1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright 2024 Oxide Computer Company 14 */ 15 16 #ifndef _SYS_UMC_H 17 #define _SYS_UMC_H 18 19 #include <sys/bitext.h> 20 #include <sys/amdzen/smn.h> 21 22 /* 23 * Various register definitions for accessing the AMD Unified Memory Controller 24 * (UMC) over SMN (the system management network). Note, that the SMN exists 25 * independently in each die and must be accessed through the appropriate 26 * IOHC. 27 * 28 * There are effectively four different revisions of the UMC that we know about 29 * and support querying: 30 * 31 * o DDR4 capable APUs 32 * o DDR4 capable CPUs 33 * o DDR5 capable APUs 34 * o DDR5 capable CPUs 35 * 36 * In general for a given revision and generation of a controller (DDR4 vs. 37 * DDR5), all of the address layouts are the same whether it is for an APU or a 38 * CPU. The main difference is generally in the number of features. For example, 39 * most APUs may not support the same rank multiplication bits and related in a 40 * device. However, unlike the DF where everything changes, the main difference 41 * within a generation is just which bits are implemented. This makes it much 42 * easier to define UMC information. 43 * 44 * Between DDR4 and DDR5 based devices, the register locations have shifted; 45 * however, generally speaking, the registers themselves are actually the same. 46 * Registers here, similar to the DF, have a common form: 47 * 48 * UMC_<reg name>_<vers> 49 * 50 * Here, <reg name> would be something like 'BASE', for the UMC 51 * UMC::CH::BaseAddr register. <vers> is one of DDR4 or DDR5. When the same 52 * register is supported at the same address between versions, then <vers> is 53 * elided. 54 * 55 * For fields inside of these registers, everything follows the same pattern in 56 * <sys/amdzen/df.h> which is: 57 * 58 * UMC_<reg name>_<vers>_GET_<field> 59 * 60 * Note, <vers> will be elided if the register is the same between the DDR4 and 61 * DDR5 versions. 62 * 63 * Finally, a cautionary note. While the DF provided a way for us to determine 64 * what version something is, we have not determined a way to programmatically 65 * determine what something supports outside of making notes based on the 66 * family, model, and stepping CPUID information. Unfortunately, you must look 67 * towards the documentation and find what you need in the PPR (processor 68 * programming reference). 69 */ 70 71 #ifdef __cplusplus 72 extern "C" { 73 #endif 74 75 /* 76 * UMC Channel registers. These are in SMN Space. DDR4 and DDR5 based UMCs share 77 * the same base address, somewhat surprisingly. This constructs the appropriate 78 * offset and ensures that a caller doesn't exceed the number of known instances 79 * of the register. See smn.h for additional details on SMN addressing. All 80 * UMC registers are 32 bits wide; we check for violations. 81 */ 82 83 static inline smn_reg_t 84 amdzen_umc_smn_reg(const uint8_t umcno, const smn_reg_def_t def, 85 const uint16_t reginst) 86 { 87 const uint32_t APERTURE_BASE = 0x50000; 88 const uint32_t APERTURE_MASK = 0xffffe000; 89 90 const uint32_t umc32 = (const uint32_t)umcno; 91 const uint32_t reginst32 = (const uint32_t)reginst; 92 93 const uint32_t stride = (def.srd_stride == 0) ? 4 : def.srd_stride; 94 const uint32_t nents = (def.srd_nents == 0) ? 1 : 95 (const uint32_t)def.srd_nents; 96 97 ASSERT0(def.srd_size); 98 ASSERT3S(def.srd_unit, ==, SMN_UNIT_UMC); 99 ASSERT0(def.srd_reg & APERTURE_MASK); 100 ASSERT3U(umc32, <, 12); 101 ASSERT3U(nents, >, reginst32); 102 103 const uint32_t aperture_off = umc32 << 20; 104 ASSERT3U(aperture_off, <=, UINT32_MAX - APERTURE_BASE); 105 106 const uint32_t aperture = APERTURE_BASE + aperture_off; 107 ASSERT0(aperture & ~APERTURE_MASK); 108 109 const uint32_t reg = def.srd_reg + reginst32 * stride; 110 ASSERT0(reg & APERTURE_MASK); 111 112 return (SMN_MAKE_REG(aperture + reg)); 113 } 114 115 /* 116 * UMC::CH::BaseAddr, UMC::CH::BaseAddrSec -- determines the base address used 117 * to match a chip select. Instances 0/1 always refer to DIMM 0, while 118 * instances 2/3 always refer to DIMM 1. 119 */ 120 /*CSTYLED*/ 121 #define D_UMC_BASE (const smn_reg_def_t){ \ 122 .srd_unit = SMN_UNIT_UMC, \ 123 .srd_reg = 0x00, \ 124 .srd_nents = 4 \ 125 } 126 /*CSTYLED*/ 127 #define D_UMC_BASE_SEC (const smn_reg_def_t){ \ 128 .srd_unit = SMN_UNIT_UMC, \ 129 .srd_reg = 0x10, \ 130 .srd_nents = 4 \ 131 } 132 #define UMC_BASE(u, i) amdzen_umc_smn_reg(u, D_UMC_BASE, i) 133 #define UMC_BASE_SEC(u, i) amdzen_umc_smn_reg(u, D_UMC_BASE_SEC, i) 134 #define UMC_BASE_GET_ADDR(r) bitx32(r, 31, 1) 135 #define UMC_BASE_ADDR_SHIFT 9 136 #define UMC_BASE_GET_EN(r) bitx32(r, 0, 0) 137 138 /* 139 * UMC::BaseAddrExt, UMC::BaseAddrSecExt -- The first of several extensions to 140 * registers that allow more address bits. Note, only present in some DDR5 141 * capable SoCs. 142 */ 143 /*CSTYLED*/ 144 #define D_UMC_BASE_EXT_DDR5 (const smn_reg_def_t){ \ 145 .srd_unit = SMN_UNIT_UMC, \ 146 .srd_reg = 0xb00, \ 147 .srd_nents = 4 \ 148 } 149 /*CSTYLED*/ 150 #define D_UMC_BASE_EXT_SEC_DDR5 (const smn_reg_def_t){ \ 151 .srd_unit = SMN_UNIT_UMC, \ 152 .srd_reg = 0xb10, \ 153 .srd_nents = 4 \ 154 } 155 #define UMC_BASE_EXT_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_BASE_EXT_DDR5, i) 156 #define UMC_BASE_EXT_SEC_DDR5(u, i) \ 157 amdzen_umc_smn_reg(u, D_UMC_BASE_EXT_SEC_DDR5, i) 158 #define UMC_BASE_EXT_GET_ADDR(r) bitx32(r, 7, 0) 159 #define UMC_BASE_EXT_ADDR_SHIFT 40 160 161 162 /* 163 * UMC::CH::AddrMask, UMC::CH::AddrMaskSec -- This register is used to compare 164 * the incoming address to see it matches the base. Tweaking what is used for 165 * match is often part of the interleaving strategy. 166 */ 167 /*CSTYLED*/ 168 #define D_UMC_MASK_DDR4 (const smn_reg_def_t){ \ 169 .srd_unit = SMN_UNIT_UMC, \ 170 .srd_reg = 0x20, \ 171 .srd_nents = 2 \ 172 } 173 /*CSTYLED*/ 174 #define D_UMC_MASK_SEC_DDR4 (const smn_reg_def_t){ \ 175 .srd_unit = SMN_UNIT_UMC, \ 176 .srd_reg = 0x28, \ 177 .srd_nents = 2 \ 178 } 179 /*CSTYLED*/ 180 #define D_UMC_MASK_DDR5 (const smn_reg_def_t){ \ 181 .srd_unit = SMN_UNIT_UMC, \ 182 .srd_reg = 0x20, \ 183 .srd_nents = 4 \ 184 } 185 /*CSTYLED*/ 186 #define D_UMC_MASK_SEC_DDR5 (const smn_reg_def_t){ \ 187 .srd_unit = SMN_UNIT_UMC, \ 188 .srd_reg = 0x30, \ 189 .srd_nents = 4 \ 190 } 191 #define UMC_MASK_DDR4(u, i) amdzen_umc_smn_reg(u, D_UMC_MASK_DDR4, i) 192 #define UMC_MASK_SEC_DDR4(u, i) amdzen_umc_smn_reg(u, D_UMC_MASK_SEC_DDR4, i) 193 #define UMC_MASK_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_MASK_DDR5, i) 194 #define UMC_MASK_SEC_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_MASK_SEC_DDR5, i) 195 #define UMC_MASK_GET_ADDR(r) bitx32(r, 31, 1) 196 #define UMC_MASK_ADDR_SHIFT 9 197 198 /* 199 * UMC::AddrMaskExt, UMC::AddrMaskSecExt -- Extended mask addresses. 200 */ 201 /*CSTYLED*/ 202 #define D_UMC_MASK_EXT_DDR5 (const smn_reg_def_t){ \ 203 .srd_unit = SMN_UNIT_UMC, \ 204 .srd_reg = 0xb20, \ 205 .srd_nents = 4 \ 206 } 207 /*CSTYLED*/ 208 #define D_UMC_MASK_EXT_SEC_DDR5 (const smn_reg_def_t){ \ 209 .srd_unit = SMN_UNIT_UMC, \ 210 .srd_reg = 0xb30, \ 211 .srd_nents = 4 \ 212 } 213 #define UMC_MASK_EXT_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_MASK_EXT_DDR5, i) 214 #define UMC_MASK_EXT_SEC_DDR5(u, i) \ 215 amdzen_umc_smn_reg(u, D_UMC_MASK_EXT_SEC_DDR5, i) 216 #define UMC_MASK_EXT_GET_ADDR(r) bitx32(r, 7, 0) 217 #define UMC_MASK_EXT_ADDR_SHIFT 40 218 219 /* 220 * UMC::CH::AddrCfg -- This register contains a number of bits that describe how 221 * the address is actually used, one per DIMM. Note, not all members are valid 222 * for all classes of DIMMs. It's worth calling out that the total number of 223 * banks value here describes the total number of banks on the entire chip, e.g. 224 * it is bank groups * banks/groups. Therefore to determine the number of 225 * banks/group you must subtract the number of bank group bits from the total 226 * number of bank bits. 227 */ 228 /*CSTYLED*/ 229 #define D_UMC_ADDRCFG_DDR4 (const smn_reg_def_t){ \ 230 .srd_unit = SMN_UNIT_UMC, \ 231 .srd_reg = 0x30, \ 232 .srd_nents = 2 \ 233 } 234 /*CSTYLED*/ 235 #define D_UMC_ADDRCFG_DDR5 (const smn_reg_def_t){ \ 236 .srd_unit = SMN_UNIT_UMC, \ 237 .srd_reg = 0x40, \ 238 .srd_nents = 4 \ 239 } 240 #define UMC_ADDRCFG_DDR4(u, i) amdzen_umc_smn_reg(u, D_UMC_ADDRCFG_DDR4, i) 241 #define UMC_ADDRCFG_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_ADDRCFG_DDR5, i) 242 #define UMC_ADDRCFG_GET_NBANK_BITS(r) bitx32(r, 21, 20) 243 #define UMC_ADDRCFG_NBANK_BITS_BASE 3 244 #define UMC_ADDRCFG_GET_NCOL_BITS(r) bitx32(r, 19, 16) 245 #define UMC_ADDRCFG_NCOL_BITS_BASE 5 246 #define UMC_ADDRCFG_GET_NROW_BITS_LO(r) bitx32(r, 11, 8) 247 #define UMC_ADDRCFG_NROW_BITS_LO_BASE 10 248 #define UMC_ADDRCFG_GET_NBANKGRP_BITS(r) bitx32(r, 3, 2) 249 250 #define UMC_ADDRCFG_DDR4_GET_NROW_BITS_HI(r) bitx32(r, 15, 12) 251 #define UMC_ADDRCFG_DDR4_GET_NRM_BITS(r) bitx32(r, 5, 4) 252 #define UMC_ADDRCFG_DDR5_GET_CSXOR(r) bitx32(r, 31, 30) 253 #define UMC_ADDRCFG_DDR5_GET_NRM_BITS(r) bitx32(r, 6, 4) 254 255 /* 256 * UMC::CH::AddrSel -- This register is used to program how the actual bits in 257 * the normalized address map to the row and bank. While the bank can select 258 * which bits in the normalized address are used to construct the bank number, 259 * row bits are contiguous from the starting number. 260 */ 261 /*CSTYLED*/ 262 #define D_UMC_ADDRSEL_DDR4 (const smn_reg_def_t){ \ 263 .srd_unit = SMN_UNIT_UMC, \ 264 .srd_reg = 0x40, \ 265 .srd_nents = 2 \ 266 } 267 /*CSTYLED*/ 268 #define D_UMC_ADDRSEL_DDR5 (const smn_reg_def_t){ \ 269 .srd_unit = SMN_UNIT_UMC, \ 270 .srd_reg = 0x50, \ 271 .srd_nents = 4 \ 272 } 273 #define UMC_ADDRSEL_DDR4(u, i) amdzen_umc_smn_reg(u, D_UMC_ADDRSEL_DDR4, i) 274 #define UMC_ADDRSEL_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_ADDRSEL_DDR5, i) 275 #define UMC_ADDRSEL_GET_ROW_LO(r) bitx32(r, 27, 24) 276 #define UMC_ADDRSEL_ROW_LO_BASE 12 277 #define UMC_ADDRSEL_GET_BANK4(r) bitx32(r, 19, 16) 278 #define UMC_ADDRSEL_GET_BANK3(r) bitx32(r, 15, 12) 279 #define UMC_ADDRSEL_GET_BANK2(r) bitx32(r, 11, 8) 280 #define UMC_ADDRSEL_GET_BANK1(r) bitx32(r, 7, 4) 281 #define UMC_ADDRSEL_GET_BANK0(r) bitx32(r, 3, 0) 282 #define UMC_ADDRSEL_BANK_BASE 5 283 284 #define UMC_ADDRSEL_DDR4_GET_ROW_HI(r) bitx32(r, 31, 28) 285 #define UMC_ADDRSEL_DDR4_ROW_HI_BASE 24 286 287 /* 288 * UMC::CH::ColSelLo, UMC::CH::ColSelHi -- This register selects which address 289 * bits map to the various column select bits. These registers interleave so in 290 * the case of DDR4, it's 0x50, 0x54 for DIMM 0 lo, hi. Then 0x58, 0x5c for 291 * DIMM1. DDR5 based entries do something similar; however, instead of being 292 * per-DIMM, there is one of these for each CS. 293 */ 294 /*CSTYLED*/ 295 #define D_UMC_COLSEL_LO_DDR4 (const smn_reg_def_t){ \ 296 .srd_unit = SMN_UNIT_UMC, \ 297 .srd_reg = 0x50, \ 298 .srd_nents = 2, \ 299 .srd_stride = 8 \ 300 } 301 /*CSTYLED*/ 302 #define D_UMC_COLSEL_HI_DDR4 (const smn_reg_def_t){ \ 303 .srd_unit = SMN_UNIT_UMC, \ 304 .srd_reg = 0x54, \ 305 .srd_nents = 2, \ 306 .srd_stride = 8 \ 307 } 308 /*CSTYLED*/ 309 #define D_UMC_COLSEL_LO_DDR5 (const smn_reg_def_t){ \ 310 .srd_unit = SMN_UNIT_UMC, \ 311 .srd_reg = 0x60, \ 312 .srd_nents = 4, \ 313 .srd_stride = 8 \ 314 } 315 /*CSTYLED*/ 316 #define D_UMC_COLSEL_HI_DDR5 (const smn_reg_def_t){ \ 317 .srd_unit = SMN_UNIT_UMC, \ 318 .srd_reg = 0x64, \ 319 .srd_nents = 4, \ 320 .srd_stride = 8 \ 321 } 322 #define UMC_COLSEL_LO_DDR4(u, i) \ 323 amdzen_umc_smn_reg(u, D_UMC_COLSEL_LO_DDR4, i) 324 #define UMC_COLSEL_HI_DDR4(u, i) \ 325 amdzen_umc_smn_reg(u, D_UMC_COLSEL_HI_DDR4, i) 326 #define UMC_COLSEL_LO_DDR5(u, i) \ 327 amdzen_umc_smn_reg(u, D_UMC_COLSEL_LO_DDR5, i) 328 #define UMC_COLSEL_HI_DDR5(u, i) \ 329 amdzen_umc_smn_reg(u, D_UMC_COLSEL_HI_DDR5, i) 330 331 #define UMC_COLSEL_REMAP_GET_COL(r, x) bitx32(r, (3 + (4 * (x))), (4 * ((x)))) 332 #define UMC_COLSEL_LO_BASE 2 333 #define UMC_COLSEL_HI_BASE 8 334 335 /* 336 * UMC::CH::RmSel -- This register contains the bits that determine how the rank 337 * is determined. Which fields of this are valid vary a lot in the different 338 * parts. The DDR4 and DDR5 versions are different enough that we use totally 339 * disjoint definitions. It's also worth noting that DDR5 doesn't have a 340 * secondary version of this as it is included in the main register. 341 * 342 * In general, APUs have some of the MSBS (most significant bit swap) related 343 * fields; however, they do not have rank multiplication bits. 344 */ 345 /*CSTYLED*/ 346 #define D_UMC_RMSEL_DDR4 (const smn_reg_def_t){ \ 347 .srd_unit = SMN_UNIT_UMC, \ 348 .srd_reg = 0x70, \ 349 .srd_nents = 2 \ 350 } 351 /*CSTYLED*/ 352 #define D_UMC_RMSEL_SEC_DDR4 (const smn_reg_def_t){ \ 353 .srd_unit = SMN_UNIT_UMC, \ 354 .srd_reg = 0x78, \ 355 .srd_nents = 2 \ 356 } 357 #define UMC_RMSEL_DDR4(u, i) amdzen_umc_smn_reg(u, D_UMC_RMSEL_DDR4, i) 358 #define UMC_RMSEL_SEC_DDR4(u, i) \ 359 amdzen_umc_smn_reg(u, D_UMC_RMSEL_SEC_DDR4, i) 360 #define UMC_RMSEL_DDR4_GET_INV_MSBO(r) bitx32(r, 19, 18) 361 #define UMC_RMSEL_DDR4_GET_INV_MSBE(r) bitx32(r, 17, 16) 362 #define UMC_RMSEL_DDR4_GET_RM2(r) bitx32(r, 11, 8) 363 #define UMC_RMSEL_DDR4_GET_RM1(r) bitx32(r, 7, 4) 364 #define UMC_RMSEL_DDR4_GET_RM0(r) bitx32(r, 3, 0) 365 #define UMC_RMSEL_BASE 12 366 367 /*CSTYLED*/ 368 #define D_UMC_RMSEL_DDR5 (const smn_reg_def_t){ \ 369 .srd_unit = SMN_UNIT_UMC, \ 370 .srd_reg = 0x80, \ 371 .srd_nents = 4 \ 372 } 373 #define UMC_RMSEL_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_RMSEL_DDR5, i) 374 #define UMC_RMSEL_DDR5_GET_INV_MSBS_SEC(r) bitx32(r, 31, 30) 375 #define UMC_RMSEL_DDR5_GET_INV_MSBS(r) bitx32(r, 29, 28) 376 #define UMC_RMSEL_DDR5_GET_SUBCHAN(r) bitx32(r, 19, 16) 377 #define UMC_RMSEL_DDR5_SUBCHAN_BASE 5 378 #define UMC_RMSEL_DDR5_GET_RM3(r) bitx32(r, 15, 12) 379 #define UMC_RMSEL_DDR5_GET_RM2(r) bitx32(r, 11, 8) 380 #define UMC_RMSEL_DDR5_GET_RM1(r) bitx32(r, 7, 4) 381 #define UMC_RMSEL_DDR5_GET_RM0(r) bitx32(r, 3, 0) 382 383 384 /* 385 * UMC::CH::DimmCfg -- This describes several properties of the DIMM that is 386 * installed, such as its overall width or type. 387 */ 388 /*CSTYLED*/ 389 #define D_UMC_DIMMCFG_DDR4 (const smn_reg_def_t){ \ 390 .srd_unit = SMN_UNIT_UMC, \ 391 .srd_reg = 0x80, \ 392 .srd_nents = 2 \ 393 } 394 /*CSTYLED*/ 395 #define D_UMC_DIMMCFG_DDR5 (const smn_reg_def_t){ \ 396 .srd_unit = SMN_UNIT_UMC, \ 397 .srd_reg = 0x90, \ 398 .srd_nents = 2 \ 399 } 400 #define UMC_DIMMCFG_DDR4(u, i) amdzen_umc_smn_reg(u, D_UMC_DIMMCFG_DDR4, i) 401 #define UMC_DIMMCFG_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_DIMMCFG_DDR5, i) 402 #define UMC_DIMMCFG_GET_PKG_RALIGN(r) bitx32(r, 10, 10) 403 #define UMC_DIMMCFG_GET_REFRESH_DIS(r) bitx32(r, 9, 9) 404 #define UMC_DIMMCFG_GET_DQ_SWAP_DIS(r) bitx32(r, 8, 8) 405 #define UMC_DIMMCFG_GET_X16(r) bitx32(r, 7, 7) 406 #define UMC_DIMMCFG_GET_X4(r) bitx32(r, 6, 6) 407 #define UMC_DIMMCFG_GET_LRDIMM(r) bitx32(r, 5, 5) 408 #define UMC_DIMMCFG_GET_RDIMM(r) bitx32(r, 4, 4) 409 #define UMC_DIMMCFG_GET_CISCS(r) bitx32(r, 3, 3) 410 #define UMC_DIMMCFG_GET_3DS(r) bitx32(r, 2, 2) 411 #define UMC_DIMMCFG_GET_OUTPUT_INV(r) bitx32(r, 1, 1) 412 #define UMC_DIMMCFG_GET_MRS_MIRROR(r) bitx32(r, 0, 0) 413 414 #define UMC_DIMMCFG_DDR4_GET_NVDIMMP(r) bitx32(r, 12, 12) 415 #define UMC_DIMMCFG_DDR4_GET_DDR4e(r) bitx32(r, 11, 11) 416 #define UMC_DIMMCFG_DDR5_GET_RALIGN(r) bitx32(r, 13, 12) 417 #define UMC_DIMMCFG_DDR5_GET_ASYM(r) bitx32(r, 11, 11) 418 419 420 /* 421 * UMC::CH::AddrHashBank -- These registers contain various instructions about 422 * how to hash an address across a bank to influence which bank is used. 423 */ 424 /*CSTYLED*/ 425 #define D_UMC_BANK_HASH_DDR4 (const smn_reg_def_t){ \ 426 .srd_unit = SMN_UNIT_UMC, \ 427 .srd_reg = 0xc8, \ 428 .srd_nents = 5 \ 429 } 430 /*CSTYLED*/ 431 #define D_UMC_BANK_HASH_DDR5 (const smn_reg_def_t){ \ 432 .srd_unit = SMN_UNIT_UMC, \ 433 .srd_reg = 0x98, \ 434 .srd_nents = 5 \ 435 } 436 #define UMC_BANK_HASH_DDR4(u, i) \ 437 amdzen_umc_smn_reg(u, D_UMC_BANK_HASH_DDR4, i) 438 #define UMC_BANK_HASH_DDR5(u, i) \ 439 amdzen_umc_smn_reg(u, D_UMC_BANK_HASH_DDR5, i) 440 #define UMC_BANK_HASH_GET_ROW(r) bitx32(r, 31, 14) 441 #define UMC_BANK_HASH_GET_COL(r) bitx32(r, 13, 1) 442 #define UMC_BANK_HASH_GET_EN(r) bitx32(r, 0, 0) 443 444 /* 445 * UMC::CH::AddrHashRM -- This hash register describes how to transform a UMC 446 * address when trying to do rank hashing. Note, instance 3 is is reserved in 447 * DDR5 modes. 448 */ 449 /*CSTYLED*/ 450 #define D_UMC_RANK_HASH_DDR4 (const smn_reg_def_t){ \ 451 .srd_unit = SMN_UNIT_UMC, \ 452 .srd_reg = 0xdc, \ 453 .srd_nents = 3 \ 454 } 455 /*CSTYLED*/ 456 #define D_UMC_RANK_HASH_DDR5 (const smn_reg_def_t){ \ 457 .srd_unit = SMN_UNIT_UMC, \ 458 .srd_reg = 0xb0, \ 459 .srd_nents = 4 \ 460 } 461 #define UMC_RANK_HASH_DDR4(u, i) \ 462 amdzen_umc_smn_reg(u, D_UMC_RANK_HASH_DDR4, i) 463 #define UMC_RANK_HASH_DDR5(u, i) \ 464 amdzen_umc_smn_reg(u, D_UMC_RANK_HASH_DDR5, i) 465 #define UMC_RANK_HASH_GET_ADDR(r) bitx32(r, 31, 1) 466 #define UMC_RANK_HASH_SHIFT 9 467 #define UMC_RANK_HASH_GET_EN(r) bitx32(r, 0, 0) 468 469 /* 470 * UMC::AddrHashRMExt -- Extended rank hash addresses. 471 */ 472 /*CSTYLED*/ 473 #define D_UMC_RANK_HASH_EXT_DDR5 (const smn_reg_def_t){ \ 474 .srd_unit = SMN_UNIT_UMC, \ 475 .srd_reg = 0xbb0, \ 476 .srd_nents = 4 \ 477 } 478 #define UMC_RANK_HASH_EXT_DDR5(u, i) \ 479 amdzen_umc_smn_reg(u, D_UMC_RANK_HASH_EXT_DDR5, i) 480 #define UMC_RANK_HASH_EXT_GET_ADDR(r) bitx32(r, 7, 0) 481 #define UMC_RANK_HASH_EXT_ADDR_SHIFT 40 482 483 /* 484 * UMC::CH::AddrHashPC, UMC::CH::AddrHashPC2 -- These registers describe a hash 485 * to use for the DDR5 sub-channel. Note, in the DDR4 case this is actually the 486 * upper two rank hash registers defined above because on the systems where this 487 * occurs for DDR4, they only have up to one rank hash. 488 */ 489 /*CSTYLED*/ 490 #define D_UMC_PC_HASH_DDR5 (const smn_reg_def_t){ \ 491 .srd_unit = SMN_UNIT_UMC, \ 492 .srd_reg = 0xc0 \ 493 } 494 /*CSTYLED*/ 495 #define D_UMC_PC_HASH2_DDR5 (const smn_reg_def_t){ \ 496 .srd_unit = SMN_UNIT_UMC, \ 497 .srd_reg = 0xc4 \ 498 } 499 #define UMC_PC_HASH_DDR4(u) UMC_RANK_HASH_DDR4(u, 1) 500 #define UMC_PC_HASH2_DDR4(u) UMC_RANK_HASH_DDR4(u, 2) 501 #define UMC_PC_HASH_DDR5(u) amdzen_umc_smn_reg(u, D_UMC_PC_HASH_DDR5, 0) 502 #define UMC_PC_HASH2_DDR5(u) amdzen_umc_smn_reg(u, D_UMC_PC_HASH2_DDR5, 0) 503 #define UMC_PC_HASH_GET_ROW(r) bitx32(r, 31, 14) 504 #define UMC_PC_HASH_GET_COL(r) bitx32(r, 13, 1) 505 #define UMC_PC_HASH_GET_EN(r) bitx32(r, 0, 0) 506 #define UMC_PC_HASH2_GET_BANK(r) bitx32(r, 4, 0) 507 508 /* 509 * UMC::CH::AddrHashCS -- Hashing: chip-select edition. Note, these can 510 * ultimately cause you to change which DIMM is being actually accessed. 511 */ 512 /*CSTYLED*/ 513 #define D_UMC_CS_HASH_DDR4 (const smn_reg_def_t){ \ 514 .srd_unit = SMN_UNIT_UMC, \ 515 .srd_reg = 0xe8, \ 516 .srd_nents = 2 \ 517 } 518 /*CSTYLED*/ 519 #define D_UMC_CS_HASH_DDR5 (const smn_reg_def_t){ \ 520 .srd_unit = SMN_UNIT_UMC, \ 521 .srd_reg = 0xc8, \ 522 .srd_nents = 2 \ 523 } 524 #define UMC_CS_HASH_DDR4(u, i) amdzen_umc_smn_reg(u, D_UMC_CS_HASH_DDR4, i) 525 #define UMC_CS_HASH_DDR5(u, i) amdzen_umc_smn_reg(u, D_UMC_CS_HASH_DDR5, i) 526 #define UMC_CS_HASH_GET_ADDR(r) bitx32(r, 31, 1) 527 #define UMC_CS_HASH_SHIFT 9 528 #define UMC_CS_HASH_GET_EN(r) bitx32(r, 0, 0) 529 530 /* 531 * UMC::AddrHashExtCS -- Extended chip-select hash addresses. 532 */ 533 /*CSTYLED*/ 534 #define D_UMC_CS_HASH_EXT_DDR5 (const smn_reg_def_t){ \ 535 .srd_unit = SMN_UNIT_UMC, \ 536 .srd_reg = 0xbc8, \ 537 .srd_nents = 2 \ 538 } 539 #define UMC_CS_HASH_EXT_DDR5(u, i) \ 540 amdzen_umc_smn_reg(u, D_UMC_CS_HASH_EXT_DDR5, i) 541 #define UMC_CS_HASH_EXT_GET_ADDR(r) bitx32(r, 7, 0) 542 #define UMC_CS_HASH_EXT_ADDR_SHIFT 40 543 544 /* 545 * UMC::CH::UmcConfig -- This register controls various features of the device. 546 * For our purposes we mostly care about seeing if ECC is enabled and a DIMM 547 * type. 548 */ 549 /*CSTYLED*/ 550 #define D_UMC_UMCCFG (const smn_reg_def_t){ \ 551 .srd_unit = SMN_UNIT_UMC, \ 552 .srd_reg = 0x100 \ 553 } 554 #define UMC_UMCCFG(u) amdzen_umc_smn_reg(u, D_UMC_UMCCFG, 0) 555 #define UMC_UMCCFG_GET_READY(r) bitx32(r, 31, 31) 556 #define UMC_UMCCFG_GET_ECC_EN(r) bitx32(r, 12, 12) 557 #define UMC_UMCCFG_GET_BURST_CTL(r) bitx32(r, 11, 10) 558 #define UMC_UMCCFG_GET_BURST_LEN(r) bitx32(r, 9, 8) 559 #define UMC_UMCCFG_GET_DDR_TYPE(r) bitx32(r, 2, 0) 560 #define UMC_UMCCFG_DDR4_T_DDR4 0 561 #define UMC_UMCCFG_DDR4_T_LPDDR4 5 562 563 #define UMC_UMCCFG_DDR5_T_DDR4 0 564 #define UMC_UMCCFG_DDR5_T_DDR5 1 565 #define UMC_UMCCFG_DDR5_T_LPDDR4 5 566 #define UMC_UMCCFG_DDR5_T_LPDDR5 6 567 568 /* 569 * UMC::CH::DataCtrl -- Various settings around whether data encryption or 570 * scrambling is enabled. Note, this register really changes a bunch from family 571 * to family. 572 */ 573 /*CSTYLED*/ 574 #define D_UMC_DATACTL (const smn_reg_def_t){ \ 575 .srd_unit = SMN_UNIT_UMC, \ 576 .srd_reg = 0x144 \ 577 } 578 #define UMC_DATACTL(u) amdzen_umc_smn_reg(u, D_UMC_DATACTL, 0) 579 #define UMC_DATACTL_GET_ENCR_EN(r) bitx32(r, 8, 8) 580 #define UMC_DATACTL_GET_SCRAM_EN(r) bitx32(r, 0, 0) 581 582 #define UMC_DATACTL_DDR4_GET_TWEAK(r) bitx32(r, 19, 16) 583 #define UMC_DATACTL_DDR4_GET_VMG2M(r) bitx32(r, 12, 12) 584 #define UMC_DATACTL_DDR4_GET_FORCE_ENCR(r) bitx32(r, 11, 11) 585 586 #define UMC_DATACTL_DDR5_GET_TWEAK(r) bitx32(r, 16, 16) 587 #define UMC_DATACTL_DDR5_GET_XTS(r) bitx32(r, 14, 14) 588 #define UMC_DATACTL_DDR5_GET_AES256(r) bitx32(r, 13, 13) 589 590 /* 591 * UMC::CH:EccCtrl -- Various settings around how ECC operates. 592 */ 593 /*CSTYLED*/ 594 #define D_UMC_ECCCTL (const smn_reg_def_t){ \ 595 .srd_unit = SMN_UNIT_UMC, \ 596 .srd_reg = 0x14c \ 597 } 598 #define UMC_ECCCTL(u) amdzen_umc_smn_reg(u, D_UMC_ECCCTL, 0) 599 #define UMC_ECCCTL_GET_RD_EN(r) bitx32(x, 10, 10) 600 #define UMC_ECCCTL_GET_X16(r) bitx32(x, 9, 9) 601 #define UMC_ECCCTL_GET_UC_FATAL(r) bitx32(x, 8, 8) 602 #define UMC_ECCCTL_GET_SYM_SIZE(r) bitx32(x, 7, 7) 603 #define UMC_ECCCTL_GET_BIT_IL(r) bitx32(x, 6, 6) 604 #define UMC_ECCCTL_GET_HIST_EN(r) bitx32(x, 5, 5) 605 #define UMC_ECCCTL_GET_SW_SYM_EN(r) bitx32(x, 4, 4) 606 #define UMC_ECCCTL_GET_WR_EN(r) bitx32(x, 0, 0) 607 608 /* 609 * Note, while this group appears generic and is the same in both DDR4/DDR5 610 * systems, this is not always present on every SoC and seems to depend on 611 * something else inside the chip. 612 */ 613 #define UMC_ECCCTL_DDR_GET_PI(r) bitx32(r, 13, 13) 614 #define UMC_ECCCTL_DDR_GET_PF_DIS(r) bitx32(r, 12, 12) 615 #define UMC_ECCCTL_DDR_GET_SDP_OVR(r) bitx32(x, 11, 11) 616 #define UMC_ECCCTL_DDR_GET_REPLAY_EN(r) bitx32(x, 1, 1) 617 618 #define UMC_ECCCTL_DDR5_GET_PIN_RED(r) bitx32(r, 14, 14) 619 620 /* 621 * UMC::CH::DramConfiguration -- Various configuration settings for the channel 622 * as a whole. The definition of this register is unfortunately a mess across 623 * lots of different families. Here are the unique variants that we know of: 624 * 625 * o Pure DDR4/LPDDR4 support: Zen 1-3, exceptions below 626 * o DDR4 UMC extended for LPDDR5: Van Gogh and Mendocino 627 * o Pure DDR5/LPDDR5 support: Zen 4+, Rembrandt 628 * 629 * We call these DDR4, HYB, and DDR5 respectively. The LPDDR bits only have 630 * additions to the existing DDR4 base registers and a different set of MEMCLK 631 * values for LPDDR5. The DDR4 and DDR5 registers are very different, so we just 632 * have entirely separate register bit definitions. 633 * 634 * But wait, there's more. The hardware has support for up to four different 635 * memory P-states, each of which is 0x100 bytes apart. Memory P-state 0 appears 636 * to be the primary Memory P-state active. 637 * 638 * Care must be taken with the memory clock in all cases. The memory clock is 639 * measured in MHz; however, DIMMs often are operating in MT/s. In particular 640 * LPDDR5 based settings have more nuance here around determining the actual 641 * MT/s. See also UMC::CH::DebugMisc. 642 */ 643 /*CSTYLED*/ 644 #define D_UMC_DRAMCFG (const smn_reg_def_t){ \ 645 .srd_unit = SMN_UNIT_UMC, \ 646 .srd_reg = 0x200, \ 647 .srd_nents = 4, \ 648 .srd_stride = 0x100, \ 649 } 650 651 #define UMC_DRAMCFG(u, i) amdzen_umc_smn_reg(u, D_UMC_DRAMCFG, i) 652 653 /* 654 * All known DDR4 based UMCs whether for APUs or targetting LPDDR4 generally 655 * have the same set of values listed here; however, we've only seen bits 16 and 656 * 17 defined on platforms with LPDDR4 support (Renoir and Cezanne) and bits 13 657 * and 14 on some Zen 3 platforms (e.g. Milan). 658 */ 659 #define UMC_DRAMCFG_LPDDR4_GET_WRPST(r) bitx32(r, 17, 17) 660 #define UMC_DRAMCFG_LPDDR4_GET_RDPST(r) bitx32(r, 16, 16) 661 #define UMC_DRAMCFG_DDR4_GET_PARDIS(r) bitx32(r, 14, 14) 662 #define UMC_DRAMCFG_DDR4_GET_CRCDIS(r) bitx32(r, 13, 13) 663 #define UMC_DRAMCFG_DDR4_GET_PRE2T(r) bitx32(r, 12, 12) 664 #define UMC_DRAMCFG_DDR4_GET_GRDNEN(r) bitx32(r, 11, 11) 665 #define UMC_DRAMCFG_DDR4_GET_CMD2T(r) bitx32(r, 10, 10) 666 #define UMC_DRAMCFG_DDR4_GET_BNKGRP(r) bitx32(r, 8, 8) 667 #define UMC_DRAMCFG_DDR4_GET_MEMCLK(r) bitx32(r, 6, 0) 668 #define UMC_DRAMCFG_DDR4_MEMCLK_667 0x14 669 #define UMC_DRAMCFG_DDR4_MEMCLK_800 0x18 670 #define UMC_DRAMCFG_DDR4_MEMCLK_933 0x1c 671 #define UMC_DRAMCFG_DDR4_MEMCLK_1067 0x20 672 #define UMC_DRAMCFG_DDR4_MEMCLK_1200 0x24 673 #define UMC_DRAMCFG_DDR4_MEMCLK_1333 0x28 674 #define UMC_DRAMCFG_DDR4_MEMCLK_1467 0x2c 675 #define UMC_DRAMCFG_DDR4_MEMCLK_1600 0x30 676 677 /* 678 * The following are core registers supported by the pure DDR5 based 679 * implementations. Registers that are only valid when operating in LPDDR5 use 680 * LPDDR5 as a prefix. 681 */ 682 #define UMC_DRAMCFG_DDR5_GET_UGTFCLK(r) bitx32(r, 31, 31) 683 #define UMC_DRAMCFG_LPDDR5_GET_RDECCEN(r) bitx32(r, 29, 29) 684 #define UMC_DRAMCFG_LPDDR5_GET_WRECCEN(r) bitx32(r, 28, 28) 685 #define UMC_DRAMCFG_LPDDR5_GET_WCKRATIO(r) bitx32(r, 27, 26) 686 #define UMC_DRAMCFG_WCLKRATIO_SAME 0 687 #define UMC_DRAMCFG_WCLKRATIO_1TO2 1 688 #define UMC_DRAMCFG_WCLKRATIO_1TO4 2 689 #define UMC_DRAMCFG_LPDDR5_GET_WCKALWAYS(r) bitx32(r, 25, 25) 690 #define UMC_DRAMCFG_LPDDR5_GET_WRPOST(r) bitx32(r, 23, 23) 691 #define UMC_DRAMCFG_LPDDR5_GET_RDPOST(r) bitx32(r, 22, 22) 692 #define UMC_DRAMCFG_DDR5_GET_CMDPARDIS(r) bitx32(r, 21, 21) 693 #define UMC_DRAMCFG_DDR5_GET_WRCRCDIS(r) bitx32(r, 20, 20) 694 #define UMC_DRAMCFG_DDR5_GET_PRE2T(r) bitx32(r, 19, 19) 695 #define UMC_DRAMCFG_DDR5_GET_GRDNEN(r) bitx32(r, 18, 18) 696 #define UMC_DRAMCFG_DDR5_GET_CMD2T(r) bitx32(r, 17, 17) 697 #define UMC_DRAMCFG_DDR5_GET_BNKGRP(r) bitx32(r, 16, 16) 698 /* 699 * The memory clock here is defined as a value in MHz. In DDR5 platforms this is 700 * always multiplied by 2 to get to the actual transfer rate due to the double 701 * data rate. In LPDDR5 this is more nuanced. In particular, one needs to check 702 * the WCKRATIO value. When it is 1:2 or 1:4 you multiply the value we have in 703 * the register and we're good to go. When the value is 0, then the only thing 704 * the data clock is the same ratio as the memory clock. It is possible that a 705 * ratio is present for the command clock though, but we cannot determine that. 706 */ 707 #define UMC_DRAMCFG_DDR5_GET_MEMCLK(r) bitx32(r, 15, 0) 708 709 /* 710 * Our Hybrid DDR4 + LPDDDR5 UMC follows the same group as above with the 711 * following additions. 712 * 713 * In LPDDR4 mode the memory clock uses the DDR4 values. In LPDDR5 mode it has 714 * its own set of values. These frequencies assume a 1:2 ratio between the WCLK 715 * and related. While the PPR discusses that these could have a 1:4 ratio, there 716 * is no setting to indicate a 1:4 ratio is supported. 717 */ 718 #define UMC_DRAMCFG_HYB_GET_LP5ECCORD(r) bitx32(r, 26, 26) 719 #define UMC_DRAMCFG_HYB_GET_LP5RDECCEN(r) bitx32(r, 25, 25) 720 #define UMC_DRAMCFG_HYB_GET_LP5WRECCEN(r) bitx32(r, 24, 24) 721 #define UMC_DRAMCFG_HYB_GET_WCLKRATIO(r) bitx32(r, 22, 21) 722 #define UMC_DRAMCFG_HYB_GET_MEMCLK(r) bitx32(r, 7, 0) 723 #define UMC_DRAMCFG_HYB_MEMCLK_333 0x5 724 #define UMC_DRAMCFG_HYB_MEMCLK_400 0x6 725 #define UMC_DRAMCFG_HYB_MEMCLK_533 0x8 726 #define UMC_DRAMCFG_HYB_MEMCLK_687 0x0a 727 #define UMC_DRAMCFG_HYB_MEMCLK_750 0x0b 728 #define UMC_DRAMCFG_HYB_MEMCLK_800 0x0c 729 #define UMC_DRAMCFG_HYB_MEMCLK_933 0x0e 730 #define UMC_DRAMCFG_HYB_MEMCLK_1066 0x10 731 #define UMC_DRAMCFG_HYB_MEMCLK_1200 0x12 732 #define UMC_DRAMCFG_HYB_MEMCLK_1375 0x14 733 #define UMC_DRAMCFG_HYB_MEMCLK_1500 0x16 734 #define UMC_DRAMCFG_HYB_MEMCLK_1600 0x18 735 736 /* 737 * UMC::Ch::UmcCap, UMC::CH::UmcCapHi -- Various capability registers and 738 * feature disables. We mostly just record these for future us for debugging 739 * purposes. They aren't used as part of memory decoding. 740 */ 741 /*CSTYLED*/ 742 #define D_UMC_UMCCAP (const smn_reg_def_t){ \ 743 .srd_unit = SMN_UNIT_UMC, \ 744 .srd_reg = 0xdf0 \ 745 } 746 /*CSTYLED*/ 747 #define D_UMC_UMCCAP_HI (const smn_reg_def_t){ \ 748 .srd_unit = SMN_UNIT_UMC, \ 749 .srd_reg = 0xdf4 \ 750 } 751 #define UMC_UMCCAP(u) amdzen_umc_smn_reg(u, D_UMC_UMCCAP, 0) 752 #define UMC_UMCCAP_GET_CHAN_DIS(r) bitx32(r, 19, 19) 753 #define UMC_UMCCAP_GET_ENC_DIS(r) bitx32(r, 18, 18) 754 #define UMC_UMCCAP_GET_ECC_DIS(r) bitx32(r, 17, 17) 755 #define UMC_UMCCAP_GET_REG_DIS(r) bitx32(r, 16, 16) 756 #define UMC_UMCCAP_HI(u) amdzen_umc_smn_reg(u, D_UMC_UMCCAP_HI, 0) 757 #define UMC_UMCACAP_HI_GET_CHIPKILL(r) bitx32(r, 31, 31) 758 #define UMC_UMCACAP_HI_GET_ECC_EN(r) bitx32(r, 30, 30) 759 760 #ifdef __cplusplus 761 } 762 #endif 763 764 #endif /* _SYS_UMC_H */ 765