(r_size, TTEBYTES(r_pgszc))) { 13943 panic("hat_join_region: region addr or size is not aligned\n"); 13944 } 13945 13946 13947 r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM : 13948 SFMMU_REGION_HME; 13949 /* 13950 * Currently only support shared hmes for the read only main text 13951 * region. 13952 */ 13953 if (r_type == SFMMU_REGION_HME && ((r_obj != srdp->srd_evp) || 13954 (r_perm & PROT_WRITE))) { 13955 return (HAT_INVALID_REGION_COOKIE); 13956 } 13957 13958 rhash = RGN_HASH_FUNCTION(r_obj); 13959 13960 if (r_type == SFMMU_REGION_ISM) { 13961 nextidp = &srdp->srd_next_ismrid; 13962 freelistp = &srdp->srd_ismrgnfree; 13963 maxids = SFMMU_MAX_ISM_REGIONS; 13964 rarrp = srdp->srd_ismrgnp; 13965 busyrgnsp = &srdp->srd_ismbusyrgns; 13966 } else { 13967 nextidp = &srdp->srd_next_hmerid; 13968 freelistp = &srdp->srd_hmergnfree; 13969 maxids = SFMMU_MAX_HME_REGIONS; 13970 rarrp = srdp->srd_hmergnp; 13971 busyrgnsp = &srdp->srd_hmebusyrgns; 13972 } 13973 13974 mutex_enter(&srdp->srd_mutex); 13975 13976 for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL; 13977 rgnp = rgnp->rgn_hash) { 13978 if (rgnp->rgn_saddr == r_saddr && rgnp->rgn_size == r_size && 13979 rgnp->rgn_obj == r_obj && rgnp->rgn_objoff == r_objoff && 13980 rgnp->rgn_perm == r_perm && rgnp->rgn_pgszc == r_pgszc) { 13981 break; 13982 } 13983 } 13984 13985 rfound: 13986 if (rgnp != NULL) { 13987 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type); 13988 ASSERT(rgnp->rgn_cb_function == r_cb_function); 13989 ASSERT(rgnp->rgn_refcnt >= 0); 13990 rid = rgnp->rgn_id; 13991 ASSERT(rid < maxids); 13992 ASSERT(rarrp[rid] == rgnp); 13993 ASSERT(rid < *nextidp); 13994 atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1); 13995 mutex_exit(&srdp->srd_mutex); 13996 if (new_rgnp != NULL) { 13997 kmem_cache_free(region_cache, new_rgnp); 13998 } 13999 if (r_type == SFMMU_REGION_HME) { 14000 int myjoin = 14001 (sfmmup == astosfmmu(curthread->t_procp->p_as)); 14002 14003 sfmmu_link_to_hmeregion(sfmmup, rgnp); 14004 /* 14005 * bitmap should be updated after linking sfmmu on 14006 * region list so that pageunload() doesn't skip 14007 * TSB/TLB flush. As soon as bitmap is updated another 14008 * thread in this process can already start accessing 14009 * this region. 14010 */ 14011 /* 14012 * Normally ttecnt accounting is done as part of 14013 * pagefault handling. But a process may not take any 14014 * pagefaults on shared hmeblks created by some other 14015 * process. To compensate for this assume that the 14016 * entire region will end up faulted in using 14017 * the region's pagesize. 14018 * 14019 */ 14020 if (r_pgszc > TTE8K) { 14021 tteflag = 1 << r_pgszc; 14022 if (disable_large_pages & tteflag) { 14023 tteflag = 0; 14024 } 14025 } else { 14026 tteflag = 0; 14027 } 14028 if (tteflag && !(sfmmup->sfmmu_rtteflags & tteflag)) { 14029 hatlockp = sfmmu_hat_enter(sfmmup); 14030 sfmmup->sfmmu_rtteflags |= tteflag; 14031 sfmmu_hat_exit(hatlockp); 14032 } 14033 hatlockp = sfmmu_hat_enter(sfmmup); 14034 14035 /* 14036 * Preallocate 1/4 of ttecnt's in 8K TSB for >= 4M 14037 * region to allow for large page allocation failure. 14038 */ 14039 if (r_pgszc >= TTE4M) { 14040 sfmmup->sfmmu_tsb0_4minflcnt += 14041 r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2); 14042 } 14043 14044 /* update sfmmu_ttecnt with the shme rgn ttecnt */ 14045 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc); 14046 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], 14047 rttecnt); 14048 14049 if (text && r_pgszc >= TTE4M && 14050 (tteflag || ((disable_large_pages >> TTE4M) & 14051 ((1 << (r_pgszc - TTE4M + 1)) - 1))) && 14052 !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) { 14053 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG); 14054 } 14055 14056 sfmmu_hat_exit(hatlockp); 14057 /* 14058 * On Panther we need to make sure TLB is programmed 14059 * to accept 32M/256M pages. Call 14060 * sfmmu_check_page_sizes() now to make sure TLB is 14061 * setup before making hmeregions visible to other 14062 * threads. 14063 */ 14064 sfmmu_check_page_sizes(sfmmup, 1); 14065 hatlockp = sfmmu_hat_enter(sfmmup); 14066 SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid); 14067 14068 /* 14069 * if context is invalid tsb miss exception code will 14070 * call sfmmu_check_page_sizes() and update tsbmiss 14071 * area later. 14072 */ 14073 kpreempt_disable(); 14074 if (myjoin && 14075 (sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum 14076 != INVALID_CONTEXT)) { 14077 struct tsbmiss *tsbmp; 14078 14079 tsbmp = &tsbmiss_area[CPU->cpu_id]; 14080 ASSERT(sfmmup == tsbmp->usfmmup); 14081 BT_SET(tsbmp->shmermap, rid); 14082 if (r_pgszc > TTE64K) { 14083 tsbmp->uhat_rtteflags |= tteflag; 14084 } 14085 14086 } 14087 kpreempt_enable(); 14088 14089 sfmmu_hat_exit(hatlockp); 14090 ASSERT((hat_region_cookie_t)((uint64_t)rid) != 14091 HAT_INVALID_REGION_COOKIE); 14092 } else { 14093 hatlockp = sfmmu_hat_enter(sfmmup); 14094 SF_RGNMAP_ADD(sfmmup->sfmmu_ismregion_map, rid); 14095 sfmmu_hat_exit(hatlockp); 14096 } 14097 ASSERT(rid < maxids); 14098 14099 if (r_type == SFMMU_REGION_ISM) { 14100 sfmmu_find_scd(sfmmup); 14101 } 14102 return ((hat_region_cookie_t)((uint64_t)rid)); 14103 } 14104 14105 ASSERT(new_rgnp == NULL); 14106 14107 if (*busyrgnsp >= maxids) { 14108 mutex_exit(&srdp->srd_mutex); 14109 return (HAT_INVALID_REGION_COOKIE); 14110 } 14111 14112 ASSERT(MUTEX_HELD(&srdp->srd_mutex)); 14113 if (*freelistp != NULL) { 14114 rgnp = *freelistp; 14115 *freelistp = rgnp->rgn_next; 14116 ASSERT(rgnp->rgn_id < *nextidp); 14117 ASSERT(rgnp->rgn_id < maxids); 14118 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE); 14119 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) 14120 == r_type); 14121 ASSERT(rarrp[rgnp->rgn_id] == rgnp); 14122 ASSERT(rgnp->rgn_hmeflags == 0); 14123 } else { 14124 /* 14125 * release local locks before memory allocation. 14126 */ 14127 mutex_exit(&srdp->srd_mutex); 14128 14129 new_rgnp = kmem_cache_alloc(region_cache, KM_SLEEP); 14130 14131 mutex_enter(&srdp->srd_mutex); 14132 for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL; 14133 rgnp = rgnp->rgn_hash) { 14134 if (rgnp->rgn_saddr == r_saddr && 14135 rgnp->rgn_size == r_size && 14136 rgnp->rgn_obj == r_obj && 14137 rgnp->rgn_objoff == r_objoff && 14138 rgnp->rgn_perm == r_perm && 14139 rgnp->rgn_pgszc == r_pgszc) { 14140 break; 14141 } 14142 } 14143 if (rgnp != NULL) { 14144 goto rfound; 14145 } 14146 14147 if (*nextidp >= maxids) { 14148 mutex_exit(&srdp->srd_mutex); 14149 goto fail; 14150 } 14151 rgnp = new_rgnp; 14152 new_rgnp = NULL; 14153 rgnp->rgn_id = (*nextidp)++; 14154 ASSERT(rgnp->rgn_id < maxids); 14155 ASSERT(rarrp[rgnp->rgn_id] == NULL); 14156 rarrp[rgnp->rgn_id] = rgnp; 14157 } 14158 14159 ASSERT(rgnp->rgn_sfmmu_head == NULL); 14160 ASSERT(rgnp->rgn_hmeflags == 0); 14161 #ifdef DEBUG 14162 for (i = 0; i < MMU_PAGE_SIZES; i++) { 14163 ASSERT(rgnp->rgn_ttecnt[i] == 0); 14164 } 14165 #endif 14166 rgnp->rgn_saddr = r_saddr; 14167 rgnp->rgn_size = r_size; 14168 rgnp->rgn_obj = r_obj; 14169 rgnp->rgn_objoff = r_objoff; 14170 rgnp->rgn_perm = r_perm; 14171 rgnp->rgn_pgszc = r_pgszc; 14172 rgnp->rgn_flags = r_type; 14173 rgnp->rgn_refcnt = 0; 14174 rgnp->rgn_cb_function = r_cb_function; 14175 rgnp->rgn_hash = srdp->srd_rgnhash[rhash]; 14176 srdp->srd_rgnhash[rhash] = rgnp; 14177 (*busyrgnsp)++; 14178 ASSERT(*busyrgnsp <= maxids); 14179 goto rfound; 14180 14181 fail: 14182 ASSERT(new_rgnp != NULL); 14183 kmem_cache_free(region_cache, new_rgnp); 14184 return (HAT_INVALID_REGION_COOKIE); 14185 } 14186 14187 /* 14188 * This function implements the shared context functionality required 14189 * when detaching a segment from an address space. It must be called 14190 * from hat_unshare() for all D(ISM) segments and from segvn_unmap(), 14191 * for segments with a valid region_cookie. 14192 * It will also be called from all seg_vn routines which change a 14193 * segment's attributes such as segvn_setprot(), segvn_setpagesize(), 14194 * segvn_clrszc() & segvn_advise(), as well as in the case of COW fault 14195 * from segvn_fault(). 14196 */ 14197 void 14198 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags) 14199 { 14200 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 14201 sf_scd_t *scdp; 14202 uint_t rhash; 14203 uint_t rid = (uint_t)((uint64_t)rcookie); 14204 hatlock_t *hatlockp = NULL; 14205 sf_region_t *rgnp; 14206 sf_region_t **prev_rgnpp; 14207 sf_region_t *cur_rgnp; 14208 void *r_obj; 14209 int i; 14210 caddr_t r_saddr; 14211 caddr_t r_eaddr; 14212 size_t r_size; 14213 uchar_t r_pgszc; 14214 uchar_t r_type = flags & HAT_REGION_TYPE_MASK; 14215 14216 ASSERT(sfmmup != ksfmmup); 14217 ASSERT(srdp != NULL); 14218 ASSERT(srdp->srd_refcnt > 0); 14219 ASSERT(!(flags & ~HAT_REGION_TYPE_MASK)); 14220 ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM); 14221 ASSERT(!sfmmup->sfmmu_free || sfmmup->sfmmu_scdp == NULL); 14222 14223 r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM : 14224 SFMMU_REGION_HME; 14225 14226 if (r_type == SFMMU_REGION_ISM) { 14227 ASSERT(SFMMU_IS_ISMRID_VALID(rid)); 14228 ASSERT(rid < SFMMU_MAX_ISM_REGIONS); 14229 rgnp = srdp->srd_ismrgnp[rid]; 14230 } else { 14231 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 14232 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 14233 rgnp = srdp->srd_hmergnp[rid]; 14234 } 14235 ASSERT(rgnp != NULL); 14236 ASSERT(rgnp->rgn_id == rid); 14237 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type); 14238 ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE)); 14239 ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 14240 14241 ASSERT(sfmmup->sfmmu_xhat_provider == NULL); 14242 if (r_type == SFMMU_REGION_HME && sfmmup->sfmmu_as->a_xhat != NULL) { 14243 xhat_unload_callback_all(sfmmup->sfmmu_as, rgnp->rgn_saddr, 14244 rgnp->rgn_size, 0, NULL); 14245 } 14246 14247 if (sfmmup->sfmmu_free) { 14248 ulong_t rttecnt; 14249 r_pgszc = rgnp->rgn_pgszc; 14250 r_size = rgnp->rgn_size; 14251 14252 ASSERT(sfmmup->sfmmu_scdp == NULL); 14253 if (r_type == SFMMU_REGION_ISM) { 14254 SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid); 14255 } else { 14256 /* update shme rgns ttecnt in sfmmu_ttecnt */ 14257 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc); 14258 ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt); 14259 14260 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], 14261 -rttecnt); 14262 14263 SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid); 14264 } 14265 } else if (r_type == SFMMU_REGION_ISM) { 14266 hatlockp = sfmmu_hat_enter(sfmmup); 14267 ASSERT(rid < srdp->srd_next_ismrid); 14268 SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid); 14269 scdp = sfmmup->sfmmu_scdp; 14270 if (scdp != NULL && 14271 SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) { 14272 sfmmu_leave_scd(sfmmup, r_type); 14273 ASSERT(sfmmu_hat_lock_held(sfmmup)); 14274 } 14275 sfmmu_hat_exit(hatlockp); 14276 } else { 14277 ulong_t rttecnt; 14278 r_pgszc = rgnp->rgn_pgszc; 14279 r_saddr = rgnp->rgn_saddr; 14280 r_size = rgnp->rgn_size; 14281 r_eaddr = r_saddr + r_size; 14282 14283 ASSERT(r_type == SFMMU_REGION_HME); 14284 hatlockp = sfmmu_hat_enter(sfmmup); 14285 ASSERT(rid < srdp->srd_next_hmerid); 14286 SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid); 14287 14288 /* 14289 * If region is part of an SCD call sfmmu_leave_scd(). 14290 * Otherwise if process is not exiting and has valid context 14291 * just drop the context on the floor to lose stale TLB 14292 * entries and force the update of tsb miss area to reflect 14293 * the new region map. After that clean our TSB entries. 14294 */ 14295 scdp = sfmmup->sfmmu_scdp; 14296 if (scdp != NULL && 14297 SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) { 14298 sfmmu_leave_scd(sfmmup, r_type); 14299 ASSERT(sfmmu_hat_lock_held(sfmmup)); 14300 } 14301 sfmmu_invalidate_ctx(sfmmup); 14302 14303 i = TTE8K; 14304 while (i < mmu_page_sizes) { 14305 if (rgnp->rgn_ttecnt[i] != 0) { 14306 sfmmu_unload_tsb_range(sfmmup, r_saddr, 14307 r_eaddr, i); 14308 if (i < TTE4M) { 14309 i = TTE4M; 14310 continue; 14311 } else { 14312 break; 14313 } 14314 } 14315 i++; 14316 } 14317 /* Remove the preallocated 1/4 8k ttecnt for 4M regions. */ 14318 if (r_pgszc >= TTE4M) { 14319 rttecnt = r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2); 14320 ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >= 14321 rttecnt); 14322 sfmmup->sfmmu_tsb0_4minflcnt -= rttecnt; 14323 } 14324 14325 /* update shme rgns ttecnt in sfmmu_ttecnt */ 14326 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc); 14327 ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt); 14328 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], -rttecnt); 14329 14330 sfmmu_hat_exit(hatlockp); 14331 if (scdp != NULL && sfmmup->sfmmu_scdp == NULL) { 14332 /* sfmmup left the scd, grow private tsb */ 14333 sfmmu_check_page_sizes(sfmmup, 1); 14334 } else { 14335 sfmmu_check_page_sizes(sfmmup, 0); 14336 } 14337 } 14338 14339 if (r_type == SFMMU_REGION_HME) { 14340 sfmmu_unlink_from_hmeregion(sfmmup, rgnp); 14341 } 14342 14343 r_obj = rgnp->rgn_obj; 14344 if (atomic_add_32_nv((volatile uint_t *)&rgnp->rgn_refcnt, -1)) { 14345 return; 14346 } 14347 14348 /* 14349 * looks like nobody uses this region anymore. Free it. 14350 */ 14351 rhash = RGN_HASH_FUNCTION(r_obj); 14352 mutex_enter(&srdp->srd_mutex); 14353 for (prev_rgnpp = &srdp->srd_rgnhash[rhash]; 14354 (cur_rgnp = *prev_rgnpp) != NULL; 14355 prev_rgnpp = &cur_rgnp->rgn_hash) { 14356 if (cur_rgnp == rgnp && cur_rgnp->rgn_refcnt == 0) { 14357 break; 14358 } 14359 } 14360 14361 if (cur_rgnp == NULL) { 14362 mutex_exit(&srdp->srd_mutex); 14363 return; 14364 } 14365 14366 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type); 14367 *prev_rgnpp = rgnp->rgn_hash; 14368 if (r_type == SFMMU_REGION_ISM) { 14369 rgnp->rgn_flags |= SFMMU_REGION_FREE; 14370 ASSERT(rid < srdp->srd_next_ismrid); 14371 rgnp->rgn_next = srdp->srd_ismrgnfree; 14372 srdp->srd_ismrgnfree = rgnp; 14373 ASSERT(srdp->srd_ismbusyrgns > 0); 14374 srdp->srd_ismbusyrgns--; 14375 mutex_exit(&srdp->srd_mutex); 14376 return; 14377 } 14378 mutex_exit(&srdp->srd_mutex); 14379 14380 /* 14381 * Destroy region's hmeblks. 14382 */ 14383 sfmmu_unload_hmeregion(srdp, rgnp); 14384 14385 rgnp->rgn_hmeflags = 0; 14386 14387 ASSERT(rgnp->rgn_sfmmu_head == NULL); 14388 ASSERT(rgnp->rgn_id == rid); 14389 for (i = 0; i < MMU_PAGE_SIZES; i++) { 14390 rgnp->rgn_ttecnt[i] = 0; 14391 } 14392 rgnp->rgn_flags |= SFMMU_REGION_FREE; 14393 mutex_enter(&srdp->srd_mutex); 14394 ASSERT(rid < srdp->srd_next_hmerid); 14395 rgnp->rgn_next = srdp->srd_hmergnfree; 14396 srdp->srd_hmergnfree = rgnp; 14397 ASSERT(srdp->srd_hmebusyrgns > 0); 14398 srdp->srd_hmebusyrgns--; 14399 mutex_exit(&srdp->srd_mutex); 14400 } 14401 14402 /* 14403 * For now only called for hmeblk regions and not for ISM regions. 14404 */ 14405 void 14406 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie) 14407 { 14408 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 14409 uint_t rid = (uint_t)((uint64_t)rcookie); 14410 sf_region_t *rgnp; 14411 sf_rgn_link_t *rlink; 14412 sf_rgn_link_t *hrlink; 14413 ulong_t rttecnt; 14414 14415 ASSERT(sfmmup != ksfmmup); 14416 ASSERT(srdp != NULL); 14417 ASSERT(srdp->srd_refcnt > 0); 14418 14419 ASSERT(rid < srdp->srd_next_hmerid); 14420 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 14421 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 14422 14423 rgnp = srdp->srd_hmergnp[rid]; 14424 ASSERT(rgnp->rgn_refcnt > 0); 14425 ASSERT(rgnp->rgn_id == rid); 14426 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == SFMMU_REGION_HME); 14427 ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE)); 14428 14429 atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1); 14430 14431 /* LINTED: constant in conditional context */ 14432 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 0); 14433 ASSERT(rlink != NULL); 14434 mutex_enter(&rgnp->rgn_mutex); 14435 ASSERT(rgnp->rgn_sfmmu_head != NULL); 14436 /* LINTED: constant in conditional context */ 14437 SFMMU_HMERID2RLINKP(rgnp->rgn_sfmmu_head, rid, hrlink, 0, 0); 14438 ASSERT(hrlink != NULL); 14439 ASSERT(hrlink->prev == NULL); 14440 rlink->next = rgnp->rgn_sfmmu_head; 14441 rlink->prev = NULL; 14442 hrlink->prev = sfmmup; 14443 /* 14444 * make sure rlink's next field is correct 14445 * before making this link visible. 14446 */ 14447 membar_stst(); 14448 rgnp->rgn_sfmmu_head = sfmmup; 14449 mutex_exit(&rgnp->rgn_mutex); 14450 14451 /* update sfmmu_ttecnt with the shme rgn ttecnt */ 14452 rttecnt = rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc); 14453 atomic_add_long(&sfmmup->sfmmu_ttecnt[rgnp->rgn_pgszc], rttecnt); 14454 /* update tsb0 inflation count */ 14455 if (rgnp->rgn_pgszc >= TTE4M) { 14456 sfmmup->sfmmu_tsb0_4minflcnt += 14457 rgnp->rgn_size >> (TTE_PAGE_SHIFT(TTE8K) + 2); 14458 } 14459 /* 14460 * Update regionid bitmask without hat lock since no other thread 14461 * can update this region bitmask right now. 14462 */ 14463 SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid); 14464 } 14465 14466 /* ARGSUSED */ 14467 static int 14468 sfmmu_rgncache_constructor(void *buf, void *cdrarg, int kmflags) 14469 { 14470 sf_region_t *rgnp = (sf_region_t *)buf; 14471 bzero(buf, sizeof (*rgnp)); 14472 14473 mutex_init(&rgnp->rgn_mutex, NULL, MUTEX_DEFAULT, NULL); 14474 14475 return (0); 14476 } 14477 14478 /* ARGSUSED */ 14479 static void 14480 sfmmu_rgncache_destructor(void *buf, void *cdrarg) 14481 { 14482 sf_region_t *rgnp = (sf_region_t *)buf; 14483 mutex_destroy(&rgnp->rgn_mutex); 14484 } 14485 14486 static int 14487 sfrgnmap_isnull(sf_region_map_t *map) 14488 { 14489 int i; 14490 14491 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) { 14492 if (map->bitmap[i] != 0) { 14493 return (0); 14494 } 14495 } 14496 return (1); 14497 } 14498 14499 static int 14500 sfhmergnmap_isnull(sf_hmeregion_map_t *map) 14501 { 14502 int i; 14503 14504 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) { 14505 if (map->bitmap[i] != 0) { 14506 return (0); 14507 } 14508 } 14509 return (1); 14510 } 14511 14512 #ifdef DEBUG 14513 static void 14514 check_scd_sfmmu_list(sfmmu_t **headp, sfmmu_t *sfmmup, int onlist) 14515 { 14516 sfmmu_t *sp; 14517 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 14518 14519 for (sp = *headp; sp != NULL; sp = sp->sfmmu_scd_link.next) { 14520 ASSERT(srdp == sp->sfmmu_srdp); 14521 if (sp == sfmmup) { 14522 if (onlist) { 14523 return; 14524 } else { 14525 panic("shctx: sfmmu 0x%p found on scd" 14526 "list 0x%p", (void *)sfmmup, 14527 (void *)*headp); 14528 } 14529 } 14530 } 14531 if (onlist) { 14532 panic("shctx: sfmmu 0x%p not found on scd list 0x%p", 14533 (void *)sfmmup, (void *)*headp); 14534 } else { 14535 return; 14536 } 14537 } 14538 #else /* DEBUG */ 14539 #define check_scd_sfmmu_list(headp, sfmmup, onlist) 14540 #endif /* DEBUG */ 14541 14542 /* 14543 * Removes an sfmmu from the SCD sfmmu list. 14544 */ 14545 static void 14546 sfmmu_from_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup) 14547 { 14548 ASSERT(sfmmup->sfmmu_srdp != NULL); 14549 check_scd_sfmmu_list(headp, sfmmup, 1); 14550 if (sfmmup->sfmmu_scd_link.prev != NULL) { 14551 ASSERT(*headp != sfmmup); 14552 sfmmup->sfmmu_scd_link.prev->sfmmu_scd_link.next = 14553 sfmmup->sfmmu_scd_link.next; 14554 } else { 14555 ASSERT(*headp == sfmmup); 14556 *headp = sfmmup->sfmmu_scd_link.next; 14557 } 14558 if (sfmmup->sfmmu_scd_link.next != NULL) { 14559 sfmmup->sfmmu_scd_link.next->sfmmu_scd_link.prev = 14560 sfmmup->sfmmu_scd_link.prev; 14561 } 14562 } 14563 14564 14565 /* 14566 * Adds an sfmmu to the start of the queue. 14567 */ 14568 static void 14569 sfmmu_to_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup) 14570 { 14571 check_scd_sfmmu_list(headp, sfmmup, 0); 14572 sfmmup->sfmmu_scd_link.prev = NULL; 14573 sfmmup->sfmmu_scd_link.next = *headp; 14574 if (*headp != NULL) 14575 (*headp)->sfmmu_scd_link.prev = sfmmup; 14576 *headp = sfmmup; 14577 } 14578 14579 /* 14580 * Remove an scd from the start of the queue. 14581 */ 14582 static void 14583 sfmmu_remove_scd(sf_scd_t **headp, sf_scd_t *scdp) 14584 { 14585 if (scdp->scd_prev != NULL) { 14586 ASSERT(*headp != scdp); 14587 scdp->scd_prev->scd_next = scdp->scd_next; 14588 } else { 14589 ASSERT(*headp == scdp); 14590 *headp = scdp->scd_next; 14591 } 14592 14593 if (scdp->scd_next != NULL) { 14594 scdp->scd_next->scd_prev = scdp->scd_prev; 14595 } 14596 } 14597 14598 /* 14599 * Add an scd to the start of the queue. 14600 */ 14601 static void 14602 sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *scdp) 14603 { 14604 scdp->scd_prev = NULL; 14605 scdp->scd_next = *headp; 14606 if (*headp != NULL) { 14607 (*headp)->scd_prev = scdp; 14608 } 14609 *headp = scdp; 14610 } 14611 14612 static int 14613 sfmmu_alloc_scd_tsbs(sf_srd_t *srdp, sf_scd_t *scdp) 14614 { 14615 uint_t rid; 14616 uint_t i; 14617 uint_t j; 14618 ulong_t w; 14619 sf_region_t *rgnp; 14620 ulong_t tte8k_cnt = 0; 14621 ulong_t tte4m_cnt = 0; 14622 uint_t tsb_szc; 14623 sfmmu_t *scsfmmup = scdp->scd_sfmmup; 14624 sfmmu_t *ism_hatid; 14625 struct tsb_info *newtsb; 14626 int szc; 14627 14628 ASSERT(srdp != NULL); 14629 14630 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) { 14631 if ((w = scdp->scd_region_map.bitmap[i]) == 0) { 14632 continue; 14633 } 14634 j = 0; 14635 while (w) { 14636 if (!(w & 0x1)) { 14637 j++; 14638 w >>= 1; 14639 continue; 14640 } 14641 rid = (i << BT_ULSHIFT) | j; 14642 j++; 14643 w >>= 1; 14644 14645 if (rid < SFMMU_MAX_HME_REGIONS) { 14646 rgnp = srdp->srd_hmergnp[rid]; 14647 ASSERT(rgnp->rgn_id == rid); 14648 ASSERT(rgnp->rgn_refcnt > 0); 14649 14650 if (rgnp->rgn_pgszc < TTE4M) { 14651 tte8k_cnt += rgnp->rgn_size >> 14652 TTE_PAGE_SHIFT(TTE8K); 14653 } else { 14654 ASSERT(rgnp->rgn_pgszc >= TTE4M); 14655 tte4m_cnt += rgnp->rgn_size >> 14656 TTE_PAGE_SHIFT(TTE4M); 14657 /* 14658 * Inflate SCD tsb0 by preallocating 14659 * 1/4 8k ttecnt for 4M regions to 14660 * allow for lgpg alloc failure. 14661 */ 14662 tte8k_cnt += rgnp->rgn_size >> 14663 (TTE_PAGE_SHIFT(TTE8K) + 2); 14664 } 14665 } else { 14666 rid -= SFMMU_MAX_HME_REGIONS; 14667 rgnp = srdp->srd_ismrgnp[rid]; 14668 ASSERT(rgnp->rgn_id == rid); 14669 ASSERT(rgnp->rgn_refcnt > 0); 14670 14671 ism_hatid = (sfmmu_t *)rgnp->rgn_obj; 14672 ASSERT(ism_hatid->sfmmu_ismhat); 14673 14674 for (szc = 0; szc < TTE4M; szc++) { 14675 tte8k_cnt += 14676 ism_hatid->sfmmu_ttecnt[szc] << 14677 TTE_BSZS_SHIFT(szc); 14678 } 14679 14680 ASSERT(rgnp->rgn_pgszc >= TTE4M); 14681 if (rgnp->rgn_pgszc >= TTE4M) { 14682 tte4m_cnt += rgnp->rgn_size >> 14683 TTE_PAGE_SHIFT(TTE4M); 14684 } 14685 } 14686 } 14687 } 14688 14689 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt); 14690 14691 /* Allocate both the SCD TSBs here. */ 14692 if (sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb, 14693 tsb_szc, TSB8K|TSB64K|TSB512K, TSB_ALLOC, scsfmmup) && 14694 (tsb_szc <= TSB_4M_SZCODE || 14695 sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb, 14696 TSB_4M_SZCODE, TSB8K|TSB64K|TSB512K, 14697 TSB_ALLOC, scsfmmup))) { 14698 14699 SFMMU_STAT(sf_scd_1sttsb_allocfail); 14700 return (TSB_ALLOCFAIL); 14701 } else { 14702 scsfmmup->sfmmu_tsb->tsb_flags |= TSB_SHAREDCTX; 14703 14704 if (tte4m_cnt) { 14705 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt); 14706 if (sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, 14707 TSB4M|TSB32M|TSB256M, TSB_ALLOC, scsfmmup) && 14708 (tsb_szc <= TSB_4M_SZCODE || 14709 sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE, 14710 TSB4M|TSB32M|TSB256M, 14711 TSB_ALLOC, scsfmmup))) { 14712 /* 14713 * If we fail to allocate the 2nd shared tsb, 14714 * just free the 1st tsb, return failure. 14715 */ 14716 sfmmu_tsbinfo_free(scsfmmup->sfmmu_tsb); 14717 SFMMU_STAT(sf_scd_2ndtsb_allocfail); 14718 return (TSB_ALLOCFAIL); 14719 } else { 14720 ASSERT(scsfmmup->sfmmu_tsb->tsb_next == NULL); 14721 newtsb->tsb_flags |= TSB_SHAREDCTX; 14722 scsfmmup->sfmmu_tsb->tsb_next = newtsb; 14723 SFMMU_STAT(sf_scd_2ndtsb_alloc); 14724 } 14725 } 14726 SFMMU_STAT(sf_scd_1sttsb_alloc); 14727 } 14728 return (TSB_SUCCESS); 14729 } 14730 14731 static void 14732 sfmmu_free_scd_tsbs(sfmmu_t *scd_sfmmu) 14733 { 14734 while (scd_sfmmu->sfmmu_tsb != NULL) { 14735 struct tsb_info *next = scd_sfmmu->sfmmu_tsb->tsb_next; 14736 sfmmu_tsbinfo_free(scd_sfmmu->sfmmu_tsb); 14737 scd_sfmmu->sfmmu_tsb = next; 14738 } 14739 } 14740 14741 /* 14742 * Link the sfmmu onto the hme region list. 14743 */ 14744 void 14745 sfmmu_link_to_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp) 14746 { 14747 uint_t rid; 14748 sf_rgn_link_t *rlink; 14749 sfmmu_t *head; 14750 sf_rgn_link_t *hrlink; 14751 14752 rid = rgnp->rgn_id; 14753 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 14754 14755 /* LINTED: constant in conditional context */ 14756 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 1); 14757 ASSERT(rlink != NULL); 14758 mutex_enter(&rgnp->rgn_mutex); 14759 if ((head = rgnp->rgn_sfmmu_head) == NULL) { 14760 rlink->next = NULL; 14761 rlink->prev = NULL; 14762 /* 14763 * make sure rlink's next field is NULL 14764 * before making this link visible. 14765 */ 14766 membar_stst(); 14767 rgnp->rgn_sfmmu_head = sfmmup; 14768 } else { 14769 /* LINTED: constant in conditional context */ 14770 SFMMU_HMERID2RLINKP(head, rid, hrlink, 0, 0); 14771 ASSERT(hrlink != NULL); 14772 ASSERT(hrlink->prev == NULL); 14773 rlink->next = head; 14774 rlink->prev = NULL; 14775 hrlink->prev = sfmmup; 14776 /* 14777 * make sure rlink's next field is correct 14778 * before making this link visible. 14779 */ 14780 membar_stst(); 14781 rgnp->rgn_sfmmu_head = sfmmup; 14782 } 14783 mutex_exit(&rgnp->rgn_mutex); 14784 } 14785 14786 /* 14787 * Unlink the sfmmu from the hme region list. 14788 */ 14789 void 14790 sfmmu_unlink_from_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp) 14791 { 14792 uint_t rid; 14793 sf_rgn_link_t *rlink; 14794 14795 rid = rgnp->rgn_id; 14796 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 14797 14798 /* LINTED: constant in conditional context */ 14799 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0); 14800 ASSERT(rlink != NULL); 14801 mutex_enter(&rgnp->rgn_mutex); 14802 if (rgnp->rgn_sfmmu_head == sfmmup) { 14803 sfmmu_t *next = rlink->next; 14804 rgnp->rgn_sfmmu_head = next; 14805 /* 14806 * if we are stopped by xc_attention() after this 14807 * point the forward link walking in 14808 * sfmmu_rgntlb_demap() will work correctly since the 14809 * head correctly points to the next element. 14810 */ 14811 membar_stst(); 14812 rlink->next = NULL; 14813 ASSERT(rlink->prev == NULL); 14814 if (next != NULL) { 14815 sf_rgn_link_t *nrlink; 14816 /* LINTED: constant in conditional context */ 14817 SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0); 14818 ASSERT(nrlink != NULL); 14819 ASSERT(nrlink->prev == sfmmup); 14820 nrlink->prev = NULL; 14821 } 14822 } else { 14823 sfmmu_t *next = rlink->next; 14824 sfmmu_t *prev = rlink->prev; 14825 sf_rgn_link_t *prlink; 14826 14827 ASSERT(prev != NULL); 14828 /* LINTED: constant in conditional context */ 14829 SFMMU_HMERID2RLINKP(prev, rid, prlink, 0, 0); 14830 ASSERT(prlink != NULL); 14831 ASSERT(prlink->next == sfmmup); 14832 prlink->next = next; 14833 /* 14834 * if we are stopped by xc_attention() 14835 * after this point the forward link walking 14836 * will work correctly since the prev element 14837 * correctly points to the next element. 14838 */ 14839 membar_stst(); 14840 rlink->next = NULL; 14841 rlink->prev = NULL; 14842 if (next != NULL) { 14843 sf_rgn_link_t *nrlink; 14844 /* LINTED: constant in conditional context */ 14845 SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0); 14846 ASSERT(nrlink != NULL); 14847 ASSERT(nrlink->prev == sfmmup); 14848 nrlink->prev = prev; 14849 } 14850 } 14851 mutex_exit(&rgnp->rgn_mutex); 14852 } 14853 14854 /* 14855 * Link scd sfmmu onto ism or hme region list for each region in the 14856 * scd region map. 14857 */ 14858 void 14859 sfmmu_link_scd_to_regions(sf_srd_t *srdp, sf_scd_t *scdp) 14860 { 14861 uint_t rid; 14862 uint_t i; 14863 uint_t j; 14864 ulong_t w; 14865 sf_region_t *rgnp; 14866 sfmmu_t *scsfmmup; 14867 14868 scsfmmup = scdp->scd_sfmmup; 14869 ASSERT(scsfmmup->sfmmu_scdhat); 14870 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) { 14871 if ((w = scdp->scd_region_map.bitmap[i]) == 0) { 14872 continue; 14873 } 14874 j = 0; 14875 while (w) { 14876 if (!(w & 0x1)) { 14877 j++; 14878 w >>= 1; 14879 continue; 14880 } 14881 rid = (i << BT_ULSHIFT) | j; 14882 j++; 14883 w >>= 1; 14884 14885 if (rid < SFMMU_MAX_HME_REGIONS) { 14886 rgnp = srdp->srd_hmergnp[rid]; 14887 ASSERT(rgnp->rgn_id == rid); 14888 ASSERT(rgnp->rgn_refcnt > 0); 14889 sfmmu_link_to_hmeregion(scsfmmup, rgnp); 14890 } else { 14891 sfmmu_t *ism_hatid = NULL; 14892 ism_ment_t *ism_ment; 14893 rid -= SFMMU_MAX_HME_REGIONS; 14894 rgnp = srdp->srd_ismrgnp[rid]; 14895 ASSERT(rgnp->rgn_id == rid); 14896 ASSERT(rgnp->rgn_refcnt > 0); 14897 14898 ism_hatid = (sfmmu_t *)rgnp->rgn_obj; 14899 ASSERT(ism_hatid->sfmmu_ismhat); 14900 ism_ment = &scdp->scd_ism_links[rid]; 14901 ism_ment->iment_hat = scsfmmup; 14902 ism_ment->iment_base_va = rgnp->rgn_saddr; 14903 mutex_enter(&ism_mlist_lock); 14904 iment_add(ism_ment, ism_hatid); 14905 mutex_exit(&ism_mlist_lock); 14906 14907 } 14908 } 14909 } 14910 } 14911 /* 14912 * Unlink scd sfmmu from ism or hme region list for each region in the 14913 * scd region map. 14914 */ 14915 void 14916 sfmmu_unlink_scd_from_regions(sf_srd_t *srdp, sf_scd_t *scdp) 14917 { 14918 uint_t rid; 14919 uint_t i; 14920 uint_t j; 14921 ulong_t w; 14922 sf_region_t *rgnp; 14923 sfmmu_t *scsfmmup; 14924 14925 scsfmmup = scdp->scd_sfmmup; 14926 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) { 14927 if ((w = scdp->scd_region_map.bitmap[i]) == 0) { 14928 continue; 14929 } 14930 j = 0; 14931 while (w) { 14932 if (!(w & 0x1)) { 14933 j++; 14934 w >>= 1; 14935 continue; 14936 } 14937 rid = (i << BT_ULSHIFT) | j; 14938 j++; 14939 w >>= 1; 14940 14941 if (rid < SFMMU_MAX_HME_REGIONS) { 14942 rgnp = srdp->srd_hmergnp[rid]; 14943 ASSERT(rgnp->rgn_id == rid); 14944 ASSERT(rgnp->rgn_refcnt > 0); 14945 sfmmu_unlink_from_hmeregion(scsfmmup, 14946 rgnp); 14947 14948 } else { 14949 sfmmu_t *ism_hatid = NULL; 14950 ism_ment_t *ism_ment; 14951 rid -= SFMMU_MAX_HME_REGIONS; 14952 rgnp = srdp->srd_ismrgnp[rid]; 14953 ASSERT(rgnp->rgn_id == rid); 14954 ASSERT(rgnp->rgn_refcnt > 0); 14955 14956 ism_hatid = (sfmmu_t *)rgnp->rgn_obj; 14957 ASSERT(ism_hatid->sfmmu_ismhat); 14958 ism_ment = &scdp->scd_ism_links[rid]; 14959 ASSERT(ism_ment->iment_hat == scdp->scd_sfmmup); 14960 ASSERT(ism_ment->iment_base_va == 14961 rgnp->rgn_saddr); 14962 ism_ment->iment_hat = NULL; 14963 ism_ment->iment_base_va = 0; 14964 mutex_enter(&ism_mlist_lock); 14965 iment_sub(ism_ment, ism_hatid); 14966 mutex_exit(&ism_mlist_lock); 14967 14968 } 14969 } 14970 } 14971 } 14972 /* 14973 * Allocates and initialises a new SCD structure, this is called with 14974 * the srd_scd_mutex held and returns with the reference count 14975 * initialised to 1. 14976 */ 14977 static sf_scd_t * 14978 sfmmu_alloc_scd(sf_srd_t *srdp, sf_region_map_t *new_map) 14979 { 14980 sf_scd_t *new_scdp; 14981 sfmmu_t *scsfmmup; 14982 int i; 14983 14984 ASSERT(MUTEX_HELD(&srdp->srd_scd_mutex)); 14985 new_scdp = kmem_cache_alloc(scd_cache, KM_SLEEP); 14986 14987 scsfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP); 14988 new_scdp->scd_sfmmup = scsfmmup; 14989 scsfmmup->sfmmu_srdp = srdp; 14990 scsfmmup->sfmmu_scdp = new_scdp; 14991 scsfmmup->sfmmu_tsb0_4minflcnt = 0; 14992 scsfmmup->sfmmu_scdhat = 1; 14993 CPUSET_ALL(scsfmmup->sfmmu_cpusran); 14994 bzero(scsfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE); 14995 14996 ASSERT(max_mmu_ctxdoms > 0); 14997 for (i = 0; i < max_mmu_ctxdoms; i++) { 14998 scsfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT; 14999 scsfmmup->sfmmu_ctxs[i].gnum = 0; 15000 } 15001 15002 for (i = 0; i < MMU_PAGE_SIZES; i++) { 15003 new_scdp->scd_rttecnt[i] = 0; 15004 } 15005 15006 new_scdp->scd_region_map = *new_map; 15007 new_scdp->scd_refcnt = 1; 15008 if (sfmmu_alloc_scd_tsbs(srdp, new_scdp) != TSB_SUCCESS) { 15009 kmem_cache_free(scd_cache, new_scdp); 15010 kmem_cache_free(sfmmuid_cache, scsfmmup); 15011 return (NULL); 15012 } 15013 if (&mmu_init_scd) { 15014 mmu_init_scd(new_scdp); 15015 } 15016 return (new_scdp); 15017 } 15018 15019 /* 15020 * The first phase of a process joining an SCD. The hat structure is 15021 * linked to the SCD queue and then the HAT_JOIN_SCD sfmmu flag is set 15022 * and a cross-call with context invalidation is used to cause the 15023 * remaining work to be carried out in the sfmmu_tsbmiss_exception() 15024 * routine. 15025 */ 15026 static void 15027 sfmmu_join_scd(sf_scd_t *scdp, sfmmu_t *sfmmup) 15028 { 15029 hatlock_t *hatlockp; 15030 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 15031 int i; 15032 sf_scd_t *old_scdp; 15033 15034 ASSERT(srdp != NULL); 15035 ASSERT(scdp != NULL); 15036 ASSERT(scdp->scd_refcnt > 0); 15037 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 15038 15039 if ((old_scdp = sfmmup->sfmmu_scdp) != NULL) { 15040 ASSERT(old_scdp != scdp); 15041 15042 mutex_enter(&old_scdp->scd_mutex); 15043 sfmmu_from_scd_list(&old_scdp->scd_sf_list, sfmmup); 15044 mutex_exit(&old_scdp->scd_mutex); 15045 /* 15046 * sfmmup leaves the old scd. Update sfmmu_ttecnt to 15047 * include the shme rgn ttecnt for rgns that 15048 * were in the old SCD 15049 */ 15050 for (i = 0; i < mmu_page_sizes; i++) { 15051 ASSERT(sfmmup->sfmmu_scdrttecnt[i] == 15052 old_scdp->scd_rttecnt[i]); 15053 atomic_add_long(&sfmmup->sfmmu_ttecnt[i], 15054 sfmmup->sfmmu_scdrttecnt[i]); 15055 } 15056 } 15057 15058 /* 15059 * Move sfmmu to the scd lists. 15060 */ 15061 mutex_enter(&scdp->scd_mutex); 15062 sfmmu_to_scd_list(&scdp->scd_sf_list, sfmmup); 15063 mutex_exit(&scdp->scd_mutex); 15064 SF_SCD_INCR_REF(scdp); 15065 15066 hatlockp = sfmmu_hat_enter(sfmmup); 15067 /* 15068 * For a multi-thread process, we must stop 15069 * all the other threads before joining the scd. 15070 */ 15071 15072 SFMMU_FLAGS_SET(sfmmup, HAT_JOIN_SCD); 15073 15074 sfmmu_invalidate_ctx(sfmmup); 15075 sfmmup->sfmmu_scdp = scdp; 15076 15077 /* 15078 * Copy scd_rttecnt into sfmmup's sfmmu_scdrttecnt, and update 15079 * sfmmu_ttecnt to not include the rgn ttecnt just joined in SCD. 15080 */ 15081 for (i = 0; i < mmu_page_sizes; i++) { 15082 sfmmup->sfmmu_scdrttecnt[i] = scdp->scd_rttecnt[i]; 15083 ASSERT(sfmmup->sfmmu_ttecnt[i] >= scdp->scd_rttecnt[i]); 15084 atomic_add_long(&sfmmup->sfmmu_ttecnt[i], 15085 -sfmmup->sfmmu_scdrttecnt[i]); 15086 } 15087 /* update tsb0 inflation count */ 15088 if (old_scdp != NULL) { 15089 sfmmup->sfmmu_tsb0_4minflcnt += 15090 old_scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt; 15091 } 15092 ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >= 15093 scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt); 15094 sfmmup->sfmmu_tsb0_4minflcnt -= scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt; 15095 15096 sfmmu_hat_exit(hatlockp); 15097 15098 if (old_scdp != NULL) { 15099 SF_SCD_DECR_REF(srdp, old_scdp); 15100 } 15101 15102 } 15103 15104 /* 15105 * This routine is called by a process to become part of an SCD. It is called 15106 * from sfmmu_tsbmiss_exception() once most of the initial work has been 15107 * done by sfmmu_join_scd(). This routine must not drop the hat lock. 15108 */ 15109 static void 15110 sfmmu_finish_join_scd(sfmmu_t *sfmmup) 15111 { 15112 struct tsb_info *tsbinfop; 15113 15114 ASSERT(sfmmu_hat_lock_held(sfmmup)); 15115 ASSERT(sfmmup->sfmmu_scdp != NULL); 15116 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)); 15117 ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)); 15118 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)); 15119 15120 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; 15121 tsbinfop = tsbinfop->tsb_next) { 15122 if (tsbinfop->tsb_flags & TSB_SWAPPED) { 15123 continue; 15124 } 15125 ASSERT(!(tsbinfop->tsb_flags & TSB_RELOC_FLAG)); 15126 15127 sfmmu_inv_tsb(tsbinfop->tsb_va, 15128 TSB_BYTES(tsbinfop->tsb_szc)); 15129 } 15130 15131 /* Set HAT_CTX1_FLAG for all SCD ISMs */ 15132 sfmmu_ism_hatflags(sfmmup, 1); 15133 15134 SFMMU_STAT(sf_join_scd); 15135 } 15136 15137 /* 15138 * This routine is called in order to check if there is an SCD which matches 15139 * the process's region map if not then a new SCD may be created. 15140 */ 15141 static void 15142 sfmmu_find_scd(sfmmu_t *sfmmup) 15143 { 15144 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 15145 sf_scd_t *scdp, *new_scdp; 15146 int ret; 15147 15148 ASSERT(srdp != NULL); 15149 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 15150 15151 mutex_enter(&srdp->srd_scd_mutex); 15152 for (scdp = srdp->srd_scdp; scdp != NULL; 15153 scdp = scdp->scd_next) { 15154 SF_RGNMAP_EQUAL(&scdp->scd_region_map, 15155 &sfmmup->sfmmu_region_map, ret); 15156 if (ret == 1) { 15157 SF_SCD_INCR_REF(scdp); 15158 mutex_exit(&srdp->srd_scd_mutex); 15159 sfmmu_join_scd(scdp, sfmmup); 15160 ASSERT(scdp->scd_refcnt >= 2); 15161 atomic_add_32((volatile uint32_t *) 15162 &scdp->scd_refcnt, -1); 15163 return; 15164 } else { 15165 /* 15166 * If the sfmmu region map is a subset of the scd 15167 * region map, then the assumption is that this process 15168 * will continue attaching to ISM segments until the 15169 * region maps are equal. 15170 */ 15171 SF_RGNMAP_IS_SUBSET(&scdp->scd_region_map, 15172 &sfmmup->sfmmu_region_map, ret); 15173 if (ret == 1) { 15174 mutex_exit(&srdp->srd_scd_mutex); 15175 return; 15176 } 15177 } 15178 } 15179 15180 ASSERT(scdp == NULL); 15181 /* 15182 * No matching SCD has been found, create a new one. 15183 */ 15184 if ((new_scdp = sfmmu_alloc_scd(srdp, &sfmmup->sfmmu_region_map)) == 15185 NULL) { 15186 mutex_exit(&srdp->srd_scd_mutex); 15187 return; 15188 } 15189 15190 /* 15191 * sfmmu_alloc_scd() returns with a ref count of 1 on the scd. 15192 */ 15193 15194 /* Set scd_rttecnt for shme rgns in SCD */ 15195 sfmmu_set_scd_rttecnt(srdp, new_scdp); 15196 15197 /* 15198 * Link scd onto srd_scdp list and scd sfmmu onto region/iment lists. 15199 */ 15200 sfmmu_link_scd_to_regions(srdp, new_scdp); 15201 sfmmu_add_scd(&srdp->srd_scdp, new_scdp); 15202 SFMMU_STAT_ADD(sf_create_scd, 1); 15203 15204 mutex_exit(&srdp->srd_scd_mutex); 15205 sfmmu_join_scd(new_scdp, sfmmup); 15206 ASSERT(new_scdp->scd_refcnt >= 2); 15207 atomic_add_32((volatile uint32_t *)&new_scdp->scd_refcnt, -1); 15208 } 15209 15210 /* 15211 * This routine is called by a process to remove itself from an SCD. It is 15212 * either called when the processes has detached from a segment or from 15213 * hat_free_start() as a result of calling exit. 15214 */ 15215 static void 15216 sfmmu_leave_scd(sfmmu_t *sfmmup, uchar_t r_type) 15217 { 15218 sf_scd_t *scdp = sfmmup->sfmmu_scdp; 15219 sf_srd_t *srdp = sfmmup->sfmmu_srdp; 15220 hatlock_t *hatlockp = TSB_HASH(sfmmup); 15221 int i; 15222 15223 ASSERT(scdp != NULL); 15224 ASSERT(srdp != NULL); 15225 15226 if (sfmmup->sfmmu_free) { 15227 /* 15228 * If the process is part of an SCD the sfmmu is unlinked 15229 * from scd_sf_list. 15230 */ 15231 mutex_enter(&scdp->scd_mutex); 15232 sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup); 15233 mutex_exit(&scdp->scd_mutex); 15234 /* 15235 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that 15236 * are about to leave the SCD 15237 */ 15238 for (i = 0; i < mmu_page_sizes; i++) { 15239 ASSERT(sfmmup->sfmmu_scdrttecnt[i] == 15240 scdp->scd_rttecnt[i]); 15241 atomic_add_long(&sfmmup->sfmmu_ttecnt[i], 15242 sfmmup->sfmmu_scdrttecnt[i]); 15243 sfmmup->sfmmu_scdrttecnt[i] = 0; 15244 } 15245 sfmmup->sfmmu_scdp = NULL; 15246 15247 SF_SCD_DECR_REF(srdp, scdp); 15248 return; 15249 } 15250 15251 ASSERT(r_type != SFMMU_REGION_ISM || 15252 SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)); 15253 ASSERT(scdp->scd_refcnt); 15254 ASSERT(!sfmmup->sfmmu_free); 15255 ASSERT(sfmmu_hat_lock_held(sfmmup)); 15256 ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock)); 15257 15258 /* 15259 * Wait for ISM maps to be updated. 15260 */ 15261 if (r_type != SFMMU_REGION_ISM) { 15262 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY) && 15263 sfmmup->sfmmu_scdp != NULL) { 15264 cv_wait(&sfmmup->sfmmu_tsb_cv, 15265 HATLOCK_MUTEXP(hatlockp)); 15266 } 15267 15268 if (sfmmup->sfmmu_scdp == NULL) { 15269 sfmmu_hat_exit(hatlockp); 15270 return; 15271 } 15272 SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY); 15273 } 15274 15275 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) { 15276 SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD); 15277 /* 15278 * Since HAT_JOIN_SCD was set our context 15279 * is still invalid. 15280 */ 15281 } else { 15282 /* 15283 * For a multi-thread process, we must stop 15284 * all the other threads before leaving the scd. 15285 */ 15286 15287 sfmmu_invalidate_ctx(sfmmup); 15288 } 15289 15290 /* Clear all the rid's for ISM, delete flags, etc */ 15291 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)); 15292 sfmmu_ism_hatflags(sfmmup, 0); 15293 15294 /* 15295 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that 15296 * are in SCD before this sfmmup leaves the SCD. 15297 */ 15298 for (i = 0; i < mmu_page_sizes; i++) { 15299 ASSERT(sfmmup->sfmmu_scdrttecnt[i] == 15300 scdp->scd_rttecnt[i]); 15301 atomic_add_long(&sfmmup->sfmmu_ttecnt[i], 15302 sfmmup->sfmmu_scdrttecnt[i]); 15303 sfmmup->sfmmu_scdrttecnt[i] = 0; 15304 /* update ismttecnt to include SCD ism before hat leaves SCD */ 15305 sfmmup->sfmmu_ismttecnt[i] += sfmmup->sfmmu_scdismttecnt[i]; 15306 sfmmup->sfmmu_scdismttecnt[i] = 0; 15307 } 15308 /* update tsb0 inflation count */ 15309 sfmmup->sfmmu_tsb0_4minflcnt += scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt; 15310 15311 if (r_type != SFMMU_REGION_ISM) { 15312 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY); 15313 } 15314 sfmmup->sfmmu_scdp = NULL; 15315 15316 sfmmu_hat_exit(hatlockp); 15317 15318 /* 15319 * Unlink sfmmu from scd_sf_list this can be done without holding 15320 * the hat lock as we hold the sfmmu_as lock which prevents 15321 * hat_join_region from adding this thread to the scd again. Other 15322 * threads check if sfmmu_scdp is NULL under hat lock and if it's NULL 15323 * they won't get here, since sfmmu_leave_scd() clears sfmmu_scdp 15324 * while holding the hat lock. 15325 */ 15326 mutex_enter(&scdp->scd_mutex); 15327 sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup); 15328 mutex_exit(&scdp->scd_mutex); 15329 SFMMU_STAT(sf_leave_scd); 15330 15331 SF_SCD_DECR_REF(srdp, scdp); 15332 hatlockp = sfmmu_hat_enter(sfmmup); 15333 15334 } 15335 15336 /* 15337 * Unlink and free up an SCD structure with a reference count of 0. 15338 */ 15339 static void 15340 sfmmu_destroy_scd(sf_srd_t *srdp, sf_scd_t *scdp, sf_region_map_t *scd_rmap) 15341 { 15342 sfmmu_t *scsfmmup; 15343 sf_scd_t *sp; 15344 hatlock_t *shatlockp; 15345 int i, ret; 15346 15347 mutex_enter(&srdp->srd_scd_mutex); 15348 for (sp = srdp->srd_scdp; sp != NULL; sp = sp->scd_next) { 15349 if (sp == scdp) 15350 break; 15351 } 15352 if (sp == NULL || sp->scd_refcnt) { 15353 mutex_exit(&srdp->srd_scd_mutex); 15354 return; 15355 } 15356 15357 /* 15358 * It is possible that the scd has been freed and reallocated with a 15359 * different region map while we've been waiting for the srd_scd_mutex. 15360 */ 15361 SF_RGNMAP_EQUAL(scd_rmap, &sp->scd_region_map, ret); 15362 if (ret != 1) { 15363 mutex_exit(&srdp->srd_scd_mutex); 15364 return; 15365 } 15366 15367 ASSERT(scdp->scd_sf_list == NULL); 15368 /* 15369 * Unlink scd from srd_scdp list. 15370 */ 15371 sfmmu_remove_scd(&srdp->srd_scdp, scdp); 15372 mutex_exit(&srdp->srd_scd_mutex); 15373 15374 sfmmu_unlink_scd_from_regions(srdp, scdp); 15375 15376 /* Clear shared context tsb and release ctx */ 15377 scsfmmup = scdp->scd_sfmmup; 15378 15379 /* 15380 * create a barrier so that scd will not be destroyed 15381 * if other thread still holds the same shared hat lock. 15382 * E.g., sfmmu_tsbmiss_exception() needs to acquire the 15383 * shared hat lock before checking the shared tsb reloc flag. 15384 */ 15385 shatlockp = sfmmu_hat_enter(scsfmmup); 15386 sfmmu_hat_exit(shatlockp); 15387 15388 sfmmu_free_scd_tsbs(scsfmmup); 15389 15390 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) { 15391 if (scsfmmup->sfmmu_hmeregion_links[i] != NULL) { 15392 kmem_free(scsfmmup->sfmmu_hmeregion_links[i], 15393 SFMMU_L2_HMERLINKS_SIZE); 15394 scsfmmup->sfmmu_hmeregion_links[i] = NULL; 15395 } 15396 } 15397 kmem_cache_free(sfmmuid_cache, scsfmmup); 15398 kmem_cache_free(scd_cache, scdp); 15399 SFMMU_STAT(sf_destroy_scd); 15400 } 15401 15402 /* 15403 * Modifies the HAT_CTX1_FLAG for each of the ISM segments which correspond to 15404 * bits which are set in the ism_region_map parameter. This flag indicates to 15405 * the tsbmiss handler that mapping for these segments should be loaded using 15406 * the shared context. 15407 */ 15408 static void 15409 sfmmu_ism_hatflags(sfmmu_t *sfmmup, int addflag) 15410 { 15411 sf_scd_t *scdp = sfmmup->sfmmu_scdp; 15412 ism_blk_t *ism_blkp; 15413 ism_map_t *ism_map; 15414 int i, rid; 15415 15416 ASSERT(sfmmup->sfmmu_iblk != NULL); 15417 ASSERT(scdp != NULL); 15418 /* 15419 * Note that the caller either set HAT_ISMBUSY flag or checked 15420 * under hat lock that HAT_ISMBUSY was not set by another thread. 15421 */ 15422 ASSERT(sfmmu_hat_lock_held(sfmmup)); 15423 15424 ism_blkp = sfmmup->sfmmu_iblk; 15425 while (ism_blkp != NULL) { 15426 ism_map = ism_blkp->iblk_maps; 15427 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) { 15428 rid = ism_map[i].imap_rid; 15429 if (rid == SFMMU_INVALID_ISMRID) { 15430 continue; 15431 } 15432 ASSERT(rid >= 0 && rid < SFMMU_MAX_ISM_REGIONS); 15433 if (SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid) && 15434 addflag) { 15435 ism_map[i].imap_hatflags |= 15436 HAT_CTX1_FLAG; 15437 } else { 15438 ism_map[i].imap_hatflags &= 15439 ~HAT_CTX1_FLAG; 15440 } 15441 } 15442 ism_blkp = ism_blkp->iblk_next; 15443 } 15444 } 15445 15446 static int 15447 sfmmu_srd_lock_held(sf_srd_t *srdp) 15448 { 15449 return (MUTEX_HELD(&srdp->srd_mutex)); 15450 } 15451 15452 /* ARGSUSED */ 15453 static int 15454 sfmmu_scdcache_constructor(void *buf, void *cdrarg, int kmflags) 15455 { 15456 sf_scd_t *scdp = (sf_scd_t *)buf; 15457 15458 bzero(buf, sizeof (sf_scd_t)); 15459 mutex_init(&scdp->scd_mutex, NULL, MUTEX_DEFAULT, NULL); 15460 return (0); 15461 } 15462 15463 /* ARGSUSED */ 15464 static void 15465 sfmmu_scdcache_destructor(void *buf, void *cdrarg) 15466 { 15467 sf_scd_t *scdp = (sf_scd_t *)buf; 15468 15469 mutex_destroy(&scdp->scd_mutex); 15470 } 15471 15472 /* 15473 * The listp parameter is a pointer to a list of hmeblks which are partially 15474 * freed as result of calling sfmmu_hblk_hash_rm(), the last phase of the 15475 * freeing process is to cross-call all cpus to ensure that there are no 15476 * remaining cached references. 15477 * 15478 * If the local generation number is less than the global then we can free 15479 * hmeblks which are already on the pending queue as another cpu has completed 15480 * the cross-call. 15481 * 15482 * We cross-call to make sure that there are no threads on other cpus accessing 15483 * these hmblks and then complete the process of freeing them under the 15484 * following conditions: 15485 * The total number of pending hmeblks is greater than the threshold 15486 * The reserve list has fewer than HBLK_RESERVE_CNT hmeblks 15487 * It is at least 1 second since the last time we cross-called 15488 * 15489 * Otherwise, we add the hmeblks to the per-cpu pending queue. 15490 */ 15491 static void 15492 sfmmu_hblks_list_purge(struct hme_blk **listp, int dontfree) 15493 { 15494 struct hme_blk *hblkp, *pr_hblkp = NULL; 15495 int count = 0; 15496 cpuset_t cpuset = cpu_ready_set; 15497 cpu_hme_pend_t *cpuhp; 15498 timestruc_t now; 15499 int one_second_expired = 0; 15500 15501 gethrestime_lasttick(&now); 15502 15503 for (hblkp = *listp; hblkp != NULL; hblkp = hblkp->hblk_next) { 15504 ASSERT(hblkp->hblk_shw_bit == 0); 15505 ASSERT(hblkp->hblk_shared == 0); 15506 count++; 15507 pr_hblkp = hblkp; 15508 } 15509 15510 cpuhp = &cpu_hme_pend[CPU->cpu_seqid]; 15511 mutex_enter(&cpuhp->chp_mutex); 15512 15513 if ((cpuhp->chp_count + count) == 0) { 15514 mutex_exit(&cpuhp->chp_mutex); 15515 return; 15516 } 15517 15518 if ((now.tv_sec - cpuhp->chp_timestamp) > 1) { 15519 one_second_expired = 1; 15520 } 15521 15522 if (!dontfree && (freehblkcnt < HBLK_RESERVE_CNT || 15523 (cpuhp->chp_count + count) > cpu_hme_pend_thresh || 15524 one_second_expired)) { 15525 /* Append global list to local */ 15526 if (pr_hblkp == NULL) { 15527 *listp = cpuhp->chp_listp; 15528 } else { 15529 pr_hblkp->hblk_next = cpuhp->chp_listp; 15530 } 15531 cpuhp->chp_listp = NULL; 15532 cpuhp->chp_count = 0; 15533 cpuhp->chp_timestamp = now.tv_sec; 15534 mutex_exit(&cpuhp->chp_mutex); 15535 15536 kpreempt_disable(); 15537 CPUSET_DEL(cpuset, CPU->cpu_id); 15538 xt_sync(cpuset); 15539 xt_sync(cpuset); 15540 kpreempt_enable(); 15541 15542 /* 15543 * At this stage we know that no trap handlers on other 15544 * cpus can have references to hmeblks on the list. 15545 */ 15546 sfmmu_hblk_free(listp); 15547 } else if (*listp != NULL) { 15548 pr_hblkp->hblk_next = cpuhp->chp_listp; 15549 cpuhp->chp_listp = *listp; 15550 cpuhp->chp_count += count; 15551 *listp = NULL; 15552 mutex_exit(&cpuhp->chp_mutex); 15553 } else { 15554 mutex_exit(&cpuhp->chp_mutex); 15555 } 15556 } 15557 15558 /* 15559 * Add an hmeblk to the the hash list. 15560 */ 15561 void 15562 sfmmu_hblk_hash_add(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp, 15563 uint64_t hblkpa) 15564 { 15565 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 15566 #ifdef DEBUG 15567 if (hmebp->hmeblkp == NULL) { 15568 ASSERT(hmebp->hmeh_nextpa == HMEBLK_ENDPA); 15569 } 15570 #endif /* DEBUG */ 15571 15572 hmeblkp->hblk_nextpa = hmebp->hmeh_nextpa; 15573 /* 15574 * Since the TSB miss handler now does not lock the hash chain before 15575 * walking it, make sure that the hmeblks nextpa is globally visible 15576 * before we make the hmeblk globally visible by updating the chain root 15577 * pointer in the hash bucket. 15578 */ 15579 membar_producer(); 15580 hmebp->hmeh_nextpa = hblkpa; 15581 hmeblkp->hblk_next = hmebp->hmeblkp; 15582 hmebp->hmeblkp = hmeblkp; 15583 15584 } 15585 15586 /* 15587 * This function is the first part of a 2 part process to remove an hmeblk 15588 * from the hash chain. In this phase we unlink the hmeblk from the hash chain 15589 * but leave the next physical pointer unchanged. The hmeblk is then linked onto 15590 * a per-cpu pending list using the virtual address pointer. 15591 * 15592 * TSB miss trap handlers that start after this phase will no longer see 15593 * this hmeblk. TSB miss handlers that still cache this hmeblk in a register 15594 * can still use it for further chain traversal because we haven't yet modifed 15595 * the next physical pointer or freed it. 15596 * 15597 * In the second phase of hmeblk removal we'll issue a barrier xcall before 15598 * we reuse or free this hmeblk. This will make sure all lingering references to 15599 * the hmeblk after first phase disappear before we finally reclaim it. 15600 * This scheme eliminates the need for TSB miss handlers to lock hmeblk chains 15601 * during their traversal. 15602 * 15603 * The hmehash_mutex must be held when calling this function. 15604 * 15605 * Input: 15606 * hmebp - hme hash bucket pointer 15607 * hmeblkp - address of hmeblk to be removed 15608 * pr_hblk - virtual address of previous hmeblkp 15609 * listp - pointer to list of hmeblks linked by virtual address 15610 * free_now flag - indicates that a complete removal from the hash chains 15611 * is necessary. 15612 * 15613 * It is inefficient to use the free_now flag as a cross-call is required to 15614 * remove a single hmeblk from the hash chain but is necessary when hmeblks are 15615 * in short supply. 15616 */ 15617 void 15618 sfmmu_hblk_hash_rm(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp, 15619 struct hme_blk *pr_hblk, struct hme_blk **listp, 15620 int free_now) 15621 { 15622 int shw_size, vshift; 15623 struct hme_blk *shw_hblkp; 15624 uint_t shw_mask, newshw_mask; 15625 caddr_t vaddr; 15626 int size; 15627 cpuset_t cpuset = cpu_ready_set; 15628 15629 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp)); 15630 15631 if (hmebp->hmeblkp == hmeblkp) { 15632 hmebp->hmeh_nextpa = hmeblkp->hblk_nextpa; 15633 hmebp->hmeblkp = hmeblkp->hblk_next; 15634 } else { 15635 pr_hblk->hblk_nextpa = hmeblkp->hblk_nextpa; 15636 pr_hblk->hblk_next = hmeblkp->hblk_next; 15637 } 15638 15639 size = get_hblk_ttesz(hmeblkp); 15640 shw_hblkp = hmeblkp->hblk_shadow; 15641 if (shw_hblkp) { 15642 ASSERT(hblktosfmmu(hmeblkp) != KHATID); 15643 ASSERT(!hmeblkp->hblk_shared); 15644 #ifdef DEBUG 15645 if (mmu_page_sizes == max_mmu_page_sizes) { 15646 ASSERT(size < TTE256M); 15647 } else { 15648 ASSERT(size < TTE4M); 15649 } 15650 #endif /* DEBUG */ 15651 15652 shw_size = get_hblk_ttesz(shw_hblkp); 15653 vaddr = (caddr_t)get_hblk_base(hmeblkp); 15654 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size); 15655 ASSERT(vshift < 8); 15656 /* 15657 * Atomically clear shadow mask bit 15658 */ 15659 do { 15660 shw_mask = shw_hblkp->hblk_shw_mask; 15661 ASSERT(shw_mask & (1 << vshift)); 15662 newshw_mask = shw_mask & ~(1 << vshift); 15663 newshw_mask = cas32(&shw_hblkp->hblk_shw_mask, 15664 shw_mask, newshw_mask); 15665 } while (newshw_mask != shw_mask); 15666 hmeblkp->hblk_shadow = NULL; 15667 } 15668 hmeblkp->hblk_shw_bit = 0; 15669 15670 if (hmeblkp->hblk_shared) { 15671 #ifdef DEBUG 15672 sf_srd_t *srdp; 15673 sf_region_t *rgnp; 15674 uint_t rid; 15675 15676 srdp = hblktosrd(hmeblkp); 15677 ASSERT(srdp != NULL && srdp->srd_refcnt != 0); 15678 rid = hmeblkp->hblk_tag.htag_rid; 15679 ASSERT(SFMMU_IS_SHMERID_VALID(rid)); 15680 ASSERT(rid < SFMMU_MAX_HME_REGIONS); 15681 rgnp = srdp->srd_hmergnp[rid]; 15682 ASSERT(rgnp != NULL); 15683 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid); 15684 #endif /* DEBUG */ 15685 hmeblkp->hblk_shared = 0; 15686 } 15687 if (free_now) { 15688 kpreempt_disable(); 15689 CPUSET_DEL(cpuset, CPU->cpu_id); 15690 xt_sync(cpuset); 15691 xt_sync(cpuset); 15692 kpreempt_enable(); 15693 15694 hmeblkp->hblk_nextpa = HMEBLK_ENDPA; 15695 hmeblkp->hblk_next = NULL; 15696 } else { 15697 /* Append hmeblkp to listp for processing later. */ 15698 hmeblkp->hblk_next = *listp; 15699 *listp = hmeblkp; 15700 } 15701 } 15702 15703 /* 15704 * This routine is called when memory is in short supply and returns a free 15705 * hmeblk of the requested size from the cpu pending lists. 15706 */ 15707 static struct hme_blk * 15708 sfmmu_check_pending_hblks(int size) 15709 { 15710 int i; 15711 struct hme_blk *hmeblkp = NULL, *last_hmeblkp; 15712 int found_hmeblk; 15713 cpuset_t cpuset = cpu_ready_set; 15714 cpu_hme_pend_t *cpuhp; 15715 15716 /* Flush cpu hblk pending queues */ 15717 for (i = 0; i < NCPU; i++) { 15718 cpuhp = &cpu_hme_pend[i]; 15719 if (cpuhp->chp_listp != NULL) { 15720 mutex_enter(&cpuhp->chp_mutex); 15721 if (cpuhp->chp_listp == NULL) { 15722 mutex_exit(&cpuhp->chp_mutex); 15723 continue; 15724 } 15725 found_hmeblk = 0; 15726 last_hmeblkp = NULL; 15727 for (hmeblkp = cpuhp->chp_listp; hmeblkp != NULL; 15728 hmeblkp = hmeblkp->hblk_next) { 15729 if (get_hblk_ttesz(hmeblkp) == size) { 15730 if (last_hmeblkp == NULL) { 15731 cpuhp->chp_listp = 15732 hmeblkp->hblk_next; 15733 } else { 15734 last_hmeblkp->hblk_next = 15735 hmeblkp->hblk_next; 15736 } 15737 ASSERT(cpuhp->chp_count > 0); 15738 cpuhp->chp_count--; 15739 found_hmeblk = 1; 15740 break; 15741 } else { 15742 last_hmeblkp = hmeblkp; 15743 } 15744 } 15745 mutex_exit(&cpuhp->chp_mutex); 15746 15747 if (found_hmeblk) { 15748 kpreempt_disable(); 15749 CPUSET_DEL(cpuset, CPU->cpu_id); 15750 xt_sync(cpuset); 15751 xt_sync(cpuset); 15752 kpreempt_enable(); 15753 return (hmeblkp); 15754 } 15755 } 15756 } 15757 return (NULL); 15758 } 15759