xref: /illumos-gate/usr/src/uts/intel/os/sendsig.c (revision d363b1b0cb9ef6d6f3febdd8d1cba46507e97098)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
28 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T   */
29 /*	All Rights Reserved   */
30 
31 /*
32  * Copyright 2023 Oxide Computer Company
33  */
34 
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/sysmacros.h>
38 #include <sys/signal.h>
39 #include <sys/systm.h>
40 #include <sys/user.h>
41 #include <sys/mman.h>
42 #include <sys/class.h>
43 #include <sys/proc.h>
44 #include <sys/procfs.h>
45 #include <sys/buf.h>
46 #include <sys/kmem.h>
47 #include <sys/cred.h>
48 #include <sys/archsystm.h>
49 #include <sys/vmparam.h>
50 #include <sys/prsystm.h>
51 #include <sys/reboot.h>
52 #include <sys/uadmin.h>
53 #include <sys/vfs.h>
54 #include <sys/vnode.h>
55 #include <sys/file.h>
56 #include <sys/session.h>
57 #include <sys/ucontext.h>
58 #include <sys/dnlc.h>
59 #include <sys/var.h>
60 #include <sys/cmn_err.h>
61 #include <sys/debugreg.h>
62 #include <sys/thread.h>
63 #include <sys/vtrace.h>
64 #include <sys/consdev.h>
65 #include <sys/psw.h>
66 #include <sys/regset.h>
67 
68 #include <sys/privregs.h>
69 
70 #include <sys/stack.h>
71 #include <sys/swap.h>
72 #include <vm/hat.h>
73 #include <vm/anon.h>
74 #include <vm/as.h>
75 #include <vm/page.h>
76 #include <vm/seg.h>
77 #include <vm/seg_kmem.h>
78 #include <vm/seg_map.h>
79 #include <vm/seg_vn.h>
80 #include <sys/exec.h>
81 #include <sys/acct.h>
82 #include <sys/core.h>
83 #include <sys/corectl.h>
84 #include <sys/modctl.h>
85 #include <sys/tuneable.h>
86 #include <c2/audit.h>
87 #include <sys/bootconf.h>
88 #include <sys/dumphdr.h>
89 #include <sys/promif.h>
90 #include <sys/systeminfo.h>
91 #include <sys/kdi.h>
92 #include <sys/contract_impl.h>
93 #include <sys/x86_archext.h>
94 
95 /*
96  * Construct the execution environment for the user's signal
97  * handler and arrange for control to be given to it on return
98  * to userland.  The library code now calls setcontext() to
99  * clean up after the signal handler, so sigret() is no longer
100  * needed.
101  *
102  * (The various 'volatile' declarations are need to ensure that values
103  * are correct on the error return from on_fault().)
104  */
105 
106 
107 /*
108  * An amd64 signal frame looks like this on the stack:
109  *
110  * old %rsp:
111  *		<128 bytes of untouched stack space>
112  *		<a siginfo_t [optional]>
113  *		<a ucontext_t>
114  *		<a ucontext_t's xsave state>
115  *		<siginfo_t *>                             ---+
116  *		<signal number>                              | sigframe
117  * new %rsp:	<return address (deliberately invalid)>   ---+
118  *
119  * The signal number and siginfo_t pointer are only pushed onto the stack in
120  * order to allow stack backtraces.  The actual signal handling code expects the
121  * arguments in registers.
122  */
123 
124 struct sigframe {
125 	caddr_t retaddr;
126 	long	signo;
127 	siginfo_t *sip;
128 };
129 
130 int
131 sendsig(int sig, k_siginfo_t *sip, void (*hdlr)())
132 {
133 	volatile size_t minstacksz;
134 	boolean_t newstack;
135 	size_t xsave_size;
136 	int ret;
137 	label_t ljb;
138 	volatile caddr_t sp;
139 	caddr_t fp;
140 	volatile struct regs *rp;
141 	volatile greg_t upc;
142 	volatile proc_t *p = ttoproc(curthread);
143 	struct as *as = p->p_as;
144 	klwp_t *lwp = ttolwp(curthread);
145 	ucontext_t *volatile tuc = NULL;
146 	ucontext_t *uc;
147 	siginfo_t *sip_addr;
148 	volatile int watched;
149 
150 	/*
151 	 * This routine is utterly dependent upon STACK_ALIGN being
152 	 * 16 and STACK_ENTRY_ALIGN being 8. Let's just acknowledge
153 	 * that and require it.
154 	 */
155 
156 #if STACK_ALIGN != 16 || STACK_ENTRY_ALIGN != 8
157 #error "sendsig() amd64 did not find the expected stack alignments"
158 #endif
159 
160 	rp = lwptoregs(lwp);
161 	upc = rp->r_pc;
162 
163 	/*
164 	 * Since we're setting up to run the signal handler we have to
165 	 * arrange that the stack at entry to the handler is (only)
166 	 * STACK_ENTRY_ALIGN (i.e. 8) byte aligned so that when the handler
167 	 * executes its push of %rbp, the stack realigns to STACK_ALIGN
168 	 * (i.e. 16) correctly.
169 	 *
170 	 * The new sp will point to the sigframe and the ucontext_t. The
171 	 * above means that sp (and thus sigframe) will be 8-byte aligned,
172 	 * but not 16-byte aligned. ucontext_t, however, contains %xmm regs
173 	 * which must be 16-byte aligned. Because of this, for correct
174 	 * alignment, sigframe must be a multiple of 8-bytes in length, but
175 	 * not 16-bytes. This will place ucontext_t at a nice 16-byte boundary.
176 	 *
177 	 * When we move onto the xsave state, right now, we don't guarantee any
178 	 * alignment of the resulting data, but we will ensure that the
179 	 * resulting sp does have proper alignment. This will ensure that the
180 	 * guarantee on the ucontex_t is not violated.
181 	 */
182 
183 	CTASSERT((sizeof (struct sigframe) % 16) == 8);
184 
185 	minstacksz = sizeof (struct sigframe) + SA(sizeof (*uc));
186 	if (sip != NULL)
187 		minstacksz += SA(sizeof (siginfo_t));
188 
189 	if (fpu_xsave_enabled()) {
190 		xsave_size = SA(fpu_signal_size(lwp));
191 		minstacksz += xsave_size;
192 	} else {
193 		xsave_size = 0;
194 	}
195 
196 	ASSERT((minstacksz & (STACK_ENTRY_ALIGN - 1ul)) == 0);
197 
198 	/*
199 	 * Figure out whether we will be handling this signal on
200 	 * an alternate stack specified by the user.  Then allocate
201 	 * and validate the stack requirements for the signal handler
202 	 * context.  on_fault will catch any faults.
203 	 */
204 	newstack = sigismember(&PTOU(curproc)->u_sigonstack, sig) &&
205 	    !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE));
206 
207 	if (newstack) {
208 		fp = (caddr_t)(SA((uintptr_t)lwp->lwp_sigaltstack.ss_sp) +
209 		    SA(lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN);
210 	} else {
211 		/*
212 		 * Drop below the 128-byte reserved region of the stack frame
213 		 * we're interrupting.
214 		 */
215 		fp = (caddr_t)rp->r_sp - STACK_RESERVE;
216 	}
217 
218 	/*
219 	 * Force proper stack pointer alignment, even in the face of a
220 	 * misaligned stack pointer from user-level before the signal.
221 	 */
222 	fp = (caddr_t)((uintptr_t)fp & ~(STACK_ENTRY_ALIGN - 1ul));
223 
224 	/*
225 	 * Most of the time during normal execution, the stack pointer
226 	 * is aligned on a STACK_ALIGN (i.e. 16 byte) boundary.  However,
227 	 * (for example) just after a call instruction (which pushes
228 	 * the return address), the callers stack misaligns until the
229 	 * 'push %rbp' happens in the callee prolog.  So while we should
230 	 * expect the stack pointer to be always at least STACK_ENTRY_ALIGN
231 	 * aligned, we should -not- expect it to always be STACK_ALIGN aligned.
232 	 * We now adjust to ensure that the new sp is aligned to
233 	 * STACK_ENTRY_ALIGN but not to STACK_ALIGN.
234 	 */
235 	sp = fp - minstacksz;
236 	if (((uintptr_t)sp & (STACK_ALIGN - 1ul)) == 0) {
237 		sp -= STACK_ENTRY_ALIGN;
238 		minstacksz = fp - sp;
239 	}
240 
241 	/*
242 	 * Now, make sure the resulting signal frame address is sane
243 	 */
244 	if (sp >= as->a_userlimit || fp >= as->a_userlimit) {
245 #ifdef DEBUG
246 		printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
247 		    PTOU(p)->u_comm, p->p_pid, sig);
248 		printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
249 		    (void *)sp, (void *)hdlr, (uintptr_t)upc);
250 		printf("sp above USERLIMIT\n");
251 #endif
252 		return (0);
253 	}
254 
255 	watched = watch_disable_addr((caddr_t)sp, minstacksz, S_WRITE);
256 
257 	if (on_fault(&ljb))
258 		goto badstack;
259 
260 	if (sip != NULL) {
261 		zoneid_t zoneid;
262 
263 		fp -= SA(sizeof (siginfo_t));
264 		uzero(fp, sizeof (siginfo_t));
265 		if (SI_FROMUSER(sip) &&
266 		    (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID &&
267 		    zoneid != sip->si_zoneid) {
268 			k_siginfo_t sani_sip = *sip;
269 
270 			sani_sip.si_pid = p->p_zone->zone_zsched->p_pid;
271 			sani_sip.si_uid = 0;
272 			sani_sip.si_ctid = -1;
273 			sani_sip.si_zoneid = zoneid;
274 			copyout_noerr(&sani_sip, fp, sizeof (sani_sip));
275 		} else
276 			copyout_noerr(sip, fp, sizeof (*sip));
277 		sip_addr = (siginfo_t *)fp;
278 
279 		if (sig == SIGPROF &&
280 		    curthread->t_rprof != NULL &&
281 		    curthread->t_rprof->rp_anystate) {
282 			/*
283 			 * We stand on our head to deal with
284 			 * the real time profiling signal.
285 			 * Fill in the stuff that doesn't fit
286 			 * in a normal k_siginfo structure.
287 			 */
288 			int i = sip->si_nsysarg;
289 
290 			while (--i >= 0)
291 				sulword_noerr(
292 				    (ulong_t *)&(sip_addr->si_sysarg[i]),
293 				    (ulong_t)lwp->lwp_arg[i]);
294 			copyout_noerr(curthread->t_rprof->rp_state,
295 			    sip_addr->si_mstate,
296 			    sizeof (curthread->t_rprof->rp_state));
297 		}
298 	} else
299 		sip_addr = NULL;
300 
301 	no_fault();
302 
303 	/*
304 	 * Save the current context on the user stack directly after the
305 	 * sigframe. Since sigframe is 8-byte-but-not-16-byte aligned, and since
306 	 * sizeof (struct sigframe) is 24, this guarantees 16-byte alignment for
307 	 * ucontext_t and its %xmm registers. The xsave state part of the
308 	 * ucontext_t may be inbetween these two. However, we have ensured that
309 	 * the size of the stack space is 16-byte aligned as the actual size may
310 	 * vary.
311 	 */
312 	tuc = kmem_alloc(sizeof (*tuc), KM_SLEEP);
313 	if (xsave_size != 0) {
314 		tuc->uc_xsave = (unsigned long)(sp + sizeof (struct sigframe));
315 	}
316 	uc = (ucontext_t *)(sp + sizeof (struct sigframe) + xsave_size);
317 	ret = savecontext(tuc, &lwp->lwp_sigoldmask, SAVECTXT_F_EXTD |
318 	    SAVECTXT_F_ONFAULT);
319 	if (ret != 0)
320 		goto postfault;
321 	if (on_fault(&ljb))
322 		goto badstack;
323 	copyout_noerr(tuc, uc, sizeof (*tuc));
324 	kmem_free(tuc, sizeof (*tuc));
325 	tuc = NULL;
326 
327 	lwp->lwp_oldcontext = (uintptr_t)uc;
328 
329 	if (newstack) {
330 		lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK;
331 		if (lwp->lwp_ustack)
332 			copyout_noerr(&lwp->lwp_sigaltstack,
333 			    (stack_t *)lwp->lwp_ustack, sizeof (stack_t));
334 	}
335 
336 	/*
337 	 * Set up signal handler return and stack linkage
338 	 */
339 	{
340 		struct sigframe frame;
341 
342 		/*
343 		 * ensure we never return "normally"
344 		 */
345 		frame.retaddr = (caddr_t)(uintptr_t)-1L;
346 		frame.signo = sig;
347 		frame.sip = sip_addr;
348 		copyout_noerr(&frame, sp, sizeof (frame));
349 	}
350 
351 	no_fault();
352 	if (watched)
353 		watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
354 
355 	/*
356 	 * Set up user registers for execution of signal handler.
357 	 */
358 	rp->r_sp = (greg_t)sp;
359 	rp->r_pc = (greg_t)hdlr;
360 	rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);
361 
362 	rp->r_rdi = sig;
363 	rp->r_rsi = (uintptr_t)sip_addr;
364 	rp->r_rdx = (uintptr_t)uc;
365 
366 	if ((rp->r_cs & 0xffff) != UCS_SEL ||
367 	    (rp->r_ss & 0xffff) != UDS_SEL) {
368 		/*
369 		 * Try our best to deliver the signal.
370 		 */
371 		rp->r_cs = UCS_SEL;
372 		rp->r_ss = UDS_SEL;
373 	}
374 
375 	/*
376 	 * Don't set lwp_eosys here.  sendsig() is called via psig() after
377 	 * lwp_eosys is handled, so setting it here would affect the next
378 	 * system call.
379 	 */
380 	return (1);
381 
382 badstack:
383 	no_fault();
384 postfault:
385 	if (watched)
386 		watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
387 	if (tuc)
388 		kmem_free(tuc, sizeof (*tuc));
389 #ifdef DEBUG
390 	printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
391 	    PTOU(p)->u_comm, p->p_pid, sig);
392 	printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
393 	    (void *)sp, (void *)hdlr, (uintptr_t)upc);
394 #endif
395 	return (0);
396 }
397 
398 #ifdef _SYSCALL32_IMPL
399 
400 /*
401  * An i386 SVR4/ABI signal frame looks like this on the stack:
402  *
403  * old %esp:
404  *		<a siginfo32_t [optional]>
405  *		<a ucontext32_t>
406  *		<a ucontext32_t's xsave state>
407  *		<pointer to that ucontext32_t>
408  *		<pointer to that siginfo32_t>
409  *		<signo>
410  * new %esp:	<return address (deliberately invalid)>
411  */
412 struct sigframe32 {
413 	caddr32_t	retaddr;
414 	uint32_t	signo;
415 	caddr32_t	sip;
416 	caddr32_t	ucp;
417 };
418 
419 int
420 sendsig32(int sig, k_siginfo_t *sip, void (*hdlr)())
421 {
422 	volatile size_t minstacksz;
423 	boolean_t newstack;
424 	size_t xsave_size;
425 	int ret;
426 	label_t ljb;
427 	volatile caddr_t sp;
428 	caddr_t fp;
429 	volatile struct regs *rp;
430 	volatile greg_t upc;
431 	volatile proc_t *p = ttoproc(curthread);
432 	klwp_t *lwp = ttolwp(curthread);
433 	ucontext32_t *volatile tuc = NULL;
434 	ucontext32_t *uc;
435 	siginfo32_t *sip_addr;
436 	volatile int watched;
437 
438 	rp = lwptoregs(lwp);
439 	upc = rp->r_pc;
440 
441 	minstacksz = SA32(sizeof (struct sigframe32)) + SA32(sizeof (*uc));
442 	if (sip != NULL)
443 		minstacksz += SA32(sizeof (siginfo32_t));
444 
445 	if (fpu_xsave_enabled()) {
446 		xsave_size = SA32(fpu_signal_size(lwp));
447 		minstacksz += xsave_size;
448 	} else {
449 		xsave_size = 0;
450 	}
451 	ASSERT((minstacksz & (STACK_ALIGN32 - 1)) == 0);
452 
453 	/*
454 	 * Figure out whether we will be handling this signal on
455 	 * an alternate stack specified by the user.  Then allocate
456 	 * and validate the stack requirements for the signal handler
457 	 * context.  on_fault will catch any faults.
458 	 */
459 	newstack = sigismember(&PTOU(curproc)->u_sigonstack, sig) &&
460 	    !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE));
461 
462 	if (newstack) {
463 		fp = (caddr_t)(SA32((uintptr_t)lwp->lwp_sigaltstack.ss_sp) +
464 		    SA32(lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN32);
465 	} else if ((rp->r_ss & 0xffff) != UDS_SEL) {
466 		user_desc_t *ldt;
467 		/*
468 		 * If the stack segment selector is -not- pointing at
469 		 * the UDS_SEL descriptor and we have an LDT entry for
470 		 * it instead, add the base address to find the effective va.
471 		 */
472 		if ((ldt = p->p_ldt) != NULL)
473 			fp = (caddr_t)rp->r_sp +
474 			    USEGD_GETBASE(&ldt[SELTOIDX(rp->r_ss)]);
475 		else
476 			fp = (caddr_t)rp->r_sp;
477 	} else
478 		fp = (caddr_t)rp->r_sp;
479 
480 	/*
481 	 * Force proper stack pointer alignment, even in the face of a
482 	 * misaligned stack pointer from user-level before the signal.
483 	 * Don't use the SA32() macro because that rounds up, not down.
484 	 */
485 	fp = (caddr_t)((uintptr_t)fp & ~(STACK_ALIGN32 - 1));
486 	sp = fp - minstacksz;
487 
488 	/*
489 	 * Make sure lwp hasn't trashed its stack
490 	 */
491 	if (sp >= (caddr_t)(uintptr_t)USERLIMIT32 ||
492 	    fp >= (caddr_t)(uintptr_t)USERLIMIT32) {
493 #ifdef DEBUG
494 		printf("sendsig32: bad signal stack cmd=%s, pid=%d, sig=%d\n",
495 		    PTOU(p)->u_comm, p->p_pid, sig);
496 		printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
497 		    (void *)sp, (void *)hdlr, (uintptr_t)upc);
498 		printf("sp above USERLIMIT\n");
499 #endif
500 		return (0);
501 	}
502 
503 	watched = watch_disable_addr((caddr_t)sp, minstacksz, S_WRITE);
504 
505 	if (on_fault(&ljb))
506 		goto badstack;
507 
508 	if (sip != NULL) {
509 		siginfo32_t si32;
510 		zoneid_t zoneid;
511 
512 		siginfo_kto32(sip, &si32);
513 		if (SI_FROMUSER(sip) &&
514 		    (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID &&
515 		    zoneid != sip->si_zoneid) {
516 			si32.si_pid = p->p_zone->zone_zsched->p_pid;
517 			si32.si_uid = 0;
518 			si32.si_ctid = -1;
519 			si32.si_zoneid = zoneid;
520 		}
521 		fp -= SA32(sizeof (si32));
522 		uzero(fp, sizeof (si32));
523 		copyout_noerr(&si32, fp, sizeof (si32));
524 		sip_addr = (siginfo32_t *)fp;
525 
526 		if (sig == SIGPROF &&
527 		    curthread->t_rprof != NULL &&
528 		    curthread->t_rprof->rp_anystate) {
529 			/*
530 			 * We stand on our head to deal with
531 			 * the real-time profiling signal.
532 			 * Fill in the stuff that doesn't fit
533 			 * in a normal k_siginfo structure.
534 			 */
535 			int i = sip->si_nsysarg;
536 
537 			while (--i >= 0)
538 				suword32_noerr(&(sip_addr->si_sysarg[i]),
539 				    (uint32_t)lwp->lwp_arg[i]);
540 			copyout_noerr(curthread->t_rprof->rp_state,
541 			    sip_addr->si_mstate,
542 			    sizeof (curthread->t_rprof->rp_state));
543 		}
544 	} else
545 		sip_addr = NULL;
546 	no_fault();
547 
548 	/* save the current context on the user stack */
549 	tuc = kmem_alloc(sizeof (*tuc), KM_SLEEP);
550 	fp -= SA32(sizeof (*tuc));
551 	uc = (ucontext32_t *)fp;
552 	if (xsave_size != 0) {
553 		fp -= xsave_size;
554 		tuc->uc_xsave = (int32_t)(uintptr_t)fp;
555 	}
556 	ret = savecontext32(tuc, &lwp->lwp_sigoldmask, SAVECTXT_F_EXTD |
557 	    SAVECTXT_F_ONFAULT);
558 	if (ret != 0)
559 		goto postfault;
560 	if (on_fault(&ljb))
561 		goto badstack;
562 	copyout_noerr(tuc, uc, sizeof (*tuc));
563 	kmem_free(tuc, sizeof (*tuc));
564 	tuc = NULL;
565 
566 	lwp->lwp_oldcontext = (uintptr_t)uc;
567 
568 	if (newstack) {
569 		lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK;
570 		if (lwp->lwp_ustack) {
571 			stack32_t stk32;
572 
573 			stk32.ss_sp = (caddr32_t)(uintptr_t)
574 			    lwp->lwp_sigaltstack.ss_sp;
575 			stk32.ss_size = (size32_t)
576 			    lwp->lwp_sigaltstack.ss_size;
577 			stk32.ss_flags = (int32_t)
578 			    lwp->lwp_sigaltstack.ss_flags;
579 			copyout_noerr(&stk32,
580 			    (stack32_t *)lwp->lwp_ustack, sizeof (stk32));
581 		}
582 	}
583 
584 	/*
585 	 * Set up signal handler arguments
586 	 */
587 	{
588 		struct sigframe32 frame32;
589 
590 		frame32.sip = (caddr32_t)(uintptr_t)sip_addr;
591 		frame32.ucp = (caddr32_t)(uintptr_t)uc;
592 		frame32.signo = sig;
593 		frame32.retaddr = 0xffffffff;	/* never return! */
594 		copyout_noerr(&frame32, sp, sizeof (frame32));
595 	}
596 
597 	no_fault();
598 	if (watched)
599 		watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
600 
601 	rp->r_sp = (greg_t)(uintptr_t)sp;
602 	rp->r_pc = (greg_t)(uintptr_t)hdlr;
603 	rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);
604 
605 	if ((rp->r_cs & 0xffff) != U32CS_SEL ||
606 	    (rp->r_ss & 0xffff) != UDS_SEL) {
607 		/*
608 		 * Try our best to deliver the signal.
609 		 */
610 		rp->r_cs = U32CS_SEL;
611 		rp->r_ss = UDS_SEL;
612 	}
613 
614 	/*
615 	 * Don't set lwp_eosys here.  sendsig() is called via psig() after
616 	 * lwp_eosys is handled, so setting it here would affect the next
617 	 * system call.
618 	 */
619 	return (1);
620 
621 badstack:
622 	no_fault();
623 postfault:
624 	if (watched)
625 		watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
626 	if (tuc)
627 		kmem_free(tuc, sizeof (*tuc));
628 #ifdef DEBUG
629 	printf("sendsig32: bad signal stack cmd=%s pid=%d, sig=%d\n",
630 	    PTOU(p)->u_comm, p->p_pid, sig);
631 	printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
632 	    (void *)sp, (void *)hdlr, (uintptr_t)upc);
633 #endif
634 	return (0);
635 }
636 
637 #endif	/* _SYSCALL32_IMPL */
638