1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * This file contains preset event names from the Performance Application 28 * Programming Interface v3.5 which included the following notice: 29 * 30 * Copyright (c) 2005,6 31 * Innovative Computing Labs 32 * Computer Science Department, 33 * University of Tennessee, 34 * Knoxville, TN. 35 * All Rights Reserved. 36 * 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions are met: 40 * 41 * * Redistributions of source code must retain the above copyright notice, 42 * this list of conditions and the following disclaimer. 43 * * Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * * Neither the name of the University of Tennessee nor the names of its 47 * contributors may be used to endorse or promote products derived from 48 * this software without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 51 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 54 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 60 * POSSIBILITY OF SUCH DAMAGE. 61 * 62 * 63 * This open source software license conforms to the BSD License template. 64 */ 65 66 /* 67 * Performance Counter Back-End for Pentium 4. 68 */ 69 70 #include <sys/cpuvar.h> 71 #include <sys/param.h> 72 #include <sys/cpc_impl.h> 73 #include <sys/cpc_pcbe.h> 74 #include <sys/inttypes.h> 75 #include <sys/errno.h> 76 #include <sys/systm.h> 77 #include <sys/archsystm.h> 78 #include <sys/x86_archext.h> 79 #include <sys/modctl.h> 80 #include <sys/sdt.h> 81 #include <sys/cred.h> 82 #include <sys/policy.h> 83 #include <sys/privregs.h> 84 85 static int p4_pcbe_init(void); 86 static uint_t p4_pcbe_ncounters(void); 87 static const char *p4_pcbe_impl_name(void); 88 static const char *p4_pcbe_cpuref(void); 89 static char *p4_pcbe_list_events(uint_t picnum); 90 static char *p4_pcbe_list_attrs(void); 91 static uint64_t p4_pcbe_event_coverage(char *event); 92 static uint64_t p4_pcbe_overflow_bitmap(void); 93 static int p4_pcbe_configure(uint_t picnum, char *event, uint64_t preset, 94 uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data, 95 void *token); 96 static void p4_pcbe_program(void *token); 97 static void p4_pcbe_allstop(void); 98 static void p4_pcbe_sample(void *token); 99 static void p4_pcbe_free(void *config); 100 101 extern int cpuid_get_clogid(cpu_t *); 102 103 static pcbe_ops_t p4_pcbe_ops = { 104 PCBE_VER_1, 105 CPC_CAP_OVERFLOW_INTERRUPT | CPC_CAP_OVERFLOW_PRECISE, 106 p4_pcbe_ncounters, 107 p4_pcbe_impl_name, 108 p4_pcbe_cpuref, 109 p4_pcbe_list_events, 110 p4_pcbe_list_attrs, 111 p4_pcbe_event_coverage, 112 p4_pcbe_overflow_bitmap, 113 p4_pcbe_configure, 114 p4_pcbe_program, 115 p4_pcbe_allstop, 116 p4_pcbe_sample, 117 p4_pcbe_free 118 }; 119 120 /* 121 * P4 Configuration Flags. 122 */ 123 #define P4_THIS_USR 0x1 /* HTT: Measure usr events on this logical CPU */ 124 #define P4_THIS_SYS 0x2 /* HTT: Measure os events on this logical CPU */ 125 #define P4_SIBLING_USR 0x4 /* HTT: Measure os events on other logical CPU */ 126 #define P4_SIBLING_SYS 0x8 /* HTT: Measure usr events on other logical CPU */ 127 #define P4_PMI 0x10 /* HTT: Set PMI bit for local logical CPU */ 128 129 typedef struct _p4_pcbe_config { 130 uint8_t p4_flags; 131 uint8_t p4_picno; /* From 0 to 18 */ 132 uint8_t p4_escr_ndx; /* Which ESCR to use */ 133 uint32_t p4_escr; /* Value to program in selected ESCR */ 134 uint32_t p4_cccr; /* Value to program in counter's CCCR */ 135 uint64_t p4_rawpic; 136 } p4_pcbe_config_t; 137 138 typedef uint32_t cntr_map_t; 139 140 typedef struct _p4_escr { 141 int pe_num; 142 uint32_t pe_addr; 143 uint32_t pe_map; /* bitmap of counters; bit 1 means ctr 0 */ 144 } p4_escr_t; 145 146 #define MASK40 UINT64_C(0xffffffffff) 147 148 /* 149 * CCCR field definitions. 150 * 151 * Note that the Intel Developer's Manual states that the reserved field at 152 * bit location 16 and 17 must be set to 11. (??) 153 */ 154 #define CCCR_ENABLE_SHIFT 12 155 #define CCCR_ESCR_SEL_SHIFT 13 156 #define CCCR_ACTV_THR_SHIFT 16 157 #define CCCR_COMPARE_SHIFT 18 158 #define CCCR_COMPLEMENT_SHIFT 19 159 #define CCCR_THRESHOLD_SHIFT 20 160 #define CCCR_EDGE_SHIFT 24 161 #define CCCR_OVF_PMI_SHIFT 26 162 #define CCCR_OVF_PMI_T0_SHIFT 26 163 #define CCCR_OVF_PMI_T1_SHIFT 27 164 #define CCCR_OVF_SHIFT 31 165 #define CCCR_ACTV_THR_MASK 0x3 166 #define CCCR_THRESHOLD_MAX 0xF 167 #define CCCR_ENABLE (1U << CCCR_ENABLE_SHIFT) 168 #define CCCR_COMPARE (1U << CCCR_COMPARE_SHIFT) 169 #define CCCR_COMPLEMENT (1U << CCCR_COMPLEMENT_SHIFT) 170 #define CCCR_EDGE (1U << CCCR_EDGE_SHIFT) 171 #define CCCR_OVF_PMI (1U << CCCR_OVF_PMI_SHIFT) 172 #define CCCR_OVF_PMI_T0 (1U << CCCR_OVF_PMI_T0_SHIFT) 173 #define CCCR_OVF_PMI_T1 (1U << CCCR_OVF_PMI_T1_SHIFT) 174 #define CCCR_INIT CCCR_ENABLE 175 #define CCCR_OVF (1U << CCCR_OVF_SHIFT) 176 177 #define ESCR_EVSEL_SHIFT 25 178 #define ESCR_EVMASK_SHIFT 9 179 #define ESCR_TAG_VALUE_SHIFT 5 180 #define ESCR_TAG_VALUE_MAX 0xF 181 #define ESCR_TAG_ENABLE_SHIFT 4 182 #define ESCR_USR_SHIFT 2 183 #define ESCR_OS_SHIFT 3 184 #define ESCR_USR (1U << ESCR_USR_SHIFT) 185 #define ESCR_OS (1U << ESCR_OS_SHIFT) 186 #define ESCR_TAG_ENABLE (1U << ESCR_TAG_ENABLE_SHIFT) 187 188 /* 189 * HyperThreaded ESCR fields. 190 */ 191 #define ESCR_T0_OS_SHIFT 3 192 #define ESCR_T0_USR_SHIFT 2 193 #define ESCR_T1_OS_SHIFT 1 194 #define ESCR_T1_USR_SHIFT 0 195 #define ESCR_T0_OS (1U << ESCR_T0_OS_SHIFT) 196 #define ESCR_T0_USR (1U << ESCR_T0_USR_SHIFT) 197 #define ESCR_T1_OS (1U << ESCR_T1_OS_SHIFT) 198 #define ESCR_T1_USR (1U << ESCR_T1_USR_SHIFT) 199 200 /* 201 * ESCRs are grouped by counter; each group of ESCRs is associated with a 202 * distinct group of counters. Use these macros to fill in the table below. 203 */ 204 #define BPU0_map (0x1 | 0x2) /* Counters 0 and 1 */ 205 #define BPU2_map (0x4 | 0x8) /* Counters 2 and 3 */ 206 #define MS0_map (0x10 | 0x20) /* Counters 4 and 5 */ 207 #define MS2_map (0x40 | 0x80) /* Counters 6 and 7 */ 208 #define FLAME0_map (0x100 | 0x200) /* Counters 8 and 9 */ 209 #define FLAME2_map (0x400 | 0x800) /* Counters 10 and 11 */ 210 #define IQ0_map (0x1000 | 0x2000 | 0x10000) /* Counters 12, 13, 16 */ 211 #define IQ2_map (0x4000 | 0x8000 | 0x20000) /* Counters 14, 15, 17 */ 212 213 /* 214 * Table describing the 45 Event Selection and Control Registers (ESCRs). 215 */ 216 const p4_escr_t p4_escrs[] = { 217 #define BPU0 (1) 218 { 0, 0x3B2, BPU0_map }, /* 0 */ 219 #define IS0 (1ULL << 1) 220 { 1, 0x3B4, BPU0_map }, /* 1 */ 221 #define MOB0 (1ULL << 2) 222 { 2, 0x3AA, BPU0_map }, /* 2 */ 223 #define ITLB0 (1ULL << 3) 224 { 3, 0x3B6, BPU0_map }, /* 3 */ 225 #define PMH0 (1ULL << 4) 226 { 4, 0x3AC, BPU0_map }, /* 4 */ 227 #define IX0 (1ULL << 5) 228 { 5, 0x3C8, BPU0_map }, /* 5 */ 229 #define FSB0 (1ULL << 6) 230 { 6, 0x3A2, BPU0_map }, /* 6 */ 231 #define BSU0 (1ULL << 7) 232 { 7, 0x3A0, BPU0_map }, /* 7 */ 233 #define BPU1 (1ULL << 8) 234 { 0, 0x3B3, BPU2_map }, /* 8 */ 235 #define IS1 (1ULL << 9) 236 { 1, 0x3B5, BPU2_map }, /* 9 */ 237 #define MOB1 (1ULL << 10) 238 { 2, 0x3AB, BPU2_map }, /* 10 */ 239 #define ITLB1 (1ULL << 11) 240 { 3, 0x3B7, BPU2_map }, /* 11 */ 241 #define PMH1 (1ULL << 12) 242 { 4, 0x3AD, BPU2_map }, /* 12 */ 243 #define IX1 (1ULL << 13) 244 { 5, 0x3C9, BPU2_map }, /* 13 */ 245 #define FSB1 (1ULL << 14) 246 { 6, 0x3A3, BPU2_map }, /* 14 */ 247 #define BSU1 (1ULL << 15) 248 { 7, 0x3A1, BPU2_map }, /* 15 */ 249 #define MS0 (1ULL << 16) 250 { 0, 0x3C0, MS0_map }, /* 16 */ 251 #define TC0 (1ULL << 17) 252 { 1, 0x3C4, MS0_map }, /* 17 */ 253 #define TBPU0 (1ULL << 18) 254 { 2, 0x3C2, MS0_map }, /* 18 */ 255 #define MS1 (1ULL << 19) 256 { 0, 0x3C1, MS2_map }, /* 19 */ 257 #define TC1 (1ULL << 20) 258 { 1, 0x3C5, MS2_map }, /* 20 */ 259 #define TBPU1 (1ULL << 21) 260 { 2, 0x3C3, MS2_map }, /* 21 */ 261 #define FLAME0 (1ULL << 22) 262 { 0, 0x3A6, FLAME0_map }, /* 22 */ 263 #define FIRM0 (1ULL << 23) 264 { 1, 0x3A4, FLAME0_map }, /* 23 */ 265 #define SAAT0 (1ULL << 24) 266 { 2, 0x3AE, FLAME0_map }, /* 24 */ 267 #define U2L0 (1ULL << 25) 268 { 3, 0x3B0, FLAME0_map }, /* 25 */ 269 #define DAC0 (1ULL << 26) 270 { 5, 0x3A8, FLAME0_map }, /* 26 */ 271 #define FLAME1 (1ULL << 27) 272 { 0, 0x3A7, FLAME2_map }, /* 27 */ 273 #define FIRM1 (1ULL << 28) 274 { 1, 0x3A5, FLAME2_map }, /* 28 */ 275 #define SAAT1 (1ULL << 29) 276 { 2, 0x3AF, FLAME2_map }, /* 29 */ 277 #define U2L1 (1ULL << 30) 278 { 3, 0x3B1, FLAME2_map }, /* 30 */ 279 #define DAC1 (1ULL << 31) 280 { 5, 0x3A9, FLAME2_map }, /* 31 */ 281 #define IQ0 (1ULL << 32) 282 { 0, 0x3BA, IQ0_map }, /* 32 */ 283 #define ALF0 (1ULL << 33) 284 { 1, 0x3CA, IQ0_map }, /* 33 */ 285 #define RAT0 (1ULL << 34) 286 { 2, 0x3BC, IQ0_map }, /* 34 */ 287 #define SSU0 (1ULL << 35) 288 { 3, 0x3BE, IQ0_map }, /* 35 */ 289 #define CRU0 (1ULL << 36) 290 { 4, 0x3B8, IQ0_map }, /* 36 */ 291 #define CRU2 (1ULL << 37) 292 { 5, 0x3CC, IQ0_map }, /* 37 */ 293 #define CRU4 (1ULL << 38) 294 { 6, 0x3E0, IQ0_map }, /* 38 */ 295 #define IQ1 (1ULL << 39) 296 { 0, 0x3BB, IQ2_map }, /* 39 */ 297 #define ALF1 (1ULL << 40) 298 { 1, 0x3CB, IQ2_map }, /* 40 */ 299 #define RAT1 (1ULL << 41) 300 { 2, 0x3BD, IQ2_map }, /* 41 */ 301 #define CRU1 (1ULL << 42) 302 { 4, 0x3B9, IQ2_map }, /* 42 */ 303 #define CRU3 (1ULL << 43) 304 { 5, 0x3CD, IQ2_map }, /* 43 */ 305 #define CRU5 (1ULL << 44) 306 { 6, 0x3E1, IQ2_map } /* 44 */ 307 }; 308 309 #define ESCR_MAX_INDEX 44 310 311 typedef struct _p4_ctr { 312 uint32_t pc_caddr; /* counter MSR address */ 313 uint32_t pc_ctladdr; /* counter's CCCR MSR address */ 314 uint64_t pc_map; /* bitmap of ESCRs controlling ctr */ 315 } p4_ctr_t; 316 317 const p4_ctr_t p4_ctrs[18] = { 318 { /* BPU_COUNTER0 */ 0x300, 0x360, BSU0|FSB0|MOB0|PMH0|BPU0|IS0|ITLB0|IX0}, 319 { /* BPU_COUNTER1 */ 0x301, 0x361, BSU0|FSB0|MOB0|PMH0|BPU0|IS0|ITLB0|IX0}, 320 { /* BPU_COUNTER2 */ 0x302, 0x362, BSU1|FSB1|MOB1|PMH1|BPU1|IS1|ITLB1|IX1}, 321 { /* BPU_COUNTER3 */ 0x303, 0x363, BSU1|FSB1|MOB1|PMH1|BPU1|IS1|ITLB1|IX1}, 322 { /* MS_COUNTER0 */ 0x304, 0x364, MS0|TBPU0|TC0 }, 323 { /* MS_COUNTER1 */ 0x305, 0x365, MS0|TBPU0|TC0 }, 324 { /* MS_COUNTER2 */ 0x306, 0x366, MS1|TBPU1|TC1 }, 325 { /* MS_COUNTER3 */ 0x307, 0x367, MS1|TBPU1|TC1 }, 326 { /* FLAME_COUNTER0 */ 0x308, 0x368, FIRM0|FLAME0|DAC0|SAAT0|U2L0 }, 327 { /* FLAME_COUNTER1 */ 0x309, 0x369, FIRM0|FLAME0|DAC0|SAAT0|U2L0 }, 328 { /* FLAME_COUNTER2 */ 0x30A, 0x36A, FIRM1|FLAME1|DAC1|SAAT1|U2L1 }, 329 { /* FLAME_COUNTER3 */ 0x30B, 0x36B, FIRM1|FLAME1|DAC1|SAAT1|U2L1 }, 330 { /* IQ_COUNTER0 */ 0x30C, 0x36C, CRU0|CRU2|CRU4|IQ0|RAT0|SSU0|ALF0 }, 331 { /* IQ_COUNTER1 */ 0x30D, 0x36D, CRU0|CRU2|CRU4|IQ0|RAT0|SSU0|ALF0 }, 332 { /* IQ_COUNTER2 */ 0x30E, 0x36E, CRU1|CRU3|CRU5|IQ1|RAT1|ALF1 }, 333 { /* IQ_COUNTER3 */ 0x30F, 0x36F, CRU1|CRU3|CRU5|IQ1|RAT1|ALF1 }, 334 { /* IQ_COUNTER4 */ 0x310, 0x370, CRU0|CRU2|CRU4|IQ0|RAT0|SSU0|ALF0 }, 335 { /* IQ_COUNTER5 */ 0x311, 0x371, CRU1|CRU3|CRU5|IQ1|RAT1|ALF1 } 336 }; 337 338 typedef struct _p4_event { 339 char *pe_name; /* Name of event according to docs */ 340 uint64_t pe_escr_map; /* Bitmap of ESCRs capable of event */ 341 uint32_t pe_escr_mask; /* permissible ESCR event mask */ 342 uint8_t pe_ev; /* ESCR event select value */ 343 uint16_t pe_cccr; /* CCCR select value */ 344 uint32_t pe_ctr_mask; /* Bitmap of capable counters */ 345 } p4_event_t; 346 347 typedef struct _p4_generic_event { 348 char *name; 349 char *event; 350 uint16_t emask; 351 uint32_t ctr_mask; 352 } p4_generic_event_t; 353 354 #define C(n) (1 << n) 355 #define GEN_EVT_END { NULL, NULL, 0x0, 0x0 } 356 357 p4_event_t p4_events[] = { 358 { "branch_retired", CRU2|CRU3, 0xF, 0x6, 0x5, C(12)|C(13)|C(14)|C(15)|C(16) }, 359 { "mispred_branch_retired", CRU0|CRU1, 0x1, 0x3, 0x4, 360 C(12)|C(13)|C(14)|C(15)|C(16) }, 361 { "TC_deliver_mode", TC0|TC1, 0xFF, 0x1, 0x1, C(4)|C(5)|C(6)|C(7) }, 362 { "BPU_fetch_request", BPU0|BPU1, 0x1, 0x3, 0x0, C(0)|C(1)|C(2)|C(3) }, 363 { "ITLB_reference", ITLB0|ITLB1, 0x7, 0x18, 0x3, C(0)|C(1)|C(2)|C(3) }, 364 { "memory_cancel", DAC0|DAC1, 0x6, 0x2, 0x5, C(8)|C(9)|C(10)|C(11) }, 365 { "memory_complete", SAAT0|SAAT1, 0x3, 0x8, 0x2, C(8)|C(9)|C(10)|C(11) }, 366 { "load_port_replay", SAAT0|SAAT1, 0x1, 0x4, 0x2, C(8)|C(9)|C(10)|C(11) }, 367 { "store_port_replay", SAAT0|SAAT1, 0x1, 0x5, 0x2, C(8)|C(9)|C(10)|C(11) }, 368 { "MOB_load_replay", MOB0|MOB1, 0x35, 0x3, 0x2, C(0)|C(1)|C(2)|C(3) }, 369 { "page_walk_type", PMH0|PMH1, 0x3, 0x1, 0x4, C(0)|C(1)|C(2)|C(3) }, 370 { "BSQ_cache_reference", BSU0|BSU1, 0x73F, 0xC, 0x7, C(0)|C(1)|C(2)|C(3) }, 371 { "IOQ_allocation", FSB0, 0xEFFF, 0x3, 0x6, C(0)|C(1) }, 372 { "IOQ_active_entries", FSB1, 0xEFFF, 0x1A, 0x6, C(2)|C(3) }, 373 { "FSB_data_activity", FSB0|FSB1, 0x3F, 0x17, 0x6, C(0)|C(1)|C(2)|C(3) }, 374 { "BSQ_allocation", BSU0, 0x3FEF, 0x5, 0x7, C(0)|C(1) }, 375 { "bsq_active_entries", BSU1, 0x3FEF, 0x6, 0x7, C(2)|C(3) }, 376 { "x87_assist", CRU2|CRU3, 0x1F, 0x3, 0x5, C(12)|C(13)|C(14)|C(15)|C(16)|C(17)}, 377 { "SSE_input_assist", FIRM0|FIRM1, 0x8000, 0x34, 0x1, C(8)|C(9)|C(10)|C(11) }, 378 { "packed_SP_uop", FIRM0|FIRM1, 0x8000, 0x8, 0x1, C(8)|C(9)|C(10)|C(11) }, 379 { "packed_DP_uop", FIRM0|FIRM1, 0x8000, 0xC, 0x1, C(8)|C(9)|C(10)|C(11) }, 380 { "scalar_SP_uop", FIRM0|FIRM1, 0x8000, 0xA, 0x1, C(8)|C(9)|C(10)|C(11) }, 381 { "scalar_DP_uop", FIRM0|FIRM1, 0x8000, 0xE, 0x1, C(8)|C(9)|C(10)|C(11) }, 382 { "64bit_MMX_uop", FIRM0|FIRM1, 0x8000, 0x2, 0x1, C(8)|C(9)|C(10)|C(11) }, 383 { "128bit_MMX_uop", FIRM0|FIRM1, 0x8000, 0x1A, 0x1, C(8)|C(9)|C(10)|C(11) }, 384 { "x87_FP_uop", FIRM0|FIRM1, 0x8000, 0x4, 0x1, C(8)|C(9)|C(10)|C(11) }, 385 { "x87_SIMD_moves_uop", FIRM0|FIRM1, 0x18, 0x2E, 0x1, C(8)|C(9)|C(10)|C(11) }, 386 { "machine_clear", CRU2|CRU3, 0xD, 0x2, 0x5, 387 C(12)|C(13)|C(14)|C(15)|C(16)|C(17)}, 388 { "global_power_events", FSB0|FSB1, 0x1, 0x13, 0x6, C(0)|C(1)|C(2)|C(3) }, 389 { "tc_ms_xfer", MS0|MS1, 0x1, 0x5, 0x0, C(4)|C(5)|C(6)|C(7) }, 390 { "uop_queue_writes", MS0|MS1, 0x7, 0x9, 0x0, C(4)|C(5)|C(6)|C(7) }, 391 { "front_end_event", CRU2|CRU3, 0x3, 0x8, 0x5, 392 C(12)|C(13)|C(14)|C(15)|C(16)|C(17)}, 393 { "execution_event", CRU2|CRU3, 0xFF, 0xC, 0x5, 394 C(12)|C(13)|C(14)|C(15)|C(16)|C(17)}, 395 { "replay_event", CRU2|CRU3, 0x3, 0x9, 0x5, 396 C(12)|C(13)|C(14)|C(15)|C(16)|C(17)}, 397 { "instr_retired", CRU0|CRU1, 0xF, 0x2, 0x4, 398 C(12)|C(13)|C(14)|C(15)|C(16)|C(17)}, 399 { "uops_retired", CRU0|CRU1, 0x3, 0x1, 0x4, 400 C(12)|C(13)|C(14)|C(15)|C(16)|C(17)}, 401 { "uop_type", RAT0|RAT1, 0x3, 0x2, 0x2, C(12)|C(13)|C(14)|C(15)|C(16)|C(17)}, 402 { "retired_mispred_branch_type", TBPU0|TBPU1, 0x1F, 0x5, 0x2, 403 C(4)|C(5)|C(6)|C(7)}, 404 { "retired_branch_type", TBPU0|TBPU1, 0x1F, 0x4, 0x2, C(4)|C(5)|C(6)|C(7) }, 405 { NULL, 0, 0, 0, 0 } 406 }; 407 408 static p4_generic_event_t p4_generic_events[] = { 409 { "PAPI_br_msp", "branch_retired", 0xa, C(12)|C(13)|C(14)|C(15)|C(16) }, 410 { "PAPI_br_ins", "branch_retired", 0xf, C(12)|C(13)|C(14)|C(15)|C(16) }, 411 { "PAPI_br_tkn", "branch_retired", 0xc, C(12)|C(13)|C(14)|C(15)|C(16) }, 412 { "PAPI_br_ntk", "branch_retired", 0x3, C(12)|C(13)|C(14)|C(15)|C(16) }, 413 { "PAPI_br_prc", "branch_retired", 0x5, C(12)|C(13)|C(14)|C(15)|C(16) }, 414 { "PAPI_tot_ins", "instr_retired", 0x3, C(12)|C(13)|C(14)|C(15)|C(16)|C(17) }, 415 { "PAPI_tot_cyc", "global_power_events", 0x1, C(0)|C(1)|C(2)|C(3) }, 416 { "PAPI_tlb_dm", "page_walk_type", 0x1, C(0)|C(1)|C(2)|C(3) }, 417 { "PAPI_tlb_im", "page_walk_type", 0x2, C(0)|C(1)|C(2)|C(3) }, 418 { "PAPI_tlb_tm", "page_walk_type", 0x3, C(0)|C(1)|C(2)|C(3) }, 419 { "PAPI_l1_icm", "BPU_fetch_request", 0x1, C(0)|C(1)|C(2)|C(3) }, 420 { "PAPI_l2_ldm", "BSQ_cache_reference", 0x100, C(0)|C(1)|C(2)|C(3) }, 421 { "PAPI_l2_stm", "BSQ_cache_reference", 0x400, C(0)|C(1)|C(2)|C(3) }, 422 { "PAPI_l2_tcm", "BSQ_cache_reference", 0x500, C(0)|C(1)|C(2)|C(3) }, 423 GEN_EVT_END 424 }; 425 426 /* 427 * Indicates whether the "rdpmc" instruction is available on this processor. 428 */ 429 static int p4_rdpmc_avail = 0; 430 431 static const uint64_t p4_cccrstop = 0; 432 433 static char *p4_eventlist[18]; 434 435 /* 436 * If set, this processor has HyperThreading. 437 */ 438 static int p4_htt = 0; 439 440 #define P4_FAMILY 0xF 441 442 static int 443 p4_pcbe_init(void) 444 { 445 int i; 446 size_t size; 447 p4_event_t *ev; 448 p4_generic_event_t *gevp; 449 450 /* 451 * If we're not running on a P4, refuse to load. 452 */ 453 if (cpuid_getvendor(CPU) != X86_VENDOR_Intel || 454 cpuid_getfamily(CPU) != P4_FAMILY) 455 return (-1); 456 457 /* 458 * Set up the event lists for each counter. 459 * 460 * First pass calculates the size of the event list, and the second 461 * pass copies each event name into the event list. 462 */ 463 for (i = 0; i < 18; i++) { 464 size = 0; 465 466 for (ev = p4_events; ev->pe_name != NULL; ev++) { 467 if (ev->pe_ctr_mask & C(i)) 468 size += strlen(ev->pe_name) + 1; 469 } 470 471 for (gevp = p4_generic_events; gevp->name != NULL; gevp++) { 472 if (gevp->ctr_mask & C(i)) 473 size += strlen(gevp->name) + 1; 474 } 475 476 /* 477 * We use 'size + 1' here to ensure room for the final 478 * strcat when it terminates the string. 479 */ 480 p4_eventlist[i] = (char *)kmem_alloc(size + 1, KM_SLEEP); 481 *p4_eventlist[i] = '\0'; 482 483 for (ev = p4_events; ev->pe_name != NULL; ev++) { 484 if (ev->pe_ctr_mask & C(i)) { 485 (void) strcat(p4_eventlist[i], ev->pe_name); 486 (void) strcat(p4_eventlist[i], ","); 487 } 488 } 489 490 for (gevp = p4_generic_events; gevp->name != NULL; gevp++) { 491 if (gevp->ctr_mask & C(i)) { 492 (void) strcat(p4_eventlist[i], gevp->name); 493 (void) strcat(p4_eventlist[i], ","); 494 } 495 } 496 497 /* 498 * Remove trailing ',' 499 */ 500 p4_eventlist[i][size - 1] = '\0'; 501 } 502 503 if (x86_feature & X86_MMX) 504 p4_rdpmc_avail = 1; 505 /* 506 * The X86_HTT flag may disappear soon, so we'll isolate the impact of 507 * its demise to the following if(). 508 */ 509 if (x86_feature & X86_HTT) 510 p4_htt = 1; 511 512 return (0); 513 } 514 515 static uint_t 516 p4_pcbe_ncounters(void) 517 { 518 return (18); 519 } 520 521 static const char * 522 p4_pcbe_impl_name(void) 523 { 524 if (p4_htt) 525 return ("Pentium 4 with HyperThreading"); 526 return ("Pentium 4"); 527 } 528 529 static const char * 530 p4_pcbe_cpuref(void) 531 { 532 return ("See Appendix A.1 of the \"IA-32 Intel Architecture Software " \ 533 "Developer's Manual Volume 3: System Programming Guide,\" " \ 534 "Order # 245472-012, 2003"); 535 } 536 537 static char * 538 p4_pcbe_list_events(uint_t picnum) 539 { 540 ASSERT(picnum >= 0 && picnum < 18); 541 542 return (p4_eventlist[picnum]); 543 } 544 545 #define P4_ATTRS "emask,tag,compare,complement,threshold,edge" 546 547 static char * 548 p4_pcbe_list_attrs(void) 549 { 550 if (p4_htt) 551 return (P4_ATTRS ",active_thread,count_sibling_usr," 552 "count_sibling_sys"); 553 return (P4_ATTRS); 554 } 555 556 static p4_generic_event_t * 557 find_generic_event(char *name) 558 { 559 p4_generic_event_t *gevp; 560 561 for (gevp = p4_generic_events; gevp != NULL; gevp++) 562 if (strcmp(name, gevp->name) == 0) 563 return (gevp); 564 565 return (NULL); 566 } 567 568 static p4_event_t * 569 find_event(char *name) 570 { 571 p4_event_t *evp; 572 573 for (evp = p4_events; evp->pe_name != NULL; evp++) 574 if (strcmp(name, evp->pe_name) == 0) 575 return (evp); 576 577 return (NULL); 578 } 579 580 static uint64_t 581 p4_pcbe_event_coverage(char *event) 582 { 583 p4_event_t *ev; 584 p4_generic_event_t *gevp; 585 586 if ((ev = find_event(event)) == NULL) { 587 if ((gevp = find_generic_event(event)) != NULL) 588 return (gevp->ctr_mask); 589 else 590 return (0); 591 } 592 593 return (ev->pe_ctr_mask); 594 } 595 596 static uint64_t 597 p4_pcbe_overflow_bitmap(void) 598 { 599 extern int kcpc_hw_overflow_intr_installed; 600 uint64_t ret = 0; 601 int i; 602 603 /* 604 * The CCCR's OVF bit indicates that the corresponding counter has 605 * overflowed. It must be explicitly cleared by software, so it is 606 * safe to read the CCCR values here. 607 */ 608 for (i = 0; i < 18; i++) { 609 if (rdmsr(p4_ctrs[i].pc_ctladdr) & CCCR_OVF) 610 ret |= (1 << i); 611 } 612 613 /* 614 * Pentium 4 and Xeon turn off the CPC interrupt mask bit in the LVT at 615 * every overflow. Turn it back on here. 616 */ 617 ASSERT(kcpc_hw_overflow_intr_installed); 618 (*kcpc_hw_enable_cpc_intr)(); 619 620 return (ret); 621 } 622 623 static int 624 p4_escr_inuse(p4_pcbe_config_t **cfgs, int escr_ndx) 625 { 626 int i; 627 628 for (i = 0; i < 18; i++) { 629 if (cfgs[i] == NULL) 630 continue; 631 if (cfgs[i]->p4_escr_ndx == escr_ndx) 632 return (1); 633 } 634 635 return (0); 636 } 637 638 static void 639 build_cfgs(p4_pcbe_config_t *cfgs[18], uint64_t *data[18], void *token) 640 { 641 p4_pcbe_config_t *cfg = NULL; 642 uint64_t *daddr; 643 644 bzero(cfgs, 18 * sizeof (p4_pcbe_config_t *)); 645 646 do { 647 cfg = (p4_pcbe_config_t *)kcpc_next_config(token, cfg, &daddr); 648 649 if (cfg != NULL) { 650 ASSERT(cfg->p4_picno < 18); 651 cfgs[cfg->p4_picno] = cfg; 652 if (data != NULL) { 653 ASSERT(daddr != NULL); 654 data[cfg->p4_picno] = daddr; 655 } 656 } 657 } while (cfg != NULL); 658 } 659 660 /* 661 * Programming a counter: 662 * 663 * Select event. 664 * Choose an ESCR capable of counting that event. 665 * Set up the ESCR with the desired parameters (usr, sys, tag). 666 * Set up the CCCR to point to the selected ESCR. 667 * Set the CCCR parameters (overflow, cascade, edge, etc). 668 */ 669 static int 670 p4_pcbe_configure(uint_t picnum, char *eventname, uint64_t preset, 671 uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data, 672 void *token) 673 { 674 p4_pcbe_config_t *cfgs[18]; 675 p4_pcbe_config_t *cfg; 676 p4_event_t *ev; 677 p4_generic_event_t *gevp; 678 int escr_ndx; 679 int i; 680 uint16_t emask = 0; 681 uint8_t tag; 682 int use_tag = 0; 683 int active_thread = 0x3; /* default is "any" */ 684 int compare = 0; 685 int complement = 0; 686 int threshold = 0; 687 int edge = 0; 688 int sibling_usr = 0; /* count usr on other cpu */ 689 int sibling_sys = 0; /* count sys on other cpu */ 690 int invalid_attr = 0; 691 692 /* 693 * If we've been handed an existing configuration, we need only preset 694 * the counter value. 695 */ 696 if (*data != NULL) { 697 cfg = *data; 698 cfg->p4_rawpic = preset & MASK40; 699 return (0); 700 } 701 702 if (picnum < 0 || picnum >= 18) 703 return (CPC_INVALID_PICNUM); 704 705 if ((ev = find_event(eventname)) == NULL) { 706 if ((gevp = find_generic_event(eventname)) != NULL) { 707 ev = find_event(gevp->event); 708 ASSERT(ev != NULL); 709 710 /* 711 * For generic events a HTT processor is only allowed 712 * to specify the 'active_thread', 'count_sibling_usr' 713 * and 'count_sibling_sys' attributes. 714 */ 715 if (p4_htt) 716 for (i = 0; i < nattrs; i++) 717 if (strstr(P4_ATTRS, 718 attrs[i].ka_name) != NULL) 719 invalid_attr = 1; 720 721 if ((p4_htt && invalid_attr) || 722 (!p4_htt && nattrs > 0)) 723 return (CPC_ATTRIBUTE_OUT_OF_RANGE); 724 725 emask = gevp->emask; 726 } else { 727 return (CPC_INVALID_EVENT); 728 } 729 } 730 731 build_cfgs(cfgs, NULL, token); 732 733 /* 734 * Find an ESCR capable of counting this event. 735 */ 736 for (escr_ndx = 0; escr_ndx < ESCR_MAX_INDEX; escr_ndx++) { 737 if ((ev->pe_escr_map & (1ULL << escr_ndx)) && 738 p4_escr_inuse(cfgs, escr_ndx) == 0) 739 break; 740 } 741 742 /* 743 * All ESCRs capable of counting this event are already being 744 * used. 745 */ 746 if (escr_ndx == ESCR_MAX_INDEX) 747 return (CPC_RESOURCE_UNAVAIL); 748 749 /* 750 * At this point, ev points to the desired event and escr is the index 751 * of a capable and available ESCR. 752 * 753 * Now process and verify the attributes. 754 */ 755 for (i = 0; i < nattrs; i++) { 756 if (strcmp("emask", attrs[i].ka_name) == 0) { 757 if ((attrs[i].ka_val | ev->pe_escr_mask) 758 != ev->pe_escr_mask) 759 return (CPC_ATTRIBUTE_OUT_OF_RANGE); 760 emask = attrs[i].ka_val; 761 continue; 762 } else if (strcmp("tag", attrs[i].ka_name) == 0) { 763 if (attrs[i].ka_val > ESCR_TAG_VALUE_MAX) 764 return (CPC_ATTRIBUTE_OUT_OF_RANGE); 765 tag = attrs[i].ka_val; 766 use_tag = 1; 767 continue; 768 } else if (strcmp("compare", attrs[i].ka_name) == 0) { 769 if (attrs[i].ka_val != 0) 770 compare = 1; 771 continue; 772 } else if (strcmp("complement", attrs[i].ka_name) == 0) { 773 if (attrs[i].ka_val != 0) 774 complement = 1; 775 continue; 776 } else if (strcmp("threshold", attrs[i].ka_name) == 0) { 777 if (attrs[i].ka_val > CCCR_THRESHOLD_MAX) 778 return (CPC_ATTRIBUTE_OUT_OF_RANGE); 779 threshold = attrs[i].ka_val; 780 continue; 781 } else if (strcmp("edge", attrs[i].ka_name) == 0) { 782 if (attrs[i].ka_val != 0) 783 edge = 1; 784 continue; 785 } 786 787 /* 788 * The remaining attributes are valid only on HyperThreaded P4s 789 * for processes with the "cpc_cpu" privilege. 790 */ 791 if (p4_htt == 0) 792 return (CPC_INVALID_ATTRIBUTE); 793 794 if (secpolicy_cpc_cpu(crgetcred()) != 0) 795 return (CPC_ATTR_REQUIRES_PRIVILEGE); 796 797 if (strcmp("active_thread", attrs[i].ka_name) == 0) { 798 if ((attrs[i].ka_val | CCCR_ACTV_THR_MASK) != 799 CCCR_ACTV_THR_MASK) 800 return (CPC_ATTRIBUTE_OUT_OF_RANGE); 801 active_thread = (int)attrs[i].ka_val; 802 } else if (strcmp("count_sibling_usr", attrs[i].ka_name) == 0) { 803 if (attrs[i].ka_val != 0) 804 sibling_usr = 1; 805 } else if (strcmp("count_sibling_sys", attrs[i].ka_name) == 0) { 806 if (attrs[i].ka_val != 0) 807 sibling_sys = 1; 808 } else 809 return (CPC_INVALID_ATTRIBUTE); 810 } 811 812 /* 813 * Make sure the counter can count this event 814 */ 815 if ((ev->pe_ctr_mask & C(picnum)) == 0) 816 return (CPC_PIC_NOT_CAPABLE); 817 818 /* 819 * Find an ESCR that lines up with the event _and_ the counter. 820 */ 821 for (escr_ndx = 0; escr_ndx < ESCR_MAX_INDEX; escr_ndx++) { 822 if ((ev->pe_escr_map & (1ULL << escr_ndx)) && 823 (p4_escrs[escr_ndx].pe_map & (1 << picnum)) && 824 p4_escr_inuse(cfgs, escr_ndx) == 0) 825 break; 826 } 827 if (escr_ndx == ESCR_MAX_INDEX) 828 return (CPC_RESOURCE_UNAVAIL); 829 830 cfg = (p4_pcbe_config_t *)kmem_alloc(sizeof (p4_pcbe_config_t), 831 KM_SLEEP); 832 833 cfg->p4_flags = 0; 834 cfg->p4_picno = picnum; 835 cfg->p4_escr_ndx = escr_ndx; 836 cfg->p4_escr = (ev->pe_ev << ESCR_EVSEL_SHIFT) | 837 (emask << ESCR_EVMASK_SHIFT); 838 839 if (use_tag == 1) { 840 cfg->p4_escr |= tag << ESCR_TAG_VALUE_SHIFT; 841 cfg->p4_escr |= ESCR_TAG_ENABLE; 842 } 843 844 if (p4_htt) { 845 /* 846 * This is a HyperThreaded P4. Since we don't know which 847 * logical CPU this configuration will eventually be programmed 848 * on, we can't yet decide which fields of the ESCR to select. 849 * 850 * Record the necessary information in the flags for later. 851 */ 852 if (flags & CPC_COUNT_USER) 853 cfg->p4_flags |= P4_THIS_USR; 854 if (flags & CPC_COUNT_SYSTEM) 855 cfg->p4_flags |= P4_THIS_SYS; 856 if (p4_htt && sibling_usr) 857 cfg->p4_flags |= P4_SIBLING_USR; 858 if (p4_htt && sibling_sys) 859 cfg->p4_flags |= P4_SIBLING_SYS; 860 } else { 861 /* 862 * This is not HyperThreaded, so we can determine the exact 863 * ESCR value necessary now. 864 */ 865 if (flags & CPC_COUNT_USER) 866 cfg->p4_escr |= ESCR_USR; 867 if (flags & CPC_COUNT_SYSTEM) 868 cfg->p4_escr |= ESCR_OS; 869 } 870 871 cfg->p4_rawpic = preset & MASK40; 872 873 /* 874 * Even on non-HT P4s, Intel states the active_thread field (marked as 875 * "reserved" for the non-HT chips) must be set to all 1s. 876 */ 877 cfg->p4_cccr = CCCR_INIT | (active_thread << CCCR_ACTV_THR_SHIFT); 878 if (compare) 879 cfg->p4_cccr |= CCCR_COMPARE; 880 if (complement) 881 cfg->p4_cccr |= CCCR_COMPLEMENT; 882 cfg->p4_cccr |= threshold << CCCR_THRESHOLD_SHIFT; 883 if (edge) 884 cfg->p4_cccr |= CCCR_EDGE; 885 cfg->p4_cccr |= p4_escrs[cfg->p4_escr_ndx].pe_num 886 << CCCR_ESCR_SEL_SHIFT; 887 if (flags & CPC_OVF_NOTIFY_EMT) { 888 if (p4_htt) 889 cfg->p4_flags |= P4_PMI; 890 else { 891 /* 892 * If the user has asked for notification of overflows, 893 * we automatically program the hardware to generate an 894 * interrupt on overflow. 895 * 896 * This can only be programmed now if this P4 doesn't 897 * have HyperThreading. If it does, we must wait until 898 * we know which logical CPU we'll be programming. 899 */ 900 cfg->p4_cccr |= CCCR_OVF_PMI; 901 } 902 } 903 904 *data = cfg; 905 906 return (0); 907 } 908 909 static void 910 p4_pcbe_program(void *token) 911 { 912 int i; 913 uint64_t cccr; 914 p4_pcbe_config_t *cfgs[18]; 915 916 p4_pcbe_allstop(); 917 918 build_cfgs(cfgs, NULL, token); 919 920 if (p4_rdpmc_avail) { 921 ulong_t curcr4 = getcr4(); 922 if (kcpc_allow_nonpriv(token)) 923 setcr4(curcr4 | CR4_PCE); 924 else 925 setcr4(curcr4 & ~CR4_PCE); 926 } 927 928 /* 929 * Ideally we would start all counters with a single operation, but in 930 * P4 each counter is enabled individually via its CCCR. To minimize the 931 * probe effect of enabling the counters, we do it in two passes: the 932 * first programs the counter and ESCR, and the second programs the 933 * CCCR (and thus enables the counter). 934 */ 935 if (p4_htt) { 936 int lid = cpuid_get_clogid(CPU); /* Logical ID of CPU */ 937 938 for (i = 0; i < 18; i++) { 939 uint64_t escr; 940 941 if (cfgs[i] == NULL) 942 continue; 943 escr = (uint64_t)cfgs[i]->p4_escr; 944 945 if (cfgs[i]->p4_flags & P4_THIS_USR) 946 escr |= (lid == 0) ? ESCR_T0_USR : ESCR_T1_USR; 947 if (cfgs[i]->p4_flags & P4_THIS_SYS) 948 escr |= (lid == 0) ? ESCR_T0_OS : ESCR_T1_OS; 949 if (cfgs[i]->p4_flags & P4_SIBLING_USR) 950 escr |= (lid == 0) ? ESCR_T1_USR : ESCR_T0_USR; 951 if (cfgs[i]->p4_flags & P4_SIBLING_SYS) 952 escr |= (lid == 0) ? ESCR_T1_OS : ESCR_T0_OS; 953 954 wrmsr(p4_ctrs[i].pc_caddr, cfgs[i]->p4_rawpic); 955 wrmsr(p4_escrs[cfgs[i]->p4_escr_ndx].pe_addr, escr); 956 } 957 958 for (i = 0; i < 18; i++) { 959 if (cfgs[i] == NULL) 960 continue; 961 cccr = (uint64_t)cfgs[i]->p4_cccr; 962 /* 963 * We always target the overflow interrupt at the 964 * logical CPU which is doing the counting. 965 */ 966 if (cfgs[i]->p4_flags & P4_PMI) 967 cccr |= (lid == 0) ? 968 CCCR_OVF_PMI_T0 : CCCR_OVF_PMI_T1; 969 wrmsr(p4_ctrs[i].pc_ctladdr, cccr); 970 } 971 } else { 972 for (i = 0; i < 18; i++) { 973 if (cfgs[i] == NULL) 974 continue; 975 wrmsr(p4_ctrs[i].pc_caddr, cfgs[i]->p4_rawpic); 976 wrmsr(p4_escrs[cfgs[i]->p4_escr_ndx].pe_addr, 977 (uint64_t)cfgs[i]->p4_escr); 978 } 979 980 for (i = 0; i < 18; i++) { 981 if (cfgs[i] == NULL) 982 continue; 983 wrmsr(p4_ctrs[i].pc_ctladdr, 984 (uint64_t)cfgs[i]->p4_cccr); 985 } 986 } 987 } 988 989 static void 990 p4_pcbe_allstop(void) 991 { 992 int i; 993 994 for (i = 0; i < 18; i++) 995 wrmsr(p4_ctrs[i].pc_ctladdr, 0ULL); 996 997 setcr4(getcr4() & ~CR4_PCE); 998 } 999 1000 1001 static void 1002 p4_pcbe_sample(void *token) 1003 { 1004 p4_pcbe_config_t *cfgs[18]; 1005 uint64_t *addrs[18]; 1006 uint64_t curpic[18]; 1007 int64_t diff; 1008 int i; 1009 1010 for (i = 0; i < 18; i++) 1011 curpic[i] = rdmsr(p4_ctrs[i].pc_caddr); 1012 1013 build_cfgs(cfgs, addrs, token); 1014 1015 for (i = 0; i < 18; i++) { 1016 if (cfgs[i] == NULL) 1017 continue; 1018 diff = curpic[i] - cfgs[i]->p4_rawpic; 1019 if (diff < 0) 1020 diff += (1ll << 40); 1021 *addrs[i] += diff; 1022 DTRACE_PROBE4(p4__pcbe__sample, int, i, uint64_t, *addrs[i], 1023 uint64_t, curpic[i], uint64_t, cfgs[i]->p4_rawpic); 1024 cfgs[i]->p4_rawpic = *addrs[i] & MASK40; 1025 } 1026 } 1027 1028 static void 1029 p4_pcbe_free(void *config) 1030 { 1031 kmem_free(config, sizeof (p4_pcbe_config_t)); 1032 } 1033 1034 static struct modlpcbe modlpcbe = { 1035 &mod_pcbeops, 1036 "Pentium 4 Performance Counters", 1037 &p4_pcbe_ops 1038 }; 1039 1040 static struct modlinkage modl = { 1041 MODREV_1, 1042 &modlpcbe, 1043 }; 1044 1045 int 1046 _init(void) 1047 { 1048 if (p4_pcbe_init() != 0) 1049 return (ENOTSUP); 1050 return (mod_install(&modl)); 1051 } 1052 1053 int 1054 _fini(void) 1055 { 1056 return (mod_remove(&modl)); 1057 } 1058 1059 int 1060 _info(struct modinfo *mi) 1061 { 1062 return (mod_info(&modl, mi)); 1063 } 1064