xref: /illumos-gate/usr/src/uts/intel/pcbe/opteron_pcbe.c (revision e2738c5e21a9e5d9a6525e48af4738deda3df455)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Performance Counter Back-End for AMD Opteron and AMD Athlon 64 processors.
30  */
31 
32 #include <sys/cpuvar.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/cpc_pcbe.h>
36 #include <sys/kmem.h>
37 #include <sys/sdt.h>
38 #include <sys/modctl.h>
39 #include <sys/errno.h>
40 #include <sys/debug.h>
41 #include <sys/archsystm.h>
42 #include <sys/x86_archext.h>
43 #include <sys/privregs.h>
44 
45 static int opt_pcbe_init(void);
46 static uint_t opt_pcbe_ncounters(void);
47 static const char *opt_pcbe_impl_name(void);
48 static const char *opt_pcbe_cpuref(void);
49 static char *opt_pcbe_list_events(uint_t picnum);
50 static char *opt_pcbe_list_attrs(void);
51 static uint64_t opt_pcbe_event_coverage(char *event);
52 static uint64_t opt_pcbe_overflow_bitmap(void);
53 static int opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset,
54     uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data,
55     void *token);
56 static void opt_pcbe_program(void *token);
57 static void opt_pcbe_allstop(void);
58 static void opt_pcbe_sample(void *token);
59 static void opt_pcbe_free(void *config);
60 
61 static pcbe_ops_t opt_pcbe_ops = {
62 	PCBE_VER_1,
63 	CPC_CAP_OVERFLOW_INTERRUPT,
64 	opt_pcbe_ncounters,
65 	opt_pcbe_impl_name,
66 	opt_pcbe_cpuref,
67 	opt_pcbe_list_events,
68 	opt_pcbe_list_attrs,
69 	opt_pcbe_event_coverage,
70 	opt_pcbe_overflow_bitmap,
71 	opt_pcbe_configure,
72 	opt_pcbe_program,
73 	opt_pcbe_allstop,
74 	opt_pcbe_sample,
75 	opt_pcbe_free
76 };
77 
78 /*
79  * Define offsets and masks for the fields in the Performance
80  * Event-Select (PES) registers.
81  */
82 #define	OPT_PES_CMASK_SHIFT	24
83 #define	OPT_PES_CMASK_MASK	0xFF
84 #define	OPT_PES_INV_SHIFT	23
85 #define	OPT_PES_ENABLE_SHIFT	22
86 #define	OPT_PES_INT_SHIFT	20
87 #define	OPT_PES_PC_SHIFT	19
88 #define	OPT_PES_EDGE_SHIFT	18
89 #define	OPT_PES_OS_SHIFT	17
90 #define	OPT_PES_USR_SHIFT	16
91 #define	OPT_PES_UMASK_SHIFT	8
92 #define	OPT_PES_UMASK_MASK	0xFF
93 
94 #define	OPT_PES_INV		(1 << OPT_PES_INV_SHIFT)
95 #define	OPT_PES_ENABLE		(1 << OPT_PES_ENABLE_SHIFT)
96 #define	OPT_PES_INT		(1 << OPT_PES_INT_SHIFT)
97 #define	OPT_PES_PC		(1 << OPT_PES_PC_SHIFT)
98 #define	OPT_PES_EDGE		(1 << OPT_PES_EDGE_SHIFT)
99 #define	OPT_PES_OS		(1 << OPT_PES_OS_SHIFT)
100 #define	OPT_PES_USR		(1 << OPT_PES_USR_SHIFT)
101 
102 typedef struct _opt_pcbe_config {
103 	uint8_t		opt_picno;	/* Counter number: 0, 1, 2, or 3 */
104 	uint64_t	opt_evsel;	/* Event Selection register */
105 	uint64_t	opt_rawpic;	/* Raw counter value */
106 } opt_pcbe_config_t;
107 
108 opt_pcbe_config_t nullcfgs[4] = {
109 	{ 0, 0, 0 },
110 	{ 1, 0, 0 },
111 	{ 2, 0, 0 },
112 	{ 3, 0, 0 }
113 };
114 
115 typedef struct _opt_event {
116 	char		*name;
117 	uint8_t		emask;		/* Event mask setting */
118 	uint8_t		umask_valid;	/* Mask of unreserved UNIT_MASK bits */
119 } opt_event_t;
120 
121 /*
122  * Base MSR addresses for the PerfEvtSel registers and the counters themselves.
123  * Add counter number to base address to get corresponding MSR address.
124  */
125 #define	PES_BASE_ADDR	0xC0010000
126 #define	PIC_BASE_ADDR	0xC0010004
127 
128 #define	MASK48		0xFFFFFFFFFFFF
129 
130 #define	EV_END {NULL, 0, 0}
131 
132 static opt_event_t opt_events[] = {
133 	{ "FP_dispatched_fpu_ops",				0x0, 0x1F },
134 	{ "FP_cycles_no_fpu_ops_retired",			0x1, 0x0 },
135 	{ "FP_dispatched_fpu_ops_ff",				0x2, 0x0 },
136 	{ "LS_seg_reg_load",					0x20, 0x7F },
137 	{ "LS_uarch_resync_self_modify",			0x21, 0x0 },
138 	{ "LS_uarch_resync_snoop",				0x22, 0x0 },
139 	{ "LS_buffer_2_full",					0x23, 0x0 },
140 	{ "LS_locked_operation",				0x24, 0x7 },
141 	{ "LS_uarch_late_cancel_op",				0x25, 0x0 },
142 	{ "LS_retired_cflush",					0x26, 0x0 },
143 	{ "LS_retired_cpuid",					0x27, 0x0 },
144 	{ "DC_access",						0x40, 0x0 },
145 	{ "DC_miss",						0x41, 0x0 },
146 	{ "DC_refill_from_L2",					0x42, 0x1F },
147 	{ "DC_refill_from_system",				0x43, 0x1F },
148 	{ "DC_copyback",					0x44, 0x1F },
149 	{ "DC_dtlb_L1_miss_L2_hit",				0x45, 0x0 },
150 	{ "DC_dtlb_L1_miss_L2_miss",				0x46, 0x0 },
151 	{ "DC_misaligned_data_ref",				0x47, 0x0 },
152 	{ "DC_uarch_late_cancel_access",			0x48, 0x0 },
153 	{ "DC_uarch_early_cancel_access",			0x49, 0x0 },
154 	{ "DC_1bit_ecc_error_found",				0x4A, 0x3 },
155 	{ "DC_dispatched_prefetch_instr",			0x4B, 0x7 },
156 	{ "DC_dcache_accesses_by_locks",			0x4C, 0x3 },
157 	{ "BU_memory_requests",					0x65, 0x83},
158 	{ "BU_data_prefetch",					0x67, 0x3 },
159 	{ "BU_system_read_responses",				0x6C, 0x7 },
160 	{ "BU_quadwords_written_to_system",			0x6D, 0x1 },
161 	{ "BU_cpu_clk_unhalted",				0x76, 0x0 },
162 	{ "BU_internal_L2_req",					0x7D, 0x1F },
163 	{ "BU_fill_req_missed_L2",				0x7E, 0x7 },
164 	{ "BU_fill_into_L2",					0x7F, 0x3 },
165 	{ "IC_fetch",						0x80, 0x0 },
166 	{ "IC_miss",						0x81, 0x0 },
167 	{ "IC_refill_from_L2",					0x82, 0x0 },
168 	{ "IC_refill_from_system",				0x83, 0x0 },
169 	{ "IC_itlb_L1_miss_L2_hit",				0x84, 0x0 },
170 	{ "IC_itlb_L1_miss_L2_miss",				0x85, 0x0 },
171 	{ "IC_uarch_resync_snoop",				0x86, 0x0 },
172 	{ "IC_instr_fetch_stall",				0x87, 0x0 },
173 	{ "IC_return_stack_hit",				0x88, 0x0 },
174 	{ "IC_return_stack_overflow",				0x89, 0x0 },
175 	{ "FR_retired_x86_instr_w_excp_intr",			0xC0, 0x0 },
176 	{ "FR_retired_uops",					0xC1, 0x0 },
177 	{ "FR_retired_branches_w_excp_intr",			0xC2, 0x0 },
178 	{ "FR_retired_branches_mispred",			0xC3, 0x0 },
179 	{ "FR_retired_taken_branches",				0xC4, 0x0 },
180 	{ "FR_retired_taken_branches_mispred",			0xC5, 0x0 },
181 	{ "FR_retired_far_ctl_transfer",			0xC6, 0x0 },
182 	{ "FR_retired_resyncs",					0xC7, 0x0 },
183 	{ "FR_retired_near_rets",				0xC8, 0x0 },
184 	{ "FR_retired_near_rets_mispred",			0xC9, 0x0 },
185 	{ "FR_retired_taken_branches_mispred_addr_miscomp",	0xCA, 0x0 },
186 	{ "FR_retired_fpu_instr",				0xCB, 0xF },
187 	{ "FR_retired_fastpath_double_op_instr",		0xCC, 0x7 },
188 	{ "FR_intr_masked_cycles",				0xCD, 0x0 },
189 	{ "FR_intr_masked_while_pending_cycles",		0xCE, 0x0 },
190 	{ "FR_taken_hardware_intrs",				0xCF, 0x0 },
191 	{ "FR_nothing_to_dispatch",				0xD0, 0x0 },
192 	{ "FR_dispatch_stalls",					0xD1, 0x0 },
193 	{ "FR_dispatch_stall_branch_abort_to_retire",		0xD2, 0x0 },
194 	{ "FR_dispatch_stall_serialization",			0xD3, 0x0 },
195 	{ "FR_dispatch_stall_segment_load",			0xD4, 0x0 },
196 	{ "FR_dispatch_stall_reorder_buffer_full",		0xD5, 0x0 },
197 	{ "FR_dispatch_stall_resv_stations_full",		0xD6, 0x0 },
198 	{ "FR_dispatch_stall_fpu_full",				0xD7, 0x0 },
199 	{ "FR_dispatch_stall_ls_full",				0xD8, 0x0 },
200 	{ "FR_dispatch_stall_waiting_all_quiet",		0xD9, 0x0 },
201 	{ "FR_dispatch_stall_far_ctl_trsfr_resync_branch_pend",	0xDA, 0x0 },
202 	{ "FR_fpu_exception",					0xDB, 0xF },
203 	{ "FR_num_brkpts_dr0",					0xDC, 0x0 },
204 	{ "FR_num_brkpts_dr1",					0xDD, 0x0 },
205 	{ "FR_num_brkpts_dr2",					0xDE, 0x0 },
206 	{ "FR_num_brkpts_dr3",					0xDF, 0x0 },
207 	{ "NB_mem_ctrlr_page_access",				0xE0, 0x7 },
208 	{ "NB_mem_ctrlr_page_table_overflow",			0xE1, 0x0 },
209 	{ "NB_mem_ctrlr_dram_cmd_slots_missed",			0xE2, 0x0 },
210 	{ "NB_mem_ctrlr_turnaround",				0xE3, 0x7 },
211 	{ "NB_mem_ctrlr_bypass_counter_saturation",		0xE4, 0xF },
212 	{ "NB_sized_blocks_Rev_D",				0xE5, 0x3C},
213 	{ "NB_ECC_errors",					0xE8, 0x80},
214 	{ "NB_cpu_io_to_mem_io_Rev_E",				0xE9, 0xFF},
215 	{ "NB_cache_block_commands_Rev_E",			0xEA, 0x3D},
216 	{ "NB_sized_commands",					0xEB, 0x7F },
217 	{ "NB_probe_result",					0xEC, 0x7F},
218 	{ "NB_gart_events",					0xEE, 0x7 },
219 	{ "NB_ht_bus0_bandwidth",				0xF6, 0xF },
220 	{ "NB_ht_bus1_bandwidth",				0xF7, 0xF },
221 	{ "NB_ht_bus2_bandwidth",				0xF8, 0xF },
222 	EV_END
223 };
224 
225 static char	*evlist;
226 static size_t	evlist_sz;
227 
228 #define	BITS(v, u, l)   \
229 	(((v) >> (l)) & ((1 << (1 + (u) - (l))) - 1))
230 
231 #define	OPTERON_FAMILY	15
232 
233 static int
234 opt_pcbe_init(void)
235 {
236 	opt_event_t		*evp;
237 
238 	/*
239 	 * Make sure this really _is_ an Opteron or Athlon 64 system. The kernel
240 	 * loads this module based on its name in the module directory, but it
241 	 * could have been renamed.
242 	 */
243 	if (cpuid_getvendor(CPU) != X86_VENDOR_AMD ||
244 	    cpuid_getfamily(CPU) != OPTERON_FAMILY)
245 		return (-1);
246 
247 	/*
248 	 * Construct event list.
249 	 *
250 	 * First pass:  Calculate size needed. We'll need an additional byte
251 	 *		for the NULL pointer during the last strcat.
252 	 *
253 	 * Second pass: Copy strings.
254 	 */
255 	for (evp = opt_events; evp->name != NULL; evp++)
256 		evlist_sz += strlen(evp->name) + 1;
257 
258 	evlist = kmem_alloc(evlist_sz + 1, KM_SLEEP);
259 	evlist[0] = '\0';
260 
261 	for (evp = opt_events; evp->name != NULL; evp++) {
262 		(void) strcat(evlist, evp->name);
263 		(void) strcat(evlist, ",");
264 	}
265 	/*
266 	 * Remove trailing comma.
267 	 */
268 	evlist[evlist_sz - 1] = '\0';
269 
270 	return (0);
271 }
272 
273 static uint_t
274 opt_pcbe_ncounters(void)
275 {
276 	return (4);
277 }
278 
279 static const char *
280 opt_pcbe_impl_name(void)
281 {
282 	return ("AMD Opteron & Athlon64");
283 }
284 
285 static const char *
286 opt_pcbe_cpuref(void)
287 {
288 	return ("See Chapter 10 of the \"BIOS and Kernel Developer's Guide "
289 		"for the AMD Athlon 64 and AMD Opteron Processors,\" "
290 		"AMD publication #26094");
291 }
292 
293 /*ARGSUSED*/
294 static char *
295 opt_pcbe_list_events(uint_t picnum)
296 {
297 	return (evlist);
298 }
299 
300 static char *
301 opt_pcbe_list_attrs(void)
302 {
303 	return ("edge,pc,inv,cmask,umask");
304 }
305 
306 /*ARGSUSED*/
307 static uint64_t
308 opt_pcbe_event_coverage(char *event)
309 {
310 	/*
311 	 * Fortunately, all counters can count all events.
312 	 */
313 	return (0xF);
314 }
315 
316 static uint64_t
317 opt_pcbe_overflow_bitmap(void)
318 {
319 	/*
320 	 * Unfortunately, this chip cannot detect which counter overflowed, so
321 	 * we must act as if they all did.
322 	 */
323 	return (0xF);
324 }
325 
326 static opt_event_t *
327 find_event(char *name)
328 {
329 	opt_event_t	*evp;
330 
331 	for (evp = opt_events; evp->name != NULL; evp++)
332 		if (strcmp(name, evp->name) == 0)
333 			return (evp);
334 
335 	return (NULL);
336 }
337 
338 /*ARGSUSED*/
339 static int
340 opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset, uint32_t flags,
341     uint_t nattrs, kcpc_attr_t *attrs, void **data, void *token)
342 {
343 	opt_pcbe_config_t	*cfg;
344 	opt_event_t		*evp;
345 	int			i;
346 	uint32_t		evsel = 0;
347 
348 	/*
349 	 * If we've been handed an existing configuration, we need only preset
350 	 * the counter value.
351 	 */
352 	if (*data != NULL) {
353 		cfg = *data;
354 		cfg->opt_rawpic = preset & MASK48;
355 		return (0);
356 	}
357 
358 	if (picnum >= 4)
359 		return (CPC_INVALID_PICNUM);
360 
361 	if ((evp = find_event(event)) == NULL)
362 		return (CPC_INVALID_EVENT);
363 
364 	evsel |= evp->emask;
365 
366 	if (flags & CPC_COUNT_USER)
367 		evsel |= OPT_PES_USR;
368 	if (flags & CPC_COUNT_SYSTEM)
369 		evsel |= OPT_PES_OS;
370 	if (flags & CPC_OVF_NOTIFY_EMT)
371 		evsel |= OPT_PES_INT;
372 
373 	for (i = 0; i < nattrs; i++) {
374 		if (strcmp(attrs[i].ka_name, "edge") == 0) {
375 			if (attrs[i].ka_val != 0)
376 				evsel |= OPT_PES_EDGE;
377 		} else if (strcmp(attrs[i].ka_name, "pc") == 0) {
378 			if (attrs[i].ka_val != 0)
379 				evsel |= OPT_PES_PC;
380 		} else if (strcmp(attrs[i].ka_name, "inv") == 0) {
381 			if (attrs[i].ka_val != 0)
382 				evsel |= OPT_PES_INV;
383 		} else if (strcmp(attrs[i].ka_name, "cmask") == 0) {
384 			if ((attrs[i].ka_val | OPT_PES_CMASK_MASK) !=
385 			    OPT_PES_CMASK_MASK)
386 				return (CPC_ATTRIBUTE_OUT_OF_RANGE);
387 			evsel |= attrs[i].ka_val << OPT_PES_CMASK_SHIFT;
388 		} else if (strcmp(attrs[i].ka_name, "umask") == 0) {
389 			if ((attrs[i].ka_val | evp->umask_valid) !=
390 			    evp->umask_valid)
391 				return (CPC_ATTRIBUTE_OUT_OF_RANGE);
392 			evsel |= attrs[i].ka_val << OPT_PES_UMASK_SHIFT;
393 		} else
394 			return (CPC_INVALID_ATTRIBUTE);
395 	}
396 
397 	cfg = kmem_alloc(sizeof (*cfg), KM_SLEEP);
398 
399 	cfg->opt_picno = picnum;
400 	cfg->opt_evsel = evsel;
401 	cfg->opt_rawpic = preset & MASK48;
402 
403 	*data = cfg;
404 	return (0);
405 }
406 
407 static void
408 opt_pcbe_program(void *token)
409 {
410 	opt_pcbe_config_t	*cfgs[4] = { &nullcfgs[0], &nullcfgs[1],
411 						&nullcfgs[2], &nullcfgs[3] };
412 	opt_pcbe_config_t	*pcfg = NULL;
413 	int			i;
414 	uint32_t		curcr4 = getcr4();
415 
416 	/*
417 	 * Allow nonprivileged code to read the performance counters if desired.
418 	 */
419 	if (kcpc_allow_nonpriv(token))
420 		setcr4(curcr4 | CR4_PCE);
421 	else
422 		setcr4(curcr4 & ~CR4_PCE);
423 
424 	/*
425 	 * Query kernel for all configs which will be co-programmed.
426 	 */
427 	do {
428 		pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, NULL);
429 
430 		if (pcfg != NULL) {
431 			ASSERT(pcfg->opt_picno < 4);
432 			cfgs[pcfg->opt_picno] = pcfg;
433 		}
434 	} while (pcfg != NULL);
435 
436 	/*
437 	 * Program in two loops. The first configures and presets the counter,
438 	 * and the second loop enables the counters. This ensures that the
439 	 * counters are all enabled as closely together in time as possible.
440 	 */
441 
442 	for (i = 0; i < 4; i++) {
443 		wrmsr(PES_BASE_ADDR + i, cfgs[i]->opt_evsel);
444 		wrmsr(PIC_BASE_ADDR + i, cfgs[i]->opt_rawpic);
445 	}
446 
447 	for (i = 0; i < 4; i++) {
448 		wrmsr(PES_BASE_ADDR + i, cfgs[i]->opt_evsel |
449 		    (uint64_t)(uintptr_t)OPT_PES_ENABLE);
450 	}
451 }
452 
453 static void
454 opt_pcbe_allstop(void)
455 {
456 	int		i;
457 
458 	for (i = 0; i < 4; i++)
459 		wrmsr(PES_BASE_ADDR + i, 0ULL);
460 
461 	/*
462 	 * Disable non-privileged access to the counter registers.
463 	 */
464 	setcr4((uint32_t)getcr4() & ~CR4_PCE);
465 }
466 
467 static void
468 opt_pcbe_sample(void *token)
469 {
470 	opt_pcbe_config_t	*cfgs[4] = { NULL, NULL, NULL, NULL };
471 	opt_pcbe_config_t	*pcfg = NULL;
472 	int			i;
473 	uint64_t		curpic[4];
474 	uint64_t		*addrs[4];
475 	uint64_t		*tmp;
476 	int64_t			diff;
477 
478 	for (i = 0; i < 4; i++)
479 		curpic[i] = rdmsr(PIC_BASE_ADDR + i);
480 
481 	/*
482 	 * Query kernel for all configs which are co-programmed.
483 	 */
484 	do {
485 		pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, &tmp);
486 
487 		if (pcfg != NULL) {
488 			ASSERT(pcfg->opt_picno < 4);
489 			cfgs[pcfg->opt_picno] = pcfg;
490 			addrs[pcfg->opt_picno] = tmp;
491 		}
492 	} while (pcfg != NULL);
493 
494 	for (i = 0; i < 4; i++) {
495 		if (cfgs[i] == NULL)
496 			continue;
497 
498 		diff = (curpic[i] - cfgs[i]->opt_rawpic) & MASK48;
499 		*addrs[i] += diff;
500 		DTRACE_PROBE4(opt__pcbe__sample, int, i, uint64_t, *addrs[i],
501 		    uint64_t, curpic[i], uint64_t, cfgs[i]->opt_rawpic);
502 		cfgs[i]->opt_rawpic = *addrs[i] & MASK48;
503 	}
504 }
505 
506 static void
507 opt_pcbe_free(void *config)
508 {
509 	kmem_free(config, sizeof (opt_pcbe_config_t));
510 }
511 
512 
513 static struct modlpcbe modlpcbe = {
514 	&mod_pcbeops,
515 	"AMD Performance Counters v%I%",
516 	&opt_pcbe_ops
517 };
518 
519 static struct modlinkage modl = {
520 	MODREV_1,
521 	&modlpcbe,
522 };
523 
524 int
525 _init(void)
526 {
527 	int ret;
528 
529 	if (opt_pcbe_init() != 0)
530 		return (ENOTSUP);
531 
532 	if ((ret = mod_install(&modl)) != 0)
533 		kmem_free(evlist, evlist_sz + 1);
534 
535 	return (ret);
536 }
537 
538 int
539 _fini(void)
540 {
541 	int ret;
542 
543 	if ((ret = mod_remove(&modl)) == 0)
544 		kmem_free(evlist, evlist_sz + 1);
545 	return (ret);
546 }
547 
548 int
549 _info(struct modinfo *mi)
550 {
551 	return (mod_info(&modl, mi));
552 }
553