1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * This file contains preset event names from the Performance Application 28 * Programming Interface v3.5 which included the following notice: 29 * 30 * Copyright (c) 2005,6 31 * Innovative Computing Labs 32 * Computer Science Department, 33 * University of Tennessee, 34 * Knoxville, TN. 35 * All Rights Reserved. 36 * 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions are met: 40 * 41 * * Redistributions of source code must retain the above copyright notice, 42 * this list of conditions and the following disclaimer. 43 * * Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * * Neither the name of the University of Tennessee nor the names of its 47 * contributors may be used to endorse or promote products derived from 48 * this software without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 51 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 54 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 60 * POSSIBILITY OF SUCH DAMAGE. 61 * 62 * 63 * This open source software license conforms to the BSD License template. 64 */ 65 66 /* 67 * Portions Copyright 2009 Advanced Micro Devices, Inc. 68 * Copyright 2019 Joyent, Inc. 69 * Copyright 2023 Oxide Computer Company 70 */ 71 72 /* 73 * Performance Counter Back-End for AMD Opteron and AMD Athlon 64 processors. 74 */ 75 76 #include <sys/cpuvar.h> 77 #include <sys/param.h> 78 #include <sys/systm.h> 79 #include <sys/cpc_pcbe.h> 80 #include <sys/kmem.h> 81 #include <sys/sdt.h> 82 #include <sys/modctl.h> 83 #include <sys/errno.h> 84 #include <sys/debug.h> 85 #include <sys/archsystm.h> 86 #include <sys/x86_archext.h> 87 #include <sys/privregs.h> 88 #include <sys/ddi.h> 89 #include <sys/sunddi.h> 90 91 #include "opteron_pcbe_table.h" 92 #include <opteron_pcbe_cpcgen.h> 93 94 static int opt_pcbe_init(void); 95 static uint_t opt_pcbe_ncounters(void); 96 static const char *opt_pcbe_impl_name(void); 97 static const char *opt_pcbe_cpuref(void); 98 static char *opt_pcbe_list_events(uint_t picnum); 99 static char *opt_pcbe_list_attrs(void); 100 static uint64_t opt_pcbe_event_coverage(char *event); 101 static uint64_t opt_pcbe_overflow_bitmap(void); 102 static int opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset, 103 uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data, 104 void *token); 105 static void opt_pcbe_program(void *token); 106 static void opt_pcbe_allstop(void); 107 static void opt_pcbe_sample(void *token); 108 static void opt_pcbe_free(void *config); 109 110 static pcbe_ops_t opt_pcbe_ops = { 111 PCBE_VER_1, 112 CPC_CAP_OVERFLOW_INTERRUPT, 113 opt_pcbe_ncounters, 114 opt_pcbe_impl_name, 115 opt_pcbe_cpuref, 116 opt_pcbe_list_events, 117 opt_pcbe_list_attrs, 118 opt_pcbe_event_coverage, 119 opt_pcbe_overflow_bitmap, 120 opt_pcbe_configure, 121 opt_pcbe_program, 122 opt_pcbe_allstop, 123 opt_pcbe_sample, 124 opt_pcbe_free 125 }; 126 127 /* 128 * Base MSR addresses for the PerfEvtSel registers and the counters themselves. 129 * Add counter number to base address to get corresponding MSR address. 130 */ 131 #define PES_BASE_ADDR 0xC0010000 132 #define PIC_BASE_ADDR 0xC0010004 133 134 /* 135 * Base MSR addresses for the PerfEvtSel registers and counters. The counter and 136 * event select registers are interleaved, so one needs to multiply the counter 137 * number by two to determine what they should be set to. 138 */ 139 #define PES_EXT_BASE_ADDR 0xC0010200 140 #define PIC_EXT_BASE_ADDR 0xC0010201 141 142 /* 143 * The number of counters present depends on which CPU features are present. 144 */ 145 #define OPT_PCBE_DEF_NCOUNTERS 4 146 #define OPT_PCBE_EXT_NCOUNTERS 6 147 148 /* 149 * Define offsets and masks for the fields in the Performance 150 * Event-Select (PES) registers. 151 */ 152 #define OPT_PES_HOST_SHIFT 41 153 #define OPT_PES_GUEST_SHIFT 40 154 #define OPT_PES_EVSELHI_SHIFT 32 155 #define OPT_PES_CMASK_SHIFT 24 156 #define OPT_PES_CMASK_MASK 0xFF 157 #define OPT_PES_INV_SHIFT 23 158 #define OPT_PES_ENABLE_SHIFT 22 159 #define OPT_PES_INT_SHIFT 20 160 #define OPT_PES_PC_SHIFT 19 161 #define OPT_PES_EDGE_SHIFT 18 162 #define OPT_PES_OS_SHIFT 17 163 #define OPT_PES_USR_SHIFT 16 164 #define OPT_PES_UMASK_SHIFT 8 165 #define OPT_PES_UMASK_MASK 0xFF 166 167 #define OPT_PES_INV (1ULL << OPT_PES_INV_SHIFT) 168 #define OPT_PES_ENABLE (1ULL << OPT_PES_ENABLE_SHIFT) 169 #define OPT_PES_INT (1ULL << OPT_PES_INT_SHIFT) 170 #define OPT_PES_PC (1ULL << OPT_PES_PC_SHIFT) 171 #define OPT_PES_EDGE (1ULL << OPT_PES_EDGE_SHIFT) 172 #define OPT_PES_OS (1ULL << OPT_PES_OS_SHIFT) 173 #define OPT_PES_USR (1ULL << OPT_PES_USR_SHIFT) 174 #define OPT_PES_HOST (1ULL << OPT_PES_HOST_SHIFT) 175 #define OPT_PES_GUEST (1ULL << OPT_PES_GUEST_SHIFT) 176 177 typedef struct _opt_pcbe_config { 178 uint8_t opt_picno; /* Counter number: 0, 1, 2, or 3 */ 179 uint64_t opt_evsel; /* Event Selection register */ 180 uint64_t opt_rawpic; /* Raw counter value */ 181 } opt_pcbe_config_t; 182 183 opt_pcbe_config_t nullcfgs[OPT_PCBE_EXT_NCOUNTERS] = { 184 { 0, 0, 0 }, 185 { 1, 0, 0 }, 186 { 2, 0, 0 }, 187 { 3, 0, 0 }, 188 { 4, 0, 0 }, 189 { 5, 0, 0 }, 190 }; 191 192 typedef uint64_t (*opt_pcbe_addr_f)(uint_t); 193 194 typedef struct opt_pcbe_data { 195 uint_t opd_ncounters; 196 uint_t opd_cmask; 197 opt_pcbe_addr_f opd_pesf; 198 opt_pcbe_addr_f opd_picf; 199 } opt_pcbe_data_t; 200 201 opt_pcbe_data_t opd; 202 203 #define MASK48 0xFFFFFFFFFFFF 204 205 #define EV_END {NULL, 0} 206 #define GEN_EV_END {NULL, NULL, 0 } 207 208 /* 209 * The following Macros are used to define tables of events that are used by 210 * various families and some generic classes of events. 211 * 212 * When programming a performance counter there are two different values that we 213 * need to set: 214 * 215 * o Event - Determines the general class of event that is being used. 216 * o Unit - A further breakdown that gives more specific value. 217 * 218 * Prior to the introduction of family 17h support, all family specific events 219 * were programmed based on their event. The generic events, which tried to 220 * provide PAPI mappings to events specified an additional unit mask. 221 * 222 * Starting with Family 17h, CPU performance counters default to using both the 223 * unit mask and the event select. Generic events are always aliases to a 224 * specific event/unit pair, hence why the units for them are always zero. In 225 * addition, the naming of events in family 17h has been changed to reflect 226 * AMD's guide. While this is a departure from what people are used to, it is 227 * believed that matching the more detailed literature that folks are told to 228 * reference is more valuable. 229 */ 230 231 #define AMD_cmn_events \ 232 { "FP_dispatched_fpu_ops", 0x0 }, \ 233 { "FP_cycles_no_fpu_ops_retired", 0x1 }, \ 234 { "FP_dispatched_fpu_ops_ff", 0x2 }, \ 235 { "LS_seg_reg_load", 0x20 }, \ 236 { "LS_uarch_resync_self_modify", 0x21 }, \ 237 { "LS_uarch_resync_snoop", 0x22 }, \ 238 { "LS_buffer_2_full", 0x23 }, \ 239 { "LS_locked_operation", 0x24 }, \ 240 { "LS_retired_cflush", 0x26 }, \ 241 { "LS_retired_cpuid", 0x27 }, \ 242 { "DC_access", 0x40 }, \ 243 { "DC_miss", 0x41 }, \ 244 { "DC_refill_from_L2", 0x42 }, \ 245 { "DC_refill_from_system", 0x43 }, \ 246 { "DC_copyback", 0x44 }, \ 247 { "DC_dtlb_L1_miss_L2_hit", 0x45 }, \ 248 { "DC_dtlb_L1_miss_L2_miss", 0x46 }, \ 249 { "DC_misaligned_data_ref", 0x47 }, \ 250 { "DC_uarch_late_cancel_access", 0x48 }, \ 251 { "DC_uarch_early_cancel_access", 0x49 }, \ 252 { "DC_1bit_ecc_error_found", 0x4A }, \ 253 { "DC_dispatched_prefetch_instr", 0x4B }, \ 254 { "DC_dcache_accesses_by_locks", 0x4C }, \ 255 { "BU_memory_requests", 0x65 }, \ 256 { "BU_data_prefetch", 0x67 }, \ 257 { "BU_system_read_responses", 0x6C }, \ 258 { "BU_cpu_clk_unhalted", 0x76 }, \ 259 { "BU_internal_L2_req", 0x7D }, \ 260 { "BU_fill_req_missed_L2", 0x7E }, \ 261 { "BU_fill_into_L2", 0x7F }, \ 262 { "IC_fetch", 0x80 }, \ 263 { "IC_miss", 0x81 }, \ 264 { "IC_refill_from_L2", 0x82 }, \ 265 { "IC_refill_from_system", 0x83 }, \ 266 { "IC_itlb_L1_miss_L2_hit", 0x84 }, \ 267 { "IC_itlb_L1_miss_L2_miss", 0x85 }, \ 268 { "IC_uarch_resync_snoop", 0x86 }, \ 269 { "IC_instr_fetch_stall", 0x87 }, \ 270 { "IC_return_stack_hit", 0x88 }, \ 271 { "IC_return_stack_overflow", 0x89 }, \ 272 { "FR_retired_x86_instr_w_excp_intr", 0xC0 }, \ 273 { "FR_retired_uops", 0xC1 }, \ 274 { "FR_retired_branches_w_excp_intr", 0xC2 }, \ 275 { "FR_retired_branches_mispred", 0xC3 }, \ 276 { "FR_retired_taken_branches", 0xC4 }, \ 277 { "FR_retired_taken_branches_mispred", 0xC5 }, \ 278 { "FR_retired_far_ctl_transfer", 0xC6 }, \ 279 { "FR_retired_resyncs", 0xC7 }, \ 280 { "FR_retired_near_rets", 0xC8 }, \ 281 { "FR_retired_near_rets_mispred", 0xC9 }, \ 282 { "FR_retired_taken_branches_mispred_addr_miscomp", 0xCA },\ 283 { "FR_retired_fastpath_double_op_instr", 0xCC }, \ 284 { "FR_intr_masked_cycles", 0xCD }, \ 285 { "FR_intr_masked_while_pending_cycles", 0xCE }, \ 286 { "FR_taken_hardware_intrs", 0xCF }, \ 287 { "FR_nothing_to_dispatch", 0xD0 }, \ 288 { "FR_dispatch_stalls", 0xD1 }, \ 289 { "FR_dispatch_stall_branch_abort_to_retire", 0xD2 }, \ 290 { "FR_dispatch_stall_serialization", 0xD3 }, \ 291 { "FR_dispatch_stall_segment_load", 0xD4 }, \ 292 { "FR_dispatch_stall_reorder_buffer_full", 0xD5 }, \ 293 { "FR_dispatch_stall_resv_stations_full", 0xD6 }, \ 294 { "FR_dispatch_stall_fpu_full", 0xD7 }, \ 295 { "FR_dispatch_stall_ls_full", 0xD8 }, \ 296 { "FR_dispatch_stall_waiting_all_quiet", 0xD9 }, \ 297 { "FR_dispatch_stall_far_ctl_trsfr_resync_branch_pend", 0xDA },\ 298 { "FR_fpu_exception", 0xDB }, \ 299 { "FR_num_brkpts_dr0", 0xDC }, \ 300 { "FR_num_brkpts_dr1", 0xDD }, \ 301 { "FR_num_brkpts_dr2", 0xDE }, \ 302 { "FR_num_brkpts_dr3", 0xDF }, \ 303 { "NB_mem_ctrlr_page_access", 0xE0 }, \ 304 { "NB_mem_ctrlr_turnaround", 0xE3 }, \ 305 { "NB_mem_ctrlr_bypass_counter_saturation", 0xE4 }, \ 306 { "NB_cpu_io_to_mem_io", 0xE9 }, \ 307 { "NB_cache_block_commands", 0xEA }, \ 308 { "NB_sized_commands", 0xEB }, \ 309 { "NB_ht_bus0_bandwidth", 0xF6 } 310 311 #define AMD_FAMILY_f_events \ 312 { "BU_quadwords_written_to_system", 0x6D }, \ 313 { "FR_retired_fpu_instr", 0xCB }, \ 314 { "NB_mem_ctrlr_page_table_overflow", 0xE1 }, \ 315 { "NB_sized_blocks", 0xE5 }, \ 316 { "NB_ECC_errors", 0xE8 }, \ 317 { "NB_probe_result", 0xEC }, \ 318 { "NB_gart_events", 0xEE }, \ 319 { "NB_ht_bus1_bandwidth", 0xF7 }, \ 320 { "NB_ht_bus2_bandwidth", 0xF8 } 321 322 #define AMD_FAMILY_10h_events \ 323 { "FP_retired_sse_ops", 0x3 }, \ 324 { "FP_retired_move_ops", 0x4 }, \ 325 { "FP_retired_serialize_ops", 0x5 }, \ 326 { "FP_serialize_ops_cycles", 0x6 }, \ 327 { "LS_cancelled_store_to_load_fwd_ops", 0x2A }, \ 328 { "LS_smi_received", 0x2B }, \ 329 { "DC_dtlb_L1_hit", 0x4D }, \ 330 { "LS_ineffective_prefetch", 0x52 }, \ 331 { "LS_global_tlb_flush", 0x54 }, \ 332 { "BU_octwords_written_to_system", 0x6D }, \ 333 { "Page_size_mismatches", 0x165 }, \ 334 { "IC_eviction", 0x8B }, \ 335 { "IC_cache_lines_invalidate", 0x8C }, \ 336 { "IC_itlb_reload", 0x99 }, \ 337 { "IC_itlb_reload_aborted", 0x9A }, \ 338 { "FR_retired_mmx_sse_fp_instr", 0xCB }, \ 339 { "Retired_x87_fp_ops", 0x1C0 }, \ 340 { "IBS_ops_tagged", 0x1CF }, \ 341 { "LFENCE_inst_retired", 0x1D3 }, \ 342 { "SFENCE_inst_retired", 0x1D4 }, \ 343 { "MFENCE_inst_retired", 0x1D5 }, \ 344 { "NB_mem_ctrlr_page_table_overflow", 0xE1 }, \ 345 { "NB_mem_ctrlr_dram_cmd_slots_missed", 0xE2 }, \ 346 { "NB_thermal_status", 0xE8 }, \ 347 { "NB_probe_results_upstream_req", 0xEC }, \ 348 { "NB_gart_events", 0xEE }, \ 349 { "NB_mem_ctrlr_req", 0x1F0 }, \ 350 { "CB_cpu_to_dram_req_to_target", 0x1E0 }, \ 351 { "CB_io_to_dram_req_to_target", 0x1E1 }, \ 352 { "CB_cpu_read_cmd_latency_to_target_0_to_3", 0x1E2 }, \ 353 { "CB_cpu_read_cmd_req_to_target_0_to_3", 0x1E3 }, \ 354 { "CB_cpu_read_cmd_latency_to_target_4_to_7", 0x1E4 }, \ 355 { "CB_cpu_read_cmd_req_to_target_4_to_7", 0x1E5 }, \ 356 { "CB_cpu_cmd_latency_to_target_0_to_7", 0x1E6 }, \ 357 { "CB_cpu_req_to_target_0_to_7", 0x1E7 }, \ 358 { "NB_ht_bus1_bandwidth", 0xF7 }, \ 359 { "NB_ht_bus2_bandwidth", 0xF8 }, \ 360 { "NB_ht_bus3_bandwidth", 0x1F9 }, \ 361 { "L3_read_req", 0x4E0 }, \ 362 { "L3_miss", 0x4E1 }, \ 363 { "L3_l2_eviction_l3_fill", 0x4E2 }, \ 364 { "L3_eviction", 0x4E3 } 365 366 #define AMD_FAMILY_11h_events \ 367 { "BU_quadwords_written_to_system", 0x6D }, \ 368 { "FR_retired_mmx_fp_instr", 0xCB }, \ 369 { "NB_mem_ctrlr_page_table_events", 0xE1 }, \ 370 { "NB_thermal_status", 0xE8 }, \ 371 { "NB_probe_results_upstream_req", 0xEC }, \ 372 { "NB_dev_events", 0xEE }, \ 373 { "NB_mem_ctrlr_req", 0x1F0 } 374 375 #define AMD_cmn_generic_events \ 376 { "PAPI_br_ins", "FR_retired_branches_w_excp_intr", 0x0 },\ 377 { "PAPI_br_msp", "FR_retired_branches_mispred", 0x0 }, \ 378 { "PAPI_br_tkn", "FR_retired_taken_branches", 0x0 }, \ 379 { "PAPI_fp_ops", "FP_dispatched_fpu_ops", 0x3 }, \ 380 { "PAPI_fad_ins", "FP_dispatched_fpu_ops", 0x1 }, \ 381 { "PAPI_fml_ins", "FP_dispatched_fpu_ops", 0x2 }, \ 382 { "PAPI_fpu_idl", "FP_cycles_no_fpu_ops_retired", 0x0 }, \ 383 { "PAPI_tot_cyc", "BU_cpu_clk_unhalted", 0x0 }, \ 384 { "PAPI_tot_ins", "FR_retired_x86_instr_w_excp_intr", 0x0 }, \ 385 { "PAPI_l1_dca", "DC_access", 0x0 }, \ 386 { "PAPI_l1_dcm", "DC_miss", 0x0 }, \ 387 { "PAPI_l1_ldm", "DC_refill_from_L2", 0xe }, \ 388 { "PAPI_l1_stm", "DC_refill_from_L2", 0x10 }, \ 389 { "PAPI_l1_ica", "IC_fetch", 0x0 }, \ 390 { "PAPI_l1_icm", "IC_miss", 0x0 }, \ 391 { "PAPI_l1_icr", "IC_fetch", 0x0 }, \ 392 { "PAPI_l2_dch", "DC_refill_from_L2", 0x1e }, \ 393 { "PAPI_l2_dcm", "DC_refill_from_system", 0x1e }, \ 394 { "PAPI_l2_dcr", "DC_refill_from_L2", 0xe }, \ 395 { "PAPI_l2_dcw", "DC_refill_from_L2", 0x10 }, \ 396 { "PAPI_l2_ich", "IC_refill_from_L2", 0x0 }, \ 397 { "PAPI_l2_icm", "IC_refill_from_system", 0x0 }, \ 398 { "PAPI_l2_ldm", "DC_refill_from_system", 0xe }, \ 399 { "PAPI_l2_stm", "DC_refill_from_system", 0x10 }, \ 400 { "PAPI_res_stl", "FR_dispatch_stalls", 0x0 }, \ 401 { "PAPI_stl_icy", "FR_nothing_to_dispatch", 0x0 }, \ 402 { "PAPI_hw_int", "FR_taken_hardware_intrs", 0x0 } 403 404 #define OPT_cmn_generic_events \ 405 { "PAPI_tlb_dm", "DC_dtlb_L1_miss_L2_miss", 0x0 }, \ 406 { "PAPI_tlb_im", "IC_itlb_L1_miss_L2_miss", 0x0 }, \ 407 { "PAPI_fp_ins", "FR_retired_fpu_instr", 0xd }, \ 408 { "PAPI_vec_ins", "FR_retired_fpu_instr", 0x4 } 409 410 #define AMD_FAMILY_10h_generic_events \ 411 { "PAPI_tlb_dm", "DC_dtlb_L1_miss_L2_miss", 0x7 }, \ 412 { "PAPI_tlb_im", "IC_itlb_L1_miss_L2_miss", 0x3 }, \ 413 { "PAPI_l3_dcr", "L3_read_req", 0xf1 }, \ 414 { "PAPI_l3_icr", "L3_read_req", 0xf2 }, \ 415 { "PAPI_l3_tcr", "L3_read_req", 0xf7 }, \ 416 { "PAPI_l3_stm", "L3_miss", 0xf4 }, \ 417 { "PAPI_l3_ldm", "L3_miss", 0xf3 }, \ 418 { "PAPI_l3_tcm", "L3_miss", 0xf7 } 419 420 static const amd_event_t family_f_events[] = { 421 AMD_cmn_events, 422 AMD_FAMILY_f_events, 423 EV_END 424 }; 425 426 static const amd_event_t family_10h_events[] = { 427 AMD_cmn_events, 428 AMD_FAMILY_10h_events, 429 EV_END 430 }; 431 432 static const amd_event_t family_11h_events[] = { 433 AMD_cmn_events, 434 AMD_FAMILY_11h_events, 435 EV_END 436 }; 437 438 static const amd_generic_event_t opt_generic_events[] = { 439 AMD_cmn_generic_events, 440 OPT_cmn_generic_events, 441 GEN_EV_END 442 }; 443 444 static const amd_generic_event_t family_10h_generic_events[] = { 445 AMD_cmn_generic_events, 446 AMD_FAMILY_10h_generic_events, 447 GEN_EV_END 448 }; 449 450 /* 451 * For Family 17h and Family 19h, the cpcgen utility generates all of our events 452 * including ones that need specific unit codes, therefore we leave all unit 453 * codes out of these. Zen 1, Zen 2, and Zen 3 have different event sets that 454 * they support. 455 */ 456 static const amd_generic_event_t family_17h_zen1_papi_events[] = { 457 { "PAPI_br_cn", "ExRetCond" }, 458 { "PAPI_br_ins", "ExRetBrn" }, 459 { "PAPI_fpu_idl", "FpSchedEmpty" }, 460 { "PAPI_tot_cyc", "LsNotHaltedCyc" }, 461 { "PAPI_tot_ins", "ExRetInstr" }, 462 { "PAPI_tlb_dm", "LsL1DTlbMiss" }, 463 { "PAPI_tlb_im", "BpL1TlbMissL2Miss" }, 464 GEN_EV_END 465 }; 466 467 static const amd_generic_event_t family_17h_zen2_papi_events[] = { 468 { "PAPI_br_cn", "ExRetCond" }, 469 { "PAPI_br_ins", "ExRetBrn" }, 470 { "PAPI_tot_cyc", "LsNotHaltedCyc" }, 471 { "PAPI_tot_ins", "ExRetInstr" }, 472 { "PAPI_tlb_dm", "LsL1DTlbMiss" }, 473 { "PAPI_tlb_im", "BpL1TlbMissL2Miss" }, 474 GEN_EV_END 475 }; 476 477 static const amd_generic_event_t family_19h_zen3_papi_events[] = { 478 { "PAPI_br_cn", "ExRetCond" }, 479 { "PAPI_br_ins", "ExRetBrn" }, 480 { "PAPI_tot_cyc", "LsNotHaltedCyc" }, 481 { "PAPI_tot_ins", "ExRetInstr" }, 482 { "PAPI_tlb_dm", "LsL1DTlbMiss" }, 483 { "PAPI_tlb_im", "BpL1TlbMissL2TlbMiss" }, 484 GEN_EV_END 485 }; 486 487 static const amd_generic_event_t family_19h_zen4_papi_events[] = { 488 { "PAPI_br_cn", "ExRetCond" }, 489 { "PAPI_br_ins", "ExRetBrn" }, 490 { "PAPI_tot_cyc", "LsNotHaltedCyc" }, 491 { "PAPI_tot_ins", "ExRetInstr" }, 492 { "PAPI_tlb_dm", "LsL1DTlbMiss" }, 493 { "PAPI_tlb_im", "BpL1TlbMissL2TlbMiss" }, 494 GEN_EV_END 495 }; 496 497 498 499 static char *evlist; 500 static size_t evlist_sz; 501 static const amd_event_t *amd_events = NULL; 502 static uint_t amd_family, amd_model; 503 static const amd_generic_event_t *amd_generic_events = NULL; 504 505 static char amd_fam_f_rev_ae_bkdg[] = "See \"BIOS and Kernel Developer's " 506 "Guide for AMD Athlon 64 and AMD Opteron Processors\" (AMD publication 26094)"; 507 static char amd_fam_f_NPT_bkdg[] = "See \"BIOS and Kernel Developer's Guide " 508 "for AMD NPT Family 0Fh Processors\" (AMD publication 32559)"; 509 static char amd_fam_10h_bkdg[] = "See \"BIOS and Kernel Developer's Guide " 510 "(BKDG) For AMD Family 10h Processors\" (AMD publication 31116)"; 511 static char amd_fam_11h_bkdg[] = "See \"BIOS and Kernel Developer's Guide " 512 "(BKDG) For AMD Family 11h Processors\" (AMD publication 41256)"; 513 static char amd_fam_17h_zen1_reg[] = "See \"Open-Source Register Reference For " 514 "AMD Family 17h Processors Models 00h-2Fh\" (AMD publication 56255) and " 515 "amd_f17h_zen1_events(3CPC)"; 516 static char amd_fam_17h_zen2_reg[] = "See \"Preliminary Processor Programming " 517 "Reference (PPR) for AMD Family 17h Model 31h, Revision B0 Processors\" " 518 "(AMD publication 55803), \"Processor Programming Reference (PPR) for AMD " 519 "Family 17h Model 71h, Revision B0 Processors\" (AMD publication 56176), and " 520 "amd_f17h_zen2_events(3CPC)"; 521 static char amd_fam_19h_zen3_reg[] = "See \"Preliminary Processor Programming " 522 "Reference (PPR) for AMD Family 19h Model 01h, Revision B1 Processors Volume " 523 "1 of 2\" (AMD publication 55898), \"Processor Programming Reference (PPR) " 524 "for AMD Family 19h Model 21h, Revision B0 Processors\" (AMD publication " 525 "56214), and amd_f19h_zen3_events(3CPC)"; 526 static char amd_fam_19h_zen4_reg[] = "See \"Processor Programming Reference " 527 "(PPR) for AMD Family 19h Model 11h, Revision B1 Processors Volume 1 of 6\" " 528 "(AMD publication 55901), \"Processor Programming Reference (PPR) for AMD " 529 "Family 19h Model 61h, Revision B1 Processors\" (AMD publication 56713), " 530 "\"Processor Programming Reference (PPR) for AMD Family 19h Model 70h, " 531 "Revision A0 Processors\" (AMD publication 57019), and " 532 "amd_f19h_zen4_events(3CPC)"; 533 534 535 static char amd_pcbe_impl_name[64]; 536 static char *amd_pcbe_cpuref; 537 538 539 #define BITS(v, u, l) \ 540 (((v) >> (l)) & ((1 << (1 + (u) - (l))) - 1)) 541 542 static uint64_t 543 opt_pcbe_pes_addr(uint_t counter) 544 { 545 ASSERT3U(counter, <, opd.opd_ncounters); 546 return (PES_BASE_ADDR + counter); 547 } 548 549 static uint64_t 550 opt_pcbe_pes_ext_addr(uint_t counter) 551 { 552 ASSERT3U(counter, <, opd.opd_ncounters); 553 return (PES_EXT_BASE_ADDR + 2 * counter); 554 } 555 556 static uint64_t 557 opt_pcbe_pic_addr(uint_t counter) 558 { 559 ASSERT3U(counter, <, opd.opd_ncounters); 560 return (PIC_BASE_ADDR + counter); 561 } 562 563 static uint64_t 564 opt_pcbe_pic_ext_addr(uint_t counter) 565 { 566 ASSERT3U(counter, <, opd.opd_ncounters); 567 return (PIC_EXT_BASE_ADDR + 2 * counter); 568 } 569 570 static int 571 opt_pcbe_init(void) 572 { 573 const amd_event_t *evp; 574 const amd_generic_event_t *gevp; 575 x86_uarchrev_t uarchrev; 576 577 amd_family = cpuid_getfamily(CPU); 578 amd_model = cpuid_getmodel(CPU); 579 uarchrev = cpuid_getuarchrev(CPU); 580 581 /* 582 * Make sure this really _is_ an Opteron or Athlon 64 system. The kernel 583 * loads this module based on its name in the module directory, but it 584 * could have been renamed. 585 */ 586 if ((cpuid_getvendor(CPU) != X86_VENDOR_AMD || amd_family < 0xf) && 587 cpuid_getvendor(CPU) != X86_VENDOR_HYGON) 588 return (-1); 589 590 if (amd_family == 0xf) { 591 /* Some tools expect this string for family 0fh */ 592 (void) snprintf(amd_pcbe_impl_name, sizeof (amd_pcbe_impl_name), 593 "AMD Opteron & Athlon64"); 594 } else { 595 (void) snprintf(amd_pcbe_impl_name, sizeof (amd_pcbe_impl_name), 596 "%s Family %02xh", 597 cpuid_getvendor(CPU) == X86_VENDOR_HYGON ? "Hygon" : "AMD", 598 amd_family); 599 } 600 601 /* 602 * Determine whether or not the extended counter set is supported on 603 * this processor. 604 */ 605 if (is_x86_feature(x86_featureset, X86FSET_AMD_PCEC)) { 606 opd.opd_ncounters = OPT_PCBE_EXT_NCOUNTERS; 607 opd.opd_pesf = opt_pcbe_pes_ext_addr; 608 opd.opd_picf = opt_pcbe_pic_ext_addr; 609 } else { 610 opd.opd_ncounters = OPT_PCBE_DEF_NCOUNTERS; 611 opd.opd_pesf = opt_pcbe_pes_addr; 612 opd.opd_picf = opt_pcbe_pic_addr; 613 } 614 opd.opd_cmask = (1 << opd.opd_ncounters) - 1; 615 616 /* 617 * Figure out processor revision here and assign appropriate 618 * event configuration. 619 */ 620 switch (uarchrev_uarch(uarchrev)) { 621 case X86_UARCH_AMD_LEGACY: 622 switch (amd_family) { 623 case 0xf: { 624 x86_chiprev_t rev; 625 626 rev = cpuid_getchiprev(CPU); 627 628 if (chiprev_at_least(rev, 629 X86_CHIPREV_AMD_LEGACY_F_REV_F)) { 630 amd_pcbe_cpuref = amd_fam_f_NPT_bkdg; 631 } else { 632 amd_pcbe_cpuref = amd_fam_f_rev_ae_bkdg; 633 } 634 amd_events = family_f_events; 635 amd_generic_events = opt_generic_events; 636 break; 637 } 638 case 0x10: 639 amd_pcbe_cpuref = amd_fam_10h_bkdg; 640 amd_events = family_10h_events; 641 amd_generic_events = family_10h_generic_events; 642 break; 643 case 0x11: 644 amd_pcbe_cpuref = amd_fam_11h_bkdg; 645 amd_events = family_11h_events; 646 amd_generic_events = opt_generic_events; 647 break; 648 default: 649 return (-1); 650 } 651 break; 652 case X86_UARCH_AMD_ZEN1: 653 case X86_UARCH_AMD_ZENPLUS: 654 amd_pcbe_cpuref = amd_fam_17h_zen1_reg; 655 amd_events = opteron_pcbe_f17h_zen1_events; 656 amd_generic_events = family_17h_zen1_papi_events; 657 break; 658 case X86_UARCH_AMD_ZEN2: 659 amd_pcbe_cpuref = amd_fam_17h_zen2_reg; 660 amd_events = opteron_pcbe_f17h_zen2_events; 661 amd_generic_events = family_17h_zen2_papi_events; 662 break; 663 case X86_UARCH_AMD_ZEN3: 664 amd_pcbe_cpuref = amd_fam_19h_zen3_reg; 665 amd_events = opteron_pcbe_f19h_zen3_events; 666 amd_generic_events = family_19h_zen3_papi_events; 667 break; 668 case X86_UARCH_AMD_ZEN4: 669 amd_pcbe_cpuref = amd_fam_19h_zen4_reg; 670 amd_events = opteron_pcbe_f19h_zen4_events; 671 amd_generic_events = family_19h_zen4_papi_events; 672 break; 673 default: 674 /* 675 * Different families have different meanings on events and even 676 * worse (like family 15h), different constraints around 677 * programming these values. 678 */ 679 return (-1); 680 } 681 682 /* 683 * Construct event list. 684 * 685 * First pass: Calculate size needed. We'll need an additional byte 686 * for the NULL pointer during the last strcat. 687 * 688 * Second pass: Copy strings. 689 */ 690 for (evp = amd_events; evp->name != NULL; evp++) 691 evlist_sz += strlen(evp->name) + 1; 692 693 for (gevp = amd_generic_events; gevp->name != NULL; gevp++) 694 evlist_sz += strlen(gevp->name) + 1; 695 696 evlist = kmem_alloc(evlist_sz + 1, KM_SLEEP); 697 evlist[0] = '\0'; 698 699 for (evp = amd_events; evp->name != NULL; evp++) { 700 (void) strcat(evlist, evp->name); 701 (void) strcat(evlist, ","); 702 } 703 704 for (gevp = amd_generic_events; gevp->name != NULL; gevp++) { 705 (void) strcat(evlist, gevp->name); 706 (void) strcat(evlist, ","); 707 } 708 709 /* 710 * Remove trailing comma. 711 */ 712 evlist[evlist_sz - 1] = '\0'; 713 714 return (0); 715 } 716 717 static uint_t 718 opt_pcbe_ncounters(void) 719 { 720 return (opd.opd_ncounters); 721 } 722 723 static const char * 724 opt_pcbe_impl_name(void) 725 { 726 return (amd_pcbe_impl_name); 727 } 728 729 static const char * 730 opt_pcbe_cpuref(void) 731 { 732 733 return (amd_pcbe_cpuref); 734 } 735 736 /*ARGSUSED*/ 737 static char * 738 opt_pcbe_list_events(uint_t picnum) 739 { 740 return (evlist); 741 } 742 743 static char * 744 opt_pcbe_list_attrs(void) 745 { 746 return ("edge,pc,inv,cmask,umask"); 747 } 748 749 static const amd_generic_event_t * 750 find_generic_event(char *name) 751 { 752 const amd_generic_event_t *gevp; 753 754 for (gevp = amd_generic_events; gevp->name != NULL; gevp++) 755 if (strcmp(name, gevp->name) == 0) 756 return (gevp); 757 758 return (NULL); 759 } 760 761 static const amd_event_t * 762 find_event(char *name) 763 { 764 const amd_event_t *evp; 765 766 for (evp = amd_events; evp->name != NULL; evp++) 767 if (strcmp(name, evp->name) == 0) 768 return (evp); 769 770 return (NULL); 771 } 772 773 /*ARGSUSED*/ 774 static uint64_t 775 opt_pcbe_event_coverage(char *event) 776 { 777 /* 778 * Check whether counter event is supported 779 */ 780 if (find_event(event) == NULL && find_generic_event(event) == NULL) 781 return (0); 782 783 /* 784 * Fortunately, all counters can count all events. 785 */ 786 return (opd.opd_cmask); 787 } 788 789 static uint64_t 790 opt_pcbe_overflow_bitmap(void) 791 { 792 /* 793 * Unfortunately, this chip cannot detect which counter overflowed, so 794 * we must act as if they all did. 795 */ 796 return (opd.opd_cmask); 797 } 798 799 /*ARGSUSED*/ 800 static int 801 opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset, uint32_t flags, 802 uint_t nattrs, kcpc_attr_t *attrs, void **data, void *token) 803 { 804 opt_pcbe_config_t *cfg; 805 const amd_event_t *evp; 806 amd_event_t ev_raw = { "raw", 0}; 807 const amd_generic_event_t *gevp; 808 int i; 809 uint64_t evsel = 0, evsel_tmp = 0; 810 811 /* 812 * If we've been handed an existing configuration, we need only preset 813 * the counter value. 814 */ 815 if (*data != NULL) { 816 cfg = *data; 817 cfg->opt_rawpic = preset & MASK48; 818 return (0); 819 } 820 821 if (picnum >= opd.opd_ncounters) 822 return (CPC_INVALID_PICNUM); 823 824 if ((evp = find_event(event)) == NULL) { 825 if ((gevp = find_generic_event(event)) != NULL) { 826 evp = find_event(gevp->event); 827 ASSERT(evp != NULL); 828 829 if (nattrs > 0) 830 return (CPC_ATTRIBUTE_OUT_OF_RANGE); 831 832 evsel |= gevp->umask << OPT_PES_UMASK_SHIFT; 833 } else { 834 long tmp; 835 836 /* 837 * If ddi_strtol() likes this event, use it as a raw 838 * event code. 839 */ 840 if (ddi_strtol(event, NULL, 0, &tmp) != 0) 841 return (CPC_INVALID_EVENT); 842 843 ev_raw.emask = tmp; 844 evp = &ev_raw; 845 } 846 } 847 848 /* 849 * Configuration of EventSelect register. While on some families 850 * certain bits might not be supported (e.g. Guest/Host on family 851 * 11h), setting these bits is harmless 852 */ 853 854 /* Set GuestOnly bit to 0 and HostOnly bit to 1 */ 855 evsel &= ~OPT_PES_HOST; 856 evsel &= ~OPT_PES_GUEST; 857 858 /* Set bits [35:32] for extended part of Event Select field */ 859 evsel_tmp = evp->emask & 0x0f00; 860 evsel |= evsel_tmp << OPT_PES_EVSELHI_SHIFT; 861 862 evsel |= evp->emask & 0x00ff; 863 evsel |= evp->unit << OPT_PES_UMASK_SHIFT; 864 865 if (flags & CPC_COUNT_USER) 866 evsel |= OPT_PES_USR; 867 if (flags & CPC_COUNT_SYSTEM) 868 evsel |= OPT_PES_OS; 869 if (flags & CPC_OVF_NOTIFY_EMT) 870 evsel |= OPT_PES_INT; 871 872 for (i = 0; i < nattrs; i++) { 873 if (strcmp(attrs[i].ka_name, "edge") == 0) { 874 if (attrs[i].ka_val != 0) 875 evsel |= OPT_PES_EDGE; 876 } else if (strcmp(attrs[i].ka_name, "pc") == 0) { 877 if (attrs[i].ka_val != 0) 878 evsel |= OPT_PES_PC; 879 } else if (strcmp(attrs[i].ka_name, "inv") == 0) { 880 if (attrs[i].ka_val != 0) 881 evsel |= OPT_PES_INV; 882 } else if (strcmp(attrs[i].ka_name, "cmask") == 0) { 883 if ((attrs[i].ka_val | OPT_PES_CMASK_MASK) != 884 OPT_PES_CMASK_MASK) 885 return (CPC_ATTRIBUTE_OUT_OF_RANGE); 886 evsel |= attrs[i].ka_val << OPT_PES_CMASK_SHIFT; 887 } else if (strcmp(attrs[i].ka_name, "umask") == 0) { 888 if ((attrs[i].ka_val | OPT_PES_UMASK_MASK) != 889 OPT_PES_UMASK_MASK) 890 return (CPC_ATTRIBUTE_OUT_OF_RANGE); 891 evsel |= attrs[i].ka_val << OPT_PES_UMASK_SHIFT; 892 } else 893 return (CPC_INVALID_ATTRIBUTE); 894 } 895 896 cfg = kmem_alloc(sizeof (*cfg), KM_SLEEP); 897 898 cfg->opt_picno = picnum; 899 cfg->opt_evsel = evsel; 900 cfg->opt_rawpic = preset & MASK48; 901 902 *data = cfg; 903 return (0); 904 } 905 906 static void 907 opt_pcbe_program(void *token) 908 { 909 opt_pcbe_config_t *cfgs[OPT_PCBE_EXT_NCOUNTERS] = { &nullcfgs[0], 910 &nullcfgs[1], &nullcfgs[2], 911 &nullcfgs[3], &nullcfgs[4], 912 &nullcfgs[5] }; 913 opt_pcbe_config_t *pcfg = NULL; 914 int i; 915 ulong_t curcr4 = getcr4(); 916 917 /* 918 * Allow nonprivileged code to read the performance counters if desired. 919 */ 920 if (kcpc_allow_nonpriv(token)) 921 setcr4(curcr4 | CR4_PCE); 922 else 923 setcr4(curcr4 & ~CR4_PCE); 924 925 /* 926 * Query kernel for all configs which will be co-programmed. 927 */ 928 do { 929 pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, NULL); 930 931 if (pcfg != NULL) { 932 ASSERT(pcfg->opt_picno < opd.opd_ncounters); 933 cfgs[pcfg->opt_picno] = pcfg; 934 } 935 } while (pcfg != NULL); 936 937 /* 938 * Program in two loops. The first configures and presets the counter, 939 * and the second loop enables the counters. This ensures that the 940 * counters are all enabled as closely together in time as possible. 941 */ 942 943 for (i = 0; i < opd.opd_ncounters; i++) { 944 wrmsr(opd.opd_pesf(i), cfgs[i]->opt_evsel); 945 wrmsr(opd.opd_picf(i), cfgs[i]->opt_rawpic); 946 } 947 948 for (i = 0; i < opd.opd_ncounters; i++) { 949 wrmsr(opd.opd_pesf(i), cfgs[i]->opt_evsel | 950 (uint64_t)(uintptr_t)OPT_PES_ENABLE); 951 } 952 } 953 954 static void 955 opt_pcbe_allstop(void) 956 { 957 int i; 958 959 for (i = 0; i < opd.opd_ncounters; i++) 960 wrmsr(opd.opd_pesf(i), 0ULL); 961 962 /* 963 * Disable non-privileged access to the counter registers. 964 */ 965 setcr4(getcr4() & ~CR4_PCE); 966 } 967 968 static void 969 opt_pcbe_sample(void *token) 970 { 971 opt_pcbe_config_t *cfgs[OPT_PCBE_EXT_NCOUNTERS] = { NULL, NULL, 972 NULL, NULL, NULL, NULL }; 973 opt_pcbe_config_t *pcfg = NULL; 974 int i; 975 uint64_t curpic[OPT_PCBE_EXT_NCOUNTERS]; 976 uint64_t *addrs[OPT_PCBE_EXT_NCOUNTERS]; 977 uint64_t *tmp; 978 int64_t diff; 979 980 for (i = 0; i < opd.opd_ncounters; i++) 981 curpic[i] = rdmsr(opd.opd_picf(i)); 982 983 /* 984 * Query kernel for all configs which are co-programmed. 985 */ 986 do { 987 pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, &tmp); 988 989 if (pcfg != NULL) { 990 ASSERT3U(pcfg->opt_picno, <, opd.opd_ncounters); 991 cfgs[pcfg->opt_picno] = pcfg; 992 addrs[pcfg->opt_picno] = tmp; 993 } 994 } while (pcfg != NULL); 995 996 for (i = 0; i < opd.opd_ncounters; i++) { 997 if (cfgs[i] == NULL) 998 continue; 999 1000 diff = (curpic[i] - cfgs[i]->opt_rawpic) & MASK48; 1001 *addrs[i] += diff; 1002 DTRACE_PROBE4(opt__pcbe__sample, int, i, uint64_t, *addrs[i], 1003 uint64_t, curpic[i], uint64_t, cfgs[i]->opt_rawpic); 1004 cfgs[i]->opt_rawpic = *addrs[i] & MASK48; 1005 } 1006 } 1007 1008 static void 1009 opt_pcbe_free(void *config) 1010 { 1011 kmem_free(config, sizeof (opt_pcbe_config_t)); 1012 } 1013 1014 1015 static struct modlpcbe modlpcbe = { 1016 &mod_pcbeops, 1017 "AMD Performance Counters", 1018 &opt_pcbe_ops 1019 }; 1020 1021 static struct modlinkage modl = { 1022 MODREV_1, 1023 &modlpcbe, 1024 }; 1025 1026 int 1027 _init(void) 1028 { 1029 int ret; 1030 1031 if (opt_pcbe_init() != 0) 1032 return (ENOTSUP); 1033 1034 if ((ret = mod_install(&modl)) != 0) 1035 kmem_free(evlist, evlist_sz + 1); 1036 1037 return (ret); 1038 } 1039 1040 int 1041 _fini(void) 1042 { 1043 int ret; 1044 1045 if ((ret = mod_remove(&modl)) == 0) 1046 kmem_free(evlist, evlist_sz + 1); 1047 return (ret); 1048 } 1049 1050 int 1051 _info(struct modinfo *mi) 1052 { 1053 return (mod_info(&modl, mi)); 1054 } 1055