1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /*
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright 2016 Gary Mills
27 * Copyright 2019 Joyent, Inc.
28 */
29
30 /*
31 * VM - Hardware Address Translation management for Spitfire MMU.
32 *
33 * This file implements the machine specific hardware translation
34 * needed by the VM system. The machine independent interface is
35 * described in <vm/hat.h> while the machine dependent interface
36 * and data structures are described in <vm/hat_sfmmu.h>.
37 *
38 * The hat layer manages the address translation hardware as a cache
39 * driven by calls from the higher levels in the VM system.
40 */
41
42 #include <sys/types.h>
43 #include <sys/kstat.h>
44 #include <vm/hat.h>
45 #include <vm/hat_sfmmu.h>
46 #include <vm/page.h>
47 #include <sys/pte.h>
48 #include <sys/systm.h>
49 #include <sys/mman.h>
50 #include <sys/sysmacros.h>
51 #include <sys/machparam.h>
52 #include <sys/vtrace.h>
53 #include <sys/kmem.h>
54 #include <sys/mmu.h>
55 #include <sys/cmn_err.h>
56 #include <sys/cpu.h>
57 #include <sys/cpuvar.h>
58 #include <sys/debug.h>
59 #include <sys/lgrp.h>
60 #include <sys/archsystm.h>
61 #include <sys/machsystm.h>
62 #include <sys/vmsystm.h>
63 #include <vm/as.h>
64 #include <vm/seg.h>
65 #include <vm/seg_kp.h>
66 #include <vm/seg_kmem.h>
67 #include <vm/seg_kpm.h>
68 #include <vm/rm.h>
69 #include <sys/t_lock.h>
70 #include <sys/obpdefs.h>
71 #include <sys/vm_machparam.h>
72 #include <sys/var.h>
73 #include <sys/trap.h>
74 #include <sys/machtrap.h>
75 #include <sys/scb.h>
76 #include <sys/bitmap.h>
77 #include <sys/machlock.h>
78 #include <sys/membar.h>
79 #include <sys/atomic.h>
80 #include <sys/cpu_module.h>
81 #include <sys/prom_debug.h>
82 #include <sys/ksynch.h>
83 #include <sys/mem_config.h>
84 #include <sys/mem_cage.h>
85 #include <vm/vm_dep.h>
86 #include <sys/fpu/fpusystm.h>
87 #include <vm/mach_kpm.h>
88 #include <sys/callb.h>
89
90 #ifdef DEBUG
91 #define SFMMU_VALIDATE_HMERID(hat, rid, saddr, len) \
92 if (SFMMU_IS_SHMERID_VALID(rid)) { \
93 caddr_t _eaddr = (saddr) + (len); \
94 sf_srd_t *_srdp; \
95 sf_region_t *_rgnp; \
96 ASSERT((rid) < SFMMU_MAX_HME_REGIONS); \
97 ASSERT(SF_RGNMAP_TEST(hat->sfmmu_hmeregion_map, rid)); \
98 ASSERT((hat) != ksfmmup); \
99 _srdp = (hat)->sfmmu_srdp; \
100 ASSERT(_srdp != NULL); \
101 ASSERT(_srdp->srd_refcnt != 0); \
102 _rgnp = _srdp->srd_hmergnp[(rid)]; \
103 ASSERT(_rgnp != NULL && _rgnp->rgn_id == rid); \
104 ASSERT(_rgnp->rgn_refcnt != 0); \
105 ASSERT(!(_rgnp->rgn_flags & SFMMU_REGION_FREE)); \
106 ASSERT((_rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == \
107 SFMMU_REGION_HME); \
108 ASSERT((saddr) >= _rgnp->rgn_saddr); \
109 ASSERT((saddr) < _rgnp->rgn_saddr + _rgnp->rgn_size); \
110 ASSERT(_eaddr > _rgnp->rgn_saddr); \
111 ASSERT(_eaddr <= _rgnp->rgn_saddr + _rgnp->rgn_size); \
112 }
113
114 #define SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid) \
115 { \
116 caddr_t _hsva; \
117 caddr_t _heva; \
118 caddr_t _rsva; \
119 caddr_t _reva; \
120 int _ttesz = get_hblk_ttesz(hmeblkp); \
121 int _flagtte; \
122 ASSERT((srdp)->srd_refcnt != 0); \
123 ASSERT((rid) < SFMMU_MAX_HME_REGIONS); \
124 ASSERT((rgnp)->rgn_id == rid); \
125 ASSERT(!((rgnp)->rgn_flags & SFMMU_REGION_FREE)); \
126 ASSERT(((rgnp)->rgn_flags & SFMMU_REGION_TYPE_MASK) == \
127 SFMMU_REGION_HME); \
128 ASSERT(_ttesz <= (rgnp)->rgn_pgszc); \
129 _hsva = (caddr_t)get_hblk_base(hmeblkp); \
130 _heva = get_hblk_endaddr(hmeblkp); \
131 _rsva = (caddr_t)P2ALIGN( \
132 (uintptr_t)(rgnp)->rgn_saddr, HBLK_MIN_BYTES); \
133 _reva = (caddr_t)P2ROUNDUP( \
134 (uintptr_t)((rgnp)->rgn_saddr + (rgnp)->rgn_size), \
135 HBLK_MIN_BYTES); \
136 ASSERT(_hsva >= _rsva); \
137 ASSERT(_hsva < _reva); \
138 ASSERT(_heva > _rsva); \
139 ASSERT(_heva <= _reva); \
140 _flagtte = (_ttesz < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : \
141 _ttesz; \
142 ASSERT(rgnp->rgn_hmeflags & (0x1 << _flagtte)); \
143 }
144
145 #else /* DEBUG */
146 #define SFMMU_VALIDATE_HMERID(hat, rid, addr, len)
147 #define SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)
148 #endif /* DEBUG */
149
150 #if defined(SF_ERRATA_57)
151 extern caddr_t errata57_limit;
152 #endif
153
154 #define HME8BLK_SZ_RND ((roundup(HME8BLK_SZ, sizeof (int64_t))) / \
155 (sizeof (int64_t)))
156 #define HBLK_RESERVE ((struct hme_blk *)hblk_reserve)
157
158 #define HBLK_RESERVE_CNT 128
159 #define HBLK_RESERVE_MIN 20
160
161 static struct hme_blk *freehblkp;
162 static kmutex_t freehblkp_lock;
163 static int freehblkcnt;
164
165 static int64_t hblk_reserve[HME8BLK_SZ_RND];
166 static kmutex_t hblk_reserve_lock;
167 static kthread_t *hblk_reserve_thread;
168
169 static nucleus_hblk8_info_t nucleus_hblk8;
170 static nucleus_hblk1_info_t nucleus_hblk1;
171
172 /*
173 * Data to manage per-cpu hmeblk pending queues, hmeblks are queued here
174 * after the initial phase of removing an hmeblk from the hash chain, see
175 * the detailed comment in sfmmu_hblk_hash_rm() for further details.
176 */
177 static cpu_hme_pend_t *cpu_hme_pend;
178 static uint_t cpu_hme_pend_thresh;
179 /*
180 * SFMMU specific hat functions
181 */
182 void hat_pagecachectl(struct page *, int);
183
184 /* flags for hat_pagecachectl */
185 #define HAT_CACHE 0x1
186 #define HAT_UNCACHE 0x2
187 #define HAT_TMPNC 0x4
188
189 /*
190 * Flag to allow the creation of non-cacheable translations
191 * to system memory. It is off by default. At the moment this
192 * flag is used by the ecache error injector. The error injector
193 * will turn it on when creating such a translation then shut it
194 * off when it's finished.
195 */
196
197 int sfmmu_allow_nc_trans = 0;
198
199 /*
200 * Flag to disable large page support.
201 * value of 1 => disable all large pages.
202 * bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
203 *
204 * For example, use the value 0x4 to disable 512K pages.
205 *
206 */
207 #define LARGE_PAGES_OFF 0x1
208
209 /*
210 * The disable_large_pages and disable_ism_large_pages variables control
211 * hat_memload_array and the page sizes to be used by ISM and the kernel.
212 *
213 * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
214 * are only used to control which OOB pages to use at upper VM segment creation
215 * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
216 * Their values may come from platform or CPU specific code to disable page
217 * sizes that should not be used.
218 *
219 * WARNING: 512K pages are currently not supported for ISM/DISM.
220 */
221 uint_t disable_large_pages = 0;
222 uint_t disable_ism_large_pages = (1 << TTE512K);
223 uint_t disable_auto_data_large_pages = 0;
224 uint_t disable_auto_text_large_pages = 0;
225
226 /*
227 * Private sfmmu data structures for hat management
228 */
229 static struct kmem_cache *sfmmuid_cache;
230 static struct kmem_cache *mmuctxdom_cache;
231
232 /*
233 * Private sfmmu data structures for tsb management
234 */
235 static struct kmem_cache *sfmmu_tsbinfo_cache;
236 static struct kmem_cache *sfmmu_tsb8k_cache;
237 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
238 static vmem_t *kmem_bigtsb_arena;
239 static vmem_t *kmem_tsb_arena;
240
241 /*
242 * sfmmu static variables for hmeblk resource management.
243 */
244 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
245 static struct kmem_cache *sfmmu8_cache;
246 static struct kmem_cache *sfmmu1_cache;
247 static struct kmem_cache *pa_hment_cache;
248
249 static kmutex_t ism_mlist_lock; /* mutex for ism mapping list */
250 /*
251 * private data for ism
252 */
253 static struct kmem_cache *ism_blk_cache;
254 static struct kmem_cache *ism_ment_cache;
255 #define ISMID_STARTADDR NULL
256
257 /*
258 * Region management data structures and function declarations.
259 */
260
261 static void sfmmu_leave_srd(sfmmu_t *);
262 static int sfmmu_srdcache_constructor(void *, void *, int);
263 static void sfmmu_srdcache_destructor(void *, void *);
264 static int sfmmu_rgncache_constructor(void *, void *, int);
265 static void sfmmu_rgncache_destructor(void *, void *);
266 static int sfrgnmap_isnull(sf_region_map_t *);
267 static int sfhmergnmap_isnull(sf_hmeregion_map_t *);
268 static int sfmmu_scdcache_constructor(void *, void *, int);
269 static void sfmmu_scdcache_destructor(void *, void *);
270 static void sfmmu_rgn_cb_noop(caddr_t, caddr_t, caddr_t,
271 size_t, void *, u_offset_t);
272
273 static uint_t srd_hashmask = SFMMU_MAX_SRD_BUCKETS - 1;
274 static sf_srd_bucket_t *srd_buckets;
275 static struct kmem_cache *srd_cache;
276 static uint_t srd_rgn_hashmask = SFMMU_MAX_REGION_BUCKETS - 1;
277 static struct kmem_cache *region_cache;
278 static struct kmem_cache *scd_cache;
279
280 #ifdef sun4v
281 int use_bigtsb_arena = 1;
282 #else
283 int use_bigtsb_arena = 0;
284 #endif
285
286 /* External /etc/system tunable, for turning on&off the shctx support */
287 int disable_shctx = 0;
288 /* Internal variable, set by MD if the HW supports shctx feature */
289 int shctx_on = 0;
290
291 #ifdef DEBUG
292 static void check_scd_sfmmu_list(sfmmu_t **, sfmmu_t *, int);
293 #endif
294 static void sfmmu_to_scd_list(sfmmu_t **, sfmmu_t *);
295 static void sfmmu_from_scd_list(sfmmu_t **, sfmmu_t *);
296
297 static sf_scd_t *sfmmu_alloc_scd(sf_srd_t *, sf_region_map_t *);
298 static void sfmmu_find_scd(sfmmu_t *);
299 static void sfmmu_join_scd(sf_scd_t *, sfmmu_t *);
300 static void sfmmu_finish_join_scd(sfmmu_t *);
301 static void sfmmu_leave_scd(sfmmu_t *, uchar_t);
302 static void sfmmu_destroy_scd(sf_srd_t *, sf_scd_t *, sf_region_map_t *);
303 static int sfmmu_alloc_scd_tsbs(sf_srd_t *, sf_scd_t *);
304 static void sfmmu_free_scd_tsbs(sfmmu_t *);
305 static void sfmmu_tsb_inv_ctx(sfmmu_t *);
306 static int find_ism_rid(sfmmu_t *, sfmmu_t *, caddr_t, uint_t *);
307 static void sfmmu_ism_hatflags(sfmmu_t *, int);
308 static int sfmmu_srd_lock_held(sf_srd_t *);
309 static void sfmmu_remove_scd(sf_scd_t **, sf_scd_t *);
310 static void sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *);
311 static void sfmmu_link_scd_to_regions(sf_srd_t *, sf_scd_t *);
312 static void sfmmu_unlink_scd_from_regions(sf_srd_t *, sf_scd_t *);
313 static void sfmmu_link_to_hmeregion(sfmmu_t *, sf_region_t *);
314 static void sfmmu_unlink_from_hmeregion(sfmmu_t *, sf_region_t *);
315
316 /*
317 * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
318 * HAT flags, synchronizing TLB/TSB coherency, and context management.
319 * The lock is hashed on the sfmmup since the case where we need to lock
320 * all processes is rare but does occur (e.g. we need to unload a shared
321 * mapping from all processes using the mapping). We have a lot of buckets,
322 * and each slab of sfmmu_t's can use about a quarter of them, giving us
323 * a fairly good distribution without wasting too much space and overhead
324 * when we have to grab them all.
325 */
326 #define SFMMU_NUM_LOCK 128 /* must be power of two */
327 hatlock_t hat_lock[SFMMU_NUM_LOCK];
328
329 /*
330 * Hash algorithm optimized for a small number of slabs.
331 * 7 is (highbit((sizeof sfmmu_t)) - 1)
332 * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
333 * kmem_cache, and thus they will be sequential within that cache. In
334 * addition, each new slab will have a different "color" up to cache_maxcolor
335 * which will skew the hashing for each successive slab which is allocated.
336 * If the size of sfmmu_t changed to a larger size, this algorithm may need
337 * to be revisited.
338 */
339 #define TSB_HASH_SHIFT_BITS (7)
340 #define PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
341
342 #ifdef DEBUG
343 int tsb_hash_debug = 0;
344 #define TSB_HASH(sfmmup) \
345 (tsb_hash_debug ? &hat_lock[0] : \
346 &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
347 #else /* DEBUG */
348 #define TSB_HASH(sfmmup) &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
349 #endif /* DEBUG */
350
351
352 /* sfmmu_replace_tsb() return codes. */
353 typedef enum tsb_replace_rc {
354 TSB_SUCCESS,
355 TSB_ALLOCFAIL,
356 TSB_LOSTRACE,
357 TSB_ALREADY_SWAPPED,
358 TSB_CANTGROW
359 } tsb_replace_rc_t;
360
361 /*
362 * Flags for TSB allocation routines.
363 */
364 #define TSB_ALLOC 0x01
365 #define TSB_FORCEALLOC 0x02
366 #define TSB_GROW 0x04
367 #define TSB_SHRINK 0x08
368 #define TSB_SWAPIN 0x10
369
370 /*
371 * Support for HAT callbacks.
372 */
373 #define SFMMU_MAX_RELOC_CALLBACKS 10
374 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
375 static id_t sfmmu_cb_nextid = 0;
376 static id_t sfmmu_tsb_cb_id;
377 struct sfmmu_callback *sfmmu_cb_table;
378
379 kmutex_t kpr_mutex;
380 kmutex_t kpr_suspendlock;
381 kthread_t *kreloc_thread;
382
383 /*
384 * Enable VA->PA translation sanity checking on DEBUG kernels.
385 * Disabled by default. This is incompatible with some
386 * drivers (error injector, RSM) so if it breaks you get
387 * to keep both pieces.
388 */
389 int hat_check_vtop = 0;
390
391 /*
392 * Private sfmmu routines (prototypes)
393 */
394 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
395 static struct hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
396 struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t,
397 uint_t);
398 static caddr_t sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
399 caddr_t, demap_range_t *, uint_t);
400 static caddr_t sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
401 caddr_t, int);
402 static void sfmmu_hblk_free(struct hme_blk **);
403 static void sfmmu_hblks_list_purge(struct hme_blk **, int);
404 static uint_t sfmmu_get_free_hblk(struct hme_blk **, uint_t);
405 static uint_t sfmmu_put_free_hblk(struct hme_blk *, uint_t);
406 static struct hme_blk *sfmmu_hblk_steal(int);
407 static int sfmmu_steal_this_hblk(struct hmehash_bucket *,
408 struct hme_blk *, uint64_t, struct hme_blk *);
409 static caddr_t sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
410
411 static void hat_do_memload_array(struct hat *, caddr_t, size_t,
412 struct page **, uint_t, uint_t, uint_t);
413 static void hat_do_memload(struct hat *, caddr_t, struct page *,
414 uint_t, uint_t, uint_t);
415 static void sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
416 uint_t, uint_t, pgcnt_t, uint_t);
417 void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
418 uint_t);
419 static int sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
420 uint_t, uint_t);
421 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
422 caddr_t, int, uint_t);
423 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
424 struct hmehash_bucket *, caddr_t, uint_t, uint_t,
425 uint_t);
426 static int sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
427 caddr_t, page_t **, uint_t, uint_t);
428 static void sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
429
430 static int sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
431 static pfn_t sfmmu_uvatopfn(caddr_t, sfmmu_t *, tte_t *);
432 void sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
433 #ifdef VAC
434 static void sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
435 static int sfmmu_vacconflict_array(caddr_t, page_t *, int *);
436 int tst_tnc(page_t *pp, pgcnt_t);
437 void conv_tnc(page_t *pp, int);
438 #endif
439
440 static void sfmmu_get_ctx(sfmmu_t *);
441 static void sfmmu_free_sfmmu(sfmmu_t *);
442
443 static void sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
444 static void sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
445
446 cpuset_t sfmmu_pageunload(page_t *, struct sf_hment *, int);
447 static void hat_pagereload(struct page *, struct page *);
448 static cpuset_t sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
449 #ifdef VAC
450 void sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
451 static void sfmmu_page_cache(page_t *, int, int, int);
452 #endif
453
454 cpuset_t sfmmu_rgntlb_demap(caddr_t, sf_region_t *,
455 struct hme_blk *, int);
456 static void sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
457 pfn_t, int, int, int, int);
458 static void sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
459 pfn_t, int);
460 static void sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
461 static void sfmmu_tlb_range_demap(demap_range_t *);
462 static void sfmmu_invalidate_ctx(sfmmu_t *);
463 static void sfmmu_sync_mmustate(sfmmu_t *);
464
465 static void sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
466 static int sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
467 sfmmu_t *);
468 static void sfmmu_tsb_free(struct tsb_info *);
469 static void sfmmu_tsbinfo_free(struct tsb_info *);
470 static int sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
471 sfmmu_t *);
472 static void sfmmu_tsb_chk_reloc(sfmmu_t *, hatlock_t *);
473 static void sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
474 static int sfmmu_select_tsb_szc(pgcnt_t);
475 static void sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
476 #define sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
477 sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
478 #define sfmmu_unload_tsb(sfmmup, vaddr, szc) \
479 sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
480 static void sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
481 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
482 hatlock_t *, uint_t);
483 static void sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
484
485 #ifdef VAC
486 void sfmmu_cache_flush(pfn_t, int);
487 void sfmmu_cache_flushcolor(int, pfn_t);
488 #endif
489 static caddr_t sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
490 caddr_t, demap_range_t *, uint_t, int);
491
492 static uint64_t sfmmu_vtop_attr(uint_t, int mode, tte_t *);
493 static uint_t sfmmu_ptov_attr(tte_t *);
494 static caddr_t sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
495 caddr_t, demap_range_t *, uint_t);
496 static uint_t sfmmu_vtop_prot(uint_t, uint_t *);
497 static int sfmmu_idcache_constructor(void *, void *, int);
498 static void sfmmu_idcache_destructor(void *, void *);
499 static int sfmmu_hblkcache_constructor(void *, void *, int);
500 static void sfmmu_hblkcache_destructor(void *, void *);
501 static void sfmmu_hblkcache_reclaim(void *);
502 static void sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
503 struct hmehash_bucket *);
504 static void sfmmu_hblk_hash_rm(struct hmehash_bucket *, struct hme_blk *,
505 struct hme_blk *, struct hme_blk **, int);
506 static void sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *,
507 uint64_t);
508 static struct hme_blk *sfmmu_check_pending_hblks(int);
509 static void sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
510 static void sfmmu_cleanup_rhblk(sf_srd_t *, caddr_t, uint_t, int);
511 static void sfmmu_unload_hmeregion_va(sf_srd_t *, uint_t, caddr_t, caddr_t,
512 int, caddr_t *);
513 static void sfmmu_unload_hmeregion(sf_srd_t *, sf_region_t *);
514
515 static void sfmmu_rm_large_mappings(page_t *, int);
516
517 static void hat_lock_init(void);
518 static void hat_kstat_init(void);
519 static int sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
520 static void sfmmu_set_scd_rttecnt(sf_srd_t *, sf_scd_t *);
521 static int sfmmu_is_rgnva(sf_srd_t *, caddr_t, ulong_t, ulong_t);
522 static void sfmmu_check_page_sizes(sfmmu_t *, int);
523 int fnd_mapping_sz(page_t *);
524 static void iment_add(struct ism_ment *, struct hat *);
525 static void iment_sub(struct ism_ment *, struct hat *);
526 static pgcnt_t ism_tsb_entries(sfmmu_t *, int szc);
527 extern void sfmmu_setup_tsbinfo(sfmmu_t *);
528 extern void sfmmu_clear_utsbinfo(void);
529
530 static void sfmmu_ctx_wrap_around(mmu_ctx_t *, boolean_t);
531
532 extern int vpm_enable;
533
534 /* kpm globals */
535 #ifdef DEBUG
536 /*
537 * Enable trap level tsbmiss handling
538 */
539 int kpm_tsbmtl = 1;
540
541 /*
542 * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
543 * required TLB shootdowns in this case, so handle w/ care. Off by default.
544 */
545 int kpm_tlb_flush;
546 #endif /* DEBUG */
547
548 static void *sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
549
550 #ifdef DEBUG
551 static void sfmmu_check_hblk_flist();
552 #endif
553
554 /*
555 * Semi-private sfmmu data structures. Some of them are initialize in
556 * startup or in hat_init. Some of them are private but accessed by
557 * assembly code or mach_sfmmu.c
558 */
559 struct hmehash_bucket *uhme_hash; /* user hmeblk hash table */
560 struct hmehash_bucket *khme_hash; /* kernel hmeblk hash table */
561 uint64_t uhme_hash_pa; /* PA of uhme_hash */
562 uint64_t khme_hash_pa; /* PA of khme_hash */
563 int uhmehash_num; /* # of buckets in user hash table */
564 int khmehash_num; /* # of buckets in kernel hash table */
565
566 uint_t max_mmu_ctxdoms = 0; /* max context domains in the system */
567 mmu_ctx_t **mmu_ctxs_tbl; /* global array of context domains */
568 uint64_t mmu_saved_gnum = 0; /* to init incoming MMUs' gnums */
569
570 #define DEFAULT_NUM_CTXS_PER_MMU 8192
571 static uint_t nctxs = DEFAULT_NUM_CTXS_PER_MMU;
572
573 int cache; /* describes system cache */
574
575 caddr_t ktsb_base; /* kernel 8k-indexed tsb base address */
576 uint64_t ktsb_pbase; /* kernel 8k-indexed tsb phys address */
577 int ktsb_szcode; /* kernel 8k-indexed tsb size code */
578 int ktsb_sz; /* kernel 8k-indexed tsb size */
579
580 caddr_t ktsb4m_base; /* kernel 4m-indexed tsb base address */
581 uint64_t ktsb4m_pbase; /* kernel 4m-indexed tsb phys address */
582 int ktsb4m_szcode; /* kernel 4m-indexed tsb size code */
583 int ktsb4m_sz; /* kernel 4m-indexed tsb size */
584
585 uint64_t kpm_tsbbase; /* kernel seg_kpm 4M TSB base address */
586 int kpm_tsbsz; /* kernel seg_kpm 4M TSB size code */
587 uint64_t kpmsm_tsbbase; /* kernel seg_kpm 8K TSB base address */
588 int kpmsm_tsbsz; /* kernel seg_kpm 8K TSB size code */
589
590 #ifndef sun4v
591 int utsb_dtlb_ttenum = -1; /* index in TLB for utsb locked TTE */
592 int utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
593 int dtlb_resv_ttenum; /* index in TLB of first reserved TTE */
594 caddr_t utsb_vabase; /* reserved kernel virtual memory */
595 caddr_t utsb4m_vabase; /* for trap handler TSB accesses */
596 #endif /* sun4v */
597 uint64_t tsb_alloc_bytes = 0; /* bytes allocated to TSBs */
598 vmem_t *kmem_tsb_default_arena[NLGRPS_MAX]; /* For dynamic TSBs */
599 vmem_t *kmem_bigtsb_default_arena[NLGRPS_MAX]; /* dynamic 256M TSBs */
600
601 /*
602 * Size to use for TSB slabs. Future platforms that support page sizes
603 * larger than 4M may wish to change these values, and provide their own
604 * assembly macros for building and decoding the TSB base register contents.
605 * Note disable_large_pages will override the value set here.
606 */
607 static uint_t tsb_slab_ttesz = TTE4M;
608 size_t tsb_slab_size = MMU_PAGESIZE4M;
609 uint_t tsb_slab_shift = MMU_PAGESHIFT4M;
610 /* PFN mask for TTE */
611 size_t tsb_slab_mask = MMU_PAGEOFFSET4M >> MMU_PAGESHIFT;
612
613 /*
614 * Size to use for TSB slabs. These are used only when 256M tsb arenas
615 * exist.
616 */
617 static uint_t bigtsb_slab_ttesz = TTE256M;
618 static size_t bigtsb_slab_size = MMU_PAGESIZE256M;
619 static uint_t bigtsb_slab_shift = MMU_PAGESHIFT256M;
620 /* 256M page alignment for 8K pfn */
621 static size_t bigtsb_slab_mask = MMU_PAGEOFFSET256M >> MMU_PAGESHIFT;
622
623 /* largest TSB size to grow to, will be smaller on smaller memory systems */
624 static int tsb_max_growsize = 0;
625
626 /*
627 * Tunable parameters dealing with TSB policies.
628 */
629
630 /*
631 * This undocumented tunable forces all 8K TSBs to be allocated from
632 * the kernel heap rather than from the kmem_tsb_default_arena arenas.
633 */
634 #ifdef DEBUG
635 int tsb_forceheap = 0;
636 #endif /* DEBUG */
637
638 /*
639 * Decide whether to use per-lgroup arenas, or one global set of
640 * TSB arenas. The default is not to break up per-lgroup, since
641 * most platforms don't recognize any tangible benefit from it.
642 */
643 int tsb_lgrp_affinity = 0;
644
645 /*
646 * Used for growing the TSB based on the process RSS.
647 * tsb_rss_factor is based on the smallest TSB, and is
648 * shifted by the TSB size to determine if we need to grow.
649 * The default will grow the TSB if the number of TTEs for
650 * this page size exceeds 75% of the number of TSB entries,
651 * which should _almost_ eliminate all conflict misses
652 * (at the expense of using up lots and lots of memory).
653 */
654 #define TSB_RSS_FACTOR (TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
655 #define SFMMU_RSS_TSBSIZE(tsbszc) (tsb_rss_factor << tsbszc)
656 #define SELECT_TSB_SIZECODE(pgcnt) ( \
657 (enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
658 default_tsb_size)
659 #define TSB_OK_SHRINK() \
660 (tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
661 #define TSB_OK_GROW() \
662 (tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
663
664 int enable_tsb_rss_sizing = 1;
665 int tsb_rss_factor = (int)TSB_RSS_FACTOR;
666
667 /* which TSB size code to use for new address spaces or if rss sizing off */
668 int default_tsb_size = TSB_8K_SZCODE;
669
670 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
671 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
672 #define TSB_ALLOC_HIWATER_FACTOR_DEFAULT 32
673
674 #ifdef DEBUG
675 static int tsb_random_size = 0; /* set to 1 to test random tsb sizes on alloc */
676 static int tsb_grow_stress = 0; /* if set to 1, keep replacing TSB w/ random */
677 static int tsb_alloc_mtbf = 0; /* fail allocation every n attempts */
678 static int tsb_alloc_fail_mtbf = 0;
679 static int tsb_alloc_count = 0;
680 #endif /* DEBUG */
681
682 /* if set to 1, will remap valid TTEs when growing TSB. */
683 int tsb_remap_ttes = 1;
684
685 /*
686 * If we have more than this many mappings, allocate a second TSB.
687 * This default is chosen because the I/D fully associative TLBs are
688 * assumed to have at least 8 available entries. Platforms with a
689 * larger fully-associative TLB could probably override the default.
690 */
691
692 #ifdef sun4v
693 int tsb_sectsb_threshold = 0;
694 #else
695 int tsb_sectsb_threshold = 8;
696 #endif
697
698 /*
699 * kstat data
700 */
701 struct sfmmu_global_stat sfmmu_global_stat;
702 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
703
704 /*
705 * Global data
706 */
707 sfmmu_t *ksfmmup; /* kernel's hat id */
708
709 #ifdef DEBUG
710 static void chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
711 #endif
712
713 /* sfmmu locking operations */
714 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
715 static int sfmmu_mlspl_held(struct page *, int);
716
717 kmutex_t *sfmmu_page_enter(page_t *);
718 void sfmmu_page_exit(kmutex_t *);
719 int sfmmu_page_spl_held(struct page *);
720
721 /* sfmmu internal locking operations - accessed directly */
722 static void sfmmu_mlist_reloc_enter(page_t *, page_t *,
723 kmutex_t **, kmutex_t **);
724 static void sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
725 static hatlock_t *
726 sfmmu_hat_enter(sfmmu_t *);
727 static hatlock_t *
728 sfmmu_hat_tryenter(sfmmu_t *);
729 static void sfmmu_hat_exit(hatlock_t *);
730 static void sfmmu_hat_lock_all(void);
731 static void sfmmu_hat_unlock_all(void);
732 static void sfmmu_ismhat_enter(sfmmu_t *, int);
733 static void sfmmu_ismhat_exit(sfmmu_t *, int);
734
735 kpm_hlk_t *kpmp_table;
736 uint_t kpmp_table_sz; /* must be a power of 2 */
737 uchar_t kpmp_shift;
738
739 kpm_shlk_t *kpmp_stable;
740 uint_t kpmp_stable_sz; /* must be a power of 2 */
741
742 /*
743 * SPL_TABLE_SIZE is 2 * NCPU, but no smaller than 128.
744 * SPL_SHIFT is log2(SPL_TABLE_SIZE).
745 */
746 #if ((2*NCPU_P2) > 128)
747 #define SPL_SHIFT ((unsigned)(NCPU_LOG2 + 1))
748 #else
749 #define SPL_SHIFT 7U
750 #endif
751 #define SPL_TABLE_SIZE (1U << SPL_SHIFT)
752 #define SPL_MASK (SPL_TABLE_SIZE - 1)
753
754 /*
755 * We shift by PP_SHIFT to take care of the low-order 0 bits of a page_t
756 * and by multiples of SPL_SHIFT to get as many varied bits as we can.
757 */
758 #define SPL_INDEX(pp) \
759 ((((uintptr_t)(pp) >> PP_SHIFT) ^ \
760 ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT)) ^ \
761 ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 2)) ^ \
762 ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 3))) & \
763 SPL_MASK)
764
765 #define SPL_HASH(pp) \
766 (&sfmmu_page_lock[SPL_INDEX(pp)].pad_mutex)
767
768 static pad_mutex_t sfmmu_page_lock[SPL_TABLE_SIZE];
769
770 /* Array of mutexes protecting a page's mapping list and p_nrm field. */
771
772 #define MML_TABLE_SIZE SPL_TABLE_SIZE
773 #define MLIST_HASH(pp) (&mml_table[SPL_INDEX(pp)].pad_mutex)
774
775 static pad_mutex_t mml_table[MML_TABLE_SIZE];
776
777 /*
778 * hat_unload_callback() will group together callbacks in order
779 * to avoid xt_sync() calls. This is the maximum size of the group.
780 */
781 #define MAX_CB_ADDR 32
782
783 tte_t hw_tte;
784 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
785
786 static char *mmu_ctx_kstat_names[] = {
787 "mmu_ctx_tsb_exceptions",
788 "mmu_ctx_tsb_raise_exception",
789 "mmu_ctx_wrap_around",
790 };
791
792 /*
793 * Wrapper for vmem_xalloc since vmem_create only allows limited
794 * parameters for vm_source_alloc functions. This function allows us
795 * to specify alignment consistent with the size of the object being
796 * allocated.
797 */
798 static void *
sfmmu_vmem_xalloc_aligned_wrapper(vmem_t * vmp,size_t size,int vmflag)799 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
800 {
801 return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
802 }
803
804 /* Common code for setting tsb_alloc_hiwater. */
805 #define SFMMU_SET_TSB_ALLOC_HIWATER(pages) tsb_alloc_hiwater = \
806 ptob(pages) / tsb_alloc_hiwater_factor
807
808 /*
809 * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
810 * a single TSB. physmem is the number of physical pages so we need physmem 8K
811 * TTEs to represent all those physical pages. We round this up by using
812 * 1<<highbit(). To figure out which size code to use, remember that the size
813 * code is just an amount to shift the smallest TSB size to get the size of
814 * this TSB. So we subtract that size, TSB_START_SIZE, from highbit() (or
815 * highbit() - 1) to get the size code for the smallest TSB that can represent
816 * all of physical memory, while erring on the side of too much.
817 *
818 * Restrict tsb_max_growsize to make sure that:
819 * 1) TSBs can't grow larger than the TSB slab size
820 * 2) TSBs can't grow larger than UTSB_MAX_SZCODE.
821 */
822 #define SFMMU_SET_TSB_MAX_GROWSIZE(pages) { \
823 int _i, _szc, _slabszc, _tsbszc; \
824 \
825 _i = highbit(pages); \
826 if ((1 << (_i - 1)) == (pages)) \
827 _i--; /* 2^n case, round down */ \
828 _szc = _i - TSB_START_SIZE; \
829 _slabszc = bigtsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); \
830 _tsbszc = MIN(_szc, _slabszc); \
831 tsb_max_growsize = MIN(_tsbszc, UTSB_MAX_SZCODE); \
832 }
833
834 /*
835 * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
836 * tsb_info which handles that TTE size.
837 */
838 #define SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) { \
839 (tsbinfop) = (sfmmup)->sfmmu_tsb; \
840 ASSERT(((tsbinfop)->tsb_flags & TSB_SHAREDCTX) || \
841 sfmmu_hat_lock_held(sfmmup)); \
842 if ((tte_szc) >= TTE4M) { \
843 ASSERT((tsbinfop) != NULL); \
844 (tsbinfop) = (tsbinfop)->tsb_next; \
845 } \
846 }
847
848 /*
849 * Macro to use to unload entries from the TSB.
850 * It has knowledge of which page sizes get replicated in the TSB
851 * and will call the appropriate unload routine for the appropriate size.
852 */
853 #define SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, ismhat) \
854 { \
855 int ttesz = get_hblk_ttesz(hmeblkp); \
856 if (ttesz == TTE8K || ttesz == TTE4M) { \
857 sfmmu_unload_tsb(sfmmup, addr, ttesz); \
858 } else { \
859 caddr_t sva = ismhat ? addr : \
860 (caddr_t)get_hblk_base(hmeblkp); \
861 caddr_t eva = sva + get_hblk_span(hmeblkp); \
862 ASSERT(addr >= sva && addr < eva); \
863 sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz); \
864 } \
865 }
866
867
868 /* Update tsb_alloc_hiwater after memory is configured. */
869 /*ARGSUSED*/
870 static void
sfmmu_update_post_add(void * arg,pgcnt_t delta_pages)871 sfmmu_update_post_add(void *arg, pgcnt_t delta_pages)
872 {
873 /* Assumes physmem has already been updated. */
874 SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
875 SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
876 }
877
878 /*
879 * Update tsb_alloc_hiwater before memory is deleted. We'll do nothing here
880 * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
881 * deleted.
882 */
883 /*ARGSUSED*/
884 static int
sfmmu_update_pre_del(void * arg,pgcnt_t delta_pages)885 sfmmu_update_pre_del(void *arg, pgcnt_t delta_pages)
886 {
887 return (0);
888 }
889
890 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
891 /*ARGSUSED*/
892 static void
sfmmu_update_post_del(void * arg,pgcnt_t delta_pages,int cancelled)893 sfmmu_update_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
894 {
895 /*
896 * Whether the delete was cancelled or not, just go ahead and update
897 * tsb_alloc_hiwater and tsb_max_growsize.
898 */
899 SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
900 SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
901 }
902
903 static kphysm_setup_vector_t sfmmu_update_vec = {
904 KPHYSM_SETUP_VECTOR_VERSION, /* version */
905 sfmmu_update_post_add, /* post_add */
906 sfmmu_update_pre_del, /* pre_del */
907 sfmmu_update_post_del /* post_del */
908 };
909
910
911 /*
912 * HME_BLK HASH PRIMITIVES
913 */
914
915 /*
916 * Enter a hme on the mapping list for page pp.
917 * When large pages are more prevalent in the system we might want to
918 * keep the mapping list in ascending order by the hment size. For now,
919 * small pages are more frequent, so don't slow it down.
920 */
921 #define HME_ADD(hme, pp) \
922 { \
923 ASSERT(sfmmu_mlist_held(pp)); \
924 \
925 hme->hme_prev = NULL; \
926 hme->hme_next = pp->p_mapping; \
927 hme->hme_page = pp; \
928 if (pp->p_mapping) { \
929 ((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
930 ASSERT(pp->p_share > 0); \
931 } else { \
932 /* EMPTY */ \
933 ASSERT(pp->p_share == 0); \
934 } \
935 pp->p_mapping = hme; \
936 pp->p_share++; \
937 }
938
939 /*
940 * Enter a hme on the mapping list for page pp.
941 * If we are unmapping a large translation, we need to make sure that the
942 * change is reflect in the corresponding bit of the p_index field.
943 */
944 #define HME_SUB(hme, pp) \
945 { \
946 ASSERT(sfmmu_mlist_held(pp)); \
947 ASSERT(hme->hme_page == pp || IS_PAHME(hme)); \
948 \
949 if (pp->p_mapping == NULL) { \
950 panic("hme_remove - no mappings"); \
951 } \
952 \
953 membar_stst(); /* ensure previous stores finish */ \
954 \
955 ASSERT(pp->p_share > 0); \
956 pp->p_share--; \
957 \
958 if (hme->hme_prev) { \
959 ASSERT(pp->p_mapping != hme); \
960 ASSERT(hme->hme_prev->hme_page == pp || \
961 IS_PAHME(hme->hme_prev)); \
962 hme->hme_prev->hme_next = hme->hme_next; \
963 } else { \
964 ASSERT(pp->p_mapping == hme); \
965 pp->p_mapping = hme->hme_next; \
966 ASSERT((pp->p_mapping == NULL) ? \
967 (pp->p_share == 0) : 1); \
968 } \
969 \
970 if (hme->hme_next) { \
971 ASSERT(hme->hme_next->hme_page == pp || \
972 IS_PAHME(hme->hme_next)); \
973 hme->hme_next->hme_prev = hme->hme_prev; \
974 } \
975 \
976 /* zero out the entry */ \
977 hme->hme_next = NULL; \
978 hme->hme_prev = NULL; \
979 hme->hme_page = NULL; \
980 \
981 if (hme_size(hme) > TTE8K) { \
982 /* remove mappings for remainder of large pg */ \
983 sfmmu_rm_large_mappings(pp, hme_size(hme)); \
984 } \
985 }
986
987 /*
988 * This function returns the hment given the hme_blk and a vaddr.
989 * It assumes addr has already been checked to belong to hme_blk's
990 * range.
991 */
992 #define HBLKTOHME(hment, hmeblkp, addr) \
993 { \
994 int index; \
995 HBLKTOHME_IDX(hment, hmeblkp, addr, index) \
996 }
997
998 /*
999 * Version of HBLKTOHME that also returns the index in hmeblkp
1000 * of the hment.
1001 */
1002 #define HBLKTOHME_IDX(hment, hmeblkp, addr, idx) \
1003 { \
1004 ASSERT(in_hblk_range((hmeblkp), (addr))); \
1005 \
1006 if (get_hblk_ttesz(hmeblkp) == TTE8K) { \
1007 idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
1008 } else \
1009 idx = 0; \
1010 \
1011 (hment) = &(hmeblkp)->hblk_hme[idx]; \
1012 }
1013
1014 /*
1015 * Disable any page sizes not supported by the CPU
1016 */
1017 void
hat_init_pagesizes()1018 hat_init_pagesizes()
1019 {
1020 int i;
1021
1022 mmu_exported_page_sizes = 0;
1023 for (i = TTE8K; i < max_mmu_page_sizes; i++) {
1024
1025 szc_2_userszc[i] = (uint_t)-1;
1026 userszc_2_szc[i] = (uint_t)-1;
1027
1028 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
1029 disable_large_pages |= (1 << i);
1030 } else {
1031 szc_2_userszc[i] = mmu_exported_page_sizes;
1032 userszc_2_szc[mmu_exported_page_sizes] = i;
1033 mmu_exported_page_sizes++;
1034 }
1035 }
1036
1037 disable_ism_large_pages |= disable_large_pages;
1038 disable_auto_data_large_pages = disable_large_pages;
1039 disable_auto_text_large_pages = disable_large_pages;
1040
1041 /*
1042 * Initialize mmu-specific large page sizes.
1043 */
1044 if (&mmu_large_pages_disabled) {
1045 disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
1046 disable_ism_large_pages |=
1047 mmu_large_pages_disabled(HAT_LOAD_SHARE);
1048 disable_auto_data_large_pages |=
1049 mmu_large_pages_disabled(HAT_AUTO_DATA);
1050 disable_auto_text_large_pages |=
1051 mmu_large_pages_disabled(HAT_AUTO_TEXT);
1052 }
1053 }
1054
1055 /*
1056 * Initialize the hardware address translation structures.
1057 */
1058 void
hat_init(void)1059 hat_init(void)
1060 {
1061 int i;
1062 uint_t sz;
1063 size_t size;
1064
1065 hat_lock_init();
1066 hat_kstat_init();
1067
1068 /*
1069 * Hardware-only bits in a TTE
1070 */
1071 MAKE_TTE_MASK(&hw_tte);
1072
1073 hat_init_pagesizes();
1074
1075 /* Initialize the hash locks */
1076 for (i = 0; i < khmehash_num; i++) {
1077 mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1078 MUTEX_DEFAULT, NULL);
1079 khme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1080 }
1081 for (i = 0; i < uhmehash_num; i++) {
1082 mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1083 MUTEX_DEFAULT, NULL);
1084 uhme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1085 }
1086 khmehash_num--; /* make sure counter starts from 0 */
1087 uhmehash_num--; /* make sure counter starts from 0 */
1088
1089 /*
1090 * Allocate context domain structures.
1091 *
1092 * A platform may choose to modify max_mmu_ctxdoms in
1093 * set_platform_defaults(). If a platform does not define
1094 * a set_platform_defaults() or does not choose to modify
1095 * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
1096 *
1097 * For all platforms that have CPUs sharing MMUs, this
1098 * value must be defined.
1099 */
1100 if (max_mmu_ctxdoms == 0)
1101 max_mmu_ctxdoms = max_ncpus;
1102
1103 size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
1104 mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
1105
1106 /* mmu_ctx_t is 64 bytes aligned */
1107 mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
1108 sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
1109 /*
1110 * MMU context domain initialization for the Boot CPU.
1111 * This needs the context domains array allocated above.
1112 */
1113 mutex_enter(&cpu_lock);
1114 sfmmu_cpu_init(CPU);
1115 mutex_exit(&cpu_lock);
1116
1117 /*
1118 * Intialize ism mapping list lock.
1119 */
1120
1121 mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1122
1123 /*
1124 * Each sfmmu structure carries an array of MMU context info
1125 * structures, one per context domain. The size of this array depends
1126 * on the maximum number of context domains. So, the size of the
1127 * sfmmu structure varies per platform.
1128 *
1129 * sfmmu is allocated from static arena, because trap
1130 * handler at TL > 0 is not allowed to touch kernel relocatable
1131 * memory. sfmmu's alignment is changed to 64 bytes from
1132 * default 8 bytes, as the lower 6 bits will be used to pass
1133 * pgcnt to vtag_flush_pgcnt_tl1.
1134 */
1135 size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1136
1137 sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1138 64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1139 NULL, NULL, static_arena, 0);
1140
1141 sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1142 sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1143
1144 /*
1145 * Since we only use the tsb8k cache to "borrow" pages for TSBs
1146 * from the heap when low on memory or when TSB_FORCEALLOC is
1147 * specified, don't use magazines to cache them--we want to return
1148 * them to the system as quickly as possible.
1149 */
1150 sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1151 MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1152 static_arena, KMC_NOMAGAZINE);
1153
1154 /*
1155 * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1156 * memory, which corresponds to the old static reserve for TSBs.
1157 * tsb_alloc_hiwater_factor defaults to 32. This caps the amount of
1158 * memory we'll allocate for TSB slabs; beyond this point TSB
1159 * allocations will be taken from the kernel heap (via
1160 * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1161 * consumer.
1162 */
1163 if (tsb_alloc_hiwater_factor == 0) {
1164 tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1165 }
1166 SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1167
1168 for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1169 if (!(disable_large_pages & (1 << sz)))
1170 break;
1171 }
1172
1173 if (sz < tsb_slab_ttesz) {
1174 tsb_slab_ttesz = sz;
1175 tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1176 tsb_slab_size = 1 << tsb_slab_shift;
1177 tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1178 use_bigtsb_arena = 0;
1179 } else if (use_bigtsb_arena &&
1180 (disable_large_pages & (1 << bigtsb_slab_ttesz))) {
1181 use_bigtsb_arena = 0;
1182 }
1183
1184 if (!use_bigtsb_arena) {
1185 bigtsb_slab_shift = tsb_slab_shift;
1186 }
1187 SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1188
1189 /*
1190 * On smaller memory systems, allocate TSB memory in smaller chunks
1191 * than the default 4M slab size. We also honor disable_large_pages
1192 * here.
1193 *
1194 * The trap handlers need to be patched with the final slab shift,
1195 * since they need to be able to construct the TSB pointer at runtime.
1196 */
1197 if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1198 !(disable_large_pages & (1 << TTE512K))) {
1199 tsb_slab_ttesz = TTE512K;
1200 tsb_slab_shift = MMU_PAGESHIFT512K;
1201 tsb_slab_size = MMU_PAGESIZE512K;
1202 tsb_slab_mask = MMU_PAGEOFFSET512K >> MMU_PAGESHIFT;
1203 use_bigtsb_arena = 0;
1204 }
1205
1206 if (!use_bigtsb_arena) {
1207 bigtsb_slab_ttesz = tsb_slab_ttesz;
1208 bigtsb_slab_shift = tsb_slab_shift;
1209 bigtsb_slab_size = tsb_slab_size;
1210 bigtsb_slab_mask = tsb_slab_mask;
1211 }
1212
1213
1214 /*
1215 * Set up memory callback to update tsb_alloc_hiwater and
1216 * tsb_max_growsize.
1217 */
1218 i = kphysm_setup_func_register(&sfmmu_update_vec, (void *) 0);
1219 ASSERT(i == 0);
1220
1221 /*
1222 * kmem_tsb_arena is the source from which large TSB slabs are
1223 * drawn. The quantum of this arena corresponds to the largest
1224 * TSB size we can dynamically allocate for user processes.
1225 * Currently it must also be a supported page size since we
1226 * use exactly one translation entry to map each slab page.
1227 *
1228 * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1229 * which most TSBs are allocated. Since most TSB allocations are
1230 * typically 8K we have a kmem cache we stack on top of each
1231 * kmem_tsb_default_arena to speed up those allocations.
1232 *
1233 * Note the two-level scheme of arenas is required only
1234 * because vmem_create doesn't allow us to specify alignment
1235 * requirements. If this ever changes the code could be
1236 * simplified to use only one level of arenas.
1237 *
1238 * If 256M page support exists on sun4v, 256MB kmem_bigtsb_arena
1239 * will be provided in addition to the 4M kmem_tsb_arena.
1240 */
1241 if (use_bigtsb_arena) {
1242 kmem_bigtsb_arena = vmem_create("kmem_bigtsb", NULL, 0,
1243 bigtsb_slab_size, sfmmu_vmem_xalloc_aligned_wrapper,
1244 vmem_xfree, heap_arena, 0, VM_SLEEP);
1245 }
1246
1247 kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1248 sfmmu_vmem_xalloc_aligned_wrapper,
1249 vmem_xfree, heap_arena, 0, VM_SLEEP);
1250
1251 if (tsb_lgrp_affinity) {
1252 char s[50];
1253 for (i = 0; i < NLGRPS_MAX; i++) {
1254 if (use_bigtsb_arena) {
1255 (void) sprintf(s, "kmem_bigtsb_lgrp%d", i);
1256 kmem_bigtsb_default_arena[i] = vmem_create(s,
1257 NULL, 0, 2 * tsb_slab_size,
1258 sfmmu_tsb_segkmem_alloc,
1259 sfmmu_tsb_segkmem_free, kmem_bigtsb_arena,
1260 0, VM_SLEEP | VM_BESTFIT);
1261 }
1262
1263 (void) sprintf(s, "kmem_tsb_lgrp%d", i);
1264 kmem_tsb_default_arena[i] = vmem_create(s,
1265 NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1266 sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1267 VM_SLEEP | VM_BESTFIT);
1268
1269 (void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1270 sfmmu_tsb_cache[i] = kmem_cache_create(s,
1271 PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1272 kmem_tsb_default_arena[i], 0);
1273 }
1274 } else {
1275 if (use_bigtsb_arena) {
1276 kmem_bigtsb_default_arena[0] =
1277 vmem_create("kmem_bigtsb_default", NULL, 0,
1278 2 * tsb_slab_size, sfmmu_tsb_segkmem_alloc,
1279 sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 0,
1280 VM_SLEEP | VM_BESTFIT);
1281 }
1282
1283 kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1284 NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1285 sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1286 VM_SLEEP | VM_BESTFIT);
1287 sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1288 PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1289 kmem_tsb_default_arena[0], 0);
1290 }
1291
1292 sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1293 HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1294 sfmmu_hblkcache_destructor,
1295 sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1296 hat_memload_arena, KMC_NOHASH);
1297
1298 hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1299 segkmem_alloc_permanent, segkmem_free, heap_arena, 0,
1300 VMC_DUMPSAFE | VM_SLEEP);
1301
1302 sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1303 HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1304 sfmmu_hblkcache_destructor,
1305 NULL, (void *)HME1BLK_SZ,
1306 hat_memload1_arena, KMC_NOHASH);
1307
1308 pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1309 0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1310
1311 ism_blk_cache = kmem_cache_create("ism_blk_cache",
1312 sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1313 NULL, NULL, static_arena, KMC_NOHASH);
1314
1315 ism_ment_cache = kmem_cache_create("ism_ment_cache",
1316 sizeof (ism_ment_t), 0, NULL, NULL,
1317 NULL, NULL, NULL, 0);
1318
1319 /*
1320 * We grab the first hat for the kernel,
1321 */
1322 AS_LOCK_ENTER(&kas, RW_WRITER);
1323 kas.a_hat = hat_alloc(&kas);
1324 AS_LOCK_EXIT(&kas);
1325
1326 /*
1327 * Initialize hblk_reserve.
1328 */
1329 ((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1330 va_to_pa((caddr_t)hblk_reserve);
1331
1332 #ifndef UTSB_PHYS
1333 /*
1334 * Reserve some kernel virtual address space for the locked TTEs
1335 * that allow us to probe the TSB from TL>0.
1336 */
1337 utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1338 0, 0, NULL, NULL, VM_SLEEP);
1339 utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1340 0, 0, NULL, NULL, VM_SLEEP);
1341 #endif
1342
1343 #ifdef VAC
1344 /*
1345 * The big page VAC handling code assumes VAC
1346 * will not be bigger than the smallest big
1347 * page- which is 64K.
1348 */
1349 if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1350 cmn_err(CE_PANIC, "VAC too big!");
1351 }
1352 #endif
1353
1354 uhme_hash_pa = va_to_pa(uhme_hash);
1355 khme_hash_pa = va_to_pa(khme_hash);
1356
1357 /*
1358 * Initialize relocation locks. kpr_suspendlock is held
1359 * at PIL_MAX to prevent interrupts from pinning the holder
1360 * of a suspended TTE which may access it leading to a
1361 * deadlock condition.
1362 */
1363 mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1364 mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1365
1366 /*
1367 * If Shared context support is disabled via /etc/system
1368 * set shctx_on to 0 here if it was set to 1 earlier in boot
1369 * sequence by cpu module initialization code.
1370 */
1371 if (shctx_on && disable_shctx) {
1372 shctx_on = 0;
1373 }
1374
1375 if (shctx_on) {
1376 srd_buckets = kmem_zalloc(SFMMU_MAX_SRD_BUCKETS *
1377 sizeof (srd_buckets[0]), KM_SLEEP);
1378 for (i = 0; i < SFMMU_MAX_SRD_BUCKETS; i++) {
1379 mutex_init(&srd_buckets[i].srdb_lock, NULL,
1380 MUTEX_DEFAULT, NULL);
1381 }
1382
1383 srd_cache = kmem_cache_create("srd_cache", sizeof (sf_srd_t),
1384 0, sfmmu_srdcache_constructor, sfmmu_srdcache_destructor,
1385 NULL, NULL, NULL, 0);
1386 region_cache = kmem_cache_create("region_cache",
1387 sizeof (sf_region_t), 0, sfmmu_rgncache_constructor,
1388 sfmmu_rgncache_destructor, NULL, NULL, NULL, 0);
1389 scd_cache = kmem_cache_create("scd_cache", sizeof (sf_scd_t),
1390 0, sfmmu_scdcache_constructor, sfmmu_scdcache_destructor,
1391 NULL, NULL, NULL, 0);
1392 }
1393
1394 /*
1395 * Pre-allocate hrm_hashtab before enabling the collection of
1396 * refmod statistics. Allocating on the fly would mean us
1397 * running the risk of suffering recursive mutex enters or
1398 * deadlocks.
1399 */
1400 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1401 KM_SLEEP);
1402
1403 /* Allocate per-cpu pending freelist of hmeblks */
1404 cpu_hme_pend = kmem_zalloc((NCPU * sizeof (cpu_hme_pend_t)) + 64,
1405 KM_SLEEP);
1406 cpu_hme_pend = (cpu_hme_pend_t *)P2ROUNDUP(
1407 (uintptr_t)cpu_hme_pend, 64);
1408
1409 for (i = 0; i < NCPU; i++) {
1410 mutex_init(&cpu_hme_pend[i].chp_mutex, NULL, MUTEX_DEFAULT,
1411 NULL);
1412 }
1413
1414 if (cpu_hme_pend_thresh == 0) {
1415 cpu_hme_pend_thresh = CPU_HME_PEND_THRESH;
1416 }
1417 }
1418
1419 /*
1420 * Initialize locking for the hat layer, called early during boot.
1421 */
1422 static void
hat_lock_init()1423 hat_lock_init()
1424 {
1425 int i;
1426
1427 /*
1428 * initialize the array of mutexes protecting a page's mapping
1429 * list and p_nrm field.
1430 */
1431 for (i = 0; i < MML_TABLE_SIZE; i++)
1432 mutex_init(&mml_table[i].pad_mutex, NULL, MUTEX_DEFAULT, NULL);
1433
1434 if (kpm_enable) {
1435 for (i = 0; i < kpmp_table_sz; i++) {
1436 mutex_init(&kpmp_table[i].khl_mutex, NULL,
1437 MUTEX_DEFAULT, NULL);
1438 }
1439 }
1440
1441 /*
1442 * Initialize array of mutex locks that protects sfmmu fields and
1443 * TSB lists.
1444 */
1445 for (i = 0; i < SFMMU_NUM_LOCK; i++)
1446 mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1447 NULL);
1448 }
1449
1450 #define SFMMU_KERNEL_MAXVA \
1451 (kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1452
1453 /*
1454 * Allocate a hat structure.
1455 * Called when an address space first uses a hat.
1456 */
1457 struct hat *
hat_alloc(struct as * as)1458 hat_alloc(struct as *as)
1459 {
1460 sfmmu_t *sfmmup;
1461 int i;
1462 uint64_t cnum;
1463 extern uint_t get_color_start(struct as *);
1464
1465 ASSERT(AS_WRITE_HELD(as));
1466 sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1467 sfmmup->sfmmu_as = as;
1468 sfmmup->sfmmu_flags = 0;
1469 sfmmup->sfmmu_tteflags = 0;
1470 sfmmup->sfmmu_rtteflags = 0;
1471 LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1472
1473 if (as == &kas) {
1474 ksfmmup = sfmmup;
1475 sfmmup->sfmmu_cext = 0;
1476 cnum = KCONTEXT;
1477
1478 sfmmup->sfmmu_clrstart = 0;
1479 sfmmup->sfmmu_tsb = NULL;
1480 /*
1481 * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1482 * to setup tsb_info for ksfmmup.
1483 */
1484 } else {
1485
1486 /*
1487 * Just set to invalid ctx. When it faults, it will
1488 * get a valid ctx. This would avoid the situation
1489 * where we get a ctx, but it gets stolen and then
1490 * we fault when we try to run and so have to get
1491 * another ctx.
1492 */
1493 sfmmup->sfmmu_cext = 0;
1494 cnum = INVALID_CONTEXT;
1495
1496 /* initialize original physical page coloring bin */
1497 sfmmup->sfmmu_clrstart = get_color_start(as);
1498 #ifdef DEBUG
1499 if (tsb_random_size) {
1500 uint32_t randval = (uint32_t)gettick() >> 4;
1501 int size = randval % (tsb_max_growsize + 1);
1502
1503 /* chose a random tsb size for stress testing */
1504 (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1505 TSB8K|TSB64K|TSB512K, 0, sfmmup);
1506 } else
1507 #endif /* DEBUG */
1508 (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1509 default_tsb_size,
1510 TSB8K|TSB64K|TSB512K, 0, sfmmup);
1511 sfmmup->sfmmu_flags = HAT_SWAPPED | HAT_ALLCTX_INVALID;
1512 ASSERT(sfmmup->sfmmu_tsb != NULL);
1513 }
1514
1515 ASSERT(max_mmu_ctxdoms > 0);
1516 for (i = 0; i < max_mmu_ctxdoms; i++) {
1517 sfmmup->sfmmu_ctxs[i].cnum = cnum;
1518 sfmmup->sfmmu_ctxs[i].gnum = 0;
1519 }
1520
1521 for (i = 0; i < max_mmu_page_sizes; i++) {
1522 sfmmup->sfmmu_ttecnt[i] = 0;
1523 sfmmup->sfmmu_scdrttecnt[i] = 0;
1524 sfmmup->sfmmu_ismttecnt[i] = 0;
1525 sfmmup->sfmmu_scdismttecnt[i] = 0;
1526 sfmmup->sfmmu_pgsz[i] = TTE8K;
1527 }
1528 sfmmup->sfmmu_tsb0_4minflcnt = 0;
1529 sfmmup->sfmmu_iblk = NULL;
1530 sfmmup->sfmmu_ismhat = 0;
1531 sfmmup->sfmmu_scdhat = 0;
1532 sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1533 if (sfmmup == ksfmmup) {
1534 CPUSET_ALL(sfmmup->sfmmu_cpusran);
1535 } else {
1536 CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1537 }
1538 sfmmup->sfmmu_free = 0;
1539 sfmmup->sfmmu_rmstat = 0;
1540 sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1541 cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1542 sfmmup->sfmmu_srdp = NULL;
1543 SF_RGNMAP_ZERO(sfmmup->sfmmu_region_map);
1544 bzero(sfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
1545 sfmmup->sfmmu_scdp = NULL;
1546 sfmmup->sfmmu_scd_link.next = NULL;
1547 sfmmup->sfmmu_scd_link.prev = NULL;
1548 return (sfmmup);
1549 }
1550
1551 /*
1552 * Create per-MMU context domain kstats for a given MMU ctx.
1553 */
1554 static void
sfmmu_mmu_kstat_create(mmu_ctx_t * mmu_ctxp)1555 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1556 {
1557 mmu_ctx_stat_t stat;
1558 kstat_t *mmu_kstat;
1559
1560 ASSERT(MUTEX_HELD(&cpu_lock));
1561 ASSERT(mmu_ctxp->mmu_kstat == NULL);
1562
1563 mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1564 "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1565
1566 if (mmu_kstat == NULL) {
1567 cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1568 mmu_ctxp->mmu_idx);
1569 } else {
1570 mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1571 for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1572 kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1573 mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1574 mmu_ctxp->mmu_kstat = mmu_kstat;
1575 kstat_install(mmu_kstat);
1576 }
1577 }
1578
1579 /*
1580 * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1581 * context domain information for a given CPU. If a platform does not
1582 * specify that interface, then the function below is used instead to return
1583 * default information. The defaults are as follows:
1584 *
1585 * - The number of MMU context IDs supported on any CPU in the
1586 * system is 8K.
1587 * - There is one MMU context domain per CPU.
1588 */
1589 /*ARGSUSED*/
1590 static void
sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid,mmu_ctx_info_t * infop)1591 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1592 {
1593 infop->mmu_nctxs = nctxs;
1594 infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1595 }
1596
1597 /*
1598 * Called during CPU initialization to set the MMU context-related information
1599 * for a CPU.
1600 *
1601 * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1602 */
1603 void
sfmmu_cpu_init(cpu_t * cp)1604 sfmmu_cpu_init(cpu_t *cp)
1605 {
1606 mmu_ctx_info_t info;
1607 mmu_ctx_t *mmu_ctxp;
1608
1609 ASSERT(MUTEX_HELD(&cpu_lock));
1610
1611 if (&plat_cpuid_to_mmu_ctx_info == NULL)
1612 sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1613 else
1614 plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1615
1616 ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1617
1618 if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1619 /* Each mmu_ctx is cacheline aligned. */
1620 mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1621 bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1622
1623 mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1624 (void *)ipltospl(DISP_LEVEL));
1625 mmu_ctxp->mmu_idx = info.mmu_idx;
1626 mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1627 /*
1628 * Globally for lifetime of a system,
1629 * gnum must always increase.
1630 * mmu_saved_gnum is protected by the cpu_lock.
1631 */
1632 mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1633 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1634
1635 sfmmu_mmu_kstat_create(mmu_ctxp);
1636
1637 mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1638 } else {
1639 ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1640 ASSERT(mmu_ctxp->mmu_nctxs <= info.mmu_nctxs);
1641 }
1642
1643 /*
1644 * The mmu_lock is acquired here to prevent races with
1645 * the wrap-around code.
1646 */
1647 mutex_enter(&mmu_ctxp->mmu_lock);
1648
1649
1650 mmu_ctxp->mmu_ncpus++;
1651 CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1652 CPU_MMU_IDX(cp) = info.mmu_idx;
1653 CPU_MMU_CTXP(cp) = mmu_ctxp;
1654
1655 mutex_exit(&mmu_ctxp->mmu_lock);
1656 }
1657
1658 static void
sfmmu_ctxdom_free(mmu_ctx_t * mmu_ctxp)1659 sfmmu_ctxdom_free(mmu_ctx_t *mmu_ctxp)
1660 {
1661 ASSERT(MUTEX_HELD(&cpu_lock));
1662 ASSERT(!MUTEX_HELD(&mmu_ctxp->mmu_lock));
1663
1664 mutex_destroy(&mmu_ctxp->mmu_lock);
1665
1666 if (mmu_ctxp->mmu_kstat)
1667 kstat_delete(mmu_ctxp->mmu_kstat);
1668
1669 /* mmu_saved_gnum is protected by the cpu_lock. */
1670 if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1671 mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1672
1673 kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1674 }
1675
1676 /*
1677 * Called to perform MMU context-related cleanup for a CPU.
1678 */
1679 void
sfmmu_cpu_cleanup(cpu_t * cp)1680 sfmmu_cpu_cleanup(cpu_t *cp)
1681 {
1682 mmu_ctx_t *mmu_ctxp;
1683
1684 ASSERT(MUTEX_HELD(&cpu_lock));
1685
1686 mmu_ctxp = CPU_MMU_CTXP(cp);
1687 ASSERT(mmu_ctxp != NULL);
1688
1689 /*
1690 * The mmu_lock is acquired here to prevent races with
1691 * the wrap-around code.
1692 */
1693 mutex_enter(&mmu_ctxp->mmu_lock);
1694
1695 CPU_MMU_CTXP(cp) = NULL;
1696
1697 CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1698 if (--mmu_ctxp->mmu_ncpus == 0) {
1699 mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1700 mutex_exit(&mmu_ctxp->mmu_lock);
1701 sfmmu_ctxdom_free(mmu_ctxp);
1702 return;
1703 }
1704
1705 mutex_exit(&mmu_ctxp->mmu_lock);
1706 }
1707
1708 uint_t
sfmmu_ctxdom_nctxs(int idx)1709 sfmmu_ctxdom_nctxs(int idx)
1710 {
1711 return (mmu_ctxs_tbl[idx]->mmu_nctxs);
1712 }
1713
1714 #ifdef sun4v
1715 /*
1716 * sfmmu_ctxdoms_* is an interface provided to help keep context domains
1717 * consistant after suspend/resume on system that can resume on a different
1718 * hardware than it was suspended.
1719 *
1720 * sfmmu_ctxdom_lock(void) locks all context domains and prevents new contexts
1721 * from being allocated. It acquires all hat_locks, which blocks most access to
1722 * context data, except for a few cases that are handled separately or are
1723 * harmless. It wraps each domain to increment gnum and invalidate on-CPU
1724 * contexts, and forces cnum to its max. As a result of this call all user
1725 * threads that are running on CPUs trap and try to perform wrap around but
1726 * can't because hat_locks are taken. Threads that were not on CPUs but started
1727 * by scheduler go to sfmmu_alloc_ctx() to aquire context without checking
1728 * hat_lock, but fail, because cnum == nctxs, and therefore also trap and block
1729 * on hat_lock trying to wrap. sfmmu_ctxdom_lock() must be called before CPUs
1730 * are paused, else it could deadlock acquiring locks held by paused CPUs.
1731 *
1732 * sfmmu_ctxdoms_remove() removes context domains from every CPUs and records
1733 * the CPUs that had them. It must be called after CPUs have been paused. This
1734 * ensures that no threads are in sfmmu_alloc_ctx() accessing domain data,
1735 * because pause_cpus sends a mondo interrupt to every CPU, and sfmmu_alloc_ctx
1736 * runs with interrupts disabled. When CPUs are later resumed, they may enter
1737 * sfmmu_alloc_ctx, but it will check for CPU_MMU_CTXP = NULL and immediately
1738 * return failure. Or, they will be blocked trying to acquire hat_lock. Thus
1739 * after sfmmu_ctxdoms_remove returns, we are guaranteed that no one is
1740 * accessing the old context domains.
1741 *
1742 * sfmmu_ctxdoms_update(void) frees space used by old context domains and
1743 * allocates new context domains based on hardware layout. It initializes
1744 * every CPU that had context domain before migration to have one again.
1745 * sfmmu_ctxdoms_update must be called after CPUs are resumed, else it
1746 * could deadlock acquiring locks held by paused CPUs.
1747 *
1748 * sfmmu_ctxdoms_unlock(void) releases all hat_locks after which user threads
1749 * acquire new context ids and continue execution.
1750 *
1751 * Therefore functions should be called in the following order:
1752 * suspend_routine()
1753 * sfmmu_ctxdom_lock()
1754 * pause_cpus()
1755 * suspend()
1756 * if (suspend failed)
1757 * sfmmu_ctxdom_unlock()
1758 * ...
1759 * sfmmu_ctxdom_remove()
1760 * resume_cpus()
1761 * sfmmu_ctxdom_update()
1762 * sfmmu_ctxdom_unlock()
1763 */
1764 static cpuset_t sfmmu_ctxdoms_pset;
1765
1766 void
sfmmu_ctxdoms_remove()1767 sfmmu_ctxdoms_remove()
1768 {
1769 processorid_t id;
1770 cpu_t *cp;
1771
1772 /*
1773 * Record the CPUs that have domains in sfmmu_ctxdoms_pset, so they can
1774 * be restored post-migration. A CPU may be powered off and not have a
1775 * domain, for example.
1776 */
1777 CPUSET_ZERO(sfmmu_ctxdoms_pset);
1778
1779 for (id = 0; id < NCPU; id++) {
1780 if ((cp = cpu[id]) != NULL && CPU_MMU_CTXP(cp) != NULL) {
1781 CPUSET_ADD(sfmmu_ctxdoms_pset, id);
1782 CPU_MMU_CTXP(cp) = NULL;
1783 }
1784 }
1785 }
1786
1787 void
sfmmu_ctxdoms_lock(void)1788 sfmmu_ctxdoms_lock(void)
1789 {
1790 int idx;
1791 mmu_ctx_t *mmu_ctxp;
1792
1793 sfmmu_hat_lock_all();
1794
1795 /*
1796 * At this point, no thread can be in sfmmu_ctx_wrap_around, because
1797 * hat_lock is always taken before calling it.
1798 *
1799 * For each domain, set mmu_cnum to max so no more contexts can be
1800 * allocated, and wrap to flush on-CPU contexts and force threads to
1801 * acquire a new context when we later drop hat_lock after migration.
1802 * Setting mmu_cnum may race with sfmmu_alloc_ctx which also sets cnum,
1803 * but the latter uses CAS and will miscompare and not overwrite it.
1804 */
1805 kpreempt_disable(); /* required by sfmmu_ctx_wrap_around */
1806 for (idx = 0; idx < max_mmu_ctxdoms; idx++) {
1807 if ((mmu_ctxp = mmu_ctxs_tbl[idx]) != NULL) {
1808 mutex_enter(&mmu_ctxp->mmu_lock);
1809 mmu_ctxp->mmu_cnum = mmu_ctxp->mmu_nctxs;
1810 /* make sure updated cnum visible */
1811 membar_enter();
1812 mutex_exit(&mmu_ctxp->mmu_lock);
1813 sfmmu_ctx_wrap_around(mmu_ctxp, B_FALSE);
1814 }
1815 }
1816 kpreempt_enable();
1817 }
1818
1819 void
sfmmu_ctxdoms_unlock(void)1820 sfmmu_ctxdoms_unlock(void)
1821 {
1822 sfmmu_hat_unlock_all();
1823 }
1824
1825 void
sfmmu_ctxdoms_update(void)1826 sfmmu_ctxdoms_update(void)
1827 {
1828 processorid_t id;
1829 cpu_t *cp;
1830 uint_t idx;
1831 mmu_ctx_t *mmu_ctxp;
1832
1833 /*
1834 * Free all context domains. As side effect, this increases
1835 * mmu_saved_gnum to the maximum gnum over all domains, which is used to
1836 * init gnum in the new domains, which therefore will be larger than the
1837 * sfmmu gnum for any process, guaranteeing that every process will see
1838 * a new generation and allocate a new context regardless of what new
1839 * domain it runs in.
1840 */
1841 mutex_enter(&cpu_lock);
1842
1843 for (idx = 0; idx < max_mmu_ctxdoms; idx++) {
1844 if (mmu_ctxs_tbl[idx] != NULL) {
1845 mmu_ctxp = mmu_ctxs_tbl[idx];
1846 mmu_ctxs_tbl[idx] = NULL;
1847 sfmmu_ctxdom_free(mmu_ctxp);
1848 }
1849 }
1850
1851 for (id = 0; id < NCPU; id++) {
1852 if (CPU_IN_SET(sfmmu_ctxdoms_pset, id) &&
1853 (cp = cpu[id]) != NULL)
1854 sfmmu_cpu_init(cp);
1855 }
1856 mutex_exit(&cpu_lock);
1857 }
1858 #endif
1859
1860 /*
1861 * Hat_setup, makes an address space context the current active one.
1862 * In sfmmu this translates to setting the secondary context with the
1863 * corresponding context.
1864 */
1865 void
hat_setup(struct hat * sfmmup,int allocflag)1866 hat_setup(struct hat *sfmmup, int allocflag)
1867 {
1868 hatlock_t *hatlockp;
1869
1870 /* Init needs some special treatment. */
1871 if (allocflag == HAT_INIT) {
1872 /*
1873 * Make sure that we have
1874 * 1. a TSB
1875 * 2. a valid ctx that doesn't get stolen after this point.
1876 */
1877 hatlockp = sfmmu_hat_enter(sfmmup);
1878
1879 /*
1880 * Swap in the TSB. hat_init() allocates tsbinfos without
1881 * TSBs, but we need one for init, since the kernel does some
1882 * special things to set up its stack and needs the TSB to
1883 * resolve page faults.
1884 */
1885 sfmmu_tsb_swapin(sfmmup, hatlockp);
1886
1887 sfmmu_get_ctx(sfmmup);
1888
1889 sfmmu_hat_exit(hatlockp);
1890 } else {
1891 ASSERT(allocflag == HAT_ALLOC);
1892
1893 hatlockp = sfmmu_hat_enter(sfmmup);
1894 kpreempt_disable();
1895
1896 CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1897 /*
1898 * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1899 * pagesize bits don't matter in this case since we are passing
1900 * INVALID_CONTEXT to it.
1901 * Compatibility Note: hw takes care of MMU_SCONTEXT1
1902 */
1903 sfmmu_setctx_sec(INVALID_CONTEXT);
1904 sfmmu_clear_utsbinfo();
1905
1906 kpreempt_enable();
1907 sfmmu_hat_exit(hatlockp);
1908 }
1909 }
1910
1911 /*
1912 * Free all the translation resources for the specified address space.
1913 * Called from as_free when an address space is being destroyed.
1914 */
1915 void
hat_free_start(struct hat * sfmmup)1916 hat_free_start(struct hat *sfmmup)
1917 {
1918 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
1919 ASSERT(sfmmup != ksfmmup);
1920
1921 sfmmup->sfmmu_free = 1;
1922 if (sfmmup->sfmmu_scdp != NULL) {
1923 sfmmu_leave_scd(sfmmup, 0);
1924 }
1925
1926 ASSERT(sfmmup->sfmmu_scdp == NULL);
1927 }
1928
1929 void
hat_free_end(struct hat * sfmmup)1930 hat_free_end(struct hat *sfmmup)
1931 {
1932 int i;
1933
1934 ASSERT(sfmmup->sfmmu_free == 1);
1935 ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1936 ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1937 ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1938 ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1939 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1940 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1941
1942 if (sfmmup->sfmmu_rmstat) {
1943 hat_freestat(sfmmup->sfmmu_as, 0);
1944 }
1945
1946 while (sfmmup->sfmmu_tsb != NULL) {
1947 struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1948 sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1949 sfmmup->sfmmu_tsb = next;
1950 }
1951
1952 if (sfmmup->sfmmu_srdp != NULL) {
1953 sfmmu_leave_srd(sfmmup);
1954 ASSERT(sfmmup->sfmmu_srdp == NULL);
1955 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1956 if (sfmmup->sfmmu_hmeregion_links[i] != NULL) {
1957 kmem_free(sfmmup->sfmmu_hmeregion_links[i],
1958 SFMMU_L2_HMERLINKS_SIZE);
1959 sfmmup->sfmmu_hmeregion_links[i] = NULL;
1960 }
1961 }
1962 }
1963 sfmmu_free_sfmmu(sfmmup);
1964
1965 #ifdef DEBUG
1966 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1967 ASSERT(sfmmup->sfmmu_hmeregion_links[i] == NULL);
1968 }
1969 #endif
1970
1971 kmem_cache_free(sfmmuid_cache, sfmmup);
1972 }
1973
1974 /*
1975 * Set up any translation structures, for the specified address space,
1976 * that are needed or preferred when the process is being swapped in.
1977 */
1978 /* ARGSUSED */
1979 void
hat_swapin(struct hat * hat)1980 hat_swapin(struct hat *hat)
1981 {
1982 }
1983
1984 /*
1985 * Free all of the translation resources, for the specified address space,
1986 * that can be freed while the process is swapped out. Called from as_swapout.
1987 * Also, free up the ctx that this process was using.
1988 */
1989 void
hat_swapout(struct hat * sfmmup)1990 hat_swapout(struct hat *sfmmup)
1991 {
1992 struct hmehash_bucket *hmebp;
1993 struct hme_blk *hmeblkp;
1994 struct hme_blk *pr_hblk = NULL;
1995 struct hme_blk *nx_hblk;
1996 int i;
1997 struct hme_blk *list = NULL;
1998 hatlock_t *hatlockp;
1999 struct tsb_info *tsbinfop;
2000 struct free_tsb {
2001 struct free_tsb *next;
2002 struct tsb_info *tsbinfop;
2003 }; /* free list of TSBs */
2004 struct free_tsb *freelist, *last, *next;
2005
2006 SFMMU_STAT(sf_swapout);
2007
2008 /*
2009 * There is no way to go from an as to all its translations in sfmmu.
2010 * Here is one of the times when we take the big hit and traverse
2011 * the hash looking for hme_blks to free up. Not only do we free up
2012 * this as hme_blks but all those that are free. We are obviously
2013 * swapping because we need memory so let's free up as much
2014 * as we can.
2015 *
2016 * Note that we don't flush TLB/TSB here -- it's not necessary
2017 * because:
2018 * 1) we free the ctx we're using and throw away the TSB(s);
2019 * 2) processes aren't runnable while being swapped out.
2020 */
2021 ASSERT(sfmmup != KHATID);
2022 for (i = 0; i <= UHMEHASH_SZ; i++) {
2023 hmebp = &uhme_hash[i];
2024 SFMMU_HASH_LOCK(hmebp);
2025 hmeblkp = hmebp->hmeblkp;
2026 pr_hblk = NULL;
2027 while (hmeblkp) {
2028
2029 if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
2030 !hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
2031 ASSERT(!hmeblkp->hblk_shared);
2032 (void) sfmmu_hblk_unload(sfmmup, hmeblkp,
2033 (caddr_t)get_hblk_base(hmeblkp),
2034 get_hblk_endaddr(hmeblkp),
2035 NULL, HAT_UNLOAD);
2036 }
2037 nx_hblk = hmeblkp->hblk_next;
2038 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
2039 ASSERT(!hmeblkp->hblk_lckcnt);
2040 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
2041 &list, 0);
2042 } else {
2043 pr_hblk = hmeblkp;
2044 }
2045 hmeblkp = nx_hblk;
2046 }
2047 SFMMU_HASH_UNLOCK(hmebp);
2048 }
2049
2050 sfmmu_hblks_list_purge(&list, 0);
2051
2052 /*
2053 * Now free up the ctx so that others can reuse it.
2054 */
2055 hatlockp = sfmmu_hat_enter(sfmmup);
2056
2057 sfmmu_invalidate_ctx(sfmmup);
2058
2059 /*
2060 * Free TSBs, but not tsbinfos, and set SWAPPED flag.
2061 * If TSBs were never swapped in, just return.
2062 * This implies that we don't support partial swapping
2063 * of TSBs -- either all are swapped out, or none are.
2064 *
2065 * We must hold the HAT lock here to prevent racing with another
2066 * thread trying to unmap TTEs from the TSB or running the post-
2067 * relocator after relocating the TSB's memory. Unfortunately, we
2068 * can't free memory while holding the HAT lock or we could
2069 * deadlock, so we build a list of TSBs to be freed after marking
2070 * the tsbinfos as swapped out and free them after dropping the
2071 * lock.
2072 */
2073 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
2074 sfmmu_hat_exit(hatlockp);
2075 return;
2076 }
2077
2078 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
2079 last = freelist = NULL;
2080 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
2081 tsbinfop = tsbinfop->tsb_next) {
2082 ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
2083
2084 /*
2085 * Cast the TSB into a struct free_tsb and put it on the free
2086 * list.
2087 */
2088 if (freelist == NULL) {
2089 last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
2090 } else {
2091 last->next = (struct free_tsb *)tsbinfop->tsb_va;
2092 last = last->next;
2093 }
2094 last->next = NULL;
2095 last->tsbinfop = tsbinfop;
2096 tsbinfop->tsb_flags |= TSB_SWAPPED;
2097 /*
2098 * Zero out the TTE to clear the valid bit.
2099 * Note we can't use a value like 0xbad because we want to
2100 * ensure diagnostic bits are NEVER set on TTEs that might
2101 * be loaded. The intent is to catch any invalid access
2102 * to the swapped TSB, such as a thread running with a valid
2103 * context without first calling sfmmu_tsb_swapin() to
2104 * allocate TSB memory.
2105 */
2106 tsbinfop->tsb_tte.ll = 0;
2107 }
2108
2109 /* Now we can drop the lock and free the TSB memory. */
2110 sfmmu_hat_exit(hatlockp);
2111 for (; freelist != NULL; freelist = next) {
2112 next = freelist->next;
2113 sfmmu_tsb_free(freelist->tsbinfop);
2114 }
2115 }
2116
2117 /*
2118 * Duplicate the translations of an as into another newas
2119 */
2120 /* ARGSUSED */
2121 int
hat_dup(struct hat * hat,struct hat * newhat,caddr_t addr,size_t len,uint_t flag)2122 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
2123 uint_t flag)
2124 {
2125 sf_srd_t *srdp;
2126 sf_scd_t *scdp;
2127 int i;
2128 extern uint_t get_color_start(struct as *);
2129
2130 ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW) ||
2131 (flag == HAT_DUP_SRD));
2132 ASSERT(hat != ksfmmup);
2133 ASSERT(newhat != ksfmmup);
2134 ASSERT(flag != HAT_DUP_ALL || hat->sfmmu_srdp == newhat->sfmmu_srdp);
2135
2136 if (flag == HAT_DUP_COW) {
2137 panic("hat_dup: HAT_DUP_COW not supported");
2138 }
2139
2140 if (flag == HAT_DUP_SRD && ((srdp = hat->sfmmu_srdp) != NULL)) {
2141 ASSERT(srdp->srd_evp != NULL);
2142 VN_HOLD(srdp->srd_evp);
2143 ASSERT(srdp->srd_refcnt > 0);
2144 newhat->sfmmu_srdp = srdp;
2145 atomic_inc_32((volatile uint_t *)&srdp->srd_refcnt);
2146 }
2147
2148 /*
2149 * HAT_DUP_ALL flag is used after as duplication is done.
2150 */
2151 if (flag == HAT_DUP_ALL && ((srdp = newhat->sfmmu_srdp) != NULL)) {
2152 ASSERT(newhat->sfmmu_srdp->srd_refcnt >= 2);
2153 newhat->sfmmu_rtteflags = hat->sfmmu_rtteflags;
2154 if (hat->sfmmu_flags & HAT_4MTEXT_FLAG) {
2155 newhat->sfmmu_flags |= HAT_4MTEXT_FLAG;
2156 }
2157
2158 /* check if need to join scd */
2159 if ((scdp = hat->sfmmu_scdp) != NULL &&
2160 newhat->sfmmu_scdp != scdp) {
2161 int ret;
2162 SF_RGNMAP_IS_SUBSET(&newhat->sfmmu_region_map,
2163 &scdp->scd_region_map, ret);
2164 ASSERT(ret);
2165 sfmmu_join_scd(scdp, newhat);
2166 ASSERT(newhat->sfmmu_scdp == scdp &&
2167 scdp->scd_refcnt >= 2);
2168 for (i = 0; i < max_mmu_page_sizes; i++) {
2169 newhat->sfmmu_ismttecnt[i] =
2170 hat->sfmmu_ismttecnt[i];
2171 newhat->sfmmu_scdismttecnt[i] =
2172 hat->sfmmu_scdismttecnt[i];
2173 }
2174 }
2175
2176 sfmmu_check_page_sizes(newhat, 1);
2177 }
2178
2179 if (flag == HAT_DUP_ALL && consistent_coloring == 0 &&
2180 update_proc_pgcolorbase_after_fork != 0) {
2181 hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as);
2182 }
2183 return (0);
2184 }
2185
2186 void
hat_memload(struct hat * hat,caddr_t addr,struct page * pp,uint_t attr,uint_t flags)2187 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
2188 uint_t attr, uint_t flags)
2189 {
2190 hat_do_memload(hat, addr, pp, attr, flags,
2191 SFMMU_INVALID_SHMERID);
2192 }
2193
2194 void
hat_memload_region(struct hat * hat,caddr_t addr,struct page * pp,uint_t attr,uint_t flags,hat_region_cookie_t rcookie)2195 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
2196 uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
2197 {
2198 uint_t rid;
2199 if (rcookie == HAT_INVALID_REGION_COOKIE) {
2200 hat_do_memload(hat, addr, pp, attr, flags,
2201 SFMMU_INVALID_SHMERID);
2202 return;
2203 }
2204 rid = (uint_t)((uint64_t)rcookie);
2205 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2206 hat_do_memload(hat, addr, pp, attr, flags, rid);
2207 }
2208
2209 /*
2210 * Set up addr to map to page pp with protection prot.
2211 * As an optimization we also load the TSB with the
2212 * corresponding tte but it is no big deal if the tte gets kicked out.
2213 */
2214 static void
hat_do_memload(struct hat * hat,caddr_t addr,struct page * pp,uint_t attr,uint_t flags,uint_t rid)2215 hat_do_memload(struct hat *hat, caddr_t addr, struct page *pp,
2216 uint_t attr, uint_t flags, uint_t rid)
2217 {
2218 tte_t tte;
2219
2220
2221 ASSERT(hat != NULL);
2222 ASSERT(PAGE_LOCKED(pp));
2223 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2224 ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2225 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2226 SFMMU_VALIDATE_HMERID(hat, rid, addr, MMU_PAGESIZE);
2227
2228 if (PP_ISFREE(pp)) {
2229 panic("hat_memload: loading a mapping to free page %p",
2230 (void *)pp);
2231 }
2232
2233 ASSERT((hat == ksfmmup) || AS_LOCK_HELD(hat->sfmmu_as));
2234
2235 if (flags & ~SFMMU_LOAD_ALLFLAG)
2236 cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
2237 flags & ~SFMMU_LOAD_ALLFLAG);
2238
2239 if (hat->sfmmu_rmstat)
2240 hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
2241
2242 #if defined(SF_ERRATA_57)
2243 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2244 (addr < errata57_limit) && (attr & PROT_EXEC) &&
2245 !(flags & HAT_LOAD_SHARE)) {
2246 cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
2247 " page executable");
2248 attr &= ~PROT_EXEC;
2249 }
2250 #endif
2251
2252 sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2253 (void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags, rid);
2254
2255 /*
2256 * Check TSB and TLB page sizes.
2257 */
2258 if ((flags & HAT_LOAD_SHARE) == 0) {
2259 sfmmu_check_page_sizes(hat, 1);
2260 }
2261 }
2262
2263 /*
2264 * hat_devload can be called to map real memory (e.g.
2265 * /dev/kmem) and even though hat_devload will determine pf is
2266 * for memory, it will be unable to get a shared lock on the
2267 * page (because someone else has it exclusively) and will
2268 * pass dp = NULL. If tteload doesn't get a non-NULL
2269 * page pointer it can't cache memory.
2270 */
2271 void
hat_devload(struct hat * hat,caddr_t addr,size_t len,pfn_t pfn,uint_t attr,int flags)2272 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
2273 uint_t attr, int flags)
2274 {
2275 tte_t tte;
2276 struct page *pp = NULL;
2277 int use_lgpg = 0;
2278
2279 ASSERT(hat != NULL);
2280
2281 ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2282 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2283 ASSERT((hat == ksfmmup) || AS_LOCK_HELD(hat->sfmmu_as));
2284 if (len == 0)
2285 panic("hat_devload: zero len");
2286 if (flags & ~SFMMU_LOAD_ALLFLAG)
2287 cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
2288 flags & ~SFMMU_LOAD_ALLFLAG);
2289
2290 #if defined(SF_ERRATA_57)
2291 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2292 (addr < errata57_limit) && (attr & PROT_EXEC) &&
2293 !(flags & HAT_LOAD_SHARE)) {
2294 cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
2295 " page executable");
2296 attr &= ~PROT_EXEC;
2297 }
2298 #endif
2299
2300 /*
2301 * If it's a memory page find its pp
2302 */
2303 if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
2304 pp = page_numtopp_nolock(pfn);
2305 if (pp == NULL) {
2306 flags |= HAT_LOAD_NOCONSIST;
2307 } else {
2308 if (PP_ISFREE(pp)) {
2309 panic("hat_memload: loading "
2310 "a mapping to free page %p",
2311 (void *)pp);
2312 }
2313 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
2314 panic("hat_memload: loading a mapping "
2315 "to unlocked relocatable page %p",
2316 (void *)pp);
2317 }
2318 ASSERT(len == MMU_PAGESIZE);
2319 }
2320 }
2321
2322 if (hat->sfmmu_rmstat)
2323 hat_resvstat(len, hat->sfmmu_as, addr);
2324
2325 if (flags & HAT_LOAD_NOCONSIST) {
2326 attr |= SFMMU_UNCACHEVTTE;
2327 use_lgpg = 1;
2328 }
2329 if (!pf_is_memory(pfn)) {
2330 attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
2331 use_lgpg = 1;
2332 switch (attr & HAT_ORDER_MASK) {
2333 case HAT_STRICTORDER:
2334 case HAT_UNORDERED_OK:
2335 /*
2336 * we set the side effect bit for all non
2337 * memory mappings unless merging is ok
2338 */
2339 attr |= SFMMU_SIDEFFECT;
2340 break;
2341 case HAT_MERGING_OK:
2342 case HAT_LOADCACHING_OK:
2343 case HAT_STORECACHING_OK:
2344 break;
2345 default:
2346 panic("hat_devload: bad attr");
2347 break;
2348 }
2349 }
2350 while (len) {
2351 if (!use_lgpg) {
2352 sfmmu_memtte(&tte, pfn, attr, TTE8K);
2353 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2354 flags, SFMMU_INVALID_SHMERID);
2355 len -= MMU_PAGESIZE;
2356 addr += MMU_PAGESIZE;
2357 pfn++;
2358 continue;
2359 }
2360 /*
2361 * try to use large pages, check va/pa alignments
2362 * Note that 32M/256M page sizes are not (yet) supported.
2363 */
2364 if ((len >= MMU_PAGESIZE4M) &&
2365 !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
2366 !(disable_large_pages & (1 << TTE4M)) &&
2367 !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
2368 sfmmu_memtte(&tte, pfn, attr, TTE4M);
2369 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2370 flags, SFMMU_INVALID_SHMERID);
2371 len -= MMU_PAGESIZE4M;
2372 addr += MMU_PAGESIZE4M;
2373 pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
2374 } else if ((len >= MMU_PAGESIZE512K) &&
2375 !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
2376 !(disable_large_pages & (1 << TTE512K)) &&
2377 !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
2378 sfmmu_memtte(&tte, pfn, attr, TTE512K);
2379 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2380 flags, SFMMU_INVALID_SHMERID);
2381 len -= MMU_PAGESIZE512K;
2382 addr += MMU_PAGESIZE512K;
2383 pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
2384 } else if ((len >= MMU_PAGESIZE64K) &&
2385 !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
2386 !(disable_large_pages & (1 << TTE64K)) &&
2387 !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
2388 sfmmu_memtte(&tte, pfn, attr, TTE64K);
2389 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2390 flags, SFMMU_INVALID_SHMERID);
2391 len -= MMU_PAGESIZE64K;
2392 addr += MMU_PAGESIZE64K;
2393 pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
2394 } else {
2395 sfmmu_memtte(&tte, pfn, attr, TTE8K);
2396 (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2397 flags, SFMMU_INVALID_SHMERID);
2398 len -= MMU_PAGESIZE;
2399 addr += MMU_PAGESIZE;
2400 pfn++;
2401 }
2402 }
2403
2404 /*
2405 * Check TSB and TLB page sizes.
2406 */
2407 if ((flags & HAT_LOAD_SHARE) == 0) {
2408 sfmmu_check_page_sizes(hat, 1);
2409 }
2410 }
2411
2412 void
hat_memload_array(struct hat * hat,caddr_t addr,size_t len,struct page ** pps,uint_t attr,uint_t flags)2413 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2414 struct page **pps, uint_t attr, uint_t flags)
2415 {
2416 hat_do_memload_array(hat, addr, len, pps, attr, flags,
2417 SFMMU_INVALID_SHMERID);
2418 }
2419
2420 void
hat_memload_array_region(struct hat * hat,caddr_t addr,size_t len,struct page ** pps,uint_t attr,uint_t flags,hat_region_cookie_t rcookie)2421 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
2422 struct page **pps, uint_t attr, uint_t flags,
2423 hat_region_cookie_t rcookie)
2424 {
2425 uint_t rid;
2426 if (rcookie == HAT_INVALID_REGION_COOKIE) {
2427 hat_do_memload_array(hat, addr, len, pps, attr, flags,
2428 SFMMU_INVALID_SHMERID);
2429 return;
2430 }
2431 rid = (uint_t)((uint64_t)rcookie);
2432 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2433 hat_do_memload_array(hat, addr, len, pps, attr, flags, rid);
2434 }
2435
2436 /*
2437 * Map the largest extend possible out of the page array. The array may NOT
2438 * be in order. The largest possible mapping a page can have
2439 * is specified in the p_szc field. The p_szc field
2440 * cannot change as long as there any mappings (large or small)
2441 * to any of the pages that make up the large page. (ie. any
2442 * promotion/demotion of page size is not up to the hat but up to
2443 * the page free list manager). The array
2444 * should consist of properly aligned contigous pages that are
2445 * part of a big page for a large mapping to be created.
2446 */
2447 static void
hat_do_memload_array(struct hat * hat,caddr_t addr,size_t len,struct page ** pps,uint_t attr,uint_t flags,uint_t rid)2448 hat_do_memload_array(struct hat *hat, caddr_t addr, size_t len,
2449 struct page **pps, uint_t attr, uint_t flags, uint_t rid)
2450 {
2451 int ttesz;
2452 size_t mapsz;
2453 pgcnt_t numpg, npgs;
2454 tte_t tte;
2455 page_t *pp;
2456 uint_t large_pages_disable;
2457
2458 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2459 SFMMU_VALIDATE_HMERID(hat, rid, addr, len);
2460
2461 if (hat->sfmmu_rmstat)
2462 hat_resvstat(len, hat->sfmmu_as, addr);
2463
2464 #if defined(SF_ERRATA_57)
2465 if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2466 (addr < errata57_limit) && (attr & PROT_EXEC) &&
2467 !(flags & HAT_LOAD_SHARE)) {
2468 cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2469 "user page executable");
2470 attr &= ~PROT_EXEC;
2471 }
2472 #endif
2473
2474 /* Get number of pages */
2475 npgs = len >> MMU_PAGESHIFT;
2476
2477 if (flags & HAT_LOAD_SHARE) {
2478 large_pages_disable = disable_ism_large_pages;
2479 } else {
2480 large_pages_disable = disable_large_pages;
2481 }
2482
2483 if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2484 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2485 rid);
2486 return;
2487 }
2488
2489 while (npgs >= NHMENTS) {
2490 pp = *pps;
2491 for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2492 /*
2493 * Check if this page size is disabled.
2494 */
2495 if (large_pages_disable & (1 << ttesz))
2496 continue;
2497
2498 numpg = TTEPAGES(ttesz);
2499 mapsz = numpg << MMU_PAGESHIFT;
2500 if ((npgs >= numpg) &&
2501 IS_P2ALIGNED(addr, mapsz) &&
2502 IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2503 /*
2504 * At this point we have enough pages and
2505 * we know the virtual address and the pfn
2506 * are properly aligned. We still need
2507 * to check for physical contiguity but since
2508 * it is very likely that this is the case
2509 * we will assume they are so and undo
2510 * the request if necessary. It would
2511 * be great if we could get a hint flag
2512 * like HAT_CONTIG which would tell us
2513 * the pages are contigous for sure.
2514 */
2515 sfmmu_memtte(&tte, (*pps)->p_pagenum,
2516 attr, ttesz);
2517 if (!sfmmu_tteload_array(hat, &tte, addr,
2518 pps, flags, rid)) {
2519 break;
2520 }
2521 }
2522 }
2523 if (ttesz == TTE8K) {
2524 /*
2525 * We were not able to map array using a large page
2526 * batch a hmeblk or fraction at a time.
2527 */
2528 numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2529 & (NHMENTS-1);
2530 numpg = NHMENTS - numpg;
2531 ASSERT(numpg <= npgs);
2532 mapsz = numpg * MMU_PAGESIZE;
2533 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2534 numpg, rid);
2535 }
2536 addr += mapsz;
2537 npgs -= numpg;
2538 pps += numpg;
2539 }
2540
2541 if (npgs) {
2542 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2543 rid);
2544 }
2545
2546 /*
2547 * Check TSB and TLB page sizes.
2548 */
2549 if ((flags & HAT_LOAD_SHARE) == 0) {
2550 sfmmu_check_page_sizes(hat, 1);
2551 }
2552 }
2553
2554 /*
2555 * Function tries to batch 8K pages into the same hme blk.
2556 */
2557 static void
sfmmu_memload_batchsmall(struct hat * hat,caddr_t vaddr,page_t ** pps,uint_t attr,uint_t flags,pgcnt_t npgs,uint_t rid)2558 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2559 uint_t attr, uint_t flags, pgcnt_t npgs, uint_t rid)
2560 {
2561 tte_t tte;
2562 page_t *pp;
2563 struct hmehash_bucket *hmebp;
2564 struct hme_blk *hmeblkp;
2565 int index;
2566
2567 while (npgs) {
2568 /*
2569 * Acquire the hash bucket.
2570 */
2571 hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K,
2572 rid);
2573 ASSERT(hmebp);
2574
2575 /*
2576 * Find the hment block.
2577 */
2578 hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2579 TTE8K, flags, rid);
2580 ASSERT(hmeblkp);
2581
2582 do {
2583 /*
2584 * Make the tte.
2585 */
2586 pp = *pps;
2587 sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2588
2589 /*
2590 * Add the translation.
2591 */
2592 (void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2593 vaddr, pps, flags, rid);
2594
2595 /*
2596 * Goto next page.
2597 */
2598 pps++;
2599 npgs--;
2600
2601 /*
2602 * Goto next address.
2603 */
2604 vaddr += MMU_PAGESIZE;
2605
2606 /*
2607 * Don't crossover into a different hmentblk.
2608 */
2609 index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2610 (NHMENTS-1));
2611
2612 } while (index != 0 && npgs != 0);
2613
2614 /*
2615 * Release the hash bucket.
2616 */
2617
2618 sfmmu_tteload_release_hashbucket(hmebp);
2619 }
2620 }
2621
2622 /*
2623 * Construct a tte for a page:
2624 *
2625 * tte_valid = 1
2626 * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2627 * tte_size = size
2628 * tte_nfo = attr & HAT_NOFAULT
2629 * tte_ie = attr & HAT_STRUCTURE_LE
2630 * tte_hmenum = hmenum
2631 * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2632 * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2633 * tte_ref = 1 (optimization)
2634 * tte_wr_perm = attr & PROT_WRITE;
2635 * tte_no_sync = attr & HAT_NOSYNC
2636 * tte_lock = attr & SFMMU_LOCKTTE
2637 * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2638 * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2639 * tte_e = attr & SFMMU_SIDEFFECT
2640 * tte_priv = !(attr & PROT_USER)
2641 * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2642 * tte_glb = 0
2643 */
2644 void
sfmmu_memtte(tte_t * ttep,pfn_t pfn,uint_t attr,int tte_sz)2645 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2646 {
2647 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2648
2649 ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2650 ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2651
2652 if (TTE_IS_NOSYNC(ttep)) {
2653 TTE_SET_REF(ttep);
2654 if (TTE_IS_WRITABLE(ttep)) {
2655 TTE_SET_MOD(ttep);
2656 }
2657 }
2658 if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2659 panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2660 }
2661 }
2662
2663 /*
2664 * This function will add a translation to the hme_blk and allocate the
2665 * hme_blk if one does not exist.
2666 * If a page structure is specified then it will add the
2667 * corresponding hment to the mapping list.
2668 * It will also update the hmenum field for the tte.
2669 *
2670 * Currently this function is only used for kernel mappings.
2671 * So pass invalid region to sfmmu_tteload_array().
2672 */
2673 void
sfmmu_tteload(struct hat * sfmmup,tte_t * ttep,caddr_t vaddr,page_t * pp,uint_t flags)2674 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2675 uint_t flags)
2676 {
2677 ASSERT(sfmmup == ksfmmup);
2678 (void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags,
2679 SFMMU_INVALID_SHMERID);
2680 }
2681
2682 /*
2683 * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2684 * Assumes that a particular page size may only be resident in one TSB.
2685 */
2686 static void
sfmmu_mod_tsb(sfmmu_t * sfmmup,caddr_t vaddr,tte_t * ttep,int ttesz)2687 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2688 {
2689 struct tsb_info *tsbinfop = NULL;
2690 uint64_t tag;
2691 struct tsbe *tsbe_addr;
2692 uint64_t tsb_base;
2693 uint_t tsb_size;
2694 int vpshift = MMU_PAGESHIFT;
2695 int phys = 0;
2696
2697 if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2698 phys = ktsb_phys;
2699 if (ttesz >= TTE4M) {
2700 #ifndef sun4v
2701 ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2702 #endif
2703 tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2704 tsb_size = ktsb4m_szcode;
2705 } else {
2706 tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2707 tsb_size = ktsb_szcode;
2708 }
2709 } else {
2710 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2711
2712 /*
2713 * If there isn't a TSB for this page size, or the TSB is
2714 * swapped out, there is nothing to do. Note that the latter
2715 * case seems impossible but can occur if hat_pageunload()
2716 * is called on an ISM mapping while the process is swapped
2717 * out.
2718 */
2719 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2720 return;
2721
2722 /*
2723 * If another thread is in the middle of relocating a TSB
2724 * we can't unload the entry so set a flag so that the
2725 * TSB will be flushed before it can be accessed by the
2726 * process.
2727 */
2728 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2729 if (ttep == NULL)
2730 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2731 return;
2732 }
2733 #if defined(UTSB_PHYS)
2734 phys = 1;
2735 tsb_base = (uint64_t)tsbinfop->tsb_pa;
2736 #else
2737 tsb_base = (uint64_t)tsbinfop->tsb_va;
2738 #endif
2739 tsb_size = tsbinfop->tsb_szc;
2740 }
2741 if (ttesz >= TTE4M)
2742 vpshift = MMU_PAGESHIFT4M;
2743
2744 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2745 tag = sfmmu_make_tsbtag(vaddr);
2746
2747 if (ttep == NULL) {
2748 sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2749 } else {
2750 if (ttesz >= TTE4M) {
2751 SFMMU_STAT(sf_tsb_load4m);
2752 } else {
2753 SFMMU_STAT(sf_tsb_load8k);
2754 }
2755
2756 sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2757 }
2758 }
2759
2760 /*
2761 * Unmap all entries from [start, end) matching the given page size.
2762 *
2763 * This function is used primarily to unmap replicated 64K or 512K entries
2764 * from the TSB that are inserted using the base page size TSB pointer, but
2765 * it may also be called to unmap a range of addresses from the TSB.
2766 */
2767 void
sfmmu_unload_tsb_range(sfmmu_t * sfmmup,caddr_t start,caddr_t end,int ttesz)2768 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2769 {
2770 struct tsb_info *tsbinfop;
2771 uint64_t tag;
2772 struct tsbe *tsbe_addr;
2773 caddr_t vaddr;
2774 uint64_t tsb_base;
2775 int vpshift, vpgsz;
2776 uint_t tsb_size;
2777 int phys = 0;
2778
2779 /*
2780 * Assumptions:
2781 * If ttesz == 8K, 64K or 512K, we walk through the range 8K
2782 * at a time shooting down any valid entries we encounter.
2783 *
2784 * If ttesz >= 4M we walk the range 4M at a time shooting
2785 * down any valid mappings we find.
2786 */
2787 if (sfmmup == ksfmmup) {
2788 phys = ktsb_phys;
2789 if (ttesz >= TTE4M) {
2790 #ifndef sun4v
2791 ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2792 #endif
2793 tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2794 tsb_size = ktsb4m_szcode;
2795 } else {
2796 tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2797 tsb_size = ktsb_szcode;
2798 }
2799 } else {
2800 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2801
2802 /*
2803 * If there isn't a TSB for this page size, or the TSB is
2804 * swapped out, there is nothing to do. Note that the latter
2805 * case seems impossible but can occur if hat_pageunload()
2806 * is called on an ISM mapping while the process is swapped
2807 * out.
2808 */
2809 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2810 return;
2811
2812 /*
2813 * If another thread is in the middle of relocating a TSB
2814 * we can't unload the entry so set a flag so that the
2815 * TSB will be flushed before it can be accessed by the
2816 * process.
2817 */
2818 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2819 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2820 return;
2821 }
2822 #if defined(UTSB_PHYS)
2823 phys = 1;
2824 tsb_base = (uint64_t)tsbinfop->tsb_pa;
2825 #else
2826 tsb_base = (uint64_t)tsbinfop->tsb_va;
2827 #endif
2828 tsb_size = tsbinfop->tsb_szc;
2829 }
2830 if (ttesz >= TTE4M) {
2831 vpshift = MMU_PAGESHIFT4M;
2832 vpgsz = MMU_PAGESIZE4M;
2833 } else {
2834 vpshift = MMU_PAGESHIFT;
2835 vpgsz = MMU_PAGESIZE;
2836 }
2837
2838 for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2839 tag = sfmmu_make_tsbtag(vaddr);
2840 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2841 sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2842 }
2843 }
2844
2845 /*
2846 * Select the optimum TSB size given the number of mappings
2847 * that need to be cached.
2848 */
2849 static int
sfmmu_select_tsb_szc(pgcnt_t pgcnt)2850 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2851 {
2852 int szc = 0;
2853
2854 #ifdef DEBUG
2855 if (tsb_grow_stress) {
2856 uint32_t randval = (uint32_t)gettick() >> 4;
2857 return (randval % (tsb_max_growsize + 1));
2858 }
2859 #endif /* DEBUG */
2860
2861 while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2862 szc++;
2863 return (szc);
2864 }
2865
2866 /*
2867 * This function will add a translation to the hme_blk and allocate the
2868 * hme_blk if one does not exist.
2869 * If a page structure is specified then it will add the
2870 * corresponding hment to the mapping list.
2871 * It will also update the hmenum field for the tte.
2872 * Furthermore, it attempts to create a large page translation
2873 * for <addr,hat> at page array pps. It assumes addr and first
2874 * pp is correctly aligned. It returns 0 if successful and 1 otherwise.
2875 */
2876 static int
sfmmu_tteload_array(sfmmu_t * sfmmup,tte_t * ttep,caddr_t vaddr,page_t ** pps,uint_t flags,uint_t rid)2877 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2878 page_t **pps, uint_t flags, uint_t rid)
2879 {
2880 struct hmehash_bucket *hmebp;
2881 struct hme_blk *hmeblkp;
2882 int ret;
2883 uint_t size;
2884
2885 /*
2886 * Get mapping size.
2887 */
2888 size = TTE_CSZ(ttep);
2889 ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2890
2891 /*
2892 * Acquire the hash bucket.
2893 */
2894 hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size, rid);
2895 ASSERT(hmebp);
2896
2897 /*
2898 * Find the hment block.
2899 */
2900 hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags,
2901 rid);
2902 ASSERT(hmeblkp);
2903
2904 /*
2905 * Add the translation.
2906 */
2907 ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags,
2908 rid);
2909
2910 /*
2911 * Release the hash bucket.
2912 */
2913 sfmmu_tteload_release_hashbucket(hmebp);
2914
2915 return (ret);
2916 }
2917
2918 /*
2919 * Function locks and returns a pointer to the hash bucket for vaddr and size.
2920 */
2921 static struct hmehash_bucket *
sfmmu_tteload_acquire_hashbucket(sfmmu_t * sfmmup,caddr_t vaddr,int size,uint_t rid)2922 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size,
2923 uint_t rid)
2924 {
2925 struct hmehash_bucket *hmebp;
2926 int hmeshift;
2927 void *htagid = sfmmutohtagid(sfmmup, rid);
2928
2929 ASSERT(htagid != NULL);
2930
2931 hmeshift = HME_HASH_SHIFT(size);
2932
2933 hmebp = HME_HASH_FUNCTION(htagid, vaddr, hmeshift);
2934
2935 SFMMU_HASH_LOCK(hmebp);
2936
2937 return (hmebp);
2938 }
2939
2940 /*
2941 * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2942 * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2943 * allocated.
2944 */
2945 static struct hme_blk *
sfmmu_tteload_find_hmeblk(sfmmu_t * sfmmup,struct hmehash_bucket * hmebp,caddr_t vaddr,uint_t size,uint_t flags,uint_t rid)2946 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2947 caddr_t vaddr, uint_t size, uint_t flags, uint_t rid)
2948 {
2949 hmeblk_tag hblktag;
2950 int hmeshift;
2951 struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2952
2953 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
2954
2955 hblktag.htag_id = sfmmutohtagid(sfmmup, rid);
2956 ASSERT(hblktag.htag_id != NULL);
2957 hmeshift = HME_HASH_SHIFT(size);
2958 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2959 hblktag.htag_rehash = HME_HASH_REHASH(size);
2960 hblktag.htag_rid = rid;
2961
2962 ttearray_realloc:
2963
2964 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
2965
2966 /*
2967 * We block until hblk_reserve_lock is released; it's held by
2968 * the thread, temporarily using hblk_reserve, until hblk_reserve is
2969 * replaced by a hblk from sfmmu8_cache.
2970 */
2971 if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2972 hblk_reserve_thread != curthread) {
2973 SFMMU_HASH_UNLOCK(hmebp);
2974 mutex_enter(&hblk_reserve_lock);
2975 mutex_exit(&hblk_reserve_lock);
2976 SFMMU_STAT(sf_hblk_reserve_hit);
2977 SFMMU_HASH_LOCK(hmebp);
2978 goto ttearray_realloc;
2979 }
2980
2981 if (hmeblkp == NULL) {
2982 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2983 hblktag, flags, rid);
2984 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2985 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2986 } else {
2987 /*
2988 * It is possible for 8k and 64k hblks to collide since they
2989 * have the same rehash value. This is because we
2990 * lazily free hblks and 8K/64K blks could be lingering.
2991 * If we find size mismatch we free the block and & try again.
2992 */
2993 if (get_hblk_ttesz(hmeblkp) != size) {
2994 ASSERT(!hmeblkp->hblk_vcnt);
2995 ASSERT(!hmeblkp->hblk_hmecnt);
2996 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
2997 &list, 0);
2998 goto ttearray_realloc;
2999 }
3000 if (hmeblkp->hblk_shw_bit) {
3001 /*
3002 * if the hblk was previously used as a shadow hblk then
3003 * we will change it to a normal hblk
3004 */
3005 ASSERT(!hmeblkp->hblk_shared);
3006 if (hmeblkp->hblk_shw_mask) {
3007 sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
3008 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3009 goto ttearray_realloc;
3010 } else {
3011 hmeblkp->hblk_shw_bit = 0;
3012 }
3013 }
3014 SFMMU_STAT(sf_hblk_hit);
3015 }
3016
3017 /*
3018 * hat_memload() should never call kmem_cache_free() for kernel hmeblks;
3019 * see block comment showing the stacktrace in sfmmu_hblk_alloc();
3020 * set the flag parameter to 1 so that sfmmu_hblks_list_purge() will
3021 * just add these hmeblks to the per-cpu pending queue.
3022 */
3023 sfmmu_hblks_list_purge(&list, 1);
3024
3025 ASSERT(get_hblk_ttesz(hmeblkp) == size);
3026 ASSERT(!hmeblkp->hblk_shw_bit);
3027 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3028 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3029 ASSERT(hmeblkp->hblk_tag.htag_rid == rid);
3030
3031 return (hmeblkp);
3032 }
3033
3034 /*
3035 * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
3036 * otherwise.
3037 */
3038 static int
sfmmu_tteload_addentry(sfmmu_t * sfmmup,struct hme_blk * hmeblkp,tte_t * ttep,caddr_t vaddr,page_t ** pps,uint_t flags,uint_t rid)3039 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
3040 caddr_t vaddr, page_t **pps, uint_t flags, uint_t rid)
3041 {
3042 page_t *pp = *pps;
3043 int hmenum, size, remap;
3044 tte_t tteold, flush_tte;
3045 #ifdef DEBUG
3046 tte_t orig_old;
3047 #endif /* DEBUG */
3048 struct sf_hment *sfhme;
3049 kmutex_t *pml, *pmtx;
3050 hatlock_t *hatlockp;
3051 int myflt;
3052
3053 /*
3054 * remove this panic when we decide to let user virtual address
3055 * space be >= USERLIMIT.
3056 */
3057 if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
3058 panic("user addr %p in kernel space", (void *)vaddr);
3059 #if defined(TTE_IS_GLOBAL)
3060 if (TTE_IS_GLOBAL(ttep))
3061 panic("sfmmu_tteload: creating global tte");
3062 #endif
3063
3064 #ifdef DEBUG
3065 if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
3066 !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
3067 panic("sfmmu_tteload: non cacheable memory tte");
3068 #endif /* DEBUG */
3069
3070 /* don't simulate dirty bit for writeable ISM/DISM mappings */
3071 if ((flags & HAT_LOAD_SHARE) && TTE_IS_WRITABLE(ttep)) {
3072 TTE_SET_REF(ttep);
3073 TTE_SET_MOD(ttep);
3074 }
3075
3076 if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
3077 !TTE_IS_MOD(ttep)) {
3078 /*
3079 * Don't load TSB for dummy as in ISM. Also don't preload
3080 * the TSB if the TTE isn't writable since we're likely to
3081 * fault on it again -- preloading can be fairly expensive.
3082 */
3083 flags |= SFMMU_NO_TSBLOAD;
3084 }
3085
3086 size = TTE_CSZ(ttep);
3087 switch (size) {
3088 case TTE8K:
3089 SFMMU_STAT(sf_tteload8k);
3090 break;
3091 case TTE64K:
3092 SFMMU_STAT(sf_tteload64k);
3093 break;
3094 case TTE512K:
3095 SFMMU_STAT(sf_tteload512k);
3096 break;
3097 case TTE4M:
3098 SFMMU_STAT(sf_tteload4m);
3099 break;
3100 case (TTE32M):
3101 SFMMU_STAT(sf_tteload32m);
3102 ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3103 break;
3104 case (TTE256M):
3105 SFMMU_STAT(sf_tteload256m);
3106 ASSERT(mmu_page_sizes == max_mmu_page_sizes);
3107 break;
3108 }
3109
3110 ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
3111 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
3112 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
3113 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
3114
3115 HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
3116
3117 /*
3118 * Need to grab mlist lock here so that pageunload
3119 * will not change tte behind us.
3120 */
3121 if (pp) {
3122 pml = sfmmu_mlist_enter(pp);
3123 }
3124
3125 sfmmu_copytte(&sfhme->hme_tte, &tteold);
3126 /*
3127 * Look for corresponding hment and if valid verify
3128 * pfns are equal.
3129 */
3130 remap = TTE_IS_VALID(&tteold);
3131 if (remap) {
3132 pfn_t new_pfn, old_pfn;
3133
3134 old_pfn = TTE_TO_PFN(vaddr, &tteold);
3135 new_pfn = TTE_TO_PFN(vaddr, ttep);
3136
3137 if (flags & HAT_LOAD_REMAP) {
3138 /* make sure we are remapping same type of pages */
3139 if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
3140 panic("sfmmu_tteload - tte remap io<->memory");
3141 }
3142 if (old_pfn != new_pfn &&
3143 (pp != NULL || sfhme->hme_page != NULL)) {
3144 panic("sfmmu_tteload - tte remap pp != NULL");
3145 }
3146 } else if (old_pfn != new_pfn) {
3147 panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
3148 (void *)hmeblkp);
3149 }
3150 ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
3151 }
3152
3153 if (pp) {
3154 if (size == TTE8K) {
3155 #ifdef VAC
3156 /*
3157 * Handle VAC consistency
3158 */
3159 if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
3160 sfmmu_vac_conflict(sfmmup, vaddr, pp);
3161 }
3162 #endif
3163
3164 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3165 pmtx = sfmmu_page_enter(pp);
3166 PP_CLRRO(pp);
3167 sfmmu_page_exit(pmtx);
3168 } else if (!PP_ISMAPPED(pp) &&
3169 (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
3170 pmtx = sfmmu_page_enter(pp);
3171 if (!(PP_ISMOD(pp))) {
3172 PP_SETRO(pp);
3173 }
3174 sfmmu_page_exit(pmtx);
3175 }
3176
3177 } else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
3178 /*
3179 * sfmmu_pagearray_setup failed so return
3180 */
3181 sfmmu_mlist_exit(pml);
3182 return (1);
3183 }
3184 }
3185
3186 /*
3187 * Make sure hment is not on a mapping list.
3188 */
3189 ASSERT(remap || (sfhme->hme_page == NULL));
3190
3191 /* if it is not a remap then hme->next better be NULL */
3192 ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
3193
3194 if (flags & HAT_LOAD_LOCK) {
3195 if ((hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
3196 panic("too high lckcnt-hmeblk %p",
3197 (void *)hmeblkp);
3198 }
3199 atomic_inc_32(&hmeblkp->hblk_lckcnt);
3200
3201 HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
3202 }
3203
3204 #ifdef VAC
3205 if (pp && PP_ISNC(pp)) {
3206 /*
3207 * If the physical page is marked to be uncacheable, like
3208 * by a vac conflict, make sure the new mapping is also
3209 * uncacheable.
3210 */
3211 TTE_CLR_VCACHEABLE(ttep);
3212 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
3213 }
3214 #endif
3215 ttep->tte_hmenum = hmenum;
3216
3217 #ifdef DEBUG
3218 orig_old = tteold;
3219 #endif /* DEBUG */
3220
3221 while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
3222 if ((sfmmup == KHATID) &&
3223 (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
3224 sfmmu_copytte(&sfhme->hme_tte, &tteold);
3225 }
3226 #ifdef DEBUG
3227 chk_tte(&orig_old, &tteold, ttep, hmeblkp);
3228 #endif /* DEBUG */
3229 }
3230 ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
3231
3232 if (!TTE_IS_VALID(&tteold)) {
3233
3234 atomic_inc_16(&hmeblkp->hblk_vcnt);
3235 if (rid == SFMMU_INVALID_SHMERID) {
3236 atomic_inc_ulong(&sfmmup->sfmmu_ttecnt[size]);
3237 } else {
3238 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
3239 sf_region_t *rgnp = srdp->srd_hmergnp[rid];
3240 /*
3241 * We already accounted for region ttecnt's in sfmmu
3242 * during hat_join_region() processing. Here we
3243 * only update ttecnt's in region struture.
3244 */
3245 atomic_inc_ulong(&rgnp->rgn_ttecnt[size]);
3246 }
3247 }
3248
3249 myflt = (astosfmmu(curthread->t_procp->p_as) == sfmmup);
3250 if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
3251 sfmmup != ksfmmup) {
3252 uchar_t tteflag = 1 << size;
3253 if (rid == SFMMU_INVALID_SHMERID) {
3254 if (!(sfmmup->sfmmu_tteflags & tteflag)) {
3255 hatlockp = sfmmu_hat_enter(sfmmup);
3256 sfmmup->sfmmu_tteflags |= tteflag;
3257 sfmmu_hat_exit(hatlockp);
3258 }
3259 } else if (!(sfmmup->sfmmu_rtteflags & tteflag)) {
3260 hatlockp = sfmmu_hat_enter(sfmmup);
3261 sfmmup->sfmmu_rtteflags |= tteflag;
3262 sfmmu_hat_exit(hatlockp);
3263 }
3264 /*
3265 * Update the current CPU tsbmiss area, so the current thread
3266 * won't need to take the tsbmiss for the new pagesize.
3267 * The other threads in the process will update their tsb
3268 * miss area lazily in sfmmu_tsbmiss_exception() when they
3269 * fail to find the translation for a newly added pagesize.
3270 */
3271 if (size > TTE64K && myflt) {
3272 struct tsbmiss *tsbmp;
3273 kpreempt_disable();
3274 tsbmp = &tsbmiss_area[CPU->cpu_id];
3275 if (rid == SFMMU_INVALID_SHMERID) {
3276 if (!(tsbmp->uhat_tteflags & tteflag)) {
3277 tsbmp->uhat_tteflags |= tteflag;
3278 }
3279 } else {
3280 if (!(tsbmp->uhat_rtteflags & tteflag)) {
3281 tsbmp->uhat_rtteflags |= tteflag;
3282 }
3283 }
3284 kpreempt_enable();
3285 }
3286 }
3287
3288 if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
3289 !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
3290 hatlockp = sfmmu_hat_enter(sfmmup);
3291 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
3292 sfmmu_hat_exit(hatlockp);
3293 }
3294
3295 flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
3296 hw_tte.tte_intlo;
3297 flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
3298 hw_tte.tte_inthi;
3299
3300 if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
3301 /*
3302 * If remap and new tte differs from old tte we need
3303 * to sync the mod bit and flush TLB/TSB. We don't
3304 * need to sync ref bit because we currently always set
3305 * ref bit in tteload.
3306 */
3307 ASSERT(TTE_IS_REF(ttep));
3308 if (TTE_IS_MOD(&tteold)) {
3309 sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
3310 }
3311 /*
3312 * hwtte bits shouldn't change for SRD hmeblks as long as SRD
3313 * hmes are only used for read only text. Adding this code for
3314 * completeness and future use of shared hmeblks with writable
3315 * mappings of VMODSORT vnodes.
3316 */
3317 if (hmeblkp->hblk_shared) {
3318 cpuset_t cpuset = sfmmu_rgntlb_demap(vaddr,
3319 sfmmup->sfmmu_srdp->srd_hmergnp[rid], hmeblkp, 1);
3320 xt_sync(cpuset);
3321 SFMMU_STAT_ADD(sf_region_remap_demap, 1);
3322 } else {
3323 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
3324 xt_sync(sfmmup->sfmmu_cpusran);
3325 }
3326 }
3327
3328 if ((flags & SFMMU_NO_TSBLOAD) == 0) {
3329 /*
3330 * We only preload 8K and 4M mappings into the TSB, since
3331 * 64K and 512K mappings are replicated and hence don't
3332 * have a single, unique TSB entry. Ditto for 32M/256M.
3333 */
3334 if (size == TTE8K || size == TTE4M) {
3335 sf_scd_t *scdp;
3336 hatlockp = sfmmu_hat_enter(sfmmup);
3337 /*
3338 * Don't preload private TSB if the mapping is used
3339 * by the shctx in the SCD.
3340 */
3341 scdp = sfmmup->sfmmu_scdp;
3342 if (rid == SFMMU_INVALID_SHMERID || scdp == NULL ||
3343 !SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
3344 sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte,
3345 size);
3346 }
3347 sfmmu_hat_exit(hatlockp);
3348 }
3349 }
3350 if (pp) {
3351 if (!remap) {
3352 HME_ADD(sfhme, pp);
3353 atomic_inc_16(&hmeblkp->hblk_hmecnt);
3354 ASSERT(hmeblkp->hblk_hmecnt > 0);
3355
3356 /*
3357 * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
3358 * see pageunload() for comment.
3359 */
3360 }
3361 sfmmu_mlist_exit(pml);
3362 }
3363
3364 return (0);
3365 }
3366 /*
3367 * Function unlocks hash bucket.
3368 */
3369 static void
sfmmu_tteload_release_hashbucket(struct hmehash_bucket * hmebp)3370 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
3371 {
3372 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3373 SFMMU_HASH_UNLOCK(hmebp);
3374 }
3375
3376 /*
3377 * function which checks and sets up page array for a large
3378 * translation. Will set p_vcolor, p_index, p_ro fields.
3379 * Assumes addr and pfnum of first page are properly aligned.
3380 * Will check for physical contiguity. If check fails it return
3381 * non null.
3382 */
3383 static int
sfmmu_pagearray_setup(caddr_t addr,page_t ** pps,tte_t * ttep,int remap)3384 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
3385 {
3386 int i, index, ttesz;
3387 pfn_t pfnum;
3388 pgcnt_t npgs;
3389 page_t *pp, *pp1;
3390 kmutex_t *pmtx;
3391 #ifdef VAC
3392 int osz;
3393 int cflags = 0;
3394 int vac_err = 0;
3395 #endif
3396 int newidx = 0;
3397
3398 ttesz = TTE_CSZ(ttep);
3399
3400 ASSERT(ttesz > TTE8K);
3401
3402 npgs = TTEPAGES(ttesz);
3403 index = PAGESZ_TO_INDEX(ttesz);
3404
3405 pfnum = (*pps)->p_pagenum;
3406 ASSERT(IS_P2ALIGNED(pfnum, npgs));
3407
3408 /*
3409 * Save the first pp so we can do HAT_TMPNC at the end.
3410 */
3411 pp1 = *pps;
3412 #ifdef VAC
3413 osz = fnd_mapping_sz(pp1);
3414 #endif
3415
3416 for (i = 0; i < npgs; i++, pps++) {
3417 pp = *pps;
3418 ASSERT(PAGE_LOCKED(pp));
3419 ASSERT(pp->p_szc >= ttesz);
3420 ASSERT(pp->p_szc == pp1->p_szc);
3421 ASSERT(sfmmu_mlist_held(pp));
3422
3423 /*
3424 * XXX is it possible to maintain P_RO on the root only?
3425 */
3426 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3427 pmtx = sfmmu_page_enter(pp);
3428 PP_CLRRO(pp);
3429 sfmmu_page_exit(pmtx);
3430 } else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
3431 !PP_ISMOD(pp)) {
3432 pmtx = sfmmu_page_enter(pp);
3433 if (!(PP_ISMOD(pp))) {
3434 PP_SETRO(pp);
3435 }
3436 sfmmu_page_exit(pmtx);
3437 }
3438
3439 /*
3440 * If this is a remap we skip vac & contiguity checks.
3441 */
3442 if (remap)
3443 continue;
3444
3445 /*
3446 * set p_vcolor and detect any vac conflicts.
3447 */
3448 #ifdef VAC
3449 if (vac_err == 0) {
3450 vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
3451
3452 }
3453 #endif
3454
3455 /*
3456 * Save current index in case we need to undo it.
3457 * Note: "PAGESZ_TO_INDEX(sz) (1 << (sz))"
3458 * "SFMMU_INDEX_SHIFT 6"
3459 * "SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1)"
3460 * "PP_MAPINDEX(p_index) (p_index & SFMMU_INDEX_MASK)"
3461 *
3462 * So: index = PAGESZ_TO_INDEX(ttesz);
3463 * if ttesz == 1 then index = 0x2
3464 * 2 then index = 0x4
3465 * 3 then index = 0x8
3466 * 4 then index = 0x10
3467 * 5 then index = 0x20
3468 * The code below checks if it's a new pagesize (ie, newidx)
3469 * in case we need to take it back out of p_index,
3470 * and then or's the new index into the existing index.
3471 */
3472 if ((PP_MAPINDEX(pp) & index) == 0)
3473 newidx = 1;
3474 pp->p_index = (PP_MAPINDEX(pp) | index);
3475
3476 /*
3477 * contiguity check
3478 */
3479 if (pp->p_pagenum != pfnum) {
3480 /*
3481 * If we fail the contiguity test then
3482 * the only thing we need to fix is the p_index field.
3483 * We might get a few extra flushes but since this
3484 * path is rare that is ok. The p_ro field will
3485 * get automatically fixed on the next tteload to
3486 * the page. NO TNC bit is set yet.
3487 */
3488 while (i >= 0) {
3489 pp = *pps;
3490 if (newidx)
3491 pp->p_index = (PP_MAPINDEX(pp) &
3492 ~index);
3493 pps--;
3494 i--;
3495 }
3496 return (1);
3497 }
3498 pfnum++;
3499 addr += MMU_PAGESIZE;
3500 }
3501
3502 #ifdef VAC
3503 if (vac_err) {
3504 if (ttesz > osz) {
3505 /*
3506 * There are some smaller mappings that causes vac
3507 * conflicts. Convert all existing small mappings to
3508 * TNC.
3509 */
3510 SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3511 sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3512 npgs);
3513 } else {
3514 /* EMPTY */
3515 /*
3516 * If there exists an big page mapping,
3517 * that means the whole existing big page
3518 * has TNC setting already. No need to covert to
3519 * TNC again.
3520 */
3521 ASSERT(PP_ISTNC(pp1));
3522 }
3523 }
3524 #endif /* VAC */
3525
3526 return (0);
3527 }
3528
3529 #ifdef VAC
3530 /*
3531 * Routine that detects vac consistency for a large page. It also
3532 * sets virtual color for all pp's for this big mapping.
3533 */
3534 static int
sfmmu_vacconflict_array(caddr_t addr,page_t * pp,int * cflags)3535 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3536 {
3537 int vcolor, ocolor;
3538
3539 ASSERT(sfmmu_mlist_held(pp));
3540
3541 if (PP_ISNC(pp)) {
3542 return (HAT_TMPNC);
3543 }
3544
3545 vcolor = addr_to_vcolor(addr);
3546 if (PP_NEWPAGE(pp)) {
3547 PP_SET_VCOLOR(pp, vcolor);
3548 return (0);
3549 }
3550
3551 ocolor = PP_GET_VCOLOR(pp);
3552 if (ocolor == vcolor) {
3553 return (0);
3554 }
3555
3556 if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
3557 /*
3558 * Previous user of page had a differnet color
3559 * but since there are no current users
3560 * we just flush the cache and change the color.
3561 * As an optimization for large pages we flush the
3562 * entire cache of that color and set a flag.
3563 */
3564 SFMMU_STAT(sf_pgcolor_conflict);
3565 if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3566 CacheColor_SetFlushed(*cflags, ocolor);
3567 sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3568 }
3569 PP_SET_VCOLOR(pp, vcolor);
3570 return (0);
3571 }
3572
3573 /*
3574 * We got a real conflict with a current mapping.
3575 * set flags to start unencaching all mappings
3576 * and return failure so we restart looping
3577 * the pp array from the beginning.
3578 */
3579 return (HAT_TMPNC);
3580 }
3581 #endif /* VAC */
3582
3583 /*
3584 * creates a large page shadow hmeblk for a tte.
3585 * The purpose of this routine is to allow us to do quick unloads because
3586 * the vm layer can easily pass a very large but sparsely populated range.
3587 */
3588 static struct hme_blk *
sfmmu_shadow_hcreate(sfmmu_t * sfmmup,caddr_t vaddr,int ttesz,uint_t flags)3589 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3590 {
3591 struct hmehash_bucket *hmebp;
3592 hmeblk_tag hblktag;
3593 int hmeshift, size, vshift;
3594 uint_t shw_mask, newshw_mask;
3595 struct hme_blk *hmeblkp;
3596
3597 ASSERT(sfmmup != KHATID);
3598 if (mmu_page_sizes == max_mmu_page_sizes) {
3599 ASSERT(ttesz < TTE256M);
3600 } else {
3601 ASSERT(ttesz < TTE4M);
3602 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3603 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3604 }
3605
3606 if (ttesz == TTE8K) {
3607 size = TTE512K;
3608 } else {
3609 size = ++ttesz;
3610 }
3611
3612 hblktag.htag_id = sfmmup;
3613 hmeshift = HME_HASH_SHIFT(size);
3614 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3615 hblktag.htag_rehash = HME_HASH_REHASH(size);
3616 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3617 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3618
3619 SFMMU_HASH_LOCK(hmebp);
3620
3621 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3622 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3623 if (hmeblkp == NULL) {
3624 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3625 hblktag, flags, SFMMU_INVALID_SHMERID);
3626 }
3627 ASSERT(hmeblkp);
3628 if (!hmeblkp->hblk_shw_mask) {
3629 /*
3630 * if this is a unused hblk it was just allocated or could
3631 * potentially be a previous large page hblk so we need to
3632 * set the shadow bit.
3633 */
3634 ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3635 hmeblkp->hblk_shw_bit = 1;
3636 } else if (hmeblkp->hblk_shw_bit == 0) {
3637 panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3638 (void *)hmeblkp);
3639 }
3640 ASSERT(hmeblkp->hblk_shw_bit == 1);
3641 ASSERT(!hmeblkp->hblk_shared);
3642 vshift = vaddr_to_vshift(hblktag, vaddr, size);
3643 ASSERT(vshift < 8);
3644 /*
3645 * Atomically set shw mask bit
3646 */
3647 do {
3648 shw_mask = hmeblkp->hblk_shw_mask;
3649 newshw_mask = shw_mask | (1 << vshift);
3650 newshw_mask = atomic_cas_32(&hmeblkp->hblk_shw_mask, shw_mask,
3651 newshw_mask);
3652 } while (newshw_mask != shw_mask);
3653
3654 SFMMU_HASH_UNLOCK(hmebp);
3655
3656 return (hmeblkp);
3657 }
3658
3659 /*
3660 * This routine cleanup a previous shadow hmeblk and changes it to
3661 * a regular hblk. This happens rarely but it is possible
3662 * when a process wants to use large pages and there are hblks still
3663 * lying around from the previous as that used these hmeblks.
3664 * The alternative was to cleanup the shadow hblks at unload time
3665 * but since so few user processes actually use large pages, it is
3666 * better to be lazy and cleanup at this time.
3667 */
3668 static void
sfmmu_shadow_hcleanup(sfmmu_t * sfmmup,struct hme_blk * hmeblkp,struct hmehash_bucket * hmebp)3669 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3670 struct hmehash_bucket *hmebp)
3671 {
3672 caddr_t addr, endaddr;
3673 int hashno, size;
3674
3675 ASSERT(hmeblkp->hblk_shw_bit);
3676 ASSERT(!hmeblkp->hblk_shared);
3677
3678 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3679
3680 if (!hmeblkp->hblk_shw_mask) {
3681 hmeblkp->hblk_shw_bit = 0;
3682 return;
3683 }
3684 addr = (caddr_t)get_hblk_base(hmeblkp);
3685 endaddr = get_hblk_endaddr(hmeblkp);
3686 size = get_hblk_ttesz(hmeblkp);
3687 hashno = size - 1;
3688 ASSERT(hashno > 0);
3689 SFMMU_HASH_UNLOCK(hmebp);
3690
3691 sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3692
3693 SFMMU_HASH_LOCK(hmebp);
3694 }
3695
3696 static void
sfmmu_free_hblks(sfmmu_t * sfmmup,caddr_t addr,caddr_t endaddr,int hashno)3697 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3698 int hashno)
3699 {
3700 int hmeshift, shadow = 0;
3701 hmeblk_tag hblktag;
3702 struct hmehash_bucket *hmebp;
3703 struct hme_blk *hmeblkp;
3704 struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3705
3706 ASSERT(hashno > 0);
3707 hblktag.htag_id = sfmmup;
3708 hblktag.htag_rehash = hashno;
3709 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3710
3711 hmeshift = HME_HASH_SHIFT(hashno);
3712
3713 while (addr < endaddr) {
3714 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3715 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3716 SFMMU_HASH_LOCK(hmebp);
3717 /* inline HME_HASH_SEARCH */
3718 hmeblkp = hmebp->hmeblkp;
3719 pr_hblk = NULL;
3720 while (hmeblkp) {
3721 if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3722 /* found hme_blk */
3723 ASSERT(!hmeblkp->hblk_shared);
3724 if (hmeblkp->hblk_shw_bit) {
3725 if (hmeblkp->hblk_shw_mask) {
3726 shadow = 1;
3727 sfmmu_shadow_hcleanup(sfmmup,
3728 hmeblkp, hmebp);
3729 break;
3730 } else {
3731 hmeblkp->hblk_shw_bit = 0;
3732 }
3733 }
3734
3735 /*
3736 * Hblk_hmecnt and hblk_vcnt could be non zero
3737 * since hblk_unload() does not gurantee that.
3738 *
3739 * XXX - this could cause tteload() to spin
3740 * where sfmmu_shadow_hcleanup() is called.
3741 */
3742 }
3743
3744 nx_hblk = hmeblkp->hblk_next;
3745 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3746 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3747 &list, 0);
3748 } else {
3749 pr_hblk = hmeblkp;
3750 }
3751 hmeblkp = nx_hblk;
3752 }
3753
3754 SFMMU_HASH_UNLOCK(hmebp);
3755
3756 if (shadow) {
3757 /*
3758 * We found another shadow hblk so cleaned its
3759 * children. We need to go back and cleanup
3760 * the original hblk so we don't change the
3761 * addr.
3762 */
3763 shadow = 0;
3764 } else {
3765 addr = (caddr_t)roundup((uintptr_t)addr + 1,
3766 (1 << hmeshift));
3767 }
3768 }
3769 sfmmu_hblks_list_purge(&list, 0);
3770 }
3771
3772 /*
3773 * This routine's job is to delete stale invalid shared hmeregions hmeblks that
3774 * may still linger on after pageunload.
3775 */
3776 static void
sfmmu_cleanup_rhblk(sf_srd_t * srdp,caddr_t addr,uint_t rid,int ttesz)3777 sfmmu_cleanup_rhblk(sf_srd_t *srdp, caddr_t addr, uint_t rid, int ttesz)
3778 {
3779 int hmeshift;
3780 hmeblk_tag hblktag;
3781 struct hmehash_bucket *hmebp;
3782 struct hme_blk *hmeblkp;
3783 struct hme_blk *pr_hblk;
3784 struct hme_blk *list = NULL;
3785
3786 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3787 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3788
3789 hmeshift = HME_HASH_SHIFT(ttesz);
3790 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3791 hblktag.htag_rehash = ttesz;
3792 hblktag.htag_rid = rid;
3793 hblktag.htag_id = srdp;
3794 hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3795
3796 SFMMU_HASH_LOCK(hmebp);
3797 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3798 if (hmeblkp != NULL) {
3799 ASSERT(hmeblkp->hblk_shared);
3800 ASSERT(!hmeblkp->hblk_shw_bit);
3801 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3802 panic("sfmmu_cleanup_rhblk: valid hmeblk");
3803 }
3804 ASSERT(!hmeblkp->hblk_lckcnt);
3805 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3806 &list, 0);
3807 }
3808 SFMMU_HASH_UNLOCK(hmebp);
3809 sfmmu_hblks_list_purge(&list, 0);
3810 }
3811
3812 /* ARGSUSED */
3813 static void
sfmmu_rgn_cb_noop(caddr_t saddr,caddr_t eaddr,caddr_t r_saddr,size_t r_size,void * r_obj,u_offset_t r_objoff)3814 sfmmu_rgn_cb_noop(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
3815 size_t r_size, void *r_obj, u_offset_t r_objoff)
3816 {
3817 }
3818
3819 /*
3820 * Searches for an hmeblk which maps addr, then unloads this mapping
3821 * and updates *eaddrp, if the hmeblk is found.
3822 */
3823 static void
sfmmu_unload_hmeregion_va(sf_srd_t * srdp,uint_t rid,caddr_t addr,caddr_t eaddr,int ttesz,caddr_t * eaddrp)3824 sfmmu_unload_hmeregion_va(sf_srd_t *srdp, uint_t rid, caddr_t addr,
3825 caddr_t eaddr, int ttesz, caddr_t *eaddrp)
3826 {
3827 int hmeshift;
3828 hmeblk_tag hblktag;
3829 struct hmehash_bucket *hmebp;
3830 struct hme_blk *hmeblkp;
3831 struct hme_blk *pr_hblk;
3832 struct hme_blk *list = NULL;
3833
3834 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3835 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3836 ASSERT(ttesz >= HBLK_MIN_TTESZ);
3837
3838 hmeshift = HME_HASH_SHIFT(ttesz);
3839 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3840 hblktag.htag_rehash = ttesz;
3841 hblktag.htag_rid = rid;
3842 hblktag.htag_id = srdp;
3843 hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3844
3845 SFMMU_HASH_LOCK(hmebp);
3846 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3847 if (hmeblkp != NULL) {
3848 ASSERT(hmeblkp->hblk_shared);
3849 ASSERT(!hmeblkp->hblk_lckcnt);
3850 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3851 *eaddrp = sfmmu_hblk_unload(NULL, hmeblkp, addr,
3852 eaddr, NULL, HAT_UNLOAD);
3853 ASSERT(*eaddrp > addr);
3854 }
3855 ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3856 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3857 &list, 0);
3858 }
3859 SFMMU_HASH_UNLOCK(hmebp);
3860 sfmmu_hblks_list_purge(&list, 0);
3861 }
3862
3863 static void
sfmmu_unload_hmeregion(sf_srd_t * srdp,sf_region_t * rgnp)3864 sfmmu_unload_hmeregion(sf_srd_t *srdp, sf_region_t *rgnp)
3865 {
3866 int ttesz = rgnp->rgn_pgszc;
3867 size_t rsz = rgnp->rgn_size;
3868 caddr_t rsaddr = rgnp->rgn_saddr;
3869 caddr_t readdr = rsaddr + rsz;
3870 caddr_t rhsaddr;
3871 caddr_t va;
3872 uint_t rid = rgnp->rgn_id;
3873 caddr_t cbsaddr;
3874 caddr_t cbeaddr;
3875 hat_rgn_cb_func_t rcbfunc;
3876 ulong_t cnt;
3877
3878 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3879 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3880
3881 ASSERT(IS_P2ALIGNED(rsaddr, TTEBYTES(ttesz)));
3882 ASSERT(IS_P2ALIGNED(rsz, TTEBYTES(ttesz)));
3883 if (ttesz < HBLK_MIN_TTESZ) {
3884 ttesz = HBLK_MIN_TTESZ;
3885 rhsaddr = (caddr_t)P2ALIGN((uintptr_t)rsaddr, HBLK_MIN_BYTES);
3886 } else {
3887 rhsaddr = rsaddr;
3888 }
3889
3890 if ((rcbfunc = rgnp->rgn_cb_function) == NULL) {
3891 rcbfunc = sfmmu_rgn_cb_noop;
3892 }
3893
3894 while (ttesz >= HBLK_MIN_TTESZ) {
3895 cbsaddr = rsaddr;
3896 cbeaddr = rsaddr;
3897 if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3898 ttesz--;
3899 continue;
3900 }
3901 cnt = 0;
3902 va = rsaddr;
3903 while (va < readdr) {
3904 ASSERT(va >= rhsaddr);
3905 if (va != cbeaddr) {
3906 if (cbeaddr != cbsaddr) {
3907 ASSERT(cbeaddr > cbsaddr);
3908 (*rcbfunc)(cbsaddr, cbeaddr,
3909 rsaddr, rsz, rgnp->rgn_obj,
3910 rgnp->rgn_objoff);
3911 }
3912 cbsaddr = va;
3913 cbeaddr = va;
3914 }
3915 sfmmu_unload_hmeregion_va(srdp, rid, va, readdr,
3916 ttesz, &cbeaddr);
3917 cnt++;
3918 va = rhsaddr + (cnt << TTE_PAGE_SHIFT(ttesz));
3919 }
3920 if (cbeaddr != cbsaddr) {
3921 ASSERT(cbeaddr > cbsaddr);
3922 (*rcbfunc)(cbsaddr, cbeaddr, rsaddr,
3923 rsz, rgnp->rgn_obj,
3924 rgnp->rgn_objoff);
3925 }
3926 ttesz--;
3927 }
3928 }
3929
3930 /*
3931 * Release one hardware address translation lock on the given address range.
3932 */
3933 void
hat_unlock(struct hat * sfmmup,caddr_t addr,size_t len)3934 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3935 {
3936 struct hmehash_bucket *hmebp;
3937 hmeblk_tag hblktag;
3938 int hmeshift, hashno = 1;
3939 struct hme_blk *hmeblkp, *list = NULL;
3940 caddr_t endaddr;
3941
3942 ASSERT(sfmmup != NULL);
3943
3944 ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
3945 ASSERT((len & MMU_PAGEOFFSET) == 0);
3946 endaddr = addr + len;
3947 hblktag.htag_id = sfmmup;
3948 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3949
3950 /*
3951 * Spitfire supports 4 page sizes.
3952 * Most pages are expected to be of the smallest page size (8K) and
3953 * these will not need to be rehashed. 64K pages also don't need to be
3954 * rehashed because an hmeblk spans 64K of address space. 512K pages
3955 * might need 1 rehash and and 4M pages might need 2 rehashes.
3956 */
3957 while (addr < endaddr) {
3958 hmeshift = HME_HASH_SHIFT(hashno);
3959 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3960 hblktag.htag_rehash = hashno;
3961 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3962
3963 SFMMU_HASH_LOCK(hmebp);
3964
3965 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3966 if (hmeblkp != NULL) {
3967 ASSERT(!hmeblkp->hblk_shared);
3968 /*
3969 * If we encounter a shadow hmeblk then
3970 * we know there are no valid hmeblks mapping
3971 * this address at this size or larger.
3972 * Just increment address by the smallest
3973 * page size.
3974 */
3975 if (hmeblkp->hblk_shw_bit) {
3976 addr += MMU_PAGESIZE;
3977 } else {
3978 addr = sfmmu_hblk_unlock(hmeblkp, addr,
3979 endaddr);
3980 }
3981 SFMMU_HASH_UNLOCK(hmebp);
3982 hashno = 1;
3983 continue;
3984 }
3985 SFMMU_HASH_UNLOCK(hmebp);
3986
3987 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3988 /*
3989 * We have traversed the whole list and rehashed
3990 * if necessary without finding the address to unlock
3991 * which should never happen.
3992 */
3993 panic("sfmmu_unlock: addr not found. "
3994 "addr %p hat %p", (void *)addr, (void *)sfmmup);
3995 } else {
3996 hashno++;
3997 }
3998 }
3999
4000 sfmmu_hblks_list_purge(&list, 0);
4001 }
4002
4003 void
hat_unlock_region(struct hat * sfmmup,caddr_t addr,size_t len,hat_region_cookie_t rcookie)4004 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len,
4005 hat_region_cookie_t rcookie)
4006 {
4007 sf_srd_t *srdp;
4008 sf_region_t *rgnp;
4009 int ttesz;
4010 uint_t rid;
4011 caddr_t eaddr;
4012 caddr_t va;
4013 int hmeshift;
4014 hmeblk_tag hblktag;
4015 struct hmehash_bucket *hmebp;
4016 struct hme_blk *hmeblkp;
4017 struct hme_blk *pr_hblk;
4018 struct hme_blk *list;
4019
4020 if (rcookie == HAT_INVALID_REGION_COOKIE) {
4021 hat_unlock(sfmmup, addr, len);
4022 return;
4023 }
4024
4025 ASSERT(sfmmup != NULL);
4026 ASSERT(sfmmup != ksfmmup);
4027
4028 srdp = sfmmup->sfmmu_srdp;
4029 rid = (uint_t)((uint64_t)rcookie);
4030 VERIFY3U(rid, <, SFMMU_MAX_HME_REGIONS);
4031 eaddr = addr + len;
4032 va = addr;
4033 list = NULL;
4034 rgnp = srdp->srd_hmergnp[rid];
4035 SFMMU_VALIDATE_HMERID(sfmmup, rid, addr, len);
4036
4037 ASSERT(IS_P2ALIGNED(addr, TTEBYTES(rgnp->rgn_pgszc)));
4038 ASSERT(IS_P2ALIGNED(len, TTEBYTES(rgnp->rgn_pgszc)));
4039 if (rgnp->rgn_pgszc < HBLK_MIN_TTESZ) {
4040 ttesz = HBLK_MIN_TTESZ;
4041 } else {
4042 ttesz = rgnp->rgn_pgszc;
4043 }
4044 while (va < eaddr) {
4045 while (ttesz < rgnp->rgn_pgszc &&
4046 IS_P2ALIGNED(va, TTEBYTES(ttesz + 1))) {
4047 ttesz++;
4048 }
4049 while (ttesz >= HBLK_MIN_TTESZ) {
4050 if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
4051 ttesz--;
4052 continue;
4053 }
4054 hmeshift = HME_HASH_SHIFT(ttesz);
4055 hblktag.htag_bspage = HME_HASH_BSPAGE(va, hmeshift);
4056 hblktag.htag_rehash = ttesz;
4057 hblktag.htag_rid = rid;
4058 hblktag.htag_id = srdp;
4059 hmebp = HME_HASH_FUNCTION(srdp, va, hmeshift);
4060 SFMMU_HASH_LOCK(hmebp);
4061 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk,
4062 &list);
4063 if (hmeblkp == NULL) {
4064 SFMMU_HASH_UNLOCK(hmebp);
4065 ttesz--;
4066 continue;
4067 }
4068 ASSERT(hmeblkp->hblk_shared);
4069 va = sfmmu_hblk_unlock(hmeblkp, va, eaddr);
4070 ASSERT(va >= eaddr ||
4071 IS_P2ALIGNED((uintptr_t)va, TTEBYTES(ttesz)));
4072 SFMMU_HASH_UNLOCK(hmebp);
4073 break;
4074 }
4075 if (ttesz < HBLK_MIN_TTESZ) {
4076 panic("hat_unlock_region: addr not found "
4077 "addr %p hat %p", (void *)va, (void *)sfmmup);
4078 }
4079 }
4080 sfmmu_hblks_list_purge(&list, 0);
4081 }
4082
4083 /*
4084 * Function to unlock a range of addresses in an hmeblk. It returns the
4085 * next address that needs to be unlocked.
4086 * Should be called with the hash lock held.
4087 */
4088 static caddr_t
sfmmu_hblk_unlock(struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr)4089 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
4090 {
4091 struct sf_hment *sfhme;
4092 tte_t tteold, ttemod;
4093 int ttesz, ret;
4094
4095 ASSERT(in_hblk_range(hmeblkp, addr));
4096 ASSERT(hmeblkp->hblk_shw_bit == 0);
4097
4098 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4099 ttesz = get_hblk_ttesz(hmeblkp);
4100
4101 HBLKTOHME(sfhme, hmeblkp, addr);
4102 while (addr < endaddr) {
4103 readtte:
4104 sfmmu_copytte(&sfhme->hme_tte, &tteold);
4105 if (TTE_IS_VALID(&tteold)) {
4106
4107 ttemod = tteold;
4108
4109 ret = sfmmu_modifytte_try(&tteold, &ttemod,
4110 &sfhme->hme_tte);
4111
4112 if (ret < 0)
4113 goto readtte;
4114
4115 if (hmeblkp->hblk_lckcnt == 0)
4116 panic("zero hblk lckcnt");
4117
4118 if (((uintptr_t)addr + TTEBYTES(ttesz)) >
4119 (uintptr_t)endaddr)
4120 panic("can't unlock large tte");
4121
4122 ASSERT(hmeblkp->hblk_lckcnt > 0);
4123 atomic_dec_32(&hmeblkp->hblk_lckcnt);
4124 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
4125 } else {
4126 panic("sfmmu_hblk_unlock: invalid tte");
4127 }
4128 addr += TTEBYTES(ttesz);
4129 sfhme++;
4130 }
4131 return (addr);
4132 }
4133
4134 /*
4135 * Physical Address Mapping Framework
4136 *
4137 * General rules:
4138 *
4139 * (1) Applies only to seg_kmem memory pages. To make things easier,
4140 * seg_kpm addresses are also accepted by the routines, but nothing
4141 * is done with them since by definition their PA mappings are static.
4142 * (2) hat_add_callback() may only be called while holding the page lock
4143 * SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
4144 * or passing HAC_PAGELOCK flag.
4145 * (3) prehandler() and posthandler() may not call hat_add_callback() or
4146 * hat_delete_callback(), nor should they allocate memory. Post quiesce
4147 * callbacks may not sleep or acquire adaptive mutex locks.
4148 * (4) Either prehandler() or posthandler() (but not both) may be specified
4149 * as being NULL. Specifying an errhandler() is optional.
4150 *
4151 * Details of using the framework:
4152 *
4153 * registering a callback (hat_register_callback())
4154 *
4155 * Pass prehandler, posthandler, errhandler addresses
4156 * as described below. If capture_cpus argument is nonzero,
4157 * suspend callback to the prehandler will occur with CPUs
4158 * captured and executing xc_loop() and CPUs will remain
4159 * captured until after the posthandler suspend callback
4160 * occurs.
4161 *
4162 * adding a callback (hat_add_callback())
4163 *
4164 * as_pagelock();
4165 * hat_add_callback();
4166 * save returned pfn in private data structures or program registers;
4167 * as_pageunlock();
4168 *
4169 * prehandler()
4170 *
4171 * Stop all accesses by physical address to this memory page.
4172 * Called twice: the first, PRESUSPEND, is a context safe to acquire
4173 * adaptive locks. The second, SUSPEND, is called at high PIL with
4174 * CPUs captured so adaptive locks may NOT be acquired (and all spin
4175 * locks must be XCALL_PIL or higher locks).
4176 *
4177 * May return the following errors:
4178 * EIO: A fatal error has occurred. This will result in panic.
4179 * EAGAIN: The page cannot be suspended. This will fail the
4180 * relocation.
4181 * 0: Success.
4182 *
4183 * posthandler()
4184 *
4185 * Save new pfn in private data structures or program registers;
4186 * not allowed to fail (non-zero return values will result in panic).
4187 *
4188 * errhandler()
4189 *
4190 * called when an error occurs related to the callback. Currently
4191 * the only such error is HAT_CB_ERR_LEAKED which indicates that
4192 * a page is being freed, but there are still outstanding callback(s)
4193 * registered on the page.
4194 *
4195 * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
4196 *
4197 * stop using physical address
4198 * hat_delete_callback();
4199 *
4200 */
4201
4202 /*
4203 * Register a callback class. Each subsystem should do this once and
4204 * cache the id_t returned for use in setting up and tearing down callbacks.
4205 *
4206 * There is no facility for removing callback IDs once they are created;
4207 * the "key" should be unique for each module, so in case a module is unloaded
4208 * and subsequently re-loaded, we can recycle the module's previous entry.
4209 */
4210 id_t
hat_register_callback(int key,int (* prehandler)(caddr_t,uint_t,uint_t,void *),int (* posthandler)(caddr_t,uint_t,uint_t,void *,pfn_t),int (* errhandler)(caddr_t,uint_t,uint_t,void *),int capture_cpus)4211 hat_register_callback(int key,
4212 int (*prehandler)(caddr_t, uint_t, uint_t, void *),
4213 int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
4214 int (*errhandler)(caddr_t, uint_t, uint_t, void *),
4215 int capture_cpus)
4216 {
4217 id_t id;
4218
4219 /*
4220 * Search the table for a pre-existing callback associated with
4221 * the identifier "key". If one exists, we re-use that entry in
4222 * the table for this instance, otherwise we assign the next
4223 * available table slot.
4224 */
4225 for (id = 0; id < sfmmu_max_cb_id; id++) {
4226 if (sfmmu_cb_table[id].key == key)
4227 break;
4228 }
4229
4230 if (id == sfmmu_max_cb_id) {
4231 id = sfmmu_cb_nextid++;
4232 if (id >= sfmmu_max_cb_id)
4233 panic("hat_register_callback: out of callback IDs");
4234 }
4235
4236 ASSERT(prehandler != NULL || posthandler != NULL);
4237
4238 sfmmu_cb_table[id].key = key;
4239 sfmmu_cb_table[id].prehandler = prehandler;
4240 sfmmu_cb_table[id].posthandler = posthandler;
4241 sfmmu_cb_table[id].errhandler = errhandler;
4242 sfmmu_cb_table[id].capture_cpus = capture_cpus;
4243
4244 return (id);
4245 }
4246
4247 #define HAC_COOKIE_NONE (void *)-1
4248
4249 /*
4250 * Add relocation callbacks to the specified addr/len which will be called
4251 * when relocating the associated page. See the description of pre and
4252 * posthandler above for more details.
4253 *
4254 * If HAC_PAGELOCK is included in flags, the underlying memory page is
4255 * locked internally so the caller must be able to deal with the callback
4256 * running even before this function has returned. If HAC_PAGELOCK is not
4257 * set, it is assumed that the underlying memory pages are locked.
4258 *
4259 * Since the caller must track the individual page boundaries anyway,
4260 * we only allow a callback to be added to a single page (large
4261 * or small). Thus [addr, addr + len) MUST be contained within a single
4262 * page.
4263 *
4264 * Registering multiple callbacks on the same [addr, addr+len) is supported,
4265 * _provided_that_ a unique parameter is specified for each callback.
4266 * If multiple callbacks are registered on the same range the callback will
4267 * be invoked with each unique parameter. Registering the same callback with
4268 * the same argument more than once will result in corrupted kernel state.
4269 *
4270 * Returns the pfn of the underlying kernel page in *rpfn
4271 * on success, or PFN_INVALID on failure.
4272 *
4273 * cookiep (if passed) provides storage space for an opaque cookie
4274 * to return later to hat_delete_callback(). This cookie makes the callback
4275 * deletion significantly quicker by avoiding a potentially lengthy hash
4276 * search.
4277 *
4278 * Returns values:
4279 * 0: success
4280 * ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
4281 * EINVAL: callback ID is not valid
4282 * ENXIO: ["vaddr", "vaddr" + len) is not mapped in the kernel's address
4283 * space
4284 * ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
4285 */
4286 int
hat_add_callback(id_t callback_id,caddr_t vaddr,uint_t len,uint_t flags,void * pvt,pfn_t * rpfn,void ** cookiep)4287 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
4288 void *pvt, pfn_t *rpfn, void **cookiep)
4289 {
4290 struct hmehash_bucket *hmebp;
4291 hmeblk_tag hblktag;
4292 struct hme_blk *hmeblkp;
4293 int hmeshift, hashno;
4294 caddr_t saddr, eaddr, baseaddr;
4295 struct pa_hment *pahmep;
4296 struct sf_hment *sfhmep, *osfhmep;
4297 kmutex_t *pml;
4298 tte_t tte;
4299 page_t *pp;
4300 vnode_t *vp;
4301 u_offset_t off;
4302 pfn_t pfn;
4303 int kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
4304 int locked = 0;
4305
4306 /*
4307 * For KPM mappings, just return the physical address since we
4308 * don't need to register any callbacks.
4309 */
4310 if (IS_KPM_ADDR(vaddr)) {
4311 uint64_t paddr;
4312 SFMMU_KPM_VTOP(vaddr, paddr);
4313 *rpfn = btop(paddr);
4314 if (cookiep != NULL)
4315 *cookiep = HAC_COOKIE_NONE;
4316 return (0);
4317 }
4318
4319 if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
4320 *rpfn = PFN_INVALID;
4321 return (EINVAL);
4322 }
4323
4324 if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
4325 *rpfn = PFN_INVALID;
4326 return (ENOMEM);
4327 }
4328
4329 sfhmep = &pahmep->sfment;
4330
4331 saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4332 eaddr = saddr + len;
4333
4334 rehash:
4335 /* Find the mapping(s) for this page */
4336 for (hashno = TTE64K, hmeblkp = NULL;
4337 hmeblkp == NULL && hashno <= mmu_hashcnt;
4338 hashno++) {
4339 hmeshift = HME_HASH_SHIFT(hashno);
4340 hblktag.htag_id = ksfmmup;
4341 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4342 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4343 hblktag.htag_rehash = hashno;
4344 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4345
4346 SFMMU_HASH_LOCK(hmebp);
4347
4348 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4349
4350 if (hmeblkp == NULL)
4351 SFMMU_HASH_UNLOCK(hmebp);
4352 }
4353
4354 if (hmeblkp == NULL) {
4355 kmem_cache_free(pa_hment_cache, pahmep);
4356 *rpfn = PFN_INVALID;
4357 return (ENXIO);
4358 }
4359
4360 ASSERT(!hmeblkp->hblk_shared);
4361
4362 HBLKTOHME(osfhmep, hmeblkp, saddr);
4363 sfmmu_copytte(&osfhmep->hme_tte, &tte);
4364
4365 if (!TTE_IS_VALID(&tte)) {
4366 SFMMU_HASH_UNLOCK(hmebp);
4367 kmem_cache_free(pa_hment_cache, pahmep);
4368 *rpfn = PFN_INVALID;
4369 return (ENXIO);
4370 }
4371
4372 /*
4373 * Make sure the boundaries for the callback fall within this
4374 * single mapping.
4375 */
4376 baseaddr = (caddr_t)get_hblk_base(hmeblkp);
4377 ASSERT(saddr >= baseaddr);
4378 if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
4379 SFMMU_HASH_UNLOCK(hmebp);
4380 kmem_cache_free(pa_hment_cache, pahmep);
4381 *rpfn = PFN_INVALID;
4382 return (ERANGE);
4383 }
4384
4385 pfn = sfmmu_ttetopfn(&tte, vaddr);
4386
4387 /*
4388 * The pfn may not have a page_t underneath in which case we
4389 * just return it. This can happen if we are doing I/O to a
4390 * static portion of the kernel's address space, for instance.
4391 */
4392 pp = osfhmep->hme_page;
4393 if (pp == NULL) {
4394 SFMMU_HASH_UNLOCK(hmebp);
4395 kmem_cache_free(pa_hment_cache, pahmep);
4396 *rpfn = pfn;
4397 if (cookiep)
4398 *cookiep = HAC_COOKIE_NONE;
4399 return (0);
4400 }
4401 ASSERT(pp == PP_PAGEROOT(pp));
4402
4403 vp = pp->p_vnode;
4404 off = pp->p_offset;
4405
4406 pml = sfmmu_mlist_enter(pp);
4407
4408 if (flags & HAC_PAGELOCK) {
4409 if (!page_trylock(pp, SE_SHARED)) {
4410 /*
4411 * Somebody is holding SE_EXCL lock. Might even be
4412 * hat_page_relocate().
4413 * Drop all our locks, lookup the page in &kvp, and
4414 * retry.
4415 * If it doesn't exist in &kvp and &kvps[KV_ZVP],
4416 * then we must be dealing with a kernel mapped
4417 * page which doesn't actually belong to
4418 * segkmem so we punt.
4419 */
4420 sfmmu_mlist_exit(pml);
4421 SFMMU_HASH_UNLOCK(hmebp);
4422 pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4423
4424 /* check &kvps[KV_ZVP] before giving up */
4425 if (pp == NULL)
4426 pp = page_lookup(&kvps[KV_ZVP],
4427 (u_offset_t)saddr, SE_SHARED);
4428
4429 /* Okay, we didn't find it, give up */
4430 if (pp == NULL) {
4431 kmem_cache_free(pa_hment_cache, pahmep);
4432 *rpfn = pfn;
4433 if (cookiep)
4434 *cookiep = HAC_COOKIE_NONE;
4435 return (0);
4436 }
4437 page_unlock(pp);
4438 goto rehash;
4439 }
4440 locked = 1;
4441 }
4442
4443 if (!PAGE_LOCKED(pp) && !panicstr)
4444 panic("hat_add_callback: page 0x%p not locked", (void *)pp);
4445
4446 if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4447 pp->p_offset != off) {
4448 /*
4449 * The page moved before we got our hands on it. Drop
4450 * all the locks and try again.
4451 */
4452 ASSERT((flags & HAC_PAGELOCK) != 0);
4453 sfmmu_mlist_exit(pml);
4454 SFMMU_HASH_UNLOCK(hmebp);
4455 page_unlock(pp);
4456 locked = 0;
4457 goto rehash;
4458 }
4459
4460 if (!VN_ISKAS(vp)) {
4461 /*
4462 * This is not a segkmem page but another page which
4463 * has been kernel mapped. It had better have at least
4464 * a share lock on it. Return the pfn.
4465 */
4466 sfmmu_mlist_exit(pml);
4467 SFMMU_HASH_UNLOCK(hmebp);
4468 if (locked)
4469 page_unlock(pp);
4470 kmem_cache_free(pa_hment_cache, pahmep);
4471 ASSERT(PAGE_LOCKED(pp));
4472 *rpfn = pfn;
4473 if (cookiep)
4474 *cookiep = HAC_COOKIE_NONE;
4475 return (0);
4476 }
4477
4478 /*
4479 * Setup this pa_hment and link its embedded dummy sf_hment into
4480 * the mapping list.
4481 */
4482 pp->p_share++;
4483 pahmep->cb_id = callback_id;
4484 pahmep->addr = vaddr;
4485 pahmep->len = len;
4486 pahmep->refcnt = 1;
4487 pahmep->flags = 0;
4488 pahmep->pvt = pvt;
4489
4490 sfhmep->hme_tte.ll = 0;
4491 sfhmep->hme_data = pahmep;
4492 sfhmep->hme_prev = osfhmep;
4493 sfhmep->hme_next = osfhmep->hme_next;
4494
4495 if (osfhmep->hme_next)
4496 osfhmep->hme_next->hme_prev = sfhmep;
4497
4498 osfhmep->hme_next = sfhmep;
4499
4500 sfmmu_mlist_exit(pml);
4501 SFMMU_HASH_UNLOCK(hmebp);
4502
4503 if (locked)
4504 page_unlock(pp);
4505
4506 *rpfn = pfn;
4507 if (cookiep)
4508 *cookiep = (void *)pahmep;
4509
4510 return (0);
4511 }
4512
4513 /*
4514 * Remove the relocation callbacks from the specified addr/len.
4515 */
4516 void
hat_delete_callback(caddr_t vaddr,uint_t len,void * pvt,uint_t flags,void * cookie)4517 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
4518 void *cookie)
4519 {
4520 struct hmehash_bucket *hmebp;
4521 hmeblk_tag hblktag;
4522 struct hme_blk *hmeblkp;
4523 int hmeshift, hashno;
4524 caddr_t saddr;
4525 struct pa_hment *pahmep;
4526 struct sf_hment *sfhmep, *osfhmep;
4527 kmutex_t *pml;
4528 tte_t tte;
4529 page_t *pp;
4530 vnode_t *vp;
4531 u_offset_t off;
4532 int locked = 0;
4533
4534 /*
4535 * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
4536 * remove so just return.
4537 */
4538 if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
4539 return;
4540
4541 saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4542
4543 rehash:
4544 /* Find the mapping(s) for this page */
4545 for (hashno = TTE64K, hmeblkp = NULL;
4546 hmeblkp == NULL && hashno <= mmu_hashcnt;
4547 hashno++) {
4548 hmeshift = HME_HASH_SHIFT(hashno);
4549 hblktag.htag_id = ksfmmup;
4550 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4551 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4552 hblktag.htag_rehash = hashno;
4553 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4554
4555 SFMMU_HASH_LOCK(hmebp);
4556
4557 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4558
4559 if (hmeblkp == NULL)
4560 SFMMU_HASH_UNLOCK(hmebp);
4561 }
4562
4563 if (hmeblkp == NULL)
4564 return;
4565
4566 ASSERT(!hmeblkp->hblk_shared);
4567
4568 HBLKTOHME(osfhmep, hmeblkp, saddr);
4569
4570 sfmmu_copytte(&osfhmep->hme_tte, &tte);
4571 if (!TTE_IS_VALID(&tte)) {
4572 SFMMU_HASH_UNLOCK(hmebp);
4573 return;
4574 }
4575
4576 pp = osfhmep->hme_page;
4577 if (pp == NULL) {
4578 SFMMU_HASH_UNLOCK(hmebp);
4579 ASSERT(cookie == NULL);
4580 return;
4581 }
4582
4583 vp = pp->p_vnode;
4584 off = pp->p_offset;
4585
4586 pml = sfmmu_mlist_enter(pp);
4587
4588 if (flags & HAC_PAGELOCK) {
4589 if (!page_trylock(pp, SE_SHARED)) {
4590 /*
4591 * Somebody is holding SE_EXCL lock. Might even be
4592 * hat_page_relocate().
4593 * Drop all our locks, lookup the page in &kvp, and
4594 * retry.
4595 * If it doesn't exist in &kvp and &kvps[KV_ZVP],
4596 * then we must be dealing with a kernel mapped
4597 * page which doesn't actually belong to
4598 * segkmem so we punt.
4599 */
4600 sfmmu_mlist_exit(pml);
4601 SFMMU_HASH_UNLOCK(hmebp);
4602 pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4603
4604 /* check &kvps[KV_ZVP] before giving up */
4605 if (pp == NULL)
4606 pp = page_lookup(&kvps[KV_ZVP],
4607 (u_offset_t)saddr, SE_SHARED);
4608
4609 if (pp == NULL) {
4610 ASSERT(cookie == NULL);
4611 return;
4612 }
4613 page_unlock(pp);
4614 goto rehash;
4615 }
4616 locked = 1;
4617 }
4618
4619 ASSERT(PAGE_LOCKED(pp));
4620
4621 if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4622 pp->p_offset != off) {
4623 /*
4624 * The page moved before we got our hands on it. Drop
4625 * all the locks and try again.
4626 */
4627 ASSERT((flags & HAC_PAGELOCK) != 0);
4628 sfmmu_mlist_exit(pml);
4629 SFMMU_HASH_UNLOCK(hmebp);
4630 page_unlock(pp);
4631 locked = 0;
4632 goto rehash;
4633 }
4634
4635 if (!VN_ISKAS(vp)) {
4636 /*
4637 * This is not a segkmem page but another page which
4638 * has been kernel mapped.
4639 */
4640 sfmmu_mlist_exit(pml);
4641 SFMMU_HASH_UNLOCK(hmebp);
4642 if (locked)
4643 page_unlock(pp);
4644 ASSERT(cookie == NULL);
4645 return;
4646 }
4647
4648 if (cookie != NULL) {
4649 pahmep = (struct pa_hment *)cookie;
4650 sfhmep = &pahmep->sfment;
4651 } else {
4652 for (sfhmep = pp->p_mapping; sfhmep != NULL;
4653 sfhmep = sfhmep->hme_next) {
4654
4655 /*
4656 * skip va<->pa mappings
4657 */
4658 if (!IS_PAHME(sfhmep))
4659 continue;
4660
4661 pahmep = sfhmep->hme_data;
4662 ASSERT(pahmep != NULL);
4663
4664 /*
4665 * if pa_hment matches, remove it
4666 */
4667 if ((pahmep->pvt == pvt) &&
4668 (pahmep->addr == vaddr) &&
4669 (pahmep->len == len)) {
4670 break;
4671 }
4672 }
4673 }
4674
4675 if (sfhmep == NULL) {
4676 if (!panicstr) {
4677 panic("hat_delete_callback: pa_hment not found, pp %p",
4678 (void *)pp);
4679 }
4680 return;
4681 }
4682
4683 /*
4684 * Note: at this point a valid kernel mapping must still be
4685 * present on this page.
4686 */
4687 pp->p_share--;
4688 if (pp->p_share <= 0)
4689 panic("hat_delete_callback: zero p_share");
4690
4691 if (--pahmep->refcnt == 0) {
4692 if (pahmep->flags != 0)
4693 panic("hat_delete_callback: pa_hment is busy");
4694
4695 /*
4696 * Remove sfhmep from the mapping list for the page.
4697 */
4698 if (sfhmep->hme_prev) {
4699 sfhmep->hme_prev->hme_next = sfhmep->hme_next;
4700 } else {
4701 pp->p_mapping = sfhmep->hme_next;
4702 }
4703
4704 if (sfhmep->hme_next)
4705 sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
4706
4707 sfmmu_mlist_exit(pml);
4708 SFMMU_HASH_UNLOCK(hmebp);
4709
4710 if (locked)
4711 page_unlock(pp);
4712
4713 kmem_cache_free(pa_hment_cache, pahmep);
4714 return;
4715 }
4716
4717 sfmmu_mlist_exit(pml);
4718 SFMMU_HASH_UNLOCK(hmebp);
4719 if (locked)
4720 page_unlock(pp);
4721 }
4722
4723 /*
4724 * hat_probe returns 1 if the translation for the address 'addr' is
4725 * loaded, zero otherwise.
4726 *
4727 * hat_probe should be used only for advisorary purposes because it may
4728 * occasionally return the wrong value. The implementation must guarantee that
4729 * returning the wrong value is a very rare event. hat_probe is used
4730 * to implement optimizations in the segment drivers.
4731 *
4732 */
4733 int
hat_probe(struct hat * sfmmup,caddr_t addr)4734 hat_probe(struct hat *sfmmup, caddr_t addr)
4735 {
4736 pfn_t pfn;
4737 tte_t tte;
4738
4739 ASSERT(sfmmup != NULL);
4740
4741 ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
4742
4743 if (sfmmup == ksfmmup) {
4744 while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4745 == PFN_SUSPENDED) {
4746 sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4747 }
4748 } else {
4749 pfn = sfmmu_uvatopfn(addr, sfmmup, NULL);
4750 }
4751
4752 if (pfn != PFN_INVALID)
4753 return (1);
4754 else
4755 return (0);
4756 }
4757
4758 ssize_t
hat_getpagesize(struct hat * sfmmup,caddr_t addr)4759 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4760 {
4761 tte_t tte;
4762
4763 if (sfmmup == ksfmmup) {
4764 if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4765 return (-1);
4766 }
4767 } else {
4768 if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4769 return (-1);
4770 }
4771 }
4772
4773 ASSERT(TTE_IS_VALID(&tte));
4774 return (TTEBYTES(TTE_CSZ(&tte)));
4775 }
4776
4777 uint_t
hat_getattr(struct hat * sfmmup,caddr_t addr,uint_t * attr)4778 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4779 {
4780 tte_t tte;
4781
4782 if (sfmmup == ksfmmup) {
4783 if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4784 tte.ll = 0;
4785 }
4786 } else {
4787 if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4788 tte.ll = 0;
4789 }
4790 }
4791 if (TTE_IS_VALID(&tte)) {
4792 *attr = sfmmu_ptov_attr(&tte);
4793 return (0);
4794 }
4795 *attr = 0;
4796 return ((uint_t)0xffffffff);
4797 }
4798
4799 /*
4800 * Enables more attributes on specified address range (ie. logical OR)
4801 */
4802 void
hat_setattr(struct hat * hat,caddr_t addr,size_t len,uint_t attr)4803 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4804 {
4805 ASSERT(hat->sfmmu_as != NULL);
4806
4807 sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4808 }
4809
4810 /*
4811 * Assigns attributes to the specified address range. All the attributes
4812 * are specified.
4813 */
4814 void
hat_chgattr(struct hat * hat,caddr_t addr,size_t len,uint_t attr)4815 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4816 {
4817 ASSERT(hat->sfmmu_as != NULL);
4818
4819 sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4820 }
4821
4822 /*
4823 * Remove attributes on the specified address range (ie. loginal NAND)
4824 */
4825 void
hat_clrattr(struct hat * hat,caddr_t addr,size_t len,uint_t attr)4826 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4827 {
4828 ASSERT(hat->sfmmu_as != NULL);
4829
4830 sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4831 }
4832
4833 /*
4834 * Change attributes on an address range to that specified by attr and mode.
4835 */
4836 static void
sfmmu_chgattr(struct hat * sfmmup,caddr_t addr,size_t len,uint_t attr,int mode)4837 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4838 int mode)
4839 {
4840 struct hmehash_bucket *hmebp;
4841 hmeblk_tag hblktag;
4842 int hmeshift, hashno = 1;
4843 struct hme_blk *hmeblkp, *list = NULL;
4844 caddr_t endaddr;
4845 cpuset_t cpuset;
4846 demap_range_t dmr;
4847
4848 CPUSET_ZERO(cpuset);
4849
4850 ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
4851 ASSERT((len & MMU_PAGEOFFSET) == 0);
4852 ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4853
4854 if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4855 ((addr + len) > (caddr_t)USERLIMIT)) {
4856 panic("user addr %p in kernel space",
4857 (void *)addr);
4858 }
4859
4860 endaddr = addr + len;
4861 hblktag.htag_id = sfmmup;
4862 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4863 DEMAP_RANGE_INIT(sfmmup, &dmr);
4864
4865 while (addr < endaddr) {
4866 hmeshift = HME_HASH_SHIFT(hashno);
4867 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4868 hblktag.htag_rehash = hashno;
4869 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4870
4871 SFMMU_HASH_LOCK(hmebp);
4872
4873 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4874 if (hmeblkp != NULL) {
4875 ASSERT(!hmeblkp->hblk_shared);
4876 /*
4877 * We've encountered a shadow hmeblk so skip the range
4878 * of the next smaller mapping size.
4879 */
4880 if (hmeblkp->hblk_shw_bit) {
4881 ASSERT(sfmmup != ksfmmup);
4882 ASSERT(hashno > 1);
4883 addr = (caddr_t)P2END((uintptr_t)addr,
4884 TTEBYTES(hashno - 1));
4885 } else {
4886 addr = sfmmu_hblk_chgattr(sfmmup,
4887 hmeblkp, addr, endaddr, &dmr, attr, mode);
4888 }
4889 SFMMU_HASH_UNLOCK(hmebp);
4890 hashno = 1;
4891 continue;
4892 }
4893 SFMMU_HASH_UNLOCK(hmebp);
4894
4895 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4896 /*
4897 * We have traversed the whole list and rehashed
4898 * if necessary without finding the address to chgattr.
4899 * This is ok, so we increment the address by the
4900 * smallest hmeblk range for kernel mappings or for
4901 * user mappings with no large pages, and the largest
4902 * hmeblk range, to account for shadow hmeblks, for
4903 * user mappings with large pages and continue.
4904 */
4905 if (sfmmup == ksfmmup)
4906 addr = (caddr_t)P2END((uintptr_t)addr,
4907 TTEBYTES(1));
4908 else
4909 addr = (caddr_t)P2END((uintptr_t)addr,
4910 TTEBYTES(hashno));
4911 hashno = 1;
4912 } else {
4913 hashno++;
4914 }
4915 }
4916
4917 sfmmu_hblks_list_purge(&list, 0);
4918 DEMAP_RANGE_FLUSH(&dmr);
4919 cpuset = sfmmup->sfmmu_cpusran;
4920 xt_sync(cpuset);
4921 }
4922
4923 /*
4924 * This function chgattr on a range of addresses in an hmeblk. It returns the
4925 * next addres that needs to be chgattr.
4926 * It should be called with the hash lock held.
4927 * XXX It should be possible to optimize chgattr by not flushing every time but
4928 * on the other hand:
4929 * 1. do one flush crosscall.
4930 * 2. only flush if we are increasing permissions (make sure this will work)
4931 */
4932 static caddr_t
sfmmu_hblk_chgattr(struct hat * sfmmup,struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr,demap_range_t * dmrp,uint_t attr,int mode)4933 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4934 caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4935 {
4936 tte_t tte, tteattr, tteflags, ttemod;
4937 struct sf_hment *sfhmep;
4938 int ttesz;
4939 struct page *pp = NULL;
4940 kmutex_t *pml, *pmtx;
4941 int ret;
4942 int use_demap_range;
4943 #if defined(SF_ERRATA_57)
4944 int check_exec;
4945 #endif
4946
4947 ASSERT(in_hblk_range(hmeblkp, addr));
4948 ASSERT(hmeblkp->hblk_shw_bit == 0);
4949 ASSERT(!hmeblkp->hblk_shared);
4950
4951 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4952 ttesz = get_hblk_ttesz(hmeblkp);
4953
4954 /*
4955 * Flush the current demap region if addresses have been
4956 * skipped or the page size doesn't match.
4957 */
4958 use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4959 if (use_demap_range) {
4960 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4961 } else if (dmrp != NULL) {
4962 DEMAP_RANGE_FLUSH(dmrp);
4963 }
4964
4965 tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4966 #if defined(SF_ERRATA_57)
4967 check_exec = (sfmmup != ksfmmup) &&
4968 AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4969 TTE_IS_EXECUTABLE(&tteattr);
4970 #endif
4971 HBLKTOHME(sfhmep, hmeblkp, addr);
4972 while (addr < endaddr) {
4973 sfmmu_copytte(&sfhmep->hme_tte, &tte);
4974 if (TTE_IS_VALID(&tte)) {
4975 if ((tte.ll & tteflags.ll) == tteattr.ll) {
4976 /*
4977 * if the new attr is the same as old
4978 * continue
4979 */
4980 goto next_addr;
4981 }
4982 if (!TTE_IS_WRITABLE(&tteattr)) {
4983 /*
4984 * make sure we clear hw modify bit if we
4985 * removing write protections
4986 */
4987 tteflags.tte_intlo |= TTE_HWWR_INT;
4988 }
4989
4990 pml = NULL;
4991 pp = sfhmep->hme_page;
4992 if (pp) {
4993 pml = sfmmu_mlist_enter(pp);
4994 }
4995
4996 if (pp != sfhmep->hme_page) {
4997 /*
4998 * tte must have been unloaded.
4999 */
5000 ASSERT(pml);
5001 sfmmu_mlist_exit(pml);
5002 continue;
5003 }
5004
5005 ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5006
5007 ttemod = tte;
5008 ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
5009 ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
5010
5011 #if defined(SF_ERRATA_57)
5012 if (check_exec && addr < errata57_limit)
5013 ttemod.tte_exec_perm = 0;
5014 #endif
5015 ret = sfmmu_modifytte_try(&tte, &ttemod,
5016 &sfhmep->hme_tte);
5017
5018 if (ret < 0) {
5019 /* tte changed underneath us */
5020 if (pml) {
5021 sfmmu_mlist_exit(pml);
5022 }
5023 continue;
5024 }
5025
5026 if (tteflags.tte_intlo & TTE_HWWR_INT) {
5027 /*
5028 * need to sync if we are clearing modify bit.
5029 */
5030 sfmmu_ttesync(sfmmup, addr, &tte, pp);
5031 }
5032
5033 if (pp && PP_ISRO(pp)) {
5034 if (tteattr.tte_intlo & TTE_WRPRM_INT) {
5035 pmtx = sfmmu_page_enter(pp);
5036 PP_CLRRO(pp);
5037 sfmmu_page_exit(pmtx);
5038 }
5039 }
5040
5041 if (ret > 0 && use_demap_range) {
5042 DEMAP_RANGE_MARKPG(dmrp, addr);
5043 } else if (ret > 0) {
5044 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5045 }
5046
5047 if (pml) {
5048 sfmmu_mlist_exit(pml);
5049 }
5050 }
5051 next_addr:
5052 addr += TTEBYTES(ttesz);
5053 sfhmep++;
5054 DEMAP_RANGE_NEXTPG(dmrp);
5055 }
5056 return (addr);
5057 }
5058
5059 /*
5060 * This routine converts virtual attributes to physical ones. It will
5061 * update the tteflags field with the tte mask corresponding to the attributes
5062 * affected and it returns the new attributes. It will also clear the modify
5063 * bit if we are taking away write permission. This is necessary since the
5064 * modify bit is the hardware permission bit and we need to clear it in order
5065 * to detect write faults.
5066 */
5067 static uint64_t
sfmmu_vtop_attr(uint_t attr,int mode,tte_t * ttemaskp)5068 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
5069 {
5070 tte_t ttevalue;
5071
5072 ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
5073
5074 switch (mode) {
5075 case SFMMU_CHGATTR:
5076 /* all attributes specified */
5077 ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
5078 ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
5079 ttemaskp->tte_inthi = TTEINTHI_ATTR;
5080 ttemaskp->tte_intlo = TTEINTLO_ATTR;
5081 break;
5082 case SFMMU_SETATTR:
5083 ASSERT(!(attr & ~HAT_PROT_MASK));
5084 ttemaskp->ll = 0;
5085 ttevalue.ll = 0;
5086 /*
5087 * a valid tte implies exec and read for sfmmu
5088 * so no need to do anything about them.
5089 * since priviledged access implies user access
5090 * PROT_USER doesn't make sense either.
5091 */
5092 if (attr & PROT_WRITE) {
5093 ttemaskp->tte_intlo |= TTE_WRPRM_INT;
5094 ttevalue.tte_intlo |= TTE_WRPRM_INT;
5095 }
5096 break;
5097 case SFMMU_CLRATTR:
5098 /* attributes will be nand with current ones */
5099 if (attr & ~(PROT_WRITE | PROT_USER)) {
5100 panic("sfmmu: attr %x not supported", attr);
5101 }
5102 ttemaskp->ll = 0;
5103 ttevalue.ll = 0;
5104 if (attr & PROT_WRITE) {
5105 /* clear both writable and modify bit */
5106 ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
5107 }
5108 if (attr & PROT_USER) {
5109 ttemaskp->tte_intlo |= TTE_PRIV_INT;
5110 ttevalue.tte_intlo |= TTE_PRIV_INT;
5111 }
5112 break;
5113 default:
5114 panic("sfmmu_vtop_attr: bad mode %x", mode);
5115 }
5116 ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
5117 return (ttevalue.ll);
5118 }
5119
5120 static uint_t
sfmmu_ptov_attr(tte_t * ttep)5121 sfmmu_ptov_attr(tte_t *ttep)
5122 {
5123 uint_t attr;
5124
5125 ASSERT(TTE_IS_VALID(ttep));
5126
5127 attr = PROT_READ;
5128
5129 if (TTE_IS_WRITABLE(ttep)) {
5130 attr |= PROT_WRITE;
5131 }
5132 if (TTE_IS_EXECUTABLE(ttep)) {
5133 attr |= PROT_EXEC;
5134 }
5135 if (!TTE_IS_PRIVILEGED(ttep)) {
5136 attr |= PROT_USER;
5137 }
5138 if (TTE_IS_NFO(ttep)) {
5139 attr |= HAT_NOFAULT;
5140 }
5141 if (TTE_IS_NOSYNC(ttep)) {
5142 attr |= HAT_NOSYNC;
5143 }
5144 if (TTE_IS_SIDEFFECT(ttep)) {
5145 attr |= SFMMU_SIDEFFECT;
5146 }
5147 if (!TTE_IS_VCACHEABLE(ttep)) {
5148 attr |= SFMMU_UNCACHEVTTE;
5149 }
5150 if (!TTE_IS_PCACHEABLE(ttep)) {
5151 attr |= SFMMU_UNCACHEPTTE;
5152 }
5153 return (attr);
5154 }
5155
5156 /*
5157 * hat_chgprot is a deprecated hat call. New segment drivers
5158 * should store all attributes and use hat_*attr calls.
5159 *
5160 * Change the protections in the virtual address range
5161 * given to the specified virtual protection. If vprot is ~PROT_WRITE,
5162 * then remove write permission, leaving the other
5163 * permissions unchanged. If vprot is ~PROT_USER, remove user permissions.
5164 *
5165 */
5166 void
hat_chgprot(struct hat * sfmmup,caddr_t addr,size_t len,uint_t vprot)5167 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
5168 {
5169 struct hmehash_bucket *hmebp;
5170 hmeblk_tag hblktag;
5171 int hmeshift, hashno = 1;
5172 struct hme_blk *hmeblkp, *list = NULL;
5173 caddr_t endaddr;
5174 cpuset_t cpuset;
5175 demap_range_t dmr;
5176
5177 ASSERT((len & MMU_PAGEOFFSET) == 0);
5178 ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
5179
5180 ASSERT(sfmmup->sfmmu_as != NULL);
5181
5182 CPUSET_ZERO(cpuset);
5183
5184 if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
5185 ((addr + len) > (caddr_t)USERLIMIT)) {
5186 panic("user addr %p vprot %x in kernel space",
5187 (void *)addr, vprot);
5188 }
5189 endaddr = addr + len;
5190 hblktag.htag_id = sfmmup;
5191 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5192 DEMAP_RANGE_INIT(sfmmup, &dmr);
5193
5194 while (addr < endaddr) {
5195 hmeshift = HME_HASH_SHIFT(hashno);
5196 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5197 hblktag.htag_rehash = hashno;
5198 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5199
5200 SFMMU_HASH_LOCK(hmebp);
5201
5202 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5203 if (hmeblkp != NULL) {
5204 ASSERT(!hmeblkp->hblk_shared);
5205 /*
5206 * We've encountered a shadow hmeblk so skip the range
5207 * of the next smaller mapping size.
5208 */
5209 if (hmeblkp->hblk_shw_bit) {
5210 ASSERT(sfmmup != ksfmmup);
5211 ASSERT(hashno > 1);
5212 addr = (caddr_t)P2END((uintptr_t)addr,
5213 TTEBYTES(hashno - 1));
5214 } else {
5215 addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
5216 addr, endaddr, &dmr, vprot);
5217 }
5218 SFMMU_HASH_UNLOCK(hmebp);
5219 hashno = 1;
5220 continue;
5221 }
5222 SFMMU_HASH_UNLOCK(hmebp);
5223
5224 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5225 /*
5226 * We have traversed the whole list and rehashed
5227 * if necessary without finding the address to chgprot.
5228 * This is ok so we increment the address by the
5229 * smallest hmeblk range for kernel mappings and the
5230 * largest hmeblk range, to account for shadow hmeblks,
5231 * for user mappings and continue.
5232 */
5233 if (sfmmup == ksfmmup)
5234 addr = (caddr_t)P2END((uintptr_t)addr,
5235 TTEBYTES(1));
5236 else
5237 addr = (caddr_t)P2END((uintptr_t)addr,
5238 TTEBYTES(hashno));
5239 hashno = 1;
5240 } else {
5241 hashno++;
5242 }
5243 }
5244
5245 sfmmu_hblks_list_purge(&list, 0);
5246 DEMAP_RANGE_FLUSH(&dmr);
5247 cpuset = sfmmup->sfmmu_cpusran;
5248 xt_sync(cpuset);
5249 }
5250
5251 /*
5252 * This function chgprots a range of addresses in an hmeblk. It returns the
5253 * next addres that needs to be chgprot.
5254 * It should be called with the hash lock held.
5255 * XXX It shold be possible to optimize chgprot by not flushing every time but
5256 * on the other hand:
5257 * 1. do one flush crosscall.
5258 * 2. only flush if we are increasing permissions (make sure this will work)
5259 */
5260 static caddr_t
sfmmu_hblk_chgprot(sfmmu_t * sfmmup,struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr,demap_range_t * dmrp,uint_t vprot)5261 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5262 caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
5263 {
5264 uint_t pprot;
5265 tte_t tte, ttemod;
5266 struct sf_hment *sfhmep;
5267 uint_t tteflags;
5268 int ttesz;
5269 struct page *pp = NULL;
5270 kmutex_t *pml, *pmtx;
5271 int ret;
5272 int use_demap_range;
5273 #if defined(SF_ERRATA_57)
5274 int check_exec;
5275 #endif
5276
5277 ASSERT(in_hblk_range(hmeblkp, addr));
5278 ASSERT(hmeblkp->hblk_shw_bit == 0);
5279 ASSERT(!hmeblkp->hblk_shared);
5280
5281 #ifdef DEBUG
5282 if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5283 (endaddr < get_hblk_endaddr(hmeblkp))) {
5284 panic("sfmmu_hblk_chgprot: partial chgprot of large page");
5285 }
5286 #endif /* DEBUG */
5287
5288 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5289 ttesz = get_hblk_ttesz(hmeblkp);
5290
5291 pprot = sfmmu_vtop_prot(vprot, &tteflags);
5292 #if defined(SF_ERRATA_57)
5293 check_exec = (sfmmup != ksfmmup) &&
5294 AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
5295 ((vprot & PROT_EXEC) == PROT_EXEC);
5296 #endif
5297 HBLKTOHME(sfhmep, hmeblkp, addr);
5298
5299 /*
5300 * Flush the current demap region if addresses have been
5301 * skipped or the page size doesn't match.
5302 */
5303 use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
5304 if (use_demap_range) {
5305 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5306 } else if (dmrp != NULL) {
5307 DEMAP_RANGE_FLUSH(dmrp);
5308 }
5309
5310 while (addr < endaddr) {
5311 sfmmu_copytte(&sfhmep->hme_tte, &tte);
5312 if (TTE_IS_VALID(&tte)) {
5313 if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
5314 /*
5315 * if the new protection is the same as old
5316 * continue
5317 */
5318 goto next_addr;
5319 }
5320 pml = NULL;
5321 pp = sfhmep->hme_page;
5322 if (pp) {
5323 pml = sfmmu_mlist_enter(pp);
5324 }
5325 if (pp != sfhmep->hme_page) {
5326 /*
5327 * tte most have been unloaded
5328 * underneath us. Recheck
5329 */
5330 ASSERT(pml);
5331 sfmmu_mlist_exit(pml);
5332 continue;
5333 }
5334
5335 ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5336
5337 ttemod = tte;
5338 TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
5339 #if defined(SF_ERRATA_57)
5340 if (check_exec && addr < errata57_limit)
5341 ttemod.tte_exec_perm = 0;
5342 #endif
5343 ret = sfmmu_modifytte_try(&tte, &ttemod,
5344 &sfhmep->hme_tte);
5345
5346 if (ret < 0) {
5347 /* tte changed underneath us */
5348 if (pml) {
5349 sfmmu_mlist_exit(pml);
5350 }
5351 continue;
5352 }
5353
5354 if (tteflags & TTE_HWWR_INT) {
5355 /*
5356 * need to sync if we are clearing modify bit.
5357 */
5358 sfmmu_ttesync(sfmmup, addr, &tte, pp);
5359 }
5360
5361 if (pp && PP_ISRO(pp)) {
5362 if (pprot & TTE_WRPRM_INT) {
5363 pmtx = sfmmu_page_enter(pp);
5364 PP_CLRRO(pp);
5365 sfmmu_page_exit(pmtx);
5366 }
5367 }
5368
5369 if (ret > 0 && use_demap_range) {
5370 DEMAP_RANGE_MARKPG(dmrp, addr);
5371 } else if (ret > 0) {
5372 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5373 }
5374
5375 if (pml) {
5376 sfmmu_mlist_exit(pml);
5377 }
5378 }
5379 next_addr:
5380 addr += TTEBYTES(ttesz);
5381 sfhmep++;
5382 DEMAP_RANGE_NEXTPG(dmrp);
5383 }
5384 return (addr);
5385 }
5386
5387 /*
5388 * This routine is deprecated and should only be used by hat_chgprot.
5389 * The correct routine is sfmmu_vtop_attr.
5390 * This routine converts virtual page protections to physical ones. It will
5391 * update the tteflags field with the tte mask corresponding to the protections
5392 * affected and it returns the new protections. It will also clear the modify
5393 * bit if we are taking away write permission. This is necessary since the
5394 * modify bit is the hardware permission bit and we need to clear it in order
5395 * to detect write faults.
5396 * It accepts the following special protections:
5397 * ~PROT_WRITE = remove write permissions.
5398 * ~PROT_USER = remove user permissions.
5399 */
5400 static uint_t
sfmmu_vtop_prot(uint_t vprot,uint_t * tteflagsp)5401 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
5402 {
5403 if (vprot == (uint_t)~PROT_WRITE) {
5404 *tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
5405 return (0); /* will cause wrprm to be cleared */
5406 }
5407 if (vprot == (uint_t)~PROT_USER) {
5408 *tteflagsp = TTE_PRIV_INT;
5409 return (0); /* will cause privprm to be cleared */
5410 }
5411 if ((vprot == 0) || (vprot == PROT_USER) ||
5412 ((vprot & PROT_ALL) != vprot)) {
5413 panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5414 }
5415
5416 switch (vprot) {
5417 case (PROT_READ):
5418 case (PROT_EXEC):
5419 case (PROT_EXEC | PROT_READ):
5420 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5421 return (TTE_PRIV_INT); /* set prv and clr wrt */
5422 case (PROT_WRITE):
5423 case (PROT_WRITE | PROT_READ):
5424 case (PROT_EXEC | PROT_WRITE):
5425 case (PROT_EXEC | PROT_WRITE | PROT_READ):
5426 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5427 return (TTE_PRIV_INT | TTE_WRPRM_INT); /* set prv and wrt */
5428 case (PROT_USER | PROT_READ):
5429 case (PROT_USER | PROT_EXEC):
5430 case (PROT_USER | PROT_EXEC | PROT_READ):
5431 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5432 return (0); /* clr prv and wrt */
5433 case (PROT_USER | PROT_WRITE):
5434 case (PROT_USER | PROT_WRITE | PROT_READ):
5435 case (PROT_USER | PROT_EXEC | PROT_WRITE):
5436 case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
5437 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5438 return (TTE_WRPRM_INT); /* clr prv and set wrt */
5439 default:
5440 panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5441 }
5442 return (0);
5443 }
5444
5445 /*
5446 * Alternate unload for very large virtual ranges. With a true 64 bit VA,
5447 * the normal algorithm would take too long for a very large VA range with
5448 * few real mappings. This routine just walks thru all HMEs in the global
5449 * hash table to find and remove mappings.
5450 */
5451 static void
hat_unload_large_virtual(struct hat * sfmmup,caddr_t startaddr,size_t len,uint_t flags,hat_callback_t * callback)5452 hat_unload_large_virtual(struct hat *sfmmup, caddr_t startaddr, size_t len,
5453 uint_t flags, hat_callback_t *callback)
5454 {
5455 struct hmehash_bucket *hmebp;
5456 struct hme_blk *hmeblkp;
5457 struct hme_blk *pr_hblk = NULL;
5458 struct hme_blk *nx_hblk;
5459 struct hme_blk *list = NULL;
5460 int i;
5461 demap_range_t dmr, *dmrp;
5462 cpuset_t cpuset;
5463 caddr_t endaddr = startaddr + len;
5464 caddr_t sa;
5465 caddr_t ea;
5466 caddr_t cb_sa[MAX_CB_ADDR];
5467 caddr_t cb_ea[MAX_CB_ADDR];
5468 int addr_cnt = 0;
5469 int a = 0;
5470
5471 if (sfmmup->sfmmu_free) {
5472 dmrp = NULL;
5473 } else {
5474 dmrp = &dmr;
5475 DEMAP_RANGE_INIT(sfmmup, dmrp);
5476 }
5477
5478 /*
5479 * Loop through all the hash buckets of HME blocks looking for matches.
5480 */
5481 for (i = 0; i <= UHMEHASH_SZ; i++) {
5482 hmebp = &uhme_hash[i];
5483 SFMMU_HASH_LOCK(hmebp);
5484 hmeblkp = hmebp->hmeblkp;
5485 pr_hblk = NULL;
5486 while (hmeblkp) {
5487 nx_hblk = hmeblkp->hblk_next;
5488
5489 /*
5490 * skip if not this context, if a shadow block or
5491 * if the mapping is not in the requested range
5492 */
5493 if (hmeblkp->hblk_tag.htag_id != sfmmup ||
5494 hmeblkp->hblk_shw_bit ||
5495 (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
5496 (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
5497 pr_hblk = hmeblkp;
5498 goto next_block;
5499 }
5500
5501 ASSERT(!hmeblkp->hblk_shared);
5502 /*
5503 * unload if there are any current valid mappings
5504 */
5505 if (hmeblkp->hblk_vcnt != 0 ||
5506 hmeblkp->hblk_hmecnt != 0)
5507 (void) sfmmu_hblk_unload(sfmmup, hmeblkp,
5508 sa, ea, dmrp, flags);
5509
5510 /*
5511 * on unmap we also release the HME block itself, once
5512 * all mappings are gone.
5513 */
5514 if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
5515 !hmeblkp->hblk_vcnt &&
5516 !hmeblkp->hblk_hmecnt) {
5517 ASSERT(!hmeblkp->hblk_lckcnt);
5518 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5519 &list, 0);
5520 } else {
5521 pr_hblk = hmeblkp;
5522 }
5523
5524 if (callback == NULL)
5525 goto next_block;
5526
5527 /*
5528 * HME blocks may span more than one page, but we may be
5529 * unmapping only one page, so check for a smaller range
5530 * for the callback
5531 */
5532 if (sa < startaddr)
5533 sa = startaddr;
5534 if (--ea > endaddr)
5535 ea = endaddr - 1;
5536
5537 cb_sa[addr_cnt] = sa;
5538 cb_ea[addr_cnt] = ea;
5539 if (++addr_cnt == MAX_CB_ADDR) {
5540 if (dmrp != NULL) {
5541 DEMAP_RANGE_FLUSH(dmrp);
5542 cpuset = sfmmup->sfmmu_cpusran;
5543 xt_sync(cpuset);
5544 }
5545
5546 for (a = 0; a < MAX_CB_ADDR; ++a) {
5547 callback->hcb_start_addr = cb_sa[a];
5548 callback->hcb_end_addr = cb_ea[a];
5549 callback->hcb_function(callback);
5550 }
5551 addr_cnt = 0;
5552 }
5553
5554 next_block:
5555 hmeblkp = nx_hblk;
5556 }
5557 SFMMU_HASH_UNLOCK(hmebp);
5558 }
5559
5560 sfmmu_hblks_list_purge(&list, 0);
5561 if (dmrp != NULL) {
5562 DEMAP_RANGE_FLUSH(dmrp);
5563 cpuset = sfmmup->sfmmu_cpusran;
5564 xt_sync(cpuset);
5565 }
5566
5567 for (a = 0; a < addr_cnt; ++a) {
5568 callback->hcb_start_addr = cb_sa[a];
5569 callback->hcb_end_addr = cb_ea[a];
5570 callback->hcb_function(callback);
5571 }
5572
5573 /*
5574 * Check TSB and TLB page sizes if the process isn't exiting.
5575 */
5576 if (!sfmmup->sfmmu_free)
5577 sfmmu_check_page_sizes(sfmmup, 0);
5578 }
5579
5580 /*
5581 * Unload all the mappings in the range [addr..addr+len). addr and len must
5582 * be MMU_PAGESIZE aligned.
5583 */
5584
5585 extern struct seg *segkmap;
5586 #define ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
5587 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
5588
5589
5590 void
hat_unload_callback(struct hat * sfmmup,caddr_t addr,size_t len,uint_t flags,hat_callback_t * callback)5591 hat_unload_callback(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags,
5592 hat_callback_t *callback)
5593 {
5594 struct hmehash_bucket *hmebp;
5595 hmeblk_tag hblktag;
5596 int hmeshift, hashno, iskernel;
5597 struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
5598 caddr_t endaddr;
5599 cpuset_t cpuset;
5600 int addr_count = 0;
5601 int a;
5602 caddr_t cb_start_addr[MAX_CB_ADDR];
5603 caddr_t cb_end_addr[MAX_CB_ADDR];
5604 int issegkmap = ISSEGKMAP(sfmmup, addr);
5605 demap_range_t dmr, *dmrp;
5606
5607 ASSERT(sfmmup->sfmmu_as != NULL);
5608
5609 ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
5610 AS_LOCK_HELD(sfmmup->sfmmu_as));
5611
5612 ASSERT(sfmmup != NULL);
5613 ASSERT((len & MMU_PAGEOFFSET) == 0);
5614 ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5615
5616 /*
5617 * Probing through a large VA range (say 63 bits) will be slow, even
5618 * at 4 Meg steps between the probes. So, when the virtual address range
5619 * is very large, search the HME entries for what to unload.
5620 *
5621 * len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5622 *
5623 * UHMEHASH_SZ is number of hash buckets to examine
5624 *
5625 */
5626 if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5627 hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5628 return;
5629 }
5630
5631 CPUSET_ZERO(cpuset);
5632
5633 /*
5634 * If the process is exiting, we can save a lot of fuss since
5635 * we'll flush the TLB when we free the ctx anyway.
5636 */
5637 if (sfmmup->sfmmu_free) {
5638 dmrp = NULL;
5639 } else {
5640 dmrp = &dmr;
5641 DEMAP_RANGE_INIT(sfmmup, dmrp);
5642 }
5643
5644 endaddr = addr + len;
5645 hblktag.htag_id = sfmmup;
5646 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5647
5648 /*
5649 * It is likely for the vm to call unload over a wide range of
5650 * addresses that are actually very sparsely populated by
5651 * translations. In order to speed this up the sfmmu hat supports
5652 * the concept of shadow hmeblks. Dummy large page hmeblks that
5653 * correspond to actual small translations are allocated at tteload
5654 * time and are referred to as shadow hmeblks. Now, during unload
5655 * time, we first check if we have a shadow hmeblk for that
5656 * translation. The absence of one means the corresponding address
5657 * range is empty and can be skipped.
5658 *
5659 * The kernel is an exception to above statement and that is why
5660 * we don't use shadow hmeblks and hash starting from the smallest
5661 * page size.
5662 */
5663 if (sfmmup == KHATID) {
5664 iskernel = 1;
5665 hashno = TTE64K;
5666 } else {
5667 iskernel = 0;
5668 if (mmu_page_sizes == max_mmu_page_sizes) {
5669 hashno = TTE256M;
5670 } else {
5671 hashno = TTE4M;
5672 }
5673 }
5674 while (addr < endaddr) {
5675 hmeshift = HME_HASH_SHIFT(hashno);
5676 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5677 hblktag.htag_rehash = hashno;
5678 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5679
5680 SFMMU_HASH_LOCK(hmebp);
5681
5682 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
5683 if (hmeblkp == NULL) {
5684 /*
5685 * didn't find an hmeblk. skip the appropiate
5686 * address range.
5687 */
5688 SFMMU_HASH_UNLOCK(hmebp);
5689 if (iskernel) {
5690 if (hashno < mmu_hashcnt) {
5691 hashno++;
5692 continue;
5693 } else {
5694 hashno = TTE64K;
5695 addr = (caddr_t)roundup((uintptr_t)addr
5696 + 1, MMU_PAGESIZE64K);
5697 continue;
5698 }
5699 }
5700 addr = (caddr_t)roundup((uintptr_t)addr + 1,
5701 (1 << hmeshift));
5702 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5703 ASSERT(hashno == TTE64K);
5704 continue;
5705 }
5706 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5707 hashno = TTE512K;
5708 continue;
5709 }
5710 if (mmu_page_sizes == max_mmu_page_sizes) {
5711 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5712 hashno = TTE4M;
5713 continue;
5714 }
5715 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5716 hashno = TTE32M;
5717 continue;
5718 }
5719 hashno = TTE256M;
5720 continue;
5721 } else {
5722 hashno = TTE4M;
5723 continue;
5724 }
5725 }
5726 ASSERT(hmeblkp);
5727 ASSERT(!hmeblkp->hblk_shared);
5728 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5729 /*
5730 * If the valid count is zero we can skip the range
5731 * mapped by this hmeblk.
5732 * We free hblks in the case of HAT_UNMAP. HAT_UNMAP
5733 * is used by segment drivers as a hint
5734 * that the mapping resource won't be used any longer.
5735 * The best example of this is during exit().
5736 */
5737 addr = (caddr_t)roundup((uintptr_t)addr + 1,
5738 get_hblk_span(hmeblkp));
5739 if ((flags & HAT_UNLOAD_UNMAP) ||
5740 (iskernel && !issegkmap)) {
5741 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5742 &list, 0);
5743 }
5744 SFMMU_HASH_UNLOCK(hmebp);
5745
5746 if (iskernel) {
5747 hashno = TTE64K;
5748 continue;
5749 }
5750 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5751 ASSERT(hashno == TTE64K);
5752 continue;
5753 }
5754 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5755 hashno = TTE512K;
5756 continue;
5757 }
5758 if (mmu_page_sizes == max_mmu_page_sizes) {
5759 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5760 hashno = TTE4M;
5761 continue;
5762 }
5763 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5764 hashno = TTE32M;
5765 continue;
5766 }
5767 hashno = TTE256M;
5768 continue;
5769 } else {
5770 hashno = TTE4M;
5771 continue;
5772 }
5773 }
5774 if (hmeblkp->hblk_shw_bit) {
5775 /*
5776 * If we encounter a shadow hmeblk we know there is
5777 * smaller sized hmeblks mapping the same address space.
5778 * Decrement the hash size and rehash.
5779 */
5780 ASSERT(sfmmup != KHATID);
5781 hashno--;
5782 SFMMU_HASH_UNLOCK(hmebp);
5783 continue;
5784 }
5785
5786 /*
5787 * track callback address ranges.
5788 * only start a new range when it's not contiguous
5789 */
5790 if (callback != NULL) {
5791 if (addr_count > 0 &&
5792 addr == cb_end_addr[addr_count - 1])
5793 --addr_count;
5794 else
5795 cb_start_addr[addr_count] = addr;
5796 }
5797
5798 addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5799 dmrp, flags);
5800
5801 if (callback != NULL)
5802 cb_end_addr[addr_count++] = addr;
5803
5804 if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5805 !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5806 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 0);
5807 }
5808 SFMMU_HASH_UNLOCK(hmebp);
5809
5810 /*
5811 * Notify our caller as to exactly which pages
5812 * have been unloaded. We do these in clumps,
5813 * to minimize the number of xt_sync()s that need to occur.
5814 */
5815 if (callback != NULL && addr_count == MAX_CB_ADDR) {
5816 if (dmrp != NULL) {
5817 DEMAP_RANGE_FLUSH(dmrp);
5818 cpuset = sfmmup->sfmmu_cpusran;
5819 xt_sync(cpuset);
5820 }
5821
5822 for (a = 0; a < MAX_CB_ADDR; ++a) {
5823 callback->hcb_start_addr = cb_start_addr[a];
5824 callback->hcb_end_addr = cb_end_addr[a];
5825 callback->hcb_function(callback);
5826 }
5827 addr_count = 0;
5828 }
5829 if (iskernel) {
5830 hashno = TTE64K;
5831 continue;
5832 }
5833 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5834 ASSERT(hashno == TTE64K);
5835 continue;
5836 }
5837 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5838 hashno = TTE512K;
5839 continue;
5840 }
5841 if (mmu_page_sizes == max_mmu_page_sizes) {
5842 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5843 hashno = TTE4M;
5844 continue;
5845 }
5846 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5847 hashno = TTE32M;
5848 continue;
5849 }
5850 hashno = TTE256M;
5851 } else {
5852 hashno = TTE4M;
5853 }
5854 }
5855
5856 sfmmu_hblks_list_purge(&list, 0);
5857 if (dmrp != NULL) {
5858 DEMAP_RANGE_FLUSH(dmrp);
5859 cpuset = sfmmup->sfmmu_cpusran;
5860 xt_sync(cpuset);
5861 }
5862 if (callback && addr_count != 0) {
5863 for (a = 0; a < addr_count; ++a) {
5864 callback->hcb_start_addr = cb_start_addr[a];
5865 callback->hcb_end_addr = cb_end_addr[a];
5866 callback->hcb_function(callback);
5867 }
5868 }
5869
5870 /*
5871 * Check TSB and TLB page sizes if the process isn't exiting.
5872 */
5873 if (!sfmmup->sfmmu_free)
5874 sfmmu_check_page_sizes(sfmmup, 0);
5875 }
5876
5877 /*
5878 * Unload all the mappings in the range [addr..addr+len). addr and len must
5879 * be MMU_PAGESIZE aligned.
5880 */
5881 void
hat_unload(struct hat * sfmmup,caddr_t addr,size_t len,uint_t flags)5882 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5883 {
5884 hat_unload_callback(sfmmup, addr, len, flags, NULL);
5885 }
5886
5887
5888 /*
5889 * Find the largest mapping size for this page.
5890 */
5891 int
fnd_mapping_sz(page_t * pp)5892 fnd_mapping_sz(page_t *pp)
5893 {
5894 int sz;
5895 int p_index;
5896
5897 p_index = PP_MAPINDEX(pp);
5898
5899 sz = 0;
5900 p_index >>= 1; /* don't care about 8K bit */
5901 for (; p_index; p_index >>= 1) {
5902 sz++;
5903 }
5904
5905 return (sz);
5906 }
5907
5908 /*
5909 * This function unloads a range of addresses for an hmeblk.
5910 * It returns the next address to be unloaded.
5911 * It should be called with the hash lock held.
5912 */
5913 static caddr_t
sfmmu_hblk_unload(struct hat * sfmmup,struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr,demap_range_t * dmrp,uint_t flags)5914 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5915 caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5916 {
5917 tte_t tte, ttemod;
5918 struct sf_hment *sfhmep;
5919 int ttesz;
5920 long ttecnt;
5921 page_t *pp;
5922 kmutex_t *pml;
5923 int ret;
5924 int use_demap_range;
5925
5926 ASSERT(in_hblk_range(hmeblkp, addr));
5927 ASSERT(!hmeblkp->hblk_shw_bit);
5928 ASSERT(sfmmup != NULL || hmeblkp->hblk_shared);
5929 ASSERT(sfmmup == NULL || !hmeblkp->hblk_shared);
5930 ASSERT(dmrp == NULL || !hmeblkp->hblk_shared);
5931
5932 #ifdef DEBUG
5933 if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5934 (endaddr < get_hblk_endaddr(hmeblkp))) {
5935 panic("sfmmu_hblk_unload: partial unload of large page");
5936 }
5937 #endif /* DEBUG */
5938
5939 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5940 ttesz = get_hblk_ttesz(hmeblkp);
5941
5942 use_demap_range = ((dmrp == NULL) ||
5943 (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5944
5945 if (use_demap_range) {
5946 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5947 } else if (dmrp != NULL) {
5948 DEMAP_RANGE_FLUSH(dmrp);
5949 }
5950 ttecnt = 0;
5951 HBLKTOHME(sfhmep, hmeblkp, addr);
5952
5953 while (addr < endaddr) {
5954 pml = NULL;
5955 sfmmu_copytte(&sfhmep->hme_tte, &tte);
5956 if (TTE_IS_VALID(&tte)) {
5957 pp = sfhmep->hme_page;
5958 if (pp != NULL) {
5959 pml = sfmmu_mlist_enter(pp);
5960 }
5961
5962 /*
5963 * Verify if hme still points to 'pp' now that
5964 * we have p_mapping lock.
5965 */
5966 if (sfhmep->hme_page != pp) {
5967 if (pp != NULL && sfhmep->hme_page != NULL) {
5968 ASSERT(pml != NULL);
5969 sfmmu_mlist_exit(pml);
5970 /* Re-start this iteration. */
5971 continue;
5972 }
5973 ASSERT((pp != NULL) &&
5974 (sfhmep->hme_page == NULL));
5975 goto tte_unloaded;
5976 }
5977
5978 /*
5979 * This point on we have both HASH and p_mapping
5980 * lock.
5981 */
5982 ASSERT(pp == sfhmep->hme_page);
5983 ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5984
5985 /*
5986 * We need to loop on modify tte because it is
5987 * possible for pagesync to come along and
5988 * change the software bits beneath us.
5989 *
5990 * Page_unload can also invalidate the tte after
5991 * we read tte outside of p_mapping lock.
5992 */
5993 again:
5994 ttemod = tte;
5995
5996 TTE_SET_INVALID(&ttemod);
5997 ret = sfmmu_modifytte_try(&tte, &ttemod,
5998 &sfhmep->hme_tte);
5999
6000 if (ret <= 0) {
6001 if (TTE_IS_VALID(&tte)) {
6002 ASSERT(ret < 0);
6003 goto again;
6004 }
6005 if (pp != NULL) {
6006 panic("sfmmu_hblk_unload: pp = 0x%p "
6007 "tte became invalid under mlist"
6008 " lock = 0x%p", (void *)pp,
6009 (void *)pml);
6010 }
6011 continue;
6012 }
6013
6014 if (!(flags & HAT_UNLOAD_NOSYNC)) {
6015 sfmmu_ttesync(sfmmup, addr, &tte, pp);
6016 }
6017
6018 /*
6019 * Ok- we invalidated the tte. Do the rest of the job.
6020 */
6021 ttecnt++;
6022
6023 if (flags & HAT_UNLOAD_UNLOCK) {
6024 ASSERT(hmeblkp->hblk_lckcnt > 0);
6025 atomic_dec_32(&hmeblkp->hblk_lckcnt);
6026 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
6027 }
6028
6029 /*
6030 * Normally we would need to flush the page
6031 * from the virtual cache at this point in
6032 * order to prevent a potential cache alias
6033 * inconsistency.
6034 * The particular scenario we need to worry
6035 * about is:
6036 * Given: va1 and va2 are two virtual address
6037 * that alias and map the same physical
6038 * address.
6039 * 1. mapping exists from va1 to pa and data
6040 * has been read into the cache.
6041 * 2. unload va1.
6042 * 3. load va2 and modify data using va2.
6043 * 4 unload va2.
6044 * 5. load va1 and reference data. Unless we
6045 * flush the data cache when we unload we will
6046 * get stale data.
6047 * Fortunately, page coloring eliminates the
6048 * above scenario by remembering the color a
6049 * physical page was last or is currently
6050 * mapped to. Now, we delay the flush until
6051 * the loading of translations. Only when the
6052 * new translation is of a different color
6053 * are we forced to flush.
6054 */
6055 if (use_demap_range) {
6056 /*
6057 * Mark this page as needing a demap.
6058 */
6059 DEMAP_RANGE_MARKPG(dmrp, addr);
6060 } else {
6061 ASSERT(sfmmup != NULL);
6062 ASSERT(!hmeblkp->hblk_shared);
6063 sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
6064 sfmmup->sfmmu_free, 0);
6065 }
6066
6067 if (pp) {
6068 /*
6069 * Remove the hment from the mapping list
6070 */
6071 ASSERT(hmeblkp->hblk_hmecnt > 0);
6072
6073 /*
6074 * Again, we cannot
6075 * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
6076 */
6077 HME_SUB(sfhmep, pp);
6078 membar_stst();
6079 atomic_dec_16(&hmeblkp->hblk_hmecnt);
6080 }
6081
6082 ASSERT(hmeblkp->hblk_vcnt > 0);
6083 atomic_dec_16(&hmeblkp->hblk_vcnt);
6084
6085 ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6086 !hmeblkp->hblk_lckcnt);
6087
6088 #ifdef VAC
6089 if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
6090 if (PP_ISTNC(pp)) {
6091 /*
6092 * If page was temporary
6093 * uncached, try to recache
6094 * it. Note that HME_SUB() was
6095 * called above so p_index and
6096 * mlist had been updated.
6097 */
6098 conv_tnc(pp, ttesz);
6099 } else if (pp->p_mapping == NULL) {
6100 ASSERT(kpm_enable);
6101 /*
6102 * Page is marked to be in VAC conflict
6103 * to an existing kpm mapping and/or is
6104 * kpm mapped using only the regular
6105 * pagesize.
6106 */
6107 sfmmu_kpm_hme_unload(pp);
6108 }
6109 }
6110 #endif /* VAC */
6111 } else if ((pp = sfhmep->hme_page) != NULL) {
6112 /*
6113 * TTE is invalid but the hme
6114 * still exists. let pageunload
6115 * complete its job.
6116 */
6117 ASSERT(pml == NULL);
6118 pml = sfmmu_mlist_enter(pp);
6119 if (sfhmep->hme_page != NULL) {
6120 sfmmu_mlist_exit(pml);
6121 continue;
6122 }
6123 ASSERT(sfhmep->hme_page == NULL);
6124 } else if (hmeblkp->hblk_hmecnt != 0) {
6125 /*
6126 * pageunload may have not finished decrementing
6127 * hblk_vcnt and hblk_hmecnt. Find page_t if any and
6128 * wait for pageunload to finish. Rely on pageunload
6129 * to decrement hblk_hmecnt after hblk_vcnt.
6130 */
6131 pfn_t pfn = TTE_TO_TTEPFN(&tte);
6132 ASSERT(pml == NULL);
6133 if (pf_is_memory(pfn)) {
6134 pp = page_numtopp_nolock(pfn);
6135 if (pp != NULL) {
6136 pml = sfmmu_mlist_enter(pp);
6137 sfmmu_mlist_exit(pml);
6138 pml = NULL;
6139 }
6140 }
6141 }
6142
6143 tte_unloaded:
6144 /*
6145 * At this point, the tte we are looking at
6146 * should be unloaded, and hme has been unlinked
6147 * from page too. This is important because in
6148 * pageunload, it does ttesync() then HME_SUB.
6149 * We need to make sure HME_SUB has been completed
6150 * so we know ttesync() has been completed. Otherwise,
6151 * at exit time, after return from hat layer, VM will
6152 * release as structure which hat_setstat() (called
6153 * by ttesync()) needs.
6154 */
6155 #ifdef DEBUG
6156 {
6157 tte_t dtte;
6158
6159 ASSERT(sfhmep->hme_page == NULL);
6160
6161 sfmmu_copytte(&sfhmep->hme_tte, &dtte);
6162 ASSERT(!TTE_IS_VALID(&dtte));
6163 }
6164 #endif
6165
6166 if (pml) {
6167 sfmmu_mlist_exit(pml);
6168 }
6169
6170 addr += TTEBYTES(ttesz);
6171 sfhmep++;
6172 DEMAP_RANGE_NEXTPG(dmrp);
6173 }
6174 /*
6175 * For shared hmeblks this routine is only called when region is freed
6176 * and no longer referenced. So no need to decrement ttecnt
6177 * in the region structure here.
6178 */
6179 if (ttecnt > 0 && sfmmup != NULL) {
6180 atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
6181 }
6182 return (addr);
6183 }
6184
6185 /*
6186 * Invalidate a virtual address range for the local CPU.
6187 * For best performance ensure that the va range is completely
6188 * mapped, otherwise the entire TLB will be flushed.
6189 */
6190 void
hat_flush_range(struct hat * sfmmup,caddr_t va,size_t size)6191 hat_flush_range(struct hat *sfmmup, caddr_t va, size_t size)
6192 {
6193 ssize_t sz;
6194 caddr_t endva = va + size;
6195
6196 while (va < endva) {
6197 sz = hat_getpagesize(sfmmup, va);
6198 if (sz < 0) {
6199 vtag_flushall();
6200 break;
6201 }
6202 vtag_flushpage(va, (uint64_t)sfmmup);
6203 va += sz;
6204 }
6205 }
6206
6207 /*
6208 * Synchronize all the mappings in the range [addr..addr+len).
6209 * Can be called with clearflag having two states:
6210 * HAT_SYNC_DONTZERO means just return the rm stats
6211 * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
6212 */
6213 void
hat_sync(struct hat * sfmmup,caddr_t addr,size_t len,uint_t clearflag)6214 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
6215 {
6216 struct hmehash_bucket *hmebp;
6217 hmeblk_tag hblktag;
6218 int hmeshift, hashno = 1;
6219 struct hme_blk *hmeblkp, *list = NULL;
6220 caddr_t endaddr;
6221 cpuset_t cpuset;
6222
6223 ASSERT((sfmmup == ksfmmup) || AS_LOCK_HELD(sfmmup->sfmmu_as));
6224 ASSERT((len & MMU_PAGEOFFSET) == 0);
6225 ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6226 (clearflag == HAT_SYNC_ZERORM));
6227
6228 CPUSET_ZERO(cpuset);
6229
6230 endaddr = addr + len;
6231 hblktag.htag_id = sfmmup;
6232 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
6233
6234 /*
6235 * Spitfire supports 4 page sizes.
6236 * Most pages are expected to be of the smallest page
6237 * size (8K) and these will not need to be rehashed. 64K
6238 * pages also don't need to be rehashed because the an hmeblk
6239 * spans 64K of address space. 512K pages might need 1 rehash and
6240 * and 4M pages 2 rehashes.
6241 */
6242 while (addr < endaddr) {
6243 hmeshift = HME_HASH_SHIFT(hashno);
6244 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
6245 hblktag.htag_rehash = hashno;
6246 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
6247
6248 SFMMU_HASH_LOCK(hmebp);
6249
6250 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
6251 if (hmeblkp != NULL) {
6252 ASSERT(!hmeblkp->hblk_shared);
6253 /*
6254 * We've encountered a shadow hmeblk so skip the range
6255 * of the next smaller mapping size.
6256 */
6257 if (hmeblkp->hblk_shw_bit) {
6258 ASSERT(sfmmup != ksfmmup);
6259 ASSERT(hashno > 1);
6260 addr = (caddr_t)P2END((uintptr_t)addr,
6261 TTEBYTES(hashno - 1));
6262 } else {
6263 addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
6264 addr, endaddr, clearflag);
6265 }
6266 SFMMU_HASH_UNLOCK(hmebp);
6267 hashno = 1;
6268 continue;
6269 }
6270 SFMMU_HASH_UNLOCK(hmebp);
6271
6272 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
6273 /*
6274 * We have traversed the whole list and rehashed
6275 * if necessary without finding the address to sync.
6276 * This is ok so we increment the address by the
6277 * smallest hmeblk range for kernel mappings and the
6278 * largest hmeblk range, to account for shadow hmeblks,
6279 * for user mappings and continue.
6280 */
6281 if (sfmmup == ksfmmup)
6282 addr = (caddr_t)P2END((uintptr_t)addr,
6283 TTEBYTES(1));
6284 else
6285 addr = (caddr_t)P2END((uintptr_t)addr,
6286 TTEBYTES(hashno));
6287 hashno = 1;
6288 } else {
6289 hashno++;
6290 }
6291 }
6292 sfmmu_hblks_list_purge(&list, 0);
6293 cpuset = sfmmup->sfmmu_cpusran;
6294 xt_sync(cpuset);
6295 }
6296
6297 static caddr_t
sfmmu_hblk_sync(struct hat * sfmmup,struct hme_blk * hmeblkp,caddr_t addr,caddr_t endaddr,int clearflag)6298 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
6299 caddr_t endaddr, int clearflag)
6300 {
6301 tte_t tte, ttemod;
6302 struct sf_hment *sfhmep;
6303 int ttesz;
6304 struct page *pp;
6305 kmutex_t *pml;
6306 int ret;
6307
6308 ASSERT(hmeblkp->hblk_shw_bit == 0);
6309 ASSERT(!hmeblkp->hblk_shared);
6310
6311 endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6312
6313 ttesz = get_hblk_ttesz(hmeblkp);
6314 HBLKTOHME(sfhmep, hmeblkp, addr);
6315
6316 while (addr < endaddr) {
6317 sfmmu_copytte(&sfhmep->hme_tte, &tte);
6318 if (TTE_IS_VALID(&tte)) {
6319 pml = NULL;
6320 pp = sfhmep->hme_page;
6321 if (pp) {
6322 pml = sfmmu_mlist_enter(pp);
6323 }
6324 if (pp != sfhmep->hme_page) {
6325 /*
6326 * tte most have been unloaded
6327 * underneath us. Recheck
6328 */
6329 ASSERT(pml);
6330 sfmmu_mlist_exit(pml);
6331 continue;
6332 }
6333
6334 ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6335
6336 if (clearflag == HAT_SYNC_ZERORM) {
6337 ttemod = tte;
6338 TTE_CLR_RM(&ttemod);
6339 ret = sfmmu_modifytte_try(&tte, &ttemod,
6340 &sfhmep->hme_tte);
6341 if (ret < 0) {
6342 if (pml) {
6343 sfmmu_mlist_exit(pml);
6344 }
6345 continue;
6346 }
6347
6348 if (ret > 0) {
6349 sfmmu_tlb_demap(addr, sfmmup,
6350 hmeblkp, 0, 0);
6351 }
6352 }
6353 sfmmu_ttesync(sfmmup, addr, &tte, pp);
6354 if (pml) {
6355 sfmmu_mlist_exit(pml);
6356 }
6357 }
6358 addr += TTEBYTES(ttesz);
6359 sfhmep++;
6360 }
6361 return (addr);
6362 }
6363
6364 /*
6365 * This function will sync a tte to the page struct and it will
6366 * update the hat stats. Currently it allows us to pass a NULL pp
6367 * and we will simply update the stats. We may want to change this
6368 * so we only keep stats for pages backed by pp's.
6369 */
6370 static void
sfmmu_ttesync(struct hat * sfmmup,caddr_t addr,tte_t * ttep,page_t * pp)6371 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
6372 {
6373 uint_t rm = 0;
6374 int sz;
6375 pgcnt_t npgs;
6376
6377 ASSERT(TTE_IS_VALID(ttep));
6378
6379 if (TTE_IS_NOSYNC(ttep)) {
6380 return;
6381 }
6382
6383 if (TTE_IS_REF(ttep)) {
6384 rm = P_REF;
6385 }
6386 if (TTE_IS_MOD(ttep)) {
6387 rm |= P_MOD;
6388 }
6389
6390 if (rm == 0) {
6391 return;
6392 }
6393
6394 sz = TTE_CSZ(ttep);
6395 if (sfmmup != NULL && sfmmup->sfmmu_rmstat) {
6396 int i;
6397 caddr_t vaddr = addr;
6398
6399 for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
6400 hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
6401 }
6402
6403 }
6404
6405 /*
6406 * XXX I want to use cas to update nrm bits but they
6407 * currently belong in common/vm and not in hat where
6408 * they should be.
6409 * The nrm bits are protected by the same mutex as
6410 * the one that protects the page's mapping list.
6411 */
6412 if (!pp)
6413 return;
6414 ASSERT(sfmmu_mlist_held(pp));
6415 /*
6416 * If the tte is for a large page, we need to sync all the
6417 * pages covered by the tte.
6418 */
6419 if (sz != TTE8K) {
6420 ASSERT(pp->p_szc != 0);
6421 pp = PP_GROUPLEADER(pp, sz);
6422 ASSERT(sfmmu_mlist_held(pp));
6423 }
6424
6425 /* Get number of pages from tte size. */
6426 npgs = TTEPAGES(sz);
6427
6428 do {
6429 ASSERT(pp);
6430 ASSERT(sfmmu_mlist_held(pp));
6431 if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
6432 ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
6433 hat_page_setattr(pp, rm);
6434
6435 /*
6436 * Are we done? If not, we must have a large mapping.
6437 * For large mappings we need to sync the rest of the pages
6438 * covered by this tte; goto the next page.
6439 */
6440 } while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
6441 }
6442
6443 /*
6444 * Execute pre-callback handler of each pa_hment linked to pp
6445 *
6446 * Inputs:
6447 * flag: either HAT_PRESUSPEND or HAT_SUSPEND.
6448 * capture_cpus: pointer to return value (below)
6449 *
6450 * Returns:
6451 * Propagates the subsystem callback return values back to the caller;
6452 * returns 0 on success. If capture_cpus is non-NULL, the value returned
6453 * is zero if all of the pa_hments are of a type that do not require
6454 * capturing CPUs prior to suspending the mapping, else it is 1.
6455 */
6456 static int
hat_pageprocess_precallbacks(struct page * pp,uint_t flag,int * capture_cpus)6457 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
6458 {
6459 struct sf_hment *sfhmep;
6460 struct pa_hment *pahmep;
6461 int (*f)(caddr_t, uint_t, uint_t, void *);
6462 int ret;
6463 id_t id;
6464 int locked = 0;
6465 kmutex_t *pml;
6466
6467 ASSERT(PAGE_EXCL(pp));
6468 if (!sfmmu_mlist_held(pp)) {
6469 pml = sfmmu_mlist_enter(pp);
6470 locked = 1;
6471 }
6472
6473 if (capture_cpus)
6474 *capture_cpus = 0;
6475
6476 top:
6477 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6478 /*
6479 * skip sf_hments corresponding to VA<->PA mappings;
6480 * for pa_hment's, hme_tte.ll is zero
6481 */
6482 if (!IS_PAHME(sfhmep))
6483 continue;
6484
6485 pahmep = sfhmep->hme_data;
6486 ASSERT(pahmep != NULL);
6487
6488 /*
6489 * skip if pre-handler has been called earlier in this loop
6490 */
6491 if (pahmep->flags & flag)
6492 continue;
6493
6494 id = pahmep->cb_id;
6495 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6496 if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
6497 *capture_cpus = 1;
6498 if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
6499 pahmep->flags |= flag;
6500 continue;
6501 }
6502
6503 /*
6504 * Drop the mapping list lock to avoid locking order issues.
6505 */
6506 if (locked)
6507 sfmmu_mlist_exit(pml);
6508
6509 ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
6510 if (ret != 0)
6511 return (ret); /* caller must do the cleanup */
6512
6513 if (locked) {
6514 pml = sfmmu_mlist_enter(pp);
6515 pahmep->flags |= flag;
6516 goto top;
6517 }
6518
6519 pahmep->flags |= flag;
6520 }
6521
6522 if (locked)
6523 sfmmu_mlist_exit(pml);
6524
6525 return (0);
6526 }
6527
6528 /*
6529 * Execute post-callback handler of each pa_hment linked to pp
6530 *
6531 * Same overall assumptions and restrictions apply as for
6532 * hat_pageprocess_precallbacks().
6533 */
6534 static void
hat_pageprocess_postcallbacks(struct page * pp,uint_t flag)6535 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
6536 {
6537 pfn_t pgpfn = pp->p_pagenum;
6538 pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
6539 pfn_t newpfn;
6540 struct sf_hment *sfhmep;
6541 struct pa_hment *pahmep;
6542 int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
6543 id_t id;
6544 int locked = 0;
6545 kmutex_t *pml;
6546
6547 ASSERT(PAGE_EXCL(pp));
6548 if (!sfmmu_mlist_held(pp)) {
6549 pml = sfmmu_mlist_enter(pp);
6550 locked = 1;
6551 }
6552
6553 top:
6554 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6555 /*
6556 * skip sf_hments corresponding to VA<->PA mappings;
6557 * for pa_hment's, hme_tte.ll is zero
6558 */
6559 if (!IS_PAHME(sfhmep))
6560 continue;
6561
6562 pahmep = sfhmep->hme_data;
6563 ASSERT(pahmep != NULL);
6564
6565 if ((pahmep->flags & flag) == 0)
6566 continue;
6567
6568 pahmep->flags &= ~flag;
6569
6570 id = pahmep->cb_id;
6571 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6572 if ((f = sfmmu_cb_table[id].posthandler) == NULL)
6573 continue;
6574
6575 /*
6576 * Convert the base page PFN into the constituent PFN
6577 * which is needed by the callback handler.
6578 */
6579 newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
6580
6581 /*
6582 * Drop the mapping list lock to avoid locking order issues.
6583 */
6584 if (locked)
6585 sfmmu_mlist_exit(pml);
6586
6587 if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
6588 != 0)
6589 panic("sfmmu: posthandler failed");
6590
6591 if (locked) {
6592 pml = sfmmu_mlist_enter(pp);
6593 goto top;
6594 }
6595 }
6596
6597 if (locked)
6598 sfmmu_mlist_exit(pml);
6599 }
6600
6601 /*
6602 * Suspend locked kernel mapping
6603 */
6604 void
hat_pagesuspend(struct page * pp)6605 hat_pagesuspend(struct page *pp)
6606 {
6607 struct sf_hment *sfhmep;
6608 sfmmu_t *sfmmup;
6609 tte_t tte, ttemod;
6610 struct hme_blk *hmeblkp;
6611 caddr_t addr;
6612 int index, cons;
6613 cpuset_t cpuset;
6614
6615 ASSERT(PAGE_EXCL(pp));
6616 ASSERT(sfmmu_mlist_held(pp));
6617
6618 mutex_enter(&kpr_suspendlock);
6619
6620 /*
6621 * We're about to suspend a kernel mapping so mark this thread as
6622 * non-traceable by DTrace. This prevents us from running into issues
6623 * with probe context trying to touch a suspended page
6624 * in the relocation codepath itself.
6625 */
6626 curthread->t_flag |= T_DONTDTRACE;
6627
6628 index = PP_MAPINDEX(pp);
6629 cons = TTE8K;
6630
6631 retry:
6632 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6633
6634 if (IS_PAHME(sfhmep))
6635 continue;
6636
6637 if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6638 continue;
6639
6640 /*
6641 * Loop until we successfully set the suspend bit in
6642 * the TTE.
6643 */
6644 again:
6645 sfmmu_copytte(&sfhmep->hme_tte, &tte);
6646 ASSERT(TTE_IS_VALID(&tte));
6647
6648 ttemod = tte;
6649 TTE_SET_SUSPEND(&ttemod);
6650 if (sfmmu_modifytte_try(&tte, &ttemod,
6651 &sfhmep->hme_tte) < 0)
6652 goto again;
6653
6654 /*
6655 * Invalidate TSB entry
6656 */
6657 hmeblkp = sfmmu_hmetohblk(sfhmep);
6658
6659 sfmmup = hblktosfmmu(hmeblkp);
6660 ASSERT(sfmmup == ksfmmup);
6661 ASSERT(!hmeblkp->hblk_shared);
6662
6663 addr = tte_to_vaddr(hmeblkp, tte);
6664
6665 /*
6666 * No need to make sure that the TSB for this sfmmu is
6667 * not being relocated since it is ksfmmup and thus it
6668 * will never be relocated.
6669 */
6670 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
6671
6672 /*
6673 * Update xcall stats
6674 */
6675 cpuset = cpu_ready_set;
6676 CPUSET_DEL(cpuset, CPU->cpu_id);
6677
6678 /* LINTED: constant in conditional context */
6679 SFMMU_XCALL_STATS(ksfmmup);
6680
6681 /*
6682 * Flush TLB entry on remote CPU's
6683 */
6684 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6685 (uint64_t)ksfmmup);
6686 xt_sync(cpuset);
6687
6688 /*
6689 * Flush TLB entry on local CPU
6690 */
6691 vtag_flushpage(addr, (uint64_t)ksfmmup);
6692 }
6693
6694 while (index != 0) {
6695 index = index >> 1;
6696 if (index != 0)
6697 cons++;
6698 if (index & 0x1) {
6699 pp = PP_GROUPLEADER(pp, cons);
6700 goto retry;
6701 }
6702 }
6703 }
6704
6705 #ifdef DEBUG
6706
6707 #define N_PRLE 1024
6708 struct prle {
6709 page_t *targ;
6710 page_t *repl;
6711 int status;
6712 int pausecpus;
6713 hrtime_t whence;
6714 };
6715
6716 static struct prle page_relocate_log[N_PRLE];
6717 static int prl_entry;
6718 static kmutex_t prl_mutex;
6719
6720 #define PAGE_RELOCATE_LOG(t, r, s, p) \
6721 mutex_enter(&prl_mutex); \
6722 page_relocate_log[prl_entry].targ = *(t); \
6723 page_relocate_log[prl_entry].repl = *(r); \
6724 page_relocate_log[prl_entry].status = (s); \
6725 page_relocate_log[prl_entry].pausecpus = (p); \
6726 page_relocate_log[prl_entry].whence = gethrtime(); \
6727 prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1; \
6728 mutex_exit(&prl_mutex);
6729
6730 #else /* !DEBUG */
6731 #define PAGE_RELOCATE_LOG(t, r, s, p)
6732 #endif
6733
6734 /*
6735 * Core Kernel Page Relocation Algorithm
6736 *
6737 * Input:
6738 *
6739 * target : constituent pages are SE_EXCL locked.
6740 * replacement: constituent pages are SE_EXCL locked.
6741 *
6742 * Output:
6743 *
6744 * nrelocp: number of pages relocated
6745 */
6746 int
hat_page_relocate(page_t ** target,page_t ** replacement,spgcnt_t * nrelocp)6747 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6748 {
6749 page_t *targ, *repl;
6750 page_t *tpp, *rpp;
6751 kmutex_t *low, *high;
6752 spgcnt_t npages, i;
6753 page_t *pl = NULL;
6754 int old_pil;
6755 cpuset_t cpuset;
6756 int cap_cpus;
6757 int ret;
6758 #ifdef VAC
6759 int cflags = 0;
6760 #endif
6761
6762 if (!kcage_on || PP_ISNORELOC(*target)) {
6763 PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6764 return (EAGAIN);
6765 }
6766
6767 mutex_enter(&kpr_mutex);
6768 kreloc_thread = curthread;
6769
6770 targ = *target;
6771 repl = *replacement;
6772 ASSERT(repl != NULL);
6773 ASSERT(targ->p_szc == repl->p_szc);
6774
6775 npages = page_get_pagecnt(targ->p_szc);
6776
6777 /*
6778 * unload VA<->PA mappings that are not locked
6779 */
6780 tpp = targ;
6781 for (i = 0; i < npages; i++) {
6782 (void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6783 tpp++;
6784 }
6785
6786 /*
6787 * Do "presuspend" callbacks, in a context from which we can still
6788 * block as needed. Note that we don't hold the mapping list lock
6789 * of "targ" at this point due to potential locking order issues;
6790 * we assume that between the hat_pageunload() above and holding
6791 * the SE_EXCL lock that the mapping list *cannot* change at this
6792 * point.
6793 */
6794 ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6795 if (ret != 0) {
6796 /*
6797 * EIO translates to fatal error, for all others cleanup
6798 * and return EAGAIN.
6799 */
6800 ASSERT(ret != EIO);
6801 hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6802 PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6803 kreloc_thread = NULL;
6804 mutex_exit(&kpr_mutex);
6805 return (EAGAIN);
6806 }
6807
6808 /*
6809 * acquire p_mapping list lock for both the target and replacement
6810 * root pages.
6811 *
6812 * low and high refer to the need to grab the mlist locks in a
6813 * specific order in order to prevent race conditions. Thus the
6814 * lower lock must be grabbed before the higher lock.
6815 *
6816 * This will block hat_unload's accessing p_mapping list. Since
6817 * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6818 * blocked. Thus, no one else will be accessing the p_mapping list
6819 * while we suspend and reload the locked mapping below.
6820 */
6821 tpp = targ;
6822 rpp = repl;
6823 sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6824
6825 kpreempt_disable();
6826
6827 /*
6828 * We raise our PIL to 13 so that we don't get captured by
6829 * another CPU or pinned by an interrupt thread. We can't go to
6830 * PIL 14 since the nexus driver(s) may need to interrupt at
6831 * that level in the case of IOMMU pseudo mappings.
6832 */
6833 cpuset = cpu_ready_set;
6834 CPUSET_DEL(cpuset, CPU->cpu_id);
6835 if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6836 old_pil = splr(XCALL_PIL);
6837 } else {
6838 old_pil = -1;
6839 xc_attention(cpuset);
6840 }
6841 ASSERT(getpil() == XCALL_PIL);
6842
6843 /*
6844 * Now do suspend callbacks. In the case of an IOMMU mapping
6845 * this will suspend all DMA activity to the page while it is
6846 * being relocated. Since we are well above LOCK_LEVEL and CPUs
6847 * may be captured at this point we should have acquired any needed
6848 * locks in the presuspend callback.
6849 */
6850 ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6851 if (ret != 0) {
6852 repl = targ;
6853 goto suspend_fail;
6854 }
6855
6856 /*
6857 * Raise the PIL yet again, this time to block all high-level
6858 * interrupts on this CPU. This is necessary to prevent an
6859 * interrupt routine from pinning the thread which holds the
6860 * mapping suspended and then touching the suspended page.
6861 *
6862 * Once the page is suspended we also need to be careful to
6863 * avoid calling any functions which touch any seg_kmem memory
6864 * since that memory may be backed by the very page we are
6865 * relocating in here!
6866 */
6867 hat_pagesuspend(targ);
6868
6869 /*
6870 * Now that we are confident everybody has stopped using this page,
6871 * copy the page contents. Note we use a physical copy to prevent
6872 * locking issues and to avoid fpRAS because we can't handle it in
6873 * this context.
6874 */
6875 for (i = 0; i < npages; i++, tpp++, rpp++) {
6876 #ifdef VAC
6877 /*
6878 * If the replacement has a different vcolor than
6879 * the one being replacd, we need to handle VAC
6880 * consistency for it just as we were setting up
6881 * a new mapping to it.
6882 */
6883 if ((PP_GET_VCOLOR(rpp) != NO_VCOLOR) &&
6884 (tpp->p_vcolor != rpp->p_vcolor) &&
6885 !CacheColor_IsFlushed(cflags, PP_GET_VCOLOR(rpp))) {
6886 CacheColor_SetFlushed(cflags, PP_GET_VCOLOR(rpp));
6887 sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6888 rpp->p_pagenum);
6889 }
6890 #endif
6891 /*
6892 * Copy the contents of the page.
6893 */
6894 ppcopy_kernel(tpp, rpp);
6895 }
6896
6897 tpp = targ;
6898 rpp = repl;
6899 for (i = 0; i < npages; i++, tpp++, rpp++) {
6900 /*
6901 * Copy attributes. VAC consistency was handled above,
6902 * if required.
6903 */
6904 rpp->p_nrm = tpp->p_nrm;
6905 tpp->p_nrm = 0;
6906 rpp->p_index = tpp->p_index;
6907 tpp->p_index = 0;
6908 #ifdef VAC
6909 rpp->p_vcolor = tpp->p_vcolor;
6910 #endif
6911 }
6912
6913 /*
6914 * First, unsuspend the page, if we set the suspend bit, and transfer
6915 * the mapping list from the target page to the replacement page.
6916 * Next process postcallbacks; since pa_hment's are linked only to the
6917 * p_mapping list of root page, we don't iterate over the constituent
6918 * pages.
6919 */
6920 hat_pagereload(targ, repl);
6921
6922 suspend_fail:
6923 hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6924
6925 /*
6926 * Now lower our PIL and release any captured CPUs since we
6927 * are out of the "danger zone". After this it will again be
6928 * safe to acquire adaptive mutex locks, or to drop them...
6929 */
6930 if (old_pil != -1) {
6931 splx(old_pil);
6932 } else {
6933 xc_dismissed(cpuset);
6934 }
6935
6936 kpreempt_enable();
6937
6938 sfmmu_mlist_reloc_exit(low, high);
6939
6940 /*
6941 * Postsuspend callbacks should drop any locks held across
6942 * the suspend callbacks. As before, we don't hold the mapping
6943 * list lock at this point.. our assumption is that the mapping
6944 * list still can't change due to our holding SE_EXCL lock and
6945 * there being no unlocked mappings left. Hence the restriction
6946 * on calling context to hat_delete_callback()
6947 */
6948 hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6949 if (ret != 0) {
6950 /*
6951 * The second presuspend call failed: we got here through
6952 * the suspend_fail label above.
6953 */
6954 ASSERT(ret != EIO);
6955 PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6956 kreloc_thread = NULL;
6957 mutex_exit(&kpr_mutex);
6958 return (EAGAIN);
6959 }
6960
6961 /*
6962 * Now that we're out of the performance critical section we can
6963 * take care of updating the hash table, since we still
6964 * hold all the pages locked SE_EXCL at this point we
6965 * needn't worry about things changing out from under us.
6966 */
6967 tpp = targ;
6968 rpp = repl;
6969 for (i = 0; i < npages; i++, tpp++, rpp++) {
6970
6971 /*
6972 * replace targ with replacement in page_hash table
6973 */
6974 targ = tpp;
6975 page_relocate_hash(rpp, targ);
6976
6977 /*
6978 * concatenate target; caller of platform_page_relocate()
6979 * expects target to be concatenated after returning.
6980 */
6981 ASSERT(targ->p_next == targ);
6982 ASSERT(targ->p_prev == targ);
6983 page_list_concat(&pl, &targ);
6984 }
6985
6986 ASSERT(*target == pl);
6987 *nrelocp = npages;
6988 PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6989 kreloc_thread = NULL;
6990 mutex_exit(&kpr_mutex);
6991 return (0);
6992 }
6993
6994 /*
6995 * Called when stray pa_hments are found attached to a page which is
6996 * being freed. Notify the subsystem which attached the pa_hment of
6997 * the error if it registered a suitable handler, else panic.
6998 */
6999 static void
sfmmu_pahment_leaked(struct pa_hment * pahmep)7000 sfmmu_pahment_leaked(struct pa_hment *pahmep)
7001 {
7002 id_t cb_id = pahmep->cb_id;
7003
7004 ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
7005 if (sfmmu_cb_table[cb_id].errhandler != NULL) {
7006 if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
7007 HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
7008 return; /* non-fatal */
7009 }
7010 panic("pa_hment leaked: 0x%p", (void *)pahmep);
7011 }
7012
7013 /*
7014 * Remove all mappings to page 'pp'.
7015 */
7016 int
hat_pageunload(struct page * pp,uint_t forceflag)7017 hat_pageunload(struct page *pp, uint_t forceflag)
7018 {
7019 struct page *origpp = pp;
7020 struct sf_hment *sfhme, *tmphme;
7021 struct hme_blk *hmeblkp;
7022 kmutex_t *pml;
7023 #ifdef VAC
7024 kmutex_t *pmtx;
7025 #endif
7026 cpuset_t cpuset, tset;
7027 int index, cons;
7028 int pa_hments;
7029
7030 ASSERT(PAGE_EXCL(pp));
7031
7032 tmphme = NULL;
7033 pa_hments = 0;
7034 CPUSET_ZERO(cpuset);
7035
7036 pml = sfmmu_mlist_enter(pp);
7037
7038 #ifdef VAC
7039 if (pp->p_kpmref)
7040 sfmmu_kpm_pageunload(pp);
7041 ASSERT(!PP_ISMAPPED_KPM(pp));
7042 #endif
7043 /*
7044 * Clear vpm reference. Since the page is exclusively locked
7045 * vpm cannot be referencing it.
7046 */
7047 if (vpm_enable) {
7048 pp->p_vpmref = 0;
7049 }
7050
7051 index = PP_MAPINDEX(pp);
7052 cons = TTE8K;
7053 retry:
7054 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7055 tmphme = sfhme->hme_next;
7056
7057 if (IS_PAHME(sfhme)) {
7058 ASSERT(sfhme->hme_data != NULL);
7059 pa_hments++;
7060 continue;
7061 }
7062
7063 hmeblkp = sfmmu_hmetohblk(sfhme);
7064
7065 /*
7066 * If there are kernel mappings don't unload them, they will
7067 * be suspended.
7068 */
7069 if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
7070 hmeblkp->hblk_tag.htag_id == ksfmmup)
7071 continue;
7072
7073 tset = sfmmu_pageunload(pp, sfhme, cons);
7074 CPUSET_OR(cpuset, tset);
7075 }
7076
7077 while (index != 0) {
7078 index = index >> 1;
7079 if (index != 0)
7080 cons++;
7081 if (index & 0x1) {
7082 /* Go to leading page */
7083 pp = PP_GROUPLEADER(pp, cons);
7084 ASSERT(sfmmu_mlist_held(pp));
7085 goto retry;
7086 }
7087 }
7088
7089 /*
7090 * cpuset may be empty if the page was only mapped by segkpm,
7091 * in which case we won't actually cross-trap.
7092 */
7093 xt_sync(cpuset);
7094
7095 /*
7096 * The page should have no mappings at this point, unless
7097 * we were called from hat_page_relocate() in which case we
7098 * leave the locked mappings which will be suspended later.
7099 */
7100 ASSERT(!PP_ISMAPPED(origpp) || pa_hments ||
7101 (forceflag == SFMMU_KERNEL_RELOC));
7102
7103 #ifdef VAC
7104 if (PP_ISTNC(pp)) {
7105 if (cons == TTE8K) {
7106 pmtx = sfmmu_page_enter(pp);
7107 PP_CLRTNC(pp);
7108 sfmmu_page_exit(pmtx);
7109 } else {
7110 conv_tnc(pp, cons);
7111 }
7112 }
7113 #endif /* VAC */
7114
7115 if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
7116 /*
7117 * Unlink any pa_hments and free them, calling back
7118 * the responsible subsystem to notify it of the error.
7119 * This can occur in situations such as drivers leaking
7120 * DMA handles: naughty, but common enough that we'd like
7121 * to keep the system running rather than bringing it
7122 * down with an obscure error like "pa_hment leaked"
7123 * which doesn't aid the user in debugging their driver.
7124 */
7125 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7126 tmphme = sfhme->hme_next;
7127 if (IS_PAHME(sfhme)) {
7128 struct pa_hment *pahmep = sfhme->hme_data;
7129 sfmmu_pahment_leaked(pahmep);
7130 HME_SUB(sfhme, pp);
7131 kmem_cache_free(pa_hment_cache, pahmep);
7132 }
7133 }
7134
7135 ASSERT(!PP_ISMAPPED(origpp));
7136 }
7137
7138 sfmmu_mlist_exit(pml);
7139
7140 return (0);
7141 }
7142
7143 cpuset_t
sfmmu_pageunload(page_t * pp,struct sf_hment * sfhme,int cons)7144 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
7145 {
7146 struct hme_blk *hmeblkp;
7147 sfmmu_t *sfmmup;
7148 tte_t tte, ttemod;
7149 #ifdef DEBUG
7150 tte_t orig_old;
7151 #endif /* DEBUG */
7152 caddr_t addr;
7153 int ttesz;
7154 int ret;
7155 cpuset_t cpuset;
7156
7157 ASSERT(pp != NULL);
7158 ASSERT(sfmmu_mlist_held(pp));
7159 ASSERT(!PP_ISKAS(pp));
7160
7161 CPUSET_ZERO(cpuset);
7162
7163 hmeblkp = sfmmu_hmetohblk(sfhme);
7164
7165 readtte:
7166 sfmmu_copytte(&sfhme->hme_tte, &tte);
7167 if (TTE_IS_VALID(&tte)) {
7168 sfmmup = hblktosfmmu(hmeblkp);
7169 ttesz = get_hblk_ttesz(hmeblkp);
7170 /*
7171 * Only unload mappings of 'cons' size.
7172 */
7173 if (ttesz != cons)
7174 return (cpuset);
7175
7176 /*
7177 * Note that we have p_mapping lock, but no hash lock here.
7178 * hblk_unload() has to have both hash lock AND p_mapping
7179 * lock before it tries to modify tte. So, the tte could
7180 * not become invalid in the sfmmu_modifytte_try() below.
7181 */
7182 ttemod = tte;
7183 #ifdef DEBUG
7184 orig_old = tte;
7185 #endif /* DEBUG */
7186
7187 TTE_SET_INVALID(&ttemod);
7188 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7189 if (ret < 0) {
7190 #ifdef DEBUG
7191 /* only R/M bits can change. */
7192 chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
7193 #endif /* DEBUG */
7194 goto readtte;
7195 }
7196
7197 if (ret == 0) {
7198 panic("pageunload: cas failed?");
7199 }
7200
7201 addr = tte_to_vaddr(hmeblkp, tte);
7202
7203 if (hmeblkp->hblk_shared) {
7204 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7205 uint_t rid = hmeblkp->hblk_tag.htag_rid;
7206 sf_region_t *rgnp;
7207 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7208 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7209 ASSERT(srdp != NULL);
7210 rgnp = srdp->srd_hmergnp[rid];
7211 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7212 cpuset = sfmmu_rgntlb_demap(addr, rgnp, hmeblkp, 1);
7213 sfmmu_ttesync(NULL, addr, &tte, pp);
7214 ASSERT(rgnp->rgn_ttecnt[ttesz] > 0);
7215 atomic_dec_ulong(&rgnp->rgn_ttecnt[ttesz]);
7216 } else {
7217 sfmmu_ttesync(sfmmup, addr, &tte, pp);
7218 atomic_dec_ulong(&sfmmup->sfmmu_ttecnt[ttesz]);
7219
7220 /*
7221 * We need to flush the page from the virtual cache
7222 * in order to prevent a virtual cache alias
7223 * inconsistency. The particular scenario we need
7224 * to worry about is:
7225 * Given: va1 and va2 are two virtual address that
7226 * alias and will map the same physical address.
7227 * 1. mapping exists from va1 to pa and data has
7228 * been read into the cache.
7229 * 2. unload va1.
7230 * 3. load va2 and modify data using va2.
7231 * 4 unload va2.
7232 * 5. load va1 and reference data. Unless we flush
7233 * the data cache when we unload we will get
7234 * stale data.
7235 * This scenario is taken care of by using virtual
7236 * page coloring.
7237 */
7238 if (sfmmup->sfmmu_ismhat) {
7239 /*
7240 * Flush TSBs, TLBs and caches
7241 * of every process
7242 * sharing this ism segment.
7243 */
7244 sfmmu_hat_lock_all();
7245 mutex_enter(&ism_mlist_lock);
7246 kpreempt_disable();
7247 sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
7248 pp->p_pagenum, CACHE_NO_FLUSH);
7249 kpreempt_enable();
7250 mutex_exit(&ism_mlist_lock);
7251 sfmmu_hat_unlock_all();
7252 cpuset = cpu_ready_set;
7253 } else {
7254 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7255 cpuset = sfmmup->sfmmu_cpusran;
7256 }
7257 }
7258
7259 /*
7260 * Hme_sub has to run after ttesync() and a_rss update.
7261 * See hblk_unload().
7262 */
7263 HME_SUB(sfhme, pp);
7264 membar_stst();
7265
7266 /*
7267 * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
7268 * since pteload may have done a HME_ADD() right after
7269 * we did the HME_SUB() above. Hmecnt is now maintained
7270 * by cas only. no lock guranteed its value. The only
7271 * gurantee we have is the hmecnt should not be less than
7272 * what it should be so the hblk will not be taken away.
7273 * It's also important that we decremented the hmecnt after
7274 * we are done with hmeblkp so that this hmeblk won't be
7275 * stolen.
7276 */
7277 ASSERT(hmeblkp->hblk_hmecnt > 0);
7278 ASSERT(hmeblkp->hblk_vcnt > 0);
7279 atomic_dec_16(&hmeblkp->hblk_vcnt);
7280 atomic_dec_16(&hmeblkp->hblk_hmecnt);
7281 /*
7282 * This is bug 4063182.
7283 * XXX: fixme
7284 * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
7285 * !hmeblkp->hblk_lckcnt);
7286 */
7287 } else {
7288 panic("invalid tte? pp %p &tte %p",
7289 (void *)pp, (void *)&tte);
7290 }
7291
7292 return (cpuset);
7293 }
7294
7295 /*
7296 * While relocating a kernel page, this function will move the mappings
7297 * from tpp to dpp and modify any associated data with these mappings.
7298 * It also unsuspends the suspended kernel mapping.
7299 */
7300 static void
hat_pagereload(struct page * tpp,struct page * dpp)7301 hat_pagereload(struct page *tpp, struct page *dpp)
7302 {
7303 struct sf_hment *sfhme;
7304 tte_t tte, ttemod;
7305 int index, cons;
7306
7307 ASSERT(getpil() == PIL_MAX);
7308 ASSERT(sfmmu_mlist_held(tpp));
7309 ASSERT(sfmmu_mlist_held(dpp));
7310
7311 index = PP_MAPINDEX(tpp);
7312 cons = TTE8K;
7313
7314 /* Update real mappings to the page */
7315 retry:
7316 for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
7317 if (IS_PAHME(sfhme))
7318 continue;
7319 sfmmu_copytte(&sfhme->hme_tte, &tte);
7320 ttemod = tte;
7321
7322 /*
7323 * replace old pfn with new pfn in TTE
7324 */
7325 PFN_TO_TTE(ttemod, dpp->p_pagenum);
7326
7327 /*
7328 * clear suspend bit
7329 */
7330 ASSERT(TTE_IS_SUSPEND(&ttemod));
7331 TTE_CLR_SUSPEND(&ttemod);
7332
7333 if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
7334 panic("hat_pagereload(): sfmmu_modifytte_try() failed");
7335
7336 /*
7337 * set hme_page point to new page
7338 */
7339 sfhme->hme_page = dpp;
7340 }
7341
7342 /*
7343 * move p_mapping list from old page to new page
7344 */
7345 dpp->p_mapping = tpp->p_mapping;
7346 tpp->p_mapping = NULL;
7347 dpp->p_share = tpp->p_share;
7348 tpp->p_share = 0;
7349
7350 while (index != 0) {
7351 index = index >> 1;
7352 if (index != 0)
7353 cons++;
7354 if (index & 0x1) {
7355 tpp = PP_GROUPLEADER(tpp, cons);
7356 dpp = PP_GROUPLEADER(dpp, cons);
7357 goto retry;
7358 }
7359 }
7360
7361 curthread->t_flag &= ~T_DONTDTRACE;
7362 mutex_exit(&kpr_suspendlock);
7363 }
7364
7365 uint_t
hat_pagesync(struct page * pp,uint_t clearflag)7366 hat_pagesync(struct page *pp, uint_t clearflag)
7367 {
7368 struct sf_hment *sfhme, *tmphme = NULL;
7369 struct hme_blk *hmeblkp;
7370 kmutex_t *pml;
7371 cpuset_t cpuset, tset;
7372 int index, cons;
7373 extern ulong_t po_share;
7374 page_t *save_pp = pp;
7375 int stop_on_sh = 0;
7376 uint_t shcnt;
7377
7378 CPUSET_ZERO(cpuset);
7379
7380 if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
7381 return (PP_GENERIC_ATTR(pp));
7382 }
7383
7384 if ((clearflag & HAT_SYNC_ZERORM) == 0) {
7385 if ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(pp)) {
7386 return (PP_GENERIC_ATTR(pp));
7387 }
7388 if ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(pp)) {
7389 return (PP_GENERIC_ATTR(pp));
7390 }
7391 if (clearflag & HAT_SYNC_STOPON_SHARED) {
7392 if (pp->p_share > po_share) {
7393 hat_page_setattr(pp, P_REF);
7394 return (PP_GENERIC_ATTR(pp));
7395 }
7396 stop_on_sh = 1;
7397 shcnt = 0;
7398 }
7399 }
7400
7401 clearflag &= ~HAT_SYNC_STOPON_SHARED;
7402 pml = sfmmu_mlist_enter(pp);
7403 index = PP_MAPINDEX(pp);
7404 cons = TTE8K;
7405 retry:
7406 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7407 /*
7408 * We need to save the next hment on the list since
7409 * it is possible for pagesync to remove an invalid hment
7410 * from the list.
7411 */
7412 tmphme = sfhme->hme_next;
7413 if (IS_PAHME(sfhme))
7414 continue;
7415 /*
7416 * If we are looking for large mappings and this hme doesn't
7417 * reach the range we are seeking, just ignore it.
7418 */
7419 hmeblkp = sfmmu_hmetohblk(sfhme);
7420
7421 if (hme_size(sfhme) < cons)
7422 continue;
7423
7424 if (stop_on_sh) {
7425 if (hmeblkp->hblk_shared) {
7426 sf_srd_t *srdp = hblktosrd(hmeblkp);
7427 uint_t rid = hmeblkp->hblk_tag.htag_rid;
7428 sf_region_t *rgnp;
7429 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7430 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7431 ASSERT(srdp != NULL);
7432 rgnp = srdp->srd_hmergnp[rid];
7433 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
7434 rgnp, rid);
7435 shcnt += rgnp->rgn_refcnt;
7436 } else {
7437 shcnt++;
7438 }
7439 if (shcnt > po_share) {
7440 /*
7441 * tell the pager to spare the page this time
7442 * around.
7443 */
7444 hat_page_setattr(save_pp, P_REF);
7445 index = 0;
7446 break;
7447 }
7448 }
7449 tset = sfmmu_pagesync(pp, sfhme,
7450 clearflag & ~HAT_SYNC_STOPON_RM);
7451 CPUSET_OR(cpuset, tset);
7452
7453 /*
7454 * If clearflag is HAT_SYNC_DONTZERO, break out as soon
7455 * as the "ref" or "mod" is set or share cnt exceeds po_share.
7456 */
7457 if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
7458 (((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
7459 ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)))) {
7460 index = 0;
7461 break;
7462 }
7463 }
7464
7465 while (index) {
7466 index = index >> 1;
7467 cons++;
7468 if (index & 0x1) {
7469 /* Go to leading page */
7470 pp = PP_GROUPLEADER(pp, cons);
7471 goto retry;
7472 }
7473 }
7474
7475 xt_sync(cpuset);
7476 sfmmu_mlist_exit(pml);
7477 return (PP_GENERIC_ATTR(save_pp));
7478 }
7479
7480 /*
7481 * Get all the hardware dependent attributes for a page struct
7482 */
7483 static cpuset_t
sfmmu_pagesync(struct page * pp,struct sf_hment * sfhme,uint_t clearflag)7484 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
7485 uint_t clearflag)
7486 {
7487 caddr_t addr;
7488 tte_t tte, ttemod;
7489 struct hme_blk *hmeblkp;
7490 int ret;
7491 sfmmu_t *sfmmup;
7492 cpuset_t cpuset;
7493
7494 ASSERT(pp != NULL);
7495 ASSERT(sfmmu_mlist_held(pp));
7496 ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
7497 (clearflag == HAT_SYNC_ZERORM));
7498
7499 SFMMU_STAT(sf_pagesync);
7500
7501 CPUSET_ZERO(cpuset);
7502
7503 sfmmu_pagesync_retry:
7504
7505 sfmmu_copytte(&sfhme->hme_tte, &tte);
7506 if (TTE_IS_VALID(&tte)) {
7507 hmeblkp = sfmmu_hmetohblk(sfhme);
7508 sfmmup = hblktosfmmu(hmeblkp);
7509 addr = tte_to_vaddr(hmeblkp, tte);
7510 if (clearflag == HAT_SYNC_ZERORM) {
7511 ttemod = tte;
7512 TTE_CLR_RM(&ttemod);
7513 ret = sfmmu_modifytte_try(&tte, &ttemod,
7514 &sfhme->hme_tte);
7515 if (ret < 0) {
7516 /*
7517 * cas failed and the new value is not what
7518 * we want.
7519 */
7520 goto sfmmu_pagesync_retry;
7521 }
7522
7523 if (ret > 0) {
7524 /* we win the cas */
7525 if (hmeblkp->hblk_shared) {
7526 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7527 uint_t rid =
7528 hmeblkp->hblk_tag.htag_rid;
7529 sf_region_t *rgnp;
7530 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7531 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7532 ASSERT(srdp != NULL);
7533 rgnp = srdp->srd_hmergnp[rid];
7534 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7535 srdp, rgnp, rid);
7536 cpuset = sfmmu_rgntlb_demap(addr,
7537 rgnp, hmeblkp, 1);
7538 } else {
7539 sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
7540 0, 0);
7541 cpuset = sfmmup->sfmmu_cpusran;
7542 }
7543 }
7544 }
7545 sfmmu_ttesync(hmeblkp->hblk_shared ? NULL : sfmmup, addr,
7546 &tte, pp);
7547 }
7548 return (cpuset);
7549 }
7550
7551 /*
7552 * Remove write permission from a mappings to a page, so that
7553 * we can detect the next modification of it. This requires modifying
7554 * the TTE then invalidating (demap) any TLB entry using that TTE.
7555 * This code is similar to sfmmu_pagesync().
7556 */
7557 static cpuset_t
sfmmu_pageclrwrt(struct page * pp,struct sf_hment * sfhme)7558 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
7559 {
7560 caddr_t addr;
7561 tte_t tte;
7562 tte_t ttemod;
7563 struct hme_blk *hmeblkp;
7564 int ret;
7565 sfmmu_t *sfmmup;
7566 cpuset_t cpuset;
7567
7568 ASSERT(pp != NULL);
7569 ASSERT(sfmmu_mlist_held(pp));
7570
7571 CPUSET_ZERO(cpuset);
7572 SFMMU_STAT(sf_clrwrt);
7573
7574 retry:
7575
7576 sfmmu_copytte(&sfhme->hme_tte, &tte);
7577 if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
7578 hmeblkp = sfmmu_hmetohblk(sfhme);
7579 sfmmup = hblktosfmmu(hmeblkp);
7580 addr = tte_to_vaddr(hmeblkp, tte);
7581
7582 ttemod = tte;
7583 TTE_CLR_WRT(&ttemod);
7584 TTE_CLR_MOD(&ttemod);
7585 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7586
7587 /*
7588 * if cas failed and the new value is not what
7589 * we want retry
7590 */
7591 if (ret < 0)
7592 goto retry;
7593
7594 /* we win the cas */
7595 if (ret > 0) {
7596 if (hmeblkp->hblk_shared) {
7597 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7598 uint_t rid = hmeblkp->hblk_tag.htag_rid;
7599 sf_region_t *rgnp;
7600 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7601 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7602 ASSERT(srdp != NULL);
7603 rgnp = srdp->srd_hmergnp[rid];
7604 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7605 srdp, rgnp, rid);
7606 cpuset = sfmmu_rgntlb_demap(addr,
7607 rgnp, hmeblkp, 1);
7608 } else {
7609 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7610 cpuset = sfmmup->sfmmu_cpusran;
7611 }
7612 }
7613 }
7614
7615 return (cpuset);
7616 }
7617
7618 /*
7619 * Walk all mappings of a page, removing write permission and clearing the
7620 * ref/mod bits. This code is similar to hat_pagesync()
7621 */
7622 static void
hat_page_clrwrt(page_t * pp)7623 hat_page_clrwrt(page_t *pp)
7624 {
7625 struct sf_hment *sfhme;
7626 struct sf_hment *tmphme = NULL;
7627 kmutex_t *pml;
7628 cpuset_t cpuset;
7629 cpuset_t tset;
7630 int index;
7631 int cons;
7632
7633 CPUSET_ZERO(cpuset);
7634
7635 pml = sfmmu_mlist_enter(pp);
7636 index = PP_MAPINDEX(pp);
7637 cons = TTE8K;
7638 retry:
7639 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7640 tmphme = sfhme->hme_next;
7641
7642 /*
7643 * If we are looking for large mappings and this hme doesn't
7644 * reach the range we are seeking, just ignore its.
7645 */
7646
7647 if (hme_size(sfhme) < cons)
7648 continue;
7649
7650 tset = sfmmu_pageclrwrt(pp, sfhme);
7651 CPUSET_OR(cpuset, tset);
7652 }
7653
7654 while (index) {
7655 index = index >> 1;
7656 cons++;
7657 if (index & 0x1) {
7658 /* Go to leading page */
7659 pp = PP_GROUPLEADER(pp, cons);
7660 goto retry;
7661 }
7662 }
7663
7664 xt_sync(cpuset);
7665 sfmmu_mlist_exit(pml);
7666 }
7667
7668 /*
7669 * Set the given REF/MOD/RO bits for the given page.
7670 * For a vnode with a sorted v_pages list, we need to change
7671 * the attributes and the v_pages list together under page_vnode_mutex.
7672 */
7673 void
hat_page_setattr(page_t * pp,uint_t flag)7674 hat_page_setattr(page_t *pp, uint_t flag)
7675 {
7676 vnode_t *vp = pp->p_vnode;
7677 page_t **listp;
7678 kmutex_t *pmtx;
7679 kmutex_t *vphm = NULL;
7680 int noshuffle;
7681
7682 noshuffle = flag & P_NSH;
7683 flag &= ~P_NSH;
7684
7685 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7686
7687 /*
7688 * nothing to do if attribute already set
7689 */
7690 if ((pp->p_nrm & flag) == flag)
7691 return;
7692
7693 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
7694 !noshuffle) {
7695 vphm = page_vnode_mutex(vp);
7696 mutex_enter(vphm);
7697 }
7698
7699 pmtx = sfmmu_page_enter(pp);
7700 pp->p_nrm |= flag;
7701 sfmmu_page_exit(pmtx);
7702
7703 if (vphm != NULL) {
7704 /*
7705 * Some File Systems examine v_pages for NULL w/o
7706 * grabbing the vphm mutex. Must not let it become NULL when
7707 * pp is the only page on the list.
7708 */
7709 if (pp->p_vpnext != pp) {
7710 page_vpsub(&vp->v_pages, pp);
7711 if (vp->v_pages != NULL)
7712 listp = &vp->v_pages->p_vpprev->p_vpnext;
7713 else
7714 listp = &vp->v_pages;
7715 page_vpadd(listp, pp);
7716 }
7717 mutex_exit(vphm);
7718 }
7719 }
7720
7721 void
hat_page_clrattr(page_t * pp,uint_t flag)7722 hat_page_clrattr(page_t *pp, uint_t flag)
7723 {
7724 vnode_t *vp = pp->p_vnode;
7725 kmutex_t *pmtx;
7726
7727 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7728
7729 pmtx = sfmmu_page_enter(pp);
7730
7731 /*
7732 * Caller is expected to hold page's io lock for VMODSORT to work
7733 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7734 * bit is cleared.
7735 * We don't have assert to avoid tripping some existing third party
7736 * code. The dirty page is moved back to top of the v_page list
7737 * after IO is done in pvn_write_done().
7738 */
7739 pp->p_nrm &= ~flag;
7740 sfmmu_page_exit(pmtx);
7741
7742 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7743
7744 /*
7745 * VMODSORT works by removing write permissions and getting
7746 * a fault when a page is made dirty. At this point
7747 * we need to remove write permission from all mappings
7748 * to this page.
7749 */
7750 hat_page_clrwrt(pp);
7751 }
7752 }
7753
7754 uint_t
hat_page_getattr(page_t * pp,uint_t flag)7755 hat_page_getattr(page_t *pp, uint_t flag)
7756 {
7757 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7758 return ((uint_t)(pp->p_nrm & flag));
7759 }
7760
7761 /*
7762 * DEBUG kernels: verify that a kernel va<->pa translation
7763 * is safe by checking the underlying page_t is in a page
7764 * relocation-safe state.
7765 */
7766 #ifdef DEBUG
7767 void
sfmmu_check_kpfn(pfn_t pfn)7768 sfmmu_check_kpfn(pfn_t pfn)
7769 {
7770 page_t *pp;
7771 int index, cons;
7772
7773 if (hat_check_vtop == 0)
7774 return;
7775
7776 if (kvseg.s_base == NULL || panicstr)
7777 return;
7778
7779 pp = page_numtopp_nolock(pfn);
7780 if (!pp)
7781 return;
7782
7783 if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7784 return;
7785
7786 /*
7787 * Handed a large kernel page, we dig up the root page since we
7788 * know the root page might have the lock also.
7789 */
7790 if (pp->p_szc != 0) {
7791 index = PP_MAPINDEX(pp);
7792 cons = TTE8K;
7793 again:
7794 while (index != 0) {
7795 index >>= 1;
7796 if (index != 0)
7797 cons++;
7798 if (index & 0x1) {
7799 pp = PP_GROUPLEADER(pp, cons);
7800 goto again;
7801 }
7802 }
7803 }
7804
7805 if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7806 return;
7807
7808 /*
7809 * Pages need to be locked or allocated "permanent" (either from
7810 * static_arena arena or explicitly setting PG_NORELOC when calling
7811 * page_create_va()) for VA->PA translations to be valid.
7812 */
7813 if (!PP_ISNORELOC(pp))
7814 panic("Illegal VA->PA translation, pp 0x%p not permanent",
7815 (void *)pp);
7816 else
7817 panic("Illegal VA->PA translation, pp 0x%p not locked",
7818 (void *)pp);
7819 }
7820 #endif /* DEBUG */
7821
7822 /*
7823 * Returns a page frame number for a given virtual address.
7824 * Returns PFN_INVALID to indicate an invalid mapping
7825 */
7826 pfn_t
hat_getpfnum(struct hat * hat,caddr_t addr)7827 hat_getpfnum(struct hat *hat, caddr_t addr)
7828 {
7829 pfn_t pfn;
7830 tte_t tte;
7831
7832 /*
7833 * We would like to
7834 * ASSERT(AS_LOCK_HELD(as));
7835 * but we can't because the iommu driver will call this
7836 * routine at interrupt time and it can't grab the as lock
7837 * or it will deadlock: A thread could have the as lock
7838 * and be waiting for io. The io can't complete
7839 * because the interrupt thread is blocked trying to grab
7840 * the as lock.
7841 */
7842
7843 if (hat == ksfmmup) {
7844 if (IS_KMEM_VA_LARGEPAGE(addr)) {
7845 ASSERT(segkmem_lpszc > 0);
7846 pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7847 if (pfn != PFN_INVALID) {
7848 sfmmu_check_kpfn(pfn);
7849 return (pfn);
7850 }
7851 } else if (segkpm && IS_KPM_ADDR(addr)) {
7852 return (sfmmu_kpm_vatopfn(addr));
7853 }
7854 while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7855 == PFN_SUSPENDED) {
7856 sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7857 }
7858 sfmmu_check_kpfn(pfn);
7859 return (pfn);
7860 } else {
7861 return (sfmmu_uvatopfn(addr, hat, NULL));
7862 }
7863 }
7864
7865 /*
7866 * This routine will return both pfn and tte for the vaddr.
7867 */
7868 static pfn_t
sfmmu_uvatopfn(caddr_t vaddr,struct hat * sfmmup,tte_t * ttep)7869 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup, tte_t *ttep)
7870 {
7871 struct hmehash_bucket *hmebp;
7872 hmeblk_tag hblktag;
7873 int hmeshift, hashno = 1;
7874 struct hme_blk *hmeblkp = NULL;
7875 tte_t tte;
7876
7877 struct sf_hment *sfhmep;
7878 pfn_t pfn;
7879
7880 /* support for ISM */
7881 ism_map_t *ism_map;
7882 ism_blk_t *ism_blkp;
7883 int i;
7884 sfmmu_t *ism_hatid = NULL;
7885 sfmmu_t *locked_hatid = NULL;
7886 sfmmu_t *sv_sfmmup = sfmmup;
7887 caddr_t sv_vaddr = vaddr;
7888 sf_srd_t *srdp;
7889
7890 if (ttep == NULL) {
7891 ttep = &tte;
7892 } else {
7893 ttep->ll = 0;
7894 }
7895
7896 ASSERT(sfmmup != ksfmmup);
7897 SFMMU_STAT(sf_user_vtop);
7898 /*
7899 * Set ism_hatid if vaddr falls in a ISM segment.
7900 */
7901 ism_blkp = sfmmup->sfmmu_iblk;
7902 if (ism_blkp != NULL) {
7903 sfmmu_ismhat_enter(sfmmup, 0);
7904 locked_hatid = sfmmup;
7905 }
7906 while (ism_blkp != NULL && ism_hatid == NULL) {
7907 ism_map = ism_blkp->iblk_maps;
7908 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7909 if (vaddr >= ism_start(ism_map[i]) &&
7910 vaddr < ism_end(ism_map[i])) {
7911 sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7912 vaddr = (caddr_t)(vaddr -
7913 ism_start(ism_map[i]));
7914 break;
7915 }
7916 }
7917 ism_blkp = ism_blkp->iblk_next;
7918 }
7919 if (locked_hatid) {
7920 sfmmu_ismhat_exit(locked_hatid, 0);
7921 }
7922
7923 hblktag.htag_id = sfmmup;
7924 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
7925 do {
7926 hmeshift = HME_HASH_SHIFT(hashno);
7927 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7928 hblktag.htag_rehash = hashno;
7929 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7930
7931 SFMMU_HASH_LOCK(hmebp);
7932
7933 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7934 if (hmeblkp != NULL) {
7935 ASSERT(!hmeblkp->hblk_shared);
7936 HBLKTOHME(sfhmep, hmeblkp, vaddr);
7937 sfmmu_copytte(&sfhmep->hme_tte, ttep);
7938 SFMMU_HASH_UNLOCK(hmebp);
7939 if (TTE_IS_VALID(ttep)) {
7940 pfn = TTE_TO_PFN(vaddr, ttep);
7941 return (pfn);
7942 }
7943 break;
7944 }
7945 SFMMU_HASH_UNLOCK(hmebp);
7946 hashno++;
7947 } while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7948
7949 if (SF_HMERGNMAP_ISNULL(sv_sfmmup)) {
7950 return (PFN_INVALID);
7951 }
7952 srdp = sv_sfmmup->sfmmu_srdp;
7953 ASSERT(srdp != NULL);
7954 ASSERT(srdp->srd_refcnt != 0);
7955 hblktag.htag_id = srdp;
7956 hashno = 1;
7957 do {
7958 hmeshift = HME_HASH_SHIFT(hashno);
7959 hblktag.htag_bspage = HME_HASH_BSPAGE(sv_vaddr, hmeshift);
7960 hblktag.htag_rehash = hashno;
7961 hmebp = HME_HASH_FUNCTION(srdp, sv_vaddr, hmeshift);
7962
7963 SFMMU_HASH_LOCK(hmebp);
7964 for (hmeblkp = hmebp->hmeblkp; hmeblkp != NULL;
7965 hmeblkp = hmeblkp->hblk_next) {
7966 uint_t rid;
7967 sf_region_t *rgnp;
7968 caddr_t rsaddr;
7969 caddr_t readdr;
7970
7971 if (!HTAGS_EQ_SHME(hmeblkp->hblk_tag, hblktag,
7972 sv_sfmmup->sfmmu_hmeregion_map)) {
7973 continue;
7974 }
7975 ASSERT(hmeblkp->hblk_shared);
7976 rid = hmeblkp->hblk_tag.htag_rid;
7977 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7978 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7979 rgnp = srdp->srd_hmergnp[rid];
7980 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7981 HBLKTOHME(sfhmep, hmeblkp, sv_vaddr);
7982 sfmmu_copytte(&sfhmep->hme_tte, ttep);
7983 rsaddr = rgnp->rgn_saddr;
7984 readdr = rsaddr + rgnp->rgn_size;
7985 #ifdef DEBUG
7986 if (TTE_IS_VALID(ttep) ||
7987 get_hblk_ttesz(hmeblkp) > TTE8K) {
7988 caddr_t eva = tte_to_evaddr(hmeblkp, ttep);
7989 ASSERT(eva > sv_vaddr);
7990 ASSERT(sv_vaddr >= rsaddr);
7991 ASSERT(sv_vaddr < readdr);
7992 ASSERT(eva <= readdr);
7993 }
7994 #endif /* DEBUG */
7995 /*
7996 * Continue the search if we
7997 * found an invalid 8K tte outside of the area
7998 * covered by this hmeblk's region.
7999 */
8000 if (TTE_IS_VALID(ttep)) {
8001 SFMMU_HASH_UNLOCK(hmebp);
8002 pfn = TTE_TO_PFN(sv_vaddr, ttep);
8003 return (pfn);
8004 } else if (get_hblk_ttesz(hmeblkp) > TTE8K ||
8005 (sv_vaddr >= rsaddr && sv_vaddr < readdr)) {
8006 SFMMU_HASH_UNLOCK(hmebp);
8007 pfn = PFN_INVALID;
8008 return (pfn);
8009 }
8010 }
8011 SFMMU_HASH_UNLOCK(hmebp);
8012 hashno++;
8013 } while (hashno <= mmu_hashcnt);
8014 return (PFN_INVALID);
8015 }
8016
8017
8018 /*
8019 * For compatability with AT&T and later optimizations
8020 */
8021 /* ARGSUSED */
8022 void
hat_map(struct hat * hat,caddr_t addr,size_t len,uint_t flags)8023 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
8024 {
8025 ASSERT(hat != NULL);
8026 }
8027
8028 /*
8029 * Return the number of mappings to a particular page. This number is an
8030 * approximation of the number of people sharing the page.
8031 *
8032 * shared hmeblks or ism hmeblks are counted as 1 mapping here.
8033 * hat_page_checkshare() can be used to compare threshold to share
8034 * count that reflects the number of region sharers albeit at higher cost.
8035 */
8036 ulong_t
hat_page_getshare(page_t * pp)8037 hat_page_getshare(page_t *pp)
8038 {
8039 page_t *spp = pp; /* start page */
8040 kmutex_t *pml;
8041 ulong_t cnt;
8042 int index, sz = TTE64K;
8043
8044 /*
8045 * We need to grab the mlist lock to make sure any outstanding
8046 * load/unloads complete. Otherwise we could return zero
8047 * even though the unload(s) hasn't finished yet.
8048 */
8049 pml = sfmmu_mlist_enter(spp);
8050 cnt = spp->p_share;
8051
8052 #ifdef VAC
8053 if (kpm_enable)
8054 cnt += spp->p_kpmref;
8055 #endif
8056 if (vpm_enable && pp->p_vpmref) {
8057 cnt += 1;
8058 }
8059
8060 /*
8061 * If we have any large mappings, we count the number of
8062 * mappings that this large page is part of.
8063 */
8064 index = PP_MAPINDEX(spp);
8065 index >>= 1;
8066 while (index) {
8067 pp = PP_GROUPLEADER(spp, sz);
8068 if ((index & 0x1) && pp != spp) {
8069 cnt += pp->p_share;
8070 spp = pp;
8071 }
8072 index >>= 1;
8073 sz++;
8074 }
8075 sfmmu_mlist_exit(pml);
8076 return (cnt);
8077 }
8078
8079 /*
8080 * Return 1 if the number of mappings exceeds sh_thresh. Return 0
8081 * otherwise. Count shared hmeblks by region's refcnt.
8082 */
8083 int
hat_page_checkshare(page_t * pp,ulong_t sh_thresh)8084 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
8085 {
8086 kmutex_t *pml;
8087 ulong_t cnt = 0;
8088 int index, sz = TTE8K;
8089 struct sf_hment *sfhme, *tmphme = NULL;
8090 struct hme_blk *hmeblkp;
8091
8092 pml = sfmmu_mlist_enter(pp);
8093
8094 #ifdef VAC
8095 if (kpm_enable)
8096 cnt = pp->p_kpmref;
8097 #endif
8098
8099 if (vpm_enable && pp->p_vpmref) {
8100 cnt += 1;
8101 }
8102
8103 if (pp->p_share + cnt > sh_thresh) {
8104 sfmmu_mlist_exit(pml);
8105 return (1);
8106 }
8107
8108 index = PP_MAPINDEX(pp);
8109
8110 again:
8111 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
8112 tmphme = sfhme->hme_next;
8113 if (IS_PAHME(sfhme)) {
8114 continue;
8115 }
8116
8117 hmeblkp = sfmmu_hmetohblk(sfhme);
8118 if (hme_size(sfhme) != sz) {
8119 continue;
8120 }
8121
8122 if (hmeblkp->hblk_shared) {
8123 sf_srd_t *srdp = hblktosrd(hmeblkp);
8124 uint_t rid = hmeblkp->hblk_tag.htag_rid;
8125 sf_region_t *rgnp;
8126 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8127 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8128 ASSERT(srdp != NULL);
8129 rgnp = srdp->srd_hmergnp[rid];
8130 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
8131 rgnp, rid);
8132 cnt += rgnp->rgn_refcnt;
8133 } else {
8134 cnt++;
8135 }
8136 if (cnt > sh_thresh) {
8137 sfmmu_mlist_exit(pml);
8138 return (1);
8139 }
8140 }
8141
8142 index >>= 1;
8143 sz++;
8144 while (index) {
8145 pp = PP_GROUPLEADER(pp, sz);
8146 ASSERT(sfmmu_mlist_held(pp));
8147 if (index & 0x1) {
8148 goto again;
8149 }
8150 index >>= 1;
8151 sz++;
8152 }
8153 sfmmu_mlist_exit(pml);
8154 return (0);
8155 }
8156
8157 /*
8158 * Unload all large mappings to the pp and reset the p_szc field of every
8159 * constituent page according to the remaining mappings.
8160 *
8161 * pp must be locked SE_EXCL. Even though no other constituent pages are
8162 * locked it's legal to unload the large mappings to the pp because all
8163 * constituent pages of large locked mappings have to be locked SE_SHARED.
8164 * This means if we have SE_EXCL lock on one of constituent pages none of the
8165 * large mappings to pp are locked.
8166 *
8167 * Decrease p_szc field starting from the last constituent page and ending
8168 * with the root page. This method is used because other threads rely on the
8169 * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
8170 * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
8171 * ensures that p_szc changes of the constituent pages appears atomic for all
8172 * threads that use sfmmu_mlspl_enter() to examine p_szc field.
8173 *
8174 * This mechanism is only used for file system pages where it's not always
8175 * possible to get SE_EXCL locks on all constituent pages to demote the size
8176 * code (as is done for anonymous or kernel large pages).
8177 *
8178 * See more comments in front of sfmmu_mlspl_enter().
8179 */
8180 void
hat_page_demote(page_t * pp)8181 hat_page_demote(page_t *pp)
8182 {
8183 int index;
8184 int sz;
8185 cpuset_t cpuset;
8186 int sync = 0;
8187 page_t *rootpp;
8188 struct sf_hment *sfhme;
8189 struct sf_hment *tmphme = NULL;
8190 uint_t pszc;
8191 page_t *lastpp;
8192 cpuset_t tset;
8193 pgcnt_t npgs;
8194 kmutex_t *pml;
8195 kmutex_t *pmtx = NULL;
8196
8197 ASSERT(PAGE_EXCL(pp));
8198 ASSERT(!PP_ISFREE(pp));
8199 ASSERT(!PP_ISKAS(pp));
8200 ASSERT(page_szc_lock_assert(pp));
8201 pml = sfmmu_mlist_enter(pp);
8202
8203 pszc = pp->p_szc;
8204 if (pszc == 0) {
8205 goto out;
8206 }
8207
8208 index = PP_MAPINDEX(pp) >> 1;
8209
8210 if (index) {
8211 CPUSET_ZERO(cpuset);
8212 sz = TTE64K;
8213 sync = 1;
8214 }
8215
8216 while (index) {
8217 if (!(index & 0x1)) {
8218 index >>= 1;
8219 sz++;
8220 continue;
8221 }
8222 ASSERT(sz <= pszc);
8223 rootpp = PP_GROUPLEADER(pp, sz);
8224 for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
8225 tmphme = sfhme->hme_next;
8226 ASSERT(!IS_PAHME(sfhme));
8227 if (hme_size(sfhme) != sz) {
8228 continue;
8229 }
8230 tset = sfmmu_pageunload(rootpp, sfhme, sz);
8231 CPUSET_OR(cpuset, tset);
8232 }
8233 if (index >>= 1) {
8234 sz++;
8235 }
8236 }
8237
8238 ASSERT(!PP_ISMAPPED_LARGE(pp));
8239
8240 if (sync) {
8241 xt_sync(cpuset);
8242 #ifdef VAC
8243 if (PP_ISTNC(pp)) {
8244 conv_tnc(rootpp, sz);
8245 }
8246 #endif /* VAC */
8247 }
8248
8249 pmtx = sfmmu_page_enter(pp);
8250
8251 ASSERT(pp->p_szc == pszc);
8252 rootpp = PP_PAGEROOT(pp);
8253 ASSERT(rootpp->p_szc == pszc);
8254 lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
8255
8256 while (lastpp != rootpp) {
8257 sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
8258 ASSERT(sz < pszc);
8259 npgs = (sz == 0) ? 1 : TTEPAGES(sz);
8260 ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
8261 while (--npgs > 0) {
8262 lastpp->p_szc = (uchar_t)sz;
8263 lastpp = PP_PAGEPREV(lastpp);
8264 }
8265 if (sz) {
8266 /*
8267 * make sure before current root's pszc
8268 * is updated all updates to constituent pages pszc
8269 * fields are globally visible.
8270 */
8271 membar_producer();
8272 }
8273 lastpp->p_szc = sz;
8274 ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
8275 if (lastpp != rootpp) {
8276 lastpp = PP_PAGEPREV(lastpp);
8277 }
8278 }
8279 if (sz == 0) {
8280 /* the loop above doesn't cover this case */
8281 rootpp->p_szc = 0;
8282 }
8283 out:
8284 ASSERT(pp->p_szc == 0);
8285 if (pmtx != NULL) {
8286 sfmmu_page_exit(pmtx);
8287 }
8288 sfmmu_mlist_exit(pml);
8289 }
8290
8291 /*
8292 * Refresh the HAT ismttecnt[] element for size szc.
8293 * Caller must have set ISM busy flag to prevent mapping
8294 * lists from changing while we're traversing them.
8295 */
8296 pgcnt_t
ism_tsb_entries(sfmmu_t * sfmmup,int szc)8297 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
8298 {
8299 ism_blk_t *ism_blkp = sfmmup->sfmmu_iblk;
8300 ism_map_t *ism_map;
8301 pgcnt_t npgs = 0;
8302 pgcnt_t npgs_scd = 0;
8303 int j;
8304 sf_scd_t *scdp;
8305 uchar_t rid;
8306
8307 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
8308 scdp = sfmmup->sfmmu_scdp;
8309
8310 for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
8311 ism_map = ism_blkp->iblk_maps;
8312 for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) {
8313 rid = ism_map[j].imap_rid;
8314 ASSERT(rid == SFMMU_INVALID_ISMRID ||
8315 rid < sfmmup->sfmmu_srdp->srd_next_ismrid);
8316
8317 if (scdp != NULL && rid != SFMMU_INVALID_ISMRID &&
8318 SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
8319 /* ISM is in sfmmup's SCD */
8320 npgs_scd +=
8321 ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8322 } else {
8323 /* ISMs is not in SCD */
8324 npgs +=
8325 ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8326 }
8327 }
8328 }
8329 sfmmup->sfmmu_ismttecnt[szc] = npgs;
8330 sfmmup->sfmmu_scdismttecnt[szc] = npgs_scd;
8331 return (npgs);
8332 }
8333
8334 /*
8335 * Yield the memory claim requirement for an address space.
8336 *
8337 * This is currently implemented as the number of bytes that have active
8338 * hardware translations that have page structures. Therefore, it can
8339 * underestimate the traditional resident set size, eg, if the
8340 * physical page is present and the hardware translation is missing;
8341 * and it can overestimate the rss, eg, if there are active
8342 * translations to a frame buffer with page structs.
8343 * Also, it does not take sharing into account.
8344 *
8345 * Note that we don't acquire locks here since this function is most often
8346 * called from the clock thread.
8347 */
8348 size_t
hat_get_mapped_size(struct hat * hat)8349 hat_get_mapped_size(struct hat *hat)
8350 {
8351 size_t assize = 0;
8352 int i;
8353
8354 if (hat == NULL)
8355 return (0);
8356
8357 for (i = 0; i < mmu_page_sizes; i++)
8358 assize += ((pgcnt_t)hat->sfmmu_ttecnt[i] +
8359 (pgcnt_t)hat->sfmmu_scdrttecnt[i]) * TTEBYTES(i);
8360
8361 if (hat->sfmmu_iblk == NULL)
8362 return (assize);
8363
8364 for (i = 0; i < mmu_page_sizes; i++)
8365 assize += ((pgcnt_t)hat->sfmmu_ismttecnt[i] +
8366 (pgcnt_t)hat->sfmmu_scdismttecnt[i]) * TTEBYTES(i);
8367
8368 return (assize);
8369 }
8370
8371 int
hat_stats_enable(struct hat * hat)8372 hat_stats_enable(struct hat *hat)
8373 {
8374 hatlock_t *hatlockp;
8375
8376 hatlockp = sfmmu_hat_enter(hat);
8377 hat->sfmmu_rmstat++;
8378 sfmmu_hat_exit(hatlockp);
8379 return (1);
8380 }
8381
8382 void
hat_stats_disable(struct hat * hat)8383 hat_stats_disable(struct hat *hat)
8384 {
8385 hatlock_t *hatlockp;
8386
8387 hatlockp = sfmmu_hat_enter(hat);
8388 hat->sfmmu_rmstat--;
8389 sfmmu_hat_exit(hatlockp);
8390 }
8391
8392 /*
8393 * Routines for entering or removing ourselves from the
8394 * ism_hat's mapping list. This is used for both private and
8395 * SCD hats.
8396 */
8397 static void
iment_add(struct ism_ment * iment,struct hat * ism_hat)8398 iment_add(struct ism_ment *iment, struct hat *ism_hat)
8399 {
8400 ASSERT(MUTEX_HELD(&ism_mlist_lock));
8401
8402 iment->iment_prev = NULL;
8403 iment->iment_next = ism_hat->sfmmu_iment;
8404 if (ism_hat->sfmmu_iment) {
8405 ism_hat->sfmmu_iment->iment_prev = iment;
8406 }
8407 ism_hat->sfmmu_iment = iment;
8408 }
8409
8410 static void
iment_sub(struct ism_ment * iment,struct hat * ism_hat)8411 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
8412 {
8413 ASSERT(MUTEX_HELD(&ism_mlist_lock));
8414
8415 if (ism_hat->sfmmu_iment == NULL) {
8416 panic("ism map entry remove - no entries");
8417 }
8418
8419 if (iment->iment_prev) {
8420 ASSERT(ism_hat->sfmmu_iment != iment);
8421 iment->iment_prev->iment_next = iment->iment_next;
8422 } else {
8423 ASSERT(ism_hat->sfmmu_iment == iment);
8424 ism_hat->sfmmu_iment = iment->iment_next;
8425 }
8426
8427 if (iment->iment_next) {
8428 iment->iment_next->iment_prev = iment->iment_prev;
8429 }
8430
8431 /*
8432 * zero out the entry
8433 */
8434 iment->iment_next = NULL;
8435 iment->iment_prev = NULL;
8436 iment->iment_hat = NULL;
8437 iment->iment_base_va = 0;
8438 }
8439
8440 /*
8441 * Hat_share()/unshare() return an (non-zero) error
8442 * when saddr and daddr are not properly aligned.
8443 *
8444 * The top level mapping element determines the alignment
8445 * requirement for saddr and daddr, depending on different
8446 * architectures.
8447 *
8448 * When hat_share()/unshare() are not supported,
8449 * HATOP_SHARE()/UNSHARE() return 0
8450 */
8451 int
hat_share(struct hat * sfmmup,caddr_t addr,struct hat * ism_hatid,caddr_t sptaddr,size_t len,uint_t ismszc)8452 hat_share(struct hat *sfmmup, caddr_t addr, struct hat *ism_hatid,
8453 caddr_t sptaddr, size_t len, uint_t ismszc)
8454 {
8455 ism_blk_t *ism_blkp;
8456 ism_blk_t *new_iblk;
8457 ism_map_t *ism_map;
8458 ism_ment_t *ism_ment;
8459 int i, added;
8460 hatlock_t *hatlockp;
8461 int reload_mmu = 0;
8462 uint_t ismshift = page_get_shift(ismszc);
8463 size_t ismpgsz = page_get_pagesize(ismszc);
8464 uint_t ismmask = (uint_t)ismpgsz - 1;
8465 size_t sh_size = ISM_SHIFT(ismshift, len);
8466 ushort_t ismhatflag;
8467 hat_region_cookie_t rcookie;
8468 sf_scd_t *old_scdp;
8469
8470 #ifdef DEBUG
8471 caddr_t eaddr = addr + len;
8472 #endif /* DEBUG */
8473
8474 ASSERT(ism_hatid != NULL && sfmmup != NULL);
8475 ASSERT(sptaddr == ISMID_STARTADDR);
8476 /*
8477 * Check the alignment.
8478 */
8479 if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
8480 return (EINVAL);
8481
8482 /*
8483 * Check size alignment.
8484 */
8485 if (!ISM_ALIGNED(ismshift, len))
8486 return (EINVAL);
8487
8488 /*
8489 * Allocate ism_ment for the ism_hat's mapping list, and an
8490 * ism map blk in case we need one. We must do our
8491 * allocations before acquiring locks to prevent a deadlock
8492 * in the kmem allocator on the mapping list lock.
8493 */
8494 new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
8495 ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
8496
8497 /*
8498 * Serialize ISM mappings with the ISM busy flag, and also the
8499 * trap handlers.
8500 */
8501 sfmmu_ismhat_enter(sfmmup, 0);
8502
8503 /*
8504 * Allocate an ism map blk if necessary.
8505 */
8506 if (sfmmup->sfmmu_iblk == NULL) {
8507 sfmmup->sfmmu_iblk = new_iblk;
8508 bzero(new_iblk, sizeof (*new_iblk));
8509 new_iblk->iblk_nextpa = (uint64_t)-1;
8510 membar_stst(); /* make sure next ptr visible to all CPUs */
8511 sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
8512 reload_mmu = 1;
8513 new_iblk = NULL;
8514 }
8515
8516 #ifdef DEBUG
8517 /*
8518 * Make sure mapping does not already exist.
8519 */
8520 ism_blkp = sfmmup->sfmmu_iblk;
8521 while (ism_blkp != NULL) {
8522 ism_map = ism_blkp->iblk_maps;
8523 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
8524 if ((addr >= ism_start(ism_map[i]) &&
8525 addr < ism_end(ism_map[i])) ||
8526 eaddr > ism_start(ism_map[i]) &&
8527 eaddr <= ism_end(ism_map[i])) {
8528 panic("sfmmu_share: Already mapped!");
8529 }
8530 }
8531 ism_blkp = ism_blkp->iblk_next;
8532 }
8533 #endif /* DEBUG */
8534
8535 ASSERT(ismszc >= TTE4M);
8536 if (ismszc == TTE4M) {
8537 ismhatflag = HAT_4M_FLAG;
8538 } else if (ismszc == TTE32M) {
8539 ismhatflag = HAT_32M_FLAG;
8540 } else if (ismszc == TTE256M) {
8541 ismhatflag = HAT_256M_FLAG;
8542 }
8543 /*
8544 * Add mapping to first available mapping slot.
8545 */
8546 ism_blkp = sfmmup->sfmmu_iblk;
8547 added = 0;
8548 while (!added) {
8549 ism_map = ism_blkp->iblk_maps;
8550 for (i = 0; i < ISM_MAP_SLOTS; i++) {
8551 if (ism_map[i].imap_ismhat == NULL) {
8552
8553 ism_map[i].imap_ismhat = ism_hatid;
8554 ism_map[i].imap_vb_shift = (uchar_t)ismshift;
8555 ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8556 ism_map[i].imap_hatflags = ismhatflag;
8557 ism_map[i].imap_sz_mask = ismmask;
8558 /*
8559 * imap_seg is checked in ISM_CHECK to see if
8560 * non-NULL, then other info assumed valid.
8561 */
8562 membar_stst();
8563 ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
8564 ism_map[i].imap_ment = ism_ment;
8565
8566 /*
8567 * Now add ourselves to the ism_hat's
8568 * mapping list.
8569 */
8570 ism_ment->iment_hat = sfmmup;
8571 ism_ment->iment_base_va = addr;
8572 ism_hatid->sfmmu_ismhat = 1;
8573 mutex_enter(&ism_mlist_lock);
8574 iment_add(ism_ment, ism_hatid);
8575 mutex_exit(&ism_mlist_lock);
8576 added = 1;
8577 break;
8578 }
8579 }
8580 if (!added && ism_blkp->iblk_next == NULL) {
8581 ism_blkp->iblk_next = new_iblk;
8582 new_iblk = NULL;
8583 bzero(ism_blkp->iblk_next,
8584 sizeof (*ism_blkp->iblk_next));
8585 ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
8586 membar_stst();
8587 ism_blkp->iblk_nextpa =
8588 va_to_pa((caddr_t)ism_blkp->iblk_next);
8589 }
8590 ism_blkp = ism_blkp->iblk_next;
8591 }
8592
8593 /*
8594 * After calling hat_join_region, sfmmup may join a new SCD or
8595 * move from the old scd to a new scd, in which case, we want to
8596 * shrink the sfmmup's private tsb size, i.e., pass shrink to
8597 * sfmmu_check_page_sizes at the end of this routine.
8598 */
8599 old_scdp = sfmmup->sfmmu_scdp;
8600
8601 rcookie = hat_join_region(sfmmup, addr, len, (void *)ism_hatid, 0,
8602 PROT_ALL, ismszc, NULL, HAT_REGION_ISM);
8603 if (rcookie != HAT_INVALID_REGION_COOKIE) {
8604 ism_map[i].imap_rid = (uchar_t)((uint64_t)rcookie);
8605 }
8606 /*
8607 * Update our counters for this sfmmup's ism mappings.
8608 */
8609 for (i = 0; i <= ismszc; i++) {
8610 if (!(disable_ism_large_pages & (1 << i)))
8611 (void) ism_tsb_entries(sfmmup, i);
8612 }
8613
8614 /*
8615 * For ISM and DISM we do not support 512K pages, so we only only
8616 * search the 4M and 8K/64K hashes for 4 pagesize cpus, and search the
8617 * 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
8618 *
8619 * Need to set 32M/256M ISM flags to make sure
8620 * sfmmu_check_page_sizes() enables them on Panther.
8621 */
8622 ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
8623
8624 switch (ismszc) {
8625 case TTE256M:
8626 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_ISM)) {
8627 hatlockp = sfmmu_hat_enter(sfmmup);
8628 SFMMU_FLAGS_SET(sfmmup, HAT_256M_ISM);
8629 sfmmu_hat_exit(hatlockp);
8630 }
8631 break;
8632 case TTE32M:
8633 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_ISM)) {
8634 hatlockp = sfmmu_hat_enter(sfmmup);
8635 SFMMU_FLAGS_SET(sfmmup, HAT_32M_ISM);
8636 sfmmu_hat_exit(hatlockp);
8637 }
8638 break;
8639 default:
8640 break;
8641 }
8642
8643 /*
8644 * If we updated the ismblkpa for this HAT we must make
8645 * sure all CPUs running this process reload their tsbmiss area.
8646 * Otherwise they will fail to load the mappings in the tsbmiss
8647 * handler and will loop calling pagefault().
8648 */
8649 if (reload_mmu) {
8650 hatlockp = sfmmu_hat_enter(sfmmup);
8651 sfmmu_sync_mmustate(sfmmup);
8652 sfmmu_hat_exit(hatlockp);
8653 }
8654
8655 sfmmu_ismhat_exit(sfmmup, 0);
8656
8657 /*
8658 * Free up ismblk if we didn't use it.
8659 */
8660 if (new_iblk != NULL)
8661 kmem_cache_free(ism_blk_cache, new_iblk);
8662
8663 /*
8664 * Check TSB and TLB page sizes.
8665 */
8666 if (sfmmup->sfmmu_scdp != NULL && old_scdp != sfmmup->sfmmu_scdp) {
8667 sfmmu_check_page_sizes(sfmmup, 0);
8668 } else {
8669 sfmmu_check_page_sizes(sfmmup, 1);
8670 }
8671 return (0);
8672 }
8673
8674 /*
8675 * hat_unshare removes exactly one ism_map from
8676 * this process's as. It expects multiple calls
8677 * to hat_unshare for multiple shm segments.
8678 */
8679 void
hat_unshare(struct hat * sfmmup,caddr_t addr,size_t len,uint_t ismszc)8680 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
8681 {
8682 ism_map_t *ism_map;
8683 ism_ment_t *free_ment = NULL;
8684 ism_blk_t *ism_blkp;
8685 struct hat *ism_hatid;
8686 int found, i;
8687 hatlock_t *hatlockp;
8688 struct tsb_info *tsbinfo;
8689 uint_t ismshift = page_get_shift(ismszc);
8690 size_t sh_size = ISM_SHIFT(ismshift, len);
8691 uchar_t ism_rid;
8692 sf_scd_t *old_scdp;
8693
8694 ASSERT(ISM_ALIGNED(ismshift, addr));
8695 ASSERT(ISM_ALIGNED(ismshift, len));
8696 ASSERT(sfmmup != NULL);
8697 ASSERT(sfmmup != ksfmmup);
8698
8699 ASSERT(sfmmup->sfmmu_as != NULL);
8700
8701 /*
8702 * Make sure that during the entire time ISM mappings are removed,
8703 * the trap handlers serialize behind us, and that no one else
8704 * can be mucking with ISM mappings. This also lets us get away
8705 * with not doing expensive cross calls to flush the TLB -- we
8706 * just discard the context, flush the entire TSB, and call it
8707 * a day.
8708 */
8709 sfmmu_ismhat_enter(sfmmup, 0);
8710
8711 /*
8712 * Remove the mapping.
8713 *
8714 * We can't have any holes in the ism map.
8715 * The tsb miss code while searching the ism map will
8716 * stop on an empty map slot. So we must move
8717 * everyone past the hole up 1 if any.
8718 *
8719 * Also empty ism map blks are not freed until the
8720 * process exits. This is to prevent a MT race condition
8721 * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
8722 */
8723 found = 0;
8724 ism_blkp = sfmmup->sfmmu_iblk;
8725 while (!found && ism_blkp != NULL) {
8726 ism_map = ism_blkp->iblk_maps;
8727 for (i = 0; i < ISM_MAP_SLOTS; i++) {
8728 if (addr == ism_start(ism_map[i]) &&
8729 sh_size == (size_t)(ism_size(ism_map[i]))) {
8730 found = 1;
8731 break;
8732 }
8733 }
8734 if (!found)
8735 ism_blkp = ism_blkp->iblk_next;
8736 }
8737
8738 if (found) {
8739 ism_hatid = ism_map[i].imap_ismhat;
8740 ism_rid = ism_map[i].imap_rid;
8741 ASSERT(ism_hatid != NULL);
8742 ASSERT(ism_hatid->sfmmu_ismhat == 1);
8743
8744 /*
8745 * After hat_leave_region, the sfmmup may leave SCD,
8746 * in which case, we want to grow the private tsb size when
8747 * calling sfmmu_check_page_sizes at the end of the routine.
8748 */
8749 old_scdp = sfmmup->sfmmu_scdp;
8750 /*
8751 * Then remove ourselves from the region.
8752 */
8753 if (ism_rid != SFMMU_INVALID_ISMRID) {
8754 hat_leave_region(sfmmup, (void *)((uint64_t)ism_rid),
8755 HAT_REGION_ISM);
8756 }
8757
8758 /*
8759 * And now guarantee that any other cpu
8760 * that tries to process an ISM miss
8761 * will go to tl=0.
8762 */
8763 hatlockp = sfmmu_hat_enter(sfmmup);
8764 sfmmu_invalidate_ctx(sfmmup);
8765 sfmmu_hat_exit(hatlockp);
8766
8767 /*
8768 * Remove ourselves from the ism mapping list.
8769 */
8770 mutex_enter(&ism_mlist_lock);
8771 iment_sub(ism_map[i].imap_ment, ism_hatid);
8772 mutex_exit(&ism_mlist_lock);
8773 free_ment = ism_map[i].imap_ment;
8774
8775 /*
8776 * We delete the ism map by copying
8777 * the next map over the current one.
8778 * We will take the next one in the maps
8779 * array or from the next ism_blk.
8780 */
8781 while (ism_blkp != NULL) {
8782 ism_map = ism_blkp->iblk_maps;
8783 while (i < (ISM_MAP_SLOTS - 1)) {
8784 ism_map[i] = ism_map[i + 1];
8785 i++;
8786 }
8787 /* i == (ISM_MAP_SLOTS - 1) */
8788 ism_blkp = ism_blkp->iblk_next;
8789 if (ism_blkp != NULL) {
8790 ism_map[i] = ism_blkp->iblk_maps[0];
8791 i = 0;
8792 } else {
8793 ism_map[i].imap_seg = 0;
8794 ism_map[i].imap_vb_shift = 0;
8795 ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8796 ism_map[i].imap_hatflags = 0;
8797 ism_map[i].imap_sz_mask = 0;
8798 ism_map[i].imap_ismhat = NULL;
8799 ism_map[i].imap_ment = NULL;
8800 }
8801 }
8802
8803 /*
8804 * Now flush entire TSB for the process, since
8805 * demapping page by page can be too expensive.
8806 * We don't have to flush the TLB here anymore
8807 * since we switch to a new TLB ctx instead.
8808 * Also, there is no need to flush if the process
8809 * is exiting since the TSB will be freed later.
8810 */
8811 if (!sfmmup->sfmmu_free) {
8812 hatlockp = sfmmu_hat_enter(sfmmup);
8813 for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
8814 tsbinfo = tsbinfo->tsb_next) {
8815 if (tsbinfo->tsb_flags & TSB_SWAPPED)
8816 continue;
8817 if (tsbinfo->tsb_flags & TSB_RELOC_FLAG) {
8818 tsbinfo->tsb_flags |=
8819 TSB_FLUSH_NEEDED;
8820 continue;
8821 }
8822
8823 sfmmu_inv_tsb(tsbinfo->tsb_va,
8824 TSB_BYTES(tsbinfo->tsb_szc));
8825 }
8826 sfmmu_hat_exit(hatlockp);
8827 }
8828 }
8829
8830 /*
8831 * Update our counters for this sfmmup's ism mappings.
8832 */
8833 for (i = 0; i <= ismszc; i++) {
8834 if (!(disable_ism_large_pages & (1 << i)))
8835 (void) ism_tsb_entries(sfmmup, i);
8836 }
8837
8838 sfmmu_ismhat_exit(sfmmup, 0);
8839
8840 /*
8841 * We must do our freeing here after dropping locks
8842 * to prevent a deadlock in the kmem allocator on the
8843 * mapping list lock.
8844 */
8845 if (free_ment != NULL)
8846 kmem_cache_free(ism_ment_cache, free_ment);
8847
8848 /*
8849 * Check TSB and TLB page sizes if the process isn't exiting.
8850 */
8851 if (!sfmmup->sfmmu_free) {
8852 if (found && old_scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
8853 sfmmu_check_page_sizes(sfmmup, 1);
8854 } else {
8855 sfmmu_check_page_sizes(sfmmup, 0);
8856 }
8857 }
8858 }
8859
8860 /* ARGSUSED */
8861 static int
sfmmu_idcache_constructor(void * buf,void * cdrarg,int kmflags)8862 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8863 {
8864 /* void *buf is sfmmu_t pointer */
8865 bzero(buf, sizeof (sfmmu_t));
8866
8867 return (0);
8868 }
8869
8870 /* ARGSUSED */
8871 static void
sfmmu_idcache_destructor(void * buf,void * cdrarg)8872 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8873 {
8874 /* void *buf is sfmmu_t pointer */
8875 }
8876
8877 /*
8878 * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8879 * field to be the pa of this hmeblk
8880 */
8881 /* ARGSUSED */
8882 static int
sfmmu_hblkcache_constructor(void * buf,void * cdrarg,int kmflags)8883 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8884 {
8885 struct hme_blk *hmeblkp;
8886
8887 bzero(buf, (size_t)cdrarg);
8888 hmeblkp = (struct hme_blk *)buf;
8889 hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8890
8891 #ifdef HBLK_TRACE
8892 mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8893 #endif /* HBLK_TRACE */
8894
8895 return (0);
8896 }
8897
8898 /* ARGSUSED */
8899 static void
sfmmu_hblkcache_destructor(void * buf,void * cdrarg)8900 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8901 {
8902
8903 #ifdef HBLK_TRACE
8904
8905 struct hme_blk *hmeblkp;
8906
8907 hmeblkp = (struct hme_blk *)buf;
8908 mutex_destroy(&hmeblkp->hblk_audit_lock);
8909
8910 #endif /* HBLK_TRACE */
8911 }
8912
8913 #define SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8914 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8915 /*
8916 * The kmem allocator will callback into our reclaim routine when the system
8917 * is running low in memory. We traverse the hash and free up all unused but
8918 * still cached hme_blks. We also traverse the free list and free them up
8919 * as well.
8920 */
8921 /*ARGSUSED*/
8922 static void
sfmmu_hblkcache_reclaim(void * cdrarg)8923 sfmmu_hblkcache_reclaim(void *cdrarg)
8924 {
8925 int i;
8926 struct hmehash_bucket *hmebp;
8927 struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
8928 static struct hmehash_bucket *uhmehash_reclaim_hand;
8929 static struct hmehash_bucket *khmehash_reclaim_hand;
8930 struct hme_blk *list = NULL, *last_hmeblkp;
8931 cpuset_t cpuset = cpu_ready_set;
8932 cpu_hme_pend_t *cpuhp;
8933
8934 /* Free up hmeblks on the cpu pending lists */
8935 for (i = 0; i < NCPU; i++) {
8936 cpuhp = &cpu_hme_pend[i];
8937 if (cpuhp->chp_listp != NULL) {
8938 mutex_enter(&cpuhp->chp_mutex);
8939 if (cpuhp->chp_listp == NULL) {
8940 mutex_exit(&cpuhp->chp_mutex);
8941 continue;
8942 }
8943 for (last_hmeblkp = cpuhp->chp_listp;
8944 last_hmeblkp->hblk_next != NULL;
8945 last_hmeblkp = last_hmeblkp->hblk_next)
8946 ;
8947 last_hmeblkp->hblk_next = list;
8948 list = cpuhp->chp_listp;
8949 cpuhp->chp_listp = NULL;
8950 cpuhp->chp_count = 0;
8951 mutex_exit(&cpuhp->chp_mutex);
8952 }
8953
8954 }
8955
8956 if (list != NULL) {
8957 kpreempt_disable();
8958 CPUSET_DEL(cpuset, CPU->cpu_id);
8959 xt_sync(cpuset);
8960 xt_sync(cpuset);
8961 kpreempt_enable();
8962 sfmmu_hblk_free(&list);
8963 list = NULL;
8964 }
8965
8966 hmebp = uhmehash_reclaim_hand;
8967 if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
8968 uhmehash_reclaim_hand = hmebp = uhme_hash;
8969 uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8970
8971 for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8972 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8973 hmeblkp = hmebp->hmeblkp;
8974 pr_hblk = NULL;
8975 while (hmeblkp) {
8976 nx_hblk = hmeblkp->hblk_next;
8977 if (!hmeblkp->hblk_vcnt &&
8978 !hmeblkp->hblk_hmecnt) {
8979 sfmmu_hblk_hash_rm(hmebp, hmeblkp,
8980 pr_hblk, &list, 0);
8981 } else {
8982 pr_hblk = hmeblkp;
8983 }
8984 hmeblkp = nx_hblk;
8985 }
8986 SFMMU_HASH_UNLOCK(hmebp);
8987 }
8988 if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
8989 hmebp = uhme_hash;
8990 }
8991
8992 hmebp = khmehash_reclaim_hand;
8993 if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
8994 khmehash_reclaim_hand = hmebp = khme_hash;
8995 khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
8996
8997 for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
8998 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
8999 hmeblkp = hmebp->hmeblkp;
9000 pr_hblk = NULL;
9001 while (hmeblkp) {
9002 nx_hblk = hmeblkp->hblk_next;
9003 if (!hmeblkp->hblk_vcnt &&
9004 !hmeblkp->hblk_hmecnt) {
9005 sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9006 pr_hblk, &list, 0);
9007 } else {
9008 pr_hblk = hmeblkp;
9009 }
9010 hmeblkp = nx_hblk;
9011 }
9012 SFMMU_HASH_UNLOCK(hmebp);
9013 }
9014 if (hmebp++ == &khme_hash[KHMEHASH_SZ])
9015 hmebp = khme_hash;
9016 }
9017 sfmmu_hblks_list_purge(&list, 0);
9018 }
9019
9020 /*
9021 * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
9022 * same goes for sfmmu_get_addrvcolor().
9023 *
9024 * This function will return the virtual color for the specified page. The
9025 * virtual color corresponds to this page current mapping or its last mapping.
9026 * It is used by memory allocators to choose addresses with the correct
9027 * alignment so vac consistency is automatically maintained. If the page
9028 * has no color it returns -1.
9029 */
9030 /*ARGSUSED*/
9031 int
sfmmu_get_ppvcolor(struct page * pp)9032 sfmmu_get_ppvcolor(struct page *pp)
9033 {
9034 #ifdef VAC
9035 int color;
9036
9037 if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
9038 return (-1);
9039 }
9040 color = PP_GET_VCOLOR(pp);
9041 ASSERT(color < mmu_btop(shm_alignment));
9042 return (color);
9043 #else
9044 return (-1);
9045 #endif /* VAC */
9046 }
9047
9048 /*
9049 * This function will return the desired alignment for vac consistency
9050 * (vac color) given a virtual address. If no vac is present it returns -1.
9051 */
9052 /*ARGSUSED*/
9053 int
sfmmu_get_addrvcolor(caddr_t vaddr)9054 sfmmu_get_addrvcolor(caddr_t vaddr)
9055 {
9056 #ifdef VAC
9057 if (cache & CACHE_VAC) {
9058 return (addr_to_vcolor(vaddr));
9059 } else {
9060 return (-1);
9061 }
9062 #else
9063 return (-1);
9064 #endif /* VAC */
9065 }
9066
9067 #ifdef VAC
9068 /*
9069 * Check for conflicts.
9070 * A conflict exists if the new and existent mappings do not match in
9071 * their "shm_alignment fields. If conflicts exist, the existant mappings
9072 * are flushed unless one of them is locked. If one of them is locked, then
9073 * the mappings are flushed and converted to non-cacheable mappings.
9074 */
9075 static void
sfmmu_vac_conflict(struct hat * hat,caddr_t addr,page_t * pp)9076 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
9077 {
9078 struct hat *tmphat;
9079 struct sf_hment *sfhmep, *tmphme = NULL;
9080 struct hme_blk *hmeblkp;
9081 int vcolor;
9082 tte_t tte;
9083
9084 ASSERT(sfmmu_mlist_held(pp));
9085 ASSERT(!PP_ISNC(pp)); /* page better be cacheable */
9086
9087 vcolor = addr_to_vcolor(addr);
9088 if (PP_NEWPAGE(pp)) {
9089 PP_SET_VCOLOR(pp, vcolor);
9090 return;
9091 }
9092
9093 if (PP_GET_VCOLOR(pp) == vcolor) {
9094 return;
9095 }
9096
9097 if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
9098 /*
9099 * Previous user of page had a different color
9100 * but since there are no current users
9101 * we just flush the cache and change the color.
9102 */
9103 SFMMU_STAT(sf_pgcolor_conflict);
9104 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9105 PP_SET_VCOLOR(pp, vcolor);
9106 return;
9107 }
9108
9109 /*
9110 * If we get here we have a vac conflict with a current
9111 * mapping. VAC conflict policy is as follows.
9112 * - The default is to unload the other mappings unless:
9113 * - If we have a large mapping we uncache the page.
9114 * We need to uncache the rest of the large page too.
9115 * - If any of the mappings are locked we uncache the page.
9116 * - If the requested mapping is inconsistent
9117 * with another mapping and that mapping
9118 * is in the same address space we have to
9119 * make it non-cached. The default thing
9120 * to do is unload the inconsistent mapping
9121 * but if they are in the same address space
9122 * we run the risk of unmapping the pc or the
9123 * stack which we will use as we return to the user,
9124 * in which case we can then fault on the thing
9125 * we just unloaded and get into an infinite loop.
9126 */
9127 if (PP_ISMAPPED_LARGE(pp)) {
9128 int sz;
9129
9130 /*
9131 * Existing mapping is for big pages. We don't unload
9132 * existing big mappings to satisfy new mappings.
9133 * Always convert all mappings to TNC.
9134 */
9135 sz = fnd_mapping_sz(pp);
9136 pp = PP_GROUPLEADER(pp, sz);
9137 SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
9138 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
9139 TTEPAGES(sz));
9140
9141 return;
9142 }
9143
9144 /*
9145 * check if any mapping is in same as or if it is locked
9146 * since in that case we need to uncache.
9147 */
9148 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9149 tmphme = sfhmep->hme_next;
9150 if (IS_PAHME(sfhmep))
9151 continue;
9152 hmeblkp = sfmmu_hmetohblk(sfhmep);
9153 tmphat = hblktosfmmu(hmeblkp);
9154 sfmmu_copytte(&sfhmep->hme_tte, &tte);
9155 ASSERT(TTE_IS_VALID(&tte));
9156 if (hmeblkp->hblk_shared || tmphat == hat ||
9157 hmeblkp->hblk_lckcnt) {
9158 /*
9159 * We have an uncache conflict
9160 */
9161 SFMMU_STAT(sf_uncache_conflict);
9162 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
9163 return;
9164 }
9165 }
9166
9167 /*
9168 * We have an unload conflict
9169 * We have already checked for LARGE mappings, therefore
9170 * the remaining mapping(s) must be TTE8K.
9171 */
9172 SFMMU_STAT(sf_unload_conflict);
9173
9174 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9175 tmphme = sfhmep->hme_next;
9176 if (IS_PAHME(sfhmep))
9177 continue;
9178 hmeblkp = sfmmu_hmetohblk(sfhmep);
9179 ASSERT(!hmeblkp->hblk_shared);
9180 (void) sfmmu_pageunload(pp, sfhmep, TTE8K);
9181 }
9182
9183 if (PP_ISMAPPED_KPM(pp))
9184 sfmmu_kpm_vac_unload(pp, addr);
9185
9186 /*
9187 * Unloads only do TLB flushes so we need to flush the
9188 * cache here.
9189 */
9190 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9191 PP_SET_VCOLOR(pp, vcolor);
9192 }
9193
9194 /*
9195 * Whenever a mapping is unloaded and the page is in TNC state,
9196 * we see if the page can be made cacheable again. 'pp' is
9197 * the page that we just unloaded a mapping from, the size
9198 * of mapping that was unloaded is 'ottesz'.
9199 * Remark:
9200 * The recache policy for mpss pages can leave a performance problem
9201 * under the following circumstances:
9202 * . A large page in uncached mode has just been unmapped.
9203 * . All constituent pages are TNC due to a conflicting small mapping.
9204 * . There are many other, non conflicting, small mappings around for
9205 * a lot of the constituent pages.
9206 * . We're called w/ the "old" groupleader page and the old ottesz,
9207 * but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
9208 * we end up w/ TTE8K or npages == 1.
9209 * . We call tst_tnc w/ the old groupleader only, and if there is no
9210 * conflict, we re-cache only this page.
9211 * . All other small mappings are not checked and will be left in TNC mode.
9212 * The problem is not very serious because:
9213 * . mpss is actually only defined for heap and stack, so the probability
9214 * is not very high that a large page mapping exists in parallel to a small
9215 * one (this is possible, but seems to be bad programming style in the
9216 * appl).
9217 * . The problem gets a little bit more serious, when those TNC pages
9218 * have to be mapped into kernel space, e.g. for networking.
9219 * . When VAC alias conflicts occur in applications, this is regarded
9220 * as an application bug. So if kstat's show them, the appl should
9221 * be changed anyway.
9222 */
9223 void
conv_tnc(page_t * pp,int ottesz)9224 conv_tnc(page_t *pp, int ottesz)
9225 {
9226 int cursz, dosz;
9227 pgcnt_t curnpgs, dopgs;
9228 pgcnt_t pg64k;
9229 page_t *pp2;
9230
9231 /*
9232 * Determine how big a range we check for TNC and find
9233 * leader page. cursz is the size of the biggest
9234 * mapping that still exist on 'pp'.
9235 */
9236 if (PP_ISMAPPED_LARGE(pp)) {
9237 cursz = fnd_mapping_sz(pp);
9238 } else {
9239 cursz = TTE8K;
9240 }
9241
9242 if (ottesz >= cursz) {
9243 dosz = ottesz;
9244 pp2 = pp;
9245 } else {
9246 dosz = cursz;
9247 pp2 = PP_GROUPLEADER(pp, dosz);
9248 }
9249
9250 pg64k = TTEPAGES(TTE64K);
9251 dopgs = TTEPAGES(dosz);
9252
9253 ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
9254
9255 while (dopgs != 0) {
9256 curnpgs = TTEPAGES(cursz);
9257 if (tst_tnc(pp2, curnpgs)) {
9258 SFMMU_STAT_ADD(sf_recache, curnpgs);
9259 sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
9260 curnpgs);
9261 }
9262
9263 ASSERT(dopgs >= curnpgs);
9264 dopgs -= curnpgs;
9265
9266 if (dopgs == 0) {
9267 break;
9268 }
9269
9270 pp2 = PP_PAGENEXT_N(pp2, curnpgs);
9271 if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
9272 cursz = fnd_mapping_sz(pp2);
9273 } else {
9274 cursz = TTE8K;
9275 }
9276 }
9277 }
9278
9279 /*
9280 * Returns 1 if page(s) can be converted from TNC to cacheable setting,
9281 * returns 0 otherwise. Note that oaddr argument is valid for only
9282 * 8k pages.
9283 */
9284 int
tst_tnc(page_t * pp,pgcnt_t npages)9285 tst_tnc(page_t *pp, pgcnt_t npages)
9286 {
9287 struct sf_hment *sfhme;
9288 struct hme_blk *hmeblkp;
9289 tte_t tte;
9290 caddr_t vaddr;
9291 int clr_valid = 0;
9292 int color, color1, bcolor;
9293 int i, ncolors;
9294
9295 ASSERT(pp != NULL);
9296 ASSERT(!(cache & CACHE_WRITEBACK));
9297
9298 if (npages > 1) {
9299 ncolors = CACHE_NUM_COLOR;
9300 }
9301
9302 for (i = 0; i < npages; i++) {
9303 ASSERT(sfmmu_mlist_held(pp));
9304 ASSERT(PP_ISTNC(pp));
9305 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
9306
9307 if (PP_ISPNC(pp)) {
9308 return (0);
9309 }
9310
9311 clr_valid = 0;
9312 if (PP_ISMAPPED_KPM(pp)) {
9313 caddr_t kpmvaddr;
9314
9315 ASSERT(kpm_enable);
9316 kpmvaddr = hat_kpm_page2va(pp, 1);
9317 ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
9318 color1 = addr_to_vcolor(kpmvaddr);
9319 clr_valid = 1;
9320 }
9321
9322 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9323 if (IS_PAHME(sfhme))
9324 continue;
9325 hmeblkp = sfmmu_hmetohblk(sfhme);
9326
9327 sfmmu_copytte(&sfhme->hme_tte, &tte);
9328 ASSERT(TTE_IS_VALID(&tte));
9329
9330 vaddr = tte_to_vaddr(hmeblkp, tte);
9331 color = addr_to_vcolor(vaddr);
9332
9333 if (npages > 1) {
9334 /*
9335 * If there is a big mapping, make sure
9336 * 8K mapping is consistent with the big
9337 * mapping.
9338 */
9339 bcolor = i % ncolors;
9340 if (color != bcolor) {
9341 return (0);
9342 }
9343 }
9344 if (!clr_valid) {
9345 clr_valid = 1;
9346 color1 = color;
9347 }
9348
9349 if (color1 != color) {
9350 return (0);
9351 }
9352 }
9353
9354 pp = PP_PAGENEXT(pp);
9355 }
9356
9357 return (1);
9358 }
9359
9360 void
sfmmu_page_cache_array(page_t * pp,int flags,int cache_flush_flag,pgcnt_t npages)9361 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
9362 pgcnt_t npages)
9363 {
9364 kmutex_t *pmtx;
9365 int i, ncolors, bcolor;
9366 kpm_hlk_t *kpmp;
9367 cpuset_t cpuset;
9368
9369 ASSERT(pp != NULL);
9370 ASSERT(!(cache & CACHE_WRITEBACK));
9371
9372 kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
9373 pmtx = sfmmu_page_enter(pp);
9374
9375 /*
9376 * Fast path caching single unmapped page
9377 */
9378 if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
9379 flags == HAT_CACHE) {
9380 PP_CLRTNC(pp);
9381 PP_CLRPNC(pp);
9382 sfmmu_page_exit(pmtx);
9383 sfmmu_kpm_kpmp_exit(kpmp);
9384 return;
9385 }
9386
9387 /*
9388 * We need to capture all cpus in order to change cacheability
9389 * because we can't allow one cpu to access the same physical
9390 * page using a cacheable and a non-cachebale mapping at the same
9391 * time. Since we may end up walking the ism mapping list
9392 * have to grab it's lock now since we can't after all the
9393 * cpus have been captured.
9394 */
9395 sfmmu_hat_lock_all();
9396 mutex_enter(&ism_mlist_lock);
9397 kpreempt_disable();
9398 cpuset = cpu_ready_set;
9399 xc_attention(cpuset);
9400
9401 if (npages > 1) {
9402 /*
9403 * Make sure all colors are flushed since the
9404 * sfmmu_page_cache() only flushes one color-
9405 * it does not know big pages.
9406 */
9407 ncolors = CACHE_NUM_COLOR;
9408 if (flags & HAT_TMPNC) {
9409 for (i = 0; i < ncolors; i++) {
9410 sfmmu_cache_flushcolor(i, pp->p_pagenum);
9411 }
9412 cache_flush_flag = CACHE_NO_FLUSH;
9413 }
9414 }
9415
9416 for (i = 0; i < npages; i++) {
9417
9418 ASSERT(sfmmu_mlist_held(pp));
9419
9420 if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
9421
9422 if (npages > 1) {
9423 bcolor = i % ncolors;
9424 } else {
9425 bcolor = NO_VCOLOR;
9426 }
9427
9428 sfmmu_page_cache(pp, flags, cache_flush_flag,
9429 bcolor);
9430 }
9431
9432 pp = PP_PAGENEXT(pp);
9433 }
9434
9435 xt_sync(cpuset);
9436 xc_dismissed(cpuset);
9437 mutex_exit(&ism_mlist_lock);
9438 sfmmu_hat_unlock_all();
9439 sfmmu_page_exit(pmtx);
9440 sfmmu_kpm_kpmp_exit(kpmp);
9441 kpreempt_enable();
9442 }
9443
9444 /*
9445 * This function changes the virtual cacheability of all mappings to a
9446 * particular page. When changing from uncache to cacheable the mappings will
9447 * only be changed if all of them have the same virtual color.
9448 * We need to flush the cache in all cpus. It is possible that
9449 * a process referenced a page as cacheable but has sinced exited
9450 * and cleared the mapping list. We still to flush it but have no
9451 * state so all cpus is the only alternative.
9452 */
9453 static void
sfmmu_page_cache(page_t * pp,int flags,int cache_flush_flag,int bcolor)9454 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
9455 {
9456 struct sf_hment *sfhme;
9457 struct hme_blk *hmeblkp;
9458 sfmmu_t *sfmmup;
9459 tte_t tte, ttemod;
9460 caddr_t vaddr;
9461 int ret, color;
9462 pfn_t pfn;
9463
9464 color = bcolor;
9465 pfn = pp->p_pagenum;
9466
9467 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9468
9469 if (IS_PAHME(sfhme))
9470 continue;
9471 hmeblkp = sfmmu_hmetohblk(sfhme);
9472
9473 sfmmu_copytte(&sfhme->hme_tte, &tte);
9474 ASSERT(TTE_IS_VALID(&tte));
9475 vaddr = tte_to_vaddr(hmeblkp, tte);
9476 color = addr_to_vcolor(vaddr);
9477
9478 #ifdef DEBUG
9479 if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
9480 ASSERT(color == bcolor);
9481 }
9482 #endif
9483
9484 ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
9485
9486 ttemod = tte;
9487 if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
9488 TTE_CLR_VCACHEABLE(&ttemod);
9489 } else { /* flags & HAT_CACHE */
9490 TTE_SET_VCACHEABLE(&ttemod);
9491 }
9492 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
9493 if (ret < 0) {
9494 /*
9495 * Since all cpus are captured modifytte should not
9496 * fail.
9497 */
9498 panic("sfmmu_page_cache: write to tte failed");
9499 }
9500
9501 sfmmup = hblktosfmmu(hmeblkp);
9502 if (cache_flush_flag == CACHE_FLUSH) {
9503 /*
9504 * Flush TSBs, TLBs and caches
9505 */
9506 if (hmeblkp->hblk_shared) {
9507 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9508 uint_t rid = hmeblkp->hblk_tag.htag_rid;
9509 sf_region_t *rgnp;
9510 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9511 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9512 ASSERT(srdp != NULL);
9513 rgnp = srdp->srd_hmergnp[rid];
9514 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9515 srdp, rgnp, rid);
9516 (void) sfmmu_rgntlb_demap(vaddr, rgnp,
9517 hmeblkp, 0);
9518 sfmmu_cache_flush(pfn, addr_to_vcolor(vaddr));
9519 } else if (sfmmup->sfmmu_ismhat) {
9520 if (flags & HAT_CACHE) {
9521 SFMMU_STAT(sf_ism_recache);
9522 } else {
9523 SFMMU_STAT(sf_ism_uncache);
9524 }
9525 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9526 pfn, CACHE_FLUSH);
9527 } else {
9528 sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
9529 pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
9530 }
9531
9532 /*
9533 * all cache entries belonging to this pfn are
9534 * now flushed.
9535 */
9536 cache_flush_flag = CACHE_NO_FLUSH;
9537 } else {
9538 /*
9539 * Flush only TSBs and TLBs.
9540 */
9541 if (hmeblkp->hblk_shared) {
9542 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9543 uint_t rid = hmeblkp->hblk_tag.htag_rid;
9544 sf_region_t *rgnp;
9545 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9546 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9547 ASSERT(srdp != NULL);
9548 rgnp = srdp->srd_hmergnp[rid];
9549 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9550 srdp, rgnp, rid);
9551 (void) sfmmu_rgntlb_demap(vaddr, rgnp,
9552 hmeblkp, 0);
9553 } else if (sfmmup->sfmmu_ismhat) {
9554 if (flags & HAT_CACHE) {
9555 SFMMU_STAT(sf_ism_recache);
9556 } else {
9557 SFMMU_STAT(sf_ism_uncache);
9558 }
9559 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9560 pfn, CACHE_NO_FLUSH);
9561 } else {
9562 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
9563 }
9564 }
9565 }
9566
9567 if (PP_ISMAPPED_KPM(pp))
9568 sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
9569
9570 switch (flags) {
9571
9572 default:
9573 panic("sfmmu_pagecache: unknown flags");
9574 break;
9575
9576 case HAT_CACHE:
9577 PP_CLRTNC(pp);
9578 PP_CLRPNC(pp);
9579 PP_SET_VCOLOR(pp, color);
9580 break;
9581
9582 case HAT_TMPNC:
9583 PP_SETTNC(pp);
9584 PP_SET_VCOLOR(pp, NO_VCOLOR);
9585 break;
9586
9587 case HAT_UNCACHE:
9588 PP_SETPNC(pp);
9589 PP_CLRTNC(pp);
9590 PP_SET_VCOLOR(pp, NO_VCOLOR);
9591 break;
9592 }
9593 }
9594 #endif /* VAC */
9595
9596
9597 /*
9598 * Wrapper routine used to return a context.
9599 *
9600 * It's the responsibility of the caller to guarantee that the
9601 * process serializes on calls here by taking the HAT lock for
9602 * the hat.
9603 *
9604 */
9605 static void
sfmmu_get_ctx(sfmmu_t * sfmmup)9606 sfmmu_get_ctx(sfmmu_t *sfmmup)
9607 {
9608 mmu_ctx_t *mmu_ctxp;
9609 uint_t pstate_save;
9610 int ret;
9611
9612 ASSERT(sfmmu_hat_lock_held(sfmmup));
9613 ASSERT(sfmmup != ksfmmup);
9614
9615 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)) {
9616 sfmmu_setup_tsbinfo(sfmmup);
9617 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ALLCTX_INVALID);
9618 }
9619
9620 kpreempt_disable();
9621
9622 mmu_ctxp = CPU_MMU_CTXP(CPU);
9623 ASSERT(mmu_ctxp);
9624 ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
9625 ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
9626
9627 /*
9628 * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
9629 */
9630 if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
9631 sfmmu_ctx_wrap_around(mmu_ctxp, B_TRUE);
9632
9633 /*
9634 * Let the MMU set up the page sizes to use for
9635 * this context in the TLB. Don't program 2nd dtlb for ism hat.
9636 */
9637 if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
9638 mmu_set_ctx_page_sizes(sfmmup);
9639 }
9640
9641 /*
9642 * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
9643 * interrupts disabled to prevent race condition with wrap-around
9644 * ctx invalidatation. In sun4v, ctx invalidation also involves
9645 * a HV call to set the number of TSBs to 0. If interrupts are not
9646 * disabled until after sfmmu_load_mmustate is complete TSBs may
9647 * become assigned to INVALID_CONTEXT. This is not allowed.
9648 */
9649 pstate_save = sfmmu_disable_intrs();
9650
9651 if (sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE) &&
9652 sfmmup->sfmmu_scdp != NULL) {
9653 sf_scd_t *scdp = sfmmup->sfmmu_scdp;
9654 sfmmu_t *scsfmmup = scdp->scd_sfmmup;
9655 ret = sfmmu_alloc_ctx(scsfmmup, 1, CPU, SFMMU_SHARED);
9656 /* debug purpose only */
9657 ASSERT(!ret || scsfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
9658 != INVALID_CONTEXT);
9659 }
9660 sfmmu_load_mmustate(sfmmup);
9661
9662 sfmmu_enable_intrs(pstate_save);
9663
9664 kpreempt_enable();
9665 }
9666
9667 /*
9668 * When all cnums are used up in a MMU, cnum will wrap around to the
9669 * next generation and start from 2.
9670 */
9671 static void
sfmmu_ctx_wrap_around(mmu_ctx_t * mmu_ctxp,boolean_t reset_cnum)9672 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp, boolean_t reset_cnum)
9673 {
9674
9675 /* caller must have disabled the preemption */
9676 ASSERT(curthread->t_preempt >= 1);
9677 ASSERT(mmu_ctxp != NULL);
9678
9679 /* acquire Per-MMU (PM) spin lock */
9680 mutex_enter(&mmu_ctxp->mmu_lock);
9681
9682 /* re-check to see if wrap-around is needed */
9683 if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
9684 goto done;
9685
9686 SFMMU_MMU_STAT(mmu_wrap_around);
9687
9688 /* update gnum */
9689 ASSERT(mmu_ctxp->mmu_gnum != 0);
9690 mmu_ctxp->mmu_gnum++;
9691 if (mmu_ctxp->mmu_gnum == 0 ||
9692 mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
9693 cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
9694 (void *)mmu_ctxp);
9695 }
9696
9697 if (mmu_ctxp->mmu_ncpus > 1) {
9698 cpuset_t cpuset;
9699
9700 membar_enter(); /* make sure updated gnum visible */
9701
9702 SFMMU_XCALL_STATS(NULL);
9703
9704 /* xcall to others on the same MMU to invalidate ctx */
9705 cpuset = mmu_ctxp->mmu_cpuset;
9706 ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id) || !reset_cnum);
9707 CPUSET_DEL(cpuset, CPU->cpu_id);
9708 CPUSET_AND(cpuset, cpu_ready_set);
9709
9710 /*
9711 * Pass in INVALID_CONTEXT as the first parameter to
9712 * sfmmu_raise_tsb_exception, which invalidates the context
9713 * of any process running on the CPUs in the MMU.
9714 */
9715 xt_some(cpuset, sfmmu_raise_tsb_exception,
9716 INVALID_CONTEXT, INVALID_CONTEXT);
9717 xt_sync(cpuset);
9718
9719 SFMMU_MMU_STAT(mmu_tsb_raise_exception);
9720 }
9721
9722 if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
9723 sfmmu_setctx_sec(INVALID_CONTEXT);
9724 sfmmu_clear_utsbinfo();
9725 }
9726
9727 /*
9728 * No xcall is needed here. For sun4u systems all CPUs in context
9729 * domain share a single physical MMU therefore it's enough to flush
9730 * TLB on local CPU. On sun4v systems we use 1 global context
9731 * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
9732 * handler. Note that vtag_flushall_uctxs() is called
9733 * for Ultra II machine, where the equivalent flushall functionality
9734 * is implemented in SW, and only user ctx TLB entries are flushed.
9735 */
9736 if (&vtag_flushall_uctxs != NULL) {
9737 vtag_flushall_uctxs();
9738 } else {
9739 vtag_flushall();
9740 }
9741
9742 /* reset mmu cnum, skips cnum 0 and 1 */
9743 if (reset_cnum == B_TRUE)
9744 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
9745
9746 done:
9747 mutex_exit(&mmu_ctxp->mmu_lock);
9748 }
9749
9750
9751 /*
9752 * For multi-threaded process, set the process context to INVALID_CONTEXT
9753 * so that it faults and reloads the MMU state from TL=0. For single-threaded
9754 * process, we can just load the MMU state directly without having to
9755 * set context invalid. Caller must hold the hat lock since we don't
9756 * acquire it here.
9757 */
9758 static void
sfmmu_sync_mmustate(sfmmu_t * sfmmup)9759 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
9760 {
9761 uint_t cnum;
9762 uint_t pstate_save;
9763
9764 ASSERT(sfmmup != ksfmmup);
9765 ASSERT(sfmmu_hat_lock_held(sfmmup));
9766
9767 kpreempt_disable();
9768
9769 /*
9770 * We check whether the pass'ed-in sfmmup is the same as the
9771 * current running proc. This is to makes sure the current proc
9772 * stays single-threaded if it already is.
9773 */
9774 if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
9775 (curthread->t_procp->p_lwpcnt == 1)) {
9776 /* single-thread */
9777 cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
9778 if (cnum != INVALID_CONTEXT) {
9779 uint_t curcnum;
9780 /*
9781 * Disable interrupts to prevent race condition
9782 * with sfmmu_ctx_wrap_around ctx invalidation.
9783 * In sun4v, ctx invalidation involves setting
9784 * TSB to NULL, hence, interrupts should be disabled
9785 * untill after sfmmu_load_mmustate is completed.
9786 */
9787 pstate_save = sfmmu_disable_intrs();
9788 curcnum = sfmmu_getctx_sec();
9789 if (curcnum == cnum)
9790 sfmmu_load_mmustate(sfmmup);
9791 sfmmu_enable_intrs(pstate_save);
9792 ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
9793 }
9794 } else {
9795 /*
9796 * multi-thread
9797 * or when sfmmup is not the same as the curproc.
9798 */
9799 sfmmu_invalidate_ctx(sfmmup);
9800 }
9801
9802 kpreempt_enable();
9803 }
9804
9805
9806 /*
9807 * Replace the specified TSB with a new TSB. This function gets called when
9808 * we grow, shrink or swapin a TSB. When swapping in a TSB (TSB_SWAPIN), the
9809 * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
9810 * (8K).
9811 *
9812 * Caller must hold the HAT lock, but should assume any tsb_info
9813 * pointers it has are no longer valid after calling this function.
9814 *
9815 * Return values:
9816 * TSB_ALLOCFAIL Failed to allocate a TSB, due to memory constraints
9817 * TSB_LOSTRACE HAT is busy, i.e. another thread is already doing
9818 * something to this tsbinfo/TSB
9819 * TSB_SUCCESS Operation succeeded
9820 */
9821 static tsb_replace_rc_t
sfmmu_replace_tsb(sfmmu_t * sfmmup,struct tsb_info * old_tsbinfo,uint_t szc,hatlock_t * hatlockp,uint_t flags)9822 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
9823 hatlock_t *hatlockp, uint_t flags)
9824 {
9825 struct tsb_info *new_tsbinfo = NULL;
9826 struct tsb_info *curtsb, *prevtsb;
9827 uint_t tte_sz_mask;
9828 int i;
9829
9830 ASSERT(sfmmup != ksfmmup);
9831 ASSERT(sfmmup->sfmmu_ismhat == 0);
9832 ASSERT(sfmmu_hat_lock_held(sfmmup));
9833 ASSERT(szc <= tsb_max_growsize);
9834
9835 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
9836 return (TSB_LOSTRACE);
9837
9838 /*
9839 * Find the tsb_info ahead of this one in the list, and
9840 * also make sure that the tsb_info passed in really
9841 * exists!
9842 */
9843 for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9844 curtsb != old_tsbinfo && curtsb != NULL;
9845 prevtsb = curtsb, curtsb = curtsb->tsb_next)
9846 ;
9847 ASSERT(curtsb != NULL);
9848
9849 if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9850 /*
9851 * The process is swapped out, so just set the new size
9852 * code. When it swaps back in, we'll allocate a new one
9853 * of the new chosen size.
9854 */
9855 curtsb->tsb_szc = szc;
9856 return (TSB_SUCCESS);
9857 }
9858 SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
9859
9860 tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
9861
9862 /*
9863 * All initialization is done inside of sfmmu_tsbinfo_alloc().
9864 * If we fail to allocate a TSB, exit.
9865 *
9866 * If tsb grows with new tsb size > 4M and old tsb size < 4M,
9867 * then try 4M slab after the initial alloc fails.
9868 *
9869 * If tsb swapin with tsb size > 4M, then try 4M after the
9870 * initial alloc fails.
9871 */
9872 sfmmu_hat_exit(hatlockp);
9873 if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc,
9874 tte_sz_mask, flags, sfmmup) &&
9875 (!(flags & (TSB_GROW | TSB_SWAPIN)) || (szc <= TSB_4M_SZCODE) ||
9876 (!(flags & TSB_SWAPIN) &&
9877 (old_tsbinfo->tsb_szc >= TSB_4M_SZCODE)) ||
9878 sfmmu_tsbinfo_alloc(&new_tsbinfo, TSB_4M_SZCODE,
9879 tte_sz_mask, flags, sfmmup))) {
9880 (void) sfmmu_hat_enter(sfmmup);
9881 if (!(flags & TSB_SWAPIN))
9882 SFMMU_STAT(sf_tsb_resize_failures);
9883 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9884 return (TSB_ALLOCFAIL);
9885 }
9886 (void) sfmmu_hat_enter(sfmmup);
9887
9888 /*
9889 * Re-check to make sure somebody else didn't muck with us while we
9890 * didn't hold the HAT lock. If the process swapped out, fine, just
9891 * exit; this can happen if we try to shrink the TSB from the context
9892 * of another process (such as on an ISM unmap), though it is rare.
9893 */
9894 if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9895 SFMMU_STAT(sf_tsb_resize_failures);
9896 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9897 sfmmu_hat_exit(hatlockp);
9898 sfmmu_tsbinfo_free(new_tsbinfo);
9899 (void) sfmmu_hat_enter(sfmmup);
9900 return (TSB_LOSTRACE);
9901 }
9902
9903 #ifdef DEBUG
9904 /* Reverify that the tsb_info still exists.. for debugging only */
9905 for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9906 curtsb != old_tsbinfo && curtsb != NULL;
9907 prevtsb = curtsb, curtsb = curtsb->tsb_next)
9908 ;
9909 ASSERT(curtsb != NULL);
9910 #endif /* DEBUG */
9911
9912 /*
9913 * Quiesce any CPUs running this process on their next TLB miss
9914 * so they atomically see the new tsb_info. We temporarily set the
9915 * context to invalid context so new threads that come on processor
9916 * after we do the xcall to cpusran will also serialize behind the
9917 * HAT lock on TLB miss and will see the new TSB. Since this short
9918 * race with a new thread coming on processor is relatively rare,
9919 * this synchronization mechanism should be cheaper than always
9920 * pausing all CPUs for the duration of the setup, which is what
9921 * the old implementation did. This is particuarly true if we are
9922 * copying a huge chunk of memory around during that window.
9923 *
9924 * The memory barriers are to make sure things stay consistent
9925 * with resume() since it does not hold the HAT lock while
9926 * walking the list of tsb_info structures.
9927 */
9928 if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
9929 /* The TSB is either growing or shrinking. */
9930 sfmmu_invalidate_ctx(sfmmup);
9931 } else {
9932 /*
9933 * It is illegal to swap in TSBs from a process other
9934 * than a process being swapped in. This in turn
9935 * implies we do not have a valid MMU context here
9936 * since a process needs one to resolve translation
9937 * misses.
9938 */
9939 ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
9940 }
9941
9942 #ifdef DEBUG
9943 ASSERT(max_mmu_ctxdoms > 0);
9944
9945 /*
9946 * Process should have INVALID_CONTEXT on all MMUs
9947 */
9948 for (i = 0; i < max_mmu_ctxdoms; i++) {
9949
9950 ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
9951 }
9952 #endif
9953
9954 new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
9955 membar_stst(); /* strict ordering required */
9956 if (prevtsb)
9957 prevtsb->tsb_next = new_tsbinfo;
9958 else
9959 sfmmup->sfmmu_tsb = new_tsbinfo;
9960 membar_enter(); /* make sure new TSB globally visible */
9961
9962 /*
9963 * We need to migrate TSB entries from the old TSB to the new TSB
9964 * if tsb_remap_ttes is set and the TSB is growing.
9965 */
9966 if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
9967 sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
9968
9969 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9970
9971 /*
9972 * Drop the HAT lock to free our old tsb_info.
9973 */
9974 sfmmu_hat_exit(hatlockp);
9975
9976 if ((flags & TSB_GROW) == TSB_GROW) {
9977 SFMMU_STAT(sf_tsb_grow);
9978 } else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
9979 SFMMU_STAT(sf_tsb_shrink);
9980 }
9981
9982 sfmmu_tsbinfo_free(old_tsbinfo);
9983
9984 (void) sfmmu_hat_enter(sfmmup);
9985 return (TSB_SUCCESS);
9986 }
9987
9988 /*
9989 * This function will re-program hat pgsz array, and invalidate the
9990 * process' context, forcing the process to switch to another
9991 * context on the next TLB miss, and therefore start using the
9992 * TLB that is reprogrammed for the new page sizes.
9993 */
9994 void
sfmmu_reprog_pgsz_arr(sfmmu_t * sfmmup,uint8_t * tmp_pgsz)9995 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
9996 {
9997 int i;
9998 hatlock_t *hatlockp = NULL;
9999
10000 hatlockp = sfmmu_hat_enter(sfmmup);
10001 /* USIII+-IV+ optimization, requires hat lock */
10002 if (tmp_pgsz) {
10003 for (i = 0; i < mmu_page_sizes; i++)
10004 sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
10005 }
10006 SFMMU_STAT(sf_tlb_reprog_pgsz);
10007
10008 sfmmu_invalidate_ctx(sfmmup);
10009
10010 sfmmu_hat_exit(hatlockp);
10011 }
10012
10013 /*
10014 * The scd_rttecnt field in the SCD must be updated to take account of the
10015 * regions which it contains.
10016 */
10017 static void
sfmmu_set_scd_rttecnt(sf_srd_t * srdp,sf_scd_t * scdp)10018 sfmmu_set_scd_rttecnt(sf_srd_t *srdp, sf_scd_t *scdp)
10019 {
10020 uint_t rid;
10021 uint_t i, j;
10022 ulong_t w;
10023 sf_region_t *rgnp;
10024
10025 ASSERT(srdp != NULL);
10026
10027 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
10028 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
10029 continue;
10030 }
10031
10032 j = 0;
10033 while (w) {
10034 if (!(w & 0x1)) {
10035 j++;
10036 w >>= 1;
10037 continue;
10038 }
10039 rid = (i << BT_ULSHIFT) | j;
10040 j++;
10041 w >>= 1;
10042
10043 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
10044 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
10045 rgnp = srdp->srd_hmergnp[rid];
10046 ASSERT(rgnp->rgn_refcnt > 0);
10047 ASSERT(rgnp->rgn_id == rid);
10048
10049 scdp->scd_rttecnt[rgnp->rgn_pgszc] +=
10050 rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
10051
10052 /*
10053 * Maintain the tsb0 inflation cnt for the regions
10054 * in the SCD.
10055 */
10056 if (rgnp->rgn_pgszc >= TTE4M) {
10057 scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt +=
10058 rgnp->rgn_size >>
10059 (TTE_PAGE_SHIFT(TTE8K) + 2);
10060 }
10061 }
10062 }
10063 }
10064
10065 /*
10066 * This function assumes that there are either four or six supported page
10067 * sizes and at most two programmable TLBs, so we need to decide which
10068 * page sizes are most important and then tell the MMU layer so it
10069 * can adjust the TLB page sizes accordingly (if supported).
10070 *
10071 * If these assumptions change, this function will need to be
10072 * updated to support whatever the new limits are.
10073 *
10074 * The growing flag is nonzero if we are growing the address space,
10075 * and zero if it is shrinking. This allows us to decide whether
10076 * to grow or shrink our TSB, depending upon available memory
10077 * conditions.
10078 */
10079 static void
sfmmu_check_page_sizes(sfmmu_t * sfmmup,int growing)10080 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
10081 {
10082 uint64_t ttecnt[MMU_PAGE_SIZES];
10083 uint64_t tte8k_cnt, tte4m_cnt;
10084 uint8_t i;
10085 int sectsb_thresh;
10086
10087 /*
10088 * Kernel threads, processes with small address spaces not using
10089 * large pages, and dummy ISM HATs need not apply.
10090 */
10091 if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != 0)
10092 return;
10093
10094 if (!SFMMU_LGPGS_INUSE(sfmmup) &&
10095 sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
10096 return;
10097
10098 for (i = 0; i < mmu_page_sizes; i++) {
10099 ttecnt[i] = sfmmup->sfmmu_ttecnt[i] +
10100 sfmmup->sfmmu_ismttecnt[i];
10101 }
10102
10103 /* Check pagesizes in use, and possibly reprogram DTLB. */
10104 if (&mmu_check_page_sizes)
10105 mmu_check_page_sizes(sfmmup, ttecnt);
10106
10107 /*
10108 * Calculate the number of 8k ttes to represent the span of these
10109 * pages.
10110 */
10111 tte8k_cnt = ttecnt[TTE8K] +
10112 (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
10113 (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
10114 if (mmu_page_sizes == max_mmu_page_sizes) {
10115 tte4m_cnt = ttecnt[TTE4M] +
10116 (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
10117 (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
10118 } else {
10119 tte4m_cnt = ttecnt[TTE4M];
10120 }
10121
10122 /*
10123 * Inflate tte8k_cnt to allow for region large page allocation failure.
10124 */
10125 tte8k_cnt += sfmmup->sfmmu_tsb0_4minflcnt;
10126
10127 /*
10128 * Inflate TSB sizes by a factor of 2 if this process
10129 * uses 4M text pages to minimize extra conflict misses
10130 * in the first TSB since without counting text pages
10131 * 8K TSB may become too small.
10132 *
10133 * Also double the size of the second TSB to minimize
10134 * extra conflict misses due to competition between 4M text pages
10135 * and data pages.
10136 *
10137 * We need to adjust the second TSB allocation threshold by the
10138 * inflation factor, since there is no point in creating a second
10139 * TSB when we know all the mappings can fit in the I/D TLBs.
10140 */
10141 sectsb_thresh = tsb_sectsb_threshold;
10142 if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
10143 tte8k_cnt <<= 1;
10144 tte4m_cnt <<= 1;
10145 sectsb_thresh <<= 1;
10146 }
10147
10148 /*
10149 * Check to see if our TSB is the right size; we may need to
10150 * grow or shrink it. If the process is small, our work is
10151 * finished at this point.
10152 */
10153 if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
10154 return;
10155 }
10156 sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
10157 }
10158
10159 static void
sfmmu_size_tsb(sfmmu_t * sfmmup,int growing,uint64_t tte8k_cnt,uint64_t tte4m_cnt,int sectsb_thresh)10160 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
10161 uint64_t tte4m_cnt, int sectsb_thresh)
10162 {
10163 int tsb_bits;
10164 uint_t tsb_szc;
10165 struct tsb_info *tsbinfop;
10166 hatlock_t *hatlockp = NULL;
10167
10168 hatlockp = sfmmu_hat_enter(sfmmup);
10169 ASSERT(hatlockp != NULL);
10170 tsbinfop = sfmmup->sfmmu_tsb;
10171 ASSERT(tsbinfop != NULL);
10172
10173 /*
10174 * If we're growing, select the size based on RSS. If we're
10175 * shrinking, leave some room so we don't have to turn around and
10176 * grow again immediately.
10177 */
10178 if (growing)
10179 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
10180 else
10181 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
10182
10183 if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10184 (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10185 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10186 hatlockp, TSB_SHRINK);
10187 } else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
10188 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10189 hatlockp, TSB_GROW);
10190 }
10191 tsbinfop = sfmmup->sfmmu_tsb;
10192
10193 /*
10194 * With the TLB and first TSB out of the way, we need to see if
10195 * we need a second TSB for 4M pages. If we managed to reprogram
10196 * the TLB page sizes above, the process will start using this new
10197 * TSB right away; otherwise, it will start using it on the next
10198 * context switch. Either way, it's no big deal so there's no
10199 * synchronization with the trap handlers here unless we grow the
10200 * TSB (in which case it's required to prevent using the old one
10201 * after it's freed). Note: second tsb is required for 32M/256M
10202 * page sizes.
10203 */
10204 if (tte4m_cnt > sectsb_thresh) {
10205 /*
10206 * If we're growing, select the size based on RSS. If we're
10207 * shrinking, leave some room so we don't have to turn
10208 * around and grow again immediately.
10209 */
10210 if (growing)
10211 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
10212 else
10213 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
10214 if (tsbinfop->tsb_next == NULL) {
10215 struct tsb_info *newtsb;
10216 int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
10217 0 : TSB_ALLOC;
10218
10219 sfmmu_hat_exit(hatlockp);
10220
10221 /*
10222 * Try to allocate a TSB for 4[32|256]M pages. If we
10223 * can't get the size we want, retry w/a minimum sized
10224 * TSB. If that still didn't work, give up; we can
10225 * still run without one.
10226 */
10227 tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
10228 TSB4M|TSB32M|TSB256M:TSB4M;
10229 if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
10230 allocflags, sfmmup)) &&
10231 (tsb_szc <= TSB_4M_SZCODE ||
10232 sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
10233 tsb_bits, allocflags, sfmmup)) &&
10234 sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
10235 tsb_bits, allocflags, sfmmup)) {
10236 return;
10237 }
10238
10239 hatlockp = sfmmu_hat_enter(sfmmup);
10240
10241 sfmmu_invalidate_ctx(sfmmup);
10242
10243 if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
10244 sfmmup->sfmmu_tsb->tsb_next = newtsb;
10245 SFMMU_STAT(sf_tsb_sectsb_create);
10246 sfmmu_hat_exit(hatlockp);
10247 return;
10248 } else {
10249 /*
10250 * It's annoying, but possible for us
10251 * to get here.. we dropped the HAT lock
10252 * because of locking order in the kmem
10253 * allocator, and while we were off getting
10254 * our memory, some other thread decided to
10255 * do us a favor and won the race to get a
10256 * second TSB for this process. Sigh.
10257 */
10258 sfmmu_hat_exit(hatlockp);
10259 sfmmu_tsbinfo_free(newtsb);
10260 return;
10261 }
10262 }
10263
10264 /*
10265 * We have a second TSB, see if it's big enough.
10266 */
10267 tsbinfop = tsbinfop->tsb_next;
10268
10269 /*
10270 * Check to see if our second TSB is the right size;
10271 * we may need to grow or shrink it.
10272 * To prevent thrashing (e.g. growing the TSB on a
10273 * subsequent map operation), only try to shrink if
10274 * the TSB reach exceeds twice the virtual address
10275 * space size.
10276 */
10277 if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10278 (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10279 (void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10280 tsb_szc, hatlockp, TSB_SHRINK);
10281 } else if (growing && tsb_szc > tsbinfop->tsb_szc &&
10282 TSB_OK_GROW()) {
10283 (void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10284 tsb_szc, hatlockp, TSB_GROW);
10285 }
10286 }
10287
10288 sfmmu_hat_exit(hatlockp);
10289 }
10290
10291 /*
10292 * Free up a sfmmu
10293 * Since the sfmmu is currently embedded in the hat struct we simply zero
10294 * out our fields and free up the ism map blk list if any.
10295 */
10296 static void
sfmmu_free_sfmmu(sfmmu_t * sfmmup)10297 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
10298 {
10299 ism_blk_t *blkp, *nx_blkp;
10300 #ifdef DEBUG
10301 ism_map_t *map;
10302 int i;
10303 #endif
10304
10305 ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
10306 ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
10307 ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
10308 ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
10309 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
10310 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
10311 ASSERT(SF_RGNMAP_ISNULL(sfmmup));
10312
10313 sfmmup->sfmmu_free = 0;
10314 sfmmup->sfmmu_ismhat = 0;
10315
10316 blkp = sfmmup->sfmmu_iblk;
10317 sfmmup->sfmmu_iblk = NULL;
10318
10319 while (blkp) {
10320 #ifdef DEBUG
10321 map = blkp->iblk_maps;
10322 for (i = 0; i < ISM_MAP_SLOTS; i++) {
10323 ASSERT(map[i].imap_seg == 0);
10324 ASSERT(map[i].imap_ismhat == NULL);
10325 ASSERT(map[i].imap_ment == NULL);
10326 }
10327 #endif
10328 nx_blkp = blkp->iblk_next;
10329 blkp->iblk_next = NULL;
10330 blkp->iblk_nextpa = (uint64_t)-1;
10331 kmem_cache_free(ism_blk_cache, blkp);
10332 blkp = nx_blkp;
10333 }
10334 }
10335
10336 /*
10337 * Locking primitves accessed by HATLOCK macros
10338 */
10339
10340 #define SFMMU_SPL_MTX (0x0)
10341 #define SFMMU_ML_MTX (0x1)
10342
10343 #define SFMMU_MLSPL_MTX(type, pg) (((type) == SFMMU_SPL_MTX) ? \
10344 SPL_HASH(pg) : MLIST_HASH(pg))
10345
10346 kmutex_t *
sfmmu_page_enter(struct page * pp)10347 sfmmu_page_enter(struct page *pp)
10348 {
10349 return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
10350 }
10351
10352 void
sfmmu_page_exit(kmutex_t * spl)10353 sfmmu_page_exit(kmutex_t *spl)
10354 {
10355 mutex_exit(spl);
10356 }
10357
10358 int
sfmmu_page_spl_held(struct page * pp)10359 sfmmu_page_spl_held(struct page *pp)
10360 {
10361 return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
10362 }
10363
10364 kmutex_t *
sfmmu_mlist_enter(struct page * pp)10365 sfmmu_mlist_enter(struct page *pp)
10366 {
10367 return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
10368 }
10369
10370 void
sfmmu_mlist_exit(kmutex_t * mml)10371 sfmmu_mlist_exit(kmutex_t *mml)
10372 {
10373 mutex_exit(mml);
10374 }
10375
10376 int
sfmmu_mlist_held(struct page * pp)10377 sfmmu_mlist_held(struct page *pp)
10378 {
10379
10380 return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
10381 }
10382
10383 /*
10384 * Common code for sfmmu_mlist_enter() and sfmmu_page_enter(). For
10385 * sfmmu_mlist_enter() case mml_table lock array is used and for
10386 * sfmmu_page_enter() sfmmu_page_lock lock array is used.
10387 *
10388 * The lock is taken on a root page so that it protects an operation on all
10389 * constituent pages of a large page pp belongs to.
10390 *
10391 * The routine takes a lock from the appropriate array. The lock is determined
10392 * by hashing the root page. After taking the lock this routine checks if the
10393 * root page has the same size code that was used to determine the root (i.e
10394 * that root hasn't changed). If root page has the expected p_szc field we
10395 * have the right lock and it's returned to the caller. If root's p_szc
10396 * decreased we release the lock and retry from the beginning. This case can
10397 * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
10398 * value and taking the lock. The number of retries due to p_szc decrease is
10399 * limited by the maximum p_szc value. If p_szc is 0 we return the lock
10400 * determined by hashing pp itself.
10401 *
10402 * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
10403 * possible that p_szc can increase. To increase p_szc a thread has to lock
10404 * all constituent pages EXCL and do hat_pageunload() on all of them. All the
10405 * callers that don't hold a page locked recheck if hmeblk through which pp
10406 * was found still maps this pp. If it doesn't map it anymore returned lock
10407 * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
10408 * p_szc increase after taking the lock it returns this lock without further
10409 * retries because in this case the caller doesn't care about which lock was
10410 * taken. The caller will drop it right away.
10411 *
10412 * After the routine returns it's guaranteed that hat_page_demote() can't
10413 * change p_szc field of any of constituent pages of a large page pp belongs
10414 * to as long as pp was either locked at least SHARED prior to this call or
10415 * the caller finds that hment that pointed to this pp still references this
10416 * pp (this also assumes that the caller holds hme hash bucket lock so that
10417 * the same pp can't be remapped into the same hmeblk after it was unmapped by
10418 * hat_pageunload()).
10419 */
10420 static kmutex_t *
sfmmu_mlspl_enter(struct page * pp,int type)10421 sfmmu_mlspl_enter(struct page *pp, int type)
10422 {
10423 kmutex_t *mtx;
10424 uint_t prev_rszc = UINT_MAX;
10425 page_t *rootpp;
10426 uint_t szc;
10427 uint_t rszc;
10428 uint_t pszc = pp->p_szc;
10429
10430 ASSERT(pp != NULL);
10431
10432 again:
10433 if (pszc == 0) {
10434 mtx = SFMMU_MLSPL_MTX(type, pp);
10435 mutex_enter(mtx);
10436 return (mtx);
10437 }
10438
10439 /* The lock lives in the root page */
10440 rootpp = PP_GROUPLEADER(pp, pszc);
10441 mtx = SFMMU_MLSPL_MTX(type, rootpp);
10442 mutex_enter(mtx);
10443
10444 /*
10445 * Return mml in the following 3 cases:
10446 *
10447 * 1) If pp itself is root since if its p_szc decreased before we took
10448 * the lock pp is still the root of smaller szc page. And if its p_szc
10449 * increased it doesn't matter what lock we return (see comment in
10450 * front of this routine).
10451 *
10452 * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
10453 * large page we have the right lock since any previous potential
10454 * hat_page_demote() is done demoting from greater than current root's
10455 * p_szc because hat_page_demote() changes root's p_szc last. No
10456 * further hat_page_demote() can start or be in progress since it
10457 * would need the same lock we currently hold.
10458 *
10459 * 3) If rootpp's p_szc increased since previous iteration it doesn't
10460 * matter what lock we return (see comment in front of this routine).
10461 */
10462 if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
10463 rszc >= prev_rszc) {
10464 return (mtx);
10465 }
10466
10467 /*
10468 * hat_page_demote() could have decreased root's p_szc.
10469 * In this case pp's p_szc must also be smaller than pszc.
10470 * Retry.
10471 */
10472 if (rszc < pszc) {
10473 szc = pp->p_szc;
10474 if (szc < pszc) {
10475 mutex_exit(mtx);
10476 pszc = szc;
10477 goto again;
10478 }
10479 /*
10480 * pp's p_szc increased after it was decreased.
10481 * page cannot be mapped. Return current lock. The caller
10482 * will drop it right away.
10483 */
10484 return (mtx);
10485 }
10486
10487 /*
10488 * root's p_szc is greater than pp's p_szc.
10489 * hat_page_demote() is not done with all pages
10490 * yet. Wait for it to complete.
10491 */
10492 mutex_exit(mtx);
10493 rootpp = PP_GROUPLEADER(rootpp, rszc);
10494 mtx = SFMMU_MLSPL_MTX(type, rootpp);
10495 mutex_enter(mtx);
10496 mutex_exit(mtx);
10497 prev_rszc = rszc;
10498 goto again;
10499 }
10500
10501 static int
sfmmu_mlspl_held(struct page * pp,int type)10502 sfmmu_mlspl_held(struct page *pp, int type)
10503 {
10504 kmutex_t *mtx;
10505
10506 ASSERT(pp != NULL);
10507 /* The lock lives in the root page */
10508 pp = PP_PAGEROOT(pp);
10509 ASSERT(pp != NULL);
10510
10511 mtx = SFMMU_MLSPL_MTX(type, pp);
10512 return (MUTEX_HELD(mtx));
10513 }
10514
10515 static uint_t
sfmmu_get_free_hblk(struct hme_blk ** hmeblkpp,uint_t critical)10516 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
10517 {
10518 struct hme_blk *hblkp;
10519
10520
10521 if (freehblkp != NULL) {
10522 mutex_enter(&freehblkp_lock);
10523 if (freehblkp != NULL) {
10524 /*
10525 * If the current thread is owning hblk_reserve OR
10526 * critical request from sfmmu_hblk_steal()
10527 * let it succeed even if freehblkcnt is really low.
10528 */
10529 if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
10530 SFMMU_STAT(sf_get_free_throttle);
10531 mutex_exit(&freehblkp_lock);
10532 return (0);
10533 }
10534 freehblkcnt--;
10535 *hmeblkpp = freehblkp;
10536 hblkp = *hmeblkpp;
10537 freehblkp = hblkp->hblk_next;
10538 mutex_exit(&freehblkp_lock);
10539 hblkp->hblk_next = NULL;
10540 SFMMU_STAT(sf_get_free_success);
10541
10542 ASSERT(hblkp->hblk_hmecnt == 0);
10543 ASSERT(hblkp->hblk_vcnt == 0);
10544 ASSERT(hblkp->hblk_nextpa == va_to_pa((caddr_t)hblkp));
10545
10546 return (1);
10547 }
10548 mutex_exit(&freehblkp_lock);
10549 }
10550
10551 /* Check cpu hblk pending queues */
10552 if ((*hmeblkpp = sfmmu_check_pending_hblks(TTE8K)) != NULL) {
10553 hblkp = *hmeblkpp;
10554 hblkp->hblk_next = NULL;
10555 hblkp->hblk_nextpa = va_to_pa((caddr_t)hblkp);
10556
10557 ASSERT(hblkp->hblk_hmecnt == 0);
10558 ASSERT(hblkp->hblk_vcnt == 0);
10559
10560 return (1);
10561 }
10562
10563 SFMMU_STAT(sf_get_free_fail);
10564 return (0);
10565 }
10566
10567 static uint_t
sfmmu_put_free_hblk(struct hme_blk * hmeblkp,uint_t critical)10568 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
10569 {
10570 struct hme_blk *hblkp;
10571
10572 ASSERT(hmeblkp->hblk_hmecnt == 0);
10573 ASSERT(hmeblkp->hblk_vcnt == 0);
10574 ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10575
10576 /*
10577 * If the current thread is mapping into kernel space,
10578 * let it succede even if freehblkcnt is max
10579 * so that it will avoid freeing it to kmem.
10580 * This will prevent stack overflow due to
10581 * possible recursion since kmem_cache_free()
10582 * might require creation of a slab which
10583 * in turn needs an hmeblk to map that slab;
10584 * let's break this vicious chain at the first
10585 * opportunity.
10586 */
10587 if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10588 mutex_enter(&freehblkp_lock);
10589 if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10590 SFMMU_STAT(sf_put_free_success);
10591 freehblkcnt++;
10592 hmeblkp->hblk_next = freehblkp;
10593 freehblkp = hmeblkp;
10594 mutex_exit(&freehblkp_lock);
10595 return (1);
10596 }
10597 mutex_exit(&freehblkp_lock);
10598 }
10599
10600 /*
10601 * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
10602 * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
10603 * we are not in the process of mapping into kernel space.
10604 */
10605 ASSERT(!critical);
10606 while (freehblkcnt > HBLK_RESERVE_CNT) {
10607 mutex_enter(&freehblkp_lock);
10608 if (freehblkcnt > HBLK_RESERVE_CNT) {
10609 freehblkcnt--;
10610 hblkp = freehblkp;
10611 freehblkp = hblkp->hblk_next;
10612 mutex_exit(&freehblkp_lock);
10613 ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
10614 kmem_cache_free(sfmmu8_cache, hblkp);
10615 continue;
10616 }
10617 mutex_exit(&freehblkp_lock);
10618 }
10619 SFMMU_STAT(sf_put_free_fail);
10620 return (0);
10621 }
10622
10623 static void
sfmmu_hblk_swap(struct hme_blk * new)10624 sfmmu_hblk_swap(struct hme_blk *new)
10625 {
10626 struct hme_blk *old, *hblkp, *prev;
10627 uint64_t newpa;
10628 caddr_t base, vaddr, endaddr;
10629 struct hmehash_bucket *hmebp;
10630 struct sf_hment *osfhme, *nsfhme;
10631 page_t *pp;
10632 kmutex_t *pml;
10633 tte_t tte;
10634 struct hme_blk *list = NULL;
10635
10636 #ifdef DEBUG
10637 hmeblk_tag hblktag;
10638 struct hme_blk *found;
10639 #endif
10640 old = HBLK_RESERVE;
10641 ASSERT(!old->hblk_shared);
10642
10643 /*
10644 * save pa before bcopy clobbers it
10645 */
10646 newpa = new->hblk_nextpa;
10647
10648 base = (caddr_t)get_hblk_base(old);
10649 endaddr = base + get_hblk_span(old);
10650
10651 /*
10652 * acquire hash bucket lock.
10653 */
10654 hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K,
10655 SFMMU_INVALID_SHMERID);
10656
10657 /*
10658 * copy contents from old to new
10659 */
10660 bcopy((void *)old, (void *)new, HME8BLK_SZ);
10661
10662 /*
10663 * add new to hash chain
10664 */
10665 sfmmu_hblk_hash_add(hmebp, new, newpa);
10666
10667 /*
10668 * search hash chain for hblk_reserve; this needs to be performed
10669 * after adding new, otherwise prev won't correspond to the hblk which
10670 * is prior to old in hash chain when we call sfmmu_hblk_hash_rm to
10671 * remove old later.
10672 */
10673 for (prev = NULL,
10674 hblkp = hmebp->hmeblkp; hblkp != NULL && hblkp != old;
10675 prev = hblkp, hblkp = hblkp->hblk_next)
10676 ;
10677
10678 if (hblkp != old)
10679 panic("sfmmu_hblk_swap: hblk_reserve not found");
10680
10681 /*
10682 * p_mapping list is still pointing to hments in hblk_reserve;
10683 * fix up p_mapping list so that they point to hments in new.
10684 *
10685 * Since all these mappings are created by hblk_reserve_thread
10686 * on the way and it's using at least one of the buffers from each of
10687 * the newly minted slabs, there is no danger of any of these
10688 * mappings getting unloaded by another thread.
10689 *
10690 * tsbmiss could only modify ref/mod bits of hments in old/new.
10691 * Since all of these hments hold mappings established by segkmem
10692 * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
10693 * have no meaning for the mappings in hblk_reserve. hments in
10694 * old and new are identical except for ref/mod bits.
10695 */
10696 for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
10697
10698 HBLKTOHME(osfhme, old, vaddr);
10699 sfmmu_copytte(&osfhme->hme_tte, &tte);
10700
10701 if (TTE_IS_VALID(&tte)) {
10702 if ((pp = osfhme->hme_page) == NULL)
10703 panic("sfmmu_hblk_swap: page not mapped");
10704
10705 pml = sfmmu_mlist_enter(pp);
10706
10707 if (pp != osfhme->hme_page)
10708 panic("sfmmu_hblk_swap: mapping changed");
10709
10710 HBLKTOHME(nsfhme, new, vaddr);
10711
10712 HME_ADD(nsfhme, pp);
10713 HME_SUB(osfhme, pp);
10714
10715 sfmmu_mlist_exit(pml);
10716 }
10717 }
10718
10719 /*
10720 * remove old from hash chain
10721 */
10722 sfmmu_hblk_hash_rm(hmebp, old, prev, &list, 1);
10723
10724 #ifdef DEBUG
10725
10726 hblktag.htag_id = ksfmmup;
10727 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
10728 hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
10729 hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
10730 HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
10731
10732 if (found != new)
10733 panic("sfmmu_hblk_swap: new hblk not found");
10734 #endif
10735
10736 SFMMU_HASH_UNLOCK(hmebp);
10737
10738 /*
10739 * Reset hblk_reserve
10740 */
10741 bzero((void *)old, HME8BLK_SZ);
10742 old->hblk_nextpa = va_to_pa((caddr_t)old);
10743 }
10744
10745 /*
10746 * Grab the mlist mutex for both pages passed in.
10747 *
10748 * low and high will be returned as pointers to the mutexes for these pages.
10749 * low refers to the mutex residing in the lower bin of the mlist hash, while
10750 * high refers to the mutex residing in the higher bin of the mlist hash. This
10751 * is due to the locking order restrictions on the same thread grabbing
10752 * multiple mlist mutexes. The low lock must be acquired before the high lock.
10753 *
10754 * If both pages hash to the same mutex, only grab that single mutex, and
10755 * high will be returned as NULL
10756 * If the pages hash to different bins in the hash, grab the lower addressed
10757 * lock first and then the higher addressed lock in order to follow the locking
10758 * rules involved with the same thread grabbing multiple mlist mutexes.
10759 * low and high will both have non-NULL values.
10760 */
10761 static void
sfmmu_mlist_reloc_enter(struct page * targ,struct page * repl,kmutex_t ** low,kmutex_t ** high)10762 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
10763 kmutex_t **low, kmutex_t **high)
10764 {
10765 kmutex_t *mml_targ, *mml_repl;
10766
10767 /*
10768 * no need to do the dance around szc as in sfmmu_mlist_enter()
10769 * because this routine is only called by hat_page_relocate() and all
10770 * targ and repl pages are already locked EXCL so szc can't change.
10771 */
10772
10773 mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
10774 mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
10775
10776 if (mml_targ == mml_repl) {
10777 *low = mml_targ;
10778 *high = NULL;
10779 } else {
10780 if (mml_targ < mml_repl) {
10781 *low = mml_targ;
10782 *high = mml_repl;
10783 } else {
10784 *low = mml_repl;
10785 *high = mml_targ;
10786 }
10787 }
10788
10789 mutex_enter(*low);
10790 if (*high)
10791 mutex_enter(*high);
10792 }
10793
10794 static void
sfmmu_mlist_reloc_exit(kmutex_t * low,kmutex_t * high)10795 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
10796 {
10797 if (high)
10798 mutex_exit(high);
10799 mutex_exit(low);
10800 }
10801
10802 static hatlock_t *
sfmmu_hat_enter(sfmmu_t * sfmmup)10803 sfmmu_hat_enter(sfmmu_t *sfmmup)
10804 {
10805 hatlock_t *hatlockp;
10806
10807 if (sfmmup != ksfmmup) {
10808 hatlockp = TSB_HASH(sfmmup);
10809 mutex_enter(HATLOCK_MUTEXP(hatlockp));
10810 return (hatlockp);
10811 }
10812 return (NULL);
10813 }
10814
10815 static hatlock_t *
sfmmu_hat_tryenter(sfmmu_t * sfmmup)10816 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
10817 {
10818 hatlock_t *hatlockp;
10819
10820 if (sfmmup != ksfmmup) {
10821 hatlockp = TSB_HASH(sfmmup);
10822 if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
10823 return (NULL);
10824 return (hatlockp);
10825 }
10826 return (NULL);
10827 }
10828
10829 static void
sfmmu_hat_exit(hatlock_t * hatlockp)10830 sfmmu_hat_exit(hatlock_t *hatlockp)
10831 {
10832 if (hatlockp != NULL)
10833 mutex_exit(HATLOCK_MUTEXP(hatlockp));
10834 }
10835
10836 static void
sfmmu_hat_lock_all(void)10837 sfmmu_hat_lock_all(void)
10838 {
10839 int i;
10840 for (i = 0; i < SFMMU_NUM_LOCK; i++)
10841 mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
10842 }
10843
10844 static void
sfmmu_hat_unlock_all(void)10845 sfmmu_hat_unlock_all(void)
10846 {
10847 int i;
10848 for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
10849 mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
10850 }
10851
10852 int
sfmmu_hat_lock_held(sfmmu_t * sfmmup)10853 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
10854 {
10855 ASSERT(sfmmup != ksfmmup);
10856 return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
10857 }
10858
10859 /*
10860 * Locking primitives to provide consistency between ISM unmap
10861 * and other operations. Since ISM unmap can take a long time, we
10862 * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
10863 * contention on the hatlock buckets while ISM segments are being
10864 * unmapped. The tradeoff is that the flags don't prevent priority
10865 * inversion from occurring, so we must request kernel priority in
10866 * case we have to sleep to keep from getting buried while holding
10867 * the HAT_ISMBUSY flag set, which in turn could block other kernel
10868 * threads from running (for example, in sfmmu_uvatopfn()).
10869 */
10870 static void
sfmmu_ismhat_enter(sfmmu_t * sfmmup,int hatlock_held)10871 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
10872 {
10873 hatlock_t *hatlockp;
10874
10875 if (!hatlock_held)
10876 hatlockp = sfmmu_hat_enter(sfmmup);
10877 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
10878 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10879 SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
10880 if (!hatlock_held)
10881 sfmmu_hat_exit(hatlockp);
10882 }
10883
10884 static void
sfmmu_ismhat_exit(sfmmu_t * sfmmup,int hatlock_held)10885 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
10886 {
10887 hatlock_t *hatlockp;
10888
10889 if (!hatlock_held)
10890 hatlockp = sfmmu_hat_enter(sfmmup);
10891 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
10892 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
10893 cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10894 if (!hatlock_held)
10895 sfmmu_hat_exit(hatlockp);
10896 }
10897
10898 /*
10899 *
10900 * Algorithm:
10901 *
10902 * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
10903 * hblks.
10904 *
10905 * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
10906 *
10907 * (a) try to return an hblk from reserve pool of free hblks;
10908 * (b) if the reserve pool is empty, acquire hblk_reserve_lock
10909 * and return hblk_reserve.
10910 *
10911 * (3) call kmem_cache_alloc() to allocate hblk;
10912 *
10913 * (a) if hblk_reserve_lock is held by the current thread,
10914 * atomically replace hblk_reserve by the hblk that is
10915 * returned by kmem_cache_alloc; release hblk_reserve_lock
10916 * and call kmem_cache_alloc() again.
10917 * (b) if reserve pool is not full, add the hblk that is
10918 * returned by kmem_cache_alloc to reserve pool and
10919 * call kmem_cache_alloc again.
10920 *
10921 */
10922 static struct hme_blk *
sfmmu_hblk_alloc(sfmmu_t * sfmmup,caddr_t vaddr,struct hmehash_bucket * hmebp,uint_t size,hmeblk_tag hblktag,uint_t flags,uint_t rid)10923 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
10924 struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
10925 uint_t flags, uint_t rid)
10926 {
10927 struct hme_blk *hmeblkp = NULL;
10928 struct hme_blk *newhblkp;
10929 struct hme_blk *shw_hblkp = NULL;
10930 struct kmem_cache *sfmmu_cache = NULL;
10931 uint64_t hblkpa;
10932 ulong_t index;
10933 uint_t owner; /* set to 1 if using hblk_reserve */
10934 uint_t forcefree;
10935 int sleep;
10936 sf_srd_t *srdp;
10937 sf_region_t *rgnp;
10938
10939 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10940 ASSERT(hblktag.htag_rid == rid);
10941 SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
10942 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
10943 IS_P2ALIGNED(vaddr, TTEBYTES(size)));
10944
10945 /*
10946 * If segkmem is not created yet, allocate from static hmeblks
10947 * created at the end of startup_modules(). See the block comment
10948 * in startup_modules() describing how we estimate the number of
10949 * static hmeblks that will be needed during re-map.
10950 */
10951 if (!hblk_alloc_dynamic) {
10952
10953 ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
10954
10955 if (size == TTE8K) {
10956 index = nucleus_hblk8.index;
10957 if (index >= nucleus_hblk8.len) {
10958 /*
10959 * If we panic here, see startup_modules() to
10960 * make sure that we are calculating the
10961 * number of hblk8's that we need correctly.
10962 */
10963 prom_panic("no nucleus hblk8 to allocate");
10964 }
10965 hmeblkp =
10966 (struct hme_blk *)&nucleus_hblk8.list[index];
10967 nucleus_hblk8.index++;
10968 SFMMU_STAT(sf_hblk8_nalloc);
10969 } else {
10970 index = nucleus_hblk1.index;
10971 if (nucleus_hblk1.index >= nucleus_hblk1.len) {
10972 /*
10973 * If we panic here, see startup_modules().
10974 * Most likely you need to update the
10975 * calculation of the number of hblk1 elements
10976 * that the kernel needs to boot.
10977 */
10978 prom_panic("no nucleus hblk1 to allocate");
10979 }
10980 hmeblkp =
10981 (struct hme_blk *)&nucleus_hblk1.list[index];
10982 nucleus_hblk1.index++;
10983 SFMMU_STAT(sf_hblk1_nalloc);
10984 }
10985
10986 goto hblk_init;
10987 }
10988
10989 SFMMU_HASH_UNLOCK(hmebp);
10990
10991 if (sfmmup != KHATID && !SFMMU_IS_SHMERID_VALID(rid)) {
10992 if (mmu_page_sizes == max_mmu_page_sizes) {
10993 if (size < TTE256M)
10994 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10995 size, flags);
10996 } else {
10997 if (size < TTE4M)
10998 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
10999 size, flags);
11000 }
11001 } else if (SFMMU_IS_SHMERID_VALID(rid)) {
11002 /*
11003 * Shared hmes use per region bitmaps in rgn_hmeflag
11004 * rather than shadow hmeblks to keep track of the
11005 * mapping sizes which have been allocated for the region.
11006 * Here we cleanup old invalid hmeblks with this rid,
11007 * which may be left around by pageunload().
11008 */
11009 int ttesz;
11010 caddr_t va;
11011 caddr_t eva = vaddr + TTEBYTES(size);
11012
11013 ASSERT(sfmmup != KHATID);
11014
11015 srdp = sfmmup->sfmmu_srdp;
11016 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11017 rgnp = srdp->srd_hmergnp[rid];
11018 ASSERT(rgnp != NULL && rgnp->rgn_id == rid);
11019 ASSERT(rgnp->rgn_refcnt != 0);
11020 ASSERT(size <= rgnp->rgn_pgszc);
11021
11022 ttesz = HBLK_MIN_TTESZ;
11023 do {
11024 if (!(rgnp->rgn_hmeflags & (0x1 << ttesz))) {
11025 continue;
11026 }
11027
11028 if (ttesz > size && ttesz != HBLK_MIN_TTESZ) {
11029 sfmmu_cleanup_rhblk(srdp, vaddr, rid, ttesz);
11030 } else if (ttesz < size) {
11031 for (va = vaddr; va < eva;
11032 va += TTEBYTES(ttesz)) {
11033 sfmmu_cleanup_rhblk(srdp, va, rid,
11034 ttesz);
11035 }
11036 }
11037 } while (++ttesz <= rgnp->rgn_pgszc);
11038 }
11039
11040 fill_hblk:
11041 owner = (hblk_reserve_thread == curthread) ? 1 : 0;
11042
11043 if (owner && size == TTE8K) {
11044
11045 ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11046 /*
11047 * We are really in a tight spot. We already own
11048 * hblk_reserve and we need another hblk. In anticipation
11049 * of this kind of scenario, we specifically set aside
11050 * HBLK_RESERVE_MIN number of hblks to be used exclusively
11051 * by owner of hblk_reserve.
11052 */
11053 SFMMU_STAT(sf_hblk_recurse_cnt);
11054
11055 if (!sfmmu_get_free_hblk(&hmeblkp, 1))
11056 panic("sfmmu_hblk_alloc: reserve list is empty");
11057
11058 goto hblk_verify;
11059 }
11060
11061 ASSERT(!owner);
11062
11063 if ((flags & HAT_NO_KALLOC) == 0) {
11064
11065 sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
11066 sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
11067
11068 if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
11069 hmeblkp = sfmmu_hblk_steal(size);
11070 } else {
11071 /*
11072 * if we are the owner of hblk_reserve,
11073 * swap hblk_reserve with hmeblkp and
11074 * start a fresh life. Hope things go
11075 * better this time.
11076 */
11077 if (hblk_reserve_thread == curthread) {
11078 ASSERT(sfmmu_cache == sfmmu8_cache);
11079 sfmmu_hblk_swap(hmeblkp);
11080 hblk_reserve_thread = NULL;
11081 mutex_exit(&hblk_reserve_lock);
11082 goto fill_hblk;
11083 }
11084 /*
11085 * let's donate this hblk to our reserve list if
11086 * we are not mapping kernel range
11087 */
11088 if (size == TTE8K && sfmmup != KHATID) {
11089 if (sfmmu_put_free_hblk(hmeblkp, 0))
11090 goto fill_hblk;
11091 }
11092 }
11093 } else {
11094 /*
11095 * We are here to map the slab in sfmmu8_cache; let's
11096 * check if we could tap our reserve list; if successful,
11097 * this will avoid the pain of going thru sfmmu_hblk_swap
11098 */
11099 SFMMU_STAT(sf_hblk_slab_cnt);
11100 if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
11101 /*
11102 * let's start hblk_reserve dance
11103 */
11104 SFMMU_STAT(sf_hblk_reserve_cnt);
11105 owner = 1;
11106 mutex_enter(&hblk_reserve_lock);
11107 hmeblkp = HBLK_RESERVE;
11108 hblk_reserve_thread = curthread;
11109 }
11110 }
11111
11112 hblk_verify:
11113 ASSERT(hmeblkp != NULL);
11114 set_hblk_sz(hmeblkp, size);
11115 ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
11116 SFMMU_HASH_LOCK(hmebp);
11117 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11118 if (newhblkp != NULL) {
11119 SFMMU_HASH_UNLOCK(hmebp);
11120 if (hmeblkp != HBLK_RESERVE) {
11121 /*
11122 * This is really tricky!
11123 *
11124 * vmem_alloc(vmem_seg_arena)
11125 * vmem_alloc(vmem_internal_arena)
11126 * segkmem_alloc(heap_arena)
11127 * vmem_alloc(heap_arena)
11128 * page_create()
11129 * hat_memload()
11130 * kmem_cache_free()
11131 * kmem_cache_alloc()
11132 * kmem_slab_create()
11133 * vmem_alloc(kmem_internal_arena)
11134 * segkmem_alloc(heap_arena)
11135 * vmem_alloc(heap_arena)
11136 * page_create()
11137 * hat_memload()
11138 * kmem_cache_free()
11139 * ...
11140 *
11141 * Thus, hat_memload() could call kmem_cache_free
11142 * for enough number of times that we could easily
11143 * hit the bottom of the stack or run out of reserve
11144 * list of vmem_seg structs. So, we must donate
11145 * this hblk to reserve list if it's allocated
11146 * from sfmmu8_cache *and* mapping kernel range.
11147 * We don't need to worry about freeing hmeblk1's
11148 * to kmem since they don't map any kmem slabs.
11149 *
11150 * Note: When segkmem supports largepages, we must
11151 * free hmeblk1's to reserve list as well.
11152 */
11153 forcefree = (sfmmup == KHATID) ? 1 : 0;
11154 if (size == TTE8K &&
11155 sfmmu_put_free_hblk(hmeblkp, forcefree)) {
11156 goto re_verify;
11157 }
11158 ASSERT(sfmmup != KHATID);
11159 kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11160 } else {
11161 /*
11162 * Hey! we don't need hblk_reserve any more.
11163 */
11164 ASSERT(owner);
11165 hblk_reserve_thread = NULL;
11166 mutex_exit(&hblk_reserve_lock);
11167 owner = 0;
11168 }
11169 re_verify:
11170 /*
11171 * let's check if the goodies are still present
11172 */
11173 SFMMU_HASH_LOCK(hmebp);
11174 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11175 if (newhblkp != NULL) {
11176 /*
11177 * return newhblkp if it's not hblk_reserve;
11178 * if newhblkp is hblk_reserve, return it
11179 * _only if_ we are the owner of hblk_reserve.
11180 */
11181 if (newhblkp != HBLK_RESERVE || owner) {
11182 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11183 newhblkp->hblk_shared);
11184 ASSERT(SFMMU_IS_SHMERID_VALID(rid) ||
11185 !newhblkp->hblk_shared);
11186 return (newhblkp);
11187 } else {
11188 /*
11189 * we just hit hblk_reserve in the hash and
11190 * we are not the owner of that;
11191 *
11192 * block until hblk_reserve_thread completes
11193 * swapping hblk_reserve and try the dance
11194 * once again.
11195 */
11196 SFMMU_HASH_UNLOCK(hmebp);
11197 mutex_enter(&hblk_reserve_lock);
11198 mutex_exit(&hblk_reserve_lock);
11199 SFMMU_STAT(sf_hblk_reserve_hit);
11200 goto fill_hblk;
11201 }
11202 } else {
11203 /*
11204 * it's no more! try the dance once again.
11205 */
11206 SFMMU_HASH_UNLOCK(hmebp);
11207 goto fill_hblk;
11208 }
11209 }
11210
11211 hblk_init:
11212 if (SFMMU_IS_SHMERID_VALID(rid)) {
11213 uint16_t tteflag = 0x1 <<
11214 ((size < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : size);
11215
11216 if (!(rgnp->rgn_hmeflags & tteflag)) {
11217 atomic_or_16(&rgnp->rgn_hmeflags, tteflag);
11218 }
11219 hmeblkp->hblk_shared = 1;
11220 } else {
11221 hmeblkp->hblk_shared = 0;
11222 }
11223 set_hblk_sz(hmeblkp, size);
11224 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11225 hmeblkp->hblk_next = (struct hme_blk *)NULL;
11226 hmeblkp->hblk_tag = hblktag;
11227 hmeblkp->hblk_shadow = shw_hblkp;
11228 hblkpa = hmeblkp->hblk_nextpa;
11229 hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
11230
11231 ASSERT(get_hblk_ttesz(hmeblkp) == size);
11232 ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
11233 ASSERT(hmeblkp->hblk_hmecnt == 0);
11234 ASSERT(hmeblkp->hblk_vcnt == 0);
11235 ASSERT(hmeblkp->hblk_lckcnt == 0);
11236 ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11237 sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
11238 return (hmeblkp);
11239 }
11240
11241 /*
11242 * This function cleans up the hme_blk and returns it to the free list.
11243 */
11244 /* ARGSUSED */
11245 static void
sfmmu_hblk_free(struct hme_blk ** listp)11246 sfmmu_hblk_free(struct hme_blk **listp)
11247 {
11248 struct hme_blk *hmeblkp, *next_hmeblkp;
11249 int size;
11250 uint_t critical;
11251 uint64_t hblkpa;
11252
11253 ASSERT(*listp != NULL);
11254
11255 hmeblkp = *listp;
11256 while (hmeblkp != NULL) {
11257 next_hmeblkp = hmeblkp->hblk_next;
11258 ASSERT(!hmeblkp->hblk_hmecnt);
11259 ASSERT(!hmeblkp->hblk_vcnt);
11260 ASSERT(!hmeblkp->hblk_lckcnt);
11261 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
11262 ASSERT(hmeblkp->hblk_shared == 0);
11263 ASSERT(hmeblkp->hblk_shw_bit == 0);
11264 ASSERT(hmeblkp->hblk_shadow == NULL);
11265
11266 hblkpa = va_to_pa((caddr_t)hmeblkp);
11267 ASSERT(hblkpa != (uint64_t)-1);
11268 critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
11269
11270 size = get_hblk_ttesz(hmeblkp);
11271 hmeblkp->hblk_next = NULL;
11272 hmeblkp->hblk_nextpa = hblkpa;
11273
11274 if (hmeblkp->hblk_nuc_bit == 0) {
11275
11276 if (size != TTE8K ||
11277 !sfmmu_put_free_hblk(hmeblkp, critical))
11278 kmem_cache_free(get_hblk_cache(hmeblkp),
11279 hmeblkp);
11280 }
11281 hmeblkp = next_hmeblkp;
11282 }
11283 }
11284
11285 #define BUCKETS_TO_SEARCH_BEFORE_UNLOAD 30
11286 #define SFMMU_HBLK_STEAL_THRESHOLD 5
11287
11288 static uint_t sfmmu_hblk_steal_twice;
11289 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
11290
11291 /*
11292 * Steal a hmeblk from user or kernel hme hash lists.
11293 * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
11294 * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
11295 * tap into critical reserve of freehblkp.
11296 * Note: We remain looping in this routine until we find one.
11297 */
11298 static struct hme_blk *
sfmmu_hblk_steal(int size)11299 sfmmu_hblk_steal(int size)
11300 {
11301 static struct hmehash_bucket *uhmehash_steal_hand = NULL;
11302 struct hmehash_bucket *hmebp;
11303 struct hme_blk *hmeblkp = NULL, *pr_hblk;
11304 uint64_t hblkpa;
11305 int i;
11306 uint_t loop_cnt = 0, critical;
11307
11308 for (;;) {
11309 /* Check cpu hblk pending queues */
11310 if ((hmeblkp = sfmmu_check_pending_hblks(size)) != NULL) {
11311 hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
11312 ASSERT(hmeblkp->hblk_hmecnt == 0);
11313 ASSERT(hmeblkp->hblk_vcnt == 0);
11314 return (hmeblkp);
11315 }
11316
11317 if (size == TTE8K) {
11318 critical =
11319 (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
11320 if (sfmmu_get_free_hblk(&hmeblkp, critical))
11321 return (hmeblkp);
11322 }
11323
11324 hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
11325 uhmehash_steal_hand;
11326 ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
11327
11328 for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
11329 BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
11330 SFMMU_HASH_LOCK(hmebp);
11331 hmeblkp = hmebp->hmeblkp;
11332 hblkpa = hmebp->hmeh_nextpa;
11333 pr_hblk = NULL;
11334 while (hmeblkp) {
11335 /*
11336 * check if it is a hmeblk that is not locked
11337 * and not shared. skip shadow hmeblks with
11338 * shadow_mask set i.e valid count non zero.
11339 */
11340 if ((get_hblk_ttesz(hmeblkp) == size) &&
11341 (hmeblkp->hblk_shw_bit == 0 ||
11342 hmeblkp->hblk_vcnt == 0) &&
11343 (hmeblkp->hblk_lckcnt == 0)) {
11344 /*
11345 * there is a high probability that we
11346 * will find a free one. search some
11347 * buckets for a free hmeblk initially
11348 * before unloading a valid hmeblk.
11349 */
11350 if ((hmeblkp->hblk_vcnt == 0 &&
11351 hmeblkp->hblk_hmecnt == 0) || (i >=
11352 BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
11353 if (sfmmu_steal_this_hblk(hmebp,
11354 hmeblkp, hblkpa, pr_hblk)) {
11355 /*
11356 * Hblk is unloaded
11357 * successfully
11358 */
11359 break;
11360 }
11361 }
11362 }
11363 pr_hblk = hmeblkp;
11364 hblkpa = hmeblkp->hblk_nextpa;
11365 hmeblkp = hmeblkp->hblk_next;
11366 }
11367
11368 SFMMU_HASH_UNLOCK(hmebp);
11369 if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
11370 hmebp = uhme_hash;
11371 }
11372 uhmehash_steal_hand = hmebp;
11373
11374 if (hmeblkp != NULL)
11375 break;
11376
11377 /*
11378 * in the worst case, look for a free one in the kernel
11379 * hash table.
11380 */
11381 for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
11382 SFMMU_HASH_LOCK(hmebp);
11383 hmeblkp = hmebp->hmeblkp;
11384 hblkpa = hmebp->hmeh_nextpa;
11385 pr_hblk = NULL;
11386 while (hmeblkp) {
11387 /*
11388 * check if it is free hmeblk
11389 */
11390 if ((get_hblk_ttesz(hmeblkp) == size) &&
11391 (hmeblkp->hblk_lckcnt == 0) &&
11392 (hmeblkp->hblk_vcnt == 0) &&
11393 (hmeblkp->hblk_hmecnt == 0)) {
11394 if (sfmmu_steal_this_hblk(hmebp,
11395 hmeblkp, hblkpa, pr_hblk)) {
11396 break;
11397 } else {
11398 /*
11399 * Cannot fail since we have
11400 * hash lock.
11401 */
11402 panic("fail to steal?");
11403 }
11404 }
11405
11406 pr_hblk = hmeblkp;
11407 hblkpa = hmeblkp->hblk_nextpa;
11408 hmeblkp = hmeblkp->hblk_next;
11409 }
11410
11411 SFMMU_HASH_UNLOCK(hmebp);
11412 if (hmebp++ == &khme_hash[KHMEHASH_SZ])
11413 hmebp = khme_hash;
11414 }
11415
11416 if (hmeblkp != NULL)
11417 break;
11418 sfmmu_hblk_steal_twice++;
11419 }
11420 return (hmeblkp);
11421 }
11422
11423 /*
11424 * This routine does real work to prepare a hblk to be "stolen" by
11425 * unloading the mappings, updating shadow counts ....
11426 * It returns 1 if the block is ready to be reused (stolen), or 0
11427 * means the block cannot be stolen yet- pageunload is still working
11428 * on this hblk.
11429 */
11430 static int
sfmmu_steal_this_hblk(struct hmehash_bucket * hmebp,struct hme_blk * hmeblkp,uint64_t hblkpa,struct hme_blk * pr_hblk)11431 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11432 uint64_t hblkpa, struct hme_blk *pr_hblk)
11433 {
11434 int shw_size, vshift;
11435 struct hme_blk *shw_hblkp;
11436 caddr_t vaddr;
11437 uint_t shw_mask, newshw_mask;
11438 struct hme_blk *list = NULL;
11439
11440 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11441
11442 /*
11443 * check if the hmeblk is free, unload if necessary
11444 */
11445 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11446 sfmmu_t *sfmmup;
11447 demap_range_t dmr;
11448
11449 sfmmup = hblktosfmmu(hmeblkp);
11450 if (hmeblkp->hblk_shared || sfmmup->sfmmu_ismhat) {
11451 return (0);
11452 }
11453 DEMAP_RANGE_INIT(sfmmup, &dmr);
11454 (void) sfmmu_hblk_unload(sfmmup, hmeblkp,
11455 (caddr_t)get_hblk_base(hmeblkp),
11456 get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
11457 DEMAP_RANGE_FLUSH(&dmr);
11458 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11459 /*
11460 * Pageunload is working on the same hblk.
11461 */
11462 return (0);
11463 }
11464
11465 sfmmu_hblk_steal_unload_count++;
11466 }
11467
11468 ASSERT(hmeblkp->hblk_lckcnt == 0);
11469 ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
11470
11471 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 1);
11472 hmeblkp->hblk_nextpa = hblkpa;
11473
11474 shw_hblkp = hmeblkp->hblk_shadow;
11475 if (shw_hblkp) {
11476 ASSERT(!hmeblkp->hblk_shared);
11477 shw_size = get_hblk_ttesz(shw_hblkp);
11478 vaddr = (caddr_t)get_hblk_base(hmeblkp);
11479 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11480 ASSERT(vshift < 8);
11481 /*
11482 * Atomically clear shadow mask bit
11483 */
11484 do {
11485 shw_mask = shw_hblkp->hblk_shw_mask;
11486 ASSERT(shw_mask & (1 << vshift));
11487 newshw_mask = shw_mask & ~(1 << vshift);
11488 newshw_mask = atomic_cas_32(&shw_hblkp->hblk_shw_mask,
11489 shw_mask, newshw_mask);
11490 } while (newshw_mask != shw_mask);
11491 hmeblkp->hblk_shadow = NULL;
11492 }
11493
11494 /*
11495 * remove shadow bit if we are stealing an unused shadow hmeblk.
11496 * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
11497 * we are indeed allocating a shadow hmeblk.
11498 */
11499 hmeblkp->hblk_shw_bit = 0;
11500
11501 if (hmeblkp->hblk_shared) {
11502 sf_srd_t *srdp;
11503 sf_region_t *rgnp;
11504 uint_t rid;
11505
11506 srdp = hblktosrd(hmeblkp);
11507 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11508 rid = hmeblkp->hblk_tag.htag_rid;
11509 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11510 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11511 rgnp = srdp->srd_hmergnp[rid];
11512 ASSERT(rgnp != NULL);
11513 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11514 hmeblkp->hblk_shared = 0;
11515 }
11516
11517 sfmmu_hblk_steal_count++;
11518 SFMMU_STAT(sf_steal_count);
11519
11520 return (1);
11521 }
11522
11523 struct hme_blk *
sfmmu_hmetohblk(struct sf_hment * sfhme)11524 sfmmu_hmetohblk(struct sf_hment *sfhme)
11525 {
11526 struct hme_blk *hmeblkp;
11527 struct sf_hment *sfhme0;
11528 struct hme_blk *hblk_dummy = 0;
11529
11530 /*
11531 * No dummy sf_hments, please.
11532 */
11533 ASSERT(sfhme->hme_tte.ll != 0);
11534
11535 sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
11536 hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
11537 (uintptr_t)&hblk_dummy->hblk_hme[0]);
11538
11539 return (hmeblkp);
11540 }
11541
11542 /*
11543 * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
11544 * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
11545 * KM_SLEEP allocation.
11546 *
11547 * Return 0 on success, -1 otherwise.
11548 */
11549 static void
sfmmu_tsb_swapin(sfmmu_t * sfmmup,hatlock_t * hatlockp)11550 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11551 {
11552 struct tsb_info *tsbinfop, *next;
11553 tsb_replace_rc_t rc;
11554 boolean_t gotfirst = B_FALSE;
11555
11556 ASSERT(sfmmup != ksfmmup);
11557 ASSERT(sfmmu_hat_lock_held(sfmmup));
11558
11559 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
11560 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11561 }
11562
11563 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11564 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
11565 } else {
11566 return;
11567 }
11568
11569 ASSERT(sfmmup->sfmmu_tsb != NULL);
11570
11571 /*
11572 * Loop over all tsbinfo's replacing them with ones that actually have
11573 * a TSB. If any of the replacements ever fail, bail out of the loop.
11574 */
11575 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
11576 ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
11577 next = tsbinfop->tsb_next;
11578 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
11579 hatlockp, TSB_SWAPIN);
11580 if (rc != TSB_SUCCESS) {
11581 break;
11582 }
11583 gotfirst = B_TRUE;
11584 }
11585
11586 switch (rc) {
11587 case TSB_SUCCESS:
11588 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11589 cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11590 return;
11591 case TSB_LOSTRACE:
11592 break;
11593 case TSB_ALLOCFAIL:
11594 break;
11595 default:
11596 panic("sfmmu_replace_tsb returned unrecognized failure code "
11597 "%d", rc);
11598 }
11599
11600 /*
11601 * In this case, we failed to get one of our TSBs. If we failed to
11602 * get the first TSB, get one of minimum size (8KB). Walk the list
11603 * and throw away the tsbinfos, starting where the allocation failed;
11604 * we can get by with just one TSB as long as we don't leave the
11605 * SWAPPED tsbinfo structures lying around.
11606 */
11607 tsbinfop = sfmmup->sfmmu_tsb;
11608 next = tsbinfop->tsb_next;
11609 tsbinfop->tsb_next = NULL;
11610
11611 sfmmu_hat_exit(hatlockp);
11612 for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
11613 next = tsbinfop->tsb_next;
11614 sfmmu_tsbinfo_free(tsbinfop);
11615 }
11616 hatlockp = sfmmu_hat_enter(sfmmup);
11617
11618 /*
11619 * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
11620 * pages.
11621 */
11622 if (!gotfirst) {
11623 tsbinfop = sfmmup->sfmmu_tsb;
11624 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
11625 hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
11626 ASSERT(rc == TSB_SUCCESS);
11627 }
11628
11629 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11630 cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11631 }
11632
11633 static int
sfmmu_is_rgnva(sf_srd_t * srdp,caddr_t addr,ulong_t w,ulong_t bmw)11634 sfmmu_is_rgnva(sf_srd_t *srdp, caddr_t addr, ulong_t w, ulong_t bmw)
11635 {
11636 ulong_t bix = 0;
11637 uint_t rid;
11638 sf_region_t *rgnp;
11639
11640 ASSERT(srdp != NULL);
11641 ASSERT(srdp->srd_refcnt != 0);
11642
11643 w <<= BT_ULSHIFT;
11644 while (bmw) {
11645 if (!(bmw & 0x1)) {
11646 bix++;
11647 bmw >>= 1;
11648 continue;
11649 }
11650 rid = w | bix;
11651 rgnp = srdp->srd_hmergnp[rid];
11652 ASSERT(rgnp->rgn_refcnt > 0);
11653 ASSERT(rgnp->rgn_id == rid);
11654 if (addr < rgnp->rgn_saddr ||
11655 addr >= (rgnp->rgn_saddr + rgnp->rgn_size)) {
11656 bix++;
11657 bmw >>= 1;
11658 } else {
11659 return (1);
11660 }
11661 }
11662 return (0);
11663 }
11664
11665 /*
11666 * Handle exceptions for low level tsb_handler.
11667 *
11668 * There are many scenarios that could land us here:
11669 *
11670 * If the context is invalid we land here. The context can be invalid
11671 * for 3 reasons: 1) we couldn't allocate a new context and now need to
11672 * perform a wrap around operation in order to allocate a new context.
11673 * 2) Context was invalidated to change pagesize programming 3) ISMs or
11674 * TSBs configuration is changeing for this process and we are forced into
11675 * here to do a syncronization operation. If the context is valid we can
11676 * be here from window trap hanlder. In this case just call trap to handle
11677 * the fault.
11678 *
11679 * Note that the process will run in INVALID_CONTEXT before
11680 * faulting into here and subsequently loading the MMU registers
11681 * (including the TSB base register) associated with this process.
11682 * For this reason, the trap handlers must all test for
11683 * INVALID_CONTEXT before attempting to access any registers other
11684 * than the context registers.
11685 */
11686 void
sfmmu_tsbmiss_exception(struct regs * rp,uintptr_t tagaccess,uint_t traptype)11687 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
11688 {
11689 sfmmu_t *sfmmup, *shsfmmup;
11690 uint_t ctxtype;
11691 klwp_id_t lwp;
11692 char lwp_save_state;
11693 hatlock_t *hatlockp, *shatlockp;
11694 struct tsb_info *tsbinfop;
11695 struct tsbmiss *tsbmp;
11696 sf_scd_t *scdp;
11697
11698 SFMMU_STAT(sf_tsb_exceptions);
11699 SFMMU_MMU_STAT(mmu_tsb_exceptions);
11700 sfmmup = astosfmmu(curthread->t_procp->p_as);
11701 /*
11702 * note that in sun4u, tagacces register contains ctxnum
11703 * while sun4v passes ctxtype in the tagaccess register.
11704 */
11705 ctxtype = tagaccess & TAGACC_CTX_MASK;
11706
11707 ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
11708 ASSERT(sfmmup->sfmmu_ismhat == 0);
11709 ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
11710 ctxtype == INVALID_CONTEXT);
11711
11712 if (ctxtype != INVALID_CONTEXT && traptype != T_DATA_PROT) {
11713 /*
11714 * We may land here because shme bitmap and pagesize
11715 * flags are updated lazily in tsbmiss area on other cpus.
11716 * If we detect here that tsbmiss area is out of sync with
11717 * sfmmu update it and retry the trapped instruction.
11718 * Otherwise call trap().
11719 */
11720 int ret = 0;
11721 uchar_t tteflag_mask = (1 << TTE64K) | (1 << TTE8K);
11722 caddr_t addr = (caddr_t)(tagaccess & TAGACC_VADDR_MASK);
11723
11724 /*
11725 * Must set lwp state to LWP_SYS before
11726 * trying to acquire any adaptive lock
11727 */
11728 lwp = ttolwp(curthread);
11729 ASSERT(lwp);
11730 lwp_save_state = lwp->lwp_state;
11731 lwp->lwp_state = LWP_SYS;
11732
11733 hatlockp = sfmmu_hat_enter(sfmmup);
11734 kpreempt_disable();
11735 tsbmp = &tsbmiss_area[CPU->cpu_id];
11736 ASSERT(sfmmup == tsbmp->usfmmup);
11737 if (((tsbmp->uhat_tteflags ^ sfmmup->sfmmu_tteflags) &
11738 ~tteflag_mask) ||
11739 ((tsbmp->uhat_rtteflags ^ sfmmup->sfmmu_rtteflags) &
11740 ~tteflag_mask)) {
11741 tsbmp->uhat_tteflags = sfmmup->sfmmu_tteflags;
11742 tsbmp->uhat_rtteflags = sfmmup->sfmmu_rtteflags;
11743 ret = 1;
11744 }
11745 if (sfmmup->sfmmu_srdp != NULL) {
11746 ulong_t *sm = sfmmup->sfmmu_hmeregion_map.bitmap;
11747 ulong_t *tm = tsbmp->shmermap;
11748 ulong_t i;
11749 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
11750 ulong_t d = tm[i] ^ sm[i];
11751 if (d) {
11752 if (d & sm[i]) {
11753 if (!ret && sfmmu_is_rgnva(
11754 sfmmup->sfmmu_srdp,
11755 addr, i, d & sm[i])) {
11756 ret = 1;
11757 }
11758 }
11759 tm[i] = sm[i];
11760 }
11761 }
11762 }
11763 kpreempt_enable();
11764 sfmmu_hat_exit(hatlockp);
11765 lwp->lwp_state = lwp_save_state;
11766 if (ret) {
11767 return;
11768 }
11769 } else if (ctxtype == INVALID_CONTEXT) {
11770 /*
11771 * First, make sure we come out of here with a valid ctx,
11772 * since if we don't get one we'll simply loop on the
11773 * faulting instruction.
11774 *
11775 * If the ISM mappings are changing, the TSB is relocated,
11776 * the process is swapped, the process is joining SCD or
11777 * leaving SCD or shared regions we serialize behind the
11778 * controlling thread with hat lock, sfmmu_flags and
11779 * sfmmu_tsb_cv condition variable.
11780 */
11781
11782 /*
11783 * Must set lwp state to LWP_SYS before
11784 * trying to acquire any adaptive lock
11785 */
11786 lwp = ttolwp(curthread);
11787 ASSERT(lwp);
11788 lwp_save_state = lwp->lwp_state;
11789 lwp->lwp_state = LWP_SYS;
11790
11791 hatlockp = sfmmu_hat_enter(sfmmup);
11792 retry:
11793 if ((scdp = sfmmup->sfmmu_scdp) != NULL) {
11794 shsfmmup = scdp->scd_sfmmup;
11795 ASSERT(shsfmmup != NULL);
11796
11797 for (tsbinfop = shsfmmup->sfmmu_tsb; tsbinfop != NULL;
11798 tsbinfop = tsbinfop->tsb_next) {
11799 if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11800 /* drop the private hat lock */
11801 sfmmu_hat_exit(hatlockp);
11802 /* acquire the shared hat lock */
11803 shatlockp = sfmmu_hat_enter(shsfmmup);
11804 /*
11805 * recheck to see if anything changed
11806 * after we drop the private hat lock.
11807 */
11808 if (sfmmup->sfmmu_scdp == scdp &&
11809 shsfmmup == scdp->scd_sfmmup) {
11810 sfmmu_tsb_chk_reloc(shsfmmup,
11811 shatlockp);
11812 }
11813 sfmmu_hat_exit(shatlockp);
11814 hatlockp = sfmmu_hat_enter(sfmmup);
11815 goto retry;
11816 }
11817 }
11818 }
11819
11820 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
11821 tsbinfop = tsbinfop->tsb_next) {
11822 if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11823 cv_wait(&sfmmup->sfmmu_tsb_cv,
11824 HATLOCK_MUTEXP(hatlockp));
11825 goto retry;
11826 }
11827 }
11828
11829 /*
11830 * Wait for ISM maps to be updated.
11831 */
11832 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
11833 cv_wait(&sfmmup->sfmmu_tsb_cv,
11834 HATLOCK_MUTEXP(hatlockp));
11835 goto retry;
11836 }
11837
11838 /* Is this process joining an SCD? */
11839 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
11840 /*
11841 * Flush private TSB and setup shared TSB.
11842 * sfmmu_finish_join_scd() does not drop the
11843 * hat lock.
11844 */
11845 sfmmu_finish_join_scd(sfmmup);
11846 SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
11847 }
11848
11849 /*
11850 * If we're swapping in, get TSB(s). Note that we must do
11851 * this before we get a ctx or load the MMU state. Once
11852 * we swap in we have to recheck to make sure the TSB(s) and
11853 * ISM mappings didn't change while we slept.
11854 */
11855 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11856 sfmmu_tsb_swapin(sfmmup, hatlockp);
11857 goto retry;
11858 }
11859
11860 sfmmu_get_ctx(sfmmup);
11861
11862 sfmmu_hat_exit(hatlockp);
11863 /*
11864 * Must restore lwp_state if not calling
11865 * trap() for further processing. Restore
11866 * it anyway.
11867 */
11868 lwp->lwp_state = lwp_save_state;
11869 return;
11870 }
11871 trap(rp, (caddr_t)tagaccess, traptype, 0);
11872 }
11873
11874 static void
sfmmu_tsb_chk_reloc(sfmmu_t * sfmmup,hatlock_t * hatlockp)11875 sfmmu_tsb_chk_reloc(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11876 {
11877 struct tsb_info *tp;
11878
11879 ASSERT(sfmmu_hat_lock_held(sfmmup));
11880
11881 for (tp = sfmmup->sfmmu_tsb; tp != NULL; tp = tp->tsb_next) {
11882 if (tp->tsb_flags & TSB_RELOC_FLAG) {
11883 cv_wait(&sfmmup->sfmmu_tsb_cv,
11884 HATLOCK_MUTEXP(hatlockp));
11885 break;
11886 }
11887 }
11888 }
11889
11890 /*
11891 * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
11892 * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
11893 * rather than spinning to avoid send mondo timeouts with
11894 * interrupts enabled. When the lock is acquired it is immediately
11895 * released and we return back to sfmmu_vatopfn just after
11896 * the GET_TTE call.
11897 */
11898 void
sfmmu_vatopfn_suspended(caddr_t vaddr,sfmmu_t * sfmmu,tte_t * ttep)11899 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
11900 {
11901 struct page **pp;
11902
11903 (void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
11904 as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
11905 }
11906
11907 /*
11908 * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
11909 * TTE_SUSPENDED bit set in tte. We do this so that we can handle
11910 * cross traps which cannot be handled while spinning in the
11911 * trap handlers. Simply enter and exit the kpr_suspendlock spin
11912 * mutex, which is held by the holder of the suspend bit, and then
11913 * retry the trapped instruction after unwinding.
11914 */
11915 /*ARGSUSED*/
11916 void
sfmmu_tsbmiss_suspended(struct regs * rp,uintptr_t tagacc,uint_t traptype)11917 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
11918 {
11919 ASSERT(curthread != kreloc_thread);
11920 mutex_enter(&kpr_suspendlock);
11921 mutex_exit(&kpr_suspendlock);
11922 }
11923
11924 /*
11925 * This routine could be optimized to reduce the number of xcalls by flushing
11926 * the entire TLBs if region reference count is above some threshold but the
11927 * tradeoff will depend on the size of the TLB. So for now flush the specific
11928 * page a context at a time.
11929 *
11930 * If uselocks is 0 then it's called after all cpus were captured and all the
11931 * hat locks were taken. In this case don't take the region lock by relying on
11932 * the order of list region update operations in hat_join_region(),
11933 * hat_leave_region() and hat_dup_region(). The ordering in those routines
11934 * guarantees that list is always forward walkable and reaches active sfmmus
11935 * regardless of where xc_attention() captures a cpu.
11936 */
11937 cpuset_t
sfmmu_rgntlb_demap(caddr_t addr,sf_region_t * rgnp,struct hme_blk * hmeblkp,int uselocks)11938 sfmmu_rgntlb_demap(caddr_t addr, sf_region_t *rgnp,
11939 struct hme_blk *hmeblkp, int uselocks)
11940 {
11941 sfmmu_t *sfmmup;
11942 cpuset_t cpuset;
11943 cpuset_t rcpuset;
11944 hatlock_t *hatlockp;
11945 uint_t rid = rgnp->rgn_id;
11946 sf_rgn_link_t *rlink;
11947 sf_scd_t *scdp;
11948
11949 ASSERT(hmeblkp->hblk_shared);
11950 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11951 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11952
11953 CPUSET_ZERO(rcpuset);
11954 if (uselocks) {
11955 mutex_enter(&rgnp->rgn_mutex);
11956 }
11957 sfmmup = rgnp->rgn_sfmmu_head;
11958 while (sfmmup != NULL) {
11959 if (uselocks) {
11960 hatlockp = sfmmu_hat_enter(sfmmup);
11961 }
11962
11963 /*
11964 * When an SCD is created the SCD hat is linked on the sfmmu
11965 * region lists for each hme region which is part of the
11966 * SCD. If we find an SCD hat, when walking these lists,
11967 * then we flush the shared TSBs, if we find a private hat,
11968 * which is part of an SCD, but where the region
11969 * is not part of the SCD then we flush the private TSBs.
11970 */
11971 if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
11972 !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
11973 scdp = sfmmup->sfmmu_scdp;
11974 if (SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
11975 if (uselocks) {
11976 sfmmu_hat_exit(hatlockp);
11977 }
11978 goto next;
11979 }
11980 }
11981
11982 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
11983
11984 kpreempt_disable();
11985 cpuset = sfmmup->sfmmu_cpusran;
11986 CPUSET_AND(cpuset, cpu_ready_set);
11987 CPUSET_DEL(cpuset, CPU->cpu_id);
11988 SFMMU_XCALL_STATS(sfmmup);
11989 xt_some(cpuset, vtag_flushpage_tl1,
11990 (uint64_t)addr, (uint64_t)sfmmup);
11991 vtag_flushpage(addr, (uint64_t)sfmmup);
11992 if (uselocks) {
11993 sfmmu_hat_exit(hatlockp);
11994 }
11995 kpreempt_enable();
11996 CPUSET_OR(rcpuset, cpuset);
11997
11998 next:
11999 /* LINTED: constant in conditional context */
12000 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
12001 ASSERT(rlink != NULL);
12002 sfmmup = rlink->next;
12003 }
12004 if (uselocks) {
12005 mutex_exit(&rgnp->rgn_mutex);
12006 }
12007 return (rcpuset);
12008 }
12009
12010 /*
12011 * This routine takes an sfmmu pointer and the va for an adddress in an
12012 * ISM region as input and returns the corresponding region id in ism_rid.
12013 * The return value of 1 indicates that a region has been found and ism_rid
12014 * is valid, otherwise 0 is returned.
12015 */
12016 static int
find_ism_rid(sfmmu_t * sfmmup,sfmmu_t * ism_sfmmup,caddr_t va,uint_t * ism_rid)12017 find_ism_rid(sfmmu_t *sfmmup, sfmmu_t *ism_sfmmup, caddr_t va, uint_t *ism_rid)
12018 {
12019 ism_blk_t *ism_blkp;
12020 int i;
12021 ism_map_t *ism_map;
12022 #ifdef DEBUG
12023 struct hat *ism_hatid;
12024 #endif
12025 ASSERT(sfmmu_hat_lock_held(sfmmup));
12026
12027 ism_blkp = sfmmup->sfmmu_iblk;
12028 while (ism_blkp != NULL) {
12029 ism_map = ism_blkp->iblk_maps;
12030 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
12031 if ((va >= ism_start(ism_map[i])) &&
12032 (va < ism_end(ism_map[i]))) {
12033
12034 *ism_rid = ism_map[i].imap_rid;
12035 #ifdef DEBUG
12036 ism_hatid = ism_map[i].imap_ismhat;
12037 ASSERT(ism_hatid == ism_sfmmup);
12038 ASSERT(ism_hatid->sfmmu_ismhat);
12039 #endif
12040 return (1);
12041 }
12042 }
12043 ism_blkp = ism_blkp->iblk_next;
12044 }
12045 return (0);
12046 }
12047
12048 /*
12049 * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
12050 * This routine may be called with all cpu's captured. Therefore, the
12051 * caller is responsible for holding all locks and disabling kernel
12052 * preemption.
12053 */
12054 /* ARGSUSED */
12055 static void
sfmmu_ismtlbcache_demap(caddr_t addr,sfmmu_t * ism_sfmmup,struct hme_blk * hmeblkp,pfn_t pfnum,int cache_flush_flag)12056 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
12057 struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
12058 {
12059 cpuset_t cpuset;
12060 caddr_t va;
12061 ism_ment_t *ment;
12062 sfmmu_t *sfmmup;
12063 #ifdef VAC
12064 int vcolor;
12065 #endif
12066
12067 sf_scd_t *scdp;
12068 uint_t ism_rid;
12069
12070 ASSERT(!hmeblkp->hblk_shared);
12071 /*
12072 * Walk the ism_hat's mapping list and flush the page
12073 * from every hat sharing this ism_hat. This routine
12074 * may be called while all cpu's have been captured.
12075 * Therefore we can't attempt to grab any locks. For now
12076 * this means we will protect the ism mapping list under
12077 * a single lock which will be grabbed by the caller.
12078 * If hat_share/unshare scalibility becomes a performance
12079 * problem then we may need to re-think ism mapping list locking.
12080 */
12081 ASSERT(ism_sfmmup->sfmmu_ismhat);
12082 ASSERT(MUTEX_HELD(&ism_mlist_lock));
12083 addr = (caddr_t)((uintptr_t)addr - (uintptr_t)ISMID_STARTADDR);
12084
12085 for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
12086
12087 sfmmup = ment->iment_hat;
12088
12089 va = ment->iment_base_va;
12090 va = (caddr_t)((uintptr_t)va + (uintptr_t)addr);
12091
12092 /*
12093 * When an SCD is created the SCD hat is linked on the ism
12094 * mapping lists for each ISM segment which is part of the
12095 * SCD. If we find an SCD hat, when walking these lists,
12096 * then we flush the shared TSBs, if we find a private hat,
12097 * which is part of an SCD, but where the region
12098 * corresponding to this va is not part of the SCD then we
12099 * flush the private TSBs.
12100 */
12101 if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12102 !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD) &&
12103 !SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12104 if (!find_ism_rid(sfmmup, ism_sfmmup, va,
12105 &ism_rid)) {
12106 cmn_err(CE_PANIC,
12107 "can't find matching ISM rid!");
12108 }
12109
12110 scdp = sfmmup->sfmmu_scdp;
12111 if (SFMMU_IS_ISMRID_VALID(ism_rid) &&
12112 SF_RGNMAP_TEST(scdp->scd_ismregion_map,
12113 ism_rid)) {
12114 continue;
12115 }
12116 }
12117 SFMMU_UNLOAD_TSB(va, sfmmup, hmeblkp, 1);
12118
12119 cpuset = sfmmup->sfmmu_cpusran;
12120 CPUSET_AND(cpuset, cpu_ready_set);
12121 CPUSET_DEL(cpuset, CPU->cpu_id);
12122 SFMMU_XCALL_STATS(sfmmup);
12123 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
12124 (uint64_t)sfmmup);
12125 vtag_flushpage(va, (uint64_t)sfmmup);
12126
12127 #ifdef VAC
12128 /*
12129 * Flush D$
12130 * When flushing D$ we must flush all
12131 * cpu's. See sfmmu_cache_flush().
12132 */
12133 if (cache_flush_flag == CACHE_FLUSH) {
12134 cpuset = cpu_ready_set;
12135 CPUSET_DEL(cpuset, CPU->cpu_id);
12136
12137 SFMMU_XCALL_STATS(sfmmup);
12138 vcolor = addr_to_vcolor(va);
12139 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12140 vac_flushpage(pfnum, vcolor);
12141 }
12142 #endif /* VAC */
12143 }
12144 }
12145
12146 /*
12147 * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
12148 * a particular virtual address and ctx. If noflush is set we do not
12149 * flush the TLB/TSB. This function may or may not be called with the
12150 * HAT lock held.
12151 */
12152 static void
sfmmu_tlbcache_demap(caddr_t addr,sfmmu_t * sfmmup,struct hme_blk * hmeblkp,pfn_t pfnum,int tlb_noflush,int cpu_flag,int cache_flush_flag,int hat_lock_held)12153 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12154 pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
12155 int hat_lock_held)
12156 {
12157 #ifdef VAC
12158 int vcolor;
12159 #endif
12160 cpuset_t cpuset;
12161 hatlock_t *hatlockp;
12162
12163 ASSERT(!hmeblkp->hblk_shared);
12164
12165 #if defined(lint) && !defined(VAC)
12166 pfnum = pfnum;
12167 cpu_flag = cpu_flag;
12168 cache_flush_flag = cache_flush_flag;
12169 #endif
12170
12171 /*
12172 * There is no longer a need to protect against ctx being
12173 * stolen here since we don't store the ctx in the TSB anymore.
12174 */
12175 #ifdef VAC
12176 vcolor = addr_to_vcolor(addr);
12177 #endif
12178
12179 /*
12180 * We must hold the hat lock during the flush of TLB,
12181 * to avoid a race with sfmmu_invalidate_ctx(), where
12182 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12183 * causing TLB demap routine to skip flush on that MMU.
12184 * If the context on a MMU has already been set to
12185 * INVALID_CONTEXT, we just get an extra flush on
12186 * that MMU.
12187 */
12188 if (!hat_lock_held && !tlb_noflush)
12189 hatlockp = sfmmu_hat_enter(sfmmup);
12190
12191 kpreempt_disable();
12192 if (!tlb_noflush) {
12193 /*
12194 * Flush the TSB and TLB.
12195 */
12196 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12197
12198 cpuset = sfmmup->sfmmu_cpusran;
12199 CPUSET_AND(cpuset, cpu_ready_set);
12200 CPUSET_DEL(cpuset, CPU->cpu_id);
12201
12202 SFMMU_XCALL_STATS(sfmmup);
12203
12204 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
12205 (uint64_t)sfmmup);
12206
12207 vtag_flushpage(addr, (uint64_t)sfmmup);
12208 }
12209
12210 if (!hat_lock_held && !tlb_noflush)
12211 sfmmu_hat_exit(hatlockp);
12212
12213 #ifdef VAC
12214 /*
12215 * Flush the D$
12216 *
12217 * Even if the ctx is stolen, we need to flush the
12218 * cache. Our ctx stealer only flushes the TLBs.
12219 */
12220 if (cache_flush_flag == CACHE_FLUSH) {
12221 if (cpu_flag & FLUSH_ALL_CPUS) {
12222 cpuset = cpu_ready_set;
12223 } else {
12224 cpuset = sfmmup->sfmmu_cpusran;
12225 CPUSET_AND(cpuset, cpu_ready_set);
12226 }
12227 CPUSET_DEL(cpuset, CPU->cpu_id);
12228 SFMMU_XCALL_STATS(sfmmup);
12229 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12230 vac_flushpage(pfnum, vcolor);
12231 }
12232 #endif /* VAC */
12233 kpreempt_enable();
12234 }
12235
12236 /*
12237 * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
12238 * address and ctx. If noflush is set we do not currently do anything.
12239 * This function may or may not be called with the HAT lock held.
12240 */
12241 static void
sfmmu_tlb_demap(caddr_t addr,sfmmu_t * sfmmup,struct hme_blk * hmeblkp,int tlb_noflush,int hat_lock_held)12242 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12243 int tlb_noflush, int hat_lock_held)
12244 {
12245 cpuset_t cpuset;
12246 hatlock_t *hatlockp;
12247
12248 ASSERT(!hmeblkp->hblk_shared);
12249
12250 /*
12251 * If the process is exiting we have nothing to do.
12252 */
12253 if (tlb_noflush)
12254 return;
12255
12256 /*
12257 * Flush TSB.
12258 */
12259 if (!hat_lock_held)
12260 hatlockp = sfmmu_hat_enter(sfmmup);
12261 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12262
12263 kpreempt_disable();
12264
12265 cpuset = sfmmup->sfmmu_cpusran;
12266 CPUSET_AND(cpuset, cpu_ready_set);
12267 CPUSET_DEL(cpuset, CPU->cpu_id);
12268
12269 SFMMU_XCALL_STATS(sfmmup);
12270 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
12271
12272 vtag_flushpage(addr, (uint64_t)sfmmup);
12273
12274 if (!hat_lock_held)
12275 sfmmu_hat_exit(hatlockp);
12276
12277 kpreempt_enable();
12278
12279 }
12280
12281 /*
12282 * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
12283 * call handler that can flush a range of pages to save on xcalls.
12284 */
12285 static int sfmmu_xcall_save;
12286
12287 /*
12288 * this routine is never used for demaping addresses backed by SRD hmeblks.
12289 */
12290 static void
sfmmu_tlb_range_demap(demap_range_t * dmrp)12291 sfmmu_tlb_range_demap(demap_range_t *dmrp)
12292 {
12293 sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
12294 hatlock_t *hatlockp;
12295 cpuset_t cpuset;
12296 uint64_t sfmmu_pgcnt;
12297 pgcnt_t pgcnt = 0;
12298 int pgunload = 0;
12299 int dirtypg = 0;
12300 caddr_t addr = dmrp->dmr_addr;
12301 caddr_t eaddr;
12302 uint64_t bitvec = dmrp->dmr_bitvec;
12303
12304 ASSERT(bitvec & 1);
12305
12306 /*
12307 * Flush TSB and calculate number of pages to flush.
12308 */
12309 while (bitvec != 0) {
12310 dirtypg = 0;
12311 /*
12312 * Find the first page to flush and then count how many
12313 * pages there are after it that also need to be flushed.
12314 * This way the number of TSB flushes is minimized.
12315 */
12316 while ((bitvec & 1) == 0) {
12317 pgcnt++;
12318 addr += MMU_PAGESIZE;
12319 bitvec >>= 1;
12320 }
12321 while (bitvec & 1) {
12322 dirtypg++;
12323 bitvec >>= 1;
12324 }
12325 eaddr = addr + ptob(dirtypg);
12326 hatlockp = sfmmu_hat_enter(sfmmup);
12327 sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
12328 sfmmu_hat_exit(hatlockp);
12329 pgunload += dirtypg;
12330 addr = eaddr;
12331 pgcnt += dirtypg;
12332 }
12333
12334 ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
12335 if (sfmmup->sfmmu_free == 0) {
12336 addr = dmrp->dmr_addr;
12337 bitvec = dmrp->dmr_bitvec;
12338
12339 /*
12340 * make sure it has SFMMU_PGCNT_SHIFT bits only,
12341 * as it will be used to pack argument for xt_some
12342 */
12343 ASSERT((pgcnt > 0) &&
12344 (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
12345
12346 /*
12347 * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
12348 * the low 6 bits of sfmmup. This is doable since pgcnt
12349 * always >= 1.
12350 */
12351 ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
12352 sfmmu_pgcnt = (uint64_t)sfmmup |
12353 ((pgcnt - 1) & SFMMU_PGCNT_MASK);
12354
12355 /*
12356 * We must hold the hat lock during the flush of TLB,
12357 * to avoid a race with sfmmu_invalidate_ctx(), where
12358 * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12359 * causing TLB demap routine to skip flush on that MMU.
12360 * If the context on a MMU has already been set to
12361 * INVALID_CONTEXT, we just get an extra flush on
12362 * that MMU.
12363 */
12364 hatlockp = sfmmu_hat_enter(sfmmup);
12365 kpreempt_disable();
12366
12367 cpuset = sfmmup->sfmmu_cpusran;
12368 CPUSET_AND(cpuset, cpu_ready_set);
12369 CPUSET_DEL(cpuset, CPU->cpu_id);
12370
12371 SFMMU_XCALL_STATS(sfmmup);
12372 xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
12373 sfmmu_pgcnt);
12374
12375 for (; bitvec != 0; bitvec >>= 1) {
12376 if (bitvec & 1)
12377 vtag_flushpage(addr, (uint64_t)sfmmup);
12378 addr += MMU_PAGESIZE;
12379 }
12380 kpreempt_enable();
12381 sfmmu_hat_exit(hatlockp);
12382
12383 sfmmu_xcall_save += (pgunload-1);
12384 }
12385 dmrp->dmr_bitvec = 0;
12386 }
12387
12388 /*
12389 * In cases where we need to synchronize with TLB/TSB miss trap
12390 * handlers, _and_ need to flush the TLB, it's a lot easier to
12391 * throw away the context from the process than to do a
12392 * special song and dance to keep things consistent for the
12393 * handlers.
12394 *
12395 * Since the process suddenly ends up without a context and our caller
12396 * holds the hat lock, threads that fault after this function is called
12397 * will pile up on the lock. We can then do whatever we need to
12398 * atomically from the context of the caller. The first blocked thread
12399 * to resume executing will get the process a new context, and the
12400 * process will resume executing.
12401 *
12402 * One added advantage of this approach is that on MMUs that
12403 * support a "flush all" operation, we will delay the flush until
12404 * cnum wrap-around, and then flush the TLB one time. This
12405 * is rather rare, so it's a lot less expensive than making 8000
12406 * x-calls to flush the TLB 8000 times.
12407 *
12408 * A per-process (PP) lock is used to synchronize ctx allocations in
12409 * resume() and ctx invalidations here.
12410 */
12411 static void
sfmmu_invalidate_ctx(sfmmu_t * sfmmup)12412 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
12413 {
12414 cpuset_t cpuset;
12415 int cnum, currcnum;
12416 mmu_ctx_t *mmu_ctxp;
12417 int i;
12418 uint_t pstate_save;
12419
12420 SFMMU_STAT(sf_ctx_inv);
12421
12422 ASSERT(sfmmu_hat_lock_held(sfmmup));
12423 ASSERT(sfmmup != ksfmmup);
12424
12425 kpreempt_disable();
12426
12427 mmu_ctxp = CPU_MMU_CTXP(CPU);
12428 ASSERT(mmu_ctxp);
12429 ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
12430 ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
12431
12432 currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
12433
12434 pstate_save = sfmmu_disable_intrs();
12435
12436 lock_set(&sfmmup->sfmmu_ctx_lock); /* acquire PP lock */
12437 /* set HAT cnum invalid across all context domains. */
12438 for (i = 0; i < max_mmu_ctxdoms; i++) {
12439
12440 cnum = sfmmup->sfmmu_ctxs[i].cnum;
12441 if (cnum == INVALID_CONTEXT) {
12442 continue;
12443 }
12444
12445 sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
12446 }
12447 membar_enter(); /* make sure globally visible to all CPUs */
12448 lock_clear(&sfmmup->sfmmu_ctx_lock); /* release PP lock */
12449
12450 sfmmu_enable_intrs(pstate_save);
12451
12452 cpuset = sfmmup->sfmmu_cpusran;
12453 CPUSET_DEL(cpuset, CPU->cpu_id);
12454 CPUSET_AND(cpuset, cpu_ready_set);
12455 if (!CPUSET_ISNULL(cpuset)) {
12456 SFMMU_XCALL_STATS(sfmmup);
12457 xt_some(cpuset, sfmmu_raise_tsb_exception,
12458 (uint64_t)sfmmup, INVALID_CONTEXT);
12459 xt_sync(cpuset);
12460 SFMMU_STAT(sf_tsb_raise_exception);
12461 SFMMU_MMU_STAT(mmu_tsb_raise_exception);
12462 }
12463
12464 /*
12465 * If the hat to-be-invalidated is the same as the current
12466 * process on local CPU we need to invalidate
12467 * this CPU context as well.
12468 */
12469 if ((sfmmu_getctx_sec() == currcnum) &&
12470 (currcnum != INVALID_CONTEXT)) {
12471 /* sets shared context to INVALID too */
12472 sfmmu_setctx_sec(INVALID_CONTEXT);
12473 sfmmu_clear_utsbinfo();
12474 }
12475
12476 SFMMU_FLAGS_SET(sfmmup, HAT_ALLCTX_INVALID);
12477
12478 kpreempt_enable();
12479
12480 /*
12481 * we hold the hat lock, so nobody should allocate a context
12482 * for us yet
12483 */
12484 ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
12485 }
12486
12487 #ifdef VAC
12488 /*
12489 * We need to flush the cache in all cpus. It is possible that
12490 * a process referenced a page as cacheable but has sinced exited
12491 * and cleared the mapping list. We still to flush it but have no
12492 * state so all cpus is the only alternative.
12493 */
12494 void
sfmmu_cache_flush(pfn_t pfnum,int vcolor)12495 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
12496 {
12497 cpuset_t cpuset;
12498
12499 kpreempt_disable();
12500 cpuset = cpu_ready_set;
12501 CPUSET_DEL(cpuset, CPU->cpu_id);
12502 SFMMU_XCALL_STATS(NULL); /* account to any ctx */
12503 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12504 xt_sync(cpuset);
12505 vac_flushpage(pfnum, vcolor);
12506 kpreempt_enable();
12507 }
12508
12509 void
sfmmu_cache_flushcolor(int vcolor,pfn_t pfnum)12510 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
12511 {
12512 cpuset_t cpuset;
12513
12514 ASSERT(vcolor >= 0);
12515
12516 kpreempt_disable();
12517 cpuset = cpu_ready_set;
12518 CPUSET_DEL(cpuset, CPU->cpu_id);
12519 SFMMU_XCALL_STATS(NULL); /* account to any ctx */
12520 xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
12521 xt_sync(cpuset);
12522 vac_flushcolor(vcolor, pfnum);
12523 kpreempt_enable();
12524 }
12525 #endif /* VAC */
12526
12527 /*
12528 * We need to prevent processes from accessing the TSB using a cached physical
12529 * address. It's alright if they try to access the TSB via virtual address
12530 * since they will just fault on that virtual address once the mapping has
12531 * been suspended.
12532 */
12533 #pragma weak sendmondo_in_recover
12534
12535 /* ARGSUSED */
12536 static int
sfmmu_tsb_pre_relocator(caddr_t va,uint_t tsbsz,uint_t flags,void * tsbinfo)12537 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
12538 {
12539 struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12540 sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12541 hatlock_t *hatlockp;
12542 sf_scd_t *scdp;
12543
12544 if (flags != HAT_PRESUSPEND)
12545 return (0);
12546
12547 /*
12548 * If tsb is a shared TSB with TSB_SHAREDCTX set, sfmmup must
12549 * be a shared hat, then set SCD's tsbinfo's flag.
12550 * If tsb is not shared, sfmmup is a private hat, then set
12551 * its private tsbinfo's flag.
12552 */
12553 hatlockp = sfmmu_hat_enter(sfmmup);
12554 tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
12555
12556 if (!(tsbinfop->tsb_flags & TSB_SHAREDCTX)) {
12557 sfmmu_tsb_inv_ctx(sfmmup);
12558 sfmmu_hat_exit(hatlockp);
12559 } else {
12560 /* release lock on the shared hat */
12561 sfmmu_hat_exit(hatlockp);
12562 /* sfmmup is a shared hat */
12563 ASSERT(sfmmup->sfmmu_scdhat);
12564 scdp = sfmmup->sfmmu_scdp;
12565 ASSERT(scdp != NULL);
12566 /* get private hat from the scd list */
12567 mutex_enter(&scdp->scd_mutex);
12568 sfmmup = scdp->scd_sf_list;
12569 while (sfmmup != NULL) {
12570 hatlockp = sfmmu_hat_enter(sfmmup);
12571 /*
12572 * We do not call sfmmu_tsb_inv_ctx here because
12573 * sendmondo_in_recover check is only needed for
12574 * sun4u.
12575 */
12576 sfmmu_invalidate_ctx(sfmmup);
12577 sfmmu_hat_exit(hatlockp);
12578 sfmmup = sfmmup->sfmmu_scd_link.next;
12579
12580 }
12581 mutex_exit(&scdp->scd_mutex);
12582 }
12583 return (0);
12584 }
12585
12586 static void
sfmmu_tsb_inv_ctx(sfmmu_t * sfmmup)12587 sfmmu_tsb_inv_ctx(sfmmu_t *sfmmup)
12588 {
12589 extern uint32_t sendmondo_in_recover;
12590
12591 ASSERT(sfmmu_hat_lock_held(sfmmup));
12592
12593 /*
12594 * For Cheetah+ Erratum 25:
12595 * Wait for any active recovery to finish. We can't risk
12596 * relocating the TSB of the thread running mondo_recover_proc()
12597 * since, if we did that, we would deadlock. The scenario we are
12598 * trying to avoid is as follows:
12599 *
12600 * THIS CPU RECOVER CPU
12601 * -------- -----------
12602 * Begins recovery, walking through TSB
12603 * hat_pagesuspend() TSB TTE
12604 * TLB miss on TSB TTE, spins at TL1
12605 * xt_sync()
12606 * send_mondo_timeout()
12607 * mondo_recover_proc()
12608 * ((deadlocked))
12609 *
12610 * The second half of the workaround is that mondo_recover_proc()
12611 * checks to see if the tsb_info has the RELOC flag set, and if it
12612 * does, it skips over that TSB without ever touching tsbinfop->tsb_va
12613 * and hence avoiding the TLB miss that could result in a deadlock.
12614 */
12615 if (&sendmondo_in_recover) {
12616 membar_enter(); /* make sure RELOC flag visible */
12617 while (sendmondo_in_recover) {
12618 drv_usecwait(1);
12619 membar_consumer();
12620 }
12621 }
12622
12623 sfmmu_invalidate_ctx(sfmmup);
12624 }
12625
12626 /* ARGSUSED */
12627 static int
sfmmu_tsb_post_relocator(caddr_t va,uint_t tsbsz,uint_t flags,void * tsbinfo,pfn_t newpfn)12628 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
12629 void *tsbinfo, pfn_t newpfn)
12630 {
12631 hatlock_t *hatlockp;
12632 struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12633 sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12634
12635 if (flags != HAT_POSTUNSUSPEND)
12636 return (0);
12637
12638 hatlockp = sfmmu_hat_enter(sfmmup);
12639
12640 SFMMU_STAT(sf_tsb_reloc);
12641
12642 /*
12643 * The process may have swapped out while we were relocating one
12644 * of its TSBs. If so, don't bother doing the setup since the
12645 * process can't be using the memory anymore.
12646 */
12647 if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
12648 ASSERT(va == tsbinfop->tsb_va);
12649 sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
12650
12651 if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
12652 sfmmu_inv_tsb(tsbinfop->tsb_va,
12653 TSB_BYTES(tsbinfop->tsb_szc));
12654 tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
12655 }
12656 }
12657
12658 membar_exit();
12659 tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
12660 cv_broadcast(&sfmmup->sfmmu_tsb_cv);
12661
12662 sfmmu_hat_exit(hatlockp);
12663
12664 return (0);
12665 }
12666
12667 /*
12668 * Allocate and initialize a tsb_info structure. Note that we may or may not
12669 * allocate a TSB here, depending on the flags passed in.
12670 */
12671 static int
sfmmu_tsbinfo_alloc(struct tsb_info ** tsbinfopp,int tsb_szc,int tte_sz_mask,uint_t flags,sfmmu_t * sfmmup)12672 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
12673 uint_t flags, sfmmu_t *sfmmup)
12674 {
12675 int err;
12676
12677 *tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
12678 sfmmu_tsbinfo_cache, KM_SLEEP);
12679
12680 if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
12681 tsb_szc, flags, sfmmup)) != 0) {
12682 kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
12683 SFMMU_STAT(sf_tsb_allocfail);
12684 *tsbinfopp = NULL;
12685 return (err);
12686 }
12687 SFMMU_STAT(sf_tsb_alloc);
12688
12689 /*
12690 * Bump the TSB size counters for this TSB size.
12691 */
12692 (*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
12693 return (0);
12694 }
12695
12696 static void
sfmmu_tsb_free(struct tsb_info * tsbinfo)12697 sfmmu_tsb_free(struct tsb_info *tsbinfo)
12698 {
12699 caddr_t tsbva = tsbinfo->tsb_va;
12700 uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
12701 struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
12702 vmem_t *vmp = tsbinfo->tsb_vmp;
12703
12704 /*
12705 * If we allocated this TSB from relocatable kernel memory, then we
12706 * need to uninstall the callback handler.
12707 */
12708 if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
12709 uintptr_t slab_mask;
12710 caddr_t slab_vaddr;
12711 page_t **ppl;
12712 int ret;
12713
12714 ASSERT(tsb_size <= MMU_PAGESIZE4M || use_bigtsb_arena);
12715 if (tsb_size > MMU_PAGESIZE4M)
12716 slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12717 else
12718 slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12719 slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
12720
12721 ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
12722 ASSERT(ret == 0);
12723 hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
12724 0, NULL);
12725 as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
12726 }
12727
12728 if (kmem_cachep != NULL) {
12729 kmem_cache_free(kmem_cachep, tsbva);
12730 } else {
12731 vmem_xfree(vmp, (void *)tsbva, tsb_size);
12732 }
12733 tsbinfo->tsb_va = (caddr_t)0xbad00bad;
12734 atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
12735 }
12736
12737 static void
sfmmu_tsbinfo_free(struct tsb_info * tsbinfo)12738 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
12739 {
12740 if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
12741 sfmmu_tsb_free(tsbinfo);
12742 }
12743 kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
12744
12745 }
12746
12747 /*
12748 * Setup all the references to physical memory for this tsbinfo.
12749 * The underlying page(s) must be locked.
12750 */
12751 static void
sfmmu_tsbinfo_setup_phys(struct tsb_info * tsbinfo,pfn_t pfn)12752 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
12753 {
12754 ASSERT(pfn != PFN_INVALID);
12755 ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
12756
12757 #ifndef sun4v
12758 if (tsbinfo->tsb_szc == 0) {
12759 sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
12760 PROT_WRITE|PROT_READ, TTE8K);
12761 } else {
12762 /*
12763 * Round down PA and use a large mapping; the handlers will
12764 * compute the TSB pointer at the correct offset into the
12765 * big virtual page. NOTE: this assumes all TSBs larger
12766 * than 8K must come from physically contiguous slabs of
12767 * size tsb_slab_size.
12768 */
12769 sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
12770 PROT_WRITE|PROT_READ, tsb_slab_ttesz);
12771 }
12772 tsbinfo->tsb_pa = ptob(pfn);
12773
12774 TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
12775 TTE_SET_MOD(&tsbinfo->tsb_tte); /* enable writes */
12776
12777 ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
12778 ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
12779 #else /* sun4v */
12780 tsbinfo->tsb_pa = ptob(pfn);
12781 #endif /* sun4v */
12782 }
12783
12784
12785 /*
12786 * Returns zero on success, ENOMEM if over the high water mark,
12787 * or EAGAIN if the caller needs to retry with a smaller TSB
12788 * size (or specify TSB_FORCEALLOC if the allocation can't fail).
12789 *
12790 * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
12791 * is specified and the TSB requested is PAGESIZE, though it
12792 * may sleep waiting for memory if sufficient memory is not
12793 * available.
12794 */
12795 static int
sfmmu_init_tsbinfo(struct tsb_info * tsbinfo,int tteszmask,int tsbcode,uint_t flags,sfmmu_t * sfmmup)12796 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
12797 int tsbcode, uint_t flags, sfmmu_t *sfmmup)
12798 {
12799 caddr_t vaddr = NULL;
12800 caddr_t slab_vaddr;
12801 uintptr_t slab_mask;
12802 int tsbbytes = TSB_BYTES(tsbcode);
12803 int lowmem = 0;
12804 struct kmem_cache *kmem_cachep = NULL;
12805 vmem_t *vmp = NULL;
12806 lgrp_id_t lgrpid = LGRP_NONE;
12807 pfn_t pfn;
12808 uint_t cbflags = HAC_SLEEP;
12809 page_t **pplist;
12810 int ret;
12811
12812 ASSERT(tsbbytes <= MMU_PAGESIZE4M || use_bigtsb_arena);
12813 if (tsbbytes > MMU_PAGESIZE4M)
12814 slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12815 else
12816 slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12817
12818 if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
12819 flags |= TSB_ALLOC;
12820
12821 ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
12822
12823 tsbinfo->tsb_sfmmu = sfmmup;
12824
12825 /*
12826 * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
12827 * return.
12828 */
12829 if ((flags & TSB_ALLOC) == 0) {
12830 tsbinfo->tsb_szc = tsbcode;
12831 tsbinfo->tsb_ttesz_mask = tteszmask;
12832 tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
12833 tsbinfo->tsb_pa = -1;
12834 tsbinfo->tsb_tte.ll = 0;
12835 tsbinfo->tsb_next = NULL;
12836 tsbinfo->tsb_flags = TSB_SWAPPED;
12837 tsbinfo->tsb_cache = NULL;
12838 tsbinfo->tsb_vmp = NULL;
12839 return (0);
12840 }
12841
12842 #ifdef DEBUG
12843 /*
12844 * For debugging:
12845 * Randomly force allocation failures every tsb_alloc_mtbf
12846 * tries if TSB_FORCEALLOC is not specified. This will
12847 * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
12848 * it is even, to allow testing of both failure paths...
12849 */
12850 if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
12851 (tsb_alloc_count++ == tsb_alloc_mtbf)) {
12852 tsb_alloc_count = 0;
12853 tsb_alloc_fail_mtbf++;
12854 return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
12855 }
12856 #endif /* DEBUG */
12857
12858 /*
12859 * Enforce high water mark if we are not doing a forced allocation
12860 * and are not shrinking a process' TSB.
12861 */
12862 if ((flags & TSB_SHRINK) == 0 &&
12863 (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
12864 if ((flags & TSB_FORCEALLOC) == 0)
12865 return (ENOMEM);
12866 lowmem = 1;
12867 }
12868
12869 /*
12870 * Allocate from the correct location based upon the size of the TSB
12871 * compared to the base page size, and what memory conditions dictate.
12872 * Note we always do nonblocking allocations from the TSB arena since
12873 * we don't want memory fragmentation to cause processes to block
12874 * indefinitely waiting for memory; until the kernel algorithms that
12875 * coalesce large pages are improved this is our best option.
12876 *
12877 * Algorithm:
12878 * If allocating a "large" TSB (>8K), allocate from the
12879 * appropriate kmem_tsb_default_arena vmem arena
12880 * else if low on memory or the TSB_FORCEALLOC flag is set or
12881 * tsb_forceheap is set
12882 * Allocate from kernel heap via sfmmu_tsb8k_cache with
12883 * KM_SLEEP (never fails)
12884 * else
12885 * Allocate from appropriate sfmmu_tsb_cache with
12886 * KM_NOSLEEP
12887 * endif
12888 */
12889 if (tsb_lgrp_affinity)
12890 lgrpid = lgrp_home_id(curthread);
12891 if (lgrpid == LGRP_NONE)
12892 lgrpid = 0; /* use lgrp of boot CPU */
12893
12894 if (tsbbytes > MMU_PAGESIZE) {
12895 if (tsbbytes > MMU_PAGESIZE4M) {
12896 vmp = kmem_bigtsb_default_arena[lgrpid];
12897 vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
12898 0, 0, NULL, NULL, VM_NOSLEEP);
12899 } else {
12900 vmp = kmem_tsb_default_arena[lgrpid];
12901 vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
12902 0, 0, NULL, NULL, VM_NOSLEEP);
12903 }
12904 #ifdef DEBUG
12905 } else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
12906 #else /* !DEBUG */
12907 } else if (lowmem || (flags & TSB_FORCEALLOC)) {
12908 #endif /* DEBUG */
12909 kmem_cachep = sfmmu_tsb8k_cache;
12910 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
12911 ASSERT(vaddr != NULL);
12912 } else {
12913 kmem_cachep = sfmmu_tsb_cache[lgrpid];
12914 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
12915 }
12916
12917 tsbinfo->tsb_cache = kmem_cachep;
12918 tsbinfo->tsb_vmp = vmp;
12919
12920 if (vaddr == NULL) {
12921 return (EAGAIN);
12922 }
12923
12924 atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
12925 kmem_cachep = tsbinfo->tsb_cache;
12926
12927 /*
12928 * If we are allocating from outside the cage, then we need to
12929 * register a relocation callback handler. Note that for now
12930 * since pseudo mappings always hang off of the slab's root page,
12931 * we need only lock the first 8K of the TSB slab. This is a bit
12932 * hacky but it is good for performance.
12933 */
12934 if (kmem_cachep != sfmmu_tsb8k_cache) {
12935 slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
12936 ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
12937 ASSERT(ret == 0);
12938 ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
12939 cbflags, (void *)tsbinfo, &pfn, NULL);
12940
12941 /*
12942 * Need to free up resources if we could not successfully
12943 * add the callback function and return an error condition.
12944 */
12945 if (ret != 0) {
12946 if (kmem_cachep) {
12947 kmem_cache_free(kmem_cachep, vaddr);
12948 } else {
12949 vmem_xfree(vmp, (void *)vaddr, tsbbytes);
12950 }
12951 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
12952 S_WRITE);
12953 return (EAGAIN);
12954 }
12955 } else {
12956 /*
12957 * Since allocation of 8K TSBs from heap is rare and occurs
12958 * during memory pressure we allocate them from permanent
12959 * memory rather than using callbacks to get the PFN.
12960 */
12961 pfn = hat_getpfnum(kas.a_hat, vaddr);
12962 }
12963
12964 tsbinfo->tsb_va = vaddr;
12965 tsbinfo->tsb_szc = tsbcode;
12966 tsbinfo->tsb_ttesz_mask = tteszmask;
12967 tsbinfo->tsb_next = NULL;
12968 tsbinfo->tsb_flags = 0;
12969
12970 sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
12971
12972 sfmmu_inv_tsb(vaddr, tsbbytes);
12973
12974 if (kmem_cachep != sfmmu_tsb8k_cache) {
12975 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
12976 }
12977
12978 return (0);
12979 }
12980
12981 /*
12982 * Initialize per cpu tsb and per cpu tsbmiss_area
12983 */
12984 void
sfmmu_init_tsbs(void)12985 sfmmu_init_tsbs(void)
12986 {
12987 int i;
12988 struct tsbmiss *tsbmissp;
12989 struct kpmtsbm *kpmtsbmp;
12990 #ifndef sun4v
12991 extern int dcache_line_mask;
12992 #endif /* sun4v */
12993 extern uint_t vac_colors;
12994
12995 /*
12996 * Init. tsb miss area.
12997 */
12998 tsbmissp = tsbmiss_area;
12999
13000 for (i = 0; i < NCPU; tsbmissp++, i++) {
13001 /*
13002 * initialize the tsbmiss area.
13003 * Do this for all possible CPUs as some may be added
13004 * while the system is running. There is no cost to this.
13005 */
13006 tsbmissp->ksfmmup = ksfmmup;
13007 #ifndef sun4v
13008 tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
13009 #endif /* sun4v */
13010 tsbmissp->khashstart =
13011 (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
13012 tsbmissp->uhashstart =
13013 (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
13014 tsbmissp->khashsz = khmehash_num;
13015 tsbmissp->uhashsz = uhmehash_num;
13016 }
13017
13018 sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
13019 sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
13020
13021 if (kpm_enable == 0)
13022 return;
13023
13024 /* -- Begin KPM specific init -- */
13025
13026 if (kpm_smallpages) {
13027 /*
13028 * If we're using base pagesize pages for seg_kpm
13029 * mappings, we use the kernel TSB since we can't afford
13030 * to allocate a second huge TSB for these mappings.
13031 */
13032 kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13033 kpm_tsbsz = ktsb_szcode;
13034 kpmsm_tsbbase = kpm_tsbbase;
13035 kpmsm_tsbsz = kpm_tsbsz;
13036 } else {
13037 /*
13038 * In VAC conflict case, just put the entries in the
13039 * kernel 8K indexed TSB for now so we can find them.
13040 * This could really be changed in the future if we feel
13041 * the need...
13042 */
13043 kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13044 kpmsm_tsbsz = ktsb_szcode;
13045 kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
13046 kpm_tsbsz = ktsb4m_szcode;
13047 }
13048
13049 kpmtsbmp = kpmtsbm_area;
13050 for (i = 0; i < NCPU; kpmtsbmp++, i++) {
13051 /*
13052 * Initialize the kpmtsbm area.
13053 * Do this for all possible CPUs as some may be added
13054 * while the system is running. There is no cost to this.
13055 */
13056 kpmtsbmp->vbase = kpm_vbase;
13057 kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
13058 kpmtsbmp->sz_shift = kpm_size_shift;
13059 kpmtsbmp->kpmp_shift = kpmp_shift;
13060 kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
13061 if (kpm_smallpages == 0) {
13062 kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
13063 kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
13064 } else {
13065 kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
13066 kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
13067 }
13068 kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
13069 kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
13070 #ifdef DEBUG
13071 kpmtsbmp->flags |= (kpm_tsbmtl) ? KPMTSBM_TLTSBM_FLAG : 0;
13072 #endif /* DEBUG */
13073 if (ktsb_phys)
13074 kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
13075 }
13076
13077 /* -- End KPM specific init -- */
13078 }
13079
13080 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
13081 struct tsb_info ktsb_info[2];
13082
13083 /*
13084 * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
13085 */
13086 void
sfmmu_init_ktsbinfo()13087 sfmmu_init_ktsbinfo()
13088 {
13089 ASSERT(ksfmmup != NULL);
13090 ASSERT(ksfmmup->sfmmu_tsb == NULL);
13091 /*
13092 * Allocate tsbinfos for kernel and copy in data
13093 * to make debug easier and sun4v setup easier.
13094 */
13095 ktsb_info[0].tsb_sfmmu = ksfmmup;
13096 ktsb_info[0].tsb_szc = ktsb_szcode;
13097 ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
13098 ktsb_info[0].tsb_va = ktsb_base;
13099 ktsb_info[0].tsb_pa = ktsb_pbase;
13100 ktsb_info[0].tsb_flags = 0;
13101 ktsb_info[0].tsb_tte.ll = 0;
13102 ktsb_info[0].tsb_cache = NULL;
13103
13104 ktsb_info[1].tsb_sfmmu = ksfmmup;
13105 ktsb_info[1].tsb_szc = ktsb4m_szcode;
13106 ktsb_info[1].tsb_ttesz_mask = TSB4M;
13107 ktsb_info[1].tsb_va = ktsb4m_base;
13108 ktsb_info[1].tsb_pa = ktsb4m_pbase;
13109 ktsb_info[1].tsb_flags = 0;
13110 ktsb_info[1].tsb_tte.ll = 0;
13111 ktsb_info[1].tsb_cache = NULL;
13112
13113 /* Link them into ksfmmup. */
13114 ktsb_info[0].tsb_next = &ktsb_info[1];
13115 ktsb_info[1].tsb_next = NULL;
13116 ksfmmup->sfmmu_tsb = &ktsb_info[0];
13117
13118 sfmmu_setup_tsbinfo(ksfmmup);
13119 }
13120
13121 /*
13122 * Cache the last value returned from va_to_pa(). If the VA specified
13123 * in the current call to cached_va_to_pa() maps to the same Page (as the
13124 * previous call to cached_va_to_pa()), then compute the PA using
13125 * cached info, else call va_to_pa().
13126 *
13127 * Note: this function is neither MT-safe nor consistent in the presence
13128 * of multiple, interleaved threads. This function was created to enable
13129 * an optimization used during boot (at a point when there's only one thread
13130 * executing on the "boot CPU", and before startup_vm() has been called).
13131 */
13132 static uint64_t
cached_va_to_pa(void * vaddr)13133 cached_va_to_pa(void *vaddr)
13134 {
13135 static uint64_t prev_vaddr_base = 0;
13136 static uint64_t prev_pfn = 0;
13137
13138 if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
13139 return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
13140 } else {
13141 uint64_t pa = va_to_pa(vaddr);
13142
13143 if (pa != ((uint64_t)-1)) {
13144 /*
13145 * Computed physical address is valid. Cache its
13146 * related info for the next cached_va_to_pa() call.
13147 */
13148 prev_pfn = pa & MMU_PAGEMASK;
13149 prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
13150 }
13151
13152 return (pa);
13153 }
13154 }
13155
13156 /*
13157 * Carve up our nucleus hblk region. We may allocate more hblks than
13158 * asked due to rounding errors but we are guaranteed to have at least
13159 * enough space to allocate the requested number of hblk8's and hblk1's.
13160 */
13161 void
sfmmu_init_nucleus_hblks(caddr_t addr,size_t size,int nhblk8,int nhblk1)13162 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
13163 {
13164 struct hme_blk *hmeblkp;
13165 size_t hme8blk_sz, hme1blk_sz;
13166 size_t i;
13167 size_t hblk8_bound;
13168 ulong_t j = 0, k = 0;
13169
13170 ASSERT(addr != NULL && size != 0);
13171
13172 /* Need to use proper structure alignment */
13173 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
13174 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
13175
13176 nucleus_hblk8.list = (void *)addr;
13177 nucleus_hblk8.index = 0;
13178
13179 /*
13180 * Use as much memory as possible for hblk8's since we
13181 * expect all bop_alloc'ed memory to be allocated in 8k chunks.
13182 * We need to hold back enough space for the hblk1's which
13183 * we'll allocate next.
13184 */
13185 hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
13186 for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
13187 hmeblkp = (struct hme_blk *)addr;
13188 addr += hme8blk_sz;
13189 hmeblkp->hblk_nuc_bit = 1;
13190 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13191 }
13192 nucleus_hblk8.len = j;
13193 ASSERT(j >= nhblk8);
13194 SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
13195
13196 nucleus_hblk1.list = (void *)addr;
13197 nucleus_hblk1.index = 0;
13198 for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
13199 hmeblkp = (struct hme_blk *)addr;
13200 addr += hme1blk_sz;
13201 hmeblkp->hblk_nuc_bit = 1;
13202 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13203 }
13204 ASSERT(k >= nhblk1);
13205 nucleus_hblk1.len = k;
13206 SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
13207 }
13208
13209 /*
13210 * This function is currently not supported on this platform. For what
13211 * it's supposed to do, see hat.c and hat_srmmu.c
13212 */
13213 /* ARGSUSED */
13214 faultcode_t
hat_softlock(struct hat * hat,caddr_t addr,size_t * lenp,page_t ** ppp,uint_t flags)13215 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
13216 uint_t flags)
13217 {
13218 return (FC_NOSUPPORT);
13219 }
13220
13221 /*
13222 * Searchs the mapping list of the page for a mapping of the same size. If not
13223 * found the corresponding bit is cleared in the p_index field. When large
13224 * pages are more prevalent in the system, we can maintain the mapping list
13225 * in order and we don't have to traverse the list each time. Just check the
13226 * next and prev entries, and if both are of different size, we clear the bit.
13227 */
13228 static void
sfmmu_rm_large_mappings(page_t * pp,int ttesz)13229 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
13230 {
13231 struct sf_hment *sfhmep;
13232 int index;
13233 pgcnt_t npgs;
13234
13235 ASSERT(ttesz > TTE8K);
13236
13237 ASSERT(sfmmu_mlist_held(pp));
13238
13239 ASSERT(PP_ISMAPPED_LARGE(pp));
13240
13241 /*
13242 * Traverse mapping list looking for another mapping of same size.
13243 * since we only want to clear index field if all mappings of
13244 * that size are gone.
13245 */
13246
13247 for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
13248 if (IS_PAHME(sfhmep))
13249 continue;
13250 if (hme_size(sfhmep) == ttesz) {
13251 /*
13252 * another mapping of the same size. don't clear index.
13253 */
13254 return;
13255 }
13256 }
13257
13258 /*
13259 * Clear the p_index bit for large page.
13260 */
13261 index = PAGESZ_TO_INDEX(ttesz);
13262 npgs = TTEPAGES(ttesz);
13263 while (npgs-- > 0) {
13264 ASSERT(pp->p_index & index);
13265 pp->p_index &= ~index;
13266 pp = PP_PAGENEXT(pp);
13267 }
13268 }
13269
13270 /*
13271 * return supported features
13272 */
13273 /* ARGSUSED */
13274 int
hat_supported(enum hat_features feature,void * arg)13275 hat_supported(enum hat_features feature, void *arg)
13276 {
13277 switch (feature) {
13278 case HAT_SHARED_PT:
13279 case HAT_DYNAMIC_ISM_UNMAP:
13280 case HAT_VMODSORT:
13281 return (1);
13282 case HAT_SHARED_REGIONS:
13283 if (shctx_on)
13284 return (1);
13285 else
13286 return (0);
13287 default:
13288 return (0);
13289 }
13290 }
13291
13292 void
hat_enter(struct hat * hat)13293 hat_enter(struct hat *hat)
13294 {
13295 hatlock_t *hatlockp;
13296
13297 if (hat != ksfmmup) {
13298 hatlockp = TSB_HASH(hat);
13299 mutex_enter(HATLOCK_MUTEXP(hatlockp));
13300 }
13301 }
13302
13303 void
hat_exit(struct hat * hat)13304 hat_exit(struct hat *hat)
13305 {
13306 hatlock_t *hatlockp;
13307
13308 if (hat != ksfmmup) {
13309 hatlockp = TSB_HASH(hat);
13310 mutex_exit(HATLOCK_MUTEXP(hatlockp));
13311 }
13312 }
13313
13314 /*ARGSUSED*/
13315 void
hat_reserve(struct as * as,caddr_t addr,size_t len)13316 hat_reserve(struct as *as, caddr_t addr, size_t len)
13317 {
13318 }
13319
13320 static void
hat_kstat_init(void)13321 hat_kstat_init(void)
13322 {
13323 kstat_t *ksp;
13324
13325 ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
13326 KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
13327 KSTAT_FLAG_VIRTUAL);
13328 if (ksp) {
13329 ksp->ks_data = (void *) &sfmmu_global_stat;
13330 kstat_install(ksp);
13331 }
13332 ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
13333 KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
13334 KSTAT_FLAG_VIRTUAL);
13335 if (ksp) {
13336 ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
13337 kstat_install(ksp);
13338 }
13339 ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
13340 KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
13341 KSTAT_FLAG_WRITABLE);
13342 if (ksp) {
13343 ksp->ks_update = sfmmu_kstat_percpu_update;
13344 kstat_install(ksp);
13345 }
13346 }
13347
13348 /* ARGSUSED */
13349 static int
sfmmu_kstat_percpu_update(kstat_t * ksp,int rw)13350 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
13351 {
13352 struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
13353 struct tsbmiss *tsbm = tsbmiss_area;
13354 struct kpmtsbm *kpmtsbm = kpmtsbm_area;
13355 int i;
13356
13357 ASSERT(cpu_kstat);
13358 if (rw == KSTAT_READ) {
13359 for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
13360 cpu_kstat->sf_itlb_misses = 0;
13361 cpu_kstat->sf_dtlb_misses = 0;
13362 cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
13363 tsbm->uprot_traps;
13364 cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
13365 kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
13366 cpu_kstat->sf_tsb_hits = 0;
13367 cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
13368 cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
13369 }
13370 } else {
13371 /* KSTAT_WRITE is used to clear stats */
13372 for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
13373 tsbm->utsb_misses = 0;
13374 tsbm->ktsb_misses = 0;
13375 tsbm->uprot_traps = 0;
13376 tsbm->kprot_traps = 0;
13377 kpmtsbm->kpm_dtlb_misses = 0;
13378 kpmtsbm->kpm_tsb_misses = 0;
13379 }
13380 }
13381 return (0);
13382 }
13383
13384 #ifdef DEBUG
13385
13386 tte_t *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
13387
13388 /*
13389 * A tte checker. *orig_old is the value we read before cas.
13390 * *cur is the value returned by cas.
13391 * *new is the desired value when we do the cas.
13392 *
13393 * *hmeblkp is currently unused.
13394 */
13395
13396 /* ARGSUSED */
13397 void
chk_tte(tte_t * orig_old,tte_t * cur,tte_t * new,struct hme_blk * hmeblkp)13398 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
13399 {
13400 pfn_t i, j, k;
13401 int cpuid = CPU->cpu_id;
13402
13403 gorig[cpuid] = orig_old;
13404 gcur[cpuid] = cur;
13405 gnew[cpuid] = new;
13406
13407 #ifdef lint
13408 hmeblkp = hmeblkp;
13409 #endif
13410
13411 if (TTE_IS_VALID(orig_old)) {
13412 if (TTE_IS_VALID(cur)) {
13413 i = TTE_TO_TTEPFN(orig_old);
13414 j = TTE_TO_TTEPFN(cur);
13415 k = TTE_TO_TTEPFN(new);
13416 if (i != j) {
13417 /* remap error? */
13418 panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
13419 }
13420
13421 if (i != k) {
13422 /* remap error? */
13423 panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
13424 }
13425 } else {
13426 if (TTE_IS_VALID(new)) {
13427 panic("chk_tte: invalid cur? ");
13428 }
13429
13430 i = TTE_TO_TTEPFN(orig_old);
13431 k = TTE_TO_TTEPFN(new);
13432 if (i != k) {
13433 panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
13434 }
13435 }
13436 } else {
13437 if (TTE_IS_VALID(cur)) {
13438 j = TTE_TO_TTEPFN(cur);
13439 if (TTE_IS_VALID(new)) {
13440 k = TTE_TO_TTEPFN(new);
13441 if (j != k) {
13442 panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
13443 j, k);
13444 }
13445 } else {
13446 panic("chk_tte: why here?");
13447 }
13448 } else {
13449 if (!TTE_IS_VALID(new)) {
13450 panic("chk_tte: why here2 ?");
13451 }
13452 }
13453 }
13454 }
13455
13456 #endif /* DEBUG */
13457
13458 extern void prefetch_tsbe_read(struct tsbe *);
13459 extern void prefetch_tsbe_write(struct tsbe *);
13460
13461
13462 /*
13463 * We want to prefetch 7 cache lines ahead for our read prefetch. This gives
13464 * us optimal performance on Cheetah+. You can only have 8 outstanding
13465 * prefetches at any one time, so we opted for 7 read prefetches and 1 write
13466 * prefetch to make the most utilization of the prefetch capability.
13467 */
13468 #define TSBE_PREFETCH_STRIDE (7)
13469
13470 void
sfmmu_copy_tsb(struct tsb_info * old_tsbinfo,struct tsb_info * new_tsbinfo)13471 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
13472 {
13473 int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
13474 int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
13475 int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
13476 int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
13477 struct tsbe *old;
13478 struct tsbe *new;
13479 struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
13480 uint64_t va;
13481 int new_offset;
13482 int i;
13483 int vpshift;
13484 int last_prefetch;
13485
13486 if (old_bytes == new_bytes) {
13487 bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
13488 } else {
13489
13490 /*
13491 * A TSBE is 16 bytes which means there are four TSBE's per
13492 * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
13493 */
13494 old = (struct tsbe *)old_tsbinfo->tsb_va;
13495 last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
13496 for (i = 0; i < old_entries; i++, old++) {
13497 if (((i & (4-1)) == 0) && (i < last_prefetch))
13498 prefetch_tsbe_read(old);
13499 if (!old->tte_tag.tag_invalid) {
13500 /*
13501 * We have a valid TTE to remap. Check the
13502 * size. We won't remap 64K or 512K TTEs
13503 * because they span more than one TSB entry
13504 * and are indexed using an 8K virt. page.
13505 * Ditto for 32M and 256M TTEs.
13506 */
13507 if (TTE_CSZ(&old->tte_data) == TTE64K ||
13508 TTE_CSZ(&old->tte_data) == TTE512K)
13509 continue;
13510 if (mmu_page_sizes == max_mmu_page_sizes) {
13511 if (TTE_CSZ(&old->tte_data) == TTE32M ||
13512 TTE_CSZ(&old->tte_data) == TTE256M)
13513 continue;
13514 }
13515
13516 /* clear the lower 22 bits of the va */
13517 va = *(uint64_t *)old << 22;
13518 /* turn va into a virtual pfn */
13519 va >>= 22 - TSB_START_SIZE;
13520 /*
13521 * or in bits from the offset in the tsb
13522 * to get the real virtual pfn. These
13523 * correspond to bits [21:13] in the va
13524 */
13525 vpshift =
13526 TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
13527 0x1ff;
13528 va |= (i << vpshift);
13529 va >>= vpshift;
13530 new_offset = va & (new_entries - 1);
13531 new = new_base + new_offset;
13532 prefetch_tsbe_write(new);
13533 *new = *old;
13534 }
13535 }
13536 }
13537 }
13538
13539 /*
13540 * unused in sfmmu
13541 */
13542 void
hat_dump(void)13543 hat_dump(void)
13544 {
13545 }
13546
13547 /*
13548 * Called when a thread is exiting and we have switched to the kernel address
13549 * space. Perform the same VM initialization resume() uses when switching
13550 * processes.
13551 *
13552 * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
13553 * we call it anyway in case the semantics change in the future.
13554 */
13555 /*ARGSUSED*/
13556 void
hat_thread_exit(kthread_t * thd)13557 hat_thread_exit(kthread_t *thd)
13558 {
13559 uint_t pgsz_cnum;
13560 uint_t pstate_save;
13561
13562 ASSERT(thd->t_procp->p_as == &kas);
13563
13564 pgsz_cnum = KCONTEXT;
13565 #ifdef sun4u
13566 pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
13567 #endif
13568
13569 /*
13570 * Note that sfmmu_load_mmustate() is currently a no-op for
13571 * kernel threads. We need to disable interrupts here,
13572 * simply because otherwise sfmmu_load_mmustate() would panic
13573 * if the caller does not disable interrupts.
13574 */
13575 pstate_save = sfmmu_disable_intrs();
13576
13577 /* Compatibility Note: hw takes care of MMU_SCONTEXT1 */
13578 sfmmu_setctx_sec(pgsz_cnum);
13579 sfmmu_load_mmustate(ksfmmup);
13580 sfmmu_enable_intrs(pstate_save);
13581 }
13582
13583
13584 /*
13585 * SRD support
13586 */
13587 #define SRD_HASH_FUNCTION(vp) (((((uintptr_t)(vp)) >> 4) ^ \
13588 (((uintptr_t)(vp)) >> 11)) & \
13589 srd_hashmask)
13590
13591 /*
13592 * Attach the process to the srd struct associated with the exec vnode
13593 * from which the process is started.
13594 */
13595 void
hat_join_srd(struct hat * sfmmup,vnode_t * evp)13596 hat_join_srd(struct hat *sfmmup, vnode_t *evp)
13597 {
13598 uint_t hash = SRD_HASH_FUNCTION(evp);
13599 sf_srd_t *srdp;
13600 sf_srd_t *newsrdp;
13601
13602 ASSERT(sfmmup != ksfmmup);
13603 ASSERT(sfmmup->sfmmu_srdp == NULL);
13604
13605 if (!shctx_on) {
13606 return;
13607 }
13608
13609 VN_HOLD(evp);
13610
13611 if (srd_buckets[hash].srdb_srdp != NULL) {
13612 mutex_enter(&srd_buckets[hash].srdb_lock);
13613 for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13614 srdp = srdp->srd_hash) {
13615 if (srdp->srd_evp == evp) {
13616 ASSERT(srdp->srd_refcnt >= 0);
13617 sfmmup->sfmmu_srdp = srdp;
13618 atomic_inc_32(
13619 (volatile uint_t *)&srdp->srd_refcnt);
13620 mutex_exit(&srd_buckets[hash].srdb_lock);
13621 return;
13622 }
13623 }
13624 mutex_exit(&srd_buckets[hash].srdb_lock);
13625 }
13626 newsrdp = kmem_cache_alloc(srd_cache, KM_SLEEP);
13627 ASSERT(newsrdp->srd_next_ismrid == 0 && newsrdp->srd_next_hmerid == 0);
13628
13629 newsrdp->srd_evp = evp;
13630 newsrdp->srd_refcnt = 1;
13631 newsrdp->srd_hmergnfree = NULL;
13632 newsrdp->srd_ismrgnfree = NULL;
13633
13634 mutex_enter(&srd_buckets[hash].srdb_lock);
13635 for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13636 srdp = srdp->srd_hash) {
13637 if (srdp->srd_evp == evp) {
13638 ASSERT(srdp->srd_refcnt >= 0);
13639 sfmmup->sfmmu_srdp = srdp;
13640 atomic_inc_32((volatile uint_t *)&srdp->srd_refcnt);
13641 mutex_exit(&srd_buckets[hash].srdb_lock);
13642 kmem_cache_free(srd_cache, newsrdp);
13643 return;
13644 }
13645 }
13646 newsrdp->srd_hash = srd_buckets[hash].srdb_srdp;
13647 srd_buckets[hash].srdb_srdp = newsrdp;
13648 sfmmup->sfmmu_srdp = newsrdp;
13649
13650 mutex_exit(&srd_buckets[hash].srdb_lock);
13651
13652 }
13653
13654 static void
sfmmu_leave_srd(sfmmu_t * sfmmup)13655 sfmmu_leave_srd(sfmmu_t *sfmmup)
13656 {
13657 vnode_t *evp;
13658 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13659 uint_t hash;
13660 sf_srd_t **prev_srdpp;
13661 sf_region_t *rgnp;
13662 sf_region_t *nrgnp;
13663 #ifdef DEBUG
13664 int rgns = 0;
13665 #endif
13666 int i;
13667
13668 ASSERT(sfmmup != ksfmmup);
13669 ASSERT(srdp != NULL);
13670 ASSERT(srdp->srd_refcnt > 0);
13671 ASSERT(sfmmup->sfmmu_scdp == NULL);
13672 ASSERT(sfmmup->sfmmu_free == 1);
13673
13674 sfmmup->sfmmu_srdp = NULL;
13675 evp = srdp->srd_evp;
13676 ASSERT(evp != NULL);
13677 if (atomic_dec_32_nv((volatile uint_t *)&srdp->srd_refcnt)) {
13678 VN_RELE(evp);
13679 return;
13680 }
13681
13682 hash = SRD_HASH_FUNCTION(evp);
13683 mutex_enter(&srd_buckets[hash].srdb_lock);
13684 for (prev_srdpp = &srd_buckets[hash].srdb_srdp;
13685 (srdp = *prev_srdpp) != NULL; prev_srdpp = &srdp->srd_hash) {
13686 if (srdp->srd_evp == evp) {
13687 break;
13688 }
13689 }
13690 if (srdp == NULL || srdp->srd_refcnt) {
13691 mutex_exit(&srd_buckets[hash].srdb_lock);
13692 VN_RELE(evp);
13693 return;
13694 }
13695 *prev_srdpp = srdp->srd_hash;
13696 mutex_exit(&srd_buckets[hash].srdb_lock);
13697
13698 ASSERT(srdp->srd_refcnt == 0);
13699 VN_RELE(evp);
13700
13701 #ifdef DEBUG
13702 for (i = 0; i < SFMMU_MAX_REGION_BUCKETS; i++) {
13703 ASSERT(srdp->srd_rgnhash[i] == NULL);
13704 }
13705 #endif /* DEBUG */
13706
13707 /* free each hme regions in the srd */
13708 for (rgnp = srdp->srd_hmergnfree; rgnp != NULL; rgnp = nrgnp) {
13709 nrgnp = rgnp->rgn_next;
13710 ASSERT(rgnp->rgn_id < srdp->srd_next_hmerid);
13711 ASSERT(rgnp->rgn_refcnt == 0);
13712 ASSERT(rgnp->rgn_sfmmu_head == NULL);
13713 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13714 ASSERT(rgnp->rgn_hmeflags == 0);
13715 ASSERT(srdp->srd_hmergnp[rgnp->rgn_id] == rgnp);
13716 #ifdef DEBUG
13717 for (i = 0; i < MMU_PAGE_SIZES; i++) {
13718 ASSERT(rgnp->rgn_ttecnt[i] == 0);
13719 }
13720 rgns++;
13721 #endif /* DEBUG */
13722 kmem_cache_free(region_cache, rgnp);
13723 }
13724 ASSERT(rgns == srdp->srd_next_hmerid);
13725
13726 #ifdef DEBUG
13727 rgns = 0;
13728 #endif
13729 /* free each ism rgns in the srd */
13730 for (rgnp = srdp->srd_ismrgnfree; rgnp != NULL; rgnp = nrgnp) {
13731 nrgnp = rgnp->rgn_next;
13732 ASSERT(rgnp->rgn_id < srdp->srd_next_ismrid);
13733 ASSERT(rgnp->rgn_refcnt == 0);
13734 ASSERT(rgnp->rgn_sfmmu_head == NULL);
13735 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13736 ASSERT(srdp->srd_ismrgnp[rgnp->rgn_id] == rgnp);
13737 #ifdef DEBUG
13738 for (i = 0; i < MMU_PAGE_SIZES; i++) {
13739 ASSERT(rgnp->rgn_ttecnt[i] == 0);
13740 }
13741 rgns++;
13742 #endif /* DEBUG */
13743 kmem_cache_free(region_cache, rgnp);
13744 }
13745 ASSERT(rgns == srdp->srd_next_ismrid);
13746 ASSERT(srdp->srd_ismbusyrgns == 0);
13747 ASSERT(srdp->srd_hmebusyrgns == 0);
13748
13749 srdp->srd_next_ismrid = 0;
13750 srdp->srd_next_hmerid = 0;
13751
13752 bzero((void *)srdp->srd_ismrgnp,
13753 sizeof (sf_region_t *) * SFMMU_MAX_ISM_REGIONS);
13754 bzero((void *)srdp->srd_hmergnp,
13755 sizeof (sf_region_t *) * SFMMU_MAX_HME_REGIONS);
13756
13757 ASSERT(srdp->srd_scdp == NULL);
13758 kmem_cache_free(srd_cache, srdp);
13759 }
13760
13761 /* ARGSUSED */
13762 static int
sfmmu_srdcache_constructor(void * buf,void * cdrarg,int kmflags)13763 sfmmu_srdcache_constructor(void *buf, void *cdrarg, int kmflags)
13764 {
13765 sf_srd_t *srdp = (sf_srd_t *)buf;
13766 bzero(buf, sizeof (*srdp));
13767
13768 mutex_init(&srdp->srd_mutex, NULL, MUTEX_DEFAULT, NULL);
13769 mutex_init(&srdp->srd_scd_mutex, NULL, MUTEX_DEFAULT, NULL);
13770 return (0);
13771 }
13772
13773 /* ARGSUSED */
13774 static void
sfmmu_srdcache_destructor(void * buf,void * cdrarg)13775 sfmmu_srdcache_destructor(void *buf, void *cdrarg)
13776 {
13777 sf_srd_t *srdp = (sf_srd_t *)buf;
13778
13779 mutex_destroy(&srdp->srd_mutex);
13780 mutex_destroy(&srdp->srd_scd_mutex);
13781 }
13782
13783 /*
13784 * The caller makes sure hat_join_region()/hat_leave_region() can't be called
13785 * at the same time for the same process and address range. This is ensured by
13786 * the fact that address space is locked as writer when a process joins the
13787 * regions. Therefore there's no need to hold an srd lock during the entire
13788 * execution of hat_join_region()/hat_leave_region().
13789 */
13790
13791 #define RGN_HASH_FUNCTION(obj) (((((uintptr_t)(obj)) >> 4) ^ \
13792 (((uintptr_t)(obj)) >> 11)) & \
13793 srd_rgn_hashmask)
13794 /*
13795 * This routine implements the shared context functionality required when
13796 * attaching a segment to an address space. It must be called from
13797 * hat_share() for D(ISM) segments and from segvn_create() for segments
13798 * with the MAP_PRIVATE and MAP_TEXT flags set. It returns a region_cookie
13799 * which is saved in the private segment data for hme segments and
13800 * the ism_map structure for ism segments.
13801 */
13802 hat_region_cookie_t
hat_join_region(struct hat * sfmmup,caddr_t r_saddr,size_t r_size,void * r_obj,u_offset_t r_objoff,uchar_t r_perm,uchar_t r_pgszc,hat_rgn_cb_func_t r_cb_function,uint_t flags)13803 hat_join_region(struct hat *sfmmup, caddr_t r_saddr, size_t r_size,
13804 void *r_obj, u_offset_t r_objoff, uchar_t r_perm, uchar_t r_pgszc,
13805 hat_rgn_cb_func_t r_cb_function, uint_t flags)
13806 {
13807 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13808 uint_t rhash;
13809 uint_t rid;
13810 hatlock_t *hatlockp;
13811 sf_region_t *rgnp;
13812 sf_region_t *new_rgnp = NULL;
13813 int i;
13814 uint16_t *nextidp;
13815 sf_region_t **freelistp;
13816 int maxids;
13817 sf_region_t **rarrp;
13818 uint16_t *busyrgnsp;
13819 ulong_t rttecnt;
13820 uchar_t tteflag;
13821 uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
13822 int text = (r_type == HAT_REGION_TEXT);
13823
13824 if (srdp == NULL || r_size == 0) {
13825 return (HAT_INVALID_REGION_COOKIE);
13826 }
13827
13828 ASSERT(sfmmup != ksfmmup);
13829 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
13830 ASSERT(srdp->srd_refcnt > 0);
13831 ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
13832 ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
13833 ASSERT(r_pgszc < mmu_page_sizes);
13834 if (!IS_P2ALIGNED(r_saddr, TTEBYTES(r_pgszc)) ||
13835 !IS_P2ALIGNED(r_size, TTEBYTES(r_pgszc))) {
13836 panic("hat_join_region: region addr or size is not aligned\n");
13837 }
13838
13839
13840 r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
13841 SFMMU_REGION_HME;
13842 /*
13843 * Currently only support shared hmes for the read only main text
13844 * region.
13845 */
13846 if (r_type == SFMMU_REGION_HME && ((r_obj != srdp->srd_evp) ||
13847 (r_perm & PROT_WRITE))) {
13848 return (HAT_INVALID_REGION_COOKIE);
13849 }
13850
13851 rhash = RGN_HASH_FUNCTION(r_obj);
13852
13853 if (r_type == SFMMU_REGION_ISM) {
13854 nextidp = &srdp->srd_next_ismrid;
13855 freelistp = &srdp->srd_ismrgnfree;
13856 maxids = SFMMU_MAX_ISM_REGIONS;
13857 rarrp = srdp->srd_ismrgnp;
13858 busyrgnsp = &srdp->srd_ismbusyrgns;
13859 } else {
13860 nextidp = &srdp->srd_next_hmerid;
13861 freelistp = &srdp->srd_hmergnfree;
13862 maxids = SFMMU_MAX_HME_REGIONS;
13863 rarrp = srdp->srd_hmergnp;
13864 busyrgnsp = &srdp->srd_hmebusyrgns;
13865 }
13866
13867 mutex_enter(&srdp->srd_mutex);
13868
13869 for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
13870 rgnp = rgnp->rgn_hash) {
13871 if (rgnp->rgn_saddr == r_saddr && rgnp->rgn_size == r_size &&
13872 rgnp->rgn_obj == r_obj && rgnp->rgn_objoff == r_objoff &&
13873 rgnp->rgn_perm == r_perm && rgnp->rgn_pgszc == r_pgszc) {
13874 break;
13875 }
13876 }
13877
13878 rfound:
13879 if (rgnp != NULL) {
13880 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
13881 ASSERT(rgnp->rgn_cb_function == r_cb_function);
13882 ASSERT(rgnp->rgn_refcnt >= 0);
13883 rid = rgnp->rgn_id;
13884 ASSERT(rid < maxids);
13885 ASSERT(rarrp[rid] == rgnp);
13886 ASSERT(rid < *nextidp);
13887 atomic_inc_32((volatile uint_t *)&rgnp->rgn_refcnt);
13888 mutex_exit(&srdp->srd_mutex);
13889 if (new_rgnp != NULL) {
13890 kmem_cache_free(region_cache, new_rgnp);
13891 }
13892 if (r_type == SFMMU_REGION_HME) {
13893 int myjoin =
13894 (sfmmup == astosfmmu(curthread->t_procp->p_as));
13895
13896 sfmmu_link_to_hmeregion(sfmmup, rgnp);
13897 /*
13898 * bitmap should be updated after linking sfmmu on
13899 * region list so that pageunload() doesn't skip
13900 * TSB/TLB flush. As soon as bitmap is updated another
13901 * thread in this process can already start accessing
13902 * this region.
13903 */
13904 /*
13905 * Normally ttecnt accounting is done as part of
13906 * pagefault handling. But a process may not take any
13907 * pagefaults on shared hmeblks created by some other
13908 * process. To compensate for this assume that the
13909 * entire region will end up faulted in using
13910 * the region's pagesize.
13911 *
13912 */
13913 if (r_pgszc > TTE8K) {
13914 tteflag = 1 << r_pgszc;
13915 if (disable_large_pages & tteflag) {
13916 tteflag = 0;
13917 }
13918 } else {
13919 tteflag = 0;
13920 }
13921 if (tteflag && !(sfmmup->sfmmu_rtteflags & tteflag)) {
13922 hatlockp = sfmmu_hat_enter(sfmmup);
13923 sfmmup->sfmmu_rtteflags |= tteflag;
13924 sfmmu_hat_exit(hatlockp);
13925 }
13926 hatlockp = sfmmu_hat_enter(sfmmup);
13927
13928 /*
13929 * Preallocate 1/4 of ttecnt's in 8K TSB for >= 4M
13930 * region to allow for large page allocation failure.
13931 */
13932 if (r_pgszc >= TTE4M) {
13933 sfmmup->sfmmu_tsb0_4minflcnt +=
13934 r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
13935 }
13936
13937 /* update sfmmu_ttecnt with the shme rgn ttecnt */
13938 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
13939 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
13940 rttecnt);
13941
13942 if (text && r_pgszc >= TTE4M &&
13943 (tteflag || ((disable_large_pages >> TTE4M) &
13944 ((1 << (r_pgszc - TTE4M + 1)) - 1))) &&
13945 !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
13946 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
13947 }
13948
13949 sfmmu_hat_exit(hatlockp);
13950 /*
13951 * On Panther we need to make sure TLB is programmed
13952 * to accept 32M/256M pages. Call
13953 * sfmmu_check_page_sizes() now to make sure TLB is
13954 * setup before making hmeregions visible to other
13955 * threads.
13956 */
13957 sfmmu_check_page_sizes(sfmmup, 1);
13958 hatlockp = sfmmu_hat_enter(sfmmup);
13959 SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
13960
13961 /*
13962 * if context is invalid tsb miss exception code will
13963 * call sfmmu_check_page_sizes() and update tsbmiss
13964 * area later.
13965 */
13966 kpreempt_disable();
13967 if (myjoin &&
13968 (sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
13969 != INVALID_CONTEXT)) {
13970 struct tsbmiss *tsbmp;
13971
13972 tsbmp = &tsbmiss_area[CPU->cpu_id];
13973 ASSERT(sfmmup == tsbmp->usfmmup);
13974 BT_SET(tsbmp->shmermap, rid);
13975 if (r_pgszc > TTE64K) {
13976 tsbmp->uhat_rtteflags |= tteflag;
13977 }
13978
13979 }
13980 kpreempt_enable();
13981
13982 sfmmu_hat_exit(hatlockp);
13983 ASSERT((hat_region_cookie_t)((uint64_t)rid) !=
13984 HAT_INVALID_REGION_COOKIE);
13985 } else {
13986 hatlockp = sfmmu_hat_enter(sfmmup);
13987 SF_RGNMAP_ADD(sfmmup->sfmmu_ismregion_map, rid);
13988 sfmmu_hat_exit(hatlockp);
13989 }
13990 ASSERT(rid < maxids);
13991
13992 if (r_type == SFMMU_REGION_ISM) {
13993 sfmmu_find_scd(sfmmup);
13994 }
13995 return ((hat_region_cookie_t)((uint64_t)rid));
13996 }
13997
13998 ASSERT(new_rgnp == NULL);
13999
14000 if (*busyrgnsp >= maxids) {
14001 mutex_exit(&srdp->srd_mutex);
14002 return (HAT_INVALID_REGION_COOKIE);
14003 }
14004
14005 ASSERT(MUTEX_HELD(&srdp->srd_mutex));
14006 if (*freelistp != NULL) {
14007 rgnp = *freelistp;
14008 *freelistp = rgnp->rgn_next;
14009 ASSERT(rgnp->rgn_id < *nextidp);
14010 ASSERT(rgnp->rgn_id < maxids);
14011 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
14012 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK)
14013 == r_type);
14014 ASSERT(rarrp[rgnp->rgn_id] == rgnp);
14015 ASSERT(rgnp->rgn_hmeflags == 0);
14016 } else {
14017 /*
14018 * release local locks before memory allocation.
14019 */
14020 mutex_exit(&srdp->srd_mutex);
14021
14022 new_rgnp = kmem_cache_alloc(region_cache, KM_SLEEP);
14023
14024 mutex_enter(&srdp->srd_mutex);
14025 for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14026 rgnp = rgnp->rgn_hash) {
14027 if (rgnp->rgn_saddr == r_saddr &&
14028 rgnp->rgn_size == r_size &&
14029 rgnp->rgn_obj == r_obj &&
14030 rgnp->rgn_objoff == r_objoff &&
14031 rgnp->rgn_perm == r_perm &&
14032 rgnp->rgn_pgszc == r_pgszc) {
14033 break;
14034 }
14035 }
14036 if (rgnp != NULL) {
14037 goto rfound;
14038 }
14039
14040 if (*nextidp >= maxids) {
14041 mutex_exit(&srdp->srd_mutex);
14042 goto fail;
14043 }
14044 rgnp = new_rgnp;
14045 new_rgnp = NULL;
14046 rgnp->rgn_id = (*nextidp)++;
14047 ASSERT(rgnp->rgn_id < maxids);
14048 ASSERT(rarrp[rgnp->rgn_id] == NULL);
14049 rarrp[rgnp->rgn_id] = rgnp;
14050 }
14051
14052 ASSERT(rgnp->rgn_sfmmu_head == NULL);
14053 ASSERT(rgnp->rgn_hmeflags == 0);
14054 #ifdef DEBUG
14055 for (i = 0; i < MMU_PAGE_SIZES; i++) {
14056 ASSERT(rgnp->rgn_ttecnt[i] == 0);
14057 }
14058 #endif
14059 rgnp->rgn_saddr = r_saddr;
14060 rgnp->rgn_size = r_size;
14061 rgnp->rgn_obj = r_obj;
14062 rgnp->rgn_objoff = r_objoff;
14063 rgnp->rgn_perm = r_perm;
14064 rgnp->rgn_pgszc = r_pgszc;
14065 rgnp->rgn_flags = r_type;
14066 rgnp->rgn_refcnt = 0;
14067 rgnp->rgn_cb_function = r_cb_function;
14068 rgnp->rgn_hash = srdp->srd_rgnhash[rhash];
14069 srdp->srd_rgnhash[rhash] = rgnp;
14070 (*busyrgnsp)++;
14071 ASSERT(*busyrgnsp <= maxids);
14072 goto rfound;
14073
14074 fail:
14075 ASSERT(new_rgnp != NULL);
14076 kmem_cache_free(region_cache, new_rgnp);
14077 return (HAT_INVALID_REGION_COOKIE);
14078 }
14079
14080 /*
14081 * This function implements the shared context functionality required
14082 * when detaching a segment from an address space. It must be called
14083 * from hat_unshare() for all D(ISM) segments and from segvn_unmap(),
14084 * for segments with a valid region_cookie.
14085 * It will also be called from all seg_vn routines which change a
14086 * segment's attributes such as segvn_setprot(), segvn_setpagesize(),
14087 * segvn_clrszc() & segvn_advise(), as well as in the case of COW fault
14088 * from segvn_fault().
14089 */
14090 void
hat_leave_region(struct hat * sfmmup,hat_region_cookie_t rcookie,uint_t flags)14091 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags)
14092 {
14093 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14094 sf_scd_t *scdp;
14095 uint_t rhash;
14096 uint_t rid = (uint_t)((uint64_t)rcookie);
14097 hatlock_t *hatlockp = NULL;
14098 sf_region_t *rgnp;
14099 sf_region_t **prev_rgnpp;
14100 sf_region_t *cur_rgnp;
14101 void *r_obj;
14102 int i;
14103 caddr_t r_saddr;
14104 caddr_t r_eaddr;
14105 size_t r_size;
14106 uchar_t r_pgszc;
14107 uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14108
14109 ASSERT(sfmmup != ksfmmup);
14110 ASSERT(srdp != NULL);
14111 ASSERT(srdp->srd_refcnt > 0);
14112 ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14113 ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14114 ASSERT(!sfmmup->sfmmu_free || sfmmup->sfmmu_scdp == NULL);
14115
14116 r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14117 SFMMU_REGION_HME;
14118
14119 if (r_type == SFMMU_REGION_ISM) {
14120 ASSERT(SFMMU_IS_ISMRID_VALID(rid));
14121 ASSERT(rid < SFMMU_MAX_ISM_REGIONS);
14122 rgnp = srdp->srd_ismrgnp[rid];
14123 } else {
14124 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14125 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14126 rgnp = srdp->srd_hmergnp[rid];
14127 }
14128 ASSERT(rgnp != NULL);
14129 ASSERT(rgnp->rgn_id == rid);
14130 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14131 ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14132 ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as));
14133
14134 if (sfmmup->sfmmu_free) {
14135 ulong_t rttecnt;
14136 r_pgszc = rgnp->rgn_pgszc;
14137 r_size = rgnp->rgn_size;
14138
14139 ASSERT(sfmmup->sfmmu_scdp == NULL);
14140 if (r_type == SFMMU_REGION_ISM) {
14141 SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14142 } else {
14143 /* update shme rgns ttecnt in sfmmu_ttecnt */
14144 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14145 ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14146
14147 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14148 -rttecnt);
14149
14150 SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14151 }
14152 } else if (r_type == SFMMU_REGION_ISM) {
14153 hatlockp = sfmmu_hat_enter(sfmmup);
14154 ASSERT(rid < srdp->srd_next_ismrid);
14155 SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14156 scdp = sfmmup->sfmmu_scdp;
14157 if (scdp != NULL &&
14158 SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
14159 sfmmu_leave_scd(sfmmup, r_type);
14160 ASSERT(sfmmu_hat_lock_held(sfmmup));
14161 }
14162 sfmmu_hat_exit(hatlockp);
14163 } else {
14164 ulong_t rttecnt;
14165 r_pgszc = rgnp->rgn_pgszc;
14166 r_saddr = rgnp->rgn_saddr;
14167 r_size = rgnp->rgn_size;
14168 r_eaddr = r_saddr + r_size;
14169
14170 ASSERT(r_type == SFMMU_REGION_HME);
14171 hatlockp = sfmmu_hat_enter(sfmmup);
14172 ASSERT(rid < srdp->srd_next_hmerid);
14173 SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14174
14175 /*
14176 * If region is part of an SCD call sfmmu_leave_scd().
14177 * Otherwise if process is not exiting and has valid context
14178 * just drop the context on the floor to lose stale TLB
14179 * entries and force the update of tsb miss area to reflect
14180 * the new region map. After that clean our TSB entries.
14181 */
14182 scdp = sfmmup->sfmmu_scdp;
14183 if (scdp != NULL &&
14184 SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
14185 sfmmu_leave_scd(sfmmup, r_type);
14186 ASSERT(sfmmu_hat_lock_held(sfmmup));
14187 }
14188 sfmmu_invalidate_ctx(sfmmup);
14189
14190 i = TTE8K;
14191 while (i < mmu_page_sizes) {
14192 if (rgnp->rgn_ttecnt[i] != 0) {
14193 sfmmu_unload_tsb_range(sfmmup, r_saddr,
14194 r_eaddr, i);
14195 if (i < TTE4M) {
14196 i = TTE4M;
14197 continue;
14198 } else {
14199 break;
14200 }
14201 }
14202 i++;
14203 }
14204 /* Remove the preallocated 1/4 8k ttecnt for 4M regions. */
14205 if (r_pgszc >= TTE4M) {
14206 rttecnt = r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14207 ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14208 rttecnt);
14209 sfmmup->sfmmu_tsb0_4minflcnt -= rttecnt;
14210 }
14211
14212 /* update shme rgns ttecnt in sfmmu_ttecnt */
14213 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14214 ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14215 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], -rttecnt);
14216
14217 sfmmu_hat_exit(hatlockp);
14218 if (scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
14219 /* sfmmup left the scd, grow private tsb */
14220 sfmmu_check_page_sizes(sfmmup, 1);
14221 } else {
14222 sfmmu_check_page_sizes(sfmmup, 0);
14223 }
14224 }
14225
14226 if (r_type == SFMMU_REGION_HME) {
14227 sfmmu_unlink_from_hmeregion(sfmmup, rgnp);
14228 }
14229
14230 r_obj = rgnp->rgn_obj;
14231 if (atomic_dec_32_nv((volatile uint_t *)&rgnp->rgn_refcnt)) {
14232 return;
14233 }
14234
14235 /*
14236 * looks like nobody uses this region anymore. Free it.
14237 */
14238 rhash = RGN_HASH_FUNCTION(r_obj);
14239 mutex_enter(&srdp->srd_mutex);
14240 for (prev_rgnpp = &srdp->srd_rgnhash[rhash];
14241 (cur_rgnp = *prev_rgnpp) != NULL;
14242 prev_rgnpp = &cur_rgnp->rgn_hash) {
14243 if (cur_rgnp == rgnp && cur_rgnp->rgn_refcnt == 0) {
14244 break;
14245 }
14246 }
14247
14248 if (cur_rgnp == NULL) {
14249 mutex_exit(&srdp->srd_mutex);
14250 return;
14251 }
14252
14253 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14254 *prev_rgnpp = rgnp->rgn_hash;
14255 if (r_type == SFMMU_REGION_ISM) {
14256 rgnp->rgn_flags |= SFMMU_REGION_FREE;
14257 ASSERT(rid < srdp->srd_next_ismrid);
14258 rgnp->rgn_next = srdp->srd_ismrgnfree;
14259 srdp->srd_ismrgnfree = rgnp;
14260 ASSERT(srdp->srd_ismbusyrgns > 0);
14261 srdp->srd_ismbusyrgns--;
14262 mutex_exit(&srdp->srd_mutex);
14263 return;
14264 }
14265 mutex_exit(&srdp->srd_mutex);
14266
14267 /*
14268 * Destroy region's hmeblks.
14269 */
14270 sfmmu_unload_hmeregion(srdp, rgnp);
14271
14272 rgnp->rgn_hmeflags = 0;
14273
14274 ASSERT(rgnp->rgn_sfmmu_head == NULL);
14275 ASSERT(rgnp->rgn_id == rid);
14276 for (i = 0; i < MMU_PAGE_SIZES; i++) {
14277 rgnp->rgn_ttecnt[i] = 0;
14278 }
14279 rgnp->rgn_flags |= SFMMU_REGION_FREE;
14280 mutex_enter(&srdp->srd_mutex);
14281 ASSERT(rid < srdp->srd_next_hmerid);
14282 rgnp->rgn_next = srdp->srd_hmergnfree;
14283 srdp->srd_hmergnfree = rgnp;
14284 ASSERT(srdp->srd_hmebusyrgns > 0);
14285 srdp->srd_hmebusyrgns--;
14286 mutex_exit(&srdp->srd_mutex);
14287 }
14288
14289 /*
14290 * For now only called for hmeblk regions and not for ISM regions.
14291 */
14292 void
hat_dup_region(struct hat * sfmmup,hat_region_cookie_t rcookie)14293 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie)
14294 {
14295 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14296 uint_t rid = (uint_t)((uint64_t)rcookie);
14297 sf_region_t *rgnp;
14298 sf_rgn_link_t *rlink;
14299 sf_rgn_link_t *hrlink;
14300 ulong_t rttecnt;
14301
14302 ASSERT(sfmmup != ksfmmup);
14303 ASSERT(srdp != NULL);
14304 ASSERT(srdp->srd_refcnt > 0);
14305
14306 ASSERT(rid < srdp->srd_next_hmerid);
14307 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14308 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14309
14310 rgnp = srdp->srd_hmergnp[rid];
14311 ASSERT(rgnp->rgn_refcnt > 0);
14312 ASSERT(rgnp->rgn_id == rid);
14313 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == SFMMU_REGION_HME);
14314 ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14315
14316 atomic_inc_32((volatile uint_t *)&rgnp->rgn_refcnt);
14317
14318 /* LINTED: constant in conditional context */
14319 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 0);
14320 ASSERT(rlink != NULL);
14321 mutex_enter(&rgnp->rgn_mutex);
14322 ASSERT(rgnp->rgn_sfmmu_head != NULL);
14323 /* LINTED: constant in conditional context */
14324 SFMMU_HMERID2RLINKP(rgnp->rgn_sfmmu_head, rid, hrlink, 0, 0);
14325 ASSERT(hrlink != NULL);
14326 ASSERT(hrlink->prev == NULL);
14327 rlink->next = rgnp->rgn_sfmmu_head;
14328 rlink->prev = NULL;
14329 hrlink->prev = sfmmup;
14330 /*
14331 * make sure rlink's next field is correct
14332 * before making this link visible.
14333 */
14334 membar_stst();
14335 rgnp->rgn_sfmmu_head = sfmmup;
14336 mutex_exit(&rgnp->rgn_mutex);
14337
14338 /* update sfmmu_ttecnt with the shme rgn ttecnt */
14339 rttecnt = rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
14340 atomic_add_long(&sfmmup->sfmmu_ttecnt[rgnp->rgn_pgszc], rttecnt);
14341 /* update tsb0 inflation count */
14342 if (rgnp->rgn_pgszc >= TTE4M) {
14343 sfmmup->sfmmu_tsb0_4minflcnt +=
14344 rgnp->rgn_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14345 }
14346 /*
14347 * Update regionid bitmask without hat lock since no other thread
14348 * can update this region bitmask right now.
14349 */
14350 SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14351 }
14352
14353 /* ARGSUSED */
14354 static int
sfmmu_rgncache_constructor(void * buf,void * cdrarg,int kmflags)14355 sfmmu_rgncache_constructor(void *buf, void *cdrarg, int kmflags)
14356 {
14357 sf_region_t *rgnp = (sf_region_t *)buf;
14358 bzero(buf, sizeof (*rgnp));
14359
14360 mutex_init(&rgnp->rgn_mutex, NULL, MUTEX_DEFAULT, NULL);
14361
14362 return (0);
14363 }
14364
14365 /* ARGSUSED */
14366 static void
sfmmu_rgncache_destructor(void * buf,void * cdrarg)14367 sfmmu_rgncache_destructor(void *buf, void *cdrarg)
14368 {
14369 sf_region_t *rgnp = (sf_region_t *)buf;
14370 mutex_destroy(&rgnp->rgn_mutex);
14371 }
14372
14373 static int
sfrgnmap_isnull(sf_region_map_t * map)14374 sfrgnmap_isnull(sf_region_map_t *map)
14375 {
14376 int i;
14377
14378 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14379 if (map->bitmap[i] != 0) {
14380 return (0);
14381 }
14382 }
14383 return (1);
14384 }
14385
14386 static int
sfhmergnmap_isnull(sf_hmeregion_map_t * map)14387 sfhmergnmap_isnull(sf_hmeregion_map_t *map)
14388 {
14389 int i;
14390
14391 for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
14392 if (map->bitmap[i] != 0) {
14393 return (0);
14394 }
14395 }
14396 return (1);
14397 }
14398
14399 #ifdef DEBUG
14400 static void
check_scd_sfmmu_list(sfmmu_t ** headp,sfmmu_t * sfmmup,int onlist)14401 check_scd_sfmmu_list(sfmmu_t **headp, sfmmu_t *sfmmup, int onlist)
14402 {
14403 sfmmu_t *sp;
14404 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14405
14406 for (sp = *headp; sp != NULL; sp = sp->sfmmu_scd_link.next) {
14407 ASSERT(srdp == sp->sfmmu_srdp);
14408 if (sp == sfmmup) {
14409 if (onlist) {
14410 return;
14411 } else {
14412 panic("shctx: sfmmu 0x%p found on scd"
14413 "list 0x%p", (void *)sfmmup,
14414 (void *)*headp);
14415 }
14416 }
14417 }
14418 if (onlist) {
14419 panic("shctx: sfmmu 0x%p not found on scd list 0x%p",
14420 (void *)sfmmup, (void *)*headp);
14421 } else {
14422 return;
14423 }
14424 }
14425 #else /* DEBUG */
14426 #define check_scd_sfmmu_list(headp, sfmmup, onlist)
14427 #endif /* DEBUG */
14428
14429 /*
14430 * Removes an sfmmu from the SCD sfmmu list.
14431 */
14432 static void
sfmmu_from_scd_list(sfmmu_t ** headp,sfmmu_t * sfmmup)14433 sfmmu_from_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14434 {
14435 ASSERT(sfmmup->sfmmu_srdp != NULL);
14436 check_scd_sfmmu_list(headp, sfmmup, 1);
14437 if (sfmmup->sfmmu_scd_link.prev != NULL) {
14438 ASSERT(*headp != sfmmup);
14439 sfmmup->sfmmu_scd_link.prev->sfmmu_scd_link.next =
14440 sfmmup->sfmmu_scd_link.next;
14441 } else {
14442 ASSERT(*headp == sfmmup);
14443 *headp = sfmmup->sfmmu_scd_link.next;
14444 }
14445 if (sfmmup->sfmmu_scd_link.next != NULL) {
14446 sfmmup->sfmmu_scd_link.next->sfmmu_scd_link.prev =
14447 sfmmup->sfmmu_scd_link.prev;
14448 }
14449 }
14450
14451
14452 /*
14453 * Adds an sfmmu to the start of the queue.
14454 */
14455 static void
sfmmu_to_scd_list(sfmmu_t ** headp,sfmmu_t * sfmmup)14456 sfmmu_to_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14457 {
14458 check_scd_sfmmu_list(headp, sfmmup, 0);
14459 sfmmup->sfmmu_scd_link.prev = NULL;
14460 sfmmup->sfmmu_scd_link.next = *headp;
14461 if (*headp != NULL)
14462 (*headp)->sfmmu_scd_link.prev = sfmmup;
14463 *headp = sfmmup;
14464 }
14465
14466 /*
14467 * Remove an scd from the start of the queue.
14468 */
14469 static void
sfmmu_remove_scd(sf_scd_t ** headp,sf_scd_t * scdp)14470 sfmmu_remove_scd(sf_scd_t **headp, sf_scd_t *scdp)
14471 {
14472 if (scdp->scd_prev != NULL) {
14473 ASSERT(*headp != scdp);
14474 scdp->scd_prev->scd_next = scdp->scd_next;
14475 } else {
14476 ASSERT(*headp == scdp);
14477 *headp = scdp->scd_next;
14478 }
14479
14480 if (scdp->scd_next != NULL) {
14481 scdp->scd_next->scd_prev = scdp->scd_prev;
14482 }
14483 }
14484
14485 /*
14486 * Add an scd to the start of the queue.
14487 */
14488 static void
sfmmu_add_scd(sf_scd_t ** headp,sf_scd_t * scdp)14489 sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *scdp)
14490 {
14491 scdp->scd_prev = NULL;
14492 scdp->scd_next = *headp;
14493 if (*headp != NULL) {
14494 (*headp)->scd_prev = scdp;
14495 }
14496 *headp = scdp;
14497 }
14498
14499 static int
sfmmu_alloc_scd_tsbs(sf_srd_t * srdp,sf_scd_t * scdp)14500 sfmmu_alloc_scd_tsbs(sf_srd_t *srdp, sf_scd_t *scdp)
14501 {
14502 uint_t rid;
14503 uint_t i;
14504 uint_t j;
14505 ulong_t w;
14506 sf_region_t *rgnp;
14507 ulong_t tte8k_cnt = 0;
14508 ulong_t tte4m_cnt = 0;
14509 uint_t tsb_szc;
14510 sfmmu_t *scsfmmup = scdp->scd_sfmmup;
14511 sfmmu_t *ism_hatid;
14512 struct tsb_info *newtsb;
14513 int szc;
14514
14515 ASSERT(srdp != NULL);
14516
14517 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14518 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14519 continue;
14520 }
14521 j = 0;
14522 while (w) {
14523 if (!(w & 0x1)) {
14524 j++;
14525 w >>= 1;
14526 continue;
14527 }
14528 rid = (i << BT_ULSHIFT) | j;
14529 j++;
14530 w >>= 1;
14531
14532 if (rid < SFMMU_MAX_HME_REGIONS) {
14533 rgnp = srdp->srd_hmergnp[rid];
14534 ASSERT(rgnp->rgn_id == rid);
14535 ASSERT(rgnp->rgn_refcnt > 0);
14536
14537 if (rgnp->rgn_pgszc < TTE4M) {
14538 tte8k_cnt += rgnp->rgn_size >>
14539 TTE_PAGE_SHIFT(TTE8K);
14540 } else {
14541 ASSERT(rgnp->rgn_pgszc >= TTE4M);
14542 tte4m_cnt += rgnp->rgn_size >>
14543 TTE_PAGE_SHIFT(TTE4M);
14544 /*
14545 * Inflate SCD tsb0 by preallocating
14546 * 1/4 8k ttecnt for 4M regions to
14547 * allow for lgpg alloc failure.
14548 */
14549 tte8k_cnt += rgnp->rgn_size >>
14550 (TTE_PAGE_SHIFT(TTE8K) + 2);
14551 }
14552 } else {
14553 rid -= SFMMU_MAX_HME_REGIONS;
14554 rgnp = srdp->srd_ismrgnp[rid];
14555 ASSERT(rgnp->rgn_id == rid);
14556 ASSERT(rgnp->rgn_refcnt > 0);
14557
14558 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14559 ASSERT(ism_hatid->sfmmu_ismhat);
14560
14561 for (szc = 0; szc < TTE4M; szc++) {
14562 tte8k_cnt +=
14563 ism_hatid->sfmmu_ttecnt[szc] <<
14564 TTE_BSZS_SHIFT(szc);
14565 }
14566
14567 ASSERT(rgnp->rgn_pgszc >= TTE4M);
14568 if (rgnp->rgn_pgszc >= TTE4M) {
14569 tte4m_cnt += rgnp->rgn_size >>
14570 TTE_PAGE_SHIFT(TTE4M);
14571 }
14572 }
14573 }
14574 }
14575
14576 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
14577
14578 /* Allocate both the SCD TSBs here. */
14579 if (sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14580 tsb_szc, TSB8K|TSB64K|TSB512K, TSB_ALLOC, scsfmmup) &&
14581 (tsb_szc <= TSB_4M_SZCODE ||
14582 sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14583 TSB_4M_SZCODE, TSB8K|TSB64K|TSB512K,
14584 TSB_ALLOC, scsfmmup))) {
14585
14586 SFMMU_STAT(sf_scd_1sttsb_allocfail);
14587 return (TSB_ALLOCFAIL);
14588 } else {
14589 scsfmmup->sfmmu_tsb->tsb_flags |= TSB_SHAREDCTX;
14590
14591 if (tte4m_cnt) {
14592 tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
14593 if (sfmmu_tsbinfo_alloc(&newtsb, tsb_szc,
14594 TSB4M|TSB32M|TSB256M, TSB_ALLOC, scsfmmup) &&
14595 (tsb_szc <= TSB_4M_SZCODE ||
14596 sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
14597 TSB4M|TSB32M|TSB256M,
14598 TSB_ALLOC, scsfmmup))) {
14599 /*
14600 * If we fail to allocate the 2nd shared tsb,
14601 * just free the 1st tsb, return failure.
14602 */
14603 sfmmu_tsbinfo_free(scsfmmup->sfmmu_tsb);
14604 SFMMU_STAT(sf_scd_2ndtsb_allocfail);
14605 return (TSB_ALLOCFAIL);
14606 } else {
14607 ASSERT(scsfmmup->sfmmu_tsb->tsb_next == NULL);
14608 newtsb->tsb_flags |= TSB_SHAREDCTX;
14609 scsfmmup->sfmmu_tsb->tsb_next = newtsb;
14610 SFMMU_STAT(sf_scd_2ndtsb_alloc);
14611 }
14612 }
14613 SFMMU_STAT(sf_scd_1sttsb_alloc);
14614 }
14615 return (TSB_SUCCESS);
14616 }
14617
14618 static void
sfmmu_free_scd_tsbs(sfmmu_t * scd_sfmmu)14619 sfmmu_free_scd_tsbs(sfmmu_t *scd_sfmmu)
14620 {
14621 while (scd_sfmmu->sfmmu_tsb != NULL) {
14622 struct tsb_info *next = scd_sfmmu->sfmmu_tsb->tsb_next;
14623 sfmmu_tsbinfo_free(scd_sfmmu->sfmmu_tsb);
14624 scd_sfmmu->sfmmu_tsb = next;
14625 }
14626 }
14627
14628 /*
14629 * Link the sfmmu onto the hme region list.
14630 */
14631 void
sfmmu_link_to_hmeregion(sfmmu_t * sfmmup,sf_region_t * rgnp)14632 sfmmu_link_to_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14633 {
14634 uint_t rid;
14635 sf_rgn_link_t *rlink;
14636 sfmmu_t *head;
14637 sf_rgn_link_t *hrlink;
14638
14639 rid = rgnp->rgn_id;
14640 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14641
14642 /* LINTED: constant in conditional context */
14643 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 1);
14644 ASSERT(rlink != NULL);
14645 mutex_enter(&rgnp->rgn_mutex);
14646 if ((head = rgnp->rgn_sfmmu_head) == NULL) {
14647 rlink->next = NULL;
14648 rlink->prev = NULL;
14649 /*
14650 * make sure rlink's next field is NULL
14651 * before making this link visible.
14652 */
14653 membar_stst();
14654 rgnp->rgn_sfmmu_head = sfmmup;
14655 } else {
14656 /* LINTED: constant in conditional context */
14657 SFMMU_HMERID2RLINKP(head, rid, hrlink, 0, 0);
14658 ASSERT(hrlink != NULL);
14659 ASSERT(hrlink->prev == NULL);
14660 rlink->next = head;
14661 rlink->prev = NULL;
14662 hrlink->prev = sfmmup;
14663 /*
14664 * make sure rlink's next field is correct
14665 * before making this link visible.
14666 */
14667 membar_stst();
14668 rgnp->rgn_sfmmu_head = sfmmup;
14669 }
14670 mutex_exit(&rgnp->rgn_mutex);
14671 }
14672
14673 /*
14674 * Unlink the sfmmu from the hme region list.
14675 */
14676 void
sfmmu_unlink_from_hmeregion(sfmmu_t * sfmmup,sf_region_t * rgnp)14677 sfmmu_unlink_from_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14678 {
14679 uint_t rid;
14680 sf_rgn_link_t *rlink;
14681
14682 rid = rgnp->rgn_id;
14683 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14684
14685 /* LINTED: constant in conditional context */
14686 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
14687 ASSERT(rlink != NULL);
14688 mutex_enter(&rgnp->rgn_mutex);
14689 if (rgnp->rgn_sfmmu_head == sfmmup) {
14690 sfmmu_t *next = rlink->next;
14691 rgnp->rgn_sfmmu_head = next;
14692 /*
14693 * if we are stopped by xc_attention() after this
14694 * point the forward link walking in
14695 * sfmmu_rgntlb_demap() will work correctly since the
14696 * head correctly points to the next element.
14697 */
14698 membar_stst();
14699 rlink->next = NULL;
14700 ASSERT(rlink->prev == NULL);
14701 if (next != NULL) {
14702 sf_rgn_link_t *nrlink;
14703 /* LINTED: constant in conditional context */
14704 SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14705 ASSERT(nrlink != NULL);
14706 ASSERT(nrlink->prev == sfmmup);
14707 nrlink->prev = NULL;
14708 }
14709 } else {
14710 sfmmu_t *next = rlink->next;
14711 sfmmu_t *prev = rlink->prev;
14712 sf_rgn_link_t *prlink;
14713
14714 ASSERT(prev != NULL);
14715 /* LINTED: constant in conditional context */
14716 SFMMU_HMERID2RLINKP(prev, rid, prlink, 0, 0);
14717 ASSERT(prlink != NULL);
14718 ASSERT(prlink->next == sfmmup);
14719 prlink->next = next;
14720 /*
14721 * if we are stopped by xc_attention()
14722 * after this point the forward link walking
14723 * will work correctly since the prev element
14724 * correctly points to the next element.
14725 */
14726 membar_stst();
14727 rlink->next = NULL;
14728 rlink->prev = NULL;
14729 if (next != NULL) {
14730 sf_rgn_link_t *nrlink;
14731 /* LINTED: constant in conditional context */
14732 SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14733 ASSERT(nrlink != NULL);
14734 ASSERT(nrlink->prev == sfmmup);
14735 nrlink->prev = prev;
14736 }
14737 }
14738 mutex_exit(&rgnp->rgn_mutex);
14739 }
14740
14741 /*
14742 * Link scd sfmmu onto ism or hme region list for each region in the
14743 * scd region map.
14744 */
14745 void
sfmmu_link_scd_to_regions(sf_srd_t * srdp,sf_scd_t * scdp)14746 sfmmu_link_scd_to_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14747 {
14748 uint_t rid;
14749 uint_t i;
14750 uint_t j;
14751 ulong_t w;
14752 sf_region_t *rgnp;
14753 sfmmu_t *scsfmmup;
14754
14755 scsfmmup = scdp->scd_sfmmup;
14756 ASSERT(scsfmmup->sfmmu_scdhat);
14757 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14758 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14759 continue;
14760 }
14761 j = 0;
14762 while (w) {
14763 if (!(w & 0x1)) {
14764 j++;
14765 w >>= 1;
14766 continue;
14767 }
14768 rid = (i << BT_ULSHIFT) | j;
14769 j++;
14770 w >>= 1;
14771
14772 if (rid < SFMMU_MAX_HME_REGIONS) {
14773 rgnp = srdp->srd_hmergnp[rid];
14774 ASSERT(rgnp->rgn_id == rid);
14775 ASSERT(rgnp->rgn_refcnt > 0);
14776 sfmmu_link_to_hmeregion(scsfmmup, rgnp);
14777 } else {
14778 sfmmu_t *ism_hatid = NULL;
14779 ism_ment_t *ism_ment;
14780 rid -= SFMMU_MAX_HME_REGIONS;
14781 rgnp = srdp->srd_ismrgnp[rid];
14782 ASSERT(rgnp->rgn_id == rid);
14783 ASSERT(rgnp->rgn_refcnt > 0);
14784
14785 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14786 ASSERT(ism_hatid->sfmmu_ismhat);
14787 ism_ment = &scdp->scd_ism_links[rid];
14788 ism_ment->iment_hat = scsfmmup;
14789 ism_ment->iment_base_va = rgnp->rgn_saddr;
14790 mutex_enter(&ism_mlist_lock);
14791 iment_add(ism_ment, ism_hatid);
14792 mutex_exit(&ism_mlist_lock);
14793
14794 }
14795 }
14796 }
14797 }
14798 /*
14799 * Unlink scd sfmmu from ism or hme region list for each region in the
14800 * scd region map.
14801 */
14802 void
sfmmu_unlink_scd_from_regions(sf_srd_t * srdp,sf_scd_t * scdp)14803 sfmmu_unlink_scd_from_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14804 {
14805 uint_t rid;
14806 uint_t i;
14807 uint_t j;
14808 ulong_t w;
14809 sf_region_t *rgnp;
14810 sfmmu_t *scsfmmup;
14811
14812 scsfmmup = scdp->scd_sfmmup;
14813 for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14814 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14815 continue;
14816 }
14817 j = 0;
14818 while (w) {
14819 if (!(w & 0x1)) {
14820 j++;
14821 w >>= 1;
14822 continue;
14823 }
14824 rid = (i << BT_ULSHIFT) | j;
14825 j++;
14826 w >>= 1;
14827
14828 if (rid < SFMMU_MAX_HME_REGIONS) {
14829 rgnp = srdp->srd_hmergnp[rid];
14830 ASSERT(rgnp->rgn_id == rid);
14831 ASSERT(rgnp->rgn_refcnt > 0);
14832 sfmmu_unlink_from_hmeregion(scsfmmup,
14833 rgnp);
14834
14835 } else {
14836 sfmmu_t *ism_hatid = NULL;
14837 ism_ment_t *ism_ment;
14838 rid -= SFMMU_MAX_HME_REGIONS;
14839 rgnp = srdp->srd_ismrgnp[rid];
14840 ASSERT(rgnp->rgn_id == rid);
14841 ASSERT(rgnp->rgn_refcnt > 0);
14842
14843 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14844 ASSERT(ism_hatid->sfmmu_ismhat);
14845 ism_ment = &scdp->scd_ism_links[rid];
14846 ASSERT(ism_ment->iment_hat == scdp->scd_sfmmup);
14847 ASSERT(ism_ment->iment_base_va ==
14848 rgnp->rgn_saddr);
14849 mutex_enter(&ism_mlist_lock);
14850 iment_sub(ism_ment, ism_hatid);
14851 mutex_exit(&ism_mlist_lock);
14852
14853 }
14854 }
14855 }
14856 }
14857 /*
14858 * Allocates and initialises a new SCD structure, this is called with
14859 * the srd_scd_mutex held and returns with the reference count
14860 * initialised to 1.
14861 */
14862 static sf_scd_t *
sfmmu_alloc_scd(sf_srd_t * srdp,sf_region_map_t * new_map)14863 sfmmu_alloc_scd(sf_srd_t *srdp, sf_region_map_t *new_map)
14864 {
14865 sf_scd_t *new_scdp;
14866 sfmmu_t *scsfmmup;
14867 int i;
14868
14869 ASSERT(MUTEX_HELD(&srdp->srd_scd_mutex));
14870 new_scdp = kmem_cache_alloc(scd_cache, KM_SLEEP);
14871
14872 scsfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
14873 new_scdp->scd_sfmmup = scsfmmup;
14874 scsfmmup->sfmmu_srdp = srdp;
14875 scsfmmup->sfmmu_scdp = new_scdp;
14876 scsfmmup->sfmmu_tsb0_4minflcnt = 0;
14877 scsfmmup->sfmmu_scdhat = 1;
14878 CPUSET_ALL(scsfmmup->sfmmu_cpusran);
14879 bzero(scsfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
14880
14881 ASSERT(max_mmu_ctxdoms > 0);
14882 for (i = 0; i < max_mmu_ctxdoms; i++) {
14883 scsfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
14884 scsfmmup->sfmmu_ctxs[i].gnum = 0;
14885 }
14886
14887 for (i = 0; i < MMU_PAGE_SIZES; i++) {
14888 new_scdp->scd_rttecnt[i] = 0;
14889 }
14890
14891 new_scdp->scd_region_map = *new_map;
14892 new_scdp->scd_refcnt = 1;
14893 if (sfmmu_alloc_scd_tsbs(srdp, new_scdp) != TSB_SUCCESS) {
14894 kmem_cache_free(scd_cache, new_scdp);
14895 kmem_cache_free(sfmmuid_cache, scsfmmup);
14896 return (NULL);
14897 }
14898 if (&mmu_init_scd) {
14899 mmu_init_scd(new_scdp);
14900 }
14901 return (new_scdp);
14902 }
14903
14904 /*
14905 * The first phase of a process joining an SCD. The hat structure is
14906 * linked to the SCD queue and then the HAT_JOIN_SCD sfmmu flag is set
14907 * and a cross-call with context invalidation is used to cause the
14908 * remaining work to be carried out in the sfmmu_tsbmiss_exception()
14909 * routine.
14910 */
14911 static void
sfmmu_join_scd(sf_scd_t * scdp,sfmmu_t * sfmmup)14912 sfmmu_join_scd(sf_scd_t *scdp, sfmmu_t *sfmmup)
14913 {
14914 hatlock_t *hatlockp;
14915 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14916 int i;
14917 sf_scd_t *old_scdp;
14918
14919 ASSERT(srdp != NULL);
14920 ASSERT(scdp != NULL);
14921 ASSERT(scdp->scd_refcnt > 0);
14922 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
14923
14924 if ((old_scdp = sfmmup->sfmmu_scdp) != NULL) {
14925 ASSERT(old_scdp != scdp);
14926
14927 mutex_enter(&old_scdp->scd_mutex);
14928 sfmmu_from_scd_list(&old_scdp->scd_sf_list, sfmmup);
14929 mutex_exit(&old_scdp->scd_mutex);
14930 /*
14931 * sfmmup leaves the old scd. Update sfmmu_ttecnt to
14932 * include the shme rgn ttecnt for rgns that
14933 * were in the old SCD
14934 */
14935 for (i = 0; i < mmu_page_sizes; i++) {
14936 ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
14937 old_scdp->scd_rttecnt[i]);
14938 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
14939 sfmmup->sfmmu_scdrttecnt[i]);
14940 }
14941 }
14942
14943 /*
14944 * Move sfmmu to the scd lists.
14945 */
14946 mutex_enter(&scdp->scd_mutex);
14947 sfmmu_to_scd_list(&scdp->scd_sf_list, sfmmup);
14948 mutex_exit(&scdp->scd_mutex);
14949 SF_SCD_INCR_REF(scdp);
14950
14951 hatlockp = sfmmu_hat_enter(sfmmup);
14952 /*
14953 * For a multi-thread process, we must stop
14954 * all the other threads before joining the scd.
14955 */
14956
14957 SFMMU_FLAGS_SET(sfmmup, HAT_JOIN_SCD);
14958
14959 sfmmu_invalidate_ctx(sfmmup);
14960 sfmmup->sfmmu_scdp = scdp;
14961
14962 /*
14963 * Copy scd_rttecnt into sfmmup's sfmmu_scdrttecnt, and update
14964 * sfmmu_ttecnt to not include the rgn ttecnt just joined in SCD.
14965 */
14966 for (i = 0; i < mmu_page_sizes; i++) {
14967 sfmmup->sfmmu_scdrttecnt[i] = scdp->scd_rttecnt[i];
14968 ASSERT(sfmmup->sfmmu_ttecnt[i] >= scdp->scd_rttecnt[i]);
14969 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
14970 -sfmmup->sfmmu_scdrttecnt[i]);
14971 }
14972 /* update tsb0 inflation count */
14973 if (old_scdp != NULL) {
14974 sfmmup->sfmmu_tsb0_4minflcnt +=
14975 old_scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
14976 }
14977 ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14978 scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt);
14979 sfmmup->sfmmu_tsb0_4minflcnt -= scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
14980
14981 sfmmu_hat_exit(hatlockp);
14982
14983 if (old_scdp != NULL) {
14984 SF_SCD_DECR_REF(srdp, old_scdp);
14985 }
14986
14987 }
14988
14989 /*
14990 * This routine is called by a process to become part of an SCD. It is called
14991 * from sfmmu_tsbmiss_exception() once most of the initial work has been
14992 * done by sfmmu_join_scd(). This routine must not drop the hat lock.
14993 */
14994 static void
sfmmu_finish_join_scd(sfmmu_t * sfmmup)14995 sfmmu_finish_join_scd(sfmmu_t *sfmmup)
14996 {
14997 struct tsb_info *tsbinfop;
14998
14999 ASSERT(sfmmu_hat_lock_held(sfmmup));
15000 ASSERT(sfmmup->sfmmu_scdp != NULL);
15001 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD));
15002 ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15003 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID));
15004
15005 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
15006 tsbinfop = tsbinfop->tsb_next) {
15007 if (tsbinfop->tsb_flags & TSB_SWAPPED) {
15008 continue;
15009 }
15010 ASSERT(!(tsbinfop->tsb_flags & TSB_RELOC_FLAG));
15011
15012 sfmmu_inv_tsb(tsbinfop->tsb_va,
15013 TSB_BYTES(tsbinfop->tsb_szc));
15014 }
15015
15016 /* Set HAT_CTX1_FLAG for all SCD ISMs */
15017 sfmmu_ism_hatflags(sfmmup, 1);
15018
15019 SFMMU_STAT(sf_join_scd);
15020 }
15021
15022 /*
15023 * This routine is called in order to check if there is an SCD which matches
15024 * the process's region map if not then a new SCD may be created.
15025 */
15026 static void
sfmmu_find_scd(sfmmu_t * sfmmup)15027 sfmmu_find_scd(sfmmu_t *sfmmup)
15028 {
15029 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15030 sf_scd_t *scdp, *new_scdp;
15031 int ret;
15032
15033 ASSERT(srdp != NULL);
15034 ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as));
15035
15036 mutex_enter(&srdp->srd_scd_mutex);
15037 for (scdp = srdp->srd_scdp; scdp != NULL;
15038 scdp = scdp->scd_next) {
15039 SF_RGNMAP_EQUAL(&scdp->scd_region_map,
15040 &sfmmup->sfmmu_region_map, ret);
15041 if (ret == 1) {
15042 SF_SCD_INCR_REF(scdp);
15043 mutex_exit(&srdp->srd_scd_mutex);
15044 sfmmu_join_scd(scdp, sfmmup);
15045 ASSERT(scdp->scd_refcnt >= 2);
15046 atomic_dec_32((volatile uint32_t *)&scdp->scd_refcnt);
15047 return;
15048 } else {
15049 /*
15050 * If the sfmmu region map is a subset of the scd
15051 * region map, then the assumption is that this process
15052 * will continue attaching to ISM segments until the
15053 * region maps are equal.
15054 */
15055 SF_RGNMAP_IS_SUBSET(&scdp->scd_region_map,
15056 &sfmmup->sfmmu_region_map, ret);
15057 if (ret == 1) {
15058 mutex_exit(&srdp->srd_scd_mutex);
15059 return;
15060 }
15061 }
15062 }
15063
15064 ASSERT(scdp == NULL);
15065 /*
15066 * No matching SCD has been found, create a new one.
15067 */
15068 if ((new_scdp = sfmmu_alloc_scd(srdp, &sfmmup->sfmmu_region_map)) ==
15069 NULL) {
15070 mutex_exit(&srdp->srd_scd_mutex);
15071 return;
15072 }
15073
15074 /*
15075 * sfmmu_alloc_scd() returns with a ref count of 1 on the scd.
15076 */
15077
15078 /* Set scd_rttecnt for shme rgns in SCD */
15079 sfmmu_set_scd_rttecnt(srdp, new_scdp);
15080
15081 /*
15082 * Link scd onto srd_scdp list and scd sfmmu onto region/iment lists.
15083 */
15084 sfmmu_link_scd_to_regions(srdp, new_scdp);
15085 sfmmu_add_scd(&srdp->srd_scdp, new_scdp);
15086 SFMMU_STAT_ADD(sf_create_scd, 1);
15087
15088 mutex_exit(&srdp->srd_scd_mutex);
15089 sfmmu_join_scd(new_scdp, sfmmup);
15090 ASSERT(new_scdp->scd_refcnt >= 2);
15091 atomic_dec_32((volatile uint32_t *)&new_scdp->scd_refcnt);
15092 }
15093
15094 /*
15095 * This routine is called by a process to remove itself from an SCD. It is
15096 * either called when the processes has detached from a segment or from
15097 * hat_free_start() as a result of calling exit.
15098 */
15099 static void
sfmmu_leave_scd(sfmmu_t * sfmmup,uchar_t r_type)15100 sfmmu_leave_scd(sfmmu_t *sfmmup, uchar_t r_type)
15101 {
15102 sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15103 sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15104 hatlock_t *hatlockp = TSB_HASH(sfmmup);
15105 int i;
15106
15107 ASSERT(scdp != NULL);
15108 ASSERT(srdp != NULL);
15109
15110 if (sfmmup->sfmmu_free) {
15111 /*
15112 * If the process is part of an SCD the sfmmu is unlinked
15113 * from scd_sf_list.
15114 */
15115 mutex_enter(&scdp->scd_mutex);
15116 sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15117 mutex_exit(&scdp->scd_mutex);
15118 /*
15119 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15120 * are about to leave the SCD
15121 */
15122 for (i = 0; i < mmu_page_sizes; i++) {
15123 ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15124 scdp->scd_rttecnt[i]);
15125 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15126 sfmmup->sfmmu_scdrttecnt[i]);
15127 sfmmup->sfmmu_scdrttecnt[i] = 0;
15128 }
15129 sfmmup->sfmmu_scdp = NULL;
15130
15131 SF_SCD_DECR_REF(srdp, scdp);
15132 return;
15133 }
15134
15135 ASSERT(r_type != SFMMU_REGION_ISM ||
15136 SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15137 ASSERT(scdp->scd_refcnt);
15138 ASSERT(!sfmmup->sfmmu_free);
15139 ASSERT(sfmmu_hat_lock_held(sfmmup));
15140 ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as));
15141
15142 /*
15143 * Wait for ISM maps to be updated.
15144 */
15145 if (r_type != SFMMU_REGION_ISM) {
15146 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY) &&
15147 sfmmup->sfmmu_scdp != NULL) {
15148 cv_wait(&sfmmup->sfmmu_tsb_cv,
15149 HATLOCK_MUTEXP(hatlockp));
15150 }
15151
15152 if (sfmmup->sfmmu_scdp == NULL) {
15153 sfmmu_hat_exit(hatlockp);
15154 return;
15155 }
15156 SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
15157 }
15158
15159 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
15160 SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
15161 /*
15162 * Since HAT_JOIN_SCD was set our context
15163 * is still invalid.
15164 */
15165 } else {
15166 /*
15167 * For a multi-thread process, we must stop
15168 * all the other threads before leaving the scd.
15169 */
15170
15171 sfmmu_invalidate_ctx(sfmmup);
15172 }
15173
15174 /* Clear all the rid's for ISM, delete flags, etc */
15175 ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15176 sfmmu_ism_hatflags(sfmmup, 0);
15177
15178 /*
15179 * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15180 * are in SCD before this sfmmup leaves the SCD.
15181 */
15182 for (i = 0; i < mmu_page_sizes; i++) {
15183 ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15184 scdp->scd_rttecnt[i]);
15185 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15186 sfmmup->sfmmu_scdrttecnt[i]);
15187 sfmmup->sfmmu_scdrttecnt[i] = 0;
15188 /* update ismttecnt to include SCD ism before hat leaves SCD */
15189 sfmmup->sfmmu_ismttecnt[i] += sfmmup->sfmmu_scdismttecnt[i];
15190 sfmmup->sfmmu_scdismttecnt[i] = 0;
15191 }
15192 /* update tsb0 inflation count */
15193 sfmmup->sfmmu_tsb0_4minflcnt += scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15194
15195 if (r_type != SFMMU_REGION_ISM) {
15196 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
15197 }
15198 sfmmup->sfmmu_scdp = NULL;
15199
15200 sfmmu_hat_exit(hatlockp);
15201
15202 /*
15203 * Unlink sfmmu from scd_sf_list this can be done without holding
15204 * the hat lock as we hold the sfmmu_as lock which prevents
15205 * hat_join_region from adding this thread to the scd again. Other
15206 * threads check if sfmmu_scdp is NULL under hat lock and if it's NULL
15207 * they won't get here, since sfmmu_leave_scd() clears sfmmu_scdp
15208 * while holding the hat lock.
15209 */
15210 mutex_enter(&scdp->scd_mutex);
15211 sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15212 mutex_exit(&scdp->scd_mutex);
15213 SFMMU_STAT(sf_leave_scd);
15214
15215 SF_SCD_DECR_REF(srdp, scdp);
15216 hatlockp = sfmmu_hat_enter(sfmmup);
15217
15218 }
15219
15220 /*
15221 * Unlink and free up an SCD structure with a reference count of 0.
15222 */
15223 static void
sfmmu_destroy_scd(sf_srd_t * srdp,sf_scd_t * scdp,sf_region_map_t * scd_rmap)15224 sfmmu_destroy_scd(sf_srd_t *srdp, sf_scd_t *scdp, sf_region_map_t *scd_rmap)
15225 {
15226 sfmmu_t *scsfmmup;
15227 sf_scd_t *sp;
15228 hatlock_t *shatlockp;
15229 int i, ret;
15230
15231 mutex_enter(&srdp->srd_scd_mutex);
15232 for (sp = srdp->srd_scdp; sp != NULL; sp = sp->scd_next) {
15233 if (sp == scdp)
15234 break;
15235 }
15236 if (sp == NULL || sp->scd_refcnt) {
15237 mutex_exit(&srdp->srd_scd_mutex);
15238 return;
15239 }
15240
15241 /*
15242 * It is possible that the scd has been freed and reallocated with a
15243 * different region map while we've been waiting for the srd_scd_mutex.
15244 */
15245 SF_RGNMAP_EQUAL(scd_rmap, &sp->scd_region_map, ret);
15246 if (ret != 1) {
15247 mutex_exit(&srdp->srd_scd_mutex);
15248 return;
15249 }
15250
15251 ASSERT(scdp->scd_sf_list == NULL);
15252 /*
15253 * Unlink scd from srd_scdp list.
15254 */
15255 sfmmu_remove_scd(&srdp->srd_scdp, scdp);
15256 mutex_exit(&srdp->srd_scd_mutex);
15257
15258 sfmmu_unlink_scd_from_regions(srdp, scdp);
15259
15260 /* Clear shared context tsb and release ctx */
15261 scsfmmup = scdp->scd_sfmmup;
15262
15263 /*
15264 * create a barrier so that scd will not be destroyed
15265 * if other thread still holds the same shared hat lock.
15266 * E.g., sfmmu_tsbmiss_exception() needs to acquire the
15267 * shared hat lock before checking the shared tsb reloc flag.
15268 */
15269 shatlockp = sfmmu_hat_enter(scsfmmup);
15270 sfmmu_hat_exit(shatlockp);
15271
15272 sfmmu_free_scd_tsbs(scsfmmup);
15273
15274 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
15275 if (scsfmmup->sfmmu_hmeregion_links[i] != NULL) {
15276 kmem_free(scsfmmup->sfmmu_hmeregion_links[i],
15277 SFMMU_L2_HMERLINKS_SIZE);
15278 scsfmmup->sfmmu_hmeregion_links[i] = NULL;
15279 }
15280 }
15281 kmem_cache_free(sfmmuid_cache, scsfmmup);
15282 kmem_cache_free(scd_cache, scdp);
15283 SFMMU_STAT(sf_destroy_scd);
15284 }
15285
15286 /*
15287 * Modifies the HAT_CTX1_FLAG for each of the ISM segments which correspond to
15288 * bits which are set in the ism_region_map parameter. This flag indicates to
15289 * the tsbmiss handler that mapping for these segments should be loaded using
15290 * the shared context.
15291 */
15292 static void
sfmmu_ism_hatflags(sfmmu_t * sfmmup,int addflag)15293 sfmmu_ism_hatflags(sfmmu_t *sfmmup, int addflag)
15294 {
15295 sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15296 ism_blk_t *ism_blkp;
15297 ism_map_t *ism_map;
15298 int i, rid;
15299
15300 ASSERT(sfmmup->sfmmu_iblk != NULL);
15301 ASSERT(scdp != NULL);
15302 /*
15303 * Note that the caller either set HAT_ISMBUSY flag or checked
15304 * under hat lock that HAT_ISMBUSY was not set by another thread.
15305 */
15306 ASSERT(sfmmu_hat_lock_held(sfmmup));
15307
15308 ism_blkp = sfmmup->sfmmu_iblk;
15309 while (ism_blkp != NULL) {
15310 ism_map = ism_blkp->iblk_maps;
15311 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
15312 rid = ism_map[i].imap_rid;
15313 if (rid == SFMMU_INVALID_ISMRID) {
15314 continue;
15315 }
15316 ASSERT(rid >= 0 && rid < SFMMU_MAX_ISM_REGIONS);
15317 if (SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid) &&
15318 addflag) {
15319 ism_map[i].imap_hatflags |=
15320 HAT_CTX1_FLAG;
15321 } else {
15322 ism_map[i].imap_hatflags &=
15323 ~HAT_CTX1_FLAG;
15324 }
15325 }
15326 ism_blkp = ism_blkp->iblk_next;
15327 }
15328 }
15329
15330 static int
sfmmu_srd_lock_held(sf_srd_t * srdp)15331 sfmmu_srd_lock_held(sf_srd_t *srdp)
15332 {
15333 return (MUTEX_HELD(&srdp->srd_mutex));
15334 }
15335
15336 /* ARGSUSED */
15337 static int
sfmmu_scdcache_constructor(void * buf,void * cdrarg,int kmflags)15338 sfmmu_scdcache_constructor(void *buf, void *cdrarg, int kmflags)
15339 {
15340 sf_scd_t *scdp = (sf_scd_t *)buf;
15341
15342 bzero(buf, sizeof (sf_scd_t));
15343 mutex_init(&scdp->scd_mutex, NULL, MUTEX_DEFAULT, NULL);
15344 return (0);
15345 }
15346
15347 /* ARGSUSED */
15348 static void
sfmmu_scdcache_destructor(void * buf,void * cdrarg)15349 sfmmu_scdcache_destructor(void *buf, void *cdrarg)
15350 {
15351 sf_scd_t *scdp = (sf_scd_t *)buf;
15352
15353 mutex_destroy(&scdp->scd_mutex);
15354 }
15355
15356 /*
15357 * The listp parameter is a pointer to a list of hmeblks which are partially
15358 * freed as result of calling sfmmu_hblk_hash_rm(), the last phase of the
15359 * freeing process is to cross-call all cpus to ensure that there are no
15360 * remaining cached references.
15361 *
15362 * If the local generation number is less than the global then we can free
15363 * hmeblks which are already on the pending queue as another cpu has completed
15364 * the cross-call.
15365 *
15366 * We cross-call to make sure that there are no threads on other cpus accessing
15367 * these hmblks and then complete the process of freeing them under the
15368 * following conditions:
15369 * The total number of pending hmeblks is greater than the threshold
15370 * The reserve list has fewer than HBLK_RESERVE_CNT hmeblks
15371 * It is at least 1 second since the last time we cross-called
15372 *
15373 * Otherwise, we add the hmeblks to the per-cpu pending queue.
15374 */
15375 static void
sfmmu_hblks_list_purge(struct hme_blk ** listp,int dontfree)15376 sfmmu_hblks_list_purge(struct hme_blk **listp, int dontfree)
15377 {
15378 struct hme_blk *hblkp, *pr_hblkp = NULL;
15379 int count = 0;
15380 cpuset_t cpuset = cpu_ready_set;
15381 cpu_hme_pend_t *cpuhp;
15382 timestruc_t now;
15383 int one_second_expired = 0;
15384
15385 gethrestime_lasttick(&now);
15386
15387 for (hblkp = *listp; hblkp != NULL; hblkp = hblkp->hblk_next) {
15388 ASSERT(hblkp->hblk_shw_bit == 0);
15389 ASSERT(hblkp->hblk_shared == 0);
15390 count++;
15391 pr_hblkp = hblkp;
15392 }
15393
15394 cpuhp = &cpu_hme_pend[CPU->cpu_seqid];
15395 mutex_enter(&cpuhp->chp_mutex);
15396
15397 if ((cpuhp->chp_count + count) == 0) {
15398 mutex_exit(&cpuhp->chp_mutex);
15399 return;
15400 }
15401
15402 if ((now.tv_sec - cpuhp->chp_timestamp) > 1) {
15403 one_second_expired = 1;
15404 }
15405
15406 if (!dontfree && (freehblkcnt < HBLK_RESERVE_CNT ||
15407 (cpuhp->chp_count + count) > cpu_hme_pend_thresh ||
15408 one_second_expired)) {
15409 /* Append global list to local */
15410 if (pr_hblkp == NULL) {
15411 *listp = cpuhp->chp_listp;
15412 } else {
15413 pr_hblkp->hblk_next = cpuhp->chp_listp;
15414 }
15415 cpuhp->chp_listp = NULL;
15416 cpuhp->chp_count = 0;
15417 cpuhp->chp_timestamp = now.tv_sec;
15418 mutex_exit(&cpuhp->chp_mutex);
15419
15420 kpreempt_disable();
15421 CPUSET_DEL(cpuset, CPU->cpu_id);
15422 xt_sync(cpuset);
15423 xt_sync(cpuset);
15424 kpreempt_enable();
15425
15426 /*
15427 * At this stage we know that no trap handlers on other
15428 * cpus can have references to hmeblks on the list.
15429 */
15430 sfmmu_hblk_free(listp);
15431 } else if (*listp != NULL) {
15432 pr_hblkp->hblk_next = cpuhp->chp_listp;
15433 cpuhp->chp_listp = *listp;
15434 cpuhp->chp_count += count;
15435 *listp = NULL;
15436 mutex_exit(&cpuhp->chp_mutex);
15437 } else {
15438 mutex_exit(&cpuhp->chp_mutex);
15439 }
15440 }
15441
15442 /*
15443 * Add an hmeblk to the the hash list.
15444 */
15445 void
sfmmu_hblk_hash_add(struct hmehash_bucket * hmebp,struct hme_blk * hmeblkp,uint64_t hblkpa)15446 sfmmu_hblk_hash_add(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15447 uint64_t hblkpa)
15448 {
15449 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15450 #ifdef DEBUG
15451 if (hmebp->hmeblkp == NULL) {
15452 ASSERT(hmebp->hmeh_nextpa == HMEBLK_ENDPA);
15453 }
15454 #endif /* DEBUG */
15455
15456 hmeblkp->hblk_nextpa = hmebp->hmeh_nextpa;
15457 /*
15458 * Since the TSB miss handler now does not lock the hash chain before
15459 * walking it, make sure that the hmeblks nextpa is globally visible
15460 * before we make the hmeblk globally visible by updating the chain root
15461 * pointer in the hash bucket.
15462 */
15463 membar_producer();
15464 hmebp->hmeh_nextpa = hblkpa;
15465 hmeblkp->hblk_next = hmebp->hmeblkp;
15466 hmebp->hmeblkp = hmeblkp;
15467
15468 }
15469
15470 /*
15471 * This function is the first part of a 2 part process to remove an hmeblk
15472 * from the hash chain. In this phase we unlink the hmeblk from the hash chain
15473 * but leave the next physical pointer unchanged. The hmeblk is then linked onto
15474 * a per-cpu pending list using the virtual address pointer.
15475 *
15476 * TSB miss trap handlers that start after this phase will no longer see
15477 * this hmeblk. TSB miss handlers that still cache this hmeblk in a register
15478 * can still use it for further chain traversal because we haven't yet modifed
15479 * the next physical pointer or freed it.
15480 *
15481 * In the second phase of hmeblk removal we'll issue a barrier xcall before
15482 * we reuse or free this hmeblk. This will make sure all lingering references to
15483 * the hmeblk after first phase disappear before we finally reclaim it.
15484 * This scheme eliminates the need for TSB miss handlers to lock hmeblk chains
15485 * during their traversal.
15486 *
15487 * The hmehash_mutex must be held when calling this function.
15488 *
15489 * Input:
15490 * hmebp - hme hash bucket pointer
15491 * hmeblkp - address of hmeblk to be removed
15492 * pr_hblk - virtual address of previous hmeblkp
15493 * listp - pointer to list of hmeblks linked by virtual address
15494 * free_now flag - indicates that a complete removal from the hash chains
15495 * is necessary.
15496 *
15497 * It is inefficient to use the free_now flag as a cross-call is required to
15498 * remove a single hmeblk from the hash chain but is necessary when hmeblks are
15499 * in short supply.
15500 */
15501 void
sfmmu_hblk_hash_rm(struct hmehash_bucket * hmebp,struct hme_blk * hmeblkp,struct hme_blk * pr_hblk,struct hme_blk ** listp,int free_now)15502 sfmmu_hblk_hash_rm(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15503 struct hme_blk *pr_hblk, struct hme_blk **listp, int free_now)
15504 {
15505 int shw_size, vshift;
15506 struct hme_blk *shw_hblkp;
15507 uint_t shw_mask, newshw_mask;
15508 caddr_t vaddr;
15509 int size;
15510 cpuset_t cpuset = cpu_ready_set;
15511
15512 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15513
15514 if (hmebp->hmeblkp == hmeblkp) {
15515 hmebp->hmeh_nextpa = hmeblkp->hblk_nextpa;
15516 hmebp->hmeblkp = hmeblkp->hblk_next;
15517 } else {
15518 pr_hblk->hblk_nextpa = hmeblkp->hblk_nextpa;
15519 pr_hblk->hblk_next = hmeblkp->hblk_next;
15520 }
15521
15522 size = get_hblk_ttesz(hmeblkp);
15523 shw_hblkp = hmeblkp->hblk_shadow;
15524 if (shw_hblkp) {
15525 ASSERT(hblktosfmmu(hmeblkp) != KHATID);
15526 ASSERT(!hmeblkp->hblk_shared);
15527 #ifdef DEBUG
15528 if (mmu_page_sizes == max_mmu_page_sizes) {
15529 ASSERT(size < TTE256M);
15530 } else {
15531 ASSERT(size < TTE4M);
15532 }
15533 #endif /* DEBUG */
15534
15535 shw_size = get_hblk_ttesz(shw_hblkp);
15536 vaddr = (caddr_t)get_hblk_base(hmeblkp);
15537 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
15538 ASSERT(vshift < 8);
15539 /*
15540 * Atomically clear shadow mask bit
15541 */
15542 do {
15543 shw_mask = shw_hblkp->hblk_shw_mask;
15544 ASSERT(shw_mask & (1 << vshift));
15545 newshw_mask = shw_mask & ~(1 << vshift);
15546 newshw_mask = atomic_cas_32(&shw_hblkp->hblk_shw_mask,
15547 shw_mask, newshw_mask);
15548 } while (newshw_mask != shw_mask);
15549 hmeblkp->hblk_shadow = NULL;
15550 }
15551 hmeblkp->hblk_shw_bit = 0;
15552
15553 if (hmeblkp->hblk_shared) {
15554 #ifdef DEBUG
15555 sf_srd_t *srdp;
15556 sf_region_t *rgnp;
15557 uint_t rid;
15558
15559 srdp = hblktosrd(hmeblkp);
15560 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
15561 rid = hmeblkp->hblk_tag.htag_rid;
15562 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
15563 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
15564 rgnp = srdp->srd_hmergnp[rid];
15565 ASSERT(rgnp != NULL);
15566 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
15567 #endif /* DEBUG */
15568 hmeblkp->hblk_shared = 0;
15569 }
15570 if (free_now) {
15571 kpreempt_disable();
15572 CPUSET_DEL(cpuset, CPU->cpu_id);
15573 xt_sync(cpuset);
15574 xt_sync(cpuset);
15575 kpreempt_enable();
15576
15577 hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
15578 hmeblkp->hblk_next = NULL;
15579 } else {
15580 /* Append hmeblkp to listp for processing later. */
15581 hmeblkp->hblk_next = *listp;
15582 *listp = hmeblkp;
15583 }
15584 }
15585
15586 /*
15587 * This routine is called when memory is in short supply and returns a free
15588 * hmeblk of the requested size from the cpu pending lists.
15589 */
15590 static struct hme_blk *
sfmmu_check_pending_hblks(int size)15591 sfmmu_check_pending_hblks(int size)
15592 {
15593 int i;
15594 struct hme_blk *hmeblkp = NULL, *last_hmeblkp;
15595 int found_hmeblk;
15596 cpuset_t cpuset = cpu_ready_set;
15597 cpu_hme_pend_t *cpuhp;
15598
15599 /* Flush cpu hblk pending queues */
15600 for (i = 0; i < NCPU; i++) {
15601 cpuhp = &cpu_hme_pend[i];
15602 if (cpuhp->chp_listp != NULL) {
15603 mutex_enter(&cpuhp->chp_mutex);
15604 if (cpuhp->chp_listp == NULL) {
15605 mutex_exit(&cpuhp->chp_mutex);
15606 continue;
15607 }
15608 found_hmeblk = 0;
15609 last_hmeblkp = NULL;
15610 for (hmeblkp = cpuhp->chp_listp; hmeblkp != NULL;
15611 hmeblkp = hmeblkp->hblk_next) {
15612 if (get_hblk_ttesz(hmeblkp) == size) {
15613 if (last_hmeblkp == NULL) {
15614 cpuhp->chp_listp =
15615 hmeblkp->hblk_next;
15616 } else {
15617 last_hmeblkp->hblk_next =
15618 hmeblkp->hblk_next;
15619 }
15620 ASSERT(cpuhp->chp_count > 0);
15621 cpuhp->chp_count--;
15622 found_hmeblk = 1;
15623 break;
15624 } else {
15625 last_hmeblkp = hmeblkp;
15626 }
15627 }
15628 mutex_exit(&cpuhp->chp_mutex);
15629
15630 if (found_hmeblk) {
15631 kpreempt_disable();
15632 CPUSET_DEL(cpuset, CPU->cpu_id);
15633 xt_sync(cpuset);
15634 xt_sync(cpuset);
15635 kpreempt_enable();
15636 return (hmeblkp);
15637 }
15638 }
15639 }
15640 return (NULL);
15641 }
15642